Catalytic Generation of *ortho*-Quinone Dimethides via Donor/Donor Rhodium Carbenes

Mingchun Gao, Jose M. Ruiz, Emily Jimenez, Anna Lo, Croix J. Laconsay, James C. Fettinger, Dean J. Tantillo, and Jared T. Shaw^{*}

Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, United State E-mail: jtshaw@ucdavis.edu (J.T.S.)

Table of Contents

GENERAL INFORMATION	2
EXPERIMENTAL PROCEDURES AND CHARACTERIZATION	3
[4+2] CYCLOADDITION	4
REFERENCES	57
COMPUTATIONAL METHODS	59
X-RAY STRUCTURE DATA	92
COPY OF NMR SPECTRA	

General Information

Chemicals were purchased and used without further purification unless otherwise specified. All reactions using anhydrous solvents were carried out in flame-dried glassware with magnetic stirring. Anhydrous solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumina. Reactions were monitored by thin layer chromatography (TLC, Merck), and detected by examination under UV light (254 nm and 365 nm). Flash column chromatography was performed using silica gel [230–400 mesh (40–63 μ m)]. Extracts were concentrated *in vacuo* using both a rotary evaporator (bath temperatures up to 40 °C) at a pressure of \geq 10 torr (diaphragm pump). High vacuum procedures were carried out at room temperature at a pressure of 1 mtorr (diaphragm pump) or \geq 1000 mtorr (oil pump). ¹H and proton-decoupled ¹³C spectra were measured at 400, 600 or 800 MHz, and 101, 151 or 201MHz respectively unless otherwise noted. ¹H NMR spectra in CDCl₃, Acetone-d6, CD₂Cl₂, DMSO-d6, C₆D₆ were referenced at 0 ppm (TMS), 2.05 ppm, 5.32 ppm, 2.50 ppm and 7.16 ppm, respectively. ¹³C NMR spectra in CDCl₃, Acetone-d6, CD₂Cl₂, DMSO-d6, C₆D₆ were referenced at 77.16 ppm, 29.84 ppm, 53.84 ppm, 39.52 ppm and 128.06 ppm, respectively. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), or combinations of these signals. Apparent signals are indicated with *app.* and are used when signals with multiple couplings appear to form a certain peak type. High-resolution mass spectrometry was performed on positive mode, and ESI/OrbitrapTM, ESI/TOF, and CI/TOF techniques were generally used. For some substrates, high-resolution mass spectrometry using the aforementioned techniques was not achieved; low-resolution mass spectrometry using an Advion[©] ASAP-APCI-MS was achieved and the corresponding data is reported. Melting points were taken on an EZ-melting apparatus and were uncorrected. Infrared spectra were taken on a Bruker Tensor 27 spectrometer. All microwave experiments were run in a Biotage Initiator EXP EU 400W microwave synthesizer 2.0 serial number 11031. NOTE: it is necessary that the MnO₂ used for the oxidation of hydrazones be ~85% pure with an average particle size of 2 microns, appearing as a fine black powder.

Experimental Procedures and Characterization

General Procedure A (acetal synthesis). To a flame-dried round bottom were added aldehyde, diol (1.1-4.0 equiv), *p*-toluenesulfonic acid monohydrate (0.02-0.2 equiv) and toluene or benzene (0.33-1.0 M). The resulting solution was heated under reflux with Dean-Stark trap. Upon full conversion monitored by ¹H NMR, the reaction was quenched with 15% NaOH aqueous solution or saturated NaHCO₃ aqueous solution and extracted with EtOAc (3×20 mL). The combined organic phases were washed with H₂O (1×10 mL) and brine (1×10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography to obtain the desired acetal.

General Procedure B (ketone synthesis using Weinreb amide). To a flame-dried round bottom flask were added aryl bromide and THF (0.2-0.25 M). The solution was cooled to -78 °C and *n*-BuLi (in hexane or toluene, 1.1 equiv) was added dropwise. The reaction was kept at -78 °C for 1-2 h and Weinreb amide (1.3-1.5 equiv) in THF was added dropwise. The reaction was then allowed to warm to room temperature overnight. Upon completion monitored by TLC, the reaction was quenched with saturated NH₄Cl aqueous solution and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with H₂O (1 × 10 mL) and brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography to obtain the desired ketone.

General Procedure C (hydrazone synthesis by microwave reaction). To a flame-dried microwave vial were added ketone and EtOH (0.2-0.33 M). The solution was sparged with Ar for 5 min, followed by the addition of N₂H₄ (13 equiv) and HOAc (1.2 equiv). The vial was heated in a microwave reactor at 160 °C for 3 h. If the poor conversion was observed by TLC, to the reaction were added N₂H₄ (13 equiv) and HOAc (1.2 equiv) again and the reaction was heated in the microwave reactor at 160 °C for another 3 h. Upon full conversion, the reaction was quenched with H₂O and extracted with ether (3 × 10 mL). The combined organic phases were further washed with brine (1 × 10 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by flash column chromatography to obtain the desired hydrazone as Z/E mixture. Hydrazones were often isolated as a mixture of E/Z isomers. As such

¹H NMR peaks have been reported only for selected examples. Due to restricted rotation, the hydrazone NMRs often indicated diastereotopic protons.

General Procedure D ((Hetero) Diels-Alder reaction). To a flame-dried vial were added hydrazone, dienophile (1.0-1.2 equiv), MnO_2 (8.0 equiv), $Rh_2(MesCO_2)_4$ or $Rh_2(R-PTAD)_4$ (0.01 equiv) and DCM (0.017 M). After stirred at room temperature for 5-24 h, the crude reaction was filtered over celite to remove MnO_2 , concentrated and further purified by flash column chromatography to obtain the desired product.

General Procedure E ((Hetero) Diels-Alder reaction). To a flame-dried vial were added hydrazone, MnO₂ (8.0 equiv) and DCM (0.017 M). After stirred at room temperature for 2 h, dienophile (1.0-1.2 equiv), Rh₂(MesCO₂)₄ (0.01 equiv) were added. After stirred for another 3-22 h, the crude reaction was filtered over celite to remove MnO₂, concentrated and further purified by flash column chromatography to obtain the desired product.

General Procedure F ((Hetero) Diels-Alder reaction at 55 °C). To a flame-dried vial were added hydrazone, MnO_2 (8.0 equiv) and THF (0.017 M). After stirred at room temperature for 1 h, dienophile (1.0-1.2 equiv), $Rh_2(MesCO_2)_4$ or $Rh_2(S$ -TCPTTL)₄ (0.01 equiv) were added, and the reaction was heated to 55 °C. After stirred for another 12-20 h, the crude reaction was cooled to room temperature and filtered over celite to remove MnO_2 , concentrated and further purified by flash column chromatography to obtain the desired product.

2-(2-Bromophenyl)-1,3-dioxolane was synthesized according to General Procedure E, using 2bromobenzaldehyde (1.17 mL, 10 mmol), ethylene glycol (775.9 mg, 12.5 mmol), *p*toluenesulfonic acid monohydrate (34.4 mg, 0.18 mmol) and toluene (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 30:1, v/v) to obtain the acetal as a colorless oil (2.16 g, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.10 (s, 1H), 4.21 – 4.03 (m, 4H). ¹H NMR data was consistent with reported literature values.¹

(2-(1,3-Dioxolan-2-yl)phenyl)(phenyl)methanone was synthesized according to General Procedure A, using 2-(2-Bromophenyl)-1,3-dioxolane (687.2 mg, 3 mmol), *n*-BuLi (1.8 M, 1.8 mL, 3.3 mmol), *N*-methoxy-*N*-methylbenzamide (743.4 mg, 4.5 mmol) and THF (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 10:1, v/v) to obtain the ketone as a colorless oil (454.2 mg, 60%). ¹H NMR (400 MHz, C₆D₆) δ 7.91 – 7.86 (m, 2H), 7.76 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.15 – 7.06 (m, 3H), 7.04 – 6.94 (m, 3H), 6.24 (s, 1H), 3.44 – 3.34 (m, 2H), 3.28 – 3.19 (m, 2H). ¹H NMR data was consistent with reported literature values.²

(*E*)-((2-(1,3-Dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine was synthesized according to General Procedure B, using (2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methanone (254.3 mg, 1 mmol), N₂H₄ (0.41 mL, 13 mmol), HOAc (0.07 mL, 1.2 mmol) and EtOH (4 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain the hydrazone as a pale yellow solid (195.2 mg, 73%). m.p. 131-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.73 (m, 1H), 7.59 – 7.48 (m, 2H), 7.49 – 7.41 (m, 2H), 7.32 – 7.22 (m, 3H), 7.19 – 7.11 (m, 1H), 5.59 (s, 1H), 5.39 (s, 2H), 4.12 – 3.97 (m, 2H), 3.95 – 3.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 138.3, 136.5, 132.9, 130.7, 129.5, 129.1, 128.3, 128.2, 127.6, 126.1, 101.7, 65.6, 65.5. HRMS (ESI) *m/z* calcd for C₁₆H₁₇N₂O₂⁺ [M+H]⁺ 269.1285, found 269.1283.

[4+2] Cycloaddition

2,9-Diphenyl-9,9a-dihydrospiro[benzo[f]isoindole-4,2'-[1,3]dioxolane]-1,3(2H,3aH)-dione was synthesized according to General Procedure D, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 3:1, v/v) to obtain **15a** as a white solid (22.6 mg, 55%, 87:13 dr). m.p. 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 1H), 7.62 – 7.52 (m, 2H), 7.42 – 7.23 (m, 8H), 7.22 – 7.13 (m, 1H), 6.93 – 6.80 (m, 2H), 5.02 (d, J = 6.3 Hz, 1H), 4.36 (q, J = 6.3 Hz, 1H), 4.28 (q, J = 6.5 Hz, 1H), 4.21 (q, J = 6.4 Hz, 1H), 4.12 (q, J = 6.3 Hz, 1H), 3.86 (dd, J = 9.2, 6.3 Hz, 1H), 3.74 (d, J = 9.1 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 175.4, 172.8, 138.4, 137.8, 135.7, 131.8, 131.0, 129.6, 129.1, 128.6, 128.2, 128.0, 127.4, 127.2, 126.5, 124.6, 105.1, 66.3, 65.1, 51.3, 45.0, 44.5. IR (neat): 2920, 1707, 1377, 1177, 1062, 730, 693 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₆H₂₂NO₄⁺ [M+H]⁺ 412.1543, found 412.1554.

9-Phenyl-2-(*p*-tolyl)-9,9a-dihydrospiro[benzo[*f*]isoindole-4,2'-[1,3]dioxolane]-1,3(2*H*,3a*H*)-dione was synthesized according to General Procedure D, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-(*p*-tolyl)-1*H*-pyrrole-2,5-dione (22.5 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain **15b** as a white solid (27.3 mg, 64%, 87:13 dr). m.p. 199-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 1H), 7.60 – 7.50 (m, 2H), 7.40 – 7.25 (m, 5H), 7.19 – 7.16 (m, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.73 (d, *J* = 8.3 Hz, 2H), 5.01 (d, *J* = 6.3 Hz, 1H), 4.42 – 4.33 (m, 1H), 4.33 – 4.26 (m, 1H), 4.25 – 4.18 (m, 1H), 4.17 – 4.07 (m, 1H), 3.86 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.74 (d, *J* = 9.2 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 173.0, 138.7, 138.4, 137.9, 135.7, 131.0, 129.7, 129.6, 129.2, 128.2, 128.0, 127.4, 127.2, 126.3, 124.6, 105.1, 66.4, 65.1, 51.3, 45.0,

44.5, 21.3. IR (neat): 2902, 1705, 1382, 1179, 1067, 736, 696 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₄NO₄⁺ [M+H]⁺ 426.1700, found 426.1713.

2-Benzyl-9-phenyl-9,9a-dihydrospiro[benzo[*f*]isoindole-4,2'-[1,3]dioxolane]-1,3(2*H*,3a*H*)-dione was synthesized according to General Procedure D, using (*E*)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-benzyl-1*H*-pyrrole-2,5-dione (22.5 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain **15c** as a white solid (31.2 mg, 73%, 91:9 dr). m.p. 178-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 1H), 7.43 – 7.36 (m, 2H), 7.35 – 7.28 (m, 3H), 7.28 – 7.21 (m, 2H), 7.18 – 7.05 (m, 4H), 6.77 (d, *J* = 6.7 Hz, 2H), 4.99 (d, *J* = 6.3 Hz, 1H), 4.51 (d, *J* = 14.4 Hz, 1H), 4.43 (d, *J* = 14.4 Hz, 1H), 4.36 – 4.29 (m, 1H), 4.29 – 4.22 (m, 1H), 4.22 – 4.15 (m, 1H), 4.02 – 3.94 (m, 1H), 3.69 (dd, *J* = 8.7, 6.3 Hz, 1H), 3.59 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 173.3, 137.9, 137.0, 135.5, 131.3, 129.4, 128.5, 128.0, 127.8, 127.46, 127.46, 127.4, 127.0, 124.3, 105.4, 66.4, 64.6, 50.9, 44.6, 44.2, 42.1. IR (neat): 2923, 1701, 1287, 1180, 1016, 695 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₄NO₄⁺ [M+H]⁺ 426.1700, found 426.1707.

To a flame-dried round bottom flask were added 2-(2-bromophenyl)-1,3-dioxolane (755.9 mg, 3.3 mmol) and THF (20 mL). The solution was cooled to -78 °C and *n*-BuLi (2.5 M in hexane, 1.5 mL, 1.2 equiv) was added dropwise. The reaction was kept at -78 °C for 15 min and 4-methoxy-*N*,*N*-dimethylbenzamide (585.7 mg, 3 mmol) in THF (10 mL) was then added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. Upon completion monitored by TLC, the reaction was quenched with saturated NH₄Cl aqueous solution and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with H₂O (1 × 10 mL) and brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 3:1, v/v) to obtain the ketone as a clear oil (228.3 mg, 27%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.9 Hz, 2H), 7.69 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.50 (td, *J* = 7.6, 1.4 Hz, 1H), 7.41 (td, *J* = 7.5, 1.3 Hz, 1H), 7.31 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 5.99 (s, 1H), 3.95 – 3.91 (m, 2H), 3.91 – 3.88 (m, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.8, 139.1, 136.7, 132.6, 130.8, 129.8, 128.5, 128.0, 127.1, 113.7, 101.6, 65.3, 55.6. IR (neat): 2898, 1711, 1511, 1377, 1179, 1065, 1027, 736 cm⁻¹. HRMS (ESI) *m*/z calcd for C₁₇H₁₇O₄⁺ [M+H]⁺ 285.1121, found 285.1126.

(E)-((2-(1,3-Dioxolan-2-yl)phenyl)(4-methoxyphenyl)methylene)hydrazine was synthesized Procedure according to General Β, using (2-(1,3-dioxolan-2-yl)phenyl)(4methoxyphenyl)methanone (200 mg, 0.7 mmol), N₂H₄ (0.29 mL, 9.1 mmol), HOAc (0.05 mL, 0.84 mmol) and EtOH (3 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain the hydrazone as a pale yellow solid (139.9 mg, 67%). m.p. 80-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 1H), 7.56 – 7.48 (m, 2H), 7.39 (d, J = 8.9 Hz, 2H), 7.19 – 7.11 (m, 1H), 6.81 (d, J = 8.9 Hz, 2H), 5.59 (s, 1H), 5.28 (s, 2H), 4.11 – 3.99 (m, 2H), 3.95 – 3.85 (m, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 148.5, 136.4, 133.2, 131.2, 130.7, 129.4, 129.0, 127.6, 113.7, 101.8, 65.7, 65.6, 55.4. HRMS (ESI) *m*/z calcd for C₁₇H₁₉N₂O₃⁺ [M+H]⁺ 299.1390, found 299.1391.

(3a*R*,9*R*,9a*R*)-9-(4-Methoxyphenyl)-2-phenyl-9,9a-dihydrospiro[benzo[*f*]isoindole-4,2'-[1,3]dioxolane]-1,3(2*H*,3a*H*)-dione was synthesized according to General Procedure D, using (*E*)-

((2-(1,3-dioxolan-2-yl)phenyl)(4-methoxyphenyl)methylene)hydrazine (29.8 mg, 0.1 mmol), 1phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(*R*-PTAD)₄ (1.6 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain **15d** as a white solid (27.0 mg, 61%, >95:5 dr). m.p. 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.37 – 7.27 (m, 5H), 7.20 – 7.14 (m, 1H), 6.92 – 6.83 (m, 4H), 4.97 (d, *J* = 6.3 Hz, 1H), 4.37 (q, *J* = 6.2 Hz, 1H), 4.29 (q, *J* = 6.4 Hz, 1H), 4.22 (q, *J* = 6.4 Hz, 1H), 4.16 – 4.09 (m, 1H), 3.86 – 3.78 (m, 4H), 3.74 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 172.9, 158.9, 138.6, 135.7, 132.2, 131.8, 129.8, 129.6, 129.1, 128.6, 128.0, 127.2, 126.5, 124.6, 113.5, 105.1, 66.4, 65.1, 55.4, 51.3, 45.2, 43.8. HRMS (ESI) *m*/z calcd for C₂₇H₂₄NO₅⁺ [M+H]⁺ 442.1649, found 442.1654.

4-(2-(1,3-Dioxolan-2-yl)benzoyl)benzonitrile was synthesized according to General Procedure A, using 2-(2-Bromophenyl)-1,3-dioxolane (229.1 mg, 1 mmol), *n*-BuLi (2.16 M, 0.51 mL, 1.1 mmol), 4-cyano-*N*-methoxy-*N*-methylbenzamide (285.3 mg, 1.5 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain the ketone as a white solid (141.0 mg, 51%). m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.56 (td, *J* = 7.6, 1.4 Hz, 1H), 7.46 (td, *J* = 7.5, 1.3 Hz, 1H), 7.29 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.00 (s, 1H), 3.90 – 3.79 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 141.0, 137.3, 137.2, 132.3, 130.7, 130.3, 128.8, 128.0, 127.5, 118.2, 116.3, 101.7, 65.2. HRMS (ESI) *m*/z calcd for C₁₇H₁₄NO₃⁺ [M+H]⁺ 280.0968, found 280.0975.

(*E*)-4-((2-(1,3-dioxolan-2-yl)phenyl)(hydrazineylidene)methyl)benzonitrile was synthesized according to General Procedure B, using 4-(2-(1,3-dioxolan-2-yl)benzoyl)benzonitrile (83.8 mg,

0.3 mmol), N₂H₄ (0.12 mL, 3.9 mmol), HOAc (0.02 mL, 0.36 mmol) and EtOH (2 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain the hydrazone as a yellow oil (34.0 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.74 (m, 1H), 7.60 – 7.49 (m, 6H), 7.17 – 7.09 (m, 1H), 5.91 – 5.14 (m, 3H), 4.08 – 3.84 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 142.7, 136.8, 132.1, 131.6, 131.1, 130.0, 129.3, 128.1, 126.4, 119.3, 111.1, 102.0, 65.62, 65.59. HRMS (ESI) *m*/z calcd for C₁₇H₁₆N₃O₂⁺ [M+H]⁺ 294.1237, found 294.1245.

15e

4-((3aR,9R,9aR)-1,3-Dioxo-2-phenyl-1,2,3,3a,9,9a-hexahydrospiro[benzo[f]isoindole-4,2'-

[1,3]dioxolan]-9-yl)benzonitrile was synthesized according to General Procedure D, using (*E*)-4-((2-(1,3-dioxolan-2-yl)phenyl)(hydrazineylidene)methyl)benzonitrile (29.3 mg, 0.1 mmol), 1-phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **15e** as a white solid (34.3 mg, 79%, 86:14 dr). m.p. 110-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.69 – 7.65 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.28 (m, 5H), 7.11 – 7.04 (m, 1H), 6.93 – 6.82 (m, 2H), 5.09 (d, *J* = 6.5 Hz, 1H), 4.39 – 4.28 (m, 2H), 4.24 – 4.12 (m, 2H), 3.92 (dd, *J* = 9.4, 6.6 Hz, 1H), 3.77 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 172.5, 143.8, 137.1, 135.8, 131.84, 131.81, 131.6, 129.9, 129.2, 128.9, 127.8, 127.7, 126.4, 124.8, 119.0, 111.2, 105.2, 66.3, 65.4, 51.0, 44.3, 44.2. IR (neat): 2974, 2226, 1716, 1383, 1067, 761 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₁N₂O₄+ [M+H]+ 437.1496, found 437.1507.

2-(2-Bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane was synthesized according to General Procedure C, using 2-bromobenzaldehyde (1.17 mL, 10 mmol), pinacol (4.7 g, 40 mmol), *p*-

toluenesulfonic acid monohydrate (344.4 mg, 1.8 mmol) and benzene (30 mL). Upon full conversion determined by ¹H NMR, the crude product was purified by flash column chromatography (hexane/EtOAc = 30:1, v/v) to obtain the acetal as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.20 (s, 1H), 1.35 (s, 6H), 1.29 (s, 6H). ¹H NMR data was consistent with reported literature values.³

Phenyl(2-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)phenyl)methanone was synthesized according to General Procedure A, using 2-(2-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane (855.5 mg, 3 mmol), *n*-BuLi (1.8 M, 1.8 mL, 3.3 mmol), *N*-methoxy-*N*-methylbenzamide (743.4 mg, 4.5 mmol) and THF (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 15:1, v/v) to obtain the ketone as a colorless oil (296.9 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.8 Hz, 3H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 6.11 (s, 1H), 1.15 (s, 6H), 1.11 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 139.6, 138.4, 138.2, 133.0, 130.3, 130.1, 128.3, 128.2, 127.7, 126.5, 97.1, 82.8, 24.1, 22.3. HRMS (ESI) *m*/z calcd for C₂₀H₂₃O₃⁺ [M+H]⁺ 311.1642, found 311.1646.

(*E*)-(Phenyl(2-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)phenyl)methylene)hydrazine was synthesized according to General Procedure B, using phenyl(2-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)phenyl)methanone (290 mg, 0.93 mmol), N₂H₄ (0.38 mL, 12.1 mmol), HOAc (0.06 mL, 1.12 mmol) and EtOH (2.8 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain the hydrazone as a pale yellow solid (234.4 mg, 78%). m.p. 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 1H), 7.56 – 7.49 (m,

2H), 7.49 – 7.43 (m, 2H), 7.33 – 7.26 (m, 3H), 7.18 – 7.13 (m, 1H), 5.76 (s, 1H), 5.44 (s, 2H), 1.29 (s, 3H), 1.25 (s, 3H), 1.21 (s, 3H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.8, 138.5, 138.1, 133.1, 130.1, 129.4, 129.0, 128.2, 128.1, 126.9, 126.4, 97.5, 82.9, 82.8, 24.7, 24.6, 22.4, 22.3. HRMS (ESI) *m*/z calcd for C₂₀H₂₅N₂O₂⁺ [M+H]⁺ 325.1911, found 325.1917.

4',4',5',5'-Tetramethyl-2,9-diphenyl-9,9a-dihydrospiro[benzo[f]isoindole-4,2'-[1,3]dioxolane]-1,3(2*H*,3a*H*)-dione was synthesized according to General Procedure D, using (*E*)-(phenyl(2-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)phenyl)methylene)hydrazine (32.4 mg, 0.1 mmol), 1phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain **15f** as a white solid (29.8 mg, 64%, >95:5 dr). m.p. 202-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 1H), 7.68 (d, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.30 – 7.21 (m, 5H), 7.12 – 7.05 (m, 1H), 6.77 (d, *J* = 6.4 Hz, 2H), 5.23 (d, *J* = 4.3 Hz, 1H), 3.86 (dd, *J* = 8.1, 4.4 Hz, 1H), 3.78 (d, *J* = 8.2 Hz, 1H), 1.57 (s, 3H), 1.45 (s, 3H), 1.33 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 172.4, 138.8, 137.9, 137.0, 131.9, 131.2, 128.9, 128.8, 128.4, 128.1, 127.3, 126.6, 126.5, 126.2, 124.6, 103.1, 84.7, 84.0, 55.0, 45.3, 44.0, 25.5, 24.7, 23.7, 23.6. IR (neat): 2975, 1712, 1377, 1119, 1062, 707, 692 cm⁻¹. HRMS (ESI) *m*/z calcd for C₃₀H₃₀NO₄+ [M+H]⁺ 468.2169, found 468.2170.

To a flame-dried round bottom flask were added 2-bromobenzaldehyde (2.33 mL, 20 mmol), trimethoxymethane (5.5 mL, 50 mmol), *p*-toluenesulfonic acid monohydrate (380.4 mg, 2 mmol) and methanol (40 mL). The reaction was stirred under reflux overnight. After half conversion was observed, another 4 mL of trimethoxymethane was added. The reaction was stirred for

another 1 d. Upon full conversion determined by ¹H NMR, the reaction was quenched with saturated NaHCO₃ aqueous solution. Most of methanol solvent was removed under reduced pressure as well as trimethoxymethane. The mixture was then extracted with EtOAc (3×20 mL). The combined organic phases were washed with H₂O (1×10 mL) and brine (1×10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 30:1, v/v) to obtain 1-bromo-2-(dimethoxymethyl)benzene as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, J = 7.7, 1.8 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.33 (td, J = 7.5, 1.3 Hz, 1H), 7.20 (td, J = 7.7, 1.8 Hz, 1H), 5.56 (s, 1H), 3.39 (s, 6H). ¹H NMR data was consistent with reported literature values.⁴

(2-(Dimethoxymethyl)phenyl)(phenyl)methanone was synthesized according to General Procedure A, using 1-bromo-2-(dimethoxymethyl)benzene (2.31 g, 10 mmol), *n*-BuLi (1.8 M, 6.1 mL, 11 mmol), *N*-methoxy-*N*-methylbenzamide (2.15 g, 13 mmol) and THF (60 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 10:1, v/v) to obtain the ketone as a pale yellow oil (1.50 g, 58%). ¹H NMR (400 MHz, Acetone) δ 7.75 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.58 – 7.45 (m, 4H), 7.33 (dd, *J* = 7.4, 1.4 Hz, 1H), 5.53 (s, 1H), 3.13 (s, 6H). ¹³C NMR (101 MHz, Acetone) δ 197.5, 139.7, 138.5, 138.0, 133.8, 130.3, 129.3, 128.7, 128.6, 127.7, 101.5, 53.3. HRMS (TOF MS Cl⁺) *m*/z calcd for C₁₆H₁₆O₃⁺ [M⁺] 256.1100, found 256.1105.

(*E*)-((2-(Dimethoxymethyl)phenyl)(phenyl)methylene)hydrazine was synthesized according to General Procedure B, using (2-(dimethoxymethyl)phenyl)(phenyl)methanone (768.9 mg, 3 mmol), N₂H₄ (1.23 mL, 39 mmol), HOAc (0.2 mL, 3.6 mmol) and EtOH (9 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain the hydrazone as a yellow solid (627.3 mg, 77%). m.p. 77-79 °C. ¹H NMR (599 MHz, CDCl₃) δ 7.80 –

7.75 (m, 1H), 7.55 – 7.48 (m, 2H), 7.48 – 7.42 (m, 2H), 7.31 – 7.24 (m, 3H), 7.20 – 7.15 (m, 1H), 5.40 (s, 2H), 5.04 (s, 1H), 3.38 (s, 3H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 138.2, 137.6, 132.3, 129.9, 129.3, 129.0, 128.3, 128.2, 126.9, 126.1, 102.8, 55.0, 54.5. HRMS (ESI) *m*/z calcd for C₁₆H₁₉N₂O₂⁺ [M+H]⁺ 271.1441, found 271.1444.

4,4-Dimethoxy-2,9-diphenyl-3a,4,9,9a-tetrahydro-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione was Procedure synthesized according to General D, using (E)-((2-(dimethoxymethyl)phenyl)(phenyl)methylene)hydrazine (27.0 mg, 0.1 mmol), 1-phenyl-1Hpyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain **15g** as a white solid (34.5 mg, 84%, >95:5 dr). m.p. 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.54 (m, 3H), 7.47 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.41 – 7.23 (m, 8H), 7.10 – 6.99 (m, 2H), 5.06 (d, J = 6.2 Hz, 1H), 3.88 (d, J = 9.0 Hz, 1H), 3.79 (dd, J = 9.0, 6.2 Hz, 1H), 3.54 (s, 3H), 3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 173.7, 139.7, 136.9, 135.3, 132.0, 129.2, 129.1, 129.0, 128.48, 128.42, 128.38, 127.7, 127.5, 127.2, 126.6, 81.1, 75.6, 57.4, 51.3, 50.0, 44.2. IR (neat): 2922, 1711, 1375, 1153, 1052, 741, 694 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₆H₂₄NO₄⁺ [M+H]⁺ 414.1700, found 414.1706.

2-(2-Bromophenyl)-1,3-dioxane was synthesized according to General Procedure C, using 2bromobenzaldehyde (925.1 mg, 5 mmol), propane-1,3-diol (418.5 mg, 5.5 mmol), *p*toluenesulfonic acid monohydrate (95.1 mg, 0.5 mmol) and toluene (10 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 30:1, v/v) to obtain the acetal as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.53 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.34 (td, *J* = 7.6, 1.2 Hz, 1H), 7.19 (td, *J* = 7.7, 1.8 Hz, 1H), 5.76 (s, 1H), 4.28 (dd, *J* = 5.0, 1.3 Hz, 1H), 4.25 (dd, *J* = 5.1, 1.4 Hz, 1H), 4.03 (td, *J* = 12.4, 2.6 Hz, 2H), 2.35 − 2.14 (m, 1H), 1.50 − 1.40 (m, 1H). ¹H NMR data was consistent with reported literature values.⁵

(2-(1,3-Dioxan-2-yl)phenyl)(phenyl)methanone was synthesized according to General Procedure A, using 2-(2-bromophenyl)-1,3-dioxane (729.3 mg, 3 mmol), *n*-BuLi (2.5 M, 1.3 mL, 3.3 mmol), *N*-methoxy-*N*-methylbenzamide (743.4 mg, 4.5 mmol) and THF (18 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 10:1, v/v) to obtain the ketone as a white solid (427.9 mg, 53%). m.p. 76-77 °C. ¹H NMR (400 MHz, C₆D₆) δ 8.04 (d, *J* = 7.9 Hz, 1H), 7.94 – 7.86 (m, 2H), 7.24 – 7.16 (m, 1H), 7.14 – 7.01 (m, 4H), 7.00 – 6.92 (m, 1H), 5.94 (s, 1H), 3.74 – 3.62 (m, 2H), 3.32 (td, *J* = 12.2, 2.4 Hz, 2H), 1.79 – 1.61 (m, 1H), 0.56 – 0.43 (m, 1H). ¹³C NMR (101 MHz, C₆D₆) δ 197.2, 138.8, 138.7, 138.4, 132.60, 132.58, 130.4, 129.8, 128.4, 128.2, 126.5, 98.9, 67.1, 25.8. HRMS (ESI) *m*/z calcd for C₁₇H₁₇O₃⁺ [M+H]⁺ 269.1172, found 269.1175.

(*E*)-((2-(1,3-Dioxan-2-yl)phenyl)(phenyl)methylene)hydrazine was synthesized according to General Procedure C, using (2-(1,3-dioxan-2-yl)phenyl)(phenyl)methanone (268.3 mg, 1 mmol), N₂H₄ (0.41 mL, 13 mmol), HOAc (0.07 mL, 1.2 mmol) and EtOH (3 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 3:1, v/v) to obtain the hydrazone as a pale yellow solid (226.8 mg, 80%). m.p. 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 1H), 7.57 – 7.48 (m, 2H), 7.48 – 7.41 (m, 2H), 7.33 – 7.24 (m, 3H), 7.18 – 7.11 (m, 1H), 6.03 – 4.48 (m, 3H), 4.20 – 4.03 (m, 2H), 3.89 – 3.79 (m, 1H), 3.70 (td, *J* = 12.0, 2.6 Hz, 1H), 2.24 – 2.09 (m, 1H), 1.39 – 1.29 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 138.4, 137.4, 131.9, 130.3, 129.6, 128.9, 128.3, 128.2, 127.0, 126.3, 99.8, 67.6, 67.5, 25.8. HRMS (ESI) *m*/z calcd for C₁₇H₁₉N₂O₂⁺ [M+H]⁺ 283.1441, found 283.1442.

(3a*R*,4*R*)-9-(3-Hydroxypropoxy)-2,4-diphenyl-3a,4-dihydro-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxan-2-yl)phenyl)(phenyl)methylene)hydrazine (28.2 mg, 0.1 mmol), 1-phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(*R*-PTAD)₄ (1.6 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain **15h** as a clear oil (15.3 mg, 36%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.89 (m, 1H), 7.47 – 7.40 (m, 2H), 7.39 – 7.27 (m, 4H), 7.25 – 7.16 (m, 3H), 7.13 – 7.05 (m, 2H), 6.93 – 6.81 (m, 2H), 5.15 (dt, *J* = 10.0, 6.0 Hz, 1H), 4.74 (d, *J* = 6.6 Hz, 1H), 4.49 (dt, *J* = 10.1, 5.7 Hz, 1H), 4.28 (d, *J* = 6.6 Hz, 1H), 4.02 – 3.85 (m, 2H), 2.35 (s, 1H), 2.18 – 2.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 165.6, 159.8, 140.8, 136.3, 132.3, 132.1, 131.8, 129.4, 129.2, 129.1, 128.6, 128.5, 128.3, 127.7, 126.9, 126.4, 100.1, 73.9, 59.5, 47.6, 44.2, 33.2. IR (neat): 3442, 2925, 1695, 1614, 1377, 741 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₄NO₄⁺ [M+H]⁺ 426.1700, found 426.1717.

Diethyl (2*R*,3*S*,4*R*)-4-phenyl-3,4-dihydro-2*H*-spiro[naphthalene-1,2'-[1,3]dioxolane]-2,3dicarboxylate was synthesized according to General Procedure H, using (*E*)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), diethyl fumarate (0.01 mL, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain **15i** as a yellowish oil (22.7 mg, 55%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.34 – 7.10 (m, 7H), 6.75 (dt, *J* = 7.8, 1.4 Hz, 1H), 4.41 – 4.35 (m, 1H), 4.25 – 4.09 (m, 6H), 3.91 (qt, J = 7.1, 3.7 Hz, 2H), 3.73 (t, J = 11.5 Hz, 1H), 3.52 (d, J = 11.8 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 170.8, 143.1, 138.9, 137.7, 129.5, 129.5, 129.0, 128.6, 127.2, 126.7, 124.5, 107.7, 67.2, 65.1, 61.2, 60.6, 52.5, 50.0, 49.0, 14.3, 13.9. IR (neat): 2979, 2898, 1728, 1448, 1252 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₄H₂₇O₆⁺ [M+H]⁺ 411.1802, found 411.1806.

To a round bottom flask were added (*E*)-4-ethoxy-4-oxobut-2-enoic acid (720.7 mg, 5 mmol) and THF (20 mL). Then triethyl amine (0.76 mL, 5.5 mmol) and pivaloyl chloride (0.66 mL,5 mmol) were added at -10 °C. The reaction was then allowed to stir for 3 hours at room temperature. In another flask, oxazolidine-2-one(435.4 mg, 5 mmol) was dissolved in THF (20 mL) and cooled to -30 °C before adding *n*-Buli (2.78 mL, 5 mmol). After stirring for one hour at room temperature, the oxazolidinone solution was cooled to -30 °C and the anhydride solution was added dropwise. After allowing the reaction to stir overnight at room temperature, sodium bicarbonate was added (30 mL), the organic layer was extracted in diethyl ether (3x 50 mL), dried over sodium sulfate and concentrated in vacuo. The crude product was purified by flash column chromatography to obtain ethyl (*E*)-4-oxo-4-(2-oxooxazolidin-3-yl)but-2-enoate as a white powder (835.4 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 15.6 Hz, 1H), 6.96 (d, *J* = 15.5 Hz, 1H), 4.48 (dd, *J* = 8.5, 7.5 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.11 (dd, *J* = 8.6, 7.4 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹H NMR data was consistent with reported literature values.⁶

Ethyl (2R,3S,4R)-2- $(2-\infty\infty)$ azolidine-3-carbonyl)-4-phenyl-3,4-dihydro-2*H*-spiro[naphthalene-1,2'-[1,3]dioxolane]-3-carboxylate was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), ethyl (*E*)-4oxo-4-(2-oxooxazolidin-3-yl)but-2-enoate (21.3 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **15k** as a white powder (35.0 mg, 77%, >95:5 dr). m.p. 217-218 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J* = 7.4, 1.9 Hz, 1H), 7.35 – 7.02 (m, 7H), 6.77 (dt, *J* = 7.8, 1.3 Hz, 1H), 5.23 (d, *J* = 10.6 Hz, 1H), 4.49 – 4.24 (m, 4H), 4.19 – 3.79 (m, 8H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 171.7, 153.2, 143.4, 139.3, 137.3, 129.6, 129.4, 129.0, 128.6, 127.0, 126.4, 123.6, 107.9, 67.2, 64.9, 61.7, 60.8, 49.6, 48.4, 48.1, 43.3, 13.9. IR (neat): 2897, 1788, 1724, 1687, 1390, 1371 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₅H₂₆NO₇⁺ [M+H]⁺ 452.1704, found 452.1707.

$$CI \xrightarrow{O} OEt \xrightarrow{NH(CH_3)_2} H_3C \xrightarrow{O} OEt \xrightarrow{O} OEt$$

Ethyl (*E*)-4-(dimethylamino)-4-oxobut-2-enoate was synthesized by dissolving ethyl (*E*)-4chloro-4-oxobut-2-enoate (1.3 g, 8 mmol) in DCM (15 mL). After cooling the solution to 0 °C, dimethyl amine (2 M) in methanol (8 mL, 16 mmol) was added dropwise. The reaction was allowed to stir overnight at room temperature. Sodium bicarbonate (20 mL) was added, and the organic layer was extracted in methylene chloride (3 × 20 mL). The combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford a clear yellow oil (1.26 g, 92 %). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 15.3 Hz, 1H), 6.78 (d, *J* = 15.3 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.13 (s, 3H), 3.04 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹H NMR data was consistent with reported literature values.⁷

Ethyl (2R,3S,4R)-3-(dimethylcarbamoyl)-4-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-[1,3]dioxolane]-2-carboxylate was synthesized according to General Procedure H, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), Ethyl (*E*)-4-(dimethylamino)-4-oxobut-2-enoate (17.1 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash

column chromatography (hexane/EtOAc = 3:2, v/v) to obtain **15I** as a white powder (31.6 mg, 77%, >95:5 dr). m.p. 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.34 – 7.12 (m, 7H), 6.81 (dt, *J* = 7.6, 1.3 Hz, 1H), 4.46 – 4.37 (m, 1H), 4.32 (d, *J* = 10.8 Hz, 1H), 4.23 – 3.96 (m, 6H), 3.65 (d, *J* = 11.8 Hz, 1H), 2.75 (s, 3H), 2.38 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 171.4, 144.3, 139.2, 138.1, 129.8, 129.5, 129.0, 128.6, 127.1, 126.5, 124.5, 108.1, 67.3, 64.8, 61.2, 52.6, 49.4, 46.0, 37.0, 35.7, 14.3. IR (neat): 3442, 2925, 1757, 1695, 1614, 1596, 1566, 1377 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₄H₂₈NO₅⁺ [M+H]⁺ 410.1962, found 410.1963.

(2*S*,3*S*,4*R*)-4-Phenyl-3,4-dihydro-2*H*-spiro[naphthalene-1,2'-[1,3]dioxolane]-2,3-dicarbonitrile was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), fumaronitrile (7.8 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain **15m** as a white solid (20.1 mg, 65%, >95:5 dr). m.p. 209-211 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.42 – 7.20 (m, 7H), 6.80 (d, *J* = 7.8 Hz, 1H), 4.65 – 4.41 (m, 3H), 4.30 (d, *J* = 11.4 Hz, 1H), 4.26 – 4.15 (m, 1H), 3.79 (t, *J* = 11.9 Hz, 1H), 3.57 (d, *J* = 12.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 136.2, 135.5, 130.1, 129.9, 129.4, 129.2, 128.5, 127.7, 124.8, 117.8, 116.4, 105.5, 68.7, 68.5, 66.3, 66.0, 48.6, 41.6, 37.7. IR (neat): 2922, 2853, 2252, 1765, 1453 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₀H₁₇N₂O₂⁺ [M+H]⁺ 317.1285, found 317.1286.

(2*S*,3*S*,4*R*)-1,1-dimethoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2,3-dicarbonitrile was synthesized according to General Procedure G, using (*E*)-((2-

(dimethoxymethyl)phenyl)(phenyl)methylene)hydrazine (27.0 mg, 0.1 mmol), fumaronitrile (7.8 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain **15n** as a white solid (29.8 mg, 94%, >95:5 dr). m.p. 226-228 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.9 Hz, 1H), 7.47 (td, *J* = 7.6, 1.4 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.31 – 7.13 (m, 3H), 4.87 (d, *J* = 9.4 Hz, 1H), 3.92 – 3.74 (m, 4H), 3.44 – 3.23 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 136.0, 134.8, 129.6, 129.6, 129.2, 128.5, 128.3, 128.1, 127.3, 117.9, 115.3, 81.3, 78.7, 59.8, 51.5, 37.5, 33.7. IR (neat): 2935, 2249, 1488, 1445, 1213 cm⁻¹. HRMS (TOF MS Cl⁺) *m*/z calcd for C₂₀H₂₂N₃O₂⁺ [M+NH₄]⁺ 336.1712, found 336.1716.

To a flame-dried round bottom flask were added (triphenylphosphoranylidene)acetonitrile (1.1 g, 3.3 mmol) and THF (10 mL). KOt-Bu (370.3 mg, 3.3 mmol) was then added. After the mixture was stirred at 0 °C for 30 min, indoline-2,3-dione (441.4 mg, 3 mmol) was added and the reaction was stirred for 1 h at room temperature. After quenched with H₂O, the reaction was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain the product as an orange solid (333.3 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.8 Hz, 1H), 7.88 (s, 1H), 7.40 (td, *J* = 7.8, 1.2 Hz, 1H), 7.12 (td, *J* = 7.7, 1.0 Hz, 1H), 6.89 (d, *J* = 7.9 Hz, 1H), 6.30 (s, 1H). ¹H NMR data was consistent with reported literature values.⁸

(3S,3'S,4'R)-2-Oxo-4'-phenyl-3',4'-dihydrodispiro[indoline-3,2'-naphthalene-1',2''-

[1,3]dioxolane]-3'-carbonitrile was synthesized according to General Procedure H, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), (*E*)-2-(2-

oxoindolin-3-ylidene)acetonitrile (15 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **150** as a pale yellow solid (37.3 mg, 91%, >95:5 dr). m.p. 290-292 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.42 – 7.28 (m, 8H), 7.23 (d, J = 7.7 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 6.82 (t, J = 7.7 Hz, 1H), 6.36 (d, J = 7.7 Hz, 1H), 4.50 (d, J = 11.0 Hz, 1H), 4.40 (d, J = 11.0 Hz, 1H), 4.35 – 4.26 (m, 2H), 4.21 – 4.14 (m, 1H), 4.13 – 4.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 142.0, 141.9, 137.7, 136.6, 129.9, 129.8, 129.7, 129.4, 129.3, 128.1, 127.6, 125.3, 125.0, 124.4, 122.9, 118.1, 110.5, 108.8, 68.6, 66.0, 57.4, 46.4, 40.9. IR (neat): 3278, 2989, 2870, 1725, 1686, 1471, 756 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₆H₂₁N₂O₃⁺ [M+H]⁺ 409.1547, found 409.1546.

Dimethyl (R)-4-phenyl-4H-spiro[naphthalene-1,2'-[1,3]dioxolane]-2,3-dicarboxylate was synthesized according to General Procedure Н, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), dimethyl but-2-ynedioate (15 µL, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain **15p** as a clear oil (22.9 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 1H), 7.44 – 7.38 (m, 2H), 7.31 – 7.20 (m, 5H), 7.19 – 7.13 (m, 1H), 5.20 (s, 1H), 4.52 – 4.42 (m, 2H), 4.32 – 4.24 (m, 1H), 4.24 – 4.17 (m, 1H), 3.83 (s, 3H), 3.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 165.8, 140.3, 139.3, 138.0, 137.0, 135.1, 129.03, 128.95, 128.9, 128.6, 127.19, 127.15, 124.9, 103.8, 68.9, 65.3, 52.63, 52.60, 46.7. IR (neat): 2975, 2857, 1725, 1259, 1070, 756, 701 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₂H₂₁O₆⁺ [M+H]⁺ 381.1333, found 381.1327.

To a round bottom flask were added (*E*)-4-ethoxy-4-oxobut-2-enoic acid (144.3 mg, 1 mmol) and THF (5 mL). Then triethyl amine (0.12 mL, 1.2 mmol) and pivaloyl chloride (144.7 mg,1.2 mmol) were added at -10 °C. The reaction was then allowed to stir for 3 hours at room temperature. In another flask, (R)-4-phenyloxazolidin-2-one (163.2 mg, 1 mmol) was dissolved in THF (5 mL) and cooled to -30 °C before adding *n*-Buli (0.53 mL, 1.2 mmol). After stirring for one hour at room temperature, the oxazolidinone solution was cooled to -30 °C and the anhydride solution was added dropwise. After allowing the reaction to stir overnight at room temperature, sodium bicarbonate was added (30 mL), the organic layer was extracted in diethyl ether (3x 50 mL), dried over sodium sulfate and concentrated in vacuo. The crude product was purified by flash column chromatography to obtain ethyl (R,E)-4-oxo-4-(2-oxo-4-phenyloxazolidin-3-yl)but-2-enoate as a white powder (188.0 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 15.6 Hz, 1H), 7.47 – 7.29 (m, 5H), 6.86 (d, *J* = 15.6 Hz, 1H), 5.50 (dd, *J* = 8.7, 4.0 Hz, 1H), 4.76 (t, *J* = 8.8 Hz, 1H), 4.35 (dd, *J* = 8.9, 4.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹H NMR data was consistent with reported literature values.⁶

Ethyl (2R,3S,4R)-2-((R)-2-oxo-4-phenyloxazolidine-3-carbonyl)-4-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-[1,3]dioxolane]-3-carboxylate was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), ethyl (R,E)-4-oxo-4-(2-oxo-4-phenyloxazolidin-3-yl)but-2-enoate (28.9 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **15q** as a white powder (26.4 mg, 46%, 78:22 dr). m.p. 235-237 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.37 – 7.07 (m, 12H), 6.72 (d, *J* = 7.5 Hz, 1H), 5.46 (dd, *J* = 8.3, 2.9 Hz, 1H), 5.31 (d, *J* = 10.2 Hz, 1H), 4.67 (t, *J* = 8.6 Hz, 1H), 4.50 – 4.21 (m, 3H), 4.22 – 3.97 (m, 3H), 3.84 – 3.64 (m, 3H), 0.80 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.17, 170.95, 153.46, 142.83, 139.46, 139.02, 137.22, 129.61, 129.25, 129.12, 129.03, 128.59, 127.09, 126.44, 125.93,

123.53, 107.93, 69.82, 67.06, 65.17, 60.64, 58.32, 49.76, 48.96, 47.99, 13.89. IR (neat): 2899, 1782, 1726, 1689, 1392, 1377 cm⁻¹. HRMS (ESI) m/z calcd for $C_{31}H_{30}NO_7^+$ [M+H]⁺ 528.2017, found 528.2019.

To a round bottom flask were added (*E*)-4-ethoxy-4-oxobut-2-enoic acid (144.3 mg, 1 mmol) and THF (5 mL). Then triethyl amine (0.12 mL, 1.2 mmol) and pivaloyl chloride (144.7 mg,1.2 mmol) were added at -10 °C. The reaction was then allowed to stir for 3 hours at room temperature. In another flask, (S)-4-isopropyloxazolidin-2-one (128.2 mg, 1 mmol) was dissolved in THF (5 mL) and cooled to -30 °C before adding *n*-Buli (0.53 mL, 1.2 mmol). After stirring for one hour at room temperature, the oxazolidinone solution was cooled to -30 °C and the anhydride solution was added dropwise. After allowing the reaction to stir overnight at room temperature, sodium bicarbonate was added (30 mL), the organic layer was extracted in diethyl ether (3x 50 mL), dried over sodium sulfate and concentrated in vacuo. The crude product was purified by flash column chromatography to obtain ethyl (S,E)-4-(4-isopropyl-2-oxooxazolidin-3-yl)-4-oxobut-2-enoate as a clear oil (145.5 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 15.6, 1.0 Hz, 1H), 6.93 (dd, *J* = 15.6, 1.1 Hz, 1H), 4.51 (dt, *J* = 7.8, 3.6 Hz, 1H), 4.41 – 4.23 (m, 4H), 2.43 (pd, *J* = 6.9, 3.9 Hz, 1H), 1.33 (td, *J* = 7.1, 1.0 Hz, 3H), 1.02 – 0.93 (m, 3H), 0.92 – 0.87 (m, 3H). ¹H NMR data was consistent with reported literature values.⁶

Ethyl (2S,3R,4S)-2-((S)-4-isopropyl-2-oxooxazolidine-3-carbonyl)-4-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-[1,3]dioxolane]-3-carboxylate was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), ethyl (S,E)-4-(4-isopropyl-2-oxooxazolidin-3-yl)-4-oxobut-2-enoate (25.5 mg, 0.1 mmol),

MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **15r** as a clear oil (35.0 mg, 71%, 81:19 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 7.2, 1.9 Hz, 1H), 7.36 – 7.23 (m, 5H), 7.23 – 7.11 (m, 2H), 6.75 (dt, *J* = 7.7, 1.3 Hz, 1H), 5.29 (d, 1H), 4.44 (ddd, *J* = 7.3, 4.1, 2.8 Hz, 1H), 4.36 (d, *J* = 11.2 Hz, 1H), 4.31 – 4.18 (m, 3H), 4.16 – 4.01 (m, 3H), 3.93 (qd, *J* = 7.1, 4.6 Hz, 2H), 3.84 (dd, *J* = 11.3, 10.1 Hz, 1H), 2.32 (pd, *J* = 7.0, 4.1 Hz, 1H), 0.97 (t, *J* = 7.1 Hz, 3H), 0.90 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.35, 171.48, 153.85, 142.95, 139.45, 137.16, 129.60, 129.20, 128.97, 128.57, 127.05, 126.38, 123.48, 107.87, 66.92, 65.06, 63.37, 60.71, 59.44, 49.85, 48.67, 47.91, 28.85, 18.04, 14.95, 13.99. IR (neat): 2895, 1780, 1721, 1675, 1395, 1374 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₈H₃₂NO₇⁺ [M+H]⁺ 494.2173, found 494.2170.

To a round bottom flask were added (E)-4-ethoxy-4-oxobut-2-enoic acid (144.3 mg, 1 mmol) and THF (5 mL). Then triethyl amine (0.12 mL, 1.2 mmol) and pivaloyl chloride (144.7 mg,1.2 mmol) were added at -10 °C. The reaction was then allowed to stir for 3 hours at room temperature. In another flask, (3aS,8aR)-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d]oxazol-2-one (175.2 mg, 1 mmol) was dissolved in THF (5 mL) and cooled to -30 °C before adding *n*-Buli (0.53) mL, 1.2 mmol). After stirring for one hour at room temperature, the oxazolidinone solution was cooled to -30 °C and the anhydride solution was added dropwise. After allowing the reaction to stir overnight at room temperature, sodium bicarbonate was added (30 mL), the organic layer was extracted in diethyl ether (3x 50 mL), dried over sodium sulfate and concentrated in vacuo. The crude product was purified by flash column chromatography to obtain ethyl (E)-4-oxo-4-((3aS,8aR)-2-oxo-8,8a-dihydro-2H-indeno[1,2-d]oxazol-3(3aH)-yl)but-2-enoate as a white powder (118.3 mg, 40 %). ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, J = 15.6 Hz, 1H), 7.72 – 7.59 (m, 1H), 7.39 – 7.26 (m, 3H), 7.01 (d, J = 15.5 Hz, 1H), 6.00 (d, J = 6.9 Hz, 1H), 5.35 (ddd, J = 7.1, 4.6, 2.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.47 – 3.36 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹H NMR data was consistent with reported literature values.⁶

15s

Ethyl (2S,3R,4S)-2-((3aS,8aR)-2-oxo-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d]oxazole-3-carbonyl)-4-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-[1,3]dioxolane]-3-carboxylate was synthesized Procedure according to General G, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), ethyl (E)-4-oxo-4-((3aS,8aR)-2oxo-8,8a-dihydro-2H-indeno[1,2-d]oxazol-3(3aH)-yl)but-2-enoate (30.1 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain **15s** as a clear oil (36.0 mg, 67 %, 85:15 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.7 Hz, 1H), 7.42 (dd, J = 7.3, 1.9 Hz, 1H), 7.37 – 7.09 (m, 11H), 6.85 – 6.67 (m, 1H), 5.95 (d, J = 6.7 Hz, 1H), 5.34 – 5.18 (m, 2H), 4.49 – 4.31 (m, 2H), 4.24 – 4.03 (m, 3H), 3.93 (t, J = 10.8 Hz, 1H), 3.81 (ddd, J = 40.6, 10.7, 7.1 Hz, 1H), 3.37 (d, J = 5.4 Hz, 2H), 0.82 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 172.81, 172.00, 152.68, 143.15, 139.47, 139.45, 139.14, 137.13, 129.95, 129.57, 129.35, 129.04, 128.60, 128.19, 127.56, 127.06, 126.37, 125.19, 123.44, 107.87, 77.83, 67.07, 65.09, 63.89, 60.73, 49.83, 48.63, 47.77, 37.94. IR (neat): 2893, 1777, 1724, 1676, 1393, 1375 cm⁻¹. HRMS (ESI) m/z calcd for C₃₂H₃₀NO₇⁺ [M+H]⁺ 540.2017, found 540.2015.

To a flame-dried round bottom flask were added 2-bromobenzaldehyde (0.6 mL, 5 mmol), ethane-1,2-dithiol (0.5 mL, 6 mmol), iodine (126.9 mg, 0.5 mmol) and chloroform (25 mL). The

reaction was stirred under room temperature for 18 h. Upon full conversion determined by ¹H NMR, the reaction was quenched with 2 N NaOH aqueous solution and extracted with EtOAc (3 \times 10 mL). The combined organic phases were washed with H₂O (1 \times 10 mL) and brine (1 \times 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 10:1, v/v) to obtain 2-(2-bromophenyl)-1,3-dithiolane as a colorless oil (quantitive yield). ¹H NMR (400 MHz, C₆D₆) δ 7.84 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.25 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.91 (td, *J* = 7.6, 1.3 Hz, 1H), 6.59 (td, *J* = 7.7, 1.7 Hz, 1H), 6.15 (s, 1H), 2.82 – 2.72 (m, 2H), 2.72 – 2.62 (m, 2H). ¹H NMR data was consistent with reported literature values.⁹

(2-(1,3-Dithiolan-2-yl)phenyl)(phenyl)methanone was synthesized according to General Procedure B, using 2-(2-bromophenyl)-1,3-dithiolane (1.04 g, 4 mmol), *n*-BuLi (2.5 M, 1.76 mL, 4.4 mmol), *N*-methoxy-*N*-methylbenzamide (0.99 g, 6 mmol) and THF (25 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 15:1, v/v) to obtain the ketone as a yellow oil (554.2 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.35 – 7.26 (m, 2H), 5.84 (s, 1H), 3.52 – 3.41 (m, 2H), 3.35 – 3.24 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 140.5, 138.2, 137.6, 133.6, 131.0, 130.6, 129.5, 128.63, 128.60, 127.2, 52.5, 40.4. HRMS (ESI) *m*/z calcd for C₁₆H₁₅OS₂⁺ [M+H]⁺ 287.0559, found 287.0565.

(*E*)-((2-(1,3-Dithiolan-2-yl)phenyl)(phenyl)methylene)hydrazine was synthesized according to General Procedure C, using (2-(1,3-dithiolan-2-yl)phenyl)(phenyl)methanone (344.4 mg, 1.2 mmol), N_2H_4 (0.49 mL, 15.6 mmol), HOAc (0.08 mL, 1.44 mmol) and EtOH (3.6 mL). After the reaction, the precipitated solid was filtered and washed with hexane. The product was then

dried on the vacuum and obtained as a white solid (238.7 mg, 66%). m.p. 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.54 – 7.37 (m, 4H), 7.36 – 7.27 (m, 3H), 7.08 (dd, *J* = 7.5, 1.4 Hz, 1H), 5.49 (s, 1H), 5.39 (s, 2H), 3.53 – 3.41 (m, 2H), 3.33 – 3.18 (m, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 147.1, 140.8, 138.4, 132.3, 130.2, 130.0, 129.3, 128.9, 128.6, 128.5, 126.3, 52.4, 40.9, 40.7. HRMS (ESI) *m*/z calcd for C₁₆H₁₇N₂S₂⁺ [M+H]⁺ 301.0828, found 301.0832.

16a

6-(2-(1,3-Dithiolan-2-yl)phenyl)-3,6-diphenyl-3-azabicyclo[3.1.0]hexane-2,4-dione was (E)-((2-(1,3-dithiolan-2synthesized according to General Procedure G, using yl)phenyl)(phenyl)methylene)hydrazine (30.0 mg, 0.1 mmol), 1-phenyl-1*H*-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(*R*-PTAD)₄ (1.6 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 4:1, v/v) to obtain **16a** as a white solid (35.6 mg, 80%, >95:5 dr). m.p. 192-194 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.37 – 7.28 (m, 3H), 7.28 – 7.20 (m, 4H), 7.09 (d, J = 6.8 Hz, 2H), 6.45 – 6.36 (m, 2H), 6.11 (s, 1H), 3.74 (d, J = 5.4 Hz, 1H), 3.59 – 3.49 (m, 1H), 3.43 - 3.31 (m, 2H), 3.26 - 3.15 (m, 1H), 3.10 (d, J = 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 171.4, 144.0, 139.6, 132.5, 131.3, 131.2, 130.6, 129.8, 129.09, 129.07, 128.6, 128.5, 128.2, 126.6, 126.4, 50.7, 47.1, 41.1, 40.7, 36.5, 34.6. IR (neat): 2921, 2852, 1707, 1375, 1170 cm⁻¹. HRMS (ESI) m/z calcd for C₂₆H₂₂NO₂S₂⁺ [M+H]⁺ 444.1086, found 444.1089.

1-(2-(1,3-dithiolan-2-yl)phenyl)-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dithiolan-2yl)phenyl)(phenyl)methylene)hydrazine (30.0 mg, 0.1 mmol), naphthalene-1,4-dione (19.0 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(*R*-PTAD)₄ (1.6 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 8:1, v/v) to obtain **7b** as a white solid (30.7 mg, 72%, >95:5 dr). m.p. 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 2H), 7.54 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.36 – 7.29 (m, 2H), 7.29 – 7.23 (m, 1H), 7.19 – 7.10 (m, 3H), 7.01 (td, *J* = 7.6, 1.4 Hz, 1H), 6.85 (td, *J* = 7.5, 1.4 Hz, 1H), 5.91 (s, 1H), 3.84 (d, *J* = 7.4 Hz, 1H), 3.54 – 3.45 (m, 1H), 3.41 – 3.28 (m, 2H), 3.24 – 3.16 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 191.6, 143.0, 141.7, 134.8, 133.9, 133.77, 133.75, 132.6, 131.4, 131.0, 129.0, 128.9, 127.9, 127.5, 126.8, 126.1, 51.2, 45.8, 42.6, 41.0, 40.6, 40.5. IR (neat): 2922, 1672, 1593, 1294, 750, 695 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₆H₂₁O₂S₂⁺ [M+H]⁺ 429.0977, found 429.0973.

(3*R*,4*S*)-3-(4-Nitrophenyl)-4-phenylspiro[isochromane-1,2'-[1,3]dioxolane] synthesized was Procedure according to General G, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 4-nitrobenzaldehyde (18.1 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/DCM = 1:1, v/v) to obtain **18a** as a pale yellow solid (26.1 mg, 67%, >95:5 dr). m.p. 198-200 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.8 Hz, 2H), 7.58 (dd, J = 7.5, 1.7 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.21 (d, J = 8.8 Hz, 2H), 7.11 – 6.98 (m, 4H), 6.82 – 6.70 (m, 2H), 5.73 (d, J = 3.4 Hz, 1H), 4.55 – 4.45 (m, 1H), 4.37 (q, J = 7.3 Hz, 1H), 4.32 – 4.23 (m, 1H), 4.18 (t, J = 7.6 Hz, 1H), 4.14 (d, J = 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 147.1, 139.1, 138.6, 131.8, 130.1, 130.0, 129.3, 128.0, 127.6, 127.0, 126.9, 123.1, 119.4, 75.9, 66.4, 64.4, 50.0. IR (neat): 2910, 1519, 1344, 1011, 764, 711, 697 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₃H₂₀NO₅⁺ [M+H]⁺ 390.1336, found 390.1338.

4-((3R,4S)-4-phenylspiro[isochromane-1,2'-[1,3]dioxolan]-3-yl)benzonitrile was synthesized according to General Procedure Η, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 4-formylbenzonitrile (15.7 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/DCM = 1:3, v/v) to obtain **18b** as a white solid (22.7 mg, 61%, >95:5 dr). m.p. 289-291 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 7.6, 1.7 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.38 – 7.28 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.09 – 6.98 (m, 4H), 6.74 (dd, J = 7.5, 2.1 Hz, 2H), 5.67 (d, J = 3.4 Hz, 1H), 4.54 – 4.45 (m, 1H), 4.36 (q, J = 7.3 Hz, 1H), 4.31 – 4.23 (m, 1H), 4.16 (q, J = 7.6 Hz, 1H), 4.10 (d, J = 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 139.2, 138.6, 131.9, 131.7, 130.1, 130.0, 129.3, 127.9, 127.6, 127.0, 126.9, 126.8, 119.4, 119.0, 111.0, 76.0, 66.4, 64.3, 50.0. IR (neat): 2888, 2225, 1068, 1019, 945, 765, 739 cm⁻¹. HRMS (ESI) m/z calcd for C₂₄H₂₀NO₃⁺ [M+H]⁺ 370.1438, found 370.1437.

18c

(15,4'*R*)-4'-Phenyl-4*H*-dispiro[naphthalene-1,3'-isochromane-1',2''-[1,3]dioxolan]-4-one was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), naphthalene-1,4-dione (19.0 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain **18c** as a white solid (37.5 mg, 95%, >95:5 dr). m.p. 190-192 °C. ¹H NMR (400 MHz, CD₂Cl₂)

δ 7.91 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.61 (d, *J* = 10.5 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.38 – 7.25 (m, 2H), 7.19 – 6.99 (m, 4H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 7.5 Hz, 2H), 6.22 (d, *J* = 10.5 Hz, 1H), 4.50 – 4.40 (m, 1H), 4.40 – 4.23 (m, 3H), 4.17 (s, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 184.1, 151.5, 143.2, 138.7, 137.2, 133.2, 131.6, 131.0, 130.4, 128.8, 128.2, 128.04, 127.98, 127.9, 127.5, 126.5, 125.9, 119.0, 77.2, 66.2, 65.0, 56.7. IR (neat): 2913, 1668, 1301, 1043, 1005, 948 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₆H₂₁O₄⁺ [M+H]⁺ 397.1434, found 397.1429.

(S)-4'-Phenyldispiro[cyclohexane-1,3'-isochromane-1',2"-[1,3]dioxolane]-2,5-dien-4-one was Procedure synthesized according General G, (E)-((2-(1,3-dioxolan-2to using yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), benzoquinone (13.0 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 7:1, v/v) to obtain **18d** as a white solid (32.5 mg, 94%). m.p. 198-200 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.6 Hz, 1H), 7.39 – 7.20 (m, 6H), 7.19 – 7.10 (m, 2H), 6.96 (d, J = 7.6 Hz, 1H), 6.54 (dd, J = 10.5, 3.2 Hz, 1H), 6.18 – 6.02 (m, 2H), 4.40 – 4.32 (m, 1H), 4.32 – 4.23 (m, 3H), 4.10 (s, 1H). ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta$ 185.2, 148.9, 147.8, 138.8, 137.0, 131.5, 130.3, 130.2, 128.79, 128.76, 128.5, 128.3, 127.8, 127.7, 127.2, 117.9, 74.0, 65.7, 64.9, 52.9. IR (neat): 2910, 1669, 1631, 1322, 1004, 949 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₂H₁₉O₄⁺ [M+H]⁺ 347.1278, found 347.1282.

To a flame-dried round bottom flask were added indoline-2,3-dione (441.4 mg, 3 mmol) and DMF (15 mL). NaH (60%, 144 mg, 3.6 mmol) was added at 0 °C. After the mixture was stirred at 0 °C for 5 min, (bromomethyl)benzene (0.39 mL, 3.3 mmol) was added. The reaction was then

stirred for another 30 min. After quenched with saturated NH₄Cl aqueous, the reaction was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with H₂O (1 × 10 mL) and brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 3:1, v/v) to obtain the product as an orange solid (632.0 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.5 Hz, 1H), 7.48 (td, *J* = 7.8, 1.4 Hz, 1H), 7.41 – 7.27 (m, 5H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 4.93 (s, 2H). ¹H NMR data was consistent with reported literature values.¹⁰

18e

(3R,4'S)-1-Benzyl-4'-phenyldispiro[indoline-3,3'-isochromane-1',2"-[1,3]dioxolan]-2-one was synthesized according General Procedure G, using (E)-((2-(1,3-dioxolan-2to yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-benzylindoline-2,3-dione (28.5 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (DCM/EtOAc = 5:1, v/v) to obtain **18e** as a white solid (45.8 mg, 96%, >95:5 dr). m.p. 178-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.7, 1.4 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.37 – 7.26 (m, 3H), 7.16 – 7.01 (m, 4H), 6.94 (d, J = 7.8 Hz, 2H), 6.78 (td, J = 7.6, 1.0 Hz, 1H), 6.62 (dd, J = 7.6, 1.3 Hz, 1H), 6.45 (d, J = 7.0 Hz, 2H), 6.37 (s, 1H), 6.30 (d, J = 7.8 Hz, 1H), 5.20 (s, 1H), 5.04 (d, J = 16.0 Hz, 1H), 4.52 - 4.42 (m, 1H), 4.35 - 4.17 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 143.2, 136.7, 135.0, 134.5, 133.6, 133.5, 129.9, 129.7, 129.4, 129.1, 128.7, 127.9, 127.7, 127.44, 127.42, 127.2, 126.5, 126.3, 125.5, 122.5, 118.5, 109.5, 81.6, 65.5, 64.7, 50.0, 43.9. IR (neat): 2922, 1726, 1608, 1466, 1364, 1318, 1066, 987, 752 cm⁻¹. HRMS (ESI) *m*/z calcd for C₃₁H₂₆NO₄⁺ [M+H]⁺ 476.1856, found 476.1874.

To a flame-dried round bottom flask were added indoline-2,3-dione (735.7 mg, 5 mmol) and DMF (10 mL). NaH (60%, 220 mg, 5.5 mmol) was added at 0 °C. After the mixture was stirred at 0 °C for 30 min, 1-(bromomethyl)-4-nitrobenzene (1.3 g, 6 mmol) was added. The reaction was then allowed to warm to room temperature and stirred overnight. After quenched with H₂O, an orange solid precipitated. It was then collected and washed with H₂O and EtOAc. After dried under reduced pressure, the product was obtained as an orange solid (820.9 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7 Hz, 2H), 7.67 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.59 – 7.45 (m, 3H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 5.04 (s, 2H). ¹H NMR data was consistent with reported literature values.¹¹

(3S,4'R)-1-(4-Nitrobenzoyl)-4'-phenyldispiro[indoline-3,3'-isochromane-1',2''-[1,3]dioxolan]-2one was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-(4-nitrobenzyl)indoline-2,3dione (33.9 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (DCM) to obtain **18f** as a pale yellow solid (45.6 mg, 88%, >95:5 dr). m.p. 261-263 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.53 – 7.30 (m, 5H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.99 (s, 1H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 8.3 Hz, 2H), 6.36 (s, 1H), 6.22 (d, *J* = 7.9 Hz, 1H), 5.32 – 5.09 (m, 2H), 4.58 – 4.41 (m, 1H), 4.41 – 4.16 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 147.3, 142.6, 142.5, 136.4, 134.4, 133.6, 130.1, 129.8, 129.5, 129.2, 128.1, 127.9, 127.6, 127.3, 127.2, 126.6, 125.5, 124.0, 123.0, 118.5, 108.9, 81.5, 65.5, 64.8, 50.0, 43.3. IR (neat): 2890, 1729, 1519, 1340, 1066, 751, 709 cm⁻¹. HRMS (ESI) *m*/z calcd for C₃₁H₂₅N₂O₆⁺ [M+H]⁺ 521.1707, found 521.1709.

To a flame-dried round bottom flask were added indoline-2,3-dione (735.7 mg, 5 mmol) and DMF (10 mL). NaH (60%, 220 mg, 5.5 mmol) was added at 0 °C. After the mixture was stirred at 0 °C for 30 min, 3-bromoprop-1-ene (0.52 mL, 6 mmol) was added. The reaction was then allowed to warm to room temperature and stirred overnight. After quenched with H₂O, the reaction was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with H₂O (1 × 10 mL) and brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 2:1, v/v) to obtain the product as a red solid (812.1 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.57 (td, *J* = 7.8, 1.4 Hz, 1H), 7.13 (td, *J* = 7.6, 0.9 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 5.85 (ddt, *J* = 17.2, 10.5, 5.4 Hz, 1H), 5.42 – 5.26 (m, 2H), 4.42 – 4.31 (m, 2H). ¹H NMR data was consistent with reported literature values.¹²

18g

(35,4'*R*)-1-Allyl-4'-phenyldispiro[indoline-3,3'-isochromane-1',2''-[1,3]dioxolan]-2-one was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-allylindoline-2,3-dione (22.5 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (DCM/EtOAc = 15:1, v/v) to obtain **18g** as a pale yellow solid (38.0 mg, 89%, >95:5 dr). m.p. 175-176 °C. ¹H NMR (400 MHz,

CD₂Cl₂) δ 7.66 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.08 (m, 5H), 6.92 (d, *J* = 7.8 Hz, 2H), 6.80 (td, *J* = 7.6, 1.0 Hz, 1H), 6.67 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.52 (d, *J* = 7.8 Hz, 1H), 6.33 (s, 1H), 5.32 – 5.21 (m, 1H), 4.97 (s, 1H), 4.84 (dd, *J* = 10.4, 1.4 Hz, 1H), 4.44 – 4.33 (m, 2H), 4.33 – 4.16 (m, 4H), 3.79 (ddt, *J* = 16.6, 5.4, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 173.3, 143.6, 136.9, 134.9, 133.8, 131.07, 131.05, 130.1, 129.9, 128.1, 127.72, 127.65, 127.0, 126.8, 126.3, 122.3, 118.8, 116.8, 109.3, 81.8, 65.6, 65.2, 50.6, 42.4. IR (neat): 2903, 1728, 1609, 1369, 1177, 1063, 1020, 750, 713 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₄NO₄⁺ [M+H]⁺ 426.1700, found 426.1706.

Scale-up reaction

To a flame-dried round bottom flask were added (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (134.2 mg, 0.5 mmol), 1-allylindoline-2,3-dione (112.3 mg, 0.6 mmol), MnO₂ (347.8 mg, 4.0 mmol), Rh₂(MesCO₂)₄ (4.3 mg, 0.005 mmol) and DCM (30 mL). After filtration of MnO₂, the reaction was concentrated. dr was determined as >95:5 by ¹H NMR of residue. After flash column chromatography (DCM/EtOAc = 15:1, v/v), the desired product was obtained as a pale yellow solid (201.1 mg, 95%, >95:5 dr).

To a flame-dried round bottom flask were added indoline-2,3-dione (735.7 mg, 5 mmol) and DMF (10 mL). NaH (60%, 220 mg, 5.5 mmol) was added at 0 °C. After the mixture was stirred at 0 °C for 30 min, 3-bromoprop-1-yne (80% in toluene, 892.2 mg, 6 mmol) was added. The reaction was then allowed to warm to room temperature and stirred overnight. After quenched with H₂O, the reaction was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with H₂O (1 × 10 mL) and brine (1 × 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was further purified by flash column chromatography (hexane/EtOAc = 1:1, v/v) to obtain the product as an orange solid (825.3 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.60 (m, 2H), 7.19 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.14 (dd, *J* =

8.3, 0.9 Hz, 1H), 4.54 (d, J = 2.6 Hz, 2H), 2.31 (s, 1H). ¹H NMR data was consistent with reported literature values.¹³

(35,4'R)-4'-Phenyl-1-(prop-2-yn-1-yl)dispiro[indoline-3,3'-isochromane-1',2"-[1,3]dioxolan]-2-

one was synthesized according to General Procedure G, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 1-(prop-2-yn-1-yl)indoline-2,3-dione (22.2 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (DCM/EtOAc = 5:1, v/v) to obtain **18h** as a white solid (36.4 mg, 86%, >95:5 dr). m.p. 199-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.32 (td, *J* = 7.6, 1.4 Hz, 1H), 7.29 – 7.15 (m, 3H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 1H), 6.90 (s, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 1H), 6.33 (s, 1H), 5.00 (s, 1H), 4.48 – 4.40 (m, 1H), 4.33 – 4.20 (m, 3H), 4.20 – 4.08 (m, 2H), 1.99 (t, *J* = 2.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 141.9, 136.3, 134.3, 133.4, 129.9, 129.7, 127.7, 127.5, 127.4, 126.9, 126.4, 125.7, 122.7, 118.4, 109.0, 81.7, 76.3, 72.1, 65.4, 64.8, 50.3, 29.0. IR (neat): 2891, 172.8, 1609, 1466, 1066, 987, 753, 708 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₇H₂₂NO₄⁺ [M+H]⁺ 424.1543, found 424.1548.

Diethyl (*S*)-4-phenylspiro[isochromane-1,2'-[1,3]dioxolane]-3,3-dicarboxylate was synthesized according to General Procedure H, using (*E*)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), diethyl 2-oxomalonate (18 μ L, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL).

The crude product was purified by flash column chromatography (DCM/EtA = 5:1, v/v) to obtain **18i** as a white solid (32.9 mg, 80%). m.p. 149-151 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.45 – 7.40 (m, 1H), 7.34 – 7.26 (m, 2H), 7.26 – 7.12 (m, 5H), 7.10 – 7.02 (m, 1H), 4.72 (s, 1H), 4.60 – 4.50 (m, 1H), 4.36 – 4.18 (m, 4H), 4.16 – 4.07 (m, 1H), 4.04 – 3.93 (m, 1H), 3.89 – 3.78 (m, 1H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 168.7, 166.4, 139.7, 138.2, 130.6, 130.0, 129.8, 129.1, 128.6, 127.8, 127.4, 126.9, 118.6, 83.4, 66.9, 64.6, 62.4, 62.1, 46.7, 14.03, 13.99. IR (neat): 2918, 1774, 1745, 1241, 1066, 1046 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₃H₂₅O₇⁺ [M+H]⁺ 413.1595, found 413.1585.

(3R,4S)-3,4-Diphenyl-3-(trifluoromethyl)spiro[isochromane-1,2'-[1,3]dioxolane] was synthesized according to General Procedure G, using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 2,2,2-trifluoro-1-phenylethan-1one (17 µL, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (DCM/hexane = 1:1, v/v) to obtain **18** as a white solid (19.6 mg, 48%, >95:5 dr). m.p. 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 1H), 7.45 (d, J = 7.5 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.20 – 7.09 (m, 6H), 7.06 - 6.98 (m, 2H), 6.98 - 6.92 (m, 1H), 4.77 (s, 1H), 4.67 - 4.59 (m, 1H), 4.58 - 4.49 (m, 1H), 4.46 – 4.36 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.61. ¹³C NMR (101 MHz, CDCl₃) δ 139. 9, 137.0, 136.4, 130.1, 129.9, 129.7, 128.3, 128.2, 128.0, 127.5 (q, ³J_{C-F} = 2 Hz), 127.4, 127.3, 126.8, 126.7, 125.0 (q, ¹J_{C-F} = 290 Hz), 118.6, 81.5 (q, ²J_{C-F} = 30 Hz), 65.7, 64.8, 47.3. IR (neat): 2905, 1333, 1240, 1150, 1015, 948, 756, 700, 691 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₄H₂₀F₃O₃⁺ [M+H]⁺ 413.1359, found 413.1363.

To a flame-dried round bottom flask equipped were added 4-nitrobenzaldehyde (1.96 g, 13 mmol), 4-methylbenzenesulfonamide (1.7 g, 10 mmol) and toluene (30 mL). After BF₃·OEt₂ was added at room temperature, the mixture was stirred in refluxing toluene with a Dean-Stark trap overnight. After completion of the reaction monitored by TLC, the reaction was allowed to cool down to room temperature, and solid precipitated. The solid was collected and washed with hexane and DCM. After dried under reduced pressure, the desired product was obtained as a pale yellow solid (2.7 g, 89%). ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.33 (d, *J* = 8.8 Hz, 2H), 8.17 – 8.03 (m, 2H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 2.46 (s, 3H). ¹H NMR data was consistent with reported literature values.¹⁴

(3R,4S)-3-(4-Nitrophenyl)-4-phenyl-2-tosyl-3,4-dihydro-2H-spiro[isoquinoline-1,2'-

[1,3]dioxolane] was synthesized according to General Procedure H, using (E)-((2-(1,3-dioxolan-2-yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), (E)-4-methyl-N-(4nitrobenzylidene)benzenesulfonamide (36.5 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). The crude product was purified by flash column chromatography (hexane/DCM = 1:2 to 0:1, v/v) to obtain **18k** as a white solid (41.1 mg, 76%, 90:10 dr). m.p. 111-113 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, J = 8.8 Hz, 2H), 7.54 (dd, J = 7.8, 1.4 Hz, 1H), 7.41 – 7.33 (m, 1H), 7.33 – 7.25 (m, 3H), 7.25 – 7.15 (m, 3H), 7.01 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 7.7 Hz, 1H), 6.68 (d, J = 7.2 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 5.51 (d, J = 5.5 Hz, 1H), 5.11 (d, J = 5.5 Hz, 1H), 4.74 (dt, J = 8.2, 6.8 Hz, 1H), 4.58 – 4.49 (m, 1H), 4.40 (ddd, J = 7.4, 6.6, 4.2 Hz, 1H), 3.94 (q, J = 7.7 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 147.6, 145.7, 143.8, 139.4, 138.2, 135.7, 134.7, 131.6, 130.9, 129.5, 129.1, 128.5, 128.4, 127.74, 127.71, 127.6, 123.5, 122.5, 114.1, 67.6, 64.8, 63.6, 50.2, 21.5. IR (neat): 2917, 1518, 1344, 1166, 1072, 949, 856, 707 cm⁻¹. HRMS (ESI) m/z calcd for C₃₀H₂₇N₂O₆S⁺ [M+H]⁺ 543.1584, found 543.1593.

flame-dried То а round bottom flask were added (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (53.7 mg, 0.2 mmol), di-tert-butyl (E)-diazene-1,2dicarboxylate (55.3 mg, 0.24 mmol), MnO₂ (139.1 mg, 1.6 mmol), Rh₂(MesCO₂)₄ (1.7 mg, 0.002 mmol) and DCM (12 mL). The reaction was stirred at room temperature for 24 h. After filtration of MnO₂ over celite, the crude product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) to obtain **18** as a white solid (76.6 mg, 82%). m.p. 192-194 °C. ¹H NMR (500 MHz, DMSO, 353 K) δ 7.56 (d, J = 7.0 Hz, 1H), 7.46 – 7.26 (m, 5H), 7.19 – 7.09 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 6.39 (s, 1H), 4.53 – 4.44 (m, 1H), 4.34 (s, 1H), 4.27 – 4.14 (m, 2H), 1.45 (s, 9H), 1.05 (s, 9H). ¹³C NMR (126 MHz, DMSO, 353 K) δ 150.4, 139.1, 135.7, 132.2, 128.64, 128.58, 127.6, 127.1, 127.0, 126.3, 126.2, 110.0, 79.8, 79.1, 67.1, 64.9, 56.4, 27.6, 27.0. IR (neat): 2967, 1729, 1695, 1348, 1128, 1075, 932, 758, 709 cm⁻¹. HRMS (ESI) m/z calcd for $C_{26}H_{33}N_2O_6^+$ [M+H]⁺ 469.2333, found 469.2336.

(3R,4S)-3-(4-Nitrophenyl)-4-phenylisochroman-1-one (21a). According to General Procedure G, **Diels-Alder** reaction was stirred for 24 h using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 4-nitrobenzaldehyde (18.1 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). After filtrating MnO₂, the solvent was removed under reduced pressure. The residue was dissolved in MeOH (2 mL) and H₂O (0.4 mL). 1 M HCl (0.3 mL) was then added and the reaction was allowed to stir at room temperature for another 24 h. After quenched with sat. NaHCO₃ aq., the reaction was extracted with ethyl acetate (3 \times 5 mL). The combined organic phase was washed with H₂O (5 mL) and brine (5 mL), respectively. After dried over Na₂SO₄, the product

was purified by flash column chromatography (hexane/DCM = 1:5, v/v) as a white solid (17.9 mg, 52%, >95:5 dr). m.p. 220-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 7.9 Hz, 1H), 8.10 (d, *J* = 8.7 Hz, 2H), 7.63 (td, *J* = 7.5, 1.5 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 8.7 Hz, 3H), 7.18 – 7.02 (m, 3H), 6.63 (d, *J* = 7.2 Hz, 2H), 6.05 (d, *J* = 3.5 Hz, 1H), 4.38 (d, *J* = 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 147.7, 144.0, 141.7, 135.1, 134.9, 130.7, 129.3, 128.8, 128.5, 128.4, 127.9, 127.3, 124.9, 123.5, 81.3, 50.2. IR (neat): 2921, 1714, 1520, 1346, 1272, 1122, 1089 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₁H₁₆NO₄⁺ [M+H]⁺ 346.1074, found 346.1076.

(3*R*,4*S*)-3,4-Diphenyl-3-(trifluoromethyl)isochroman-1-one (**21b**). According to General Procedure G, Diels-Alder reaction was stirred for 24 h using (E)-((2-(1,3-dioxolan-2yl)phenyl)(phenyl)methylene)hydrazine (26.8 mg, 0.1 mmol), 2,2,2-trifluoro-1-phenylethan-1one (17 µL, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and DCM (6 mL). After filtrating MnO_2 , the solvent was removed under reduced pressure. The residue was dissolved in MeOH (2 mL) and H₂O (0.4 mL). 1 M HCl (0.3 mL) was then added and the reaction was allowed to stir at room temperature for another 20 h. After quenched with sat. NaHCO₃ ag., the reaction was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with H₂O (5 mL) and brine (5 mL), respectively. After dried over Na₂SO₄, the product was purified by flash column chromatography (hexane/EtOAc = 5:1, v/v) as a white solid (20.5 mg, 56%, >95:5 dr). m.p. 164-166 °C.¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 7.8 Hz, 1H), 7.60 – 7.48 (m, 3H), 7.47 – 7.38 (m, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.25 – 7.13 (m, 3H), 7.08 – 6.96 (m, 3H), 6.96 – 6.85 (m, 2H), 4.91 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.89. ¹³C NMR (201 MHz, CDCl₃) δ 162.9, 140.1, 138.3, 135.0, 133.9, 130.2, 128.72, 128.71, 128.3, 128.2, 128.1, 127.4, 126.4, 124.6 (q, ¹J_{C-F} = 286 Hz), 123.10, 85.9 (q, ²J_{C-F} = 28 Hz), 47.5. IR (neat): 2921, 1736, 1272, 1237, 1174, 1079, 714 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₂H₁₆F₃O₂⁺ [M+H]⁺ 369.1097, found 369.1101.

2-((1R,5S,6s)-2,4-dioxo-3,6-diphenyl-3-azabicyclo[3.1.0]hexan-6-yl)benzaldehyde (**21c**). According to General Procedure G, Diels-Alder reaction was stirred for 5 h using (E)-((2-(1,3dithiolan-2-yl)phenyl)(phenyl)methylene)hydrazine (30.0 mg, 0.1 mmol), 1-phenyl-1H-pyrrole-2,5-dione (20.8 mg, 0.12 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(*R*-PTAD)₄ (1.6 mg, 0.001 mmol) and DCM (6 mL). After filtrating MnO₂, the solvent was removed under reduced pressure. The residue was dissolved in CH₃CN (1 mL) and H_2O (1 mL). $H_2(OAc)_2$ (79.7 mg, 0.25 mmol) was then added and the reaction was allowed to stir at room temperature for 24 h. After filtration over celite, the product was purified by flash column chromatography (hexane/EtOAc = 3:1, v/v) as a white solid (26.0 mg, 71%, >95:5 dr). m.p. 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.01 (dd, J = 7.5, 1.6 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.66 (td, J = 7.5, 1.6 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.35 – 7.18 (m, 6H), 7.14 (d, J = 6.8 Hz, 2H), 6.45 – 6.27 (m, 2H), 3.67 (d, J = 5.4 Hz, 1H), 3.24 (d, J = 5.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 171.8, 171.4, 140.1, 137.2, 135.5, 134.7, 132.1, 131.4, 130.9, 129.5, 129.2, 129.1, 128.7, 128.2, 126.4, 126.2, 46.3, 35.9, 35.5. IR (neat): 2736, 1697, 1495, 1392, 1185, 697 cm⁻¹. HRMS (ESI) *m*/z calcd for C₂₄H₁₈NO₃⁺ [M+H]⁺ 368.1281, found 368.1283.

1-bromo-2-(methoxymethyl)benzene. Sodium Hydride 60% in an oil dispersion (1.200 g, 50.0 mmol) was suspended in THF under argon and cooled to 0 °C. Methanol (0.80 mL, 20.0 mmol) was added dropwise and allowed to react for 30 minutes. 2-bromo benzylbromide (2.4993 g, 10.0 mmol) was added in small portions and the reaction was allowed to warm up to room temperature overnight. The reaction was quenched by adding 10 mL of NH₄Cl aq, extracted in diethyl ether (3 x 50 mL), washed with water (2 x 25 mL) and brine (2 x 25 mL), and dried the combined organic layers over Na₂SO₄. Removed solvent by rotatory evaporation and purified by

flash column chromatography (hexanes/ EtOAc = 100:0 to 90:10 v/v) to obtain a clear colorless oil (2.0092 g, 100%).¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.46 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.31 (d, *J* = 1.2 Hz, 1H), 7.14 (td, *J* = 7.7, 1.8 Hz, 1H), 4.53 (s, 2H), 3.47 (s, 3H). ¹H NMR data was consistent with reported literature values.^[15]

(2-(methoxymethyl)phenyl)(phenyl)methanone was synthesized according to General Procedure A, using 1-bromo-2-(methoxymethyl)benzene (1.0053 g, 5.0 mmol), *n*-BuLi (2.5 M, 2.4 mL, 6.0 mmol), *N*-methoxy-*N*-methylbenzamide (991.1 mg, 6.0 mmol) and THF (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 90:10, v/v) to obtain the ketone as a colorless oil (754.8 mg, 67%).¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.74 (m, 2H), 7.62 – 7.42 (m, 5H), 7.40 – 7.30 (m, 2H), 4.54 (s, 2H), 3.25 (s, 3H). ¹H NMR data was consistent with reported literature values.¹⁶

(E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine was synthesized according to General Procedure B, using (2-(methoxymethyl)phenyl)(phenyl)methanone (678.8 mg, 3.0 mmol), N₂H₄ (1.17 mL, 39 mmol), HOAc (0.21 mL, 3.6 mmol) and EtOH (6.0 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 60:40, v/v) to obtain the hydrazone as a pale yellow 0il (720.9 mg, 97%). Compound was isolated as a mixture of isomers; ¹H NMR spectral data for this mixture is complex and the mixture was carried on to the next step.

(3aR,4R,9R,9aR)-4-methoxy-2,9-diphenyl-3a,4,9,9a-tetrahydro-1H-benzo[f]isoindole-1,3(2H)dione synthesized according General Procedure F, using was to (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), N-phenyl maleimide (17.3 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 70:30, v/v) to obtain **19a** as a yellowish solid (26.3 mg, 69%, >95:5 dr). m.p. 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.16 (m, 13H), 7.07 – 6.95 (m, 1H), 4.82 (d, J = 6.0 Hz, 1H), 4.69 (d, J = 7.9 Hz, 1H), 3.87 (dd, J = 9.7, 7.9 Hz, 1H), 3.70 (dd, J = 9.7, 6.0 Hz, 1H), 3.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.72, 174.57, 139.55, 138.42, 133.60, 132.00, 130.49, 129.19, 129.08, 128.89, 128.55, 128.02, 127.64, 127.03, 126.94, 126.64, 76.45, 56.90, 45.62, 44.60, 42.79. IR (neat): 2922, 1705, 1317, 1181, 1056, cm⁻¹. HRMS (ESI) *m*/z calcd for C25H21NNaO3+ [M+Na]⁺ 406.1414, found 406.1416.

4-(2-(methoxymethyl)benzoyl)benzonitrile was synthesized according to General Procedure A, using 1-bromo-2-(methoxymethyl)benzene (1.0053 g, 5.0 mmol), *n*-BuLi (2.5 M, 2.4 mL, 6.0 mmol), 4-cyano-*N*-methoxy-*N*-methylbenzamide (1.1412 g, 6 mmol) and THF (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 85:15, v/v) to obtain the ketone as a yellowish oil (615.6 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.53 (dd, *J* = 3.8, 2.4 Hz, 2H), 7.45 – 7.29 (m, 2H), 4.52 (s, 2H), 3.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.37, 141.15, 138.47, 136.62, 132.34, 131.24, 130.25, 128.99, 128.73, 127.43, 118.15, 116.18, 72.33, 58.54. HRMS (ESI) *m*/z calcd for C16H14NO2+ [M+H]⁺ 252.1019, found 252.1021.

(E)-4-(hydrazineylidene(2-(methoxymethyl)phenyl)methyl)benzonitrile was synthesized according to General Procedure B, using 4-(2-(methoxymethyl)benzoyl)benzonitrile (502.6 mg, 2.0 mmol), N₂H₄ (0.77 mL, 24 mmol), HOAc (0.15 mL, 2.4 mmol) and EtOH (4.0 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 60:40, v/v) to obtain the hydrazone as a pale yellow 0il (60.8 mg, 11%). Compound was isolated as a mixture of isomers. ¹H NMR spectral data for this mixture is complex and the mixture was carried on to the next step.

(3aR,4R,9R,9aR)-4-methoxy-2-phenyl-9-(p-tolyl)-3a,4,9,9a-tetrahydro-1H-benzo[f]isoindole-1,3(2H)-dione was synthesized according to General Procedure F, using (E)-4-(hydrazineylidene(2-(methoxymethyl)phenyl)methyl)benzonitrile (26.5 mg, 0.1 mmol), Nphenyl maleimide (17.3 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 70:30, v/v) to obtain **19b** as a white solid (31.3 mg, 77%, >95:5 dr). m.p. 160-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 4H), 7.49 – 7.30 (m, 6H), 7.15 (dd, *J* = 6.4, 2.5 Hz, 1H), 7.07 (dd, *J* = 8.4, 1.4 Hz, 2H), 4.95 – 4.75 (m, 2H), 3.91 (t, *J* = 9.7 Hz, 1H), 3.60 (dd, *J* = 10.0, 5.3 Hz, 1H), 3.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.54, 174.54, 146.19, 137.55, 133.22, 131.82, 131.65, 131.23, 129.91, 129.77, 129.23, 129.02, 128.77, 127.43, 126.52, 119.04, 110.72, 76.54, 56.50, 46.21, 44.43, 41.66. IR (neat): 2976, 2225, 1709, 1369, 1061 cm⁻¹. HRMS (ESI) *m*/z calcd for C26H20N2NaO3+ [M+Na]⁺431.1366, found 431.13059.

Dimethyl (1R,2R,3S,4R)-1-methoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2,3-dicarboxylate synthesized according General Procedure F, was to using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), dimethyl fumarate (14.4 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **19c** as a clear colorless oil (30.8 mg, 87%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.09 (m, 8H), 6.91 – 6.80 (m, 1H), 4.70 (d, J = 2.9 Hz, 1H), 4.09 (d, J = 11.0 Hz, 1H), 3.76 (s, 3H), 3.61 (dd, J = 12.2, 11.0 Hz, 1H), 3.48 (s, 3H), 3.39 (s, 3H), 3.30 (dd, J = 12.1, 2.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.93, 172.30, 143.77, 138.93, 133.30, 130.30, 129.85, 129.18, 128.65, 127.11, 126.03, 77.63, 57.04, 52.25, 51.68, 50.00, 48.42, 45.92. IR (neat): 2978, 2896 1717, 1375, 1249 cm⁻¹. HRMS (ESI) m/z calcd for C21H22NaO5+ [M+Na]⁺ 377.1365, found 377.1359.

(1R,2R,3S,4R)-1-methoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2,3-dicarboxylate Diethyl F, synthesized according General Procedure (E)-((2was to using (methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), diethyl fumarate (17.2 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **19d** as a clear colorless oil (32.5 mg, 85%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.12 (m, 8H), 6.88 – 6.82 (m, 1H), 4.70 (d, J = 2.9 Hz, 1H), 4.30 (dq, J = 10.8, 7.1 Hz, 1H), 4.16 (dq, J = 10.8, 7.1 Hz, 1H), 4.07 (d, J = 11.1 Hz, 1H), 4.02 - 3.86 (m, 2H), 3.58 (dd, J = 12.2, 11.1 Hz, 1H), 3.40 (s, 3H), 3.28 (dd, J = 12.1, 3.0 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.39, 171.85, 143.66, 139.07, 133.38, 130.24, 129.82, 129.40, 129.10, 128.56, 127.04, 125.99, 77.82, 61.05, 60.35, 57.12, 50.14, 48.42, 45.84, 14.32, 13.95. IR (neat): 2980, 2897 1719, 1380, 1250 cm⁻¹. HRMS (ESI) *m*/z calcd for C23H26NaO5+ [M+Na]⁺ 405.1678, found 405.1673.

Bis(2,2,2-trifluoroethyl) fumarate was synthesized by dissolving 2,2,2-frifluoroethanol (0.57 mL, 8.0 mmol) in DCM (10 mL). After cooling to 0 °C, triethyl amine (1.59 mL, 12 mmol), and fumaryl chloride (0.42 mL, 4.0 mmol) were added dropwise. The black solution was allowed to warm up to room temperature overnight. Removed excess DCM by rotatory evaporation, dissolved in diethyl ether (50 mL), washed with brine (2 x 20 mL), dried over Na₂SO₄ and removed excess solvent by rotatory evaporation. The crude product was purified by flash column chromatography (hexane/EtOAc = 60:40, v/v) to obtain bis(2,2,2-trifluoroethyl) fumarate as a white solid (923.2 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 2H), 4.61 (d, *J* = 8.2 Hz, 4H). ¹H NMR data was consistent with reported literature values.¹⁷

bis(2,2,2-trifluoroethyl) (1R,2R,3S,4R)-1-methoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2,3dicarboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), bis(2,2,2trifluoroethyl) fumarate (28.0 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **19e** as a clear yellowish oil (36.5 mg, 74%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.21 (m, 6H), 7.16 – 7.11 (m, 2H), 6.87 (dd, *J* = 6.2, 2.9 Hz, 1H), 4.82 – 4.68 (m, 2H), 4.38 (dq, *J* = 12.7, 8.4 Hz, 1H), 4.26 (qd, *J* = 8.5, 1.7 Hz, 2H), 4.10 (d, *J* = 11.1 Hz, 1H), 3.77 (t, *J* = 11.6 Hz, 1H), 3.43 (dd, *J* = 12.1, 3.0 Hz, 1H), 3.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.48, 170.14, 142.63, 138.42, 132.30, 130.33, 129.96, 129.50, 129.08, 128.86, 128.65, 128.27, 128.15, 127.47, 127.37, 127.13, 126.23, 72.69, 61.02, 60.73, 60.65, 60.36, 56.78, 49.74, 48.30, 45.48. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.67 (t, *J* = 8.5 Hz), -73.77 (t, *J* = 8.3 Hz). IR (neat): 2990, 2905 1708, 1365, 1241 cm⁻¹. HRMS (ESI) *m*/z calcd for C23H20F6NaO5+ [M+Na]⁺ 513.1113, found 513.1121.

Dimethyl (1R,2S,3R,4R)-4-methoxy-2-(2-methoxy-2-oxoethyl)-1-phenyl-1,2,3,4tetrahydronaphthalene-2,3-dicarboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), trimethyl (E)-prop-1-ene-1,2,3-tricarboxylate (21.6 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 75:25, v/v) to obtain **19f** as a clear colorless oil (20.5 mg, 48%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 1H), 7.35 – 7.23 (m, 4H), 7.15 (ddd, *J* = 10.3, 6.8, 5.1 Hz, 3H), 6.90 – 6.82 (m, 1H), 4.80 (s, 1H), 4.77 (d, *J* = 4.2 Hz, 1H), 3.72 (d, *J* = 7.0 Hz, 4H), 3.69 (s, 3H), 3.65 (s, 3H), 3.52 (s, 3H), 2.91 (d, *J* = 17.2 Hz, 1H), 2.59 (d, *J* = 17.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.90, 171.74, 170.88, 139.73, 136.31, 135.88, 131.66, 129.46, 128.27, 127.77, 127.61, 127.37, 126.72, 76.99, 59.26, 53.60, 52.53, 51.98, 51.41, 50.35, 49.17, 37.37. IR (neat): 2978, 2896, 1717, 1705, 1375, 1249 cm⁻¹. HRMS (ESI) *m*/z calcd for C24H26NaO7+ [M+Na]⁺ 449.1576, found 449.1572.

Tert-butyl (1R,2R,4R)-1-methoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine 0.1 (24.0 mg, mmol), t-butyl acrylate(12.8 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 90:10, v/v) to obtain **19g** as a clear colorless oil (10.9 mg, 32%, >95:5 dr). 1 H NMR (400 MHz, CDCl₃) δ 7.33 – 7.17 (m, 8H), 6.88 (dd, J = 6.0, 3.1 Hz, 1H), 4.60 (d, J = 2.9 Hz, 1H), 3.98 (dd, J = 11.6, 6.9 Hz, 1H), 3.45 (s, 3H), 2.85 - 2.72 (m, 1H), 2.47 - 2.24 (m, 2H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.09, 146.74, 140.65, 135.01, 130.41, 130.11, 129.04, 128.65, 128.62, 126.49, 125.63, 80.63, 78.28, 57.28, 46.59, 46.35, 29.85, 29.29, 28.31. IR (neat): 2975, 2899, 1705, 1378, 1245 cm⁻¹. HRMS (ESI) *m*/z calcd for C22H26NaO3+ [M+Na]⁺ 361.1780, found 361.1783.

(1R,2S,3S,4R)-1-methoxy-4-phenyl-1,2,3,4-tetrahydronaphthalene-2,3-dicarbonitrile was synthesized according Procedure F, General using (E)-((2to (methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), fumaronitrile(7.8 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **19h** mixture of diastereomers as a white powder (17.1 mg, 59%, 82:18 dr). m.p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.9 Hz, 0H), 7.43 – 7.31 (m, 4H), 7.30 – 7.25 (m, 3H), 7.24 – 7.20 (m, 2H), 7.16 – 7.12 (m, 1H), 6.98 (d, J = 7.8 Hz, 0H), 6.89 (dt, J = 4.6, 2.1 Hz, 1H), 4.82 (d, J = 8.2 Hz, 0H), 4.55 (d, J = 2.5 Hz, 1H), 4.27 (d, J = 11.2 Hz, 1H), 3.84 (dd, J = 12.2, 11.1

Hz, 1H), 3.79 (s, 1H), 3.56 (s, 3H), 3.44 (dd, J = 10.7, 8.2 Hz, 0H), 3.37 (dd, J = 12.2, 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.13, 137.89, 135.78, 134.16, 133.39, 131.02, 130.36, 130.02, 129.97, 129.55, 129.20, 129.12, 128.84, 128.70, 128.33, 128.23, 128.11, 128.07, 126.88, 118.53, 117.00, 116.47, 78.28, 75.21, 59.02, 57.46, 48.45, 44.91, 36.20, 34.63, 34.02, 31.12. IR (neat): 2921, 2881, 2260, 1251, 978 cm⁻¹. HRMS (ESI) *m*/z calcd for C19H17N2O+ [M+H]⁺ 289.1335, found 289.1341.

Ethyl (1R,2R,3S,4R)-3-(dimethylcarbamoyl)-1-methoxy-4-phenyl-1,2,3,4tetrahydronaphthalene-2-carboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), ethyl (E)-4-(dimethylamino)-4-oxobut-2-enoate (17.1 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 70:30, v/v) to obtain **19i** as a colorless oil(36.2 mg, 95%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.12 (m, 8H), 6.88 (dd, *J* = 5.5, 3.6 Hz, 1H), 4.67 (d, *J* = 2.9 Hz, 1H), 4.31 – 4.20 (m, 2H), 4.11 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.85 (dd, *J* = 11.8, 10.5 Hz, 1H), 3.41 (s, 4H), 2.82 (s, 3H), 2.37 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.93, 172.38, 144.85, 139.55, 133.46, 130.43, 129.82, 129.43, 129.06, 128.52, 126.95, 125.68, 78.32, 60.80, 56.99, 49.92, 48.83, 41.60, 36.96, 35.76, 14.34. IR (neat): 3428, 2920, 1715, 1675, 1553, 1052 cm⁻¹. HRMS (ESI) *m*/z calcd for C23H28NO4+ [M+H]⁺ 382.2013, found 382.2015.

(1'S,3S,3'S,4'R)-1'-methoxy-2-oxo-4'-phenyl-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carbonitrile was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), (E)-2-(2-oxoindolin-3-ylidene)acetonitrile (17.0 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 70:30, v/v) to obtain **19j** as a white powder (25.3 mg, 67%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.7 Hz, 1H), 7.48 (s, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.28 – 7.18 (m, 2H), 7.13 (ddd, *J* = 7.8, 5.9, 1.8 Hz, 2H), 6.98 (d, *J* = 7.7 Hz, 1H), 6.91 – 6.81 (m, 2H), 6.60 (d, *J* = 7.8 Hz, 1H), 6.27 (d, *J* = 9.9 Hz, 1H), 4.83 (d, *J* = 6.1 Hz, 1H), 4.46 (s, 1H), 4.05 (d, *J* = 6.1 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.02, 141.14, 136.15, 135.20, 134.97, 129.39, 128.81, 128.72, 128.68, 128.48, 127.80, 127.55, 126.18, 122.19, 116.72, 109.74, 75.07, 61.23, 54.99, 52.35, 39.88. IR (neat): 3282, 2990, 2245, 1708, 1375 cm⁻¹. HRMS (ESI) *m*/z calcd for C25H21N2O2+ [M+H]⁺ 381.1598, found 381.1606.

Ethyl (1R,2S,3R,4R)-4-methoxy-3-(2-oxooxazolidine-3-carbonyl)-1-phenyl-1,2,3,4tetrahydronaphthalene-2-carboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), ethyl (E)-4oxo-4-(2-oxooxazolidin-3-yl)but-2-enoate (21.3 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 60:40, v/v) to obtain **19k** as a clear oil (26.9 mg, 65%, >95:5 dr, 72:28 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 4H), 7.21 – 7.15 (m, 4H), 6.84 (dd, *J* = 5.4, 3.7 Hz, 1H), 4.78 (d, *J* = 2.7 Hz, 1H), 4.47 (t, *J* = 8.1 Hz, 2H), 4.40 (dd, *J* = 11.9, 2.6 Hz, 1H), 4.20 – 3.99 (m, 3H), 3.89 (qd, *J* = 7.1, 5.5 Hz, 2H), 3.80 (t, *J* = 11.5 Hz, 1H), 3.35 (s, 3H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.34, 172.01, 153.54, 143.79, 139.13, 133.08, 130.26, 130.20, 129.45, 129.13, 128.53, 127.00, 125.97, 77.03, 62.45, 60.42, 56.84, 49.94, 48.13, 45.84, 42.91, 13.87. IR (neat): 2889, 1781, 1675, 1353, 1252 cm⁻¹. HRMS (ESI) *m*/z calcd for C24H25NNaO6 [M+Na]⁺ 446.1580, found 446.1568.

4-((1R,3S,4R)-1-methoxy-4-phenylisochroman-3-yl)benzonitrile was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), 4-cyanobenzaldehyde (13.1 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 90:10, v/v) to obtain **20a** as a white powder (23.0 mg, 67%, 77:23 dr). m.p. 280-282 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.38 – 7.22 (m, 4H), 7.20 – 7.13 (m, 2H), 7.03 (tt, *J* = 4.6, 1.1 Hz, 5H), 6.82 – 6.73 (m, 2H), 5.90 (s, 1H), 5.31 (d, *J* = 3.5 Hz, 1H), 4.13 (d, *J* = 3.4 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.41, 139.62, 137.81, 134.28, 131.72, 130.15, 129.83, 128.90, 127.75, 127.45, 126.76, 126.67, 125.92, 110.89, 101.77, 76.53, 56.61, 50.23. IR (neat): 2872, 2213, 1275, 1153, 1052 cm⁻¹. HRMS (ESI) *m*/z calcd for C23H20NO2+ [M+H]⁺ 342.1489, found 342.1483.

(1'R,4'R)-1'-methoxy-4'-phenylspiro[cyclohexane-1,3'-isochromane]-2,5-dien-4-one was synthesized Procedure F, according to General using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), benzoquinone (10.8 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 90:10, v/v) to obtain **20b** as a clear oil (22.5 mg, 71%, >95:5 dr. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.7, 1.5 Hz, 1H), 7.38 - 7.29 (m, 2H), 7.28 - 7.17 (m, 5H), 7.12 - 7.05 (m, 2H), 6.98 - 6.83 (m, 2H), 6.07 (ddd, J = 14.7, 10.3, 2.0 Hz, 2H), 5.76 (s, 1H), 4.44 (s, 1H), 3.55 (s, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 185.64, 148.70, 146.39, 136.81, 134.47, 132.92, 130.04, 129.21, 128.97, 128.58, 128.10, 128.04, 127.51, 127.26, 97.85, 72.21, 55.99, 53.71. IR (neat): 2902, 1660, 1315, 1253, 1052 cm⁻¹. HRMS (ESI) *m*/z calcd for C21H19O3+ [M+H]⁺ 319.1329, found 319.1318.

(1'R,3S,4'R)-1-benzyl-1'-methoxy-4'-phenylspiro[indoline-3,3'-isochroman]-2-one was synthesized according General Procedure F, using (E)-((2to (methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), 1-benzylindoline-2,3-dione (23.7 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol), Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **20c** as a yellowish solid (42.4 mg, 95%, >95:5 dr). m.p. 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.7 Hz, 1H), 7.61 – 7.09 (m, 5H), 7.19 – 6.97 (m, 5H), 6.96 – 6.83 (m, 1H), 6.78 (td, J = 7.6, 1.0 Hz, 1H), 6.55 – 6.45 (m, 2H), 6.30 (d, J = 7.8 Hz, 1H), 6.01 (s, 1H), 5.07 (d, J = 16.1 Hz, 1H), 4.92 (s, 1H), 4.37 (d, J = 16.1 Hz, 1H), 3.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.62, 143.29, 135.39, 135.12, 134.89, 134.00, 129.61, 128.66, 128.63, 128.26, 128.13, 127.87, 127.70, 127.33, 127.19, 127.00, 126.92, 126.43, 122.12, 109.18, 98.31, 78.60, 55.94, 51.43, 43.86. IR (neat): 2920, 1721, 1605, 1453, 1352 cm⁻¹. HRMS (ESI) m/z calcd for C30H26NO3+ [M+H]⁺ 448.1907, found 448.1922.

Diethyl (1R,4R)-1-methoxy-4-phenylisochromane-3,3-dicarboxylate was synthesized according to General Procedure F, using (E)-((2-(methoxymethyl)phenyl)(phenyl)methylene)hydrazine (24.0 mg, 0.1 mmol), diethyl ketomalonate(8.7 mg, 0.1 mmol), MnO₂ (69.6 mg, 0.8 mmol),

Rh₂(MesCO₂)₄ (0.9 mg, 0.001 mmol) and THF (6 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 90:10, v/v) to obtain **20d** as a clear oil(31.8 mg, 83%, >95:5 dr.¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 3H), 7.28 – 7.16 (m, 5H), 7.06 (dd, J = 7.2, 1.9 Hz, 1H), 5.81 (d, J = 1.1 Hz, 1H), 4.84 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.07 – 3.87 (m, 2H), 3.80 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.94, 166.25, 139.55, 136.02, 131.80, 130.09, 129.45, 129.16, 128.30, 128.26, 127.40, 127.29, 126.03, 99.01, 84.19, 62.50, 62.01, 56.90, 47.48, 14.14, 13.87. IR (neat): 2920, 1761, 1755, 1253, 1052, cm⁻¹. HRMS (ESI) *m*/z calcd for : C22H24NaO6 [M+H]⁺ 407.1471, found 407.1460.

2-iodo-4-isopropoxy-5-methoxybenzaldehyde was synthesized by suspending 4-isopropoxy-3-methoxybenzaldehyde (1.9423 g, 10.0 mmol) and *n*-iodosuccinimide (4.3988 g, 20 mmol) in methanol (25 mL). After cooling to 0 °C, trifluoroacetic acid(0.15 mL, 0.2 mmol) was added dropwise. The reaction was allowed to warm up to room temperature overnight. A saturated solution of sodium thiosulfate (15 mL) was added to quench the reaction. The organic layer was extracted in diethyl ether (3 x 50 mL), washed with NaHCO₃(aq) (2 x 25 mL) and brine (2 x 25 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The resulting oil was dissolved in THF (25 mL), 3 M HCl (10 mL) was added in small aliquots, the organic layer was extracted in diethyl ether (3 x 50 mL), washed with vator₃(aq) (20 mL) was added in small aliquots, the organic layer was extracted in diethyl ether (3 x 50 mL), washed with brine (2 x 25 mL) and dried over Na₂SO₄. The excess solvent was removed by rotatory evaporation to afford 2-iodo-4-isopropoxy-5-methoxybenzaldehyde as a white powder (3.1957 g, 99%).¹H NMR (300 MHz, CDCl₃) δ 9.87 (s, 1H), 7.33 (s, 1H), 7.10 (s, 1H), 4.69 (p, *J* = 6.1 Hz, 1H), 3.91 (s, 3H), 1.45 (d, *J* = 6.1 Hz, 6H). ¹H NMR data was consistent with reported literature values.¹⁸

1-iodo-5-isopropoxy-4-methoxy-2-(methoxymethyl)benzene was synthesized by dissolving 2iodo-4-isopropoxy-5-methoxybenzaldehyde (1.6007 g, 5.0 mmol) in 20 mL (THF/ CH₃OH= 7:3 v/v), followed by cooling to 0 °C and addition of sodium borohydride(0.2270 g, 1.2 mmol). After 2 hours, NH₄Cl(aq) (10 mL) was added, and the organic layer was extracted in diethyl ether (3x 25 mL), washed with brine (2 x 20 mL) and dried over Na₂SO₄. After removing excess solvent, the crude alcohol was dissolved in THF (20 mL), cooled to 0 °C, and sodium hydride (60% in an oil dispersion) (0.1800g, 7.5 mmol) was added in small portions. Iodomethane (0.47 mL, 7.5 mmol) was added dropwise as soon as bubbling stopped and the reaction was allowed to warm up to room temperature overnight. 10 mL of water were added and the organic layer was extracted in diethyl ether (3 x 25 mL), washed with brine (2x 20 mL) and dried over Na₂SO₄. Excess solvent was removed by rotatory evaporation and the resulting crude was purified by flash column chromatography (hexane/EtOAc = 98:2, v/v) to afford 1-iodo-5-isopropoxy-4methoxy-2-(methoxymethyl)benzene as a yellowish oil (1.5453 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H), 6.97 (s, 1H), 4.49 (dt, J = 12.3, 6.1 Hz, 1H), 4.38 (s, 2H), 3.85 (s, 3H), 3.46 (s, 3H), 1.35 (d, J = 6.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.98, 147.40, 133.43, 125.96, 112.47, 85.96, 78.27, 72.12, 58.60, 56.14, 22.12. C12H18IO3+ [M+H]⁺337.0295, found 337.0287.

(4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2-(methoxymethyl)phenyl)methanol was synthesized according to General Procedure A, using 1-iodo-5-isopropoxy-4-methoxy-2-(methoxymethyl)benzene (1.3447 g, 4.0 mmol), *n*-BuLi (2.25 M, 2.0 mL, 4.4 mmol), 4-isopropoxy-3-methoxybenzaldehyde (854.6 mg, 4.4 mmol) and THF (20 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 60:40, v/v) to obtain the ketone as a yellowish oil (1.0864 mg, 67%). Compound was isolated as a mixture of rotamers; ¹H NMR spectral data for this mixture is complex and the mixture was carried on to the next step.

(4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2-

(methoxymethyl)phenyl)methanone was synthesized by suspending (4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2-(methoxymethyl)phenyl)methanol (2.1967 g, 5.43 mmol), and manganese dioxide (4.7214 g, 54.3 mmol) in DCM (20 mL). After stirring for 48 hours, the mixture was filtered over celites, and the excess solvent was removed by rotatory evaporation to afford the ketone as a white powder (2.0315 g, 93 %). m.p. 221-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.0 Hz, 1H), 7.34 – 7.24 (m, 1H), 7.13 (s, 1H), 6.95 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 4.73 – 4.60 (m, 1H), 4.52 (s, 2H), 4.45 (p, *J* = 6.1 Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.32 (s, 3H), 1.42 (d, *J* = 6.0 Hz, 6H), 1.33 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.91, 152.44, 151.95, 149.92, 145.26, 132.61, 130.91, 129.97, 125.57, 117.44, 112.67, 112.41, 111.79, 71.96, 71.91, 71.38, 58.54, 56.19, 22.16, 22.08. C23H3106+ [M+H]⁺ 403.2115, found 403.2107.

(E)-((4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2-

(methoxymethyl)phenyl)methylene)hydrazine was synthesized according to General Procedure B, using (4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2-(methoxymethyl)phenyl)methanone (805.0 mg, 2.0 mmol), N₂H₄ (0.77 mL, 24 mmol), HOAc (0.15 mL, 2.4 mmol) and EtOH (4.0 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 50:50, v/v) to obtain the hydrazone as a pale yellow 0il (822.9 mg, 99%). Compound was isolated as a mixture of isomers. ¹H NMR spectral data for this mixture is complex and the mixture was carried on to the next step.

Diethyl (1R,2R,3S,4R)-6-isopropoxy-4-(4-isopropoxy-3-methoxyphenyl)-1,7-dimethoxy-1,2,3,4tetrahydronaphthalene-2,3-dicarboxylate was synthesized according to General Procedure F, (E)-((4-isopropoxy-3-methoxyphenyl)(5-isopropoxy-4-methoxy-2using (methoxymethyl)phenyl)methylene)hydrazine (222.1 mg, 0.5 mmol), diethyl fumarate (129.1 mg, 0.5 mmol), MnO₂ (347.8 mg, 4.0 mmol), Rh₂(S-TCPTTL)₄ (9.9 mg, 0.005 mmol) and THF (10 mL). The crude product was purified by flash column chromatography (hexane/EtOAc = 80:20, v/v) to obtain **23** as a clear oil (206.0 mg, 74%, >95:5 dr). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, J = 7.9 Hz, 1H), 6.76 (s, 1H), 6.67 (dd, J = 8.1, 2.1 Hz, 1H), 6.63 (d, J = 2.1 Hz, 1H), 6.33 (s, 1H), 4.64 (d, J = 3.1 Hz, 1H), 4.56 – 4.43 (m, 1H), 4.36 – 4.10 (m, 3H), 4.01 – 3.86 (m, 6H), 3.76 (s, 3H), 3.52 - 3.44 (m, 1H), 3.43 (s, 3H), 3.25 (dd, J = 12.1, 3.1 Hz, 1H), 1.35 (dd, J = 6.1, 4.0 Hz, 7H), 1.29 (t, J = 7.1 Hz, 3H), 1.23 (d, J = 6.1 Hz, 3H), 1.12 (d, J = 6.0 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.59, 171.95, 150.76, 148.39, 147.78, 146.21, 136.74, 131.48, 126.16, 121.72, 116.42, 116.31, 112.87, 112.69, 77.77, 71.69, 71.10, 61.01, 60.32, 57.44, 56.26, 56.08, 49.67, 48.85, 45.84, 22.20, 22.12, 22.07, 21.65, 14.32, 14.04. IR (neat): 2982, 2890, 1715, 1252, 1240 cm⁻¹. HRMS (ESI) *m*/z calcd for C31H42NaO9+ [M+Na]⁺ 581.2727, found 581.2731.

Diethyl (1R,2S,3S)-7-isopropoxy-1-(4-isopropoxy-3-methoxyphenyl)-6-methoxy-1,2,3,4tetrahydronaphthalene-2,3-dicarboxylate was synthesized by suspending **23** (129.0 mg, 0.23 mmol) and 10 % Pd/C (150.0 mg, 0.14 mmol) in methanol (25 mL). Purged with hydrogen gas for 10 minutes and allowed to stir overnight under a hydrogen. Filtered over pad of celites and removed excess solvent by rotatory evaporation to obtain product as a clear oil (119.0 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.1 Hz, 1H), 6.65 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.60 (s, 2H), 6.25 (s, 1H), 4.50 (p, *J* = 6.1 Hz, 1H), 4.24 – 4.07 (m, 4H), 3.92 (ddp, *J* = 14.1, 7.0, 3.5 Hz, 2H), 3.83 (s, 3H), 3.76 (s, 3H), 3.27 – 2.97 (m, 4H), 1.35 (dd, *J* = 6.1, 4.3 Hz, 6H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.20 (d, *J* = 6.1 Hz, 3H), 1.11 (d, *J* = 6.0 Hz, 3H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.45, 173.99, 150.70, 149.22, 146.27, 145.68, 136.25, 130.14, 126.71, 121.82, 117.08, 116.29, 112.79, 111.40, 71.69, 71.39, 61.04, 60.44, 56.13, 56.08, 51.53, 49.24, 43.51, 32.15, 22.23, 22.15, 21.71, 14.30, 14.06. IR (neat): 2978, 2887, 1725, 1249, 1049 cm⁻¹. HRMS (ESI) *m*/z calcd for C30H40NaO8+ [M+Na]⁺ 551.2621, found 551.2618.

((1R,2S,3S)-7-isopropoxy-1-(4-isopropoxy-3-methoxyphenyl)-6-methoxy-1,2,3,4-

tetrahydronaphthalene-2,3-diyl)dimethanol was synthesized by suspending lithium aluminum hydride (34.2 mg, 0.90 mmol) in THF (5 mL); after cooling down to 0 °C, diethyl (1R,2S,3S)-7-isopropoxy-1-(4-isopropoxy-3-methoxyphenyl)-6-methoxy-1,2,3,4-tetrahydronaphthalene-2,3-dicarboxylate (119.0 mg, 0.23 mmol) dissolved in THF (5 mL) was added dropwise. The reaction was allowed to stir at room temperature for 2 hours. After cooling down to 0 °C, water (0.05mL) was added, followed by 15% NaOH (0.05 mL) and water (0.15 mL) to quench any leftover hydride. The suspension was filtered over celites and the excess solvent was removed by rotatory evaporation to afford **24** as a white powder (101.1 mg, 99%). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.1 Hz, 1H), 6.67 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.63 – 6.56 (m, 2H), 6.21 (s, 1H), 4.53 – 4.45 (m, 1H), 4.15 (p, *J* = 6.1 Hz, 1H), 3.88 – 3.67 (m, 10H), 3.70 – 3.60 (m, 1H), 3.50 (dd, *J* = 11.1, 5.3 Hz, 1H), 2.84 – 2.66 (m, 2H), 1.35 (dd, *J* = 6.1, 2.7 Hz, 6H), 1.19 (d, *J* = 6.1 Hz, 3H), 1.10 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.69, 148.72, 145.81, 145.17, 138.66, 132.12, 128.87, 121.99, 118.13, 116.26, 112.98, 111.50, 71.68, 71.39, 66.52, 62.94, 62.83, 56.15, 56.01, 48.19,

48.11, 40.12, 33.33, 29.98, 22.23, 22.20, 22.10, 21.71. IR (neat): 3289, 2980, 2879, 1249, 1219 cm⁻¹. HRMS (ESI) *m*/z calcd for C26H36NaO6+ [M+Na]⁺ 467.2410, found 467.2406.

(±)-Isolariciresinol was synthesized by dissolving **24** (44.5 mg, 0.1 mmol) in DCM (2 mL), and cooling down to -78 °C before adding boron trichloride (1 M, 0.3 mL, 0.3 mmol). Although a white precipitate started forming almost immediately, the reaction was allowed to stir for 4 hours at room temperature to allow completion. The white precipitated was collected by vacuum filtrating and washed with cold DCM to afford (±)-isolariciresinol as a white powder (34.5 mg, 96%). ¹H NMR (400 MHz, MeOD) δ 6.62 (d, *J* = 8.0 Hz, 1H), 6.57 – 6.52 (m, 2H), 6.49 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.06 (d, *J* = 0.9 Hz, 1H), 3.71 – 3.50 (m, 10H), 3.28 (dd, *J* = 11.2, 4.1 Hz, 1H), 2.65 (d, *J* = 7.7 Hz, 2H), 1.97 – 1.81 (m, 1H), 1.65 (tt, *J* = 10.0, 3.7 Hz, 1H). ¹H NMR data was consistent with reported literature values.¹⁹

References

- 1 A. Baykal and B. Plietker, *European J. Org. Chem.*, 2020, **2020**, 1145–1147.
- 2 T. Klatt, K. Groll and P. Knochel, *Chem. Commun.*, 2013, **49**, 6953–6955.
- 3 E. Anderson and B. Capon, J. Chem. Soc. Perkin Trans. 2, 1972, 515–522.
- 4 H. Yi, L. Niu, S. Wang, T. Liu, A. K. Singh and A. Lei, *Org. Lett.*, 2017, **19**, 122–125.
- 5 L. R. Peacock, R. S. L. Chapman, A. C. Sedgwick, M. F. Mahon, D. Amans and S. D. Bull, *Org. Lett.*, 2015, **17**, 994–997.
- 6 S. Lauzon, H. Keipour, V. Gandon and T. Ollevier, *Org. Lett.*, 2017, **19**, 6324–6327.
- 7 J. H. Tsai, A. S. Waldman and J. S. Nowick, *Bioorg. Med. Chem.*, 1999, **7**, 29–38.
- 8 B. M. Trost, S. Malhotra and W. H. Chan, J. Am. Chem. Soc., 2011, **133**, 7328–7331.

- 9 V. H. G. Rohde, P. Pommerening, H. F. T. Klare and M. Oestreich, *Organometallics*, 2014,
 33, 3618–3628.
- 10 F. Shi, Z.-L. Tao, S.-W. Luo, S.-J. Tu and L.-Z. Gong, *Chem. Eur. J.*, 2012, **18**, 6885–6894.
- Y. Ogura, M. Akakura, A. Sakakura and K. Ishihara, *Angew. CheM. Int. Ed.*, 2013, 52, 8299–8303.
- 12 A. Ilangovan and G. Satish, J. Org. Chem., 2014, **79**, 4984–4991.
- 13 C.-P. Wang and G.-F. Jiang, *Tetrahedron Lett.*, 2017, **58**, 1747–1750.
- 14 B. Zhou, Y. Yang, S. Lin and Y. Li, *Adv. Synth. Catal.*, 2013, **355**, 360–364.
- T. Kim, K. H. Jeong, K. S. Kang, M. Nakata and J. Ham, *European J. Org. Chem.*, 2017, 2017, 1704–1712.
- 16 J. C. Hsieh, Y. C. Chen, A. Y. Cheng and H. C. Tseng, Org. Lett., 2012, 14, 1282–1285.
- N. Kaplaneris, A. Bisticha, G. N. Papadopoulos, D. Limnios and C. G. Kokotos, *Green Chem.*, 2017, 19, 4451–4456.
- D. J. Kerr, E. Hamel, M. K. Jung and B. L. Flynn, *Bioorganic Med. Chem.*, 2007, **15**, 3290–3298.
- 19 F. Yue, F. Lu, M. Regner, R. Sun and J. Ralph, *ChemSusChem*, 2017, **10**, 830–835.

Computational Methods

Computational Details for Mechanistic Study.

Density functional theory optimization and frequency calculations were carried out in Gaussian 16¹ at the B3LYP-D3/Def2SVP level of theory² in solvent—dichloromethane modeled with the SMD³ implicit solvent model. Electronic energies were subsequently corrected with single-point calculations at the SMD(DCM)-B3LYP-D3/Def2TZVPP level. Intrinsic reaction coordinate calculations⁴ were used to further characterize the transition state structures. B3LYP-D3 has repeatedly been proven to be a reliable functional for Rh-catalyzed reaction mechanisms.^{5,6}

Figure CS1. The mechanism of diene formation from Rh-carbene intermediate. Relative free energies (blue, kcal mol⁻¹) reported at the SMD(DCM)-B3LYP-D3/Def2-TZVPP//SMD(DCM)-B3LYP-D3/Def2-SVP level of theory.

Computational Results of Mechanistic Study. The mechanism for formation of diene (Figure CS1) was investigated with density functional theory calculations at the SMD(DCM)-B3LYP-D3/Def2TZVPP//B3LYP-D3/Def2SVP level of theory. Our calculations predict that the hydride shift event is facile to the ylide intermediate and occurs with the metal bound to the substrate. We tried to find a hydride shift transition state structure free of metal-catalyst, but the TSS and free carbene are too high in energy to be relevant (32 and 25 kcal/mol, respectively). At this stage, loss of Rh-catalyst reveals a metal-free ortho-quinodimethane (o-QDM) which acts as the diene in the Diels-Alder step. From the o-QDM, either direct Diels-Alder or formation of a benzocyclobutane intermediate can occur. Our calculations weigh against benzocyclobutane formation being likely, as the barrier to form that intermediate is ~20 kcal/mol and the benzocyclobutane is only slightly more exergonic (~ 1 kcal/mol). Formation of the Diels-Alder shifts with metal-catalyst bound and benzocyclobutane formation is unlikely before forming the DA-adduct.

The structures for Figure 1 of the main text and Figure S1 can be found on the ioChem-BD[6¹database for ease of access of coordinates: see the following DOI— <u>https://doi.org/10.19061/iochem-bd-6-122</u>. Energies and lowest vibrational frequencies for these structures are in **Table S0** below.

Table S0. Energies and lowest vibrational frequencies for computed structures for mechanistic study. Free energies were computed at the B3LYP-D3/def2SVP level and electronic energies were computed at the B3LYP-D3/def2TZVPP, both in SMD solvent (dichloromethane).

Structure	Free Energy Correction	Electronic Energy	Lowest Frequency (cm ⁻¹)
	(Hartree)	(Hartree)	
25	0.397437	-1904.657208	16.7337
25b	0.214056	-768.7931436	26.6014
26	0.400483	-1904.687438	22.79
27	0.216283	-768.8635941	29.4769
TS1	0.393071	-1904.635919	-790.1915
TS2	0.211486	-768.7790327	-486.2878
TS3	0.215534	-768.8295676	-259.5939
14	0.217063	-768.8657967	32.2568
TSS _{DA}	0.355746	-1359.613052	-298.8251
15 a	0.360889	-1359.683688	23.345
Maleimide	0.113265	-590.7457677	58.9609
Rh catalyst	0.156699	-1135.79711	39.4094

Figure CS2. IRC plot for hydride shift step (TS1).

Figure CS3. IRC plot for Diels-Alder step with maleimide (TS_{DA}).

Computational Details for NMR Study.

Computed chemical shifts or coupling constants were produced for the diastereomers that may arise from the methodology described in the manuscript to provide stereochemical information for products **150**, **16a**, **18c** and **18o**.

All significantly contributing conformers were located by calculating a conformational distribution for each molecule using *Spartan18*⁷ software with molecular mechanics (MMFF) using the default parameters. All conformers found to be > 3.0 kcal/mol than the lowest energy conformer were deemed statistically insignificant in their contributions to the computed chemical shifts and coupling constants of the molecule.

Computed chemical shifts and coupling constants were determined using *Gaussian16*¹ on all energetically relevant conformers. Geometry optimizations for computed chemical shifts were conducted at the B3LYP/6-31+G(d,p) level of theory in gas phase unless otherwise indicated. Computed chemical shifts were then determined from the optimized structure using the GIAO method at the B3LYP/6-311+G(2d,p) level of theory in chloroform or dichloromethane (SCRF). Computed coupling constants were obtained on structures optimized in the gas-phase at B3LYP/6-31G(d) level of theory. Subsequently, NMR single-point calculation in gas-phase was performed using the procedure published by Bally and Rablen on ¹H-¹H coupling constants on the optimized structure using the following command in the route section before the molecule specifications:⁸

#n B3LYP/6-31G(d,p) nmr=(fconly,readatoms) iop(3/10=1100000)

Then at the end of the molecule specifications, separated by a blank line, "atoms=H" (without quotation marks) was added in.

Computed chemical shifts and coupling constants were empirically scaled using the appropriate scaling factors, compiled by Rablen *et al.*, and made available on the <u>http://cheshirenmr.info</u> website. Empirical scaling using such methods were shown to reduce systematic error resulting from a variety of sources and is all delineated in this review.⁹

Where multiple conformations were considered, computed free energies at the indicated level of theory (see below) were used to calculate the relative % population of each conformer based on a Boltzmann-weighted average of the computed energies at a relatively high level of theory. These relative populations were then used as weighing factors for the computed chemical shifts of each conformer.

<u>150</u>

Coupling constants between hydrogens at C1 and C2 were calculated for diastereomers **A** and **B** using the methods described above and scaled by a factor of 0.9117 as recommended by Bally and Rablen.⁷ The experimental H1-H2 coupling constant observed by ¹H NMR is 11.0 Hz.

Table	1. Coupling	constants	for both	diastereomers	of 150

	Computed Fermi Contact Terms (H1-H2)	Scaled Computed H1-H2 <i>J</i> Values (Hz)	Experimental H1-H2 <i>J</i> Value (Hz)	Standard Deviation (Hz)
Α	11.4942	10.5229401	11.0	0.4770599
В	6.59437	6.03	11.0	4.97

Computed J value for A was significantly closer to the experimental J value observed and we concluded that A depicted the correct relative stereochemistry of **150**.

¹H and ¹³C chemical shifts were computed for two conformers of diastereomers **A** and **B** (4 structures total). The computed chemical shifts of each conformer were averaged according to their relative populations derived from their relative free energies and then scaled using the procedure described in the computational NMR methods section using CHCl₃ as implicit solvent whenever indicated. Computed ¹H and ¹³C chemical shifts for **A** and **B** were compared with all the assignable observed chemical shifts for 8**a** (measured in CDCl₃). Computed chemical shifts of chemically equivalent atoms were averaged prior to comparison with experimental shifts.

Computed ¹H chemical shifts for diastereomer **B** more consistently matched with the experimental data than computed chemical shifts for diastereomer **A**. Computed ¹³C chemical for **A** and **B** closely correlated to experimental data. Closer examination of H1 and C1 revealed a greater variation between the two sets of computed data for diastereomers **A** and **B**. Based on these observations, we concluded that **A** depicted the correct relative stereochemistry of **16a**.

Table 3. Computed ¹H chemical shifts for B

	1				1	
Н#	Scaled Computed Chemical Shifts	Experimental Chemical Shifts		H #	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	3.041776706	3.1	· ·	1	2.67397997	3.1
2	3.42388724	3.205		2	3.23418954	3.205
2'	3.428787092	3.37		2'	3.28869158	3.37
3	3.552485163	3.37	:	3	3.300871662	3.37
3'	3.699354599	3.49	:	3'	3.492539874	3.49
4	3.19764095	3.74	4	4	3.440008346	3.74
5	6.86772997	6.11	ł	5	6.318824184	6.11

<u>16a</u>

Figure 1. Correlation graph for computed ¹H chemical shift of **A** and experimental ¹H shifts.

Table 4. C	Computed 13	³ C chemical	shifts for A
------------	-------------	-------------------------	--------------

C #	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	35.17669166	34.6
4	35.59417671	36.5
2	46.04838189	40.7
3	46.69335864	41.1
6	52.7711341	47.1
5	66.70339945	50.7
7	170.7508133	171.4
8	170.8872582	171.8

Figure 3. Correlation graph for computed ¹³C chemical shift of **A** and experimental ¹³C shifts.

Figure 2. Correlation graph for computed ¹H chemical shift of **B** and experimental ¹H shift

C #	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	33.91432571	34.6
4	36.4932049	36.5
2	46.32365949	40.7
3	48.19341369	41.1
6	52.89329506	47.1
5	62.4061118	50.7
7	170.7599886	171.4
8	170.980298	171.8

Figure 4. Correlation graph for computed ¹³C chemical shift of **B** and experimental ¹³C shifts.

¹H and ¹³C chemical shifts were computed for diastereomers **A** and **B** and scaled using the procedure described in the computational NMR methods section using CH_2Cl_2 as implicit solvent whenever indicated. Computed ¹H and ¹³C chemical shifts for **A** and **B** were compared with all the assignable observed chemical shifts for **18c** (measured in CD_2Cl_2). Computed chemical shifts of chemically equivalent atoms were averaged prior to comparison with experimental shifts.

Computed chemical shifts for diastereomer **B** more consistently matched with the experimental data than computed chemical shifts for diastereomer **A**. Based off of the computed NMR shifts, combined with a crystal structure obtained of the major product, we concluded that **B** depicted the correct relative stereochemistry of 18c.

Table 6. Computed ¹ H chemical shifts for A				
Scaled Computed H # Chemical Shifts		Experimental Chemical Shifts		
1	3.965696958	4.17		
7	4.26760163	4.315		
7'	4.217568464	4.315		
8	4.269307306	4.315		
8'	4.308916896	4.45		
4	6.173220885	6.22		
3	7.9385009	7.61		

Table 7. Computed ¹H chemical shifts for B

Н#	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	4.98227992	4.17
7	4.107173316	4.315
7'	4.171894248	4.315
8	4.18857197	4.315
8'	4.18838245	4.45
4	6.212451436	6.22
3	7.840993083	7.61

Figure 5. Correlation graph for computed ¹H chemical shift of **A** and experimental ¹H shifts.

Figure 6. Correlation graph for computed ¹H chemical shift of **B** and experimental ¹H shifts. **Table 8.** Computed ¹³C chemical shifts for **A**

C#	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	61.56270895	56.7
7	63.9852899	65
8	65.79940778	66.2
2	79.97163053	77.2
6	122.0081192	119
5	180.5719744	184.1

Figure 7. Correlation graph for computed ¹³C chemical shift of **A** and experimental ¹³C shifts.

Table 9.	Computed	¹³ C chemical	shifts for B
----------	----------	--------------------------	---------------------

С#	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	61.29238705	56.7
7	63.5524883	65
8	65.78870952	66.2
2	80.54169453	77.2
6	121.6880313	119
5	179.7580476	184.1

Figure 8. Correlation graph for computed ¹³C chemical shift of **B** and experimental ¹³C shifts.

<u>18j</u>

¹H and ¹³C chemical shifts were computed for diastereomers **A** and **B** and scaled using the procedure described in the computational NMR methods section using CHCl₃ as implicit solvent whenever indicated. Computed ¹H and ¹³C chemical shifts for **A** and **B** were compared with all the assignable observed chemical shifts for **18j** (measured in CDCl₃). Computed chemical shifts of chemically equivalent atoms were averaged prior to comparison with experimental shifts.

Computed chemical shifts for diastereomer **B** more consistently matched with the experimental data than computed chemical shifts for diastereomer **A**. From this, we concluded that **B** depicted the correct relative stereochemistry of 18j.

Table 10. Computed ¹ H chemical shifts for A					
Scaled Computed Experimental H # Chemical Shifts Chemical Shifts					
2	4.09523368	4.41			
2'	4.141876855	4.41			
3	4.216431751	4.535			
3'	4.254821958	4.63			
1	4.265949555	4.77			

Figure 9. Correlation graph for computed ¹H chemical shift of **A** and experimental ¹H shifts.

Figure 10. Correlation graph for computed ¹H chemical shift of **B** and experimental ¹H shifts.

C #	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	49.66261744	47.3
2	63.50033216	64.8
3	64.94581	65.7
5	82.82575686	81.5
4	120.9058556	118.6

C #	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
1	56.91705419	47.3
2	63.25415204	64.8
3	65.10154693	65.7

5	82.76368985	81.5
4	120.5818544	118.6

Table 11. Com	puted ¹ H chemical shifts for B
I WOLG I II COUL	

Н#	Scaled Computed Chemical Shifts	Experimental Chemical Shifts
2	4.170623145	4.41
2'	4.221439169	4.41
3	4.371939911	4.535
3'	4.414781157	4.63
1	4.617859792	4.77

Figure 11. Correlation graph for computed ¹³C chemical shift of **A** and experimental ¹³C shifts.

Figure 12. Correlation graph for computed ¹³C chemical shift of **B** and experimental ¹³C shifts.

<u>150</u>

A

G16 optfreq B3LYP/6-31G(d) gas-phase Sum of electronic and thermal Free Energies = -1337.620496 hartrees

Center Atomic		omic	Atomic	Coordinates (Angstroms)		
Number	Ν	lumber	Туре	X Y	Z	
1	6	0	1.347710	4.076467	0.384380	
2	6	0	0.188559	3.330958	0.165501	
3	6	0	0.275236	1.967159	-0.111709	
4	6	0	1.523408	1.322276	-0.146810	
5	6	0	2.676922	2.080644	0.067057	
6	6	0	2.590960	3.450185	0.328117	
7	1	0	1.276718	5.139109	0.600125	
8	1	0	-0.789049	3.796500	0.221217	
9	1	0	3.649322	1.601835	0.030964	
10	1	0	3.500051	4.022600	0.492550	
11	6	0	1.549010	-0.163605	-0.489503	
12	6	0	-0.951897	1.132137	-0.422969	
13	6	0	0.418436	-0.938053	0.296185	
14	1	0	0.788615	-1.054761	1.319729	
15	6	0	-0.973100	-0.195312	0.412461	
16	8	0	-2.144000	1.870342	-0.193216	
17	8	0	-0.964252	0.759342	-1.804689	
18	6	0	-2.864860	1.992645	-1.424743	
19	1	0	-3.282179	3.002077	-1.483798	
20	1	0	-3.674770	1.254976	-1.459054	
21	6	0	-1.793667	1.707500	-2.474205	
22	1	0	-1.223166	2.610886	-2.730225	
23	1	0	-2.172359	1.240789	-3.386350	
24	6	0	-2.236428	-0.986479	0.111624	
25	6	0	-3.081040	-0.934443	1.233320	
26	6	0	-2.666189	-1.647095	-1.032943	
27	6	0	-4.337154	-1.527236	1.246204	
28	6	0	-3.928968	-2.256800	-1.038366	
29	1	0	-2.027578	-1.702570	-1.906340	
30	6	0	-4.751421	-2.194575	0.087361	
31	1	0	-4.975497	-1.477410	2.123734	
32	1	0	-4.263685	-2.787282	-1.924778	
33	1	0	-5.727084	-2.672596	0.071127	
34	7	0	-2.447454	-0.225182	2.260622	
35	1	0	-2.800412	-0.110992	3.200595	
36	6	0	-1.183064	0.186920	1.912270	
37	8	0	-0.370896	0.710044	2.650484	
38	6	0	0.295754	-2.286718	-0.268534	
39	/	0	0.234415	-3.349543	-0./31/45	
40	6	0	2.888019	-0.850863	-0.26/190	
41	6	0	3.465813	-0.925862	1.009967	
42	6	0	3.561859	-1.442234	-1.341356	
43	6	0	4.684005	-1.5/5/96	1.203351	
44 45	1	0	2.965156	-0.460413	1.855987	
40	b	U	4./8/303	-7.093733	-1.1.51063	

46	1	0	3.123097	-1.399592	-2.335288
47	6	0	5.346555	-2.162454	0.122362
48	1	0	5.116338	-1.623746	2.199310
49	1	0	5.287394	-2.549390	-1.998265
50	1	0	6.294925	-2.670953	0.273742
51	1	0	1.297686	-0.250601	-1.552355

G16 #n B3LYP/6-31G(d,p) nmr=(fconly,readatoms) iop(3/10=1100000) gas-phase

Fermi Contact (FC) contribution to J (Hz): 5 2 3 4 1 1 0.00000D+00 2 0.00000D+00 0.00000D+00 3 0.00000D+00 0.00000D+00 0.00000D+00 4 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 5 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 6 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 7 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 8 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 9 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 10 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 11 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 12 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 13 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 14 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 15 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 16 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 17 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 18 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 19 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 20 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 22 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 23 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 24 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 29 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 30 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 31 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 32 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 33 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 35 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 36 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00

```
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
50 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
51 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
    6
           7
                  8
                         9
                               10
6 0.00000D+00
7 0.00000D+00 0.385007D+12
8 0.00000D+00 0.845315D+01 0.385007D+12
9 0.00000D+00 0.118222D+01 0.537317D+00 0.385007D+12
10 0.00000D+00 0.823168D+01 0.140169D+01 0.861700D+01 0.385007D+12
11 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
12 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
13 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
14 0.00000D+00 0.363274D-01 -0.280402D-01 0.705272D-01 -0.337568D-01
15 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
16 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
17 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00
18 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
19 0.00000D+00 0.112965D-01 0.216535D-01 -0.274826D-02 0.197495D-03
20 0.00000D+00 -0.385085D-02 -0.602761D-02 0.222678D-01 0.167905D-02
21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
22 0.00000D+00 -0.170575D-02 0.966473D-01 -0.159056D-01 0.116193D-01
23 0.000000D+00 0.184771D-01 0.673136D-01 -0.177794D-02 -0.212891D-01
24 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
27 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
29 0.000000D+00 -0.117408D-02 0.385642D-02 -0.152091D-02 0.271715D-02
30 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
31 0.000000D+00 0.427281D-02 -0.197356D-02 0.110548D-02 -0.300704D-02
32 0.000000D+00 0.210828D-02 -0.918428D-03 0.720785D-03 -0.177694D-02
33 0.000000D+00 -0.393470D-02 0.124204D-02 -0.103342D-02 0.275225D-02
34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
35 0.00000D+00 -0.848253D-03 0.999866D-03 -0.108844D-02 0.605094D-03
36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.729118D-02 -0.127896D-01 0.289104D+00 -0.211448D-01
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.00000D+00 -0.117366D-02 0.246950D-02 0.189836D-01 -0.554449D-02
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.000000D+00 -0.242325D-02 0.648777D-02 -0.278203D-01 0.590953D-02
49 0.00000D+00 -0.212290D-03 0.131209D-01 -0.669994D-02 0.267277D-02
50 0.00000D+00 -0.209571D-02 -0.741966D-02 0.131933D-01 -0.427931D-02
51 0.000000D+00 -0.121335D+01 0.534733D+00 -0.151249D+01 0.635427D+00
    11
           12
                   13
                          14
                                 15
11 0.00000D+00
12 0.00000D+00 0.00000D+00
13 0.00000D+00 0.00000D+00 0.00000D+00
14 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12
```

15 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00

16 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 17 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 18 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 19 0.00000D+00 0.00000D+00 0.00000D+00 0.353725D-01 0.00000D+00 20 0.00000D+00 0.00000D+00 0.00000D+00 -0.842895D-02 0.00000D+00 21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 22 0.00000D+00 0.00000D+00 0.00000D+00 -0.792530D-03 0.00000D+00 23 0.00000D+00 0.00000D+00 0.00000D+00 -0.615270D-02 0.00000D+00 24 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 29 0.00000D+00 0.00000D+00 0.00000D+00 0.105343D-01 0.00000D+00 30 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 31 0.00000D+00 0.00000D+00 0.00000D+00 -0.152216D-02 0.00000D+00 32 0.00000D+00 0.00000D+00 0.00000D+00 0.572179D-02 0.00000D+00 33 0.00000D+00 0.00000D+00 0.00000D+00 0.133304D-01 0.00000D+00 34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 35 0.00000D+00 0.00000D+00 0.00000D+00 0.517560D+00 0.00000D+00 36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 44 0.00000D+00 0.00000D+00 0.00000D+00 -0.452777D+00 0.00000D+00 45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 46 0.00000D+00 0.00000D+00 0.00000D+00 -0.333775D-02 0.000000D+00 47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 48 0.00000D+00 0.00000D+00 0.00000D+00 0.583462D-02 0.00000D+00 49 0.00000D+00 0.00000D+00 0.00000D+00 0.313752D-02 0.00000D+00 50 0.00000D+00 0.00000D+00 0.00000D+00 0.160655D-01 0.00000D+00 51 0.00000D+00 0.00000D+00 0.00000D+00 0.114942D+02 0.00000D+00 16 17 18 19 20 16 0.00000D+00 17 0.00000D+00 0.00000D+00 18 0.00000D+00 0.00000D+00 0.00000D+00 19 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12 20 0.00000D+00 0.00000D+00 0.00000D+00 -0.725690D+01 0.385007D+12 21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 22 0.00000D+00 0.00000D+00 0.00000D+00 0.625127D+01 0.117318D+02 23 0.00000D+00 0.00000D+00 0.00000D+00 0.828558D+00 0.599350D+01 24 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 29 0.00000D+00 0.00000D+00 0.00000D+00 0.335058D-01 0.422173D-01 30 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 31 0.00000D+00 0.00000D+00 0.00000D+00 -0.504935D-02 -0.400904D-02 32 0.00000D+00 0.00000D+00 0.00000D+00 -0.709870D-02 -0.502213D-02 33 0.00000D+00 0.00000D+00 0.00000D+00 0.186555D-02 0.550792D-03 34 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 35 0.00000D+00 0.00000D+00 0.00000D+00 -0.261856D-03 0.112882D-02 36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 44 0.00000D+00 0.00000D+00 0.00000D+00 0.245675D-02 0.129127D-05 45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 46 0.00000D+00 0.00000D+00 0.00000D+00 0.239920D-03 -0.508091D-04 47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 48 0.00000D+00 0.00000D+00 0.00000D+00 0.135606D-03 -0.794904D-04 49 0.00000D+00 0.00000D+00 0.00000D+00 -0.209523D-03 0.370582D-05 50 0.00000D+00 0.00000D+00 0.00000D+00 0.231174D-03 -0.143930D-04 51 0.00000D+00 0.00000D+00 0.00000D+00 -0.501085D-02 -0.509139D-02 21 22 23 24 25 21 0.00000D+00 22 0.00000D+00 0.385007D+12 23 0.00000D+00 -0.841417D+01 0.385007D+12 24 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 29 0.00000D+00 -0.228464D-01 0.176957D-01 0.00000D+00 0.00000D+00 30 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 31 0.00000D+00 0.108405D-02 -0.158318D-03 0.00000D+00 0.00000D+00 32 0.00000D+00 -0.117328D-02 0.867300D-03 0.00000D+00 0.00000D+00 33 0.00000D+00 0.106331D-02 -0.176006D-03 0.00000D+00 0.00000D+00 34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 35 0.000000D+00 -0.328739D-02 0.416513D-02 0.000000D+00 0.000000D+00 36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 44 0.00000D+00 0.404002D-03 0.258102D-03 0.00000D+00 0.00000D+00 45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 46 0.00000D+00 -0.157619D-03 0.173964D-03 0.00000D+00 0.00000D+00 47 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 48 0.00000D+00 -0.176699D-03 -0.345239D-03 0.00000D+00 0.00000D+00 49 0.00000D+00 0.483458D-04 0.105397D-04 0.00000D+00 0.00000D+00 50 0.00000D+00 -0.149359D-03 0.163584D-03 0.00000D+00 0.00000D+00 51 0.00000D+00 -0.158488D-01 0.844985D-02 0.00000D+00 0.00000D+00 29 26 27 28 30 26 0.00000D+00 27 0.00000D+00 0.00000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 29 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12 30 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 31 0.00000D+00 0.00000D+00 0.00000D+00 0.590922D+00 0.00000D+00 32 0.000000D+00 0.00000D+00 0.00000D+00 0.852722D+01 0.000000D+00 33 0.00000D+00 0.00000D+00 0.00000D+00 0.121889D+01 0.00000D+00 34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 35 0.00000D+00 0.00000D+00 0.00000D+00 0.776904D+00 0.00000D+00

```
36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.891567D-03 0.00000D+00
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.172916D-02 0.00000D+00
47 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.00000D+00 0.00000D+00 0.00000D+00 -0.234956D-03 0.00000D+00
49 0.00000D+00 0.00000D+00 0.00000D+00 -0.297049D-03 0.00000D+00
50 0.00000D+00 0.00000D+00 0.00000D+00 0.649667D-03 0.00000D+00
51 0.00000D+00 0.00000D+00 0.00000D+00 -0.489845D-02 0.00000D+00
    31
           32
                  33
                          34
                                 35
31 0.385007D+12
32 0.106875D+01 0.385007D+12
33 0.858406D+01 0.846453D+01 0.385007D+12
34 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
35 0.160719D+00 0.641355D-01 -0.826281D-01 0.000000D+00 0.385007D+12
36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
37 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 -0.127944D-02 -0.357341D-03 0.892362D-03 0.000000D+00 0.316180D-02
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 -0.818946D-03 -0.297859D-03 0.670710D-03 0.000000D+00 -0.334750D-03
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.575315D-03 0.159231D-03 -0.389687D-03 0.000000D+00 0.539560D-03
49 0.120881D-02 0.314354D-03 -0.738882D-03 0.000000D+00 0.131287D-02
50 -0.124058D-02 -0.366278D-03 0.902297D-03 0.000000D+00 -0.136856D-02
51 0.362024D-02 0.333765D-03 -0.944969D-03 0.000000D+00 -0.218797D-01
    36
           37
                  38
                          39
                                 40
36 0.00000D+00
37 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
50 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
51 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
    41
           42
                  43
                          44
                                 45
41 0.00000D+00
42 0.00000D+00 0.00000D+00
```

```
43 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.193672D+01 0.00000D+00
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.00000D+00 0.00000D+00 0.00000D+00 0.872652D+01 0.00000D+00
49 0.00000D+00 0.00000D+00 0.00000D+00 0.624231D+00 0.00000D+00
50 0.00000D+00 0.00000D+00 0.00000D+00 0.117119D+01 0.00000D+00
51 0.00000D+00 0.00000D+00 0.00000D+00 -0.308743D+00 0.00000D+00
    46
           47
                  48
                          49
                                 50
46 0.385007D+12
47 0.00000D+00 0.00000D+00
48 0.590820D+00 0.00000D+00 0.385007D+12
49 0.841662D+01 0.00000D+00 0.139217D+01 0.385007D+12
50 0.119046D+01 0.000000D+00 0.815287D+01 0.833866D+01 0.385007D+12
51 -0.469505D+00 0.000000D+00 0.436658D+00 0.855333D-01 -0.514197D-01
    51
51 0.385007D+12
```

B

G16 optfreq B3LYP/6-31G(d) gas-phase

HF = -1337.617752

Center	enter Atomic		Atomic	Coordinates (Angstroms)		
Number	Ν	umber	Туре	X Y	Z	
1	6	0	1.503978	4.060092	0.198196	
2	6	0	0.330761	3.327887	0.047386	
3	6	0	0.337614	1.927685	0.101397	
4	6	0	1.545180	1.246933	0.339479	
5	6	0	2.718303	1.999410	0.496489	
6	6	0	2.706850	3.389108	0.417740	
7	1	0	1.476899	5.145511	0.154480	
8	1	0	-0.613236	3.843405	-0.088925	
9	1	0	3.652699	1.483316	0.692432	
10	1	0	3.632515	3.944707	0.542242	
11	6	0	1.584963	-0.255253	0.605902	
12	1	0	1.486284	-0.347214	1.692785	
13	6	0	-0.965034	1.189398	-0.199113	
14	6	0	0.328787	-1.007600	0.052610	
15	1	0	0.293076	-1.983415	0.554215	
16	6	0	-1.005992	-0.257304	0.387548	
17	8	0	-2.078018	1.933591	0.289144	
18	8	0	-1.135564	1.086609	-1.614611	
19	6	0	-2.999550	2.155115	-0.783454	
20	1	0	-3.447790	3.143632	-0.647754	
21	1	0	-3.785471	1.390937	-0.777922	
22	6	0	-2.110119	2.044763	-2.018668	
23	1	0	-1.632533	3.001987	-2.268349	
24	1	0	-2.621758	1.654689	-2.902189	
25	6	0	-2.257748	-1.027937	-0.016720	
26	6	0	-3.016397	-1.302624	1.133732	
27	6	0	-2.722243	-1.463805	-1.253959	
28	6	0	-4.221686	-1.991958	1.087183	
29	6	0	-3.936207	-2.163560	-1.321199	
30	1	0	-2.151981	-1.269763	-2.153751	

31	6	0	-4.675134	-2.420575	-0.165785
32	1	0	-4.791693	-2.192799	1.989876
33	1	0	-4.300092	-2.509334	-2.284214
34	1	0	-5.614032	-2.963396	-0.232956
35	7	0	-2.356475	-0.791906	2.255372
36	1	0	-2.697074	-0.823731	3.206355
37	6	0	-1.176253	-0.158939	1.940914
38	8	0	-0.425295	0.357442	2.747021
39	6	0	0.440852	-1.313203	-1.383553
40	7	0	0.548585	-1.605634	-2.501648
41	6	0	2.876823	-0.965721	0.220166
42	6	0	3.464487	-1.853128	1.131446
43	6	0	3.489535	-0.787492	-1.029059
44	6	0	4.628475	-2.551960	0.807184
45	1	0	3.007216	-1.994480	2.108790
46	6	0	4.653743	-1.482534	-1.354903
47	1	0	3.054322	-0.101275	-1.748655
48	6	0	5.226628	-2.367989	-0.439479
49	1	0	5.068423	-3.233435	1.530601
50	1	0	5.112390	-1.332815	-2.328624
51	1	0	6.134396	-2.907755	-0.695818

G16 #n B3LYP/6-31G(d,p) nmr=(fconly,readatoms) iop(3/10=1100000) gas-phase

Fermi Contact (FC) contribution to J (Hz): 1 2 3 4 5 1 0.00000D+00 2 0.00000D+00 0.00000D+00 3 0.00000D+00 0.00000D+00 0.00000D+00 4 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 5 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 6 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 7 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 8 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 9 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 10 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 11 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 12 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 13 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 14 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 15 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 16 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 17 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 18 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 19 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 20 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 22 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 23 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 24 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 25 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 28 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00

```
30 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
31 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
32 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
33 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
34 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
35 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
36 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
50 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
51 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
     6
           7
                  8
                         9
                               10
6 0.00000D+00
7 0.00000D+00 0.385007D+12
8 0.00000D+00 0.875205D+01 0.385007D+12
9 0.00000D+00 0.127996D+01 0.528908D+00 0.385007D+12
10 0.000000D+00 0.805253D+01 0.138538D+01 0.876728D+01 0.385007D+12
11 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
12 0.00000D+00 -0.131015D+01 0.604200D+00 -0.153043D+01 0.611313D+00
13 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
14 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
15 0.00000D+00 0.290702D-01 -0.378154D-01 0.133801D+00 0.762594D-01
16 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
17 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
18 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
19 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
20 0.000000D+00 0.782513D-02 0.333513D-01 0.152578D-02 -0.596040D-02
21 0.000000D+00 -0.576173D-02 0.319033D-01 0.176376D-01 -0.423441D-02
22 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
23 0.000000D+00 -0.274344D-02 -0.347489D-01 -0.405250D-02 0.191819D-02
24 0.00000D+00 0.188973D-01 0.162515D+00 0.280042D-01 -0.538932D-01
25 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
26 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
27 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
28 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
29 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
30 0.000000D+00 0.868179D-03 0.192528D-02 -0.878644D-03 0.956784D-03
31 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
32 0.000000D+00 0.469988D-02 0.481328D-03 -0.119924D-03 -0.588132D-03
33 0.000000D+00 0.158531D-02 0.116440D-03 0.219251D-03 -0.540120D-03
34 0.00000D+00 -0.312531D-02 -0.849245D-04 -0.179513D-03 0.744490D-03
```

29 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00

35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 36 0.000000D+00 0.328092D-04 -0.105441D-02 0.324493D-03 -0.115185D-02 37 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 45 0.00000D+00 0.194002D-02 0.670134D-02 0.210627D-01 -0.754920D-02 46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 47 0.000000D+00 0.746896D-02 -0.743137D-02 0.260444D+00 -0.268660D-01 48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 49 0.000000D+00 -0.258385D-02 0.136200D-01 -0.111076D-01 0.478707D-02 50 0.00000D+00 -0.640661D-02 0.580564D-02 -0.321592D-01 0.864858D-02 51 0.000000D+00 -0.174603D-02 -0.305519D-02 0.959397D-02 -0.542876D-02 13 14 15 11 12 11 0.00000D+00 12 0.00000D+00 0.385007D+12 13 0.00000D+00 0.00000D+00 0.00000D+00 14 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 15 0.00000D+00 0.659437D+01 0.00000D+00 0.00000D+00 0.385007D+12 16 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 17 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 18 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 19 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 20 0.00000D+00 0.942687D-02 0.00000D+00 0.00000D+00 0.168942D+00 21 0.000000D+00 0.928524D-02 0.000000D+00 0.00000D+00 -0.122611D-01 22 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 23 0.00000D+00 -0.107135D-01 0.00000D+00 0.00000D+00 0.181106D-01 24 0.000000D+00 0.816233D-01 0.000000D+00 0.00000D+00 -0.850254D-02 25 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 26 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 27 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 29 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 30 0.00000D+00 0.832890D-02 0.00000D+00 0.00000D+00 0.724035D-01 31 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 32 0.000000D+00 -0.774056D-03 0.000000D+00 0.00000D+00 -0.449199D-02 33 0.000000D+00 0.289920D-03 0.000000D+00 0.000000D+00 -0.137021D-01 34 0.000000D+00 -0.266581D-02 0.000000D+00 0.000000D+00 0.305917D-01 35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 36 0.000000D+00 0.817424D-03 0.000000D+00 0.000000D+00 0.183725D+00 37 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 44 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 45 0.000000D+00 -0.591945D+00 0.000000D+00 0.00000D+00 0.372165D-01

```
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.000000D+00 0.156078D+00 0.000000D+00 0.000000D+00 -0.190120D-01
50 0.00000D+00 0.388191D+00 0.00000D+00 0.00000D+00 -0.214399D-01
51 0.000000D+00 -0.169819D+00 0.000000D+00 0.00000D+00 0.311086D-01
           17
                  18
                          19
                                 20
    16
16 0.00000D+00
17 0.00000D+00 0.00000D+00
18 0.00000D+00 0.00000D+00 0.00000D+00
19 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
20 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12
21 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.748150D+01
22 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
23 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.638367D+01
24 0.000000D+00 0.000000D+00 0.000000D+00 0.00000D+00 0.955258D+00
25 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
26 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
27 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
29 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
30 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.100054D-01
31 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
32 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.168946D-02
33 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.942408D-03
34 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.853703D-02
35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
36 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.283413D-02
37 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.292086D-03
46 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.290578D-03
48 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.941213D-04
50 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.191685D-03
51 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.367218D-03
    21
           22
                  23
                          24
                                 25
21 0.385007D+12
22 0.00000D+00 0.00000D+00
23 0.116536D+02 0.00000D+00 0.385007D+12
24 0.620044D+01 0.000000D+00 -0.846732D+01 0.385007D+12
25 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
26 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
27 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
28 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
29 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
```

46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 47 0.00000D+00 -0.387348D+00 0.000000D+00 0.00000D+00 0.498423D-01

```
30 0.294068D-01 0.000000D+00 -0.251421D-01 0.222130D-01 0.000000D+00
31 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
32 0.938784D-03 0.000000D+00 0.923682D-03 -0.720655D-03 0.000000D+00
33 -0.133582D-02 0.000000D+00 0.512310D-03 0.167094D-02 0.000000D+00
34 -0.601258D-02 0.000000D+00 -0.257432D-04 0.641178D-03 0.000000D+00
35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
36 -0.451014D-02 0.000000D+00 0.921734D-02 0.308608D-02 0.000000D+00
37 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.229231D-04 0.000000D+00 -0.106410D-03 -0.827058D-05 0.000000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47-0.505888D-04 0.000000D+00 0.374321D-03 0.120753D-02 0.000000D+00
48 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 -0.110781D-04 0.000000D+00 0.607043D-04 0.893252D-04 0.000000D+00
50 0.177321D-04 0.000000D+00 0.555760D-04 0.329599D-03 0.000000D+00
51 0.332069D-04 0.000000D+00 0.210575D-05 0.304484D-03 0.000000D+00
           27
    26
                   28
                          29
                                  30
26 0.00000D+00
27 0.00000D+00 0.00000D+00
28 0.00000D+00 0.00000D+00 0.00000D+00
29 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
30 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12
31 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
32 0.000000D+00 0.000000D+00 0.000000D+00 0.00000D+00 0.593364D+00
33 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.862782D+01
34 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.122358D+01
35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
36 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.741845D+00
37 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.112382D-02
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.205672D-02
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.652379D-03
50 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 -0.361157D-03
51 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.816757D-03
    31
           32
                   33
                          34
                                  35
31 0.00000D+00
32 0.00000D+00 0.385007D+12
33 0.00000D+00 0.108942D+01 0.385007D+12
```

```
34 0.00000D+00 0.857654D+01 0.845181D+01 0.385007D+12
35 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
36 0.00000D+00 0.171302D+00 0.757629D-01 -0.864912D-01 0.00000D+00
37 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
38 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
39 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.00000D+00 -0.691348D-03 -0.532684D-03 0.903175D-03 0.00000D+00
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.000000D+00 -0.856007D-03 -0.696059D-03 0.103041D-02 0.000000D+00
48 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.00000D+00 0.110755D-02 0.592726D-03 -0.114517D-02 0.00000D+00
50 0.000000D+00 0.977992D-03 0.381569D-03 -0.842073D-03 0.000000D+00
51 0.000000D+00 -0.148430D-02 -0.712125D-03 0.131299D-02 0.000000D+00
    36
           37
                   38
                          39
                                 40
36 0.385007D+12
37 0.00000D+00 0.00000D+00
38 0.00000D+00 0.00000D+00 0.00000D+00
39 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
40 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
41 0.000000D+00 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
42 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
43 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45-0.196894D-04 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
46 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 -0.128644D-03 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
48 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49-0.312275D-04 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
50 -0.129662D-03 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
51 0.125305D-03 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00
    41
           42
                   43
                          44
                                 45
41 0.00000D+00
42 0.00000D+00 0.00000D+00
43 0.00000D+00 0.00000D+00 0.00000D+00
44 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
45 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.385007D+12
46 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
47 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.195875D+01
48 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
49 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.839360D+01
50 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.585367D+00
51 0.000000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.120281D+01
    46
                   48
                          49
           47
                                 50
46 0.00000D+00
47 0.00000D+00 0.385007D+12
48 0.00000D+00 0.00000D+00 0.00000D+00
49 0.000000D+00 0.629729D+00 0.000000D+00 0.385007D+12
```

50 0.000000D+00 0.882030D+01 0.000000D+00 0.141821D+01 0.385007D+12

```
51 0.000000D+00 0.116232D+01 0.000000D+00 0.828814D+01 0.818140D+01
51
51 0.385007D+12
```

<u>18c</u>

A (Conformer 1)

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies=	-2004.673046

Center	Ato	omic A	Atomic	Coordinate	es (Angstroms)
Number	IN	umber	туре	X Y	Z
1	6	0	-1.655430	1.504604	-0.520464
2	6	0	-4.188843	2.727035	-0.656605
3	6	0	-2.823593	0.732265	-0.339570
4	6	0	-1.788634	2.881736	-0.759567
5	6	0	-3.035468	3.493809	-0.828329
6	6	0	-4.075109	1.363244	-0.415718
7	1	0	-0.891837	3.478903	-0.893810
8	1	0	-3.105384	4.561076	-1.015718
9	1	0	-4.965647	0.759847	-0.273907
10	1	0	-5.170080	3.188745	-0.708613
11	6	0	-0.245892	0.942740	-0.415557
12	6	0	0.121607	-0.180031	-1.383335
13	6	0	0.643179	1.206688	-1.632296
14	1	0	-0.646746	-0.649267	-1.986936
15	1	0	0.282654	1.848625	-2.426713
16	6	0	0.341468	1.016947	0.981409
17	6	0	1.332988	1.249156	3.601544
18	6	0	1.016356	2.175522	1.390575
19	6	0	0.172009	-0.025223	1.902873
20	6	0	0.665418	0.090708	3.203356
21	6	0	1.509627	2.290608	2.689725
22	1	0	1.172922	2.983678	0.682730
23	1	0	-0.339798	-0.936182	1.611136
24	1	0	0.524709	-0.727225	3.903630
25	1	0	2.036792	3.192540	2.986036
26	1	0	1.717211	1.337857	4.613329
27	6	0	-2.774120	-0.761040	-0.092420
28	16	0	-3.628011	-1.284912	1.490307
29	6	0	-4.403319	-2.825125	0.830099
30	6	0	-3.721581	-3.217836	-0.481403
31	16	0	-3.532135	-1.701647	-1.486613
32	1	0	-1.745548	-1.096645	-0.004788
33	1	0	-4.284673	-3.610532	1.582174
34	1	0	-5.468724	-2.643997	0.671856
35	1	0	-4.330800	-3.924557	-1.052266
36	1	0	-2.740512	-3.666141	-0.300543
37	6	0	1.309627	-1.019934	-1.008346
38	6	0	2.129975	1.136816	-1.427954

39	7	0	2.442791	-0.178654	-1.016692
40	8	0	1.310147	-2.204250	-0.748773
41	8	0	2.931267	2.029426	-1.602028
42	6	0	3.751992	-0.602388	-0.626350
43	6	0	6.303428	-1.430804	0.137461
44	6	0	4.859906	-0.239262	-1.398174
45	6	0	3.914558	-1.377038	0.526632
46	6	0	5.191247	-1.792848	0.899257
47	6	0	6.133217	-0.651229	-1.006988
48	1	0	4.724385	0.368966	-2.283275
49	1	0	3.050104	-1.651006	1.118164
50	1	0	5.315137	-2.397851	1.792375
51	1	0	6.993019	-0.363496	-1.604441
52	1	0	7.296617	-1.753934	0.434608

A (Conformer 2)

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -2004.672525

Center Number	Ato N	omic <i>i</i> umber	Atomic Type	Coordinate X Y	 es (Angstroms) Z
1	6	0	1.651554	1.503822	-0.500488
2	6	0	4.174275	2.751882	-0.611021
3	6	0	2.826236	0.738896	-0.332154
4	6	0	1.773354	2.886424	-0.715697
5	6	0	3.014027	3.511520	-0.769036
6	6	0	4.072537	1.382282	-0.401907
7	1	0	0.871323	3.477121	-0.843183
8	1	0	3.074325	4.582460	-0.937849
9	1	0	4.969082	0.781502	-0.289829
10	1	0	5.151510	3.222779	-0.655287
11	6	0	0.244203	0.934625	-0.407449
12	6	0	-0.634976	1.195033	-1.632647
13	6	0	-0.115447	-0.190828	-1.374870
14	1	0	-0.266381	1.834678	-2.425218
15	1	0	0.653846	-0.663457	-1.974368
16	6	0	-0.356061	1.008723	0.983883
17	6	0	-1.374016	1.233241	3.594196
18	6	0	-0.176186	-0.026562	1.910733
19	6	0	-1.053849	2.157253	1.382660
20	6	0	-1.560206	2.268418	2.677188
21	6	0	-0.683013	0.085003	3.206235
22	1	0	0.356119	-0.927460	1.625107
23	1	0	-1.218709	2.959918	0.670496
24	1	0	-2.105213	3.162244	2.965655
25	1	0	-0.534363	-0.727599	3.911100
26	1	0	-1.768757	1.318825	4.602201
27	6	0	2.795252	-0.756379	-0.096506

28	16	0	3.597293	-1.700619	-1.503916
29	6	0	4.376774	-3.022490	-0.477780
30	6	0	3.774817	-2.998230	0.928756
31	16	0	3.634816	-1.254738	1.466097
32	1	0	1.770977	-1.112171	-0.036259
33	1	0	4.193257	-3.985623	-0.962390
34	1	0	5.453311	-2.842324	-0.441415
35	1	0	4.416617	-3.518658	1.645477
36	1	0	2.786906	-3.467755	0.939959
37	6	0	-2.123593	1.125809	-1.442827
38	6	0	-1.307109	-1.028894	-1.004520
39	7	0	-2.440087	-0.187608	-1.028555
40	8	0	-2.923318	2.017526	-1.628601
41	8	0	-1.310310	-2.211012	-0.736306
42	6	0	-3.752697	-0.608878	-0.647079
43	6	0	-6.310953	-1.431731	0.099436
44	6	0	-3.925808	-1.374447	0.510399
45	6	0	-4.853385	-0.251959	-1.431962
46	6	0	-6.130239	-0.661078	-1.049441
47	6	0	-5.205864	-1.787587	0.874366
48	1	0	-3.066805	-1.643496	1.112078
49	1	0	-4.709627	0.349265	-2.320569
50	1	0	-6.984479	-0.378206	-1.657104
51	1	0	-5.338002	-2.385621	1.770993
52	1	0	-7.306815	-1.752758	0.389827

B (Conformer 1)

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -2004.669255

Center	Ato	omic A	tomic	Coordinate	es (Angstroms)
Number	Ν	umber	Туре	X Y	Z
1	6	0	-2.033234	-1.948922	-0.314231
2	6	0	-4.638316	-3.008403	-0.386096
3	6	0	-2.461874	-2.865614	0.657885
4	6	0	-2.932594	-1.566874	-1.315890
5	6	0	-4.226403	-2.092399	-1.351596
6	6	0	-3.750136	-3.393215	0.621170
7	1	0	-2.634305	-0.846717	-2.071054
8	1	0	-4.909904	-1.778270	-2.134608
9	1	0	-4.061087	-4.105431	1.379792
10	1	0	-5.643547	-3.418029	-0.414254
11	6	0	-0.619501	-1.395098	-0.237074
12	6	0	0.455425	-2.379203	-0.711103
13	6	0	0.086541	-1.206095	-1.576290
14	1	0	0.168093	-3.400771	-0.928662
15	1	0	-0.472779	-1.294092	-2.499315
16	6	0	-0.370482	-0.509911	0.971941

17	6	0	-0.036643	0.934276	3.364227
18	6	0	0.204310	-1.103615	2.107954
19	6	0	-0.782822	0.840771	1.042805
20	6	0	-0.606798	1.536522	2.248443
21	6	0	0.377080	-0.395301	3.292983
22	1	0	0.535631	-2.135252	2.053178
23	1	0	-0.922584	2.572996	2.297065
24	1	0	0.832697	-0.880025	4.150966
25	1	0	0.087159	1.501597	4.281738
26	6	0	1.874009	-2.147025	-0.274463
27	6	0	1.291853	-0.309119	-1.604706
28	7	0	2.277741	-0.891417	-0.777873
29	8	0	2.566789	-2.905012	0.371144
30	8	0	1.416351	0.717549	-2.235529
31	6	0	3.540111	-0.279783	-0.494943
32	6	0	5.996915	0.920535	0.059880
33	6	0	3.596590	1.088558	-0.209456
34	6	0	4.707639	-1.049798	-0.505376
35	6	0	5.931006	-0.444429	-0.220521
36	6	0	4.827580	1.682630	0.061166
37	1	0	2.689745	1.680110	-0.210219
38	1	0	4.653500	-2.109362	-0.718338
39	1	0	6.835273	-1.045555	-0.223467
40	1	0	4.868744	2.745800	0.277666
41	1	0	6.953057	1.387862	0.275627
42	1	0	-1.779473	-3.164995	1.447514
43	6	0	-1.430881	1.547332	-0.133797
44	1	0	-1.317946	0.951275	-1.035639
45	16	0	-3.284226	1.794102	0.078059
46	16	0	-0.651773	3.196238	-0.452126
47	6	0	-3.307721	3.618583	-0.135314
48	1	0	-4.282948	3.876726	-0.560055
49	1	0	-3.200524	4.115171	0.832225
50	6	0	-2.169710	4.003697	-1.072927
51	1	0	-2.378511	3.689832	-2.099276
52	1	0	-1.985260	5.082712	-1.063629

B (Conformer 2)

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -2004.671956

Center Number	Ato N	omic A umber	tomic Type	Сооі Х	rdinato Y	es (Angstroi Z	ms)
1	6	0	2.072066	-1.95	9067	-0.275817	
2	6	0	4.684136	-3.00	4273	-0.301373	
3	6	0	2.962133	-1.63	3930	-1.305411	
4	6	0	2.514287	-2.81	0657	0.748161	
5	6	0	3.806010	-3.33	0983	0.734682	

6	6	0	4.258800	-2.152705	-1.318730
7	1	0	1.839837	-3.064575	1.560203
8	1	0	4.127324	-3.992286	1.533991
9	1	0	4.934662	-1.883699	-2.124901
10	1	0	5.691944	-3.408362	-0.311734
11	6	0	0.654442	-1.414635	-0.222004
12	6	0	-0.049867	-1.249480	-1.564465
13	6	0	-0.412462	-2.415072	-0.687421
14	1	0	0.505880	-1.342409	-2.489098
15	1	0	-0.113085	-3.436006	-0.890875
16	6	0	0.380387	-0.497203	0.956617
17	6	0	-0.065171	1.048734	3.264831
18	6	0	-0.214961	-1.053089	2.101860
19	6	0	0.765603	0.861865	0.978624
20	6	0	0.528116	1.610285	2.140915
21	6	0	-0.439996	-0.295096	3.246078
22	1	0	-0.523535	-2.093159	2.083989
23	1	0	0.819621	2.655208	2.152385
24	1	0	-0.909819	-0.750162	4.112566
25	1	0	-0.236126	1.655897	4.148621
26	6	0	-1.255855	-0.351949	-1.589288
27	6	0	-1.835013	-2.191720	-0.260607
28	7	0	-2.243004	-0.939885	-0.771769
29	8	0	-1.376080	0.684781	-2.205927
30	8	0	-2.528554	-2.949777	0.383487
31	6	0	-3.505262	-0.329652	-0.484921
32	6	0	-5.962577	0.863077	0.077337
33	6	0	-4.674388	-1.095493	-0.527718
34	6	0	-3.558790	1.030234	-0.161936
35	6	0	-4.790855	1.620837	0.111950
36	6	0	-5.898824	-0.494204	-0.238960
37	1	0	-4.620569	-2.149138	-0.769457
38	1	0	-2.649295	1.617473	-0.132810
39	1	0	-4.831042	2.677707	0.357513
40	1	0	-6.805089	-1.091635	-0.267083
41	1	0	-6.919365	1.327885	0.295723
42	1	0	2.654112	-0.963365	-2.101404
43	6	0	1.443266	1.531203	-0.203812
44	1	0	1.426286	0.872526	-1.067811
45	16	0	0.613459	3.097465	-0.795384
46	16	0	3.220861	1.916988	0.200006
47	6	0	1.959799	4.256637	-0.342808
48	1	0	1.835683	5.142270	-0.974027
49	1	0	1.885625	4.557708	0.705720
50	6	0	3.283971	3.555580	-0.616909
51	1	0	3.453863	3.444743	-1.690925
52	1	0	4.128094	4.095845	-0.175884

<u>18c</u>

--

A

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -1303.366173

 Center	Atc	mic A	tomic	Coordinate	 es (Angstroms)
Number	N	umber	Type	X Y	Z
			, I ⁻ -		
1	1	0	0.771008	3.488874	-0.727764
2	6	0	1.619969	2.846899	-0.521371
3	6	0	3.807210	1.216898	0.009152
4	6	0	1.423573	1.462318	-0.414917
5	6	0	2.884993	3.407423	-0.361838
6	6	0	3.985358	2.592463	-0.088808
7	6	0	2.539821	0.651777	-0.162567
8	1	0	3.010081	4.482834	-0.449040
9	1	0	4.972492	3.025610	0.040554
10	1	0	4.648688	0.563163	0.210606
11	6	0	2.412528	-0.852570	-0.076438
12	6	0	0.053501	0.828974	-0.652628
13	1	0	0.016470	0.569799	-1.717886
14	8	0	1.117267	-1.334723	-0.375236
15	6	0	-0.034557	-0.575986	0.067434
16	8	0	3.273176	-1.486847	-0.986591
17	8	0	2.826859	-1.291303	1.204570
18	6	0	3.718330	-2.718561	-0.401846
19	1	0	3.324795	-3.570754	-0.964770
20	1	0	4.812327	-2.736787	-0.443293
21	6	0	3.175627	-2.668184	1.041183
22	1	0	2.292494	-3.304476	1.164034
23	1	0	3.917742	-2.921119	1.801154
24	6	0	-1.234911	-1.355538	-0.456874
25	6	0	-3.473967	-2.701630	-1.500213
26	6	0	-1.241805	-1.804431	-1.783339
27	6	0	-2.353574	-1.614883	0.352197
28	6	0	-3.468922	-2.279290	-0.177228
29	6	0	-2.349854	-2.472198	-2.300557
30	1	0	-0.364005	-1.649395	-2.401361
31	1	0	-4.311768	-2.456298	0.482500
32	1	0	-2.335035	-2.818415	-3.330089
33	1	0	-4.338658	-3.217350	-1.907048
34	6	0	-0.042928	-0.430628	1.571603
35	1	0	0.866959	-0.044706	2.018216
36	6	0	-1.097779	-0.718326	2.344081
37	1	0	-1.075856	-0.564667	3.419080
38	6	0	-2.358979	-1.255475	1.799062
39	8	0	-3.339366	-1.435401	2.514667
40	6	0	-1.138122	1.734749	-0.378994
41	6	0	-3.392259	3.363954	0.076388
42	6	0	-1.277574	2.451793	0.819399
43	6	0	-2.146928	1.856569	-1.343969
44	6	0	-3.264860	2.661248	-1.121238
45	6	0	-2.392928	3.257549	1.045205

46	1	0	-0.503771	2.389251	1.577218
47	1	0	-2.058384	1.308738	-2.278045
48	1	0	-4.033603	2.738005	-1.884586
49	1	0	-2.480527	3.802963	1.980346
50	1	0	-4.260708	3.991449	0.253598

B

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -1303.365951

Center	Ato	omic	Atomic	Coordinate	es (Angstroms)
Number	N	lumber	Туре	X Y	Z
1	6	0	-1.554749	0.575017	-1.225573
2	6	0	-4.325483	0.584840	-1.687113
3	6	0	-2.419763	-0.113671	-0.368808
4	6	0	-2.095523	1.269592	-2.316163
5	6	0	-3.467189	1.276409	-2.547896
6	6	0	-3.799945	-0.108914	-0.603197
7	1	0	-1.428159	1.809031	-2.982742
8	1	0	-3.868755	1.817009	-3.399953
9	1	0	-4.450064	-0.655106	0.071398
10	1	0	-5.396615	0.586581	-1.864380
11	6	0	-0.055358	0.595027	-0.969617
12	1	0	0.456010	0.545613	-1.936294
13	6	0	-1.888888	-0.885303	0.819993
14	8	0	-0.483941	-0.818817	0.976915
15	6	0	0.345920	-0.729249	-0.198201
16	8	0	-2.433186	-0.394278	2.020523
17	8	0	-2.311707	-2.232173	0.737786
18	6	0	-2.590194	-1.495156	2.927357
19	1	0	-1.920187	-1.380261	3.785059
20	1	0	-3.626683	-1.497714	3.279978
21	6	0	-2.245553	-2.734115	2.075263
22	1	0	-1.239791	-3.108576	2.294021
23	1	0	-2.967923	-3.547647	2.166649
24	6	0	0.374990	1.897491	-0.299602
25	6	0	1.203489	4.323303	0.862955
26	6	0	1.463185	2.609570	-0.820384
27	6	0	-0.299789	2.424028	0.812047
28	6	0	0.116209	3.623489	1.389713
29	6	0	1.876272	3.812315	-0.246749
30	1	0	1.996553	2.215222	-1.681591
31	1	0	-1.148760	1.896271	1.233090
32	1	0	-0.416889	4.015325	2.251353
33	1	0	2.721447	4.348324	-0.668912
34	1	0	1.520005	5.260701	1.311091
35	6	0	1.785268	-0.679991	0.297485
36	6	0	4.466376	-0.455171	1.122936

37	6	0	2.109416	-0.019025	1.487276
38	6	0	2.820205	-1.259347	-0.460461
39	6	0	4.154272	-1.131493	-0.049736
40	6	0	3.437145	0.087135	1.898025
41	1	0	1.317457	0.407772	2.088921
42	1	0	4.919756	-1.592646	-0.664936
43	1	0	3.668697	0.599466	2.827397
44	1	0	5.500031	-0.361603	1.442462
45	6	0	0.119694	-1.892821	-1.147312
46	1	0	-0.908396	-2.200281	-1.300885
47	6	0	1.105958	-2.471180	-1.844236
48	1	0	0.908502	-3.244873	-2.580382
49	6	0	2.523664	-2.108129	-1.650111
50	8	0	3.404584	-2.539795	-2.387560

<u>18j</u>

A

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -1450.876562

Center Number	Atc N	omic A umber	tomic Type	Coordinate X Y	es (Angstroms) Z
1	1	0	-0.323028	3.366759	-1.134171
2	6	0	0.667158	2.953352	-0.980879
3	6	0	3.214513	1.919594	-0.591333
4	6	0	0.805736	1.590623	-0.679408
5	6	0	1.779792	3.785183	-1.080145
6	6	0	3.061794	3.271360	-0.877938
7	6	0	2.098233	1.083233	-0.503609
8	1	0	1.643043	4.837148	-1.313462
9	1	0	3.931972	3.916746	-0.948757
10	1	0	4.200384	1.494191	-0.439116
11	6	0	2.327796	-0.379855	-0.224422
12	8	0	1.140850	-1.162274	-0.293427
13	6	0	-0.130560	-0.675375	0.130577
14	6	0	-0.416662	0.666262	-0.645838
15	8	0	3.186444	-0.953476	-1.179696
16	8	0	2.966034	-0.549916	1.016522
17	6	0	3.587784	-1.835402	0.954441
18	1	0	2.872697	-2.614532	1.238465
19	1	0	4.429749	-1.837160	1.649326
20	6	0	3.998441	-1.939641	-0.525337
21	1	0	5.050118	-1.681678	-0.690656
22	1	0	3.803220	-2.930044	-0.948131
23	6	0	-1.133871	-1.773561	-0.287252
24	6	0	-2.929738	-3.759551	-1.173656
25	6	0	-0.706141	-2.803702	-1.137619

26	6	0	-2.482412	-1.749321	0.102813
27	6	0	-3.366953	-2.735520	-0.335127
28	6	0	-1.594888	-3.786192	-1.574118
29	1	0	0.327005	-2.831686	-1.456365
30	1	0	-2.853956	-0.968368	0.749825
31	1	0	-4.404141	-2.696325	-0.015212
32	1	0	-1.236891	-4.574655	-2.230018
33	1	0	-3.621256	-4.525858	-1.511767
34	6	0	-0.085703	-0.542470	1.683601
35	9	0	-1.305524	-0.379988	2.244169
36	9	0	0.452137	-1.647646	2.229693
37	9	0	0.651503	0.517803	2.081550
38	1	0	-0.538248	0.299709	-1.672952
39	6	0	-1.714397	1.387095	-0.294459
40	6	0	-4.125730	2.733174	0.263592
41	6	0	-2.800153	1.316814	-1.177160
42	6	0	-1.853333	2.157961	0.870542
43	6	0	-3.047950	2.820173	1.147674
44	6	0	-3.997173	1.980810	-0.903041
45	1	0	-2.708094	0.731994	-2.088177
46	1	0	-1.021710	2.244604	1.560395
47	1	0	-3.135311	3.409219	2.056041
48	1	0	-4.824379	1.910602	-1.603356
49	1	0	-5.054341	3.252871	0.480799

B

G16 optfreq B3LYP/6-31G(d,p) gas-phase

Sum of electronic and thermal Free Energies= -1450.881990

_____ Center Atomic Atomic Coordinates (Angstroms) X Y Z Number Number Type -----1 1 0 -4.246487 0.385193 0.724374

 1
 1
 0
 -4.240437
 0.303133
 0.724374

 2
 6
 0
 -3.560238
 0.953540
 0.106221

 3
 6
 0
 -3.999398
 2.067618
 -0.599793

 4
 1
 0
 -5.036811
 2.380578
 -0.532469

 6
 0
 -3.098302
 2.778012
 -1.398439

 1
 0
 -3.432299
 3.646908
 -1.957888

 6
 0
 -1.770505
 2.371154
 -1.479594
 5 6 7 0 -1.068946 2.927651 -2.095033 8 1 9 6 0 -1.317561 1.251043 -0.770604 10 6 0 0.152530 0.853658 -0.841271 0 -2.224540 0.546168 0.023760 11 6 12 6 0 0.341444 -0.655569 -0.489889 8 0 -0.407473 -0.983561 0.675684 13 14 6 0 -1.795633 -0.677974 0.795104 0 -2.011329 -0.504114 2.175482 15 8 8 0 -2.570470 -1.790034 0.425296 16 17 6 0 1.801474 -1.029345 -0.181927

6	0	2.834110	-0.686061	-1.065780
1	0	2.616265	-0.143637	-1.977834
6	0	4.152964	-1.042022	-0.790740
1	0	4.938038	-0.763831	-1.487671
6	0	4.463884	-1.748783	0.371253
1	0	5.492181	-2.024746	0.585686
6	0	3.442504	-2.095202	1.253843
1	0	3.670193	-2.644834	2.162674
6	0	2.121030	-1.740649	0.979246
1	0	1.333001	-2.007187	1.670789
6	0	-0.129088	-1.558295	-1.673513
6	0	0.987902	1.802230	0.020603
6	0	1.914127	2.655110	-0.591005
1	0	2.054836	2.608704	-1.668235
6	0	2.661684	3.563149	0.160630
1	0	3.374405	4.215820	-0.335414
6	0	2.493139	3.627992	1.542807
1	0	3.072819	4.332090	2.132589
6	0	1.570271	2.782854	2.162676
1	0	1.429580	2.828488	3.238856
6	0	0.818499	1.881241	1.410823
1	0	0.099201	1.238797	1.907110
1	0	0.482359	0.982942	-1.876979
6	0	-2.363099	-1.775718	2.740459
6	0	-2.474407	-2.707141	1.517189
1	0	-1.594764	-2.102330	3.448179
1	0	-3.312963	-1.659727	3.272633
1	0	-1.588373	-3.340931	1.402465
1	0	-3.371708	-3.328973	1.515048
9	0	-0.042710	-2.857696	-1.341238
9	0	-1.395090	-1.318680	-2.061503
9	0	0.645235	-1.358220	-2.769805
	6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

References:

1 M. J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. HratchianJ.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K. N.; Kudin, V. N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

2 (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.

3 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

4 (a) K. Fukui, *Acc. Chem. Res.* **1981**, *14*, 363–368. (b) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. A. 1990, 94, 5523–5527. (c) S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, K. Morokuma, K. *Int. J. Quantum Chem.* **2015**, *115*, 258–269.

5 (a) T. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, *Chem. Rev.* **2015**, *115*, 9532-9586 (b) S. Ahn, M. Hong, M. Sundararajan, D. H. Ess, M. H. Baik, *Chem. Rev.* **2019**, *119*, 6509-6560 (c) C. J. Laconsay, D. J. Tantillo, *Synthesis* **2021**, *53*, 3639-3652.

6 M. Álvarez-Moreno, C. De Graaf, N. López, F. Maseras, J. M. Poblet, C. Bo, J. Chem. Inf. Model. 2015, 55, 95-103

- 7 Spartan'18 Wavefunction, Inc. Irvine, CA
- 8 T. Bally, P. R. Rablen, J. Org. Chem. 2011, 76 (12), 4818–4830.
- 9 M. W. Lodewyk, M. R. Siebert, D. J. Tantillo, Chem. Rev. 2011, 112 (3), 1839–1862.

X-ray Structure Data

CCDC 2087127

Table 1. Crystal data and structure refinement for $[C_{27}H_{23}NO_4]$.

Identification code	JF2923FMI (MG-3-185-1-2)
Empirical formula	C27 H23 N O4
Formula weight	425.46
Temperature	90(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	Pna21
Unit cell dimensions	a = 9.6342(6) Å $\langle = 90^{\circ}.$
	$b = 21.7612(13) \text{ Å}$ $\mathbb{R} = 90^{\circ}.$
	$c = 9.6649(6) \text{ Å}$ $\odot = 90^{\circ}.$
Volume	2026.3(2) Å ³
Z	4
Density (calculated)	1.395 Mg/m ³

Absorption coefficient	0.756 mm ⁻¹
F(000)	896
Crystal size	0.547 x 0.446 x 0.106 mm ³
Crystal color and habit	Colorless Plate
Diffractometer	Bruker APEX-II CCD
Theta range for data collection	4.063 to 69.555°.
Index ranges	-11<=h<=11, -26<=k<=26, -11<=l<=11
Reflections collected	9041
Independent reflections	3667 [R(int) = 0.0189]
Observed reflections (I > 2sigma(I))	3659
Completeness to theta = 67.679°	99.6 %
Absorption correction	Semi-empirical from equivalents
Absorption correction Max. and min. transmission	Semi-empirical from equivalents 0.8184 and 0.6917
Absorption correction Max. and min. transmission Solution method	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014)
Absorption correction Max. and min. transmission Solution method Refinement method	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382 1.072
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382 1.072 R1 = 0.0297, wR2 = 0.0776
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382 1.072 R1 = 0.0297, wR2 = 0.0776 R1 = 0.0297, wR2 = 0.0776
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameters	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382 1.072 R1 = 0.0297, wR2 = 0.0776 R1 = 0.0297, wR2 = 0.0776 Flack = 0.04(10), Parson's = 0.12(3), Hooft = 0.06(7)
Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameters Extinction coefficient	Semi-empirical from equivalents 0.8184 and 0.6917 SHELXT (Sheldrick, 2014) SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F ² 3667 / 7 / 382 1.072 R1 = 0.0297, wR2 = 0.0776 R1 = 0.0297, wR2 = 0.0776 Flack = 0.04(10), Parson's = 0.12(3), Hooft = 0.06(7) 0.0036(5)

Table 2. Atomic	coordinates (x 10^4) and equivalent isotropic displacement parameters (Å ² x 10^3)	
for JF2923FMI.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	

	Х	У	Z	U(eq)
C(1)	4508(2)	5792(1)	6564(2)	16(1)
N(1)	3178(2)	5959(1)	6143(2)	16(1)
O(1)	4974(2)	5890(1)	7702(2)	22(1)
C(2)	5194(2)	5449(1)	5371(2)	15(1)
C(3)	4140(2)	5476(1)	4182(2)	15(1)
C(4)	2829(2)	5726(1)	4837(2)	16(1)
O(4)	1684(2)	5741(1)	4338(2)	21(1)
C(5)	6702(2)	5656(1)	5092(2)	15(1)
O(5)	6956(2)	6268(1)	5554(2)	17(1)
C(6)	7057(2)	5641(1)	3553(2)	15(1)

O(6)	7578(2)	5265(1)	5884(2)	18(1)
C(7)	6065(2)	5792(1)	2557(2)	14(1)
C(8)	4537(2)	5871(1)	2898(2)	15(1)
C(9)	8435(2)	5546(1)	3153(2)	18(1)
C(10)	8835(2)	5613(1)	1783(2)	19(1)
C(11)	7861(2)	5782(1)	794(2)	19(1)
C(12)	6489(2)	5869(1)	1180(2)	16(1)
C(13)	2268(2)	6344(1)	6927(2)	16(1)
C(14)	1895(2)	6911(1)	6373(2)	19(1)
C(15)	1034(2)	7301(1)	7112(2)	20(1)
C(16)	531(2)	7134(1)	8419(2)	18(1)
C(17)	926(2)	6566(1)	8953(2)	18(1)
C(18)	1788(2)	6170(1)	8228(2)	18(1)
C(19)	-423(3)	7555(1)	9198(2)	26(1)
C(20)	7889(2)	6255(1)	6718(3)	25(1)
C(21)	8588(2)	5636(1)	6588(2)	24(1)
C(22)	4082(2)	6542(1)	2943(2)	15(1)
C(23)	4771(2)	6993(1)	3706(2)	18(1)
C(24)	4309(2)	7600(1)	3668(2)	20(1)
C(25)	3167(2)	7761(1)	2886(2)	21(1)
C(26)	2469(2)	7316(1)	2132(2)	22(1)
C(27)	2927(2)	6711(1)	2162(2)	19(1)

Table 3. Bond lengths [Å] and angles [°] for JF2923FMI.

C(1)-O(1)	1.208(3)
C(1)-N(1)	1.392(3)
C(1)-C(2)	1.524(3)
N(1)-C(4)	1.401(3)
N(1)-C(13)	1.429(3)
C(2)-C(3)	1.534(3)
C(2)-C(5)	1.545(3)
C(2)-H(2)	1.01(3)
C(3)-C(4)	1.515(3)
C(3)-C(8)	1.557(3)

C(3)-H(3)	1.00(3)
C(4)-O(4)	1.204(3)
C(5)-O(6)	1.421(2)
C(5)-O(5)	1.427(2)
C(5)-C(6)	1.527(3)
O(5)-C(20)	1.440(3)
C(6)-C(7)	1.395(3)
C(6)-C(9)	1.398(3)
O(6)-C(21)	1.436(3)
C(7)-C(12)	1.402(3)
C(7)-C(8)	1.518(3)
C(8)-C(22)	1.527(3)
C(8)-H(8)	0.98(3)
C(9)-C(10)	1.387(3)
C(9)-H(9)	0.98(3)
C(10)-C(11)	1.389(3)
C(10)-H(10)	0.97(3)
C(11)-C(12)	1.386(3)
C(11)-H(11)	0.95(3)
C(12)-H(12)	0.97(3)
C(13)-C(18)	1.393(3)
C(13)-C(14)	1.393(3)
C(14)-C(15)	1.384(3)
C(14)-H(14)	0.95(3)
C(15)-C(16)	1.400(3)
C(15)-H(15)	0.97(3)
C(16)-C(17)	1.394(3)
C(16)-C(19)	1.500(3)
C(17)-C(18)	1.387(3)
C(17)-H(17)	0.95(3)
C(18)-H(18)	0.95(3)
C(19)-H(19A)	0.96(2)
C(19)-H(19B)	0.95(2)
С(19)-Н(19С)	0.95(2)
C(20)-C(21)	1.511(3)
C(20)-H(20A)	1.03(3)

C(20)-H(20B)	1.00(3)
C(21)-H(21A)	1.00(3)
C(21)-H(21B)	0.95(3)
C(22)-C(27)	1.394(3)
C(22)-C(23)	1.394(3)
C(23)-C(24)	1.394(3)
C(23)-H(23)	0.98(3)
C(24)-C(25)	1.381(3)
C(24)-H(24)	0.98(3)
C(25)-C(26)	1.386(3)
C(25)-H(25)	0.97(3)
C(26)-C(27)	1.389(3)
C(26)-H(26)	0.94(3)
C(27)-H(27)	1.01(3)
O(1)-C(1)-N(1)	124.2(2)
O(1)-C(1)-C(2)	127.94(19)
N(1)-C(1)-C(2)	107.82(17)
C(1)-N(1)-C(4)	112.95(17)
C(1)-N(1)-C(13)	124.22(17)
C(4)-N(1)-C(13)	122.80(16)
C(1)-C(2)-C(3)	105.12(16)
C(1)-C(2)-C(5)	113.43(17)
C(3)-C(2)-C(5)	118.71(17)
C(1)-C(2)-H(2)	105.4(15)
C(3)-C(2)-H(2)	108.2(14)
C(5)-C(2)-H(2)	105.2(14)
C(4)-C(3)-C(2)	104.65(16)
C(4)-C(3)-C(8)	109.86(16)
C(2)-C(3)-C(8)	117.09(16)
C(4)-C(3)-H(3)	107.7(15)
C(2)-C(3)-H(3)	110.2(15)
C(8)-C(3)-H(3)	107.1(15)
O(4)-C(4)-N(1)	124.88(19)
O(4)-C(4)-C(3)	127.30(19)
N(1)-C(4)-C(3)	107.80(17)

O(6)-C(5)-O(5)	106.76(15)
O(6)-C(5)-C(6)	112.31(16)
O(5)-C(5)-C(6)	106.64(16)
O(6)-C(5)-C(2)	106.87(16)
O(5)-C(5)-C(2)	112.20(16)
C(6)-C(5)-C(2)	112.02(17)
C(5)-O(5)-C(20)	109.42(15)
C(7)-C(6)-C(9)	119.68(19)
C(7)-C(6)-C(5)	120.90(18)
C(9)-C(6)-C(5)	118.99(18)
C(5)-O(6)-C(21)	108.76(15)
C(6)-C(7)-C(12)	118.91(19)
C(6)-C(7)-C(8)	122.74(18)
C(12)-C(7)-C(8)	118.35(18)
C(7)-C(8)-C(22)	113.11(16)
C(7)-C(8)-C(3)	110.45(16)
C(22)-C(8)-C(3)	115.79(16)
C(7)-C(8)-H(8)	105.0(15)
C(22)-C(8)-H(8)	105.2(14)
C(3)-C(8)-H(8)	106.4(14)
C(10)-C(9)-C(6)	120.7(2)
C(10)-C(9)-H(9)	119.6(16)
C(6)-C(9)-H(9)	119.6(15)
C(9)-C(10)-C(11)	119.82(19)
C(9)-C(10)-H(10)	117.8(16)
С(11)-С(10)-Н(10)	122.4(16)
C(12)-C(11)-C(10)	119.7(2)
С(12)-С(11)-Н(11)	121.0(17)
C(10)-C(11)-H(11)	119.3(17)
C(11)-C(12)-C(7)	121.1(2)
C(11)-C(12)-H(12)	121.3(16)
C(7)-C(12)-H(12)	117.6(16)
C(18)-C(13)-C(14)	120.16(19)
C(18)-C(13)-N(1)	121.50(18)
C(14)-C(13)-N(1)	118.31(18)
C(15)-C(14)-C(13)	119.9(2)

C(15)-C(14)-H(14)	119.7(16)
C(13)-C(14)-H(14)	120.4(16)
C(14)-C(15)-C(16)	121.0(2)
C(14)-C(15)-H(15)	122.2(16)
C(16)-C(15)-H(15)	116.8(16)
C(17)-C(16)-C(15)	117.99(19)
C(17)-C(16)-C(19)	121.51(19)
C(15)-C(16)-C(19)	120.5(2)
C(18)-C(17)-C(16)	121.8(2)
C(18)-C(17)-H(17)	119.7(16)
C(16)-C(17)-H(17)	118.4(16)
C(17)-C(18)-C(13)	119.1(2)
C(17)-C(18)-H(18)	117.4(17)
C(13)-C(18)-H(18)	123.4(17)
C(16)-C(19)-H(19A)	110(2)
C(16)-C(19)-H(19B)	115(3)
H(19A)-C(19)-H(19B)	106.0(19)
C(16)-C(19)-H(19C)	112(2)
H(19A)-C(19)-H(19C)	106.5(19)
H(19B)-C(19)-H(19C)	107(2)
O(5)-C(20)-C(21)	103.39(17)
O(5)-C(20)-H(20A)	108.9(16)
C(21)-C(20)-H(20A)	112.8(15)
O(5)-C(20)-H(20B)	106.9(16)
C(21)-C(20)-H(20B)	115.9(15)
H(20A)-C(20)-H(20B)	108(2)
O(6)-C(21)-C(20)	103.79(17)
O(6)-C(21)-H(21A)	109.8(18)
C(20)-C(21)-H(21A)	111.6(18)
O(6)-C(21)-H(21B)	107.0(18)
C(20)-C(21)-H(21B)	113.4(18)
H(21A)-C(21)-H(21B)	111(3)
C(27)-C(22)-C(23)	118.78(18)
C(27)-C(22)-C(8)	117.76(17)
C(23)-C(22)-C(8)	123.45(18)
C(24)-C(23)-C(22)	120.0(2)

C(24)-C(23)-H(23)	119.5(16)
C(22)-C(23)-H(23)	120.5(16)
C(25)-C(24)-C(23)	120.6(2)
C(25)-C(24)-H(24)	121.7(18)
C(23)-C(24)-H(24)	117.6(18)
C(24)-C(25)-C(26)	119.74(19)
C(24)-C(25)-H(25)	120.3(16)
C(26)-C(25)-H(25)	120.0(16)
C(25)-C(26)-C(27)	119.9(2)
C(25)-C(26)-H(26)	121.3(16)
C(27)-C(26)-H(26)	118.7(16)
C(26)-C(27)-C(22)	120.9(2)
C(26)-C(27)-H(27)	117.9(14)
C(22)-C(27)-H(27)	121.2(14)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	16(1)	16(1)	17(1)	4(1)	2(1)	-2(1)
N(1)	15(1)	19(1)	16(1)	0(1)	0(1)	1(1)
O(1)	20(1)	30(1)	15(1)	1(1)	-1(1)	2(1)
C(2)	16(1)	13(1)	16(1)	2(1)	1(1)	1(1)
C(3)	15(1)	13(1)	17(1)	0(1)	0(1)	-2(1)
C(4)	17(1)	15(1)	16(1)	3(1)	1(1)	-2(1)
O(4)	14(1)	29(1)	20(1)	0(1)	-1(1)	-2(1)
C(5)	15(1)	12(1)	18(1)	2(1)	-1(1)	1(1)
O(5)	19(1)	15(1)	17(1)	-1(1)	-4(1)	-2(1)
C(6)	16(1)	10(1)	18(1)	-1(1)	1(1)	-1(1)
O(6)	16(1)	18(1)	20(1)	4(1)	-4(1)	3(1)
C(7)	15(1)	9(1)	18(1)	-2(1)	1(1)	-2(1)
C(8)	16(1)	14(1)	14(1)	-1(1)	-2(1)	-1(1)
C(9)	16(1)	14(1)	22(1)	1(1)	-1(1)	0(1)
C(10)	16(1)	18(1)	24(1)	-2(1)	4(1)	-1(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for JF2923FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}]$

C(11)	23(1)	17(1)	18(1)	-1(1)	3(1)	-3(1)
C(12)	18(1)	13(1)	18(1)	-1(1)	-1(1)	-2(1)
C(13)	13(1)	19(1)	17(1)	-1(1)	0(1)	-1(1)
C(14)	18(1)	21(1)	18(1)	2(1)	1(1)	0(1)
C(15)	20(1)	19(1)	20(1)	1(1)	-2(1)	0(1)
C(16)	14(1)	23(1)	19(1)	-4(1)	-2(1)	-1(1)
C(17)	17(1)	24(1)	15(1)	0(1)	1(1)	-3(1)
C(18)	16(1)	19(1)	18(1)	2(1)	-1(1)	-1(1)
C(19)	24(1)	31(1)	22(1)	-3(1)	0(1)	7(1)
C(20)	25(1)	28(1)	22(1)	-2(1)	-8(1)	-3(1)
C(21)	21(1)	31(1)	20(1)	-1(1)	-5(1)	2(1)
C(22)	16(1)	16(1)	13(1)	1(1)	3(1)	0(1)
C(23)	17(1)	17(1)	19(1)	-1(1)	0(1)	2(1)
C(24)	24(1)	16(1)	20(1)	-1(1)	2(1)	-1(1)
C(25)	25(1)	17(1)	22(1)	3(1)	5(1)	5(1)
C(26)	20(1)	26(1)	20(1)	3(1)	-2(1)	7(1)
C(27)	18(1)	20(1)	18(1)	-1(1)	-1(1)	1(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2923FMI.

	х	у	Z	U(eq)
H(2)	5270(20)	5009(12)	5690(30)	18(6)
H(3)	3930(30)	5052(12)	3840(30)	20(6)
H(8)	4040(30)	5692(11)	2110(30)	13(6)
H(9)	9120(30)	5415(12)	3850(30)	18(6)
H(10)	9810(30)	5543(11)	1560(30)	15(6)
H(11)	8150(30)	5835(12)	-140(30)	21(6)
H(12)	5790(30)	5990(12)	510(30)	20(6)
H(14)	2220(30)	7031(12)	5490(30)	19(6)
H(15)	760(20)	7701(12)	6760(30)	18(6)
H(17)	580(30)	6447(12)	9830(30)	22(6)
H(18)	1990(30)	5782(13)	8640(30)	21(7)

H(19A)	-1350(30)	7513(16)	8850(30)	60(11)
H(19B)	-200(40)	7980(12)	9130(40)	90(16)
H(19C)	-460(30)	7458(16)	10160(30)	60(11)
H(20A)	7320(30)	6298(12)	7620(30)	21(7)
H(20B)	8510(30)	6620(13)	6630(30)	22(6)
H(21A)	9460(30)	5662(14)	6020(30)	32(8)
H(21B)	8760(30)	5446(14)	7450(30)	28(7)
H(23)	5570(30)	6886(12)	4270(30)	23(6)
H(24)	4800(30)	7901(14)	4250(30)	34(8)
H(25)	2860(30)	8187(13)	2850(30)	22(6)
H(26)	1710(30)	7416(12)	1570(30)	20(6)
H(27)	2390(30)	6396(12)	1600(30)	16(6)

Table 6. Torsion angles [°] for JF2923FMI.

O(1)-C(1)-N(1)-C(4)	-172.52(18)	
C(2)-C(1)-N(1)-C(4)	4.9(2)	
O(1)-C(1)-N(1)-C(13)	9.4(3)	
C(2)-C(1)-N(1)-C(13)	-173.11(17)	
O(1)-C(1)-C(2)-C(3)	-179.00(19)	
N(1)-C(1)-C(2)-C(3)	3.7(2)	
O(1)-C(1)-C(2)-C(5)	-47.8(3)	
N(1)-C(1)-C(2)-C(5)	134.91(17)	
C(1)-C(2)-C(3)-C(4)	-9.98(19)	
C(5)-C(2)-C(3)-C(4)	-138.11(17)	
C(1)-C(2)-C(3)-C(8)	111.90(18)	
C(5)-C(2)-C(3)-C(8)	-16.2(3)	
C(1)-N(1)-C(4)-O(4)	169.80(19)	
C(13)-N(1)-C(4)-O(4)	-12.1(3)	
C(1)-N(1)-C(4)-C(3)	-11.6(2)	
C(13)-N(1)-C(4)-C(3)	166.45(17)	
C(2)-C(3)-C(4)-O(4)	-168.4(2)	
C(8)-C(3)-C(4)-O(4)	65.1(3)	
C(2)-C(3)-C(4)-N(1)	13.10(19)	
C(8)-C(3)-C(4)-N(1)	-113.39(17)	

C(1)-C(2)-C(5)-O(6)	91.78(19)
C(3)-C(2)-C(5)-O(6)	-144.07(17)
C(1)-C(2)-C(5)-O(5)	-24.9(2)
C(3)-C(2)-C(5)-O(5)	99.2(2)
C(1)-C(2)-C(5)-C(6)	-144.82(17)
C(3)-C(2)-C(5)-C(6)	-20.7(2)
O(6)-C(5)-O(5)-C(20)	-5.3(2)
C(6)-C(5)-O(5)-C(20)	-125.55(17)
C(2)-C(5)-O(5)-C(20)	111.46(19)
O(6)-C(5)-C(6)-C(7)	155.77(17)
O(5)-C(5)-C(6)-C(7)	-87.6(2)
C(2)-C(5)-C(6)-C(7)	35.5(2)
O(6)-C(5)-C(6)-C(9)	-31.8(2)
O(5)-C(5)-C(6)-C(9)	84.8(2)
C(2)-C(5)-C(6)-C(9)	-152.07(17)
O(5)-C(5)-O(6)-C(21)	-13.3(2)
C(6)-C(5)-O(6)-C(21)	103.19(19)
C(2)-C(5)-O(6)-C(21)	-133.59(18)
C(9)-C(6)-C(7)-C(12)	-2.5(3)
C(5)-C(6)-C(7)-C(12)	169.87(17)
C(9)-C(6)-C(7)-C(8)	176.78(17)
C(5)-C(6)-C(7)-C(8)	-10.8(3)
C(6)-C(7)-C(8)-C(22)	104.3(2)
C(12)-C(7)-C(8)-C(22)	-76.4(2)
C(6)-C(7)-C(8)-C(3)	-27.3(2)
C(12)-C(7)-C(8)-C(3)	151.96(17)
C(4)-C(3)-C(8)-C(7)	158.79(16)
C(2)-C(3)-C(8)-C(7)	39.7(2)
C(4)-C(3)-C(8)-C(22)	28.6(2)
C(2)-C(3)-C(8)-C(22)	-90.5(2)
C(7)-C(6)-C(9)-C(10)	1.5(3)
C(5)-C(6)-C(9)-C(10)	-171.04(18)
C(6)-C(9)-C(10)-C(11)	0.5(3)
C(9)-C(10)-C(11)-C(12)	-1.4(3)
C(10)-C(11)-C(12)-C(7)	0.4(3)
C(6)-C(7)-C(12)-C(11)	1.6(3)

C(8)-C(7)-C(12)-C(11)	-177.72(18)
C(1)-N(1)-C(13)-C(18)	-62.7(3)
C(4)-N(1)-C(13)-C(18)	119.4(2)
C(1)-N(1)-C(13)-C(14)	115.6(2)
C(4)-N(1)-C(13)-C(14)	-62.3(3)
C(18)-C(13)-C(14)-C(15)	-0.6(3)
N(1)-C(13)-C(14)-C(15)	-178.97(18)
C(13)-C(14)-C(15)-C(16)	0.2(3)
C(14)-C(15)-C(16)-C(17)	0.1(3)
C(14)-C(15)-C(16)-C(19)	-178.8(2)
C(15)-C(16)-C(17)-C(18)	-0.1(3)
C(19)-C(16)-C(17)-C(18)	178.8(2)
C(16)-C(17)-C(18)-C(13)	-0.2(3)
C(14)-C(13)-C(18)-C(17)	0.6(3)
N(1)-C(13)-C(18)-C(17)	178.90(18)
C(5)-O(5)-C(20)-C(21)	20.5(2)
C(5)-O(6)-C(21)-C(20)	25.6(2)
O(5)-C(20)-C(21)-O(6)	-27.6(2)
C(7)-C(8)-C(22)-C(27)	128.21(19)
C(3)-C(8)-C(22)-C(27)	-102.9(2)
C(7)-C(8)-C(22)-C(23)	-51.0(3)
C(3)-C(8)-C(22)-C(23)	78.0(2)
C(27)-C(22)-C(23)-C(24)	-0.6(3)
C(8)-C(22)-C(23)-C(24)	178.53(19)
C(22)-C(23)-C(24)-C(25)	0.4(3)
C(23)-C(24)-C(25)-C(26)	0.1(3)
C(24)-C(25)-C(26)-C(27)	-0.4(3)
C(25)-C(26)-C(27)-C(22)	0.1(3)
C(23)-C(22)-C(27)-C(26)	0.4(3)
C(8)-C(22)-C(27)-C(26)	-178.80(19)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for JF2923FMI [Å and °].

C(3)-H(3)O(1)#1	1.00(3)	2.55(3)	3.408(2)	143(2)
C(20)-H(20A)O(1)	1.03(3)	2.43(3)	3.070(3)	119(2)

Symmetry transformations used to generate equivalent atoms:

#1 - x + 1, -y + 1, z - 1/2

CCDC 2087132

Table 1. Crystal data and structure refinen	nent for $[C_{34}H_{28}N_2O_{10}]$.	
Identification code	JF2954FMI_MO_190K	(MG-4-130)
Empirical formula	C34 H28 N2 O10	
Formula weight	624.58	
Temperature	190(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.3403(4) Å	⟨= 75.4010(15)°.
	b = 11.8742(4) Å	®= 71.3610(15)°.
	c = 12.8266(5) Å	© = 62.6841(13)°.
Volume	1442.67(9) Å ³	
Ζ	2	
Density (calculated)	1.438 Mg/m ³	
Absorption coefficient	0.107 mm ⁻¹	
F(000)	652	
Crystal size	0.285 x 0.246 x 0.162 mm	1 ³
Crystal color and habit	Colorless Block	
Diffractometer	Bruker Photon100 CMOS	
Theta range for data collection	2.081 to 27.500°.	
Index ranges	-14<=h<=14, -15<=k<=15, -16<=l<=16	

Reflections collected	11871
Independent reflections	6538 [R(int) = 0.0135]
Observed reflections (I > 2sigma(I))	5790
Completeness to theta = 25.242°	98.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0102 and 0.9609
Solution method	SHELXT (Sheldrick, 2014)
Refinement method	SHELXL-2017/1 (Sheldrick, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	6538 / 0 / 528
Goodness-of-fit on F ²	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0370, wR2 = 0.0974
R indices (all data)	R1 = 0.0426, $wR2 = 0.1012$
Extinction coefficient	0.0112(17)
Largest diff. peak and hole	0.370 and -0.313 e.Å ⁻³

	X	у	Z	U(eq)
C(1)	2987(1)	4220(1)	922(1)	14(1)
C(2)	1953(1)	5466(1)	1429(1)	14(1)
C(3)	1852(1)	6586(1)	500(1)	14(1)
O(3)	3176(1)	6604(1)	99(1)	16(1)
C(4)	1362(1)	6449(1)	-419(1)	15(1)
O(4)	947(1)	7774(1)	921(1)	17(1)
C(5)	594(1)	7539(1)	-1050(1)	20(1)
C(6)	169(1)	7422(1)	-1902(1)	22(1)
C(7)	485(1)	6212(1)	-2124(1)	21(1)
C(8)	1221(1)	5131(1)	-1489(1)	18(1)
C(9)	1677(1)	5233(1)	-634(1)	15(1)
C(10)	2461(1)	4004(1)	39(1)	14(1)
C(11)	3291(1)	3022(1)	1764(1)	15(1)
O(11)	4270(1)	2948(1)	2318(1)	16(1)
C(12)	4647(1)	1918(1)	3076(1)	16(1)
O(12)	4218(1)	1104(1)	3297(1)	25(1)
C(13)	5653(1)	1903(1)	3610(1)	16(1)
C(14)	6049(1)	2910(1)	3386(1)	21(1)
C(15)	7001(1)	2846(1)	3889(1)	23(1)
C(16)	7538(1)	1761(1)	4608(1)	21(1)
N(16)	8606(1)	1656(1)	5096(1)	26(1)
O(16)	8843(1)	881(1)	5924(1)	36(1)
C(17)	7147(1)	760(1)	4866(1)	21(1)
O(17)	9225(1)	2333(1)	4636(1)	38(1)
C(18)	6196(1)	837(1)	4356(1)	19(1)
C(19)	2317(1)	5697(1)	2378(1)	16(1)
O(19)	1924(1)	4903(1)	3366(1)	16(1)
C(20)	2428(1)	4792(1)	4221(1)	17(1)
O(20)	3057(1)	5377(1)	4231(1)	28(1)
C(21)	2157(1)	3818(1)	5147(1)	16(1)
C(22)	1283(1)	3278(1)	5174(1)	18(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for JF2954FMI_MO_190K. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23)	1113(1)	2337(1)	6026(1)	18(1)
C(24)	1838(1)	1958(1)	6834(1)	18(1)
N(24)	1715(1)	917(1)	7717(1)	20(1)
O(24)	1106(1)	333(1)	7626(1)	25(1)
C(25)	2710(1)	2478(1)	6834(1)	21(1)
O(25)	2246(1)	685(1)	8487(1)	33(1)
C(26)	2867(1)	3422(1)	5978(1)	21(1)
C(27)	2937(1)	7926(1)	-228(1)	19(1)
C(28)	1661(1)	8592(1)	634(1)	20(1)
C(29)	3629(1)	3051(1)	-717(1)	14(1)
C(30)	3789(1)	1794(1)	-592(1)	17(1)
C(31)	4874(1)	924(1)	-1281(1)	21(1)
C(32)	5798(1)	1307(1)	-2104(1)	22(1)
C(33)	5640(1)	2568(1)	-2248(1)	22(1)
C(34)	4569(1)	3430(1)	-1554(1)	18(1)

C(1)-C(11)	1.5243(16)
C(1)-C(2)	1.5470(16)
C(1)-C(10)	1.5558(16)
C(1)-H(1)	0.999(16)
C(2)-C(19)	1.5232(16)
C(2)-C(3)	1.5329(15)
C(2)-H(2)	0.973(15)
C(3)-O(4)	1.4269(14)
C(3)-O(3)	1.4324(14)
C(3)-C(4)	1.5247(16)
O(3)-C(27)	1.4359(14)
C(4)-C(9)	1.3971(17)
C(4)-C(5)	1.4059(17)
O(4)-C(28)	1.4437(15)
C(5)-C(6)	1.3869(19)
C(5)-H(5)	0.965(17)
C(6)-C(7)	1.394(2)
C(6)-H(6)	0.977(19)
C(7)-C(8)	1.3894(18)
C(7)-H(7)	0.980(17)
C(8)-C(9)	1.4048(17)
C(8)-H(8)	0.963(16)
C(9)-C(10)	1.5261(16)
C(10)-C(29)	1.5272(16)
C(10)-H(10)	0.986(15)
C(11)-O(11)	1.4587(14)
C(11)-H(11A)	0.991(15)
C(11)-H(11B)	0.972(17)
O(11)-C(12)	1.3452(14)
C(12)-O(12)	1.2073(16)
C(12)-C(13)	1.4990(17)
C(13)-C(18)	1.3950(17)
C(13)-C(14)	1.3962(18)
C(14)-C(15)	1.3902(19)

Table 3. Bond lengths [Å] and angles [°] for JF2954FMI_MO_190K.
C(14)-H(14)	0.957(19)
C(15)-C(16)	1.3859(19)
С(15)-Н(15)	0.968(17)
C(16)-C(17)	1.3818(19)
C(16)-N(16)	1.4772(16)
N(16)-O(17)	1.2255(16)
N(16)-O(16)	1.2286(16)
C(17)-C(18)	1.3895(18)
С(17)-Н(17)	0.950(18)
C(18)-H(18)	0.969(16)
C(19)-O(19)	1.4540(13)
С(19)-Н(19А)	0.979(15)
C(19)-H(19B)	0.971(16)
O(19)-C(20)	1.3427(15)
C(20)-O(20)	1.2075(16)
C(20)-C(21)	1.4967(16)
C(21)-C(22)	1.3948(18)
C(21)-C(26)	1.3982(17)
C(22)-C(23)	1.3884(17)
С(22)-Н(22)	0.944(18)
C(23)-C(24)	1.3863(18)
С(23)-Н(23)	0.946(17)
C(24)-C(25)	1.3863(18)
C(24)-N(24)	1.4771(15)
N(24)-O(24)	1.2254(15)
N(24)-O(25)	1.2274(15)
C(25)-C(26)	1.3900(17)
C(25)-H(25)	0.950(19)
C(26)-H(26)	0.989(18)
C(27)-C(28)	1.5195(17)
C(27)-H(27A)	0.992(16)
C(27)-H(27B)	0.958(17)
C(28)-H(28A)	1.005(17)
C(28)-H(28B)	0.987(18)
C(29)-C(30)	1.3909(17)
C(29)-C(34)	1.3991(17)

C(30)-C(31)	1.4002(18)
C(30)-H(30)	0.975(16)
C(31)-C(32)	1.3813(19)
C(31)-H(31)	0.995(17)
C(32)-C(33)	1.3931(19)
C(32)-H(32)	0.979(17)
C(33)-C(34)	1.3941(18)
C(33)-H(33)	0.961(19)
C(34)-H(34)	0.992(16)
C(11)-C(1)-C(2)	114.31(9)
C(11)-C(1)-C(10)	107.44(9)
C(2)-C(1)-C(10)	110.59(9)
C(11)-C(1)-H(1)	106.6(9)
C(2)-C(1)-H(1)	108.4(9)
C(10)-C(1)-H(1)	109.3(9)
C(19)-C(2)-C(3)	109.28(9)
C(19)-C(2)-C(1)	114.43(10)
C(3)-C(2)-C(1)	107.93(9)
C(19)-C(2)-H(2)	108.8(9)
C(3)-C(2)-H(2)	106.0(9)
C(1)-C(2)-H(2)	110.1(9)
O(4)-C(3)-O(3)	106.44(9)
O(4)-C(3)-C(4)	109.61(9)
O(3)-C(3)-C(4)	111.76(9)
O(4)-C(3)-C(2)	110.85(9)
O(3)-C(3)-C(2)	107.31(9)
C(4)-C(3)-C(2)	110.78(10)
C(3)-O(3)-C(27)	105.74(9)
C(9)-C(4)-C(5)	119.91(11)
C(9)-C(4)-C(3)	119.77(10)
C(5)-C(4)-C(3)	120.31(11)
C(3)-O(4)-C(28)	108.94(9)
C(6)-C(5)-C(4)	120.68(12)
C(6)-C(5)-H(5)	120.0(10)
C(4)-C(5)-H(5)	119.3(10)

C(5)-C(6)-C(7)	119.66(12)
C(5)-C(6)-H(6)	119.7(11)
C(7)-C(6)-H(6)	120.6(11)
C(8)-C(7)-C(6)	119.91(12)
C(8)-C(7)-H(7)	120.0(10)
C(6)-C(7)-H(7)	120.0(10)
C(7)-C(8)-C(9)	121.10(12)
C(7)-C(8)-H(8)	119.6(9)
C(9)-C(8)-H(8)	119.3(9)
C(4)-C(9)-C(8)	118.72(11)
C(4)-C(9)-C(10)	123.11(10)
C(8)-C(9)-C(10)	118.15(11)
C(9)-C(10)-C(29)	111.21(9)
C(9)-C(10)-C(1)	114.00(10)
C(29)-C(10)-C(1)	110.79(9)
C(9)-C(10)-H(10)	106.0(8)
C(29)-C(10)-H(10)	106.4(8)
C(1)-C(10)-H(10)	108.0(8)
O(11)-C(11)-C(1)	108.87(9)
O(11)-C(11)-H(11A)	108.8(9)
C(1)-C(11)-H(11A)	112.7(9)
O(11)-C(11)-H(11B)	107.7(10)
C(1)-C(11)-H(11B)	111.0(10)
H(11A)-C(11)-H(11B)	107.7(13)
C(12)-O(11)-C(11)	115.12(9)
O(12)-C(12)-O(11)	123.50(11)
O(12)-C(12)-C(13)	124.21(11)
O(11)-C(12)-C(13)	112.29(10)
C(18)-C(13)-C(14)	120.04(12)
C(18)-C(13)-C(12)	117.75(11)
C(14)-C(13)-C(12)	122.21(11)
C(15)-C(14)-C(13)	120.20(12)
C(15)-C(14)-H(14)	121.2(11)
C(13)-C(14)-H(14)	118.6(11)
C(16)-C(15)-C(14)	118.13(13)
C(16)-C(15)-H(15)	121.2(10)

C(14)-C(15)-H(15)	120.7(10)
C(17)-C(16)-C(15)	123.12(12)
C(17)-C(16)-N(16)	118.52(12)
C(15)-C(16)-N(16)	118.34(12)
O(17)-N(16)-O(16)	123.73(12)
O(17)-N(16)-C(16)	117.81(11)
O(16)-N(16)-C(16)	118.45(12)
C(16)-C(17)-C(18)	118.07(12)
С(16)-С(17)-Н(17)	120.8(10)
С(18)-С(17)-Н(17)	121.1(10)
C(17)-C(18)-C(13)	120.42(12)
C(17)-C(18)-H(18)	120.2(9)
C(13)-C(18)-H(18)	119.4(9)
O(19)-C(19)-C(2)	107.30(9)
O(19)-C(19)-H(19A)	108.1(8)
C(2)-C(19)-H(19A)	112.1(8)
O(19)-C(19)-H(19B)	108.5(9)
C(2)-C(19)-H(19B)	111.7(9)
H(19A)-C(19)-H(19B)	109.0(12)
C(20)-O(19)-C(19)	114.62(9)
O(20)-C(20)-O(19)	124.22(11)
O(20)-C(20)-C(21)	123.94(11)
O(19)-C(20)-C(21)	111.80(10)
C(22)-C(21)-C(26)	120.40(11)
C(22)-C(21)-C(20)	122.48(11)
C(26)-C(21)-C(20)	117.06(11)
C(23)-C(22)-C(21)	120.32(12)
C(23)-C(22)-H(22)	120.1(10)
С(21)-С(22)-Н(22)	119.6(10)
C(24)-C(23)-C(22)	117.93(12)
С(24)-С(23)-Н(23)	121.0(10)
С(22)-С(23)-Н(23)	121.1(10)
C(25)-C(24)-C(23)	123.26(11)
C(25)-C(24)-N(24)	118.20(11)
C(23)-C(24)-N(24)	118.51(11)
O(24)-N(24)-O(25)	124.45(11)

O(24)-N(24)-C(24)	118.03(11)
O(25)-N(24)-C(24)	117.51(11)
C(24)-C(25)-C(26)	118.16(12)
C(24)-C(25)-H(25)	119.1(11)
C(26)-C(25)-H(25)	122.7(11)
C(25)-C(26)-C(21)	119.94(12)
C(25)-C(26)-H(26)	120.1(10)
C(21)-C(26)-H(26)	119.9(10)
O(3)-C(27)-C(28)	102.76(9)
O(3)-C(27)-H(27A)	109.5(9)
C(28)-C(27)-H(27A)	112.0(9)
O(3)-C(27)-H(27B)	107.8(10)
C(28)-C(27)-H(27B)	114.4(10)
H(27A)-C(27)-H(27B)	110.1(13)
O(4)-C(28)-C(27)	103.40(10)
O(4)-C(28)-H(28A)	108.0(9)
C(27)-C(28)-H(28A)	112.5(10)
O(4)-C(28)-H(28B)	109.5(10)
C(27)-C(28)-H(28B)	113.5(10)
H(28A)-C(28)-H(28B)	109.7(14)
C(30)-C(29)-C(34)	118.49(11)
C(30)-C(29)-C(10)	121.30(10)
C(34)-C(29)-C(10)	120.22(11)
C(29)-C(30)-C(31)	120.79(12)
C(29)-C(30)-H(30)	120.7(9)
C(31)-C(30)-H(30)	118.5(9)
C(32)-C(31)-C(30)	120.27(12)
C(32)-C(31)-H(31)	120.2(10)
C(30)-C(31)-H(31)	119.4(10)
C(31)-C(32)-C(33)	119.56(12)
C(31)-C(32)-H(32)	120.2(10)
C(33)-C(32)-H(32)	120.2(10)
C(32)-C(33)-C(34)	120.16(12)
С(32)-С(33)-Н(33)	121.4(11)
С(34)-С(33)-Н(33)	118.4(11)
C(33)-C(34)-C(29)	120.71(12)

C(33)-C(34)-H(34)	121.0(9)
C(29)-C(34)-H(34)	118.3(9)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	16(1)	13(1)	12(1)	0(1)	-5(1)	-5(1)
C(2)	15(1)	13(1)	12(1)	0(1)	-2(1)	-6(1)
C(3)	14(1)	13(1)	14(1)	-1(1)	-1(1)	-4(1)
O(3)	15(1)	13(1)	18(1)	1(1)	-2(1)	-5(1)
C(4)	14(1)	17(1)	13(1)	0(1)	-2(1)	-5(1)
O(4)	16(1)	13(1)	19(1)	-4(1)	0(1)	-5(1)
C(5)	20(1)	16(1)	19(1)	1(1)	-6(1)	-5(1)
C(6)	19(1)	23(1)	19(1)	4(1)	-8(1)	-5(1)
C(7)	18(1)	29(1)	16(1)	0(1)	-6(1)	-10(1)
C(8)	18(1)	21(1)	16(1)	-1(1)	-5(1)	-8(1)
C(9)	13(1)	17(1)	12(1)	0(1)	-3(1)	-6(1)
C(10)	15(1)	13(1)	13(1)	0(1)	-4(1)	-6(1)
C(11)	18(1)	14(1)	15(1)	1(1)	-7(1)	-7(1)
D(11)	17(1)	16(1)	15(1)	3(1)	-8(1)	-7(1)
C(12)	18(1)	14(1)	12(1)	-1(1)	-4(1)	-4(1)
D(12)	37(1)	21(1)	26(1)	7(1)	-18(1)	-16(1)
C(13)	14(1)	18(1)	12(1)	-2(1)	-2(1)	-4(1)
C(14)	20(1)	22(1)	20(1)	2(1)	-7(1)	-9(1)
C(15)	23(1)	26(1)	24(1)	0(1)	-7(1)	-13(1)
C(16)	16(1)	31(1)	15(1)	-4(1)	-3(1)	-9(1)
N(16)	21(1)	41(1)	18(1)	-4(1)	-6(1)	-14(1)
O(16)	31(1)	58(1)	21(1)	6(1)	-14(1)	-21(1)
C(17)	18(1)	24(1)	15(1)	0(1)	-6(1)	-5(1)
O(17)	36(1)	58(1)	32(1)	4(1)	-15(1)	-32(1)
C(18)	19(1)	18(1)	16(1)	-1(1)	-4(1)	-5(1)
C(19)	21(1)	16(1)	11(1)	0(1)	-3(1)	-10(1)
D(19)	21(1)	19(1)	10(1)	1(1)	-3(1)	-10(1)
C(20)	22(1)	15(1)	13(1)	-3(1)	-4(1)	-7(1)
O(20)	47(1)	32(1)	19(1)	4(1)	-13(1)	-28(1)
C(21)	21(1)	15(1)	12(1)	-2(1)	-2(1)	-7(1)
C(22)	18(1)	19(1)	14(1)	-2(1)	-4(1)	-6(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for JF2954FMI_MO_190K. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(23)	18(1)	19(1)	18(1)	-3(1)	-2(1)	-9(1)
	10(1)	15(1)	10(1)	1(1)	-(1)	(1)
C(24)	19(1)	15(1)	14(1)	1(1)	-1(1)	-6(1)
N(24)	20(1)	18(1)	18(1)	0(1)	0(1)	-7(1)
O(24)	30(1)	22(1)	23(1)	-3(1)	1(1)	-15(1)
C(25)	27(1)	24(1)	15(1)	1(1)	-8(1)	-12(1)
O(25)	36(1)	37(1)	27(1)	16(1)	-17(1)	-21(1)
C(26)	28(1)	23(1)	16(1)	0(1)	-7(1)	-15(1)
C(27)	19(1)	14(1)	21(1)	2(1)	-2(1)	-8(1)
C(28)	21(1)	15(1)	23(1)	-2(1)	-2(1)	-8(1)
C(29)	16(1)	16(1)	12(1)	-1(1)	-6(1)	-6(1)
C(30)	23(1)	17(1)	13(1)	1(1)	-6(1)	-9(1)
C(31)	28(1)	14(1)	19(1)	-1(1)	-10(1)	-5(1)
C(32)	22(1)	22(1)	18(1)	-8(1)	-5(1)	-3(1)
C(33)	21(1)	26(1)	18(1)	-5(1)	-2(1)	-11(1)
C(34)	20(1)	18(1)	18(1)	-3(1)	-4(1)	-9(1)

	х	у	Z	U(eq)
H(1)	3874(16)	4295(15)	561(13)	18(4)
H(2)	1045(15)	5471(14)	1689(12)	14(3)
H(5)	378(17)	8375(16)	-893(14)	24(4)
H(6)	-347(18)	8190(18)	-2344(15)	33(5)
H(7)	218(17)	6122(16)	-2743(14)	24(4)
H(8)	1426(16)	4297(15)	-1638(13)	18(4)
H(10)	1812(15)	3612(14)	431(12)	13(3)
H(11A)	2462(15)	3012(14)	2332(12)	15(3)
H(11B)	3701(17)	2257(16)	1401(14)	23(4)
H(14)	5642(19)	3643(18)	2889(15)	33(5)
H(15)	7275(17)	3542(17)	3741(14)	27(4)
H(17)	7558(17)	20(17)	5346(14)	27(4)
H(18)	5908(16)	147(15)	4511(13)	18(4)
H(19A)	3298(15)	5455(14)	2241(12)	12(3)
H(19B)	1824(16)	6583(15)	2518(12)	17(4)
H(22)	802(17)	3560(16)	4612(14)	26(4)
H(23)	541(17)	1948(16)	6043(14)	25(4)
H(25)	3196(19)	2160(17)	7402(15)	34(5)
H(26)	3506(18)	3791(17)	5941(14)	30(4)
H(27A)	2782(16)	8191(15)	-987(13)	19(4)
H(27B)	3731(17)	8012(16)	-214(13)	24(4)
H(28A)	1876(17)	8627(16)	1324(14)	25(4)
H(28B)	1072(18)	9457(17)	349(14)	29(4)
H(30)	3131(16)	1507(15)	-38(13)	21(4)
H(31)	4950(17)	38(17)	-1194(14)	27(4)
H(32)	6532(17)	708(16)	-2606(14)	24(4)
H(33)	6267(19)	2861(17)	-2813(15)	33(5)
H(34)	4442(16)	4330(16)	-1650(13)	21(4)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2954FMI_MO_190K.

	Table 6.	Torsion	angles	[°]	for	JF2954FMI	MO	190K.
--	----------	---------	--------	-----	-----	-----------	----	-------

C(11)-C(1)-C(2)-C(19)	53.30(13)
C(10)-C(1)-C(2)-C(19)	174.69(9)
C(11)-C(1)-C(2)-C(3)	175.18(9)
C(10)-C(1)-C(2)-C(3)	-63.42(12)
C(19)-C(2)-C(3)-O(4)	-52.91(12)
C(1)-C(2)-C(3)-O(4)	-177.91(9)
C(19)-C(2)-C(3)-O(3)	62.94(11)
C(1)-C(2)-C(3)-O(3)	-62.07(12)
C(19)-C(2)-C(3)-C(4)	-174.81(9)
C(1)-C(2)-C(3)-C(4)	60.18(12)
O(4)-C(3)-O(3)-C(27)	-28.40(11)
C(4)-C(3)-O(3)-C(27)	91.24(11)
C(2)-C(3)-O(3)-C(27)	-147.12(10)
O(4)-C(3)-C(4)-C(9)	-152.94(10)
O(3)-C(3)-C(4)-C(9)	89.30(12)
C(2)-C(3)-C(4)-C(9)	-30.31(14)
O(4)-C(3)-C(4)-C(5)	27.06(14)
O(3)-C(3)-C(4)-C(5)	-90.70(13)
C(2)-C(3)-C(4)-C(5)	149.70(11)
O(3)-C(3)-O(4)-C(28)	8.37(12)
C(4)-C(3)-O(4)-C(28)	-112.66(10)
C(2)-C(3)-O(4)-C(28)	124.75(10)
C(9)-C(4)-C(5)-C(6)	-1.34(18)
C(3)-C(4)-C(5)-C(6)	178.65(11)
C(4)-C(5)-C(6)-C(7)	1.10(19)
C(5)-C(6)-C(7)-C(8)	0.10(19)
C(6)-C(7)-C(8)-C(9)	-1.06(19)
C(5)-C(4)-C(9)-C(8)	0.39(17)
C(3)-C(4)-C(9)-C(8)	-179.61(10)
C(5)-C(4)-C(9)-C(10)	-177.80(11)
C(3)-C(4)-C(9)-C(10)	2.21(17)
C(7)-C(8)-C(9)-C(4)	0.81(17)
C(7)-C(8)-C(9)-C(10)	179.08(11)
C(4)-C(9)-C(10)-C(29)	-131.08(11)

C(8)-C(9)-C(10)-C(29)	50.73(14)
C(4)-C(9)-C(10)-C(1)	-4.96(15)
C(8)-C(9)-C(10)-C(1)	176.85(10)
C(11)-C(1)-C(10)-C(9)	160.84(10)
C(2)-C(1)-C(10)-C(9)	35.47(13)
C(11)-C(1)-C(10)-C(29)	-72.82(11)
C(2)-C(1)-C(10)-C(29)	161.81(9)
C(2)-C(1)-C(11)-O(11)	-79.72(12)
C(10)-C(1)-C(11)-O(11)	157.17(9)
C(1)-C(11)-O(11)-C(12)	-179.02(9)
C(11)-O(11)-C(12)-O(12)	-0.16(17)
C(11)-O(11)-C(12)-C(13)	179.92(9)
O(12)-C(12)-C(13)-C(18)	4.49(18)
O(11)-C(12)-C(13)-C(18)	-175.59(10)
O(12)-C(12)-C(13)-C(14)	-175.39(12)
O(11)-C(12)-C(13)-C(14)	4.53(16)
C(18)-C(13)-C(14)-C(15)	1.05(19)
C(12)-C(13)-C(14)-C(15)	-179.07(12)
C(13)-C(14)-C(15)-C(16)	0.2(2)
C(14)-C(15)-C(16)-C(17)	-1.6(2)
C(14)-C(15)-C(16)-N(16)	176.62(12)
C(17)-C(16)-N(16)-O(17)	159.12(13)
C(15)-C(16)-N(16)-O(17)	-19.22(19)
C(17)-C(16)-N(16)-O(16)	-19.53(18)
C(15)-C(16)-N(16)-O(16)	162.14(13)
C(15)-C(16)-C(17)-C(18)	1.73(19)
N(16)-C(16)-C(17)-C(18)	-176.52(11)
C(16)-C(17)-C(18)-C(13)	-0.39(18)
C(14)-C(13)-C(18)-C(17)	-0.96(18)
C(12)-C(13)-C(18)-C(17)	179.16(11)
C(3)-C(2)-C(19)-O(19)	159.73(9)
C(1)-C(2)-C(19)-O(19)	-79.13(12)
C(2)-C(19)-O(19)-C(20)	166.88(10)
C(19)-O(19)-C(20)-O(20)	6.30(17)
C(19)-O(19)-C(20)-C(21)	-171.71(10)
O(20)-C(20)-C(21)-C(22)	171.60(13)

O(19)-C(20)-C(21)-C(22)	-10.38(16)
O(20)-C(20)-C(21)-C(26)	-10.95(19)
O(19)-C(20)-C(21)-C(26)	167.08(11)
C(26)-C(21)-C(22)-C(23)	-0.26(19)
C(20)-C(21)-C(22)-C(23)	177.11(11)
C(21)-C(22)-C(23)-C(24)	-0.24(18)
C(22)-C(23)-C(24)-C(25)	0.54(19)
C(22)-C(23)-C(24)-N(24)	-177.28(11)
C(25)-C(24)-N(24)-O(24)	-169.54(11)
C(23)-C(24)-N(24)-O(24)	8.39(17)
C(25)-C(24)-N(24)-O(25)	9.57(17)
C(23)-C(24)-N(24)-O(25)	-172.49(12)
C(23)-C(24)-C(25)-C(26)	-0.3(2)
N(24)-C(24)-C(25)-C(26)	177.50(11)
C(24)-C(25)-C(26)-C(21)	-0.2(2)
C(22)-C(21)-C(26)-C(25)	0.48(19)
C(20)-C(21)-C(26)-C(25)	-177.03(12)
C(3)-O(3)-C(27)-C(28)	36.02(12)
C(3)-O(4)-C(28)-C(27)	13.52(13)
O(3)-C(27)-C(28)-O(4)	-30.13(12)
C(9)-C(10)-C(29)-C(30)	-128.79(12)
C(1)-C(10)-C(29)-C(30)	103.33(12)
C(9)-C(10)-C(29)-C(34)	51.41(14)
C(1)-C(10)-C(29)-C(34)	-76.47(13)
C(34)-C(29)-C(30)-C(31)	0.60(18)
C(10)-C(29)-C(30)-C(31)	-179.20(11)
C(29)-C(30)-C(31)-C(32)	-0.49(19)
C(30)-C(31)-C(32)-C(33)	-0.3(2)
C(31)-C(32)-C(33)-C(34)	1.0(2)
C(32)-C(33)-C(34)-C(29)	-0.9(2)
C(30)-C(29)-C(34)-C(33)	0.11(18)
C(10)-C(29)-C(34)-C(33)	179.91(11)

CCDC 2087133

Table 1. Crystal data and structure refinement	ent for $[C_{25}H_{25}NO_7]$	$]_{2}[C_{4}H_{8}O_{2}]$	p]0.5.
Identification code	JF3005FMI (J	MR-1-15	9-B)
Empirical formula	C52 H54 N2 O15		
Formula weight	946.97		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 9.7429(7) Å	<=	= 67.1270(15)°.
	b = 14.3116(10)	R	$= 81.5420(16)^{\circ}.$
	c = 18.0645(12) Å	C C	$0 = 80.5606(17)^{\circ}.$
Volume	2279.7(3) Å ³		
Ζ	2		
Density (calculated)	1.380 Mg/m ³		
Absorption coefficient	0.102 mm ⁻¹		
F(000)	1000		
Crystal size	0.596 x 0.577 x 0	232 mm ³	
Crystal color and habit	Colourless Block		
Diffractometer	Bruker Photon100	CMOS	
Theta range for data collection	2.128 to 30.684°.		
Index ranges	-13<=h<=13, -20	<=k<=20,	-25<=l<=25
Reflections collected	28137		
Independent reflections	14103 [R(int) = 0	.0169]	
Observed reflections (I > 2sigma(I))	12151		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical fr	om equiva	alents
Max. and min. transmission	0.9660 and 0.883	7	
Solution method	SHELXT (Sheldr	ick, 2014)	
Refinement method	SHELXL-2017/1	(Sheldric	k, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	14103 / 0 / 652		

Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0483, wR2 = 0.1297
R indices (all data)	R1 = 0.0554, wR2 = 0.1365
Extinction coefficient	0.0239(14)
Largest diff. peak and hole	0.534 and -0.351 e.Å ⁻³

	v		7	U(eq)
	X	У	Z	0(eq)
C(1)	7446(1)	6940(1)	1558(1)	18(1)
O(1)	6181(1)	7609(1)	1363(1)	20(1)
C(2)	8461(1)	7047(1)	797(1)	18(1)
O(2)	8087(1)	7261(1)	2072(1)	20(1)
C(3)	9753(1)	6271(1)	1054(1)	18(1)
C(4)	9371(1)	5165(1)	1340(1)	19(1)
C(5)	8024(1)	5028(1)	1898(1)	22(1)
C(6)	7116(1)	5846(1)	1996(1)	20(1)
C(7)	5906(1)	5661(1)	2533(1)	26(1)
C(8)	5601(1)	4673(1)	2975(1)	36(1)
C(9)	6482(2)	3854(1)	2870(1)	41(1)
C(10)	7669(1)	4033(1)	2329(1)	33(1)
C(11)	6044(1)	8325(1)	1755(1)	21(1)
C(12)	6993(1)	7801(1)	2430(1)	21(1)
C(13)	8871(1)	8125(1)	434(1)	19(1)
N(13)	7926(1)	8916(1)	-2(1)	20(1)
O(13)	9957(1)	8330(1)	560(1)	26(1)
C(14)	6790(1)	8864(1)	-369(1)	22(1)
O(14)	6412(1)	8136(1)	-417(1)	27(1)
C(15)	6822(1)	10560(1)	-574(1)	30(1)
O(15)	6131(1)	9819(1)	-701(1)	27(1)
C(16)	8134(1)	9971(1)	-170(1)	23(1)
C(17)	10914(1)	6438(1)	372(1)	21(1)
O(17)	10730(1)	6628(1)	-322(1)	30(1)
C(18)	13372(1)	6342(1)	52(1)	30(1)
O(18)	12167(1)	6309(1)	641(1)	23(1)
C(19)	14654(1)	6020(1)	508(1)	35(1)
C(20)	10598(1)	4414(1)	1729(1)	20(1)
C(21)	11512(1)	3905(1)	1302(1)	24(1)
C(22)	12694(1)	3272(1)	1640(1)	29(1)
C(23)	12958(1)	3140(1)	2409(1)	35(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for JF3005FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(24)	12036(2)	3629(1)	2847(1)	34(1)
C(25)	10866(1)	4261(1)	2508(1)	26(1)
C(31)	1800(1)	7851(1)	3111(1)	18(1)
O(31)	716(1)	7229(1)	3255(1)	22(1)
C(32)	2453(1)	7637(1)	3897(1)	18(1)
O(32)	2852(1)	7579(1)	2559(1)	20(1)
C(33)	3609(1)	8330(1)	3681(1)	18(1)
C(34)	2940(1)	9452(1)	3456(1)	18(1)
C(35)	1851(1)	9723(1)	2856(1)	19(1)
C(36)	1254(1)	8977(1)	2729(1)	19(1)
C(37)	200(1)	9268(1)	2205(1)	24(1)
C(38)	-256(1)	10297(1)	1807(1)	28(1)
C(39)	340(1)	11042(1)	1921(1)	28(1)
C(40)	1380(1)	10754(1)	2446(1)	25(1)
C(41)	1194(1)	6482(1)	2897(1)	22(1)
C(42)	2227(1)	7013(1)	2214(1)	22(1)
C(43)	3054(1)	6526(1)	4260(1)	20(1)
N(43)	2241(1)	5821(1)	4834(1)	22(1)
O(43)	4236(1)	6228(1)	4057(1)	26(1)
C(44)	896(1)	5977(1)	5196(1)	24(1)
O(44)	108(1)	6746(1)	5068(1)	35(1)
C(45)	1766(1)	4308(1)	5862(1)	29(1)
O(45)	560(1)	5071(1)	5752(1)	26(1)
C(46)	2780(1)	4734(1)	5133(1)	29(1)
C(47)	4510(1)	8063(1)	4369(1)	20(1)
O(47)	4066(1)	7853(1)	5067(1)	28(1)
C(48)	6813(1)	8153(1)	4631(1)	27(1)
O(48)	5853(1)	8143(1)	4090(1)	24(1)
C(49)	8072(1)	8603(1)	4098(1)	35(1)
C(50)	4078(1)	10159(1)	3182(1)	20(1)
C(51)	4538(1)	10481(1)	3732(1)	23(1)
C(52)	5659(1)	11056(1)	3512(1)	27(1)
C(53)	6326(1)	11323(1)	2736(1)	29(1)
C(54)	5858(1)	11024(1)	2181(1)	27(1)
C(55)	4744(1)	10444(1)	2400(1)	22(1)
C(61)	10864(3)	8464(2)	6037(2)	33(1)

O(61)	8559(2)	9066(2)	5602(1)	34(1)
C(62)	9781(3)	9168(2)	5511(2)	27(1)
O(62)	10328(2)	9962(2)	4918(1)	35(1)
C(63)	9374(3)	10696(2)	4352(2)	40(1)
C(64)	10021(6)	11666(3)	3958(2)	54(1)

C(1)-O(1)	1.4274(11)
C(1)-O(2)	1.4358(12)
C(1)-C(6)	1.5189(14)
C(1)-C(2)	1.5424(14)
O(1)-C(11)	1.4354(13)
C(2)-C(13)	1.5194(14)
C(2)-C(3)	1.5317(14)
C(2)-H(2)	1.0000
O(2)-C(12)	1.4372(12)
C(3)-C(17)	1.5172(14)
C(3)-C(4)	1.5533(14)
C(3)-H(3)	1.0000
C(4)-C(5)	1.5217(15)
C(4)-C(20)	1.5220(14)
C(4)-H(4)	1.0000
C(5)-C(6)	1.4006(14)
C(5)-C(10)	1.4054(15)
C(6)-C(7)	1.4021(15)
C(7)-C(8)	1.3845(17)
C(7)-H(7)	0.9500
C(8)-C(9)	1.3933(19)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3886(19)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.5149(15)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-O(13)	1.2178(13)
C(13)-N(13)	1.3883(13)
N(13)-C(14)	1.3971(14)
N(13)-C(16)	1.4619(14)

Table 3. Bond lengths [Å] and angles [°] for JF3005FMI.

C(14)-O(14)	1.1964(14)
C(14)-O(15)	1.3526(13)
C(15)-O(15)	1.4491(15)
C(15)-C(16)	1.5234(16)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900
C(17)-O(17)	1.2101(14)
C(17)-O(18)	1.3379(13)
C(18)-O(18)	1.4569(13)
C(18)-C(19)	1.5070(18)
C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(21)	1.3927(15)
C(20)-C(25)	1.3960(15)
C(21)-C(22)	1.3981(16)
C(21)-H(21)	0.9500
C(22)-C(23)	1.385(2)
C(22)-H(22)	0.9500
C(23)-C(24)	1.392(2)
C(23)-H(23)	0.9500
C(24)-C(25)	1.3895(17)
C(24)-H(24)	0.9500
C(25)-H(25)	0.9500
C(31)-O(31)	1.4218(12)
C(31)-O(32)	1.4373(12)
C(31)-C(36)	1.5226(14)
C(31)-C(32)	1.5432(14)
O(31)-C(41)	1.4370(13)
C(32)-C(43)	1.5154(14)
C(32)-C(33)	1.5304(14)
C(32)-H(32)	1.0000

O(32)-C(42)	1.4432(13)
C(33)-C(47)	1.5180(14)
C(33)-C(34)	1.5488(14)
С(33)-Н(33)	1.0000
C(34)-C(50)	1.5210(14)
C(34)-C(35)	1.5261(14)
С(34)-Н(34)	1.0000
C(35)-C(36)	1.4013(14)
C(35)-C(40)	1.4015(14)
C(36)-C(37)	1.4007(14)
C(37)-C(38)	1.3921(16)
С(37)-Н(37)	0.9500
C(38)-C(39)	1.3878(18)
C(38)-H(38)	0.9500
C(39)-C(40)	1.3914(16)
C(39)-H(39)	0.9500
C(40)-H(40)	0.9500
C(41)-C(42)	1.5058(15)
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-H(42A)	0.9900
C(42)-H(42B)	0.9900
C(43)-O(43)	1.2168(13)
C(43)-N(43)	1.3889(13)
N(43)-C(44)	1.4003(14)
N(43)-C(46)	1.4672(14)
C(44)-O(44)	1.1960(14)
C(44)-O(45)	1.3512(13)
C(45)-O(45)	1.4468(14)
C(45)-C(46)	1.5081(17)
C(45)-H(45A)	0.9900
C(45)-H(45B)	0.9900
C(46)-H(46A)	0.9900
C(46)-H(46B)	0.9900
C(47)-O(47)	1.2064(13)
C(47)-O(48)	1.3380(13)

C(48)-O(48)	1.4547(13)
C(48)-C(49)	1.5082(18)
C(48)-H(48A)	0.9900
C(48)-H(48B)	0.9900
C(49)-H(49A)	0.9800
C(49)-H(49B)	0.9800
C(49)-H(49C)	0.9800
C(50)-C(55)	1.3968(15)
C(50)-C(51)	1.3979(15)
C(51)-C(52)	1.3932(16)
C(51)-H(51)	0.9500
C(52)-C(53)	1.3895(18)
C(52)-H(52)	0.9500
C(53)-C(54)	1.3889(18)
C(53)-H(53)	0.9500
C(54)-C(55)	1.3921(15)
C(54)-H(54)	0.9500
C(55)-H(55)	0.9500
C(61)-C(62)	1.494(4)
C(61)-H(61A)	0.9800
C(61)-H(61B)	0.9800
C(61)-H(61C)	0.9800
O(61)-C(62)	1.203(3)
C(62)-O(62)	1.345(3)
O(62)-C(63)	1.461(4)
C(63)-C(64)	1.489(5)
C(63)-H(63A)	0.9900
C(63)-H(63B)	0.9900
C(64)-H(64A)	0.9800
C(64)-H(64B)	0.9800
C(64)-H(64C)	0.9800
O(1) - C(1) - O(2)	106 15(7)
O(1)-O(1)-O(2)	100.13(7)
O(1) - O(1) - O(0)	107.01(0)
O(2) - O(1) - O(0)	111.27(8)
O(1) - O(1) - O(2)	$111.2/(\delta)$

O(2)-C(1)-C(2)	107.89(8)
C(6)-C(1)-C(2)	111.10(8)
C(1)-O(1)-C(11)	109.09(7)
C(13)-C(2)-C(3)	110.15(8)
C(13)-C(2)-C(1)	108.75(8)
C(3)-C(2)-C(1)	107.81(8)
C(13)-C(2)-H(2)	110.0
C(3)-C(2)-H(2)	110.0
C(1)-C(2)-H(2)	110.0
C(1)-O(2)-C(12)	106.77(7)
C(17)-C(3)-C(2)	111.56(8)
C(17)-C(3)-C(4)	109.43(8)
C(2)-C(3)-C(4)	110.44(8)
С(17)-С(3)-Н(3)	108.4
C(2)-C(3)-H(3)	108.4
C(4)-C(3)-H(3)	108.4
C(5)-C(4)-C(20)	112.62(9)
C(5)-C(4)-C(3)	111.30(8)
C(20)-C(4)-C(3)	109.24(8)
C(5)-C(4)-H(4)	107.8
C(20)-C(4)-H(4)	107.8
C(3)-C(4)-H(4)	107.8
C(6)-C(5)-C(10)	118.42(10)
C(6)-C(5)-C(4)	123.17(9)
C(10)-C(5)-C(4)	118.41(10)
C(5)-C(6)-C(7)	120.03(10)
C(5)-C(6)-C(1)	121.21(9)
C(7)-C(6)-C(1)	118.71(9)
C(8)-C(7)-C(6)	120.70(11)
C(8)-C(7)-H(7)	119.6
C(6)-C(7)-H(7)	119.6
C(7)-C(8)-C(9)	119.75(12)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-H(8)	120.1
C(10)-C(9)-C(8)	119.85(12)
C(10)-C(9)-H(9)	120.1

C(8)-C(9)-H(9)	120.1
C(9)-C(10)-C(5)	121.18(11)
C(9)-C(10)-H(10)	119.4
C(5)-C(10)-H(10)	119.4
O(1)-C(11)-C(12)	103.14(8)
O(1)-C(11)-H(11A)	111.1
C(12)-C(11)-H(11A)	111.1
O(1)-C(11)-H(11B)	111.1
C(12)-C(11)-H(11B)	111.1
H(11A)-C(11)-H(11B)	109.1
O(2)-C(12)-C(11)	102.09(8)
O(2)-C(12)-H(12A)	111.4
С(11)-С(12)-Н(12А)	111.4
O(2)-C(12)-H(12B)	111.4
C(11)-C(12)-H(12B)	111.4
H(12A)-C(12)-H(12B)	109.2
O(13)-C(13)-N(13)	118.69(9)
O(13)-C(13)-C(2)	122.20(9)
N(13)-C(13)-C(2)	118.89(9)
C(13)-N(13)-C(14)	128.60(9)
C(13)-N(13)-C(16)	119.32(9)
C(14)-N(13)-C(16)	111.94(8)
O(14)-C(14)-O(15)	122.52(10)
O(14)-C(14)-N(13)	129.26(10)
O(15)-C(14)-N(13)	108.21(9)
O(15)-C(15)-C(16)	105.84(9)
O(15)-C(15)-H(15A)	110.6
C(16)-C(15)-H(15A)	110.6
O(15)-C(15)-H(15B)	110.6
C(16)-C(15)-H(15B)	110.6
H(15A)-C(15)-H(15B)	108.7
C(14)-O(15)-C(15)	111.36(9)
N(13)-C(16)-C(15)	101.80(9)
N(13)-C(16)-H(16A)	111.4
C(15)-C(16)-H(16A)	111.4
N(13)-C(16)-H(16B)	111.4

C(15)-C(16)-H(16B)	111.4
H(16A)-C(16)-H(16B)	109.3
O(17)-C(17)-O(18)	124.34(10)
O(17)-C(17)-C(3)	124.06(10)
O(18)-C(17)-C(3)	111.55(9)
O(18)-C(18)-C(19)	107.03(10)
O(18)-C(18)-H(18A)	110.3
C(19)-C(18)-H(18A)	110.3
O(18)-C(18)-H(18B)	110.3
C(19)-C(18)-H(18B)	110.3
H(18A)-C(18)-H(18B)	108.6
C(17)-O(18)-C(18)	116.23(9)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(18)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(21)-C(20)-C(25)	118.78(10)
C(21)-C(20)-C(4)	120.82(9)
C(25)-C(20)-C(4)	120.32(9)
C(20)-C(21)-C(22)	120.66(11)
C(20)-C(21)-H(21)	119.7
C(22)-C(21)-H(21)	119.7
C(23)-C(22)-C(21)	119.91(11)
C(23)-C(22)-H(22)	120.0
C(21)-C(22)-H(22)	120.0
C(22)-C(23)-C(24)	119.88(11)
C(22)-C(23)-H(23)	120.1
C(24)-C(23)-H(23)	120.1
C(25)-C(24)-C(23)	120.08(12)
C(25)-C(24)-H(24)	120.0
C(23)-C(24)-H(24)	120.0
C(24)-C(25)-C(20)	120.67(11)
C(24)-C(25)-H(25)	119.7
C(20)-C(25)-H(25)	119.7

O(31)-C(31)-O(32)	106.46(8)
O(31)-C(31)-C(36)	110.66(8)
O(32)-C(31)-C(36)	109.40(8)
O(31)-C(31)-C(32)	111.04(8)
O(32)-C(31)-C(32)	108.72(8)
C(36)-C(31)-C(32)	110.45(8)
C(31)-O(31)-C(41)	108.31(8)
C(43)-C(32)-C(33)	110.20(8)
C(43)-C(32)-C(31)	110.63(8)
C(33)-C(32)-C(31)	107.16(8)
С(43)-С(32)-Н(32)	109.6
С(33)-С(32)-Н(32)	109.6
С(31)-С(32)-Н(32)	109.6
C(31)-O(32)-C(42)	107.33(7)
C(47)-C(33)-C(32)	112.49(8)
C(47)-C(33)-C(34)	108.71(8)
C(32)-C(33)-C(34)	109.15(8)
С(47)-С(33)-Н(33)	108.8
С(32)-С(33)-Н(33)	108.8
С(34)-С(33)-Н(33)	108.8
C(50)-C(34)-C(35)	114.30(8)
C(50)-C(34)-C(33)	109.84(8)
C(35)-C(34)-C(33)	111.41(8)
C(50)-C(34)-H(34)	107.0
C(35)-C(34)-H(34)	107.0
C(33)-C(34)-H(34)	107.0
C(36)-C(35)-C(40)	118.75(10)
C(36)-C(35)-C(34)	122.39(9)
C(40)-C(35)-C(34)	118.79(9)
C(37)-C(36)-C(35)	119.95(10)
C(37)-C(36)-C(31)	119.10(9)
C(35)-C(36)-C(31)	120.83(9)
C(38)-C(37)-C(36)	120.32(11)
С(38)-С(37)-Н(37)	119.8
C(36)-C(37)-H(37)	119.8
C(39)-C(38)-C(37)	120.17(10)

C(39)-C(38)-H(38)	119.9
C(37)-C(38)-H(38)	119.9
C(38)-C(39)-C(40)	119.59(10)
C(38)-C(39)-H(39)	120.2
C(40)-C(39)-H(39)	120.2
C(39)-C(40)-C(35)	121.21(11)
C(39)-C(40)-H(40)	119.4
C(35)-C(40)-H(40)	119.4
O(31)-C(41)-C(42)	102.74(8)
O(31)-C(41)-H(41A)	111.2
C(42)-C(41)-H(41A)	111.2
O(31)-C(41)-H(41B)	111.2
C(42)-C(41)-H(41B)	111.2
H(41A)-C(41)-H(41B)	109.1
O(32)-C(42)-C(41)	101.85(8)
O(32)-C(42)-H(42A)	111.4
C(41)-C(42)-H(42A)	111.4
O(32)-C(42)-H(42B)	111.4
C(41)-C(42)-H(42B)	111.4
H(42A)-C(42)-H(42B)	109.3
O(43)-C(43)-N(43)	118.55(9)
O(43)-C(43)-C(32)	121.71(9)
N(43)-C(43)-C(32)	119.74(9)
C(43)-N(43)-C(44)	129.51(9)
C(43)-N(43)-C(46)	119.65(9)
C(44)-N(43)-C(46)	110.84(9)
O(44)-C(44)-O(45)	122.17(10)
O(44)-C(44)-N(43)	129.46(10)
O(45)-C(44)-N(43)	108.36(9)
O(45)-C(45)-C(46)	105.44(9)
O(45)-C(45)-H(45A)	110.7
C(46)-C(45)-H(45A)	110.7
O(45)-C(45)-H(45B)	110.7
C(46)-C(45)-H(45B)	110.7
H(45A)-C(45)-H(45B)	108.8
C(44)-O(45)-C(45)	110.28(9)

N(43)-C(46)-C(45)	101.44(9)
N(43)-C(46)-H(46A)	111.5
C(45)-C(46)-H(46A)	111.5
N(43)-C(46)-H(46B)	111.5
C(45)-C(46)-H(46B)	111.5
H(46A)-C(46)-H(46B)	109.3
O(47)-C(47)-O(48)	124.70(10)
O(47)-C(47)-C(33)	124.58(10)
O(48)-C(47)-C(33)	110.63(9)
O(48)-C(48)-C(49)	105.85(10)
O(48)-C(48)-H(48A)	110.6
C(49)-C(48)-H(48A)	110.6
O(48)-C(48)-H(48B)	110.6
C(49)-C(48)-H(48B)	110.6
H(48A)-C(48)-H(48B)	108.7
C(47)-O(48)-C(48)	117.97(9)
C(48)-C(49)-H(49A)	109.5
C(48)-C(49)-H(49B)	109.5
H(49A)-C(49)-H(49B)	109.5
C(48)-C(49)-H(49C)	109.5
H(49A)-C(49)-H(49C)	109.5
H(49B)-C(49)-H(49C)	109.5
C(55)-C(50)-C(51)	118.72(10)
C(55)-C(50)-C(34)	121.20(9)
C(51)-C(50)-C(34)	119.95(9)
C(52)-C(51)-C(50)	120.81(11)
C(52)-C(51)-H(51)	119.6
C(50)-C(51)-H(51)	119.6
C(53)-C(52)-C(51)	119.95(11)
C(53)-C(52)-H(52)	120.0
C(51)-C(52)-H(52)	120.0
C(54)-C(53)-C(52)	119.63(11)
C(54)-C(53)-H(53)	120.2
С(52)-С(53)-Н(53)	120.2
C(53)-C(54)-C(55)	120.53(11)
C(53)-C(54)-H(54)	119.7

C(55)-C(54)-H(54)	119.7
C(54)-C(55)-C(50)	120.33(10)
C(54)-C(55)-H(55)	119.8
C(50)-C(55)-H(55)	119.8
C(62)-C(61)-H(61A)	109.5
C(62)-C(61)-H(61B)	109.5
H(61A)-C(61)-H(61B)	109.5
C(62)-C(61)-H(61C)	109.5
H(61A)-C(61)-H(61C)	109.5
H(61B)-C(61)-H(61C)	109.5
O(61)-C(62)-O(62)	122.8(2)
O(61)-C(62)-C(61)	125.4(2)
O(62)-C(62)-C(61)	111.8(2)
C(62)-O(62)-C(63)	116.9(2)
O(62)-C(63)-C(64)	107.6(3)
O(62)-C(63)-H(63A)	110.2
C(64)-C(63)-H(63A)	110.2
O(62)-C(63)-H(63B)	110.2
C(64)-C(63)-H(63B)	110.2
H(63A)-C(63)-H(63B)	108.5
C(63)-C(64)-H(64A)	109.5
C(63)-C(64)-H(64B)	109.5
H(64A)-C(64)-H(64B)	109.5
C(63)-C(64)-H(64C)	109.5
H(64A)-C(64)-H(64C)	109.5
H(64B)-C(64)-H(64C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	16(1)	17(1)	20(1)	-6(1)	-4(1)	-1(1)
O(1)	17(1)	19(1)	24(1)	-9(1)	-6(1)	2(1)
C(2)	18(1)	16(1)	19(1)	-5(1)	-4(1)	-1(1)
O(2)	18(1)	22(1)	22(1)	-10(1)	-5(1)	-1(1)
C(3)	17(1)	17(1)	19(1)	-5(1)	-3(1)	-1(1)
C(4)	20(1)	16(1)	22(1)	-7(1)	-4(1)	-1(1)
C(5)	21(1)	18(1)	27(1)	-7(1)	-2(1)	-3(1)
C(6)	19(1)	17(1)	23(1)	-5(1)	-3(1)	-2(1)
C(7)	21(1)	22(1)	31(1)	-8(1)	2(1)	-4(1)
C(8)	28(1)	26(1)	45(1)	-8(1)	9(1)	-9(1)
C(9)	36(1)	21(1)	56(1)	-6(1)	10(1)	-9(1)
C(10)	29(1)	18(1)	46(1)	-9(1)	4(1)	-4(1)
C(11)	22(1)	18(1)	21(1)	-7(1)	-2(1)	1(1)
C(12)	21(1)	21(1)	21(1)	-9(1)	-2(1)	0(1)
C(13)	20(1)	17(1)	18(1)	-4(1)	-3(1)	-1(1)
N(13)	20(1)	17(1)	20(1)	-3(1)	-4(1)	-1(1)
O(13)	23(1)	21(1)	31(1)	-4(1)	-8(1)	-4(1)
C(14)	23(1)	22(1)	17(1)	-4(1)	-4(1)	0(1)
O(14)	31(1)	26(1)	26(1)	-10(1)	-10(1)	-2(1)
C(15)	25(1)	18(1)	38(1)	-2(1)	-7(1)	-1(1)
O(15)	28(1)	22(1)	26(1)	-4(1)	-10(1)	2(1)
C(16)	25(1)	16(1)	24(1)	-3(1)	-3(1)	-2(1)
C(17)	20(1)	19(1)	22(1)	-7(1)	-2(1)	-1(1)
O(17)	27(1)	40(1)	21(1)	-9(1)	-3(1)	-1(1)
C(18)	21(1)	36(1)	29(1)	-11(1)	3(1)	-2(1)
O(18)	17(1)	27(1)	24(1)	-8(1)	-1(1)	-2(1)
C(19)	20(1)	44(1)	42(1)	-17(1)	0(1)	-4(1)
C(20)	22(1)	14(1)	23(1)	-6(1)	-4(1)	0(1)
C(21)	26(1)	20(1)	26(1)	-10(1)	-3(1)	1(1)
C(22)	26(1)	21(1)	38(1)	-11(1)	-2(1)	3(1)
C(23)	33(1)	24(1)	44(1)	-8(1)	-15(1)	6(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for JF3005FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(24)	42(1)	28(1)	31(1)	-8(1)	-17(1)	4(1)
C(25)	33(1)	21(1)	24(1)	-9(1)	-6(1)	1(1)
C(31)	17(1)	18(1)	20(1)	-6(1)	0(1)	-4(1)
O(31)	20(1)	22(1)	27(1)	-11(1)	2(1)	-9(1)
C(32)	19(1)	16(1)	18(1)	-4(1)	-2(1)	-2(1)
O(32)	18(1)	23(1)	21(1)	-10(1)	1(1)	-6(1)
C(33)	18(1)	16(1)	18(1)	-5(1)	-3(1)	-2(1)
C(34)	20(1)	16(1)	19(1)	-5(1)	-2(1)	-2(1)
C(35)	18(1)	18(1)	19(1)	-4(1)	-1(1)	-2(1)
C(36)	17(1)	19(1)	18(1)	-4(1)	-1(1)	-2(1)
C(37)	19(1)	27(1)	23(1)	-7(1)	-4(1)	-3(1)
C(38)	20(1)	32(1)	25(1)	-5(1)	-5(1)	1(1)
C(39)	24(1)	23(1)	27(1)	-2(1)	-4(1)	3(1)
C(40)	24(1)	18(1)	28(1)	-4(1)	-3(1)	-1(1)
C(41)	24(1)	20(1)	23(1)	-9(1)	-2(1)	-6(1)
C(42)	24(1)	24(1)	21(1)	-10(1)	-2(1)	-6(1)
C(43)	23(1)	17(1)	18(1)	-4(1)	-2(1)	-2(1)
N(43)	22(1)	16(1)	22(1)	-2(1)	-1(1)	-1(1)
O(43)	24(1)	21(1)	28(1)	-5(1)	1(1)	1(1)
C(44)	26(1)	20(1)	19(1)	-2(1)	2(1)	-3(1)
O(44)	34(1)	24(1)	33(1)	-2(1)	10(1)	2(1)
C(45)	26(1)	20(1)	32(1)	2(1)	-4(1)	-3(1)
O(45)	28(1)	20(1)	23(1)	0(1)	1(1)	-4(1)
C(46)	28(1)	16(1)	32(1)	0(1)	1(1)	1(1)
C(47)	22(1)	18(1)	21(1)	-7(1)	-5(1)	0(1)
O(47)	30(1)	35(1)	18(1)	-7(1)	-3(1)	-4(1)
C(48)	24(1)	33(1)	26(1)	-13(1)	-10(1)	1(1)
O(48)	20(1)	31(1)	23(1)	-12(1)	-6(1)	0(1)
C(49)	24(1)	40(1)	38(1)	-8(1)	-11(1)	-2(1)
C(50)	21(1)	16(1)	22(1)	-5(1)	-3(1)	-2(1)
C(51)	27(1)	19(1)	24(1)	-8(1)	-4(1)	-3(1)
C(52)	28(1)	23(1)	35(1)	-12(1)	-8(1)	-4(1)
C(53)	23(1)	22(1)	41(1)	-10(1)	-2(1)	-6(1)
C(54)	25(1)	22(1)	29(1)	-6(1)	2(1)	-4(1)
C(55)	23(1)	19(1)	22(1)	-6(1)	-2(1)	-2(1)
C(61)	27(1)	33(1)	34(1)	-11(1)	-3(1)	1(1)

O(61)	27(1)	42(1)	35(1)	-16(1)	-1(1)	-4(1)
C(62)	26(1)	30(1)	28(1)	-16(1)	-1(1)	0(1)
O(62)	30(1)	35(1)	32(1)	-6(1)	-1(1)	-3(1)
C(63)	40(2)	41(2)	32(1)	-7(1)	-8(1)	4(1)
C(64)	95(3)	33(2)	36(2)	-14(1)	-19(2)	0(2)

	х	У	Z	U(eq)
H(2)	8003	6907	396	22
H(3)	10103	6356	1515	22
H(4)	9217	5040	853	23
H(7)	5290	6219	2593	31
H(8)	4793	4554	3349	43
H(9)	6271	3175	3168	49
H(10)	8251	3472	2249	39
H(11A)	5066	8445	1972	25
H(11B)	6356	8985	1380	25
H(12A)	7362	8304	2577	25
H(12B)	6502	7326	2915	25
H(15A)	6207	10872	-223	36
H(15B)	7068	11109	-1095	36
H(16A)	8989	10166	-537	27
H(16B)	8191	10080	333	27
H(18A)	13398	7042	-359	36
H(18B)	13322	5872	-223	36
H(19A)	14706	6503	764	53
H(19B)	15489	6012	134	53
H(19C)	14601	5335	924	53
H(21)	11329	3988	776	29
H(22)	13316	2933	1342	35
H(23)	13767	2717	2637	42
H(24)	12207	3529	3379	41
H(25)	10241	4594	2810	31
H(32)	1724	7805	4293	22
H(33)	4217	8263	3203	21
H(34)	2436	9515	3961	22
H(37)	-206	8761	2121	28
H(38)	-978	10489	1457	33

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF3005FMI.

H(39)	40	11744	1642	33
H(40)	1778	11265	2528	30
H(41A)	414	6314	2694	26
H(41B)	1650	5848	3287	26
H(42A)	2931	6515	2067	27
H(42B)	1753	7474	1731	27
H(45A)	1502	3653	5894	35
H(45B)	2182	4191	6363	35
H(46A)	3747	4623	5284	35
H(46B)	2753	4429	4729	35
H(48A)	7084	7451	5011	32
H(48B)	6376	8575	4945	32
H(49A)	8520	8157	3813	53
H(49B)	8736	8665	4430	53
H(49C)	7776	9280	3704	53
H(51)	4079	10307	4261	28
H(52)	5968	11264	3893	33
H(53)	7098	11708	2586	35
H(54)	6301	11218	1647	32
H(55)	4436	10240	2017	26
H(61A)	10446	7866	6432	49
H(61B)	11224	8821	6320	49
H(61C)	11632	8243	5703	49
H(63A)	8459	10814	4643	49
H(63B)	9225	10433	3942	49
H(64A)	10015	11981	4353	81
H(64B)	9487	12134	3511	81
H(64C)	10986	11521	3751	81

Table 6. Torsion angles [°] for JF3005FMI.

_

O(2)-C(1)-O(1)-C(11)	-0.34(10)	
C(6)-C(1)-O(1)-C(11)	119.12(9)	
C(2)-C(1)-O(1)-C(11)	-117.46(9)	
O(1)-C(1)-C(2)-C(13)	63.18(10)	
O(2)-C(1)-C(2)-C(13)	-52.87(10)	
C(6)-C(1)-C(2)-C(13)	-174.14(8)	
O(1)-C(1)-C(2)-C(3)	-177.41(8)	
O(2)-C(1)-C(2)-C(3)	66.54(10)	
C(6)-C(1)-C(2)-C(3)	-54.72(10)	
O(1)-C(1)-O(2)-C(12)	22.74(10)	
C(6)-C(1)-O(2)-C(12)	-96.26(9)	
C(2)-C(1)-O(2)-C(12)	142.10(8)	
C(13)-C(2)-C(3)-C(17)	-51.99(11)	
C(1)-C(2)-C(3)-C(17)	-170.51(8)	
C(13)-C(2)-C(3)-C(4)	-173.94(8)	
C(1)-C(2)-C(3)-C(4)	67.54(10)	
C(17)-C(3)-C(4)-C(5)	-168.26(8)	
C(2)-C(3)-C(4)-C(5)	-45.07(11)	
C(17)-C(3)-C(4)-C(20)	66.75(10)	
C(2)-C(3)-C(4)-C(20)	-170.06(8)	
C(20)-C(4)-C(5)-C(6)	135.37(11)	
C(3)-C(4)-C(5)-C(6)	12.30(14)	
C(20)-C(4)-C(5)-C(10)	-45.17(14)	
C(3)-C(4)-C(5)-C(10)	-168.24(11)	
C(10)-C(5)-C(6)-C(7)	1.79(17)	
C(4)-C(5)-C(6)-C(7)	-178.75(10)	
C(10)-C(5)-C(6)-C(1)	179.10(11)	
C(4)-C(5)-C(6)-C(1)	-1.44(16)	
O(1)-C(1)-C(6)-C(5)	146.52(10)	
O(2)-C(1)-C(6)-C(5)	-96.73(11)	
C(2)-C(1)-C(6)-C(5)	22.99(13)	
O(1)-C(1)-C(6)-C(7)	-36.14(13)	
O(2)-C(1)-C(6)-C(7)	80.62(12)	
C(2)-C(1)-C(6)-C(7)	-159.66(10)	

C(5)-C(6)-C(7)-C(8)	0.59(18)
C(1)-C(6)-C(7)-C(8)	-176.79(11)
C(6)-C(7)-C(8)-C(9)	-1.9(2)
C(7)-C(8)-C(9)-C(10)	0.7(2)
C(8)-C(9)-C(10)-C(5)	1.7(2)
C(6)-C(5)-C(10)-C(9)	-3.0(2)
C(4)-C(5)-C(10)-C(9)	177.55(13)
C(1)-O(1)-C(11)-C(12)	-20.61(10)
C(1)-O(2)-C(12)-C(11)	-34.67(10)
O(1)-C(11)-C(12)-O(2)	33.42(10)
C(3)-C(2)-C(13)-O(13)	-20.07(14)
C(1)-C(2)-C(13)-O(13)	97.87(11)
C(3)-C(2)-C(13)-N(13)	165.32(9)
C(1)-C(2)-C(13)-N(13)	-76.74(11)
O(13)-C(13)-N(13)-C(14)	164.46(10)
C(2)-C(13)-N(13)-C(14)	-20.74(16)
O(13)-C(13)-N(13)-C(16)	-10.91(15)
C(2)-C(13)-N(13)-C(16)	163.89(9)
C(13)-N(13)-C(14)-O(14)	-3.16(19)
C(16)-N(13)-C(14)-O(14)	172.48(11)
C(13)-N(13)-C(14)-O(15)	177.75(10)
C(16)-N(13)-C(14)-O(15)	-6.60(12)
O(14)-C(14)-O(15)-C(15)	-178.50(11)
N(13)-C(14)-O(15)-C(15)	0.66(12)
C(16)-C(15)-O(15)-C(14)	5.09(13)
C(13)-N(13)-C(16)-C(15)	-174.70(9)
C(14)-N(13)-C(16)-C(15)	9.20(12)
O(15)-C(15)-C(16)-N(13)	-8.27(12)
C(2)-C(3)-C(17)-O(17)	-42.28(14)
C(4)-C(3)-C(17)-O(17)	80.24(13)
C(2)-C(3)-C(17)-O(18)	140.13(9)
C(4)-C(3)-C(17)-O(18)	-97.35(10)
O(17)-C(17)-O(18)-C(18)	-3.94(16)
C(3)-C(17)-O(18)-C(18)	173.64(9)
C(19)-C(18)-O(18)-C(17)	-171.34(10)
C(5)-C(4)-C(20)-C(21)	135.63(10)

C(3)-C(4)-C(20)-C(21)	-100.15(11)
C(5)-C(4)-C(20)-C(25)	-47.49(13)
C(3)-C(4)-C(20)-C(25)	76.73(12)
C(25)-C(20)-C(21)-C(22)	-1.58(17)
C(4)-C(20)-C(21)-C(22)	175.35(10)
C(20)-C(21)-C(22)-C(23)	0.61(18)
C(21)-C(22)-C(23)-C(24)	0.8(2)
C(22)-C(23)-C(24)-C(25)	-1.1(2)
C(23)-C(24)-C(25)-C(20)	0.1(2)
C(21)-C(20)-C(25)-C(24)	1.22(18)
C(4)-C(20)-C(25)-C(24)	-175.72(11)
O(32)-C(31)-O(31)-C(41)	8.66(10)
C(36)-C(31)-O(31)-C(41)	127.45(9)
C(32)-C(31)-O(31)-C(41)	-109.52(9)
O(31)-C(31)-C(32)-C(43)	59.31(10)
O(32)-C(31)-C(32)-C(43)	-57.48(10)
C(36)-C(31)-C(32)-C(43)	-177.53(8)
O(31)-C(31)-C(32)-C(33)	179.47(8)
O(32)-C(31)-C(32)-C(33)	62.67(10)
C(36)-C(31)-C(32)-C(33)	-57.37(10)
O(31)-C(31)-O(32)-C(42)	15.37(10)
C(36)-C(31)-O(32)-C(42)	-104.24(9)
C(32)-C(31)-O(32)-C(42)	135.06(8)
C(43)-C(32)-C(33)-C(47)	-49.28(11)
C(31)-C(32)-C(33)-C(47)	-169.71(8)
C(43)-C(32)-C(33)-C(34)	-170.02(8)
C(31)-C(32)-C(33)-C(34)	69.54(10)
C(47)-C(33)-C(34)-C(50)	60.91(10)
C(32)-C(33)-C(34)-C(50)	-176.07(8)
C(47)-C(33)-C(34)-C(35)	-171.41(8)
C(32)-C(33)-C(34)-C(35)	-48.38(11)
C(50)-C(34)-C(35)-C(36)	143.12(10)
C(33)-C(34)-C(35)-C(36)	17.88(13)
C(50)-C(34)-C(35)-C(40)	-40.12(13)
C(33)-C(34)-C(35)-C(40)	-165.36(9)
C(40)-C(35)-C(36)-C(37)	-0.45(15)
C(34)-C(35)-C(36)-C(37)	176.31(9)
-------------------------	-------------
C(40)-C(35)-C(36)-C(31)	175.50(9)
C(34)-C(35)-C(36)-C(31)	-7.74(15)
O(31)-C(31)-C(36)-C(37)	-33.14(12)
O(32)-C(31)-C(36)-C(37)	83.85(11)
C(32)-C(31)-C(36)-C(37)	-156.51(9)
O(31)-C(31)-C(36)-C(35)	150.88(9)
O(32)-C(31)-C(36)-C(35)	-92.13(11)
C(32)-C(31)-C(36)-C(35)	27.51(12)
C(35)-C(36)-C(37)-C(38)	0.16(16)
C(31)-C(36)-C(37)-C(38)	-175.85(10)
C(36)-C(37)-C(38)-C(39)	0.62(17)
C(37)-C(38)-C(39)-C(40)	-1.09(18)
C(38)-C(39)-C(40)-C(35)	0.80(18)
C(36)-C(35)-C(40)-C(39)	-0.03(16)
C(34)-C(35)-C(40)-C(39)	-176.91(10)
C(31)-O(31)-C(41)-C(42)	-27.89(10)
C(31)-O(32)-C(42)-C(41)	-31.74(10)
O(31)-C(41)-C(42)-O(32)	35.95(10)
C(33)-C(32)-C(43)-O(43)	-31.99(14)
C(31)-C(32)-C(43)-O(43)	86.33(12)
C(33)-C(32)-C(43)-N(43)	148.72(9)
C(31)-C(32)-C(43)-N(43)	-92.95(11)
O(43)-C(43)-N(43)-C(44)	176.28(11)
C(32)-C(43)-N(43)-C(44)	-4.41(17)
O(43)-C(43)-N(43)-C(46)	-4.65(16)
C(32)-C(43)-N(43)-C(46)	174.66(10)
C(43)-N(43)-C(44)-O(44)	3.9(2)
C(46)-N(43)-C(44)-O(44)	-175.20(14)
C(43)-N(43)-C(44)-O(45)	-176.69(10)
C(46)-N(43)-C(44)-O(45)	4.17(13)
O(44)-C(44)-O(45)-C(45)	-171.88(12)
N(43)-C(44)-O(45)-C(45)	8.70(13)
C(46)-C(45)-O(45)-C(44)	-17.60(14)
C(43)-N(43)-C(46)-C(45)	166.54(10)
C(44)-N(43)-C(46)-C(45)	-14.23(13)

O(45)-C(45)-C(46)-N(43)	18.43(13)
C(32)-C(33)-C(47)-O(47)	-42.27(14)
C(34)-C(33)-C(47)-O(47)	78.72(13)
C(32)-C(33)-C(47)-O(48)	140.87(9)
C(34)-C(33)-C(47)-O(48)	-98.14(10)
O(47)-C(47)-O(48)-C(48)	-11.07(16)
C(33)-C(47)-O(48)-C(48)	165.79(9)
C(49)-C(48)-O(48)-C(47)	-161.02(10)
C(35)-C(34)-C(50)-C(55)	-45.90(13)
C(33)-C(34)-C(50)-C(55)	80.16(12)
C(35)-C(34)-C(50)-C(51)	138.33(10)
C(33)-C(34)-C(50)-C(51)	-95.61(11)
C(55)-C(50)-C(51)-C(52)	-1.47(16)
C(34)-C(50)-C(51)-C(52)	174.40(10)
C(50)-C(51)-C(52)-C(53)	0.66(17)
C(51)-C(52)-C(53)-C(54)	0.70(18)
C(52)-C(53)-C(54)-C(55)	-1.24(18)
C(53)-C(54)-C(55)-C(50)	0.42(17)
C(51)-C(50)-C(55)-C(54)	0.93(16)
C(34)-C(50)-C(55)-C(54)	-174.89(10)
O(61)-C(62)-O(62)-C(63)	-2.5(4)
C(61)-C(62)-O(62)-C(63)	178.8(2)
C(62)-O(62)-C(63)-C(64)	159.5(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2)O(14)	1.00	2.33	2.9721(13)	121.2
C(11)-H(11A)O(32)	0.99	2.55	3.3876(13)	142.4
C(15)-H(15B)O(32)#1	0.99	2.58	3.5456(15)	165.0
C(16)-H(16A)O(13)#2	0.99	2.52	3.1041(14)	117.8
C(32)-H(32)O(44)	1.00	2.28	2.9582(13)	123.6
C(41)-H(41A)O(2)#3	0.99	2.61	3.3991(13)	137.0
C(45)-H(45A)O(31)#4	0.99	2.65	3.3334(14)	126.1
C(46)-H(46A)O(43)#5	0.99	2.35	3.2956(15)	158.7
C(49)-H(49A)O(31)#6	0.98	2.61	3.5122(17)	152.4
C(49)-H(49B)O(61)	0.98	2.38	3.150(2)	135.4
C(61)-H(61C)O(47)#6	0.98	2.55	3.501(3)	162.5
C(64)-H(64A)O(44)#7	0.98	2.41	3.351(3)	161.1

Table 7. Hydrogen bonds for JF3005FMI [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z #2 -x+2,-y+2,-z #3 x-1,y,z

 $\#4 \ \text{-x,-y+1,-z+1} \quad \#5 \ \text{-x+1,-y+1,-z+1} \quad \#6 \ \text{x+1,y,z}$

#7 -x+1,-y+2,-z+1

CCDC 2087134

Table 1. Crystal data and structure refinement for $[C_{24}H_{27}NO_5]$.

Identification code	JF3023FMI	(JMR-II-14)
Empirical formula	C24 H27 N O5	
Formula weight	409.46	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	

Unit cell dimensions	a = 11.2062(10) Å	$\langle = 90^{\circ}.$
	b = 11.4773(11) Å	®=94.0553(18)°.
	c = 16.2488(15) Å	$^{\circ}$ = 90°.
Volume	2084.6(3) Å ³	
Z	4	
Density (calculated)	1.305 Mg/m ³	
Absorption coefficient	0.091 mm ⁻¹	
F(000)	872	
Crystal size	0.539 x 0.352 x 0.200 mm ³	
Crystal color and habit	Colorless Block	
Diffractometer	Bruker Photon100 CMOS	
Theta range for data collection	2.174 to 27.499°.	
Index ranges	-14<=h<=14, -14<=k<=14,	-21<=1<=21
Reflections collected	18508	
Independent reflections	4785 [R(int) = 0.0244]	
Observed reflections (I > 2sigma(I))	4254	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equiva	alents
Max. and min. transmission	0.9825 and 0.8832	
Solution method	SHELXT (Sheldrick, 2014))
Refinement method	SHELXL-2017/1 (Sheldrich	k, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	4785 / 0 / 380	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0462, wR2 = 0.1216	5
R indices (all data)	R1 = 0.0515, $wR2 = 0.1275$	5
Extinction coefficient	0.025(2)	
Largest diff. peak and hole	0.353 and -0.290 e.Å ⁻³	

	X	У	Z	U(eq)
C(1)	6070(1)	3119(1)	3280(1)	21(1)
O(1)	6521(1)	1954(1)	3378(1)	26(1)
C(2)	6193(1)	3514(1)	2385(1)	20(1)
O(2)	4850(1)	3086(1)	3462(1)	26(1)
C(3)	7520(1)	3507(1)	2208(1)	20(1)
C(4)	8232(1)	4387(1)	2772(1)	21(1)
C(5)	7826(1)	4442(1)	3648(1)	20(1)
C(6)	6768(1)	3926(1)	3876(1)	21(1)
C(7)	6387(1)	4114(1)	4664(1)	27(1)
C(8)	7056(1)	4788(1)	5232(1)	30(1)
C(9)	8130(1)	5272(1)	5019(1)	28(1)
C(10)	8503(1)	5103(1)	4233(1)	24(1)
C(11)	5669(1)	1301(1)	3813(1)	33(1)
C(12)	4504(1)	1886(1)	3535(1)	31(1)
C(13)	5491(1)	2717(1)	1782(1)	24(1)
O(13)	5857(1)	1809(1)	1538(1)	36(1)
C(14)	3667(1)	2452(1)	974(1)	35(1)
O(14)	4412(1)	3161(1)	1551(1)	28(1)
C(15)	2721(1)	3228(1)	571(1)	33(1)
C(16)	7643(1)	3892(1)	1314(1)	24(1)
N(16)	8431(1)	3344(1)	859(1)	25(1)
O(16)	7047(1)	4725(1)	1044(1)	38(1)
C(17)	8630(2)	3785(2)	37(1)	35(1)
C(18)	9128(1)	2317(1)	1104(1)	33(1)
C(19)	9572(1)	4166(1)	2770(1)	22(1)
C(20)	10309(1)	4946(1)	2396(1)	28(1)
C(21)	11544(1)	4749(1)	2403(1)	34(1)
C(22)	12036(1)	3761(2)	2768(1)	33(1)
C(23)	11305(1)	2962(1)	3137(1)	30(1)
C(24)	10079(1)	3171(1)	3141(1)	25(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for JF3023FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(2)	1.4199(14)
C(1)-O(1)	1.4349(15)
C(1)-C(6)	1.5170(17)
C(1)-C(2)	1.5377(18)
O(1)-C(11)	1.4372(17)
C(2)-C(13)	1.5182(17)
C(2)-C(3)	1.5350(16)
C(2)-H(2)	0.952(17)
O(2)-C(12)	1.4371(17)
C(3)-C(16)	1.5339(18)
C(3)-C(4)	1.5471(17)
C(3)-H(3)	0.956(16)
C(4)-C(19)	1.5227(16)
C(4)-C(5)	1.5252(17)
C(4)-H(4)	0.962(16)
C(5)-C(10)	1.3979(18)
C(5)-C(6)	1.3979(17)
C(6)-C(7)	1.3951(19)
C(7)-C(8)	1.384(2)
C(7)-H(7)	0.950(18)
C(8)-C(9)	1.391(2)
C(8)-H(8)	0.994(19)
C(9)-C(10)	1.386(2)
C(9)-H(9)	0.974(19)
C(10)-H(10)	0.952(17)
C(11)-C(12)	1.509(2)
C(11)-H(11A)	1.010(19)
C(11)-H(11B)	0.965(19)
C(12)-H(12A)	0.986(17)
C(12)-H(12B)	0.943(19)
C(13)-O(13)	1.1980(17)
C(13)-O(14)	1.3408(15)
C(14)-O(14)	1.4586(17)
C(14)-C(15)	1.499(2)

Table 3. Bond lengths [Å] and angles [°] for JF3023FMI.

C(14)-H(14A)	0.96(2)
C(14)-H(14B)	0.99(2)
C(15)-H(15A)	1.04(2)
C(15)-H(15B)	1.03(2)
C(15)-H(15C)	1.00(2)
C(16)-O(16)	1.2298(17)
C(16)-N(16)	1.3464(17)
N(16)-C(18)	1.4535(18)
N(16)-C(17)	1.4607(18)
C(17)-H(17A)	1.02(2)
C(17)-H(17B)	1.001(18)
C(17)-H(17C)	0.96(3)
C(18)-H(18A)	0.99(2)
C(18)-H(18B)	0.99(2)
C(18)-H(18C)	0.95(2)
C(19)-C(20)	1.3878(19)
C(19)-C(24)	1.3937(19)
C(20)-C(21)	1.4011(19)
C(20)-H(20)	0.966(17)
C(21)-C(22)	1.377(2)
C(21)-H(21)	0.95(2)
C(22)-C(23)	1.393(2)
C(22)-H(22)	0.96(2)
C(23)-C(24)	1.3955(18)
C(23)-H(23)	0.99(2)
C(24)-H(24)	1.010(17)
O(2)-C(1)-O(1)	106.76(9)
O(2)-C(1)-C(6)	110.16(10)
O(1)-C(1)-C(6)	109.63(10)
O(2)-C(1)-C(2)	110.92(10)
O(1)-C(1)-C(2)	108.99(10)
C(6)-C(1)-C(2)	110.31(10)
C(1)-O(1)-C(11)	107.46(10)
C(13)-C(2)-C(3)	109.89(10)
C(13)-C(2)-C(1)	110.84(10)

C(3)-C(2)-C(1)	109.23(10)
C(13)-C(2)-H(2)	108.5(10)
C(3)-C(2)-H(2)	111.6(10)
C(1)-C(2)-H(2)	106.7(10)
C(1)-O(2)-C(12)	108.17(10)
C(16)-C(3)-C(2)	109.23(10)
C(16)-C(3)-C(4)	107.25(10)
C(2)-C(3)-C(4)	110.56(10)
C(16)-C(3)-H(3)	112.8(9)
C(2)-C(3)-H(3)	107.3(9)
C(4)-C(3)-H(3)	109.7(9)
C(19)-C(4)-C(5)	111.65(10)
C(19)-C(4)-C(3)	110.91(10)
C(5)-C(4)-C(3)	113.85(10)
C(19)-C(4)-H(4)	105.3(9)
C(5)-C(4)-H(4)	107.2(9)
C(3)-C(4)-H(4)	107.4(9)
C(10)-C(5)-C(6)	118.62(12)
C(10)-C(5)-C(4)	118.24(11)
C(6)-C(5)-C(4)	123.00(11)
C(7)-C(6)-C(5)	119.91(12)
C(7)-C(6)-C(1)	120.18(11)
C(5)-C(6)-C(1)	119.85(11)
C(8)-C(7)-C(6)	120.79(12)
C(8)-C(7)-H(7)	120.7(11)
C(6)-C(7)-H(7)	118.5(11)
C(7)-C(8)-C(9)	119.68(13)
C(7)-C(8)-H(8)	117.4(11)
C(9)-C(8)-H(8)	122.9(11)
C(10)-C(9)-C(8)	119.70(13)
C(10)-C(9)-H(9)	121.8(10)
C(8)-C(9)-H(9)	118.5(10)
C(9)-C(10)-C(5)	121.25(12)
C(9)-C(10)-H(10)	119.8(10)
C(5)-C(10)-H(10)	119.0(10)
O(1)-C(11)-C(12)	102.18(11)

O(1)-C(11)-H(11A)	110.5(11)
C(12)-C(11)-H(11A)	109.1(11)
O(1)-C(11)-H(11B)	108.0(11)
C(12)-C(11)-H(11B)	112.4(11)
H(11A)-C(11)-H(11B)	114.0(15)
O(2)-C(12)-C(11)	102.64(11)
O(2)-C(12)-H(12A)	112.8(10)
C(11)-C(12)-H(12A)	110.3(10)
O(2)-C(12)-H(12B)	108.6(11)
C(11)-C(12)-H(12B)	114.8(11)
H(12A)-C(12)-H(12B)	107.7(15)
O(13)-C(13)-O(14)	124.09(12)
O(13)-C(13)-C(2)	124.32(12)
O(14)-C(13)-C(2)	111.59(11)
O(14)-C(14)-C(15)	107.72(12)
O(14)-C(14)-H(14A)	107.7(13)
C(15)-C(14)-H(14A)	112.8(13)
O(14)-C(14)-H(14B)	108.3(12)
C(15)-C(14)-H(14B)	112.8(12)
H(14A)-C(14)-H(14B)	107.3(18)
C(13)-O(14)-C(14)	115.61(11)
C(14)-C(15)-H(15A)	110.5(12)
C(14)-C(15)-H(15B)	106.7(12)
H(15A)-C(15)-H(15B)	110.4(16)
C(14)-C(15)-H(15C)	109.1(12)
H(15A)-C(15)-H(15C)	111.2(17)
H(15B)-C(15)-H(15C)	108.9(17)
O(16)-C(16)-N(16)	121.91(12)
O(16)-C(16)-C(3)	118.59(11)
N(16)-C(16)-C(3)	119.44(11)
C(16)-N(16)-C(18)	126.04(12)
C(16)-N(16)-C(17)	119.28(12)
C(18)-N(16)-C(17)	114.68(11)
N(16)-C(17)-H(17A)	111.4(12)
N(16)-C(17)-H(17B)	107.4(10)
H(17A)-C(17)-H(17B)	107.6(16)

N(16)-C(17)-H(17C)	110.9(15)
H(17A)-C(17)-H(17C)	113.1(19)
H(17B)-C(17)-H(17C)	106.2(18)
N(16)-C(18)-H(18A)	111.5(14)
N(16)-C(18)-H(18B)	107.6(11)
H(18A)-C(18)-H(18B)	107.5(17)
N(16)-C(18)-H(18C)	110.6(12)
H(18A)-C(18)-H(18C)	111.3(19)
H(18B)-C(18)-H(18C)	108.2(17)
C(20)-C(19)-C(24)	118.81(12)
C(20)-C(19)-C(4)	120.74(12)
C(24)-C(19)-C(4)	120.45(11)
C(19)-C(20)-C(21)	120.67(14)
C(19)-C(20)-H(20)	119.9(10)
C(21)-C(20)-H(20)	119.4(10)
C(22)-C(21)-C(20)	120.13(14)
C(22)-C(21)-H(21)	121.9(12)
C(20)-C(21)-H(21)	118.0(12)
C(21)-C(22)-C(23)	119.82(13)
C(21)-C(22)-H(22)	119.9(12)
C(23)-C(22)-H(22)	120.2(12)
C(22)-C(23)-C(24)	119.93(14)
C(22)-C(23)-H(23)	120.8(11)
C(24)-C(23)-H(23)	119.3(11)
C(19)-C(24)-C(23)	120.62(13)
C(19)-C(24)-H(24)	118.6(9)
C(23)-C(24)-H(24)	120.7(10)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	16(1)	22(1)	26(1)	0(1)	2(1)	0(1)
O(1)	23(1)	21(1)	32(1)	3(1)	2(1)	0(1)
C(2)	16(1)	21(1)	24(1)	-1(1)	0(1)	1(1)
O(2)	16(1)	27(1)	34(1)	0(1)	4(1)	-3(1)
C(3)	17(1)	22(1)	22(1)	0(1)	1(1)	2(1)
C(4)	17(1)	21(1)	24(1)	0(1)	2(1)	0(1)
C(5)	17(1)	21(1)	23(1)	0(1)	2(1)	3(1)
C(6)	17(1)	22(1)	24(1)	1(1)	0(1)	2(1)
C(7)	23(1)	31(1)	28(1)	0(1)	5(1)	-2(1)
C(8)	31(1)	35(1)	23(1)	-2(1)	3(1)	1(1)
C(9)	26(1)	29(1)	27(1)	-5(1)	-4(1)	1(1)
C(10)	19(1)	26(1)	28(1)	-2(1)	0(1)	-1(1)
C(11)	29(1)	29(1)	40(1)	8(1)	2(1)	-5(1)
C(12)	25(1)	30(1)	40(1)	5(1)	2(1)	-8(1)
C(13)	19(1)	27(1)	26(1)	-1(1)	0(1)	-1(1)
O(13)	30(1)	34(1)	44(1)	-14(1)	-7(1)	7(1)
C(14)	30(1)	30(1)	44(1)	-6(1)	-14(1)	-2(1)
O(14)	20(1)	27(1)	35(1)	-5(1)	-6(1)	0(1)
C(15)	29(1)	38(1)	31(1)	-2(1)	-4(1)	2(1)
C(16)	21(1)	28(1)	24(1)	-1(1)	1(1)	1(1)
N(16)	22(1)	29(1)	24(1)	-1(1)	3(1)	2(1)
O(16)	42(1)	43(1)	30(1)	10(1)	8(1)	20(1)
C(17)	35(1)	44(1)	27(1)	2(1)	8(1)	8(1)
C(18)	34(1)	33(1)	32(1)	-2(1)	4(1)	11(1)
C(19)	18(1)	25(1)	24(1)	-5(1)	2(1)	-1(1)
C(20)	24(1)	27(1)	34(1)	-4(1)	8(1)	-3(1)
C(21)	24(1)	38(1)	42(1)	-9(1)	13(1)	-9(1)
C(22)	16(1)	48(1)	35(1)	-15(1)	3(1)	0(1)
C(23)	22(1)	38(1)	29(1)	-8(1)	-2(1)	6(1)
C(24)	20(1)	30(1)	25(1)	-2(1)	1(1)	1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for JF3023FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
	5 0 (0/1 4)		2227(1.0)	25(1)
H(2)	5860(14)	4276(15)	2337(10)	25(4)
H(3)	7816(13)	2736(14)	2316(9)	18(3)
H(4)	8109(14)	5147(14)	2533(9)	20(4)
H(7)	5647(16)	3786(16)	4798(11)	32(4)
H(8)	6753(16)	4876(16)	5789(12)	37(5)
H(9)	8586(16)	5748(16)	5426(11)	34(4)
H(10)	9224(15)	5456(15)	4080(10)	29(4)
H(11A)	5824(16)	1407(17)	4428(12)	37(5)
H(11B)	5699(16)	501(17)	3634(11)	35(4)
H(12A)	4177(15)	1551(15)	3007(11)	27(4)
H(12B)	3905(17)	1837(16)	3912(12)	35(5)
H(14A)	3343(19)	1828(19)	1280(13)	48(6)
H(14B)	4188(19)	2099(18)	574(13)	47(5)
H(15A)	2195(19)	3577(19)	1008(13)	51(6)
H(15B)	2210(18)	2716(18)	158(13)	49(5)
H(15C)	3113(19)	3854(19)	260(13)	51(6)
H(17A)	8294(19)	3232(19)	-411(13)	49(6)
H(17B)	9516(16)	3830(16)	-6(11)	34(5)
H(17C)	8330(20)	4570(20)	-33(15)	66(7)
H(18A)	9920(20)	2530(20)	1367(14)	62(7)
H(18B)	9263(18)	1869(17)	596(13)	43(5)
H(18C)	8699(19)	1837(18)	1455(13)	45(5)
H(20)	9974(15)	5644(15)	2140(10)	26(4)
H(21)	12018(18)	5313(18)	2148(12)	43(5)
H(22)	12886(19)	3631(18)	2776(12)	45(5)
H(23)	11649(17)	2254(17)	3413(12)	38(5)
H(24)	9542(15)	2610(15)	3421(10)	28(4)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF3023FMI.

Table 6. Torsion angles [°] for JF3023FMI.

_

O(2)-C(1)-O(1)-C(11)	-14.21(14)	
C(6)-C(1)-O(1)-C(11)	105.10(12)	
C(2)-C(1)-O(1)-C(11)	-134.08(11)	
O(2)-C(1)-C(2)-C(13)	-57.31(13)	
O(1)-C(1)-C(2)-C(13)	59.95(12)	
C(6)-C(1)-C(2)-C(13)	-179.64(10)	
O(2)-C(1)-C(2)-C(3)	-178.53(10)	
O(1)-C(1)-C(2)-C(3)	-61.27(12)	
C(6)-C(1)-C(2)-C(3)	59.13(13)	
O(1)-C(1)-O(2)-C(12)	-9.46(14)	
C(6)-C(1)-O(2)-C(12)	-128.43(11)	
C(2)-C(1)-O(2)-C(12)	109.15(12)	
C(13)-C(2)-C(3)-C(16)	57.79(13)	
C(1)-C(2)-C(3)-C(16)	179.59(10)	
C(13)-C(2)-C(3)-C(4)	175.59(10)	
C(1)-C(2)-C(3)-C(4)	-62.61(13)	
C(16)-C(3)-C(4)-C(19)	-76.07(12)	
C(2)-C(3)-C(4)-C(19)	164.93(10)	
C(16)-C(3)-C(4)-C(5)	157.01(10)	
C(2)-C(3)-C(4)-C(5)	38.01(14)	
C(19)-C(4)-C(5)-C(10)	45.88(15)	
C(3)-C(4)-C(5)-C(10)	172.41(11)	
C(19)-C(4)-C(5)-C(6)	-138.49(12)	
C(3)-C(4)-C(5)-C(6)	-11.95(16)	
C(10)-C(5)-C(6)-C(7)	2.40(18)	
C(4)-C(5)-C(6)-C(7)	-173.21(12)	
C(10)-C(5)-C(6)-C(1)	-174.78(11)	
C(4)-C(5)-C(6)-C(1)	9.60(18)	
O(2)-C(1)-C(6)-C(7)	27.11(16)	
O(1)-C(1)-C(6)-C(7)	-90.09(14)	
C(2)-C(1)-C(6)-C(7)	149.89(12)	
O(2)-C(1)-C(6)-C(5)	-155.71(11)	
O(1)-C(1)-C(6)-C(5)	87.09(14)	
C(2)-C(1)-C(6)-C(5)	-32.93(15)	

C(5)-C(6)-C(7)-C(8)	-1.3(2)
C(1)-C(6)-C(7)-C(8)	175.85(13)
C(6)-C(7)-C(8)-C(9)	-0.8(2)
C(7)-C(8)-C(9)-C(10)	1.9(2)
C(8)-C(9)-C(10)-C(5)	-0.7(2)
C(6)-C(5)-C(10)-C(9)	-1.39(19)
C(4)-C(5)-C(10)-C(9)	174.44(12)
C(1)-O(1)-C(11)-C(12)	30.65(14)
C(1)-O(2)-C(12)-C(11)	27.88(15)
O(1)-C(11)-C(12)-O(2)	-35.35(15)
C(3)-C(2)-C(13)-O(13)	37.35(18)
C(1)-C(2)-C(13)-O(13)	-83.48(16)
C(3)-C(2)-C(13)-O(14)	-142.17(11)
C(1)-C(2)-C(13)-O(14)	97.00(12)
O(13)-C(13)-O(14)-C(14)	0.8(2)
C(2)-C(13)-O(14)-C(14)	-179.65(12)
C(15)-C(14)-O(14)-C(13)	-160.98(13)
C(2)-C(3)-C(16)-O(16)	43.26(16)
C(4)-C(3)-C(16)-O(16)	-76.59(15)
C(2)-C(3)-C(16)-N(16)	-139.52(12)
C(4)-C(3)-C(16)-N(16)	100.63(13)
O(16)-C(16)-N(16)-C(18)	-176.50(14)
C(3)-C(16)-N(16)-C(18)	6.4(2)
O(16)-C(16)-N(16)-C(17)	3.1(2)
C(3)-C(16)-N(16)-C(17)	-174.04(12)
C(5)-C(4)-C(19)-C(20)	-121.68(13)
C(3)-C(4)-C(19)-C(20)	110.19(14)
C(5)-C(4)-C(19)-C(24)	58.60(15)
C(3)-C(4)-C(19)-C(24)	-69.52(15)
C(24)-C(19)-C(20)-C(21)	-1.1(2)
C(4)-C(19)-C(20)-C(21)	179.22(13)
C(19)-C(20)-C(21)-C(22)	1.4(2)
C(20)-C(21)-C(22)-C(23)	-0.6(2)
C(21)-C(22)-C(23)-C(24)	-0.5(2)
C(20)-C(19)-C(24)-C(23)	0.0(2)
C(4)-C(19)-C(24)-C(23)	179.69(12)

CCDC 2087135

Table 1. Crystal data and structure refinement	ent for $[C_{20}H_{16}N_2O_2]$	2].	
Identification code	JF3006F2MI	(JMR-1-	156)
Empirical formula	C20 H16 N2 O2		
Formula weight	316.35		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 12.6220(11) Å		⟨= 90°.
	b = 9.9052(9) Å		$\mathbb{B} = 96.220(3)^{\circ}.$
	c = 13.1752(11) Å	L	$\odot = 90^{\circ}.$
Volume	1637.5(2) Å ³		
Z	4		
Density (calculated)	1.283 Mg/m ³		
Absorption coefficient	0.084 mm ⁻¹		
F(000)	664		
Crystal size	0.339 x 0.228 x 0.	197 mm ³	
Crystal color and habit	Colorless Block		
Diffractometer	Bruker Photon100	CMOS	
Theta range for data collection	2.366 to 27.522°.		
Index ranges	-16<=h<=16, -12<	<=k<=12	,-17<=1<=17
Reflections collected	14062		
Independent reflections	3764 [R(int) = 0.0	279]	
Observed reflections (I > 2sigma(I))	3371		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical fr	om equiv	alents
Max. and min. transmission	0.9804 and 0.865		
Solution method	SHELXT (Sheldri	ck, 2014)
Refinement method	SHELXL-2017/1	(Sheldric	k, 2017) Full-matrix least-squares on F ²

Data / restraints / parameters	3764 / 0 / 218
Goodness-of-fit on F ²	1.030
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.1176
R indices (all data)	R1 = 0.0506, $wR2 = 0.1223$
Extinction coefficient	0.058(4)
Largest diff. peak and hole	0.390 and -0.301 e.Å ⁻³

· · · · · · · · · · · · · · · · · · ·				
	x	У	Z	U(eq)
C(1)	6528(1)	7185(1)	5949(1)	19(1)
O(1)	5807(1)	7010(1)	5045(1)	22(1)
C(2)	7016(1)	5794(1)	6240(1)	18(1)
O(2)	7338(1)	8080(1)	5703(1)	23(1)
C(3)	6119(1)	4872(1)	6547(1)	19(1)
C(4)	5790(1)	5373(1)	7581(1)	19(1)
C(5)	5610(1)	6900(1)	7561(1)	19(1)
C(6)	5974(1)	7748(1)	6826(1)	19(1)
C(7)	5835(1)	9145(1)	6888(1)	22(1)
C(8)	5330(1)	9702(1)	7673(1)	24(1)
C(9)	4968(1)	8865(1)	8409(1)	25(1)
C(10)	5108(1)	7477(1)	8351(1)	23(1)
C(11)	5985(1)	8106(1)	4367(1)	27(1)
C(12)	7161(1)	8388(2)	4626(1)	30(1)
C(13)	7536(1)	5247(1)	5384(1)	22(1)
N(13)	7943(1)	4817(1)	4725(1)	29(1)
C(14)	6458(1)	3446(1)	6617(1)	21(1)
N(14)	6713(1)	2339(1)	6660(1)	27(1)
C(15)	4828(1)	4591(1)	7860(1)	20(1)
C(16)	3817(1)	4849(1)	7363(1)	24(1)
C(17)	2937(1)	4127(1)	7613(1)	28(1)
C(18)	3067(1)	3127(2)	8358(1)	30(1)
C(19)	4071(1)	2850(2)	8846(1)	31(1)
C(20)	4951(1)	3584(1)	8601(1)	26(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for JF3006F2MI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(2)	1.4176(14)
C(1)-O(1)	1.4287(15)
C(1)-C(6)	1.5197(17)
C(1)-C(2)	1.5406(16)
O(1)-C(11)	1.4384(15)
C(2)-C(13)	1.4683(17)
C(2)-C(3)	1.5428(16)
C(2)-H(2)	1.0000
O(2)-C(12)	1.4445(16)
C(3)-C(14)	1.4762(17)
C(3)-C(4)	1.5476(16)
C(3)-H(3)	1.0000
C(4)-C(15)	1.5177(16)
C(4)-C(5)	1.5292(16)
C(4)-H(4)	1.0000
C(5)-C(10)	1.3975(17)
C(5)-C(6)	1.3978(17)
C(6)-C(7)	1.3984(17)
C(7)-C(8)	1.3874(18)
C(7)-H(7)	0.9500
C(8)-C(9)	1.390(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3886(19)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.512(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-N(13)	1.1393(17)
C(14)-N(14)	1.1416(17)
C(15)-C(16)	1.3931(18)
C(15)-C(20)	1.3932(17)

Table 3. Bond lengths [Å] and angles [°] for JF3006F2MI.

C(16)-C(17)	1.3902(18)
C(16)-H(16)	0.9500
C(17)-C(18)	1.392(2)
C(17)-H(17)	0.9500
C(18)-C(19)	1.385(2)
C(18)-H(18)	0.9500
C(19)-C(20)	1.3941(19)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
O(2)-C(1)-O(1)	107.14(9)
O(2)-C(1)-C(6)	110.28(10)
O(1)-C(1)-C(6)	112.05(10)
O(2)-C(1)-C(2)	109.71(9)
O(1)-C(1)-C(2)	107.49(9)
C(6)-C(1)-C(2)	110.08(10)
C(1)-O(1)-C(11)	107.32(9)
C(13)-C(2)-C(1)	109.81(10)
C(13)-C(2)-C(3)	112.65(10)
C(1)-C(2)-C(3)	108.05(9)
C(13)-C(2)-H(2)	108.8
C(1)-C(2)-H(2)	108.8
C(3)-C(2)-H(2)	108.8
C(1)-O(2)-C(12)	108.52(9)
C(14)-C(3)-C(2)	111.50(10)
C(14)-C(3)-C(4)	110.83(10)
C(2)-C(3)-C(4)	108.39(9)
C(14)-C(3)-H(3)	108.7
C(2)-C(3)-H(3)	108.7
C(4)-C(3)-H(3)	108.7
C(15)-C(4)-C(5)	112.81(10)
C(15)-C(4)-C(3)	110.31(10)
C(5)-C(4)-C(3)	110.87(10)
C(15)-C(4)-H(4)	107.5
C(5)-C(4)-H(4)	107.5
C(3)-C(4)-H(4)	107.5

C(10)-C(5)-C(6)	118.65(11)
C(10)-C(5)-C(4)	118.11(11)
C(6)-C(5)-C(4)	123.15(11)
C(5)-C(6)-C(7)	120.11(11)
C(5)-C(6)-C(1)	121.28(11)
C(7)-C(6)-C(1)	118.61(11)
C(8)-C(7)-C(6)	120.54(12)
C(8)-C(7)-H(7)	119.7
C(6)-C(7)-H(7)	119.7
C(7)-C(8)-C(9)	119.63(12)
C(7)-C(8)-H(8)	120.2
C(9)-C(8)-H(8)	120.2
C(10)-C(9)-C(8)	119.96(12)
C(10)-C(9)-H(9)	120.0
C(8)-C(9)-H(9)	120.0
C(9)-C(10)-C(5)	121.10(12)
C(9)-C(10)-H(10)	119.4
C(5)-C(10)-H(10)	119.4
O(1)-C(11)-C(12)	102.39(10)
O(1)-C(11)-H(11A)	111.3
C(12)-C(11)-H(11A)	111.3
O(1)-C(11)-H(11B)	111.3
C(12)-C(11)-H(11B)	111.3
H(11A)-C(11)-H(11B)	109.2
O(2)-C(12)-C(11)	103.08(10)
O(2)-C(12)-H(12A)	111.1
C(11)-C(12)-H(12A)	111.1
O(2)-C(12)-H(12B)	111.1
C(11)-C(12)-H(12B)	111.1
H(12A)-C(12)-H(12B)	109.1
N(13)-C(13)-C(2)	179.59(14)
N(14)-C(14)-C(3)	179.13(14)
C(16)-C(15)-C(20)	119.20(12)
C(16)-C(15)-C(4)	120.53(11)
C(20)-C(15)-C(4)	120.25(11)
C(17)-C(16)-C(15)	120.59(12)

C(17)-C(16)-H(16)	119.7
C(15)-C(16)-H(16)	119.7
C(16)-C(17)-C(18)	119.81(13)
С(16)-С(17)-Н(17)	120.1
С(18)-С(17)-Н(17)	120.1
C(19)-C(18)-C(17)	120.01(13)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
C(18)-C(19)-C(20)	120.09(13)
C(18)-C(19)-H(19)	120.0
C(20)-C(19)-H(19)	120.0
C(15)-C(20)-C(19)	120.29(13)
C(15)-C(20)-H(20)	119.9
C(19)-C(20)-H(20)	119.9

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(1)	17(1)	21(1)	2(1)	2(1)	-1(1)
O(1)	22(1)	23(1)	19(1)	3(1)	-1(1)	-1(1)
C(2)	18(1)	18(1)	20(1)	1(1)	2(1)	0(1)
O(2)	22(1)	23(1)	24(1)	4(1)	4(1)	-4(1)
C(3)	19(1)	18(1)	20(1)	1(1)	2(1)	0(1)
C(4)	19(1)	18(1)	19(1)	1(1)	3(1)	0(1)
C(5)	17(1)	20(1)	20(1)	-1(1)	0(1)	-1(1)
C(6)	16(1)	19(1)	20(1)	-1(1)	0(1)	0(1)
C(7)	21(1)	19(1)	25(1)	1(1)	0(1)	0(1)
C(8)	23(1)	20(1)	30(1)	-4(1)	-1(1)	2(1)
C(9)	21(1)	29(1)	26(1)	-7(1)	2(1)	2(1)
C(10)	22(1)	26(1)	23(1)	-1(1)	4(1)	-2(1)
C(11)	33(1)	24(1)	24(1)	7(1)	0(1)	2(1)
C(12)	34(1)	32(1)	25(1)	8(1)	6(1)	-5(1)
C(13)	20(1)	20(1)	25(1)	3(1)	2(1)	2(1)
N(13)	31(1)	28(1)	28(1)	2(1)	9(1)	6(1)
C(14)	21(1)	21(1)	22(1)	1(1)	3(1)	-2(1)
N(14)	28(1)	20(1)	32(1)	2(1)	2(1)	0(1)
C(15)	21(1)	20(1)	19(1)	-1(1)	4(1)	-2(1)
C(16)	23(1)	25(1)	24(1)	2(1)	2(1)	-1(1)
C(17)	21(1)	32(1)	29(1)	-3(1)	3(1)	-3(1)
C(18)	29(1)	32(1)	30(1)	-3(1)	10(1)	-12(1)
C(19)	36(1)	29(1)	29(1)	7(1)	4(1)	-9(1)
C(20)	26(1)	26(1)	25(1)	4(1)	1(1)	-4(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for JF3006F2MI. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\ h^2\ a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

	Х	У	Z	U(eq)
H(2)	7563	5906	6842	22
H(3)	5491	4949	6018	22
H(4)	6395	5180	8116	22
H(7)	6088	9717	6388	26
H(8)	5231	10651	7708	29
H(9)	4626	9241	8951	30
H(10)	4858	6911	8856	28
H(11A)	5549	8904	4504	33
H(11B)	5822	7836	3644	33
H(12A)	7597	7800	4228	36
H(12B)	7329	9344	4494	36
H(16)	3729	5525	6849	29
H(17)	2249	4316	7276	33
H(18)	2467	2634	8531	36
H(19)	4160	2160	9349	37
H(20)	5638	3396	8941	31

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF3006F2MI.

Table 6. Torsion angles [°] for JF3006F2MI.

O(2)-C(1)-O(1)-C(11)	-18.16(12)	
C(6)-C(1)-O(1)-C(11)	102.93(11)	
C(2)-C(1)-O(1)-C(11)	-136.01(10)	
O(2)-C(1)-C(2)-C(13)	-59.23(12)	
O(1)-C(1)-C(2)-C(13)	56.94(12)	
C(6)-C(1)-C(2)-C(13)	179.23(10)	
O(2)-C(1)-C(2)-C(3)	177.55(9)	
O(1)-C(1)-C(2)-C(3)	-66.28(11)	
C(6)-C(1)-C(2)-C(3)	56.01(12)	
O(1)-C(1)-O(2)-C(12)	-3.91(13)	
C(6)-C(1)-O(2)-C(12)	-126.11(11)	
C(2)-C(1)-O(2)-C(12)	112.48(11)	
C(13)-C(2)-C(3)-C(14)	45.92(13)	
C(1)-C(2)-C(3)-C(14)	167.40(10)	
C(13)-C(2)-C(3)-C(4)	168.19(10)	
C(1)-C(2)-C(3)-C(4)	-70.33(12)	
C(14)-C(3)-C(4)-C(15)	-63.40(13)	
C(2)-C(3)-C(4)-C(15)	173.92(9)	
C(14)-C(3)-C(4)-C(5)	170.90(10)	
C(2)-C(3)-C(4)-C(5)	48.23(12)	
C(15)-C(4)-C(5)-C(10)	43.21(15)	
C(3)-C(4)-C(5)-C(10)	167.50(10)	
C(15)-C(4)-C(5)-C(6)	-140.37(12)	
C(3)-C(4)-C(5)-C(6)	-16.09(16)	
C(10)-C(5)-C(6)-C(7)	0.04(17)	
C(4)-C(5)-C(6)-C(7)	-176.35(11)	
C(10)-C(5)-C(6)-C(1)	179.94(11)	
C(4)-C(5)-C(6)-C(1)	3.54(17)	
O(2)-C(1)-C(6)-C(5)	-144.73(11)	
O(1)-C(1)-C(6)-C(5)	96.01(13)	
C(2)-C(1)-C(6)-C(5)	-23.54(15)	
O(2)-C(1)-C(6)-C(7)	35.17(15)	
O(1)-C(1)-C(6)-C(7)	-84.09(13)	
C(2)-C(1)-C(6)-C(7)	156.36(11)	

C(5)-C(6)-C(7)-C(8)	-0.41(18)
C(1)-C(6)-C(7)-C(8)	179.69(11)
C(6)-C(7)-C(8)-C(9)	0.60(19)
C(7)-C(8)-C(9)-C(10)	-0.43(19)
C(8)-C(9)-C(10)-C(5)	0.06(19)
C(6)-C(5)-C(10)-C(9)	0.13(18)
C(4)-C(5)-C(10)-C(9)	176.71(11)
C(1)-O(1)-C(11)-C(12)	31.57(13)
C(1)-O(2)-C(12)-C(11)	22.95(13)
O(1)-C(11)-C(12)-O(2)	-32.89(13)
C(5)-C(4)-C(15)-C(16)	49.73(15)
C(3)-C(4)-C(15)-C(16)	-74.85(14)
C(5)-C(4)-C(15)-C(20)	-131.68(12)
C(3)-C(4)-C(15)-C(20)	103.73(13)
C(20)-C(15)-C(16)-C(17)	0.94(19)
C(4)-C(15)-C(16)-C(17)	179.55(12)
C(15)-C(16)-C(17)-C(18)	-0.7(2)
C(16)-C(17)-C(18)-C(19)	-0.2(2)
C(17)-C(18)-C(19)-C(20)	0.7(2)
C(16)-C(15)-C(20)-C(19)	-0.4(2)
C(4)-C(15)-C(20)-C(19)	-178.97(12)
C(18)-C(19)-C(20)-C(15)	-0.5(2)

Table 7. Hydrogen bonds for JF3006F2MI [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2)N(14)#1	1.00	2.52	3.4071(17)	147.6

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y+1/2,-z+3/2

Table 1. Crystal data and structure refinement for $[C_{31}H_{29}NO_7]$.					
Identification code ((EJ-I-26B) JF3084MOFMI	Reference Molecule in CCDC : 2145030			
Empirical formula	C31 H29 N O7				
Formula weight	527.55				
Temperature	90(2) K				
Wavelength	0.71073 Å				
Crystal system	Orthorhombic				
Space group	P212121				
Unit cell dimensions	a = 11.0370(5) Å	a= 90°.			
	b = 13.7529(7) Å	b=90°.			
	c = 17.5560(9) Å	$g = 90^{\circ}.$			
Volume	2664.8(2) Å3				
Ζ	4				
Density (calculated)	1.315 Mg/m3				
Absorption coefficier	nt 0.093 mm-1				
F(000)	1112				
Crystal size	0.707 x 0.516 x 0.458 mm3	3			
Crystal color and hab	oit Colorless Block				
Diffractometer	Bruker APEX-II CCD				
Theta range for data of	collection2.180 to 30.565°.				
Index ranges -15<=	=h<=10, -19<=k<=19, -23<=	=l<=25			
Reflections collected	16241				
Independent reflectio	ns 8163 [R(int) = 0.0156]				
Observed reflections $(I > 2sigma(I))$ 7591					
Completeness to theta = $25.242^{\circ}99.9$ %					
Absorption correctionSemi-empirical from equivalents					
Max. and min. transmission0.9633 and 0.9122					

Solution methodSHELXT (Sheldrick, 2014)Refinement methodSHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F2Data / restraints / parameters 8163 / 8 / 465Goodness-of-fit on F21.023Final R indices [I>2sigma(I)]R1 = 0.0339, wR2 = 0.0851R indices (all data)R1 = 0.0374, wR2 = 0.0877Absolute structure parameter0.4(2)Largest diff. peak and hole0.309 and -0.188 e.Å-3

	х	У	Z	U(eq)
C(1)	6971(1)	3069(1)	3463(1)	14(1)
C(2)	7704(1)	2141(1)	3282(1)	16(1)
O(2)	8872(1)	2184(1)	3618(1)	22(1)
C(3)	7797(1)	2007(1)	2425(1)	17(1)
O(3)	7091(1)	1326(1)	3616(1)	19(1)
C(4)	6902(1)	2372(1)	1940(1)	18(1)
C(5)	5840(1)	2985(1)	2228(1)	16(1)
C(6)	5718(1)	2930(1)	3108(1)	14(1)
C(7)	8938(2)	1455(1)	4200(1)	30(1)
C(8)	7998(2)	732(1)	3954(1)	24(1)
C(8B)	7714(9)	1020(8)	4318(6)	30(2)
C(9)	8775(1)	1481(1)	2125(1)	22(1)
C(10)	8862(2)	1315(1)	1347(1)	26(1)
C(11)	7983(2)	1682(1)	864(1)	27(1)
C(12)	7014(1)	2210(1)	1157(1)	23(1)
C(13)	6895(1)	3215(1)	4315(1)	16(1)
N(13)	7828(1)	3722(1)	4679(1)	16(1)
O(13)	6086(1)	2873(1)	4701(1)	21(1)
C(14)	8720(1)	4319(1)	4358(1)	17(1)
O(14)	8808(1)	4601(1)	3713(1)	20(1)
C(15)	9194(1)	4081(1)	5611(1)	23(1)
O(15)	9489(1)	4600(1)	4911(1)	22(1)
C(16)	7854(1)	3817(1)	5510(1)	18(1)
C(17)	7002(1)	4602(1)	5798(1)	17(1)
C(18)	6816(2)	4680(1)	6583(1)	26(1)
C(19)	6070(2)	5409(2)	6871(1)	31(1)
C(20)	5510(2)	6062(1)	6387(1)	30(1)
C(21)	5677(2)	5983(1)	5607(1)	26(1)
C(22)	6424(1)	5253(1)	5314(1)	20(1)
C(23)	4644(1)	2708(1)	1860(1)	17(1)
C(24)	4271(1)	1737(1)	1859(1)	20(1)

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for JF3084MOFMI. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(25)	3141(2)	1471(1)	1578(1)	24(1)
C(26)	2372(2)	2176(1)	1282(1)	27(1)
C(27)	2739(2)	3139(1)	1268(1)	28(1)
C(28)	3870(2)	3407(1)	1558(1)	23(1)
C(29)	4841(1)	3706(1)	3368(1)	18(1)
O(29)	5120(1)	4546(1)	3470(1)	28(1)
C(30)	2759(2)	4087(1)	3526(1)	29(1)
O(30)	3715(1)	3358(1)	3437(1)	21(1)
C(31)	1568(2)	3566(2)	3418(2)	38(1)

C(1)-C(13)	1.513(2)	C(11)-H(11)	0.98(3)
C(1)-C(6)	1.5290(18)	C(12)-H(12)	0.97(2)
C(1)-C(2)	1.5443(19)	C(13)-O(13)	1.2158(18)
C(1)-H(1)	0.93(2)	C(13)-N(13)	1.3974(18)
C(2)-O(2)	1.4189(17)	N(13)-C(14)	1.4001(18)
C(2)-O(3)	1.4348(17)	N(13)-C(16)	1.4669(18)
C(2)-C(3)	1.519(2)	C(14)-O(14)	1.2002(19)
O(2)-C(7)	1.434(2)	C(14)-O(15)	1.3472(18)
C(3)-C(4)	1.397(2)	C(15)-O(15)	1.458(2)
C(3)-C(9)	1.402(2)	C(15)-C(16)	1.532(2)
O(3)-C(8)	1.421(2)	C(15)-H(15A)	0.96(2)
O(3)-C(8B)	1.473(9)	C(15)-H(15B)	0.96(2)
C(4)-C(12)	1.399(2)	C(16)-C(17)	1.518(2)
C(4)-C(5)	1.529(2)	C(16)-H(16)	0.98(2)
C(5)-C(23)	1.519(2)	C(17)-C(22)	1.389(2)
C(5)-C(6)	1.552(2)	C(17)-C(18)	1.397(2)
C(5)-H(5)	0.99(2)	C(18)-C(19)	1.392(3)
C(6)-C(29)	1.5115(19)	C(18)-H(18)	1.01(3)
C(6)-H(6)	0.96(2)	C(19)-C(20)	1.382(3)
C(7)-C(8B)	1.491(10)	C(19)-H(19)	0.96(3)
C(7)-C(8)	1.501(3)	C(20)-C(21)	1.385(3)
C(7)-H(7A)	0.9900	C(20)-H(20)	0.97(3)
C(7)-H(7B)	0.9900	C(21)-C(22)	1.397(2)
C(7)-H(7C)	0.9900	C(21)-H(21)	0.97(2)
C(7)-H(7D)	0.9900	C(22)-H(22)	0.91(2)
C(8)-H(8A)	0.9900	C(23)-C(28)	1.392(2)
C(8)-H(8B)	0.9900	C(23)-C(24)	1.397(2)
C(8B)-H(8B1)	0.9900	C(24)-C(25)	1.390(2)
C(8B)-H(8B2)	0.9900	C(24)-H(24)	0.96(2)
C(9)-C(10)	1.389(2)	C(25)-C(26)	1.390(2)
C(9)-H(9)	0.98(2)	C(25)-H(25)	0.95(2)
C(10)-C(11)	1.384(3)	C(26)-C(27)	1.386(3)
C(10)-H(10)	0.93(2)	C(26)-H(26)	0.98(2)
C(11)-C(12)	1.391(2)	C(27)-C(28)	1.398(2)

Table 3. Bond lengths [Å] and angles [°] for JF3084MOFMI.

C(27)-H(27)	0.98(3)	C(23)-C(5)-H(5)	109.3(11)
C(28)-H(28)	0.96(2)	C(4)-C(5)-H(5)	106.2(12)
C(29)-O(29)	1.2096(19)	C(6)-C(5)-H(5)	107.1(11)
C(29)-O(30)	1.3370(18)	C(29)-C(6)-C(1)	111.54(11)
C(30)-O(30)	1.4638(18)	C(29)-C(6)-C(5)	108.75(11)
C(30)-C(31)	1.510(3)	C(1)-C(6)-C(5)	108.70(11)
C(30)-H(30A)	0.96(3)	C(29)-C(6)-H(6)	109.7(12)
C(30)-H(30B)	0.97(3)	C(1)-C(6)-H(6)	109.6(12)
C(31)-H(31A)	1.04(3)	C(5)-C(6)-H(6)	108.5(11)
C(31)-H(31B)	1.00(3)	O(2)-C(7)-C(8B)	109.4(4)
C(31)-H(31C)	0.96(3)	O(2)-C(7)-C(8)	102.82(14)
		O(2)-C(7)-H(7A)	111.2
C(13)-C(1)-C(6)	111.68(11)	C(8)-C(7)-H(7A)	111.2
C(13)-C(1)-C(2)	110.03(11)	O(2)-C(7)-H(7B)	111.2
C(6)-C(1)-C(2)	106.63(11)	C(8)-C(7)-H(7B)	111.2
C(13)-C(1)-H(1)	111.2(12)	H(7A)-C(7)-H(7B)	109.1
C(6)-C(1)-H(1)	110.1(12)	O(2)-C(7)-H(7C)	109.8
C(2)-C(1)-H(1)	106.9(12)	C(8B)-C(7)-H(7C)	109.8
O(2)-C(2)-O(3)	106.92(11)	O(2)-C(7)-H(7D)	109.8
O(2)-C(2)-C(3)	110.84(11)	C(8B)-C(7)-H(7D)	109.8
O(3)-C(2)-C(3)	109.96(11)	H(7C)-C(7)-H(7D)	108.2
O(2)-C(2)-C(1)	110.84(11)	O(3)-C(8)-C(7)	103.11(14)
O(3)-C(2)-C(1)	108.36(11)	O(3)-C(8)-H(8A)	111.1
C(3)-C(2)-C(1)	109.84(12)	C(7)-C(8)-H(8A)	111.1
C(2)-O(2)-C(7)	108.27(12)	O(3)-C(8)-H(8B)	111.1
C(4)-C(3)-C(9)	120.12(14)	C(7)-C(8)-H(8B)	111.1
C(4)-C(3)-C(2)	120.78(12)	H(8A)-C(8)-H(8B)	109.1
C(9)-C(3)-C(2)	119.07(13)	O(3)-C(8B)-C(7)	101.1(6)
C(8)-O(3)-C(2)	106.71(12)	O(3)-C(8B)-H(8B1)	111.5
C(2)-O(3)-C(8B)	110.2(4)	C(7)-C(8B)-H(8B1)	111.5
C(3)-C(4)-C(12)	118.59(13)	O(3)-C(8B)-H(8B2)	111.5
C(3)-C(4)-C(5)	122.60(13)	C(7)-C(8B)-H(8B2)	111.5
C(12)-C(4)-C(5)	118.74(13)	H(8B1)-C(8B)-H(8B2)	109.4
C(23)-C(5)-C(4)	112.79(12)	C(10)-C(9)-C(3)	120.47(15)
C(23)-C(5)-C(6)	109.57(11)	C(10)-C(9)-H(9)	120.8(13)
C(4)-C(5)-C(6)	111.60(11)	C(3)-C(9)-H(9)	118.7(13)

C(11)-C(10)-C(9)	119.63(15)	C(17)-C(18)-H(18)	119.0(14)
С(11)-С(10)-Н(10)	120.4(14)	C(20)-C(19)-C(18)	120.57(16)
C(9)-C(10)-H(10)	120.0(14)	C(20)-C(19)-H(19)	119.1(16)
C(10)-C(11)-C(12)	120.18(15)	C(18)-C(19)-H(19)	120.3(16)
C(10)-C(11)-H(11)	117.4(14)	C(19)-C(20)-C(21)	119.80(16)
C(12)-C(11)-H(11)	122.3(15)	C(19)-C(20)-H(20)	118.2(15)
C(11)-C(12)-C(4)	121.01(15)	C(21)-C(20)-H(20)	122.0(15)
C(11)-C(12)-H(12)	118.5(13)	C(20)-C(21)-C(22)	119.95(17)
C(4)-C(12)-H(12)	120.5(13)	C(20)-C(21)-H(21)	120.9(14)
O(13)-C(13)-N(13)	118.64(13)	C(22)-C(21)-H(21)	119.1(14)
O(13)-C(13)-C(1)	122.79(13)	C(17)-C(22)-C(21)	120.52(15)
N(13)-C(13)-C(1)	118.48(12)	C(17)-C(22)-H(22)	123.1(13)
C(13)-N(13)-C(14)	128.83(12)	C(21)-C(22)-H(22)	116.4(13)
C(13)-N(13)-C(16)	120.94(12)	C(28)-C(23)-C(24)	118.66(14)
C(14)-N(13)-C(16)	109.49(11)	C(28)-C(23)-C(5)	121.46(13)
O(14)-C(14)-O(15)	122.40(13)	C(24)-C(23)-C(5)	119.79(13)
O(14)-C(14)-N(13)	128.77(13)	C(25)-C(24)-C(23)	121.07(15)
O(15)-C(14)-N(13)	108.75(13)	C(25)-C(24)-H(24)	118.9(13)
O(15)-C(15)-C(16)	103.55(12)	C(23)-C(24)-H(24)	120.0(13)
O(15)-C(15)-H(15A)	107.2(14)	C(26)-C(25)-C(24)	119.83(15)
C(16)-C(15)-H(15A)	113.3(14)	C(26)-C(25)-H(25)	119.5(14)
O(15)-C(15)-H(15B)	107.2(13)	C(24)-C(25)-H(25)	120.6(14)
C(16)-C(15)-H(15B)	115.0(13)	C(27)-C(26)-C(25)	119.63(15)
H(15A)-C(15)-H(15B)	109.9(19)	C(27)-C(26)-H(26)	119.9(13)
C(14)-O(15)-C(15)	109.07(12)	C(25)-C(26)-H(26)	120.5(13)
N(13)-C(16)-C(17)	112.45(12)	C(26)-C(27)-C(28)	120.51(16)
N(13)-C(16)-C(15)	98.94(12)	C(26)-C(27)-H(27)	121.0(15)
C(17)-C(16)-C(15)	113.05(12)	C(28)-C(27)-H(27)	118.5(15)
N(13)-C(16)-H(16)	109.3(11)	C(23)-C(28)-C(27)	120.28(15)
C(17)-C(16)-H(16)	112.0(11)	C(23)-C(28)-H(28)	119.1(14)
C(15)-C(16)-H(16)	110.3(11)	C(27)-C(28)-H(28)	120.5(14)
C(22)-C(17)-C(18)	119.13(15)	O(29)-C(29)-O(30)	124.39(13)
C(22)-C(17)-C(16)	122.65(13)	O(29)-C(29)-C(6)	123.84(14)
C(18)-C(17)-C(16)	118.20(14)	O(30)-C(29)-C(6)	111.71(12)
C(19)-C(18)-C(17)	120.01(17)	O(30)-C(30)-C(31)	106.80(15)
C(19)-C(18)-H(18)	121.0(14)	O(30)-C(30)-H(30A)	105.7(16)

C(31)-C(30)-H(30A)	111.5(16)	C(30)-C(31)-H(31B)	110.2(19)
O(30)-C(30)-H(30B)	109.7(15)	H(31A)-C(31)-H(31B)	111(3)
C(31)-C(30)-H(30B)	115.2(15)	C(30)-C(31)-H(31C)	108.4(17)
H(30A)-C(30)-H(30B)	108(2)	H(31A)-C(31)-H(31C)	110(2)
C(29)-O(30)-C(30)	115.79(12)	H(31B)-C(31)-H(31C)	107(2)
C(30)-C(31)-H(31A)	110(2)		

	U11	U22	U33	U23	U13
C(1)	11(1)	14(1)	18(1)	-2(1)	0(1)
C(2)	10(1)	17(1)	22(1)	-2(1)	-1(1)
O(2)	11(1)	25(1)	30(1)	-3(1)	-5(1)
C(3)	13(1)	18(1)	22(1)	-4(1)	2(1)
O(3)	16(1)	16(1)	25(1)	2(1)	-1(1)
C(4)	14(1)	19(1)	21(1)	-2(1)	3(1)
C(5)	12(1)	16(1)	19(1)	0(1)	-1(1)
C(6)	10(1)	14(1)	19(1)	-2(1)	-1(1)
C(7)	25(1)	31(1)	35(1)	2(1)	-12(1)
C(8)	26(1)	18(1)	30(1)	1(1)	-5(1)
C(8B)	32(3)	26(3)	31(3)	2(3)	-6(3)
C(9)	16(1)	21(1)	30(1)	-5(1)	4(1)
C(10)	20(1)	25(1)	34(1)	-8(1)	10(1)
C(11)	24(1)	33(1)	25(1)	-8(1)	8(1)
C(12)	20(1)	29(1)	21(1)	-2(1)	2(1)
C(13)	13(1)	14(1)	21(1)	-2(1)	-1(1)
N(13)	14(1)	16(1)	17(1)	-1(1)	-1(1)
O(13)	18(1)	22(1)	22(1)	-2(1)	3(1)
C(14)	10(1)	16(1)	24(1)	-3(1)	0(1)
O(14)	15(1)	22(1)	22(1)	-1(1)	2(1)
C(15)	18(1)	27(1)	24(1)	0(1)	-6(1)
O(15)	14(1)	26(1)	26(1)	-2(1)	-4(1)
C(16)	18(1)	19(1)	17(1)	1(1)	-4(1)
C(17)	15(1)	19(1)	18(1)	-2(1)	0(1)
C(18)	24(1)	37(1)	17(1)	-1(1)	-2(1)
C(19)	28(1)	46(1)	21(1)	-13(1)	5(1)
C(20)	22(1)	32(1)	36(1)	-15(1)	8(1)
C(21)	24(1)	22(1)	32(1)	-3(1)	4(1)
C(22)	21(1)	20(1)	20(1)	-1(1)	3(1)
C(23)	14(1)	22(1)	16(1)	0(1)	0(1)
C(24)	17(1)	21(1)	21(1)	-3(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å2x 103) for JF3084MOFMI. The anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

C(25)	20(1)	28(1)	23(1)	-5(1)	1(1)
C(26)	16(1)	39(1)	25(1)	0(1)	-4(1)
C(27)	18(1)	35(1)	31(1)	7(1)	-5(1)
C(28)	18(1)	23(1)	28(1)	6(1)	-2(1)
C(29)	14(1)	19(1)	21(1)	-2(1)	0(1)
O(29)	22(1)	17(1)	46(1)	-6(1)	-1(1)
C(30)	17(1)	30(1)	39(1)	-4(1)	2(1)
O(30)	11(1)	23(1)	29(1)	-3(1)	1(1)
C(31)	14(1)	45(1)	57(1)	6(1)	4(1)

	Х	У	Z	U(eq)
H(1)	7371(18)	3585(15)	3228(11)	16(4)
H(5)	6036(18)	3667(15)	2099(11)	18(5)
H(6)	5410(17)	2301(15)	3240(11)	19(5)
H(7A)	8742	1731	4707	31(6)
H(7B)	9753	1155	4220	38(7)
H(7C)	9227	1750	4682	31(6)
H(7D)	9519	942	4048	38(7)
H(8A)	8335	265	3580	25(6)
H(8B)	7671	368	4395	38(7)
H(8B1)	7756	303	4359	35
H(8B2)	7314	1288	4777	35
H(9)	9390(18)	1231(16)	2475(12)	26(5)
H(10)	9520(20)	965(17)	1151(13)	34(6)
H(11)	8110(20)	1595(18)	314(15)	39(6)
H(12)	6430(20)	2476(16)	805(12)	26(5)
H(15A)	9340(20)	4520(18)	6027(13)	34(6)
H(15B)	9733(19)	3539(17)	5645(12)	26(5)
H(16)	7684(17)	3183(14)	5743(11)	17(5)
H(18)	7220(20)	4194(19)	6932(14)	42(7)
H(19)	5920(20)	5460(20)	7411(15)	44(7)
H(20)	5020(20)	6573(19)	6609(14)	42(6)
H(21)	5300(20)	6442(18)	5260(13)	34(6)
H(22)	6503(18)	5234(14)	4796(12)	19(5)
H(24)	4791(19)	1244(15)	2060(11)	21(5)
H(25)	2890(20)	811(16)	1587(12)	26(5)
H(26)	1590(20)	1992(17)	1065(12)	32(6)
H(27)	2220(20)	3643(18)	1046(14)	37(6)
H(28)	4110(20)	4075(17)	1573(13)	31(6)
H(30A)	2900(20)	4559(19)	3131(15)	41(7)
H(30B)	2850(20)	4417(19)	4012(14)	39(6)

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 10 3) for JF3084MOFMI.
H(31A)	1430(30)	3070(30)	3856(19)	76(10)
H(31B)	1550(30)	3240(20)	2909(19)	65(9)
H(31C)	930(30)	4040(20)	3421(15)	48(7)

Table 6. Torsion angles [°] for JF3084MOFMI.

C(13)-C(1)-C(2)-O(2)	-56.22(15)	C(4)-C(5)-C(6)-C(29)	168.02(11)
C(6)-C(1)-C(2)-O(2)	-177.51(11)	C(23)-C(5)-C(6)-C(1)	172.06(11)
C(13)-C(1)-C(2)-O(3)	60.81(14)	C(4)-C(5)-C(6)-C(1)	46.40(15)
C(6)-C(1)-C(2)-O(3)	-60.47(14)	C(2)-O(2)-C(7)-C(8B)	-8.1(6)
C(13)-C(1)-C(2)-C(3)	-179.04(11)	C(2)-O(2)-C(7)-C(8)	24.06(17)
C(6)-C(1)-C(2)-C(3)	59.67(14)	C(2)-O(3)-C(8)-C(7)	32.03(18)
O(3)-C(2)-O(2)-C(7)	-4.95(15)	O(2)-C(7)-C(8)-O(3)	-34.20(19)
C(3)-C(2)-O(2)-C(7)	-124.80(14)	C(2)-O(3)-C(8B)-C(7)	-20.4(8)
C(1)-C(2)-O(2)-C(7)	112.97(14)	O(2)-C(7)-C(8B)-O(3)	17.1(8)
O(2)-C(2)-C(3)-C(4)	-150.42(13)	C(4)-C(3)-C(9)-C(10)	-0.3(2)
O(3)-C(2)-C(3)-C(4)	91.57(15)	C(2)-C(3)-C(9)-C(10)	177.65(14)
C(1)-C(2)-C(3)-C(4)	-27.60(18)	C(3)-C(9)-C(10)-C(11)	0.8(2)
O(2)-C(2)-C(3)-C(9)	31.68(18)	C(9)-C(10)-C(11)-C(12)	-0.4(3)
O(3)-C(2)-C(3)-C(9)	-86.33(15)	C(10)-C(11)-C(12)-C(4)	-0.5(3)
C(1)-C(2)-C(3)-C(9)	154.50(13)	C(3)-C(4)-C(12)-C(11)	1.0(2)
O(2)-C(2)-O(3)-C(8)	-17.70(16)	C(5)-C(4)-C(12)-C(11)	178.03(14)
C(3)-C(2)-O(3)-C(8)	102.71(14)	C(6)-C(1)-C(13)-O(13)	28.69(19)
C(1)-C(2)-O(3)-C(8)	-137.22(13)	C(2)-C(1)-C(13)-O(13)	-89.52(16)
O(2)-C(2)-O(3)-C(8B)	16.6(5)	C(6)-C(1)-C(13)-N(13)	-154.78(12)
C(3)-C(2)-O(3)-C(8B)	137.0(5)	C(2)-C(1)-C(13)-N(13)	87.00(15)
C(1)-C(2)-O(3)-C(8B)	-103.0(5)	O(13)-C(13)-N(13)-C(14)	-167.32(14)
C(9)-C(3)-C(4)-C(12)	-0.6(2)	C(1)-C(13)-N(13)-C(14)	16.0(2)
C(2)-C(3)-C(4)-C(12)	-178.51(14)	O(13)-C(13)-N(13)-C(16)	1.7(2)
C(9)-C(3)-C(4)-C(5)	-177.51(13)	C(1)-C(13)-N(13)-C(16)	-174.96(12)
C(2)-C(3)-C(4)-C(5)	4.6(2)	C(13)-N(13)-C(14)-O(14)	8.0(2)
C(3)-C(4)-C(5)-C(23)	-137.68(14)	C(16)-N(13)-C(14)-O(14)	-162.03(15)
C(12)-C(4)-C(5)-C(23)	45.44(18)	C(13)-N(13)-C(14)-O(15)	-175.39(13)
C(3)-C(4)-C(5)-C(6)	-13.83(18)	C(16)-N(13)-C(14)-O(15)	14.58(16)
C(12)-C(4)-C(5)-C(6)	169.30(13)	O(14)-C(14)-O(15)-C(15)	-176.04(14)
C(13)-C(1)-C(6)-C(29)	49.26(16)	N(13)-C(14)-O(15)-C(15)	7.09(16)
C(2)-C(1)-C(6)-C(29)	169.49(12)	C(16)-C(15)-O(15)-C(14)	-24.56(16)
C(13)-C(1)-C(6)-C(5)	169.16(11)	C(13)-N(13)-C(16)-C(17)	-79.32(16)
C(2)-C(1)-C(6)-C(5)	-70.62(14)	C(14)-N(13)-C(16)-C(17)	91.64(14)
C(23)-C(5)-C(6)-C(29)	-66.32(14)	C(13)-N(13)-C(16)-C(15)	161.09(12)

C(14)-N(13)-C(16)-C(15)	-27.96(15)
O(15)-C(15)-C(16)-N(13)	30.52(14)
O(15)-C(15)-C(16)-C(17)	-88.62(15)
N(13)-C(16)-C(17)-C(22)	-9.9(2)
C(15)-C(16)-C(17)-C(22)	101.15(17)
N(13)-C(16)-C(17)-C(18)	171.47(13)
C(15)-C(16)-C(17)-C(18)	-77.52(17)
C(22)-C(17)-C(18)-C(19)	-0.7(2)
C(16)-C(17)-C(18)-C(19)	178.05(15)
C(17)-C(18)-C(19)-C(20)	-0.2(3)
C(18)-C(19)-C(20)-C(21)	1.0(3)
C(19)-C(20)-C(21)-C(22)	-1.0(3)
C(18)-C(17)-C(22)-C(21)	0.7(2)
C(16)-C(17)-C(22)-C(21)	-177.92(14)
C(20)-C(21)-C(22)-C(17)	0.1(2)
C(4)-C(5)-C(23)-C(28)	-131.65(15)
C(6)-C(5)-C(23)-C(28)	103.38(16)
C(4)-C(5)-C(23)-C(24)	51.84(18)
C(6)-C(5)-C(23)-C(24)	-73.13(16)
C(28)-C(23)-C(24)-C(25)	-1.5(2)
C(5)-C(23)-C(24)-C(25)	175.15(14)
C(23)-C(24)-C(25)-C(26)	1.0(2)
C(24)-C(25)-C(26)-C(27)	0.0(3)
C(25)-C(26)-C(27)-C(28)	-0.6(3)
C(24)-C(23)-C(28)-C(27)	0.9(2)
C(5)-C(23)-C(28)-C(27)	-175.70(15)
C(26)-C(27)-C(28)-C(23)	0.2(3)
C(1)-C(6)-C(29)-O(29)	37.2(2)
C(5)-C(6)-C(29)-O(29)	-82.64(18)
C(1)-C(6)-C(29)-O(30)	-145.59(12)
C(5)-C(6)-C(29)-O(30)	94.54(14)
O(29)-C(29)-O(30)-C(30)	9.7(2)
C(6)-C(29)-O(30)-C(30)	-167.48(13)
C(31)-C(30)-O(30)-C(29)	167.68(16)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(1)-H(1)O(14)	0.93(2)	2.28(2)	2.9571(17)	129.2(15)
C(8B^b)-H(8B2^b)O(13)	0.99	2.57	3.190(12)	120.5
C(15)-H(15B)O(13)#1	0.96(2)	2.52(2)	3.447(2)	162.4(17)
C(31)-H(31C)O(14)#2	0.96(3)	2.52(3)	3.402(2)	153(2)

Table 7. Hydrogen bonds for JF3084MOFMI [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,-z+1 #2 x-1,y,z

CCDC 2087415

ent for $[C_{26}H_{21}NO_2]$	$_{2}S_{2}]_{4}[H_{2}O]$
JF2975KFMI	(MG-4-44-C)
C104 H86 N4 O9	9 S8
1792.24	
190(2) K	
1.54178 Å	
Triclinic	
P-1	
a = 8.6339(2) Å	⟨= 83.1131(13)°.
b = 15.2440(3) Å	®= 89.8510(13)°.
c = 33.4220(6) Å	© = 83.6116(14)°.
4339.73(15) Å ³	
2	
1.372 Mg/m ³	
2.424 mm ⁻¹	
1876	
	ent for $[C_{26}H_{21}NO_{2}]$ JF2975KFMI C104 H86 N4 O9 1792.24 190(2) K 1.54178 Å Triclinic P-1 a = 8.6339(2) Å b = 15.2440(3) Å c = 33.4220(6) Å 4339.73(15) Å ³ 2 1.372 Mg/m ³ 2.424 mm ⁻¹ 1876

Crystal size	0.192 x 0.083 x 0.016 mm ³
Crystal color and habit	Colorless Plate
Diffractometer	Bruker Photon100 CMOS
Theta range for data collection	2.663 to 68.681°.
Index ranges	-10<=h<=9, -18<=k<=18, -40<=l<=40
Reflections collected	28242
Independent reflections	15752 [R(int) = 0.0406]
Observed reflections (I > 2sigma(I))	12023
Completeness to theta = 67.679°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8384 and 0.7250
Solution method	SHELXT (Sheldrick, 2014)
Refinement method	SHELXL-2017/1 (Sheldrick, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	15752 / 14 / 1175
Goodness-of-fit on F ²	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0609, wR2 = 0.1288
R indices (all data)	R1 = 0.0823, $wR2 = 0.1436$
Extinction coefficient	0.00127(6)
Largest diff. peak and hole	0.411 and -0.457 e.Å ⁻³

	Х	У	Z	U(eq)
C(1)	839(4)	2467(2)	5410(1)	33(1)
C(2)	832(4)	1473(2)	5523(1)	35(1)
C(3)	1598(4)	1792(2)	5138(1)	36(1)
C(4)	3276(4)	1483(2)	5191(1)	36(1)
N(4)	3527(3)	1108(2)	5592(1)	35(1)
O(4)	4288(3)	1517(2)	4939(1)	44(1)
C(5)	2130(4)	1053(2)	5801(1)	36(1)
O(5)	2033(3)	720(2)	6146(1)	45(1)
C(6)	1827(4)	2960(2)	5660(1)	35(1)
C(7)	1394(4)	3103(2)	6054(1)	37(1)
C(8)	2354(5)	3551(2)	6275(1)	47(1)
C(9)	3693(5)	3855(2)	6117(1)	50(1)
C(10)	4122(4)	3712(2)	5728(1)	47(1)
C(11)	3183(4)	3278(2)	5501(1)	39(1)
C(12)	-113(4)	2823(2)	6236(1)	42(1)
S(12)	108(1)	2218(1)	6744(1)	50(1)
C(13)	-2505(15)	3400(30)	6697(3)	60(2)
C(13B)	-2440(100)	3400(200)	6673(18)	60(2)
S(13)	-1465(3)	3829(1)	6272(1)	65(1)
S(13B)	-1785(17)	3505(10)	6167(4)	63(3)
C(14)	-1283(5)	2941(4)	6993(1)	69(1)
C(15)	-644(4)	2984(2)	5229(1)	35(1)
C(16)	-854(4)	3910(2)	5205(1)	38(1)
C(17)	-2150(4)	4390(2)	5006(1)	43(1)
C(18)	-3260(4)	3961(2)	4836(1)	46(1)
C(19)	-3078(4)	3045(3)	4864(1)	49(1)
C(20)	-1787(4)	2558(2)	5060(1)	44(1)
C(21)	5035(4)	838(2)	5768(1)	38(1)
C(22)	6017(5)	198(3)	5607(1)	49(1)
C(23)	7501(5)	-45(3)	5774(1)	58(1)
C(24)	7967(5)	327(3)	6097(1)	61(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for JF2975KFMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(25)	6967(5)	961(3)	6260(1)	62(1)
C(26)	5493(5)	1229(3)	6093(1)	51(1)
C(31)	4976(4)	7531(2)	6322(1)	33(1)
C(32)	5051(4)	8441(2)	6465(1)	36(1)
C(33)	4107(4)	8377(2)	6091(1)	38(1)
C(34)	2460(4)	8609(2)	6202(1)	38(1)
N(34)	2416(3)	8691(2)	6613(1)	33(1)
O(34)	1315(3)	8716(2)	5984(1)	46(1)
C(35)	3912(4)	8652(2)	6780(1)	35(1)
C(36)	4106(4)	6844(2)	6558(1)	33(1)
O(36)	4175(3)	8770(2)	7122(1)	43(1)
C(37)	4677(4)	6405(2)	6930(1)	36(1)
C(38)	3870(4)	5739(2)	7125(1)	48(1)
C(39)	2561(5)	5485(3)	6954(1)	50(1)
C(40)	2011(4)	5902(2)	6582(1)	45(1)
C(41)	2789(4)	6568(2)	6387(1)	38(1)
C(42)	6186(4)	6626(2)	7101(1)	39(1)
S(42)	7860(1)	5869(1)	6980(1)	56(1)
C(43)	8077(7)	5240(4)	7456(2)	49(1)
C(43B)	8760(20)	5673(15)	7485(6)	55(5)
S(43)	6167(1)	6650(1)	7646(1)	45(1)
C(44)	7798(6)	5841(3)	7779(1)	65(1)
C(45)	6388(4)	7142(2)	6110(1)	36(1)
C(46)	6319(5)	6343(2)	5952(1)	48(1)
C(47)	7603(6)	5957(3)	5760(1)	62(1)
C(48)	8962(5)	6350(3)	5722(1)	61(1)
C(49)	9028(5)	7137(3)	5875(1)	55(1)
C(50)	7768(4)	7537(3)	6067(1)	45(1)
C(51)	1012(4)	8830(2)	6840(1)	33(1)
C(52)	499(4)	9673(2)	6922(1)	38(1)
C(53)	-845(4)	9807(2)	7145(1)	46(1)
C(54)	-1636(4)	9101(3)	7285(1)	46(1)
C(55)	1050(4)			
0(00)	-1100(5)	8254(3)	7204(1)	52(1)
C(56)	-1100(5) 235(5)	8254(3) 8116(2)	7204(1) 6977(1)	52(1) 48(1)
C(56) C(61)	-1100(5) 235(5) 697(3)	8254(3) 8116(2) 7216(2)	7204(1) 6977(1) 9599(1)	52(1) 48(1) 29(1)

C(63)	157(4)	6511(2)	9925(1)	33(1)
C(64)	-1388(4)	6209(2)	9869(1)	34(1)
N(64)	-1388(3)	5858(2)	9498(1)	32(1)
O(64)	-2484(3)	6246(2)	10095(1)	44(1)
C(65)	82(4)	5833(2)	9318(1)	33(1)
O(65)	397(3)	5541(2)	9004(1)	44(1)
C(66)	-449(3)	7730(2)	9293(1)	31(1)
C(67)	-106(4)	7865(2)	8882(1)	33(1)
C(68)	-1238(4)	8335(2)	8616(1)	41(1)
C(69)	-2678(4)	8670(3)	8750(1)	48(1)
C(70)	-3000(4)	8551(2)	9156(1)	46(1)
C(71)	-1889(4)	8091(2)	9424(1)	37(1)
C(72)	1480(4)	7565(2)	8721(1)	33(1)
S(72)	1436(1)	6995(1)	8267(1)	44(1)
C(73)	3499(5)	8193(3)	8158(1)	49(1)
S(73)	2531(1)	8542(1)	8599(1)	49(1)
C(74)	2309(5)	7806(3)	7925(1)	53(1)
C(75)	1906(4)	7730(2)	9756(1)	32(1)
C(76)	1411(4)	8530(2)	9902(1)	41(1)
C(77)	2483(5)	8999(3)	10074(1)	50(1)
C(78)	4028(5)	8678(3)	10100(1)	50(1)
C(79)	4528(4)	7892(3)	9957(1)	50(1)
C(80)	3478(4)	7413(2)	9784(1)	42(1)
C(81)	-2771(4)	5662(2)	9310(1)	33(1)
C(82)	-3206(4)	6084(2)	8932(1)	44(1)
C(83)	-4576(4)	5912(3)	8756(1)	49(1)
C(84)	-5521(4)	5341(2)	8959(1)	42(1)
C(85)	-5080(4)	4920(2)	9338(1)	39(1)
C(86)	-3696(4)	5077(2)	9513(1)	36(1)
C(91)	5581(4)	2182(2)	8762(1)	31(1)
C(92)	5208(4)	3155(2)	8588(1)	34(1)
C(93)	6106(4)	2936(2)	8982(1)	34(1)
C(94)	7682(4)	3202(2)	8902(1)	34(1)
N(94)	7794(3)	3444(2)	8484(1)	35(1)
O(94)	8713(3)	3228(2)	9141(1)	43(1)
C(95)	6372(4)	3458(2)	8285(1)	34(1)

O(95)	6141(3)	3680(2)	7927(1)	44(1)
C(96)	6761(4)	1600(2)	8549(1)	31(1)
C(97)	6429(4)	1353(2)	8169(1)	31(1)
C(98)	7564(4)	821(2)	7984(1)	36(1)
C(99)	8995(4)	528(2)	8165(1)	40(1)
C(100)	9306(4)	755(2)	8543(1)	40(1)
C(101)	8199(4)	1280(2)	8733(1)	37(1)
C(102)	4855(4)	1622(2)	7963(1)	35(1)
S(102)	3698(1)	679(1)	8028(1)	53(1)
C(103)	2974(5)	749(3)	7521(1)	53(1)
S(103)	4928(1)	2007(1)	7424(1)	47(1)
C(104)	4203(5)	1056(3)	7240(1)	57(1)
C(105)	4261(4)	1742(2)	8961(1)	33(1)
C(106)	2985(4)	2223(2)	9118(1)	41(1)
C(107)	1818(4)	1803(2)	9318(1)	44(1)
C(108)	1896(4)	884(2)	9362(1)	44(1)
C(109)	3149(4)	389(2)	9207(1)	39(1)
C(110)	4326(4)	812(2)	9008(1)	36(1)
C(111)	9241(4)	3574(2)	8284(1)	34(1)
C(112)	9792(4)	2993(2)	8012(1)	38(1)
C(113)	11181(4)	3123(2)	7818(1)	43(1)
C(114)	12013(4)	3811(2)	7895(1)	45(1)
C(115)	11454(4)	4372(2)	8169(1)	46(1)
C(116)	10066(4)	4255(2)	8367(1)	39(1)
O(121)	2059(14)	9525(7)	5178(3)	81(3)
O(122)	1059(16)	9654(8)	5185(4)	99(4)

C(1)-C(15)	1.513(4)
C(1)-C(6)	1.513(4)
C(1)-C(2)	1.518(4)
C(1)-C(3)	1.544(4)
C(2)-C(5)	1.494(5)
C(2)-C(3)	1.497(4)
C(2)-H(2)	1.0000
C(3)-C(4)	1.477(5)
C(3)-H(3)	1.0000
C(4)-O(4)	1.212(4)
C(4)-N(4)	1.401(4)
N(4)-C(5)	1.398(4)
N(4)-C(21)	1.427(4)
C(5)-O(5)	1.208(4)
C(6)-C(11)	1.397(5)
C(6)-C(7)	1.401(4)
C(7)-C(8)	1.397(5)
C(7)-C(12)	1.517(5)
C(8)-C(9)	1.374(5)
C(8)-H(8)	0.9500
C(9)-C(10)	1.387(5)
C(9)-H(9)	0.9500
C(10)-C(11)	1.383(5)
C(10)-H(10)	0.9500
C(11)-H(11)	0.9500
C(12)-S(13B)	1.681(15)
C(12)-S(12)	1.833(3)
C(12)-S(13)	1.837(4)
C(12)-H(12)	1.0000
C(12)-H(12E)	1.0000
S(12)-C(14)	1.808(4)
C(13)-C(14)	1.500(6)
C(13)-S(13)	1.779(16)
C(13)-H(13A)	0.9900

Table 3. Bond lengths [Å] and angles [°] for JF2975KFMI.

C(13)-H(13B)	0.9900
C(13B)-C(14)	1.500(11)
C(13B)-S(13B)	1.779(18)
С(13В)-Н(13С)	0.9900
C(13B)-H(13D)	0.9900
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.394(5)
C(15)-C(20)	1.398(5)
C(16)-C(17)	1.390(5)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.379(5)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.379(5)
C(18)-H(18)	0.9500
C(19)-C(20)	1.388(5)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
C(21)-C(22)	1.379(5)
C(21)-C(26)	1.379(5)
C(22)-C(23)	1.392(6)
С(22)-Н(22)	0.9500
C(23)-C(24)	1.361(6)
С(23)-Н(23)	0.9500
C(24)-C(25)	1.382(6)
C(24)-H(24)	0.9500
C(25)-C(26)	1.389(6)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(31)-C(36)	1.503(4)
C(31)-C(45)	1.509(4)
C(31)-C(32)	1.529(4)
C(31)-C(33)	1.539(4)
C(32)-C(35)	1.478(4)
C(32)-C(33)	1.512(5)
C(32)-H(32)	1.0000

C(33)-C(34)	1.483(5)
С(33)-Н(33)	1.0000
C(34)-O(34)	1.214(4)
C(34)-N(34)	1.395(4)
N(34)-C(35)	1.401(4)
N(34)-C(51)	1.437(4)
C(35)-O(36)	1.205(4)
C(36)-C(41)	1.401(5)
C(36)-C(37)	1.403(4)
C(37)-C(38)	1.392(5)
C(37)-C(42)	1.512(5)
C(38)-C(39)	1.380(5)
C(38)-H(38)	0.9500
C(39)-C(40)	1.388(5)
C(39)-H(39)	0.9500
C(40)-C(41)	1.377(5)
C(40)-H(40)	0.9500
C(41)-H(41)	0.9500
C(42)-S(42)	1.823(3)
C(42)-S(43)	1.826(3)
C(42)-H(42)	1.0000
S(42)-C(43)	1.756(5)
S(42)-C(43B)	1.836(19)
C(43)-C(44)	1.499(7)
C(43)-H(43A)	0.9900
C(43)-H(43B)	0.9900
C(43B)-C(44)	1.31(2)
C(43B)-H(43C)	0.9900
C(43B)-H(43D)	0.9900
S(43)-C(44)	1.785(4)
C(44)-H(44A)	0.9900
C(44)-H(44B)	0.9900
C(44)-H(44C)	0.9900
C(44)-H(44D)	0.9900
C(45)-C(46)	1.392(5)
C(45)-C(50)	1.393(5)

C(46)-C(47)	1.388(5)
C(46)-H(46)	0.9500
C(47)-C(48)	1.375(7)
C(47)-H(47)	0.9500
C(48)-C(49)	1.366(6)
C(48)-H(48)	0.9500
C(49)-C(50)	1.382(5)
C(49)-H(49)	0.9500
C(50)-H(50)	0.9500
C(51)-C(52)	1.370(4)
C(51)-C(56)	1.374(5)
C(52)-C(53)	1.388(5)
C(52)-H(52)	0.9500
C(53)-C(54)	1.373(5)
C(53)-H(53)	0.9500
C(54)-C(55)	1.381(5)
C(54)-H(54)	0.9500
C(55)-C(56)	1.389(5)
C(55)-H(55)	0.9500
C(56)-H(56)	0.9500
C(61)-C(75)	1.504(4)
C(61)-C(66)	1.509(4)
C(61)-C(62)	1.516(4)
C(61)-C(63)	1.544(4)
C(62)-C(65)	1.489(4)
C(62)-C(63)	1.510(4)
C(62)-H(62)	1.0000
C(63)-C(64)	1.478(5)
C(63)-H(63)	1.0000
C(64)-O(64)	1.211(4)
C(64)-N(64)	1.408(4)
N(64)-C(65)	1.401(4)
N(64)-C(81)	1.428(4)
C(65)-O(65)	1.207(4)
C(66)-C(71)	1.394(4)
C(66)-C(67)	1.401(4)

C(67)-C(68)	1.398(4)
C(67)-C(72)	1.513(4)
C(68)-C(69)	1.384(5)
C(68)-H(68)	0.9500
C(69)-C(70)	1.380(5)
C(69)-H(69)	0.9500
C(70)-C(71)	1.385(5)
С(70)-Н(70)	0.9500
С(71)-Н(71)	0.9500
C(72)-S(73)	1.833(3)
C(72)-S(72)	1.839(3)
С(72)-Н(72)	1.0000
S(72)-C(74)	1.809(4)
C(73)-C(74)	1.503(5)
C(73)-S(73)	1.798(4)
C(73)-H(73A)	0.9900
C(73)-H(73B)	0.9900
C(74)-H(74A)	0.9900
C(74)-H(74B)	0.9900
C(75)-C(80)	1.388(5)
C(75)-C(76)	1.392(5)
C(76)-C(77)	1.395(5)
C(76)-H(76)	0.9500
C(77)-C(78)	1.368(6)
C(77)-H(77)	0.9500
C(78)-C(79)	1.367(6)
C(78)-H(78)	0.9500
C(79)-C(80)	1.393(5)
C(79)-H(79)	0.9500
C(80)-H(80)	0.9500
C(81)-C(86)	1.380(4)
C(81)-C(82)	1.381(4)
C(82)-C(83)	1.386(5)
C(82)-H(82)	0.9500
C(83)-C(84)	1.376(5)
C(83)-H(83)	0.9500

C(84)-C(85)	1.385(5)
C(84)-H(84)	0.9500
C(85)-C(86)	1.388(5)
C(85)-H(85)	0.9500
C(86)-H(86)	0.9500
C(91)-C(105)	1.501(4)
C(91)-C(96)	1.509(4)
C(91)-C(92)	1.527(4)
C(91)-C(93)	1.545(4)
C(92)-C(95)	1.495(4)
C(92)-C(93)	1.513(4)
С(92)-Н(92)	1.0000
C(93)-C(94)	1.477(5)
C(93)-H(93)	1.0000
C(94)-O(94)	1.205(4)
C(94)-N(94)	1.410(4)
N(94)-C(95)	1.395(4)
N(94)-C(111)	1.437(4)
C(95)-O(95)	1.214(4)
C(96)-C(101)	1.398(4)
C(96)-C(97)	1.404(4)
C(97)-C(98)	1.393(4)
C(97)-C(102)	1.518(4)
C(98)-C(99)	1.381(5)
C(98)-H(98)	0.9500
C(99)-C(100)	1.383(5)
C(99)-H(99)	0.9500
C(100)-C(101)	1.382(5)
C(100)-H(100)	0.9500
С(101)-Н(101)	0.9500
C(102)-S(103)	1.827(3)
C(102)-S(102)	1.833(3)
С(102)-Н(102)	1.0000
S(102)-C(103)	1.794(4)
C(103)-C(104)	1.493(6)
C(103)-H(10A)	0.9900

C(103)-H(10B)	0.9900
S(103)-C(104)	1.816(4)
C(104)-H(10C)	0.9900
C(104)-H(10D)	0.9900
C(105)-C(106)	1.392(4)
C(105)-C(110)	1.402(4)
C(106)-C(107)	1.380(5)
C(106)-H(106)	0.9500
C(107)-C(108)	1.386(5)
С(107)-Н(107)	0.9500
C(108)-C(109)	1.385(5)
C(108)-H(108)	0.9500
C(109)-C(110)	1.388(5)
С(109)-Н(109)	0.9500
С(110)-Н(110)	0.9500
C(111)-C(116)	1.378(4)
C(111)-C(112)	1.390(4)
C(112)-C(113)	1.383(5)
С(112)-Н(112)	0.9500
C(113)-C(114)	1.384(5)
C(113)-H(113)	0.9500
C(114)-C(115)	1.378(5)
C(114)-H(114)	0.9500
C(115)-C(116)	1.386(5)
С(115)-Н(115)	0.9500
C(116)-H(116)	0.9500
O(121)-H(12A)	0.842(5)
O(121)-H(12B)	0.842(5)
O(122)-H(12C)	0.842(5)
O(122)-H(12D)	0.842(5)
C(15)-C(1)-C(6)	116.4(3)
C(15)-C(1)-C(2)	117.4(3)
C(6)-C(1)-C(2)	118.3(3)
C(15)-C(1)-C(3)	112.9(3)
C(6)-C(1)-C(3)	121.0(3)

C(2)-C(1)-C(3)	58.5(2)
C(5)-C(2)-C(3)	105.6(3)
C(5)-C(2)-C(1)	114.2(3)
C(3)-C(2)-C(1)	61.6(2)
C(5)-C(2)-H(2)	120.3
C(3)-C(2)-H(2)	120.3
C(1)-C(2)-H(2)	120.3
C(4)-C(3)-C(2)	106.4(3)
C(4)-C(3)-C(1)	118.9(3)
C(2)-C(3)-C(1)	59.9(2)
C(4)-C(3)-H(3)	118.8
C(2)-C(3)-H(3)	118.8
C(1)-C(3)-H(3)	118.8
O(4)-C(4)-N(4)	124.2(3)
O(4)-C(4)-C(3)	128.0(3)
N(4)-C(4)-C(3)	107.8(3)
C(5)-N(4)-C(4)	112.0(3)
C(5)-N(4)-C(21)	124.2(3)
C(4)-N(4)-C(21)	123.8(3)
O(5)-C(5)-N(4)	124.6(3)
O(5)-C(5)-C(2)	127.7(3)
N(4)-C(5)-C(2)	107.8(3)
C(11)-C(6)-C(7)	119.3(3)
C(11)-C(6)-C(1)	120.2(3)
C(7)-C(6)-C(1)	120.6(3)
C(8)-C(7)-C(6)	118.5(3)
C(8)-C(7)-C(12)	119.7(3)
C(6)-C(7)-C(12)	121.8(3)
C(9)-C(8)-C(7)	121.9(3)
C(9)-C(8)-H(8)	119.1
C(7)-C(8)-H(8)	119.1
C(8)-C(9)-C(10)	119.6(3)
C(8)-C(9)-H(9)	120.2
C(10)-C(9)-H(9)	120.2
C(11)-C(10)-C(9)	119.7(4)
C(11)-C(10)-H(10)	120.2

C(9)-C(10)-H(10)	120.2
C(10)-C(11)-C(6)	121.1(3)
C(10)-C(11)-H(11)	119.5
C(6)-C(11)-H(11)	119.5
C(7)-C(12)-S(13B)	120.7(6)
C(7)-C(12)-S(12)	114.2(2)
S(13B)-C(12)-S(12)	113.3(5)
C(7)-C(12)-S(13)	108.3(2)
S(12)-C(12)-S(13)	107.00(18)
C(7)-C(12)-H(12)	109.1
S(12)-C(12)-H(12)	109.1
S(13)-C(12)-H(12)	109.1
C(7)-C(12)-H(12E)	101.5
S(13B)-C(12)-H(12E)	101.5
S(12)-C(12)-H(12E)	101.5
C(14)-S(12)-C(12)	97.69(19)
C(14)-C(13)-S(13)	105.5(8)
C(14)-C(13)-H(13A)	110.6
S(13)-C(13)-H(13A)	110.6
C(14)-C(13)-H(13B)	110.6
S(13)-C(13)-H(13B)	110.6
H(13A)-C(13)-H(13B)	108.8
C(14)-C(13B)-S(13B)	117.7(15)
C(14)-C(13B)-H(13C)	107.9
S(13B)-C(13B)-H(13C)	107.9
C(14)-C(13B)-H(13D)	107.9
S(13B)-C(13B)-H(13D)	107.9
H(13C)-C(13B)-H(13D)	107.2
C(13)-S(13)-C(12)	96.9(11)
C(12)-S(13B)-C(13B)	97(3)
C(13)-C(14)-S(12)	110.0(10)
C(13B)-C(14)-S(12)	106(7)
C(13)-C(14)-H(14A)	109.7
S(12)-C(14)-H(14A)	109.7
C(13)-C(14)-H(14B)	109.7
S(12)-C(14)-H(14B)	109.7

H(14A)-C(14)-H(14B)	108.2
C(16)-C(15)-C(20)	118.2(3)
C(16)-C(15)-C(1)	120.4(3)
C(20)-C(15)-C(1)	121.2(3)
C(17)-C(16)-C(15)	120.4(3)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(18)-C(17)-C(16)	120.7(3)
C(18)-C(17)-H(17)	119.6
C(16)-C(17)-H(17)	119.6
C(19)-C(18)-C(17)	119.5(3)
C(19)-C(18)-H(18)	120.3
C(17)-C(18)-H(18)	120.3
C(18)-C(19)-C(20)	120.4(4)
C(18)-C(19)-H(19)	119.8
C(20)-C(19)-H(19)	119.8
C(19)-C(20)-C(15)	120.7(3)
C(19)-C(20)-H(20)	119.6
C(15)-C(20)-H(20)	119.6
C(22)-C(21)-C(26)	121.1(3)
C(22)-C(21)-N(4)	119.4(3)
C(26)-C(21)-N(4)	119.6(3)
C(21)-C(22)-C(23)	119.0(4)
С(21)-С(22)-Н(22)	120.5
С(23)-С(22)-Н(22)	120.5
C(24)-C(23)-C(22)	120.7(4)
C(24)-C(23)-H(23)	119.7
C(22)-C(23)-H(23)	119.7
C(23)-C(24)-C(25)	119.9(4)
C(23)-C(24)-H(24)	120.1
C(25)-C(24)-H(24)	120.1
C(24)-C(25)-C(26)	120.6(4)
C(24)-C(25)-H(25)	119.7
С(26)-С(25)-Н(25)	119.7
C(21)-C(26)-C(25)	118.7(4)
C(21)-C(26)-H(26)	120.6

C(25)-C(26)-H(26)	120.6
C(36)-C(31)-C(45)	113.6(3)
C(36)-C(31)-C(32)	120.8(3)
C(45)-C(31)-C(32)	117.1(3)
C(36)-C(31)-C(33)	121.1(3)
C(45)-C(31)-C(33)	114.6(3)
C(32)-C(31)-C(33)	59.1(2)
C(35)-C(32)-C(33)	106.2(3)
C(35)-C(32)-C(31)	114.3(3)
C(33)-C(32)-C(31)	60.8(2)
С(35)-С(32)-Н(32)	120.2
С(33)-С(32)-Н(32)	120.2
С(31)-С(32)-Н(32)	120.2
C(34)-C(33)-C(32)	105.3(3)
C(34)-C(33)-C(31)	116.9(3)
C(32)-C(33)-C(31)	60.1(2)
С(34)-С(33)-Н(33)	119.6
С(32)-С(33)-Н(33)	119.6
С(31)-С(33)-Н(33)	119.6
O(34)-C(34)-N(34)	123.9(3)
O(34)-C(34)-C(33)	128.0(3)
N(34)-C(34)-C(33)	108.1(3)
C(34)-N(34)-C(35)	112.0(3)
C(34)-N(34)-C(51)	124.7(3)
C(35)-N(34)-C(51)	123.3(2)
O(36)-C(35)-N(34)	124.4(3)
O(36)-C(35)-C(32)	127.8(3)
N(34)-C(35)-C(32)	107.8(3)
C(41)-C(36)-C(37)	118.9(3)
C(41)-C(36)-C(31)	119.7(3)
C(37)-C(36)-C(31)	121.1(3)
C(38)-C(37)-C(36)	118.6(3)
C(38)-C(37)-C(42)	121.4(3)
C(36)-C(37)-C(42)	119.9(3)
C(39)-C(38)-C(37)	121.6(3)
C(39)-C(38)-H(38)	119.2

C(37)-C(38)-H(38)	119.2
C(38)-C(39)-C(40)	120.1(3)
C(38)-C(39)-H(39)	119.9
С(40)-С(39)-Н(39)	119.9
C(41)-C(40)-C(39)	119.0(3)
C(41)-C(40)-H(40)	120.5
C(39)-C(40)-H(40)	120.5
C(40)-C(41)-C(36)	121.7(3)
C(40)-C(41)-H(41)	119.1
C(36)-C(41)-H(41)	119.1
C(37)-C(42)-S(42)	112.5(2)
C(37)-C(42)-S(43)	113.9(2)
S(42)-C(42)-S(43)	108.26(17)
C(37)-C(42)-H(42)	107.3
S(42)-C(42)-H(42)	107.3
S(43)-C(42)-H(42)	107.3
C(43)-S(42)-C(42)	96.9(2)
C(42)-S(42)-C(43B)	97.2(6)
C(44)-C(43)-S(42)	109.7(3)
C(44)-C(43)-H(43A)	109.7
S(42)-C(43)-H(43A)	109.7
C(44)-C(43)-H(43B)	109.7
S(42)-C(43)-H(43B)	109.7
H(43A)-C(43)-H(43B)	108.2
C(44)-C(43B)-S(42)	114.7(13)
C(44)-C(43B)-H(43C)	108.6
S(42)-C(43B)-H(43C)	108.6
C(44)-C(43B)-H(43D)	108.6
S(42)-C(43B)-H(43D)	108.6
H(43C)-C(43B)-H(43D)	107.6
C(44)-S(43)-C(42)	98.62(18)
C(43B)-C(44)-S(43)	115.8(9)
C(43)-C(44)-S(43)	110.1(3)
C(43)-C(44)-H(44A)	109.6
S(43)-C(44)-H(44A)	109.6
C(43)-C(44)-H(44B)	109.6

S(43)-C(44)-H(44B)	109.6
H(44A)-C(44)-H(44B)	108.2
C(43B)-C(44)-H(44C)	108.3
S(43)-C(44)-H(44C)	108.3
C(43B)-C(44)-H(44D)	108.3
S(43)-C(44)-H(44D)	108.3
H(44C)-C(44)-H(44D)	107.4
C(46)-C(45)-C(50)	118.1(3)
C(46)-C(45)-C(31)	118.6(3)
C(50)-C(45)-C(31)	123.4(3)
C(47)-C(46)-C(45)	120.2(4)
C(47)-C(46)-H(46)	119.9
C(45)-C(46)-H(46)	119.9
C(48)-C(47)-C(46)	121.1(4)
C(48)-C(47)-H(47)	119.4
C(46)-C(47)-H(47)	119.4
C(49)-C(48)-C(47)	118.8(4)
C(49)-C(48)-H(48)	120.6
C(47)-C(48)-H(48)	120.6
C(48)-C(49)-C(50)	121.4(4)
C(48)-C(49)-H(49)	119.3
C(50)-C(49)-H(49)	119.3
C(49)-C(50)-C(45)	120.4(4)
C(49)-C(50)-H(50)	119.8
C(45)-C(50)-H(50)	119.8
C(52)-C(51)-C(56)	121.7(3)
C(52)-C(51)-N(34)	119.0(3)
C(56)-C(51)-N(34)	119.3(3)
C(51)-C(52)-C(53)	119.0(3)
C(51)-C(52)-H(52)	120.5
С(53)-С(52)-Н(52)	120.5
C(54)-C(53)-C(52)	120.2(3)
C(54)-C(53)-H(53)	119.9
С(52)-С(53)-Н(53)	119.9
C(53)-C(54)-C(55)	120.2(3)
C(53)-C(54)-H(54)	119.9

C(55)-C(54)-H(54)	119.9
C(54)-C(55)-C(56)	119.9(3)
C(54)-C(55)-H(55)	120.0
C(56)-C(55)-H(55)	120.0
C(51)-C(56)-C(55)	119.0(3)
C(51)-C(56)-H(56)	120.5
C(55)-C(56)-H(56)	120.5
C(75)-C(61)-C(66)	116.1(3)
C(75)-C(61)-C(62)	117.5(3)
C(66)-C(61)-C(62)	119.0(2)
C(75)-C(61)-C(63)	112.5(2)
C(66)-C(61)-C(63)	120.5(3)
C(62)-C(61)-C(63)	59.1(2)
C(65)-C(62)-C(63)	105.5(3)
C(65)-C(62)-C(61)	113.8(3)
C(63)-C(62)-C(61)	61.4(2)
C(65)-C(62)-H(62)	120.4
C(63)-C(62)-H(62)	120.4
C(61)-C(62)-H(62)	120.4
C(64)-C(63)-C(62)	106.3(2)
C(64)-C(63)-C(61)	117.6(3)
C(62)-C(63)-C(61)	59.52(19)
C(64)-C(63)-H(63)	119.3
C(62)-C(63)-H(63)	119.3
C(61)-C(63)-H(63)	119.3
O(64)-C(64)-N(64)	124.5(3)
O(64)-C(64)-C(63)	127.5(3)
N(64)-C(64)-C(63)	108.0(3)
C(65)-N(64)-C(64)	111.7(3)
C(65)-N(64)-C(81)	124.7(3)
C(64)-N(64)-C(81)	123.2(3)
O(65)-C(65)-N(64)	124.7(3)
O(65)-C(65)-C(62)	127.1(3)
N(64)-C(65)-C(62)	108.2(3)
C(71)-C(66)-C(67)	118.8(3)
C(71)-C(66)-C(61)	119.1(3)

C(67)-C(66)-C(61)	122.1(3)
C(68)-C(67)-C(66)	118.8(3)
C(68)-C(67)-C(72)	119.1(3)
C(66)-C(67)-C(72)	122.0(3)
C(69)-C(68)-C(67)	121.6(3)
C(69)-C(68)-H(68)	119.2
C(67)-C(68)-H(68)	119.2
C(70)-C(69)-C(68)	119.4(3)
C(70)-C(69)-H(69)	120.3
C(68)-C(69)-H(69)	120.3
C(69)-C(70)-C(71)	119.7(3)
C(69)-C(70)-H(70)	120.1
С(71)-С(70)-Н(70)	120.1
C(70)-C(71)-C(66)	121.6(3)
C(70)-C(71)-H(71)	119.2
C(66)-C(71)-H(71)	119.2
C(67)-C(72)-S(73)	108.7(2)
C(67)-C(72)-S(72)	114.7(2)
S(73)-C(72)-S(72)	107.84(16)
С(67)-С(72)-Н(72)	108.5
S(73)-C(72)-H(72)	108.5
S(72)-C(72)-H(72)	108.5
C(74)-S(72)-C(72)	97.73(16)
C(74)-C(73)-S(73)	106.5(3)
C(74)-C(73)-H(73A)	110.4
S(73)-C(73)-H(73A)	110.4
C(74)-C(73)-H(73B)	110.4
S(73)-C(73)-H(73B)	110.4
H(73A)-C(73)-H(73B)	108.6
C(73)-S(73)-C(72)	97.21(16)
C(73)-C(74)-S(72)	107.9(2)
C(73)-C(74)-H(74A)	110.1
S(72)-C(74)-H(74A)	110.1
C(73)-C(74)-H(74B)	110.1
S(72)-C(74)-H(74B)	110.1
H(74A)-C(74)-H(74B)	108.4

C(80)-C(75)-C(76)	118.7(3)
C(80)-C(75)-C(61)	122.8(3)
C(76)-C(75)-C(61)	118.4(3)
C(75)-C(76)-C(77)	120.1(3)
С(75)-С(76)-Н(76)	119.9
C(77)-C(76)-H(76)	119.9
C(78)-C(77)-C(76)	120.4(4)
С(78)-С(77)-Н(77)	119.8
С(76)-С(77)-Н(77)	119.8
C(79)-C(78)-C(77)	120.0(3)
C(79)-C(78)-H(78)	120.0
C(77)-C(78)-H(78)	120.0
C(78)-C(79)-C(80)	120.6(4)
С(78)-С(79)-Н(79)	119.7
C(80)-C(79)-H(79)	119.7
C(75)-C(80)-C(79)	120.2(3)
C(75)-C(80)-H(80)	119.9
C(79)-C(80)-H(80)	119.9
C(86)-C(81)-C(82)	120.3(3)
C(86)-C(81)-N(64)	119.8(3)
C(82)-C(81)-N(64)	119.8(3)
C(81)-C(82)-C(83)	119.5(3)
C(81)-C(82)-H(82)	120.3
C(83)-C(82)-H(82)	120.3
C(84)-C(83)-C(82)	120.7(3)
C(84)-C(83)-H(83)	119.6
C(82)-C(83)-H(83)	119.6
C(83)-C(84)-C(85)	119.6(3)
C(83)-C(84)-H(84)	120.2
C(85)-C(84)-H(84)	120.2
C(84)-C(85)-C(86)	120.0(3)
C(84)-C(85)-H(85)	120.0
C(86)-C(85)-H(85)	120.0
C(81)-C(86)-C(85)	119.9(3)
C(81)-C(86)-H(86)	120.1
C(85)-C(86)-H(86)	120.1

C(105)-C(91)-C(96)	116.6(3)
C(105)-C(91)-C(92)	116.2(3)
C(96)-C(91)-C(92)	118.4(3)
C(105)-C(91)-C(93)	114.1(2)
C(96)-C(91)-C(93)	120.1(3)
C(92)-C(91)-C(93)	59.01(19)
C(95)-C(92)-C(93)	105.1(3)
C(95)-C(92)-C(91)	112.9(3)
C(93)-C(92)-C(91)	61.11(19)
С(95)-С(92)-Н(92)	120.8
С(93)-С(92)-Н(92)	120.8
С(91)-С(92)-Н(92)	120.8
C(94)-C(93)-C(92)	106.5(3)
C(94)-C(93)-C(91)	118.4(3)
C(92)-C(93)-C(91)	59.89(19)
С(94)-С(93)-Н(93)	118.9
С(92)-С(93)-Н(93)	118.9
C(91)-C(93)-H(93)	118.9
O(94)-C(94)-N(94)	124.1(3)
O(94)-C(94)-C(93)	128.3(3)
N(94)-C(94)-C(93)	107.5(3)
C(95)-N(94)-C(94)	112.1(3)
C(95)-N(94)-C(111)	124.1(3)
C(94)-N(94)-C(111)	123.5(3)
O(95)-C(95)-N(94)	125.2(3)
O(95)-C(95)-C(92)	126.7(3)
N(94)-C(95)-C(92)	108.1(3)
C(101)-C(96)-C(97)	118.9(3)
C(101)-C(96)-C(91)	120.0(3)
C(97)-C(96)-C(91)	121.1(3)
C(98)-C(97)-C(96)	118.8(3)
C(98)-C(97)-C(102)	119.2(3)
C(96)-C(97)-C(102)	122.0(3)
C(99)-C(98)-C(97)	121.8(3)
C(99)-C(98)-H(98)	119.1
C(97)-C(98)-H(98)	119.1

C(98)-C(99)-C(100)	119.3(3)
C(98)-C(99)-H(99)	120.3
С(100)-С(99)-Н(99)	120.3
C(101)-C(100)-C(99)	120.0(3)
С(101)-С(100)-Н(100)	120.0
C(99)-C(100)-H(100)	120.0
C(100)-C(101)-C(96)	121.1(3)
С(100)-С(101)-Н(101)	119.4
C(96)-C(101)-H(101)	119.4
C(97)-C(102)-S(103)	115.2(2)
C(97)-C(102)-S(102)	109.3(2)
S(103)-C(102)-S(102)	108.22(16)
С(97)-С(102)-Н(102)	108.0
S(103)-C(102)-H(102)	108.0
S(102)-C(102)-H(102)	108.0
C(103)-S(102)-C(102)	98.51(17)
C(104)-C(103)-S(102)	108.5(3)
C(104)-C(103)-H(10A)	110.0
S(102)-C(103)-H(10A)	110.0
C(104)-C(103)-H(10B)	110.0
S(102)-C(103)-H(10B)	110.0
H(10A)-C(103)-H(10B)	108.4
C(104)-S(103)-C(102)	97.60(17)
C(103)-C(104)-S(103)	108.0(3)
C(103)-C(104)-H(10C)	110.1
S(103)-C(104)-H(10C)	110.1
C(103)-C(104)-H(10D)	110.1
S(103)-C(104)-H(10D)	110.1
H(10C)-C(104)-H(10D)	108.4
C(106)-C(105)-C(110)	118.0(3)
C(106)-C(105)-C(91)	122.3(3)
C(110)-C(105)-C(91)	119.6(3)
C(107)-C(106)-C(105)	121.4(3)
С(107)-С(106)-Н(106)	119.3
С(105)-С(106)-Н(106)	119.3
C(106)-C(107)-C(108)	120.0(3)

С(106)-С(107)-Н(107)	120.0
С(108)-С(107)-Н(107)	120.0
C(109)-C(108)-C(107)	119.8(3)
С(109)-С(108)-Н(108)	120.1
С(107)-С(108)-Н(108)	120.1
C(108)-C(109)-C(110)	120.2(3)
С(108)-С(109)-Н(109)	119.9
С(110)-С(109)-Н(109)	119.9
C(109)-C(110)-C(105)	120.6(3)
С(109)-С(110)-Н(110)	119.7
С(105)-С(110)-Н(110)	119.7
C(116)-C(111)-C(112)	121.2(3)
C(116)-C(111)-N(94)	120.1(3)
C(112)-C(111)-N(94)	118.7(3)
C(113)-C(112)-C(111)	118.6(3)
С(113)-С(112)-Н(112)	120.7
С(111)-С(112)-Н(112)	120.7
C(112)-C(113)-C(114)	120.9(3)
С(112)-С(113)-Н(113)	119.6
С(114)-С(113)-Н(113)	119.6
C(115)-C(114)-C(113)	119.6(3)
C(115)-C(114)-H(114)	120.2
C(113)-C(114)-H(114)	120.2
C(114)-C(115)-C(116)	120.6(3)
С(114)-С(115)-Н(115)	119.7
С(116)-С(115)-Н(115)	119.7
C(111)-C(116)-C(115)	119.2(3)
С(111)-С(116)-Н(116)	120.4
С(115)-С(116)-Н(116)	120.4
H(12A)-O(121)-H(12B)	106.5(9)
H(12C)-O(122)-H(12D)	106.6(9)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	39(2)	30(2)	29(2)	-3(1)	2(1)	-4(1)
C(2)	42(2)	31(2)	33(2)	-5(1)	3(1)	-7(1)
C(3)	45(2)	35(2)	29(2)	-5(1)	1(1)	-5(1)
C(4)	51(2)	30(2)	30(2)	-7(1)	6(1)	-9(1)
N(4)	38(2)	35(1)	30(1)	-2(1)	2(1)	-2(1)
O(4)	56(2)	43(1)	36(1)	-8(1)	11(1)	-8(1)
C(5)	46(2)	29(2)	34(2)	-3(1)	3(1)	-4(1)
O(5)	51(2)	47(1)	35(1)	6(1)	5(1)	-5(1)
C(6)	40(2)	27(2)	36(2)	-4(1)	-2(1)	-2(1)
C(7)	45(2)	34(2)	33(2)	-6(1)	-1(1)	-2(1)
C(8)	55(2)	48(2)	41(2)	-14(2)	-2(2)	-7(2)
C(9)	56(2)	46(2)	52(2)	-14(2)	-4(2)	-12(2)
C(10)	46(2)	38(2)	58(2)	-5(2)	-1(2)	-11(2)
C(11)	44(2)	33(2)	40(2)	-2(1)	4(2)	-5(1)
C(12)	44(2)	49(2)	31(2)	-4(1)	0(1)	0(2)
S(12)	59(1)	50(1)	37(1)	3(1)	-2(1)	-5(1)
C(13)	54(3)	76(5)	51(3)	-17(4)	13(2)	-1(3)
C(13B)	54(4)	76(6)	52(4)	-17(5)	13(3)	0(4)
S(13)	64(1)	58(1)	63(1)	9(1)	18(1)	17(1)
S(13B)	61(7)	79(9)	40(5)	3(5)	7(4)	15(6)
C(14)	55(3)	110(4)	40(2)	-15(2)	5(2)	0(3)
C(15)	41(2)	35(2)	30(2)	-2(1)	3(1)	-4(1)
C(16)	43(2)	39(2)	33(2)	-3(1)	1(1)	-6(2)
C(17)	50(2)	39(2)	37(2)	-5(1)	2(2)	3(2)
C(18)	45(2)	52(2)	38(2)	-4(2)	-2(2)	4(2)
C(19)	44(2)	55(2)	48(2)	-7(2)	-6(2)	-8(2)
C(20)	48(2)	35(2)	50(2)	-5(2)	-4(2)	-6(2)
C(21)	42(2)	36(2)	35(2)	-2(1)	3(1)	-6(1)
C(22)	51(2)	50(2)	47(2)	-15(2)	5(2)	1(2)
C(23)	50(2)	61(3)	60(2)	-1(2)	8(2)	9(2)
C(24)	44(2)	77(3)	58(2)	15(2)	-3(2)	-9(2)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for JF2975KFMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(25)	64(3)	70(3)	54(2)	-5(2)	-16(2)	-16(2)
C(26)	63(3)	46(2)	44(2)	-10(2)	-7(2)	-2(2)
C(31)	36(2)	33(2)	27(2)	-2(1)	1(1)	1(1)
C(32)	40(2)	36(2)	33(2)	-4(1)	5(1)	-3(1)
C(33)	46(2)	35(2)	28(2)	2(1)	5(1)	5(1)
C(34)	49(2)	29(2)	31(2)	-1(1)	5(2)	5(1)
N(34)	37(2)	32(1)	27(1)	-1(1)	2(1)	2(1)
O(34)	52(2)	52(1)	30(1)	-2(1)	-6(1)	10(1)
C(35)	43(2)	30(2)	33(2)	-4(1)	5(1)	-5(1)
C(36)	37(2)	32(2)	31(2)	-4(1)	5(1)	0(1)
O(36)	44(1)	50(1)	38(1)	-15(1)	3(1)	-6(1)
C(37)	36(2)	37(2)	34(2)	-2(1)	2(1)	0(1)
C(38)	50(2)	49(2)	42(2)	11(2)	-2(2)	-12(2)
C(39)	53(2)	47(2)	51(2)	4(2)	4(2)	-14(2)
C(40)	44(2)	41(2)	50(2)	-6(2)	-4(2)	-8(2)
C(41)	37(2)	39(2)	38(2)	-6(1)	-3(1)	4(1)
C(42)	36(2)	46(2)	31(2)	4(1)	0(1)	-1(1)
S(42)	44(1)	79(1)	41(1)	-2(1)	3(1)	13(1)
C(43)	58(3)	41(3)	43(3)	5(2)	3(2)	9(2)
C(43B)	55(12)	56(12)	50(11)	0(9)	-4(9)	1(10)
S(43)	44(1)	54(1)	34(1)	-2(1)	0(1)	3(1)
C(44)	79(3)	62(3)	48(2)	-6(2)	-17(2)	21(2)
C(45)	41(2)	39(2)	23(1)	0(1)	4(1)	6(1)
C(46)	61(2)	44(2)	39(2)	-11(2)	8(2)	3(2)
C(47)	84(3)	54(2)	42(2)	-11(2)	13(2)	18(2)
C(48)	62(3)	78(3)	34(2)	-2(2)	14(2)	28(2)
C(49)	39(2)	78(3)	42(2)	5(2)	7(2)	15(2)
C(50)	41(2)	54(2)	38(2)	-2(2)	2(2)	6(2)
C(51)	36(2)	33(2)	28(2)	-3(1)	1(1)	0(1)
C(52)	45(2)	36(2)	32(2)	-3(1)	6(1)	-1(1)
C(53)	53(2)	41(2)	43(2)	-8(2)	13(2)	4(2)
C(54)	39(2)	59(2)	40(2)	-8(2)	5(2)	-4(2)
C(55)	54(2)	56(2)	52(2)	-13(2)	15(2)	-24(2)
C(56)	55(2)	38(2)	55(2)	-13(2)	11(2)	-12(2)
C(61)	29(2)	32(2)	26(1)	-5(1)	1(1)	-2(1)
C(62)	29(2)	36(2)	29(2)	-5(1)	-4(1)	0(1)

C(63)	34(2)	40(2)	25(1)	-2(1)	-1(1)	-5(1)
C(64)	42(2)	34(2)	28(2)	-1(1)	2(1)	-6(1)
N(64)	29(1)	37(1)	29(1)	-3(1)	1(1)	-6(1)
O(64)	43(1)	57(2)	36(1)	-8(1)	12(1)	-18(1)
C(65)	32(2)	32(2)	35(2)	-3(1)	0(1)	0(1)
O(65)	44(1)	52(1)	42(1)	-19(1)	6(1)	-9(1)
C(66)	26(2)	34(2)	32(2)	-3(1)	2(1)	-5(1)
C(67)	32(2)	34(2)	32(2)	0(1)	0(1)	-4(1)
C(68)	40(2)	44(2)	36(2)	5(1)	1(1)	-3(2)
C(69)	34(2)	52(2)	52(2)	10(2)	-4(2)	4(2)
C(70)	33(2)	45(2)	54(2)	6(2)	6(2)	6(2)
C(71)	35(2)	37(2)	38(2)	0(1)	9(1)	1(1)
C(72)	32(2)	39(2)	27(1)	-4(1)	1(1)	-3(1)
S(72)	49(1)	48(1)	37(1)	-13(1)	3(1)	-9(1)
C(73)	48(2)	49(2)	48(2)	-4(2)	16(2)	-10(2)
S(73)	47(1)	51(1)	57(1)	-20(1)	17(1)	-19(1)
C(74)	58(2)	67(3)	32(2)	-2(2)	6(2)	-3(2)
C(75)	30(2)	42(2)	24(1)	-6(1)	2(1)	-7(1)
C(76)	42(2)	46(2)	36(2)	-9(1)	1(1)	-9(2)
C(77)	68(3)	49(2)	36(2)	-8(2)	1(2)	-20(2)
C(78)	58(2)	66(2)	30(2)	3(2)	-5(2)	-31(2)
C(79)	34(2)	73(3)	45(2)	-2(2)	1(2)	-20(2)
C(80)	34(2)	52(2)	41(2)	-7(2)	6(1)	-9(2)
C(81)	34(2)	32(2)	33(2)	-5(1)	1(1)	-5(1)
C(82)	46(2)	52(2)	34(2)	6(2)	-1(2)	-14(2)
C(83)	44(2)	61(2)	41(2)	1(2)	-9(2)	-9(2)
C(84)	34(2)	50(2)	45(2)	-11(2)	-1(1)	-6(2)
C(85)	34(2)	40(2)	46(2)	-10(2)	8(1)	-10(1)
C(86)	36(2)	35(2)	35(2)	-2(1)	1(1)	-6(1)
C(91)	34(2)	32(2)	24(1)	-4(1)	1(1)	0(1)
C(92)	37(2)	34(2)	28(2)	-1(1)	-2(1)	3(1)
C(93)	41(2)	29(2)	30(2)	-5(1)	-2(1)	1(1)
C(94)	43(2)	30(2)	29(2)	-10(1)	-4(1)	2(1)
N(94)	36(2)	36(1)	32(1)	-5(1)	-4(1)	-2(1)
O(94)	50(1)	45(1)	35(1)	-11(1)	-11(1)	0(1)
C(95)	36(2)	34(2)	32(2)	-2(1)	-7(1)	-3(1)

O(95)	44(1)	52(1)	34(1)	8(1)	-10(1)	-13(1)
C(96)	32(2)	31(2)	30(2)	-5(1)	2(1)	0(1)
C(97)	32(2)	32(2)	30(2)	-5(1)	5(1)	-3(1)
C(98)	36(2)	41(2)	34(2)	-12(1)	3(1)	-4(1)
C(99)	38(2)	40(2)	43(2)	-10(1)	6(2)	2(1)
C(100)	30(2)	43(2)	46(2)	-10(2)	-2(1)	5(1)
C(101)	41(2)	37(2)	35(2)	-10(1)	-5(1)	1(1)
C(102)	32(2)	44(2)	30(2)	-9(1)	2(1)	-5(1)
S(102)	57(1)	63(1)	42(1)	0(1)	-10(1)	-27(1)
C(103)	57(2)	53(2)	50(2)	-16(2)	-16(2)	-5(2)
S(103)	47(1)	62(1)	31(1)	2(1)	1(1)	-6(1)
C(104)	61(3)	72(3)	39(2)	-19(2)	-6(2)	1(2)
C(105)	34(2)	38(2)	26(1)	-5(1)	-1(1)	0(1)
C(106)	42(2)	38(2)	39(2)	-2(1)	2(2)	5(2)
C(107)	34(2)	56(2)	39(2)	-7(2)	3(1)	6(2)
C(108)	39(2)	54(2)	38(2)	-4(2)	1(2)	-7(2)
C(109)	45(2)	42(2)	29(2)	-4(1)	1(1)	-9(2)
C(110)	42(2)	38(2)	27(2)	-9(1)	1(1)	-2(1)
C(111)	34(2)	31(2)	34(2)	0(1)	-6(1)	-1(1)
C(112)	43(2)	33(2)	39(2)	-7(1)	-2(1)	-4(1)
C(113)	45(2)	43(2)	42(2)	-8(2)	1(2)	0(2)
C(114)	36(2)	47(2)	50(2)	5(2)	-8(2)	-4(2)
C(115)	45(2)	41(2)	53(2)	0(2)	-19(2)	-11(2)
C(116)	45(2)	32(2)	41(2)	-6(1)	-15(2)	-4(1)
O(121)	142(10)	61(5)	42(4)	-3(3)	5(6)	-21(6)
O(122)	147(11)	77(6)	80(6)	-23(4)	29(8)	-21(8)

	х	у	Z	U(eq)
H(2)	-163	1196	5516	42
H(3)	1078	1740	4877	43
H(8)	2073	3649	6543	57
H(9)	4322	4162	6274	60
H(10)	5056	3910	5618	57
H(11)	3465	3196	5232	47
H(12)	-580	2445	6054	50
H(12E)	-316	2339	6072	50
H(13A)	-3142	3883	6814	72
H(13B)	-3202	2970	6620	72
H(13C)	-2848	3958	6745	72
H(13D)	-3327	3003	6683	72
H(14A)	-1781	2589	7215	82
H(14B)	-739	3391	7110	82
H(16)	-107	4214	5324	46
H(17)	-2272	5021	4988	51
H(18)	-4142	4293	4701	55
H(19)	-3841	2746	4748	58
H(20)	-1680	1927	5079	53
H(22)	5687	-73	5385	59
H(23)	8195	-476	5661	70
H(24)	8977	152	6211	74
H(25)	7291	1215	6487	75
H(26)	4812	1672	6202	61
H(32)	6042	8726	6443	43
H(33)	4485	8614	5821	45
H(38)	4229	5451	7381	57
H(39)	2035	5025	7092	60
H(40)	1110	5731	6463	54
H(41)	2424	6847	6130	46

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2975KFMI.

H(42)	6358	7235	6974	46
H(43A)	7324	4793	7483	59
H(43B)	9142	4922	7486	59
H(43C)	9211	5043	7535	66
H(43D)	9621	6047	7491	66
H(44A)	8737	6144	7814	78
H(44B)	7597	5486	8038	78
H(44C)	8396	6046	7996	78
H(44D)	7403	5279	7892	78
H(46)	5390	6061	5975	58
H(47)	7541	5412	5653	74
H(48)	9839	6078	5593	73
H(49)	9960	7416	5848	66
H(50)	7843	8085	6170	54
H(52)	1056	10159	6826	46
H(53)	-1219	10389	7201	55
H(54)	-2555	9196	7438	55
H(55)	-1643	7765	7304	63
H(56)	604	7536	6916	58
H(62)	2247	5963	9625	38
H(63)	630	6440	10201	40
H(68)	-1014	8426	8337	50
H(69)	-3436	8980	8563	58
H(70)	-3981	8783	9251	55
H(71)	-2114	8020	9704	45
H(72)	2074	7154	8938	39
H(73A)	3885	8706	7993	58
H(73B)	4395	7741	8236	58
H(74A)	2814	7519	7700	64
H(74B)	1501	8281	7810	64
H(76)	340	8758	9885	49
H(77)	2138	9544	10174	60
H(78)	4753	9002	10216	60
H(79)	5602	7670	9977	60
H(80)	3838	6869	9685	50
H(82)	-2572	6490	8793	53

H(83)	-4866	6191	8494	59
H(84)	-6469	5237	8839	50
H(85)	-5725	4523	9479	47
H(86)	-3385	4782	9772	43
H(92)	4113	3451	8579	40
H(93)	5575	3073	9237	40
H(98)	7347	655	7727	44
H(99)	9758	174	8031	49
H(100)	10280	549	8671	48
H(101)	8418	1427	8994	45
H(102)	4300	2114	8099	42
H(10A)	2715	159	7464	63
H(10B)	2016	1173	7485	63
H(10C)	3760	1225	6965	68
H(10D)	5063	572	7229	68
H(106)	2916	2854	9088	49
H(107)	961	2145	9424	52
H(108)	1093	594	9498	52
H(109)	3204	-242	9236	46
H(110)	5184	468	8903	43
H(112)	9227	2518	7960	46
H(113)	11568	2734	7630	52
H(114)	12962	3896	7759	54
H(115)	12025	4844	8223	55
H(116)	9689	4639	8558	47
H(12A)	2170(140)	9160(50)	5390(17)	122
H(12B)	2650(110)	9310(70)	5010(20)	122
H(12C)	830(180)	9580(70)	5430(12)	149
H(12D)	1000(200)	9160(40)	5100(30)	149
Table 6. Torsion angles [°] for JF2975KFMI.

_

C(15)-C(1)-C(2)-C(5)	-163.4(3)	
C(6)-C(1)-C(2)-C(5)	-15.6(4)	
C(3)-C(1)-C(2)-C(5)	95.3(3)	
C(15)-C(1)-C(2)-C(3)	101.3(3)	
C(6)-C(1)-C(2)-C(3)	-110.9(3)	
C(5)-C(2)-C(3)-C(4)	4.8(3)	
C(1)-C(2)-C(3)-C(4)	114.3(3)	
C(5)-C(2)-C(3)-C(1)	-109.5(3)	
C(15)-C(1)-C(3)-C(4)	157.8(3)	
C(6)-C(1)-C(3)-C(4)	13.2(4)	
C(2)-C(1)-C(3)-C(4)	-93.1(3)	
C(15)-C(1)-C(3)-C(2)	-109.1(3)	
C(6)-C(1)-C(3)-C(2)	106.3(3)	
C(2)-C(3)-C(4)-O(4)	171.7(3)	
C(1)-C(3)-C(4)-O(4)	-124.1(3)	
C(2)-C(3)-C(4)-N(4)	-6.8(3)	
C(1)-C(3)-C(4)-N(4)	57.4(4)	
O(4)-C(4)-N(4)-C(5)	-172.1(3)	
C(3)-C(4)-N(4)-C(5)	6.4(3)	
O(4)-C(4)-N(4)-C(21)	9.6(5)	
C(3)-C(4)-N(4)-C(21)	-171.8(3)	
C(4)-N(4)-C(5)-O(5)	176.7(3)	
C(21)-N(4)-C(5)-O(5)	-5.1(5)	
C(4)-N(4)-C(5)-C(2)	-3.3(3)	
C(21)-N(4)-C(5)-C(2)	174.9(3)	
C(3)-C(2)-C(5)-O(5)	178.9(3)	
C(1)-C(2)-C(5)-O(5)	113.5(4)	
C(3)-C(2)-C(5)-N(4)	-1.2(3)	
C(1)-C(2)-C(5)-N(4)	-66.6(3)	
C(15)-C(1)-C(6)-C(11)	-103.2(3)	
C(2)-C(1)-C(6)-C(11)	108.7(3)	
C(3)-C(1)-C(6)-C(11)	40.3(4)	
C(15)-C(1)-C(6)-C(7)	76.7(4)	
C(2)-C(1)-C(6)-C(7)	-71.4(4)	

C(3)-C(1)-C(6)-C(7)	-139.8(3)
C(11)-C(6)-C(7)-C(8)	-0.9(5)
C(1)-C(6)-C(7)-C(8)	179.2(3)
C(11)-C(6)-C(7)-C(12)	176.3(3)
C(1)-C(6)-C(7)-C(12)	-3.7(5)
C(6)-C(7)-C(8)-C(9)	0.3(5)
C(12)-C(7)-C(8)-C(9)	-176.9(3)
C(7)-C(8)-C(9)-C(10)	-0.4(6)
C(8)-C(9)-C(10)-C(11)	1.1(6)
C(9)-C(10)-C(11)-C(6)	-1.7(5)
C(7)-C(6)-C(11)-C(10)	1.6(5)
C(1)-C(6)-C(11)-C(10)	-178.5(3)
C(8)-C(7)-C(12)-S(13B)	90.2(6)
C(6)-C(7)-C(12)-S(13B)	-86.9(6)
C(8)-C(7)-C(12)-S(12)	-50.3(4)
C(6)-C(7)-C(12)-S(12)	132.6(3)
C(8)-C(7)-C(12)-S(13)	68.8(4)
C(6)-C(7)-C(12)-S(13)	-108.3(3)
C(7)-C(12)-S(12)-C(14)	123.8(3)
S(13B)-C(12)-S(12)-C(14)	-19.7(6)
S(13)-C(12)-S(12)-C(14)	3.9(3)
C(14)-C(13)-S(13)-C(12)	46(3)
C(7)-C(12)-S(13)-C(13)	-150.9(12)
S(12)-C(12)-S(13)-C(13)	-27.3(12)
C(7)-C(12)-S(13B)-C(13B)	-135(11)
S(12)-C(12)-S(13B)-C(13B)	6(11)
C(14)-C(13B)-S(13B)-C(12)	15(23)
S(13)-C(13)-C(14)-S(12)	-49(3)
S(13B)-C(13B)-C(14)-S(12)	-28(24)
C(12)-S(12)-C(14)-C(13)	27.2(18)
C(12)-S(12)-C(14)-C(13B)	27(12)
C(6)-C(1)-C(15)-C(16)	16.7(4)
C(2)-C(1)-C(15)-C(16)	165.1(3)
C(3)-C(1)-C(15)-C(16)	-129.7(3)
C(6)-C(1)-C(15)-C(20)	-167.6(3)
C(2)-C(1)-C(15)-C(20)	-19.1(4)

C(3)-C(1)-C(15)-C(20)	46.1(4)
C(20)-C(15)-C(16)-C(17)	-1.7(5)
C(1)-C(15)-C(16)-C(17)	174.1(3)
C(15)-C(16)-C(17)-C(18)	1.0(5)
C(16)-C(17)-C(18)-C(19)	0.0(5)
C(17)-C(18)-C(19)-C(20)	-0.2(6)
C(18)-C(19)-C(20)-C(15)	-0.6(6)
C(16)-C(15)-C(20)-C(19)	1.5(5)
C(1)-C(15)-C(20)-C(19)	-174.3(3)
C(5)-N(4)-C(21)-C(22)	122.0(4)
C(4)-N(4)-C(21)-C(22)	-60.0(4)
C(5)-N(4)-C(21)-C(26)	-58.7(5)
C(4)-N(4)-C(21)-C(26)	119.3(4)
C(26)-C(21)-C(22)-C(23)	-0.9(6)
N(4)-C(21)-C(22)-C(23)	178.4(3)
C(21)-C(22)-C(23)-C(24)	1.4(6)
C(22)-C(23)-C(24)-C(25)	-0.7(7)
C(23)-C(24)-C(25)-C(26)	-0.7(7)
C(22)-C(21)-C(26)-C(25)	-0.4(6)
N(4)-C(21)-C(26)-C(25)	-179.7(3)
C(24)-C(25)-C(26)-C(21)	1.2(6)
C(36)-C(31)-C(32)-C(35)	-14.5(4)
C(45)-C(31)-C(32)-C(35)	-160.6(3)
C(33)-C(31)-C(32)-C(35)	95.6(3)
C(36)-C(31)-C(32)-C(33)	-110.1(3)
C(45)-C(31)-C(32)-C(33)	103.8(3)
C(35)-C(32)-C(33)-C(34)	3.4(3)
C(31)-C(32)-C(33)-C(34)	112.6(3)
C(35)-C(32)-C(33)-C(31)	-109.2(3)
C(36)-C(31)-C(33)-C(34)	16.7(4)
C(45)-C(31)-C(33)-C(34)	159.0(3)
C(32)-C(31)-C(33)-C(34)	-92.9(3)
C(36)-C(31)-C(33)-C(32)	109.6(3)
C(45)-C(31)-C(33)-C(32)	-108.1(3)
C(32)-C(33)-C(34)-O(34)	173.2(3)
C(31)-C(33)-C(34)-O(34)	-122.9(4)

C(32)-C(33)-C(34)-N(34)	-6.8(3)
C(31)-C(33)-C(34)-N(34)	57.1(4)
O(34)-C(34)-N(34)-C(35)	-172.0(3)
C(33)-C(34)-N(34)-C(35)	8.0(3)
O(34)-C(34)-N(34)-C(51)	6.0(5)
C(33)-C(34)-N(34)-C(51)	-174.0(3)
C(34)-N(34)-C(35)-O(36)	174.5(3)
C(51)-N(34)-C(35)-O(36)	-3.5(5)
C(34)-N(34)-C(35)-C(32)	-5.8(3)
C(51)-N(34)-C(35)-C(32)	176.2(3)
C(33)-C(32)-C(35)-O(36)	-179.1(3)
C(31)-C(32)-C(35)-O(36)	116.2(4)
C(33)-C(32)-C(35)-N(34)	1.2(3)
C(31)-C(32)-C(35)-N(34)	-63.6(3)
C(45)-C(31)-C(36)-C(41)	-97.4(3)
C(32)-C(31)-C(36)-C(41)	115.4(3)
C(33)-C(31)-C(36)-C(41)	45.3(4)
C(45)-C(31)-C(36)-C(37)	76.0(4)
C(32)-C(31)-C(36)-C(37)	-71.2(4)
C(33)-C(31)-C(36)-C(37)	-141.4(3)
C(41)-C(36)-C(37)-C(38)	-2.9(5)
C(31)-C(36)-C(37)-C(38)	-176.3(3)
C(41)-C(36)-C(37)-C(42)	173.8(3)
C(31)-C(36)-C(37)-C(42)	0.4(5)
C(36)-C(37)-C(38)-C(39)	2.0(6)
C(42)-C(37)-C(38)-C(39)	-174.7(4)
C(37)-C(38)-C(39)-C(40)	-0.5(6)
C(38)-C(39)-C(40)-C(41)	0.0(6)
C(39)-C(40)-C(41)-C(36)	-1.0(5)
C(37)-C(36)-C(41)-C(40)	2.5(5)
C(31)-C(36)-C(41)-C(40)	176.0(3)
C(38)-C(37)-C(42)-S(42)	81.5(4)
C(36)-C(37)-C(42)-S(42)	-95.2(3)
C(38)-C(37)-C(42)-S(43)	-42.2(4)
C(36)-C(37)-C(42)-S(43)	141.1(3)
C(37)-C(42)-S(42)-C(43)	-103.8(3)

S(43)-C(42)-S(42)-C(43)	23.0(3)
C(37)-C(42)-S(42)-C(43B)	-134.3(8)
S(43)-C(42)-S(42)-C(43B)	-7.6(8)
C(42)-S(42)-C(43)-C(44)	-39.7(4)
C(42)-S(42)-C(43B)-C(44)	21.2(16)
C(37)-C(42)-S(43)-C(44)	122.8(3)
S(42)-C(42)-S(43)-C(44)	-3.2(3)
S(42)-C(43B)-C(44)-S(43)	-26.8(18)
S(42)-C(43)-C(44)-S(43)	42.0(5)
C(42)-S(43)-C(44)-C(43B)	18.7(12)
C(42)-S(43)-C(44)-C(43)	-22.7(4)
C(36)-C(31)-C(45)-C(46)	35.8(4)
C(32)-C(31)-C(45)-C(46)	-175.7(3)
C(33)-C(31)-C(45)-C(46)	-109.3(3)
C(36)-C(31)-C(45)-C(50)	-143.6(3)
C(32)-C(31)-C(45)-C(50)	4.9(4)
C(33)-C(31)-C(45)-C(50)	71.2(4)
C(50)-C(45)-C(46)-C(47)	0.5(5)
C(31)-C(45)-C(46)-C(47)	-179.0(3)
C(45)-C(46)-C(47)-C(48)	0.0(6)
C(46)-C(47)-C(48)-C(49)	-0.6(6)
C(47)-C(48)-C(49)-C(50)	0.6(6)
C(48)-C(49)-C(50)-C(45)	-0.1(6)
C(46)-C(45)-C(50)-C(49)	-0.5(5)
C(31)-C(45)-C(50)-C(49)	178.9(3)
C(34)-N(34)-C(51)-C(52)	-99.5(4)
C(35)-N(34)-C(51)-C(52)	78.2(4)
C(34)-N(34)-C(51)-C(56)	81.7(4)
C(35)-N(34)-C(51)-C(56)	-100.6(4)
C(56)-C(51)-C(52)-C(53)	-0.4(5)
N(34)-C(51)-C(52)-C(53)	-179.2(3)
C(51)-C(52)-C(53)-C(54)	0.6(5)
C(52)-C(53)-C(54)-C(55)	-0.1(6)
C(53)-C(54)-C(55)-C(56)	-0.7(6)
C(52)-C(51)-C(56)-C(55)	-0.3(6)
N(34)-C(51)-C(56)-C(55)	178.5(3)

C(54)-C(55)-C(56)-C(51)	0.9(6)
C(75)-C(61)-C(62)-C(65)	-163.7(3)
C(66)-C(61)-C(62)-C(65)	-14.9(4)
C(63)-C(61)-C(62)-C(65)	95.3(3)
C(75)-C(61)-C(62)-C(63)	101.0(3)
C(66)-C(61)-C(62)-C(63)	-110.2(3)
C(65)-C(62)-C(63)-C(64)	3.8(3)
C(61)-C(62)-C(63)-C(64)	112.8(3)
C(65)-C(62)-C(63)-C(61)	-109.0(3)
C(75)-C(61)-C(63)-C(64)	157.0(3)
C(66)-C(61)-C(63)-C(64)	14.2(4)
C(62)-C(61)-C(63)-C(64)	-93.4(3)
C(75)-C(61)-C(63)-C(62)	-109.5(3)
C(66)-C(61)-C(63)-C(62)	107.7(3)
C(62)-C(63)-C(64)-O(64)	174.5(3)
C(61)-C(63)-C(64)-O(64)	-121.8(4)
C(62)-C(63)-C(64)-N(64)	-5.5(3)
C(61)-C(63)-C(64)-N(64)	58.2(3)
O(64)-C(64)-N(64)-C(65)	-174.8(3)
C(63)-C(64)-N(64)-C(65)	5.1(3)
O(64)-C(64)-N(64)-C(81)	12.5(5)
C(63)-C(64)-N(64)-C(81)	-167.6(3)
C(64)-N(64)-C(65)-O(65)	178.1(3)
C(81)-N(64)-C(65)-O(65)	-9.3(5)
C(64)-N(64)-C(65)-C(62)	-2.6(3)
C(81)-N(64)-C(65)-C(62)	170.0(3)
C(63)-C(62)-C(65)-O(65)	178.4(3)
C(61)-C(62)-C(65)-O(65)	113.3(4)
C(63)-C(62)-C(65)-N(64)	-0.9(3)
C(61)-C(62)-C(65)-N(64)	-66.0(3)
C(75)-C(61)-C(66)-C(71)	-95.6(3)
C(62)-C(61)-C(66)-C(71)	115.2(3)
C(63)-C(61)-C(66)-C(71)	46.0(4)
C(75)-C(61)-C(66)-C(67)	83.8(4)
C(62)-C(61)-C(66)-C(67)	-65.4(4)
C(63)-C(61)-C(66)-C(67)	-134.6(3)

C(71)-C(66)-C(67)-C(68)	-1.8(5)
C(61)-C(66)-C(67)-C(68)	178.8(3)
C(71)-C(66)-C(67)-C(72)	174.5(3)
C(61)-C(66)-C(67)-C(72)	-4.9(5)
C(66)-C(67)-C(68)-C(69)	0.2(5)
C(72)-C(67)-C(68)-C(69)	-176.2(3)
C(67)-C(68)-C(69)-C(70)	0.9(6)
C(68)-C(69)-C(70)-C(71)	-0.5(6)
C(69)-C(70)-C(71)-C(66)	-1.0(6)
C(67)-C(66)-C(71)-C(70)	2.2(5)
C(61)-C(66)-C(71)-C(70)	-178.4(3)
C(68)-C(67)-C(72)-S(73)	71.9(3)
C(66)-C(67)-C(72)-S(73)	-104.3(3)
C(68)-C(67)-C(72)-S(72)	-48.8(4)
C(66)-C(67)-C(72)-S(72)	134.9(3)
C(67)-C(72)-S(72)-C(74)	115.4(3)
S(73)-C(72)-S(72)-C(74)	-5.8(2)
C(74)-C(73)-S(73)-C(72)	42.6(3)
C(67)-C(72)-S(73)-C(73)	-143.5(2)
S(72)-C(72)-S(73)-C(73)	-18.6(2)
S(73)-C(73)-C(74)-S(72)	-51.1(3)
C(72)-S(72)-C(74)-C(73)	34.7(3)
C(66)-C(61)-C(75)-C(80)	-133.2(3)
C(62)-C(61)-C(75)-C(80)	16.5(4)
C(63)-C(61)-C(75)-C(80)	82.2(4)
C(66)-C(61)-C(75)-C(76)	51.1(4)
C(62)-C(61)-C(75)-C(76)	-159.2(3)
C(63)-C(61)-C(75)-C(76)	-93.5(3)
C(80)-C(75)-C(76)-C(77)	-0.1(5)
C(61)-C(75)-C(76)-C(77)	175.8(3)
C(75)-C(76)-C(77)-C(78)	0.1(5)
C(76)-C(77)-C(78)-C(79)	-0.3(5)
C(77)-C(78)-C(79)-C(80)	0.3(5)
C(76)-C(75)-C(80)-C(79)	0.1(5)
C(61)-C(75)-C(80)-C(79)	-175.6(3)
C(78)-C(79)-C(80)-C(75)	-0.2(5)

C(65)-N(64)-C(81)-C(86)	130.5(3)
C(64)-N(64)-C(81)-C(86)	-57.7(4)
C(65)-N(64)-C(81)-C(82)	-51.9(4)
C(64)-N(64)-C(81)-C(82)	119.9(3)
C(86)-C(81)-C(82)-C(83)	-0.4(5)
N(64)-C(81)-C(82)-C(83)	-177.9(3)
C(81)-C(82)-C(83)-C(84)	1.5(6)
C(82)-C(83)-C(84)-C(85)	-1.4(6)
C(83)-C(84)-C(85)-C(86)	0.2(5)
C(82)-C(81)-C(86)-C(85)	-0.8(5)
N(64)-C(81)-C(86)-C(85)	176.8(3)
C(84)-C(85)-C(86)-C(81)	0.9(5)
C(105)-C(91)-C(92)-C(95)	-161.2(3)
C(96)-C(91)-C(92)-C(95)	-14.7(4)
C(93)-C(91)-C(92)-C(95)	95.2(3)
C(105)-C(91)-C(92)-C(93)	103.5(3)
C(96)-C(91)-C(92)-C(93)	-109.9(3)
C(95)-C(92)-C(93)-C(94)	5.5(3)
C(91)-C(92)-C(93)-C(94)	113.6(3)
C(95)-C(92)-C(93)-C(91)	-108.1(3)
C(105)-C(91)-C(93)-C(94)	159.3(3)
C(96)-C(91)-C(93)-C(94)	13.6(4)
C(92)-C(91)-C(93)-C(94)	-93.4(3)
C(105)-C(91)-C(93)-C(92)	-107.2(3)
C(96)-C(91)-C(93)-C(92)	107.0(3)
C(92)-C(93)-C(94)-O(94)	171.6(3)
C(91)-C(93)-C(94)-O(94)	-124.1(3)
C(92)-C(93)-C(94)-N(94)	-7.5(3)
C(91)-C(93)-C(94)-N(94)	56.8(3)
O(94)-C(94)-N(94)-C(95)	-172.4(3)
C(93)-C(94)-N(94)-C(95)	6.8(3)
O(94)-C(94)-N(94)-C(111)	13.4(5)
C(93)-C(94)-N(94)-C(111)	-167.4(3)
C(94)-N(94)-C(95)-O(95)	176.9(3)
C(111)-N(94)-C(95)-O(95)	-9.0(5)
C(94)-N(94)-C(95)-C(92)	-3.2(3)

C(111)-N(94)-C(95)-C(92)	171.0(3)
C(93)-C(92)-C(95)-O(95)	178.3(3)
C(91)-C(92)-C(95)-O(95)	113.7(4)
C(93)-C(92)-C(95)-N(94)	-1.6(3)
C(91)-C(92)-C(95)-N(94)	-66.2(3)
C(105)-C(91)-C(96)-C(101)	-101.6(3)
C(92)-C(91)-C(96)-C(101)	112.1(3)
C(93)-C(91)-C(96)-C(101)	43.4(4)
C(105)-C(91)-C(96)-C(97)	76.9(4)
C(92)-C(91)-C(96)-C(97)	-69.5(4)
C(93)-C(91)-C(96)-C(97)	-138.2(3)
C(101)-C(96)-C(97)-C(98)	-2.0(5)
C(91)-C(96)-C(97)-C(98)	179.5(3)
C(101)-C(96)-C(97)-C(102)	175.8(3)
C(91)-C(96)-C(97)-C(102)	-2.6(5)
C(96)-C(97)-C(98)-C(99)	0.4(5)
C(102)-C(97)-C(98)-C(99)	-177.5(3)
C(97)-C(98)-C(99)-C(100)	1.1(5)
C(98)-C(99)-C(100)-C(101)	-0.9(5)
C(99)-C(100)-C(101)-C(96)	-0.7(5)
C(97)-C(96)-C(101)-C(100)	2.2(5)
C(91)-C(96)-C(101)-C(100)	-179.3(3)
C(98)-C(97)-C(102)-S(103)	-45.4(4)
C(96)-C(97)-C(102)-S(103)	136.8(3)
C(98)-C(97)-C(102)-S(102)	76.7(3)
C(96)-C(97)-C(102)-S(102)	-101.2(3)
C(97)-C(102)-S(102)-C(103)	-135.1(2)
S(103)-C(102)-S(102)-C(103)	-8.9(2)
C(102)-S(102)-C(103)-C(104)	34.6(3)
C(97)-C(102)-S(103)-C(104)	109.1(3)
S(102)-C(102)-S(103)-C(104)	-13.5(2)
S(102)-C(103)-C(104)-S(103)	-47.5(3)
C(102)-S(103)-C(104)-C(103)	37.3(3)
C(96)-C(91)-C(105)-C(106)	-170.9(3)
C(92)-C(91)-C(105)-C(106)	-23.8(4)
C(93)-C(91)-C(105)-C(106)	42.1(4)

C(96)-C(91)-C(105)-C(110)	11.9(4)
C(92)-C(91)-C(105)-C(110)	159.0(3)
C(93)-C(91)-C(105)-C(110)	-135.1(3)
C(110)-C(105)-C(106)-C(107)	0.4(5)
C(91)-C(105)-C(106)-C(107)	-176.9(3)
C(105)-C(106)-C(107)-C(108)	-0.4(5)
C(106)-C(107)-C(108)-C(109)	0.2(5)
C(107)-C(108)-C(109)-C(110)	0.2(5)
C(108)-C(109)-C(110)-C(105)	-0.2(5)
C(106)-C(105)-C(110)-C(109)	-0.1(5)
C(91)-C(105)-C(110)-C(109)	177.3(3)
C(95)-N(94)-C(111)-C(116)	121.6(3)
C(94)-N(94)-C(111)-C(116)	-64.8(4)
C(95)-N(94)-C(111)-C(112)	-59.4(4)
C(94)-N(94)-C(111)-C(112)	114.2(3)
C(116)-C(111)-C(112)-C(113)	-1.4(5)
N(94)-C(111)-C(112)-C(113)	179.7(3)
C(111)-C(112)-C(113)-C(114)	0.5(5)
C(112)-C(113)-C(114)-C(115)	0.3(5)
C(113)-C(114)-C(115)-C(116)	-0.3(5)
C(112)-C(111)-C(116)-C(115)	1.4(5)
N(94)-C(111)-C(116)-C(115)	-179.6(3)
C(114)-C(115)-C(116)-C(111)	-0.6(5)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(22)-H(22)O(4)#1	0.95	2.57	3.397(4)	146
C(43)-H(43A)O(95)	0.99	2.43	3.300(6)	147
C(52)-H(52)O(5)#2	0.95	2.51	3.239(4)	133
C(63)-H(63)O(94)#3	1.00	2.40	3.355(4)	160
C(73)-H(73A)S(102)#2	0.99	3.01	3.785(4)	136
C(116)-H(116)O(65)#4	0.95	2.27	3.097(4)	144
O(121)-H(12A)O(34)	0.842(5)	2.17(5)	2.925(10)	148(9)
O(122)-H(12C)O(34)	0.842(5)	2.16(8)	2.872(13)	143(12)

Table 7. Hydrogen bonds for JF2975KFMI [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1 #2 x,y+1,z #3 -x+1,-y+1,-z+2

#4 x+1,y,z

$$Ph \underbrace{\downarrow}_{0} = \underbrace{\downarrow}_{$$

CCDC 2087128

Table 1. Crystal data and structure refinement for $[C_{23}H_{19}NO_5]_{0.91:0.09}$.

Identification code	JF2983FMI (MG	6-4-62-2) (Whole Molecule Disorder, 0.91:0.09)
Empirical formula	C23 H19 N O5	
Formula weight	389.39	
Temperature	90(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	Pca21	
Unit cell dimensions	a = 19.1967(9) Å	<i>α</i> =90°.
	b = 13.7962(6) Å	β= 90°.
	c = 13.8480(6) Å	$\gamma = 90^{\circ}.$
Volume	3667.5(3) Å ³	

Ζ, Ζ'	8, 2
Density (calculated)	1.410 Mg/m ³
Absorption coefficient	0.823 mm ⁻¹
F(000)	1632
Crystal size	0.549 x 0.333 x 0.178 mm ³
Crystal color and habit	colourless Block
Diffractometer	Bruker APEX-II CCD
Theta range for data collection	3.203 to 69.545°.
Index ranges	-21<=h<=23, -16<=k<=16, -16<=l<=16
Reflections collected	17934
Independent reflections	6717 [R(int) = 0.0207]
Observed reflections (I > 2sigma(I))	6644
Completeness to theta = 67.679°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8116 and 0.7343
Solution method	SHELXT (Sheldrick, 2014)
Refinement method	SHELXL-2017/1 (Sheldrick, 2017) Full-matrix least-squares on F^2
Data / restraints / parameters	6717 / 432 / 683
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0341, wR2 = 0.0903
R indices (all data)	R1 = 0.0343, wR2 = 0.0906
Absolute structure parameters	Flack = 0.02(4); Hooft = 0.02(3); Parson's = 0.06(3)
Largest diff. peak and hole	0.156 and -0.400 e.Å ⁻³

	X	У	Z	U(eq)
C(1)	3110(1)	5068(2)	4560(2)	14(1)
O(1)	2590(1)	4502(2)	4128(2)	15(1)
C(2)	1969(1)	5055(1)	3946(2)	13(1)
O(2)	3409(1)	5700(1)	3877(1)	16(1)
C(3)	1608(1)	5256(2)	4925(1)	13(1)
O(3)	3639(1)	4422(1)	4822(1)	17(1)
C(4)	2130(1)	5772(2)	5569(2)	16(1)
C(5)	2845(1)	5651(2)	5399(2)	15(1)
C(6)	3328(1)	6119(2)	5990(2)	16(1)
C(7)	3100(1)	6705(2)	6751(2)	18(1)
C(8)	2390(2)	6827(2)	6908(2)	17(1)
C(9)	1911(1)	6366(2)	6324(2)	16(1)
C(10)	3892(1)	5128(2)	3321(2)	25(1)
C(11)	4016(1)	4232(2)	3943(2)	21(1)
C(12)	1535(1)	4519(1)	3214(2)	14(1)
C(13)	930(1)	4950(2)	2853(2)	15(1)
C(14)	539(1)	4502(1)	2143(2)	15(1)
C(15)	760(1)	3605(1)	1810(1)	14(1)
N(15)	353(1)	3135(2)	1051(2)	17(1)
O(15)	-167(1)	3553(1)	745(1)	23(1)
C(16)	1352(1)	3157(2)	2150(2)	17(1)
O(16)	554(1)	2346(1)	738(1)	24(1)
C(17)	1740(1)	3617(2)	2859(2)	18(1)
C(18)	1321(1)	4340(2)	5400(2)	16(1)
C(19)	1739(1)	3753(2)	5970(2)	18(1)
C(20)	1480(1)	2902(2)	6366(2)	27(1)
C(21)	804(2)	2634(2)	6205(3)	36(1)
C(22)	372(1)	3214(2)	5623(2)	30(1)
C(23)	635(1)	4063(2)	5238(2)	23(1)
C(31)	1883(1)	9928(2)	6883(2)	18(1)
O(31)	2424(1)	9364(1)	6485(1)	16(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for JF2983FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	3038(1)	9933(1)	6306(2)	14(1)
O(32)	1587(1)	10524(1)	6167(1)	20(1)
C(33)	3376(1)	10158(2)	7292(2)	15(1)
O(33)	1364(1)	9276(1)	7154(1)	20(1)
C(34)	2833(1)	10677(2)	7904(2)	17(1)
C(35)	2124(1)	10546(2)	7712(2)	18(1)
C(36)	1629(1)	11015(2)	8283(2)	20(1)
C(37)	1833(1)	11597(2)	9046(2)	24(1)
C(38)	2540(1)	11722(2)	9244(2)	23(1)
C(39)	3032(1)	11265(2)	8673(2)	20(1)
C(40)	1098(1)	9932(2)	5645(2)	27(1)
C(41)	1006(1)	9035(2)	6271(2)	26(1)
C(42)	3488(1)	9412(2)	5580(2)	16(1)
C(43)	4096(1)	9856(2)	5241(2)	16(1)
C(44)	4484(1)	9442(2)	4511(2)	18(1)
C(45)	4263(1)	8570(2)	4125(2)	17(1)
N(45)	4659(1)	8151(2)	3319(2)	20(1)
O(45)	5189(1)	8569(1)	3051(1)	27(1)
C(46)	3674(1)	8098(2)	4449(2)	19(1)
O(46)	4438(1)	7405(1)	2934(1)	28(1)
C(47)	3285(1)	8527(2)	5176(2)	18(1)
C(48)	3656(2)	9266(2)	7821(3)	17(1)
C(49)	3222(1)	8711(2)	8405(2)	17(1)
C(50)	3485(1)	7929(2)	8921(2)	19(1)
C(51)	4186(1)	7698(2)	8864(2)	21(1)
C(52)	4618(1)	8241(2)	8270(2)	24(1)
C(53)	4354(1)	9022(2)	7749(2)	21(1)
C(101)	1865(9)	5036(14)	4659(14)	21(2)
O(101)	2413(11)	4446(18)	4210(20)	20(4)
C(102)	3029(11)	4989(18)	4039(16)	34(3)
O(102)	1602(10)	5570(14)	3884(15)	42(3)
C(103)	3367(11)	5170(17)	5013(15)	28(3)
O(103)	1389(11)	4339(15)	5038(18)	26(3)
C(104)	2912(10)	5749(19)	5610(15)	16(3)
C(105)	2197(11)	5661(19)	5477(16)	15(2)
C(106)	1741(8)	6139(17)	6093(17)	27(4)

C(107)	1999(12)	6706(13)	6842(14)	30(4)
C(108)	2714(13)	6794(12)	6974(12)	21(3)
C(109)	3170(9)	6316(16)	6358(15)	20(4)
C(110)	1140(13)	4917(16)	3368(17)	30(3)
C(111)	1005(13)	4077(17)	4048(19)	33(3)
C(112)	3487(8)	4442(12)	3361(11)	35(3)
C(113)	4072(9)	4903(10)	2988(13)	36(3)
C(114)	4453(7)	4469(11)	2252(12)	36(3)
C(115)	4249(7)	3573(10)	1890(9)	36(3)
C(116)	3664(8)	3112(9)	2263(12)	36(3)
C(117)	3283(7)	3546(12)	2998(12)	36(4)
N(115)	4663(9)	3156(13)	1121(12)	33(3)
O(115)	4338(12)	2454(16)	1041(19)	38(3)
O(116)	5154(9)	3552(13)	822(14)	41(3)
C(118)	3674(8)	4323(10)	5592(13)	28(3)
C(119)	4363(8)	4044(13)	5457(14)	28(3)
C(120)	4613(7)	3206(14)	5893(17)	21(4)
C(121)	4173(8)	2646(11)	6464(15)	30(3)
C(122)	3484(8)	2925(11)	6598(13)	28(3)
C(123)	3235(6)	3764(12)	6162(14)	29(3)
C(131)	3096(9)	10078(13)	7210(14)	14(4)
O(131)	2590(8)	9484(13)	6805(14)	20(3)
O(132)	3607(12)	9423(17)	7567(18)	16(7)
C(132)	1946(12)	10020(30)	6638(16)	16(4)
O(133)	3400(8)	10659(11)	6514(12)	22(3)
C(133)	1621(9)	10241(13)	7604(12)	17(3)
C(134)	2133(8)	10783(13)	8216(13)	20(3)
C(135)	2843(9)	10651(15)	8072(13)	16(4)
C(136)	3321(7)	11107(15)	8674(14)	22(4)
C(137)	3088(8)	11696(12)	9422(12)	25(3)
C(138)	2377(9)	11829(14)	9567(13)	27(3)
C(139)	1900(7)	11372(15)	8964(15)	25(4)
C(140)	4001(12)	9201(16)	6622(18)	27(5)
C(141)	3893(14)	10061(19)	5980(20)	41(7)
C(142)	1518(8)	9488(12)	5911(11)	27(3)
C(143)	918(9)	9929(10)	5558(13)	26(3)

C(144)	534(7)	9484(11)	4832(13)	24(2)
C(145)	749(7)	8598(10)	4459(11)	26(3)
C(146)	1348(8)	8157(9)	4811(12)	27(3)
C(147)	1733(7)	8602(11)	5538(11)	24(2)
N(145)	346(11)	8147(15)	3712(18)	28(3)
O(145)	-172(8)	8562(12)	3417(13)	28(2)
O(146)	579(9)	7396(12)	3419(15)	29(2)
C(148)	1321(7)	9328(9)	8115(11)	17(3)
C(149)	1752(6)	8760(10)	8690(12)	17(4)
C(150)	1490(8)	7931(10)	9130(12)	17(6)
C(151)	797(9)	7671(11)	8995(16)	33(6)
C(152)	367(7)	8239(13)	8420(17)	22(4)
C(153)	628(7)	9068(11)	7980(13)	18(4)

C(1)-O(3)	1.399(2)
C(1)-O(1)	1.400(3)
C(1)-O(2)	1.408(3)
C(1)-C(5)	1.503(3)
O(1)-C(2)	1.437(3)
C(2)-C(12)	1.507(3)
C(2)-C(3)	1.548(3)
C(2)-H(2)	1.0000
O(2)-C(10)	1.441(3)
C(3)-C(4)	1.518(3)
C(3)-C(18)	1.526(3)
C(3)-H(3)	1.0000
O(3)-C(11)	1.440(3)
C(4)-C(9)	1.393(3)
C(4)-C(5)	1.403(3)
C(5)-C(6)	1.395(3)
C(6)-C(7)	1.397(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.392(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.379(3)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-C(11)	1.526(3)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(17)	1.396(3)
C(12)-C(13)	1.396(3)
C(13)-C(14)	1.384(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.387(3)
C(14)-H(14)	0.9500

Table 3. Bond lengths [Å] and angles [°] for JF2983FMI.

......

C(15)-C(16)	1.377(3)
C(15)-N(15)	1.461(3)
N(15)-O(15)	1.228(3)
N(15)-O(16)	1.233(3)
C(16)-C(17)	1.386(3)
С(16)-Н(16)	0.9500
С(17)-Н(17)	0.9500
C(18)-C(19)	1.387(3)
C(18)-C(23)	1.391(3)
C(19)-C(20)	1.389(3)
С(19)-Н(19)	0.9500
C(20)-C(21)	1.367(4)
С(20)-Н(20)	0.9500
C(21)-C(22)	1.407(4)
С(21)-Н(21)	0.9500
C(22)-C(23)	1.383(4)
С(22)-Н(22)	0.9500
С(23)-Н(23)	0.9500
C(31)-O(33)	1.394(3)
C(31)-O(32)	1.408(3)
C(31)-O(31)	1.410(3)
C(31)-C(35)	1.505(4)
O(31)-C(32)	1.437(2)
C(32)-C(42)	1.508(3)
C(32)-C(33)	1.544(3)
С(32)-Н(32)	1.0000
O(32)-C(40)	1.440(3)
C(33)-C(34)	1.522(3)
C(33)-C(48)	1.530(4)
С(33)-Н(33)	1.0000
O(33)-C(41)	1.441(3)
C(34)-C(39)	1.392(3)
C(34)-C(35)	1.398(3)
C(35)-C(36)	1.396(3)
C(36)-C(37)	1.383(4)
C(36)-H(36)	0.9500

C(37)-C(38)	1.397(4)
С(37)-Н(37)	0.9500
C(38)-C(39)	1.384(3)
C(38)-H(38)	0.9500
C(39)-H(39)	0.9500
C(40)-C(41)	1.522(4)
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-C(43)	1.399(3)
C(42)-C(47)	1.399(3)
C(43)-C(44)	1.381(3)
C(43)-H(43)	0.9500
C(44)-C(45)	1.382(3)
C(44)-H(44)	0.9500
C(45)-C(46)	1.380(3)
C(45)-N(45)	1.469(3)
N(45)-O(45)	1.227(3)
N(45)-O(46)	1.233(3)
C(46)-C(47)	1.386(3)
C(46)-H(46)	0.9500
C(47)-H(47)	0.9500
C(48)-C(53)	1.385(4)
C(48)-C(49)	1.391(4)
C(49)-C(50)	1.389(3)
C(49)-H(49)	0.9500
C(50)-C(51)	1.385(3)
C(50)-H(50)	0.9500
C(51)-C(52)	1.389(4)
C(51)-H(51)	0.9500
C(52)-C(53)	1.393(3)
C(52)-H(52)	0.9500
C(53)-H(53)	0.9500
C(101)-O(102)	1.40(2)
C(101)-O(103)	1.43(2)

C(101)-O(101)	1.47(2)
C(101)-C(105)	1.560(19)
O(101)-C(102)	1.420(14)
C(102)-C(112)	1.492(18)
C(102)-C(103)	1.52(2)
С(102)-Н(10С)	1.0000
O(102)-C(110)	1.452(14)
C(103)-C(104)	1.44(2)
C(103)-C(118)	1.53(3)
С(103)-Н(103)	1.0000
O(103)-C(111)	1.60(3)
C(104)-C(105)	1.3900
C(104)-C(109)	1.3900
C(105)-C(106)	1.3900
C(106)-C(107)	1.3900
C(106)-H(106)	0.9500
C(107)-C(108)	1.3900
С(107)-Н(107)	0.9500
C(108)-C(109)	1.3900
C(108)-H(108)	0.9500
C(109)-H(109)	0.9500
C(110)-C(111)	1.52(2)
C(110)-H(11C)	0.9900
C(110)-H(11D)	0.9900
C(111)-H(11E)	0.9900
C(111)-H(11F)	0.9900
C(112)-C(113)	1.3900
C(112)-C(117)	1.3900
C(113)-C(114)	1.3900
C(113)-H(113)	0.9500
C(114)-C(115)	1.3900
C(114)-H(114)	0.9500
C(115)-C(116)	1.3900
C(115)-N(115)	1.448(16)
C(116)-C(117)	1.3900
C(116)-H(116)	0.9500

C(117)-H(117)	0.9500
N(115)-O(115)	1.16(2)
N(115)-O(116)	1.165(19)
C(118)-C(119)	1.3900
C(118)-C(123)	1.3900
C(119)-C(120)	1.3900
С(119)-Н(119)	0.9500
C(120)-C(121)	1.3900
С(120)-Н(120)	0.9500
C(121)-C(122)	1.3900
С(121)-Н(121)	0.9500
C(122)-C(123)	1.3900
С(122)-Н(122)	0.9500
С(123)-Н(123)	0.9500
C(131)-O(133)	1.38(2)
C(131)-O(131)	1.39(2)
C(131)-O(132)	1.42(2)
C(131)-C(135)	1.511(18)
O(131)-C(132)	1.46(3)
O(132)-C(140)	1.54(3)
C(132)-C(142)	1.493(18)
C(132)-C(133)	1.51(2)
С(132)-Н(132)	1.0000
O(133)-C(141)	1.46(3)
C(133)-C(134)	1.498(18)
C(133)-C(148)	1.555(18)
С(133)-Н(133)	1.0000
C(134)-C(135)	1.3900
C(134)-C(139)	1.3900
C(135)-C(136)	1.3900
C(136)-C(137)	1.3900
С(136)-Н(136)	0.9500
C(137)-C(138)	1.3900
С(137)-Н(137)	0.9500
C(138)-C(139)	1.3900
С(138)-Н(138)	0.9500

C(139)-H(139)	0.9500
C(140)-C(141)	1.50(2)
C(140)-H(14A)	0.9900
C(140)-H(14B)	0.9900
C(141)-H(14C)	0.9900
C(141)-H(14D)	0.9900
C(142)-C(143)	1.3900
C(142)-C(147)	1.3900
C(143)-C(144)	1.3900
С(143)-Н(143)	0.9500
C(144)-C(145)	1.3900
C(144)-H(144)	0.9500
C(145)-C(146)	1.3900
C(145)-N(145)	1.43(2)
C(146)-C(147)	1.3900
C(146)-H(146)	0.9500
C(147)-H(147)	0.9500
N(145)-O(146)	1.20(2)
N(145)-O(145)	1.22(2)
C(148)-C(149)	1.3900
C(148)-C(153)	1.3900
C(149)-C(150)	1.3900
C(149)-H(149)	0.9500
C(150)-C(151)	1.3900
C(150)-H(150)	0.9500
C(151)-C(152)	1.3900
C(151)-H(151)	0.9500
C(152)-C(153)	1.3900
C(152)-H(152)	0.9500
C(153)-H(153)	0.9500
O(3)-C(1)-O(1)	105.88(17)
O(3)-C(1)-O(2)	105.81(16)
O(1)-C(1)-O(2)	110.37(19)
O(3)-C(1)-C(5)	112.73(19)
O(1)-C(1)-C(5)	112.80(18)

O(2)-C(1)-C(5)	109.01(18)
C(1)-O(1)-C(2)	111.72(17)
O(1)-C(2)-C(12)	108.46(17)
O(1)-C(2)-C(3)	108.30(17)
C(12)-C(2)-C(3)	115.40(16)
O(1)-C(2)-H(2)	108.2
C(12)-C(2)-H(2)	108.2
C(3)-C(2)-H(2)	108.2
C(1)-O(2)-C(10)	106.40(16)
C(4)-C(3)-C(18)	111.9(2)
C(4)-C(3)-C(2)	107.57(17)
C(18)-C(3)-C(2)	112.96(17)
C(4)-C(3)-H(3)	108.1
C(18)-C(3)-H(3)	108.1
C(2)-C(3)-H(3)	108.1
C(1)-O(3)-C(11)	105.17(16)
C(9)-C(4)-C(5)	119.4(2)
C(9)-C(4)-C(3)	121.2(2)
C(5)-C(4)-C(3)	119.5(2)
C(6)-C(5)-C(4)	119.8(2)
C(6)-C(5)-C(1)	118.4(2)
C(4)-C(5)-C(1)	121.7(2)
C(5)-C(6)-C(7)	120.1(2)
C(5)-C(6)-H(6)	119.9
C(7)-C(6)-H(6)	119.9
C(8)-C(7)-C(6)	119.7(2)
C(8)-C(7)-H(7)	120.2
C(6)-C(7)-H(7)	120.2
C(9)-C(8)-C(7)	120.3(2)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(8)-C(9)-C(4)	120.7(2)
C(8)-C(9)-H(9)	119.6
C(4)-C(9)-H(9)	119.6
O(2)-C(10)-C(11)	104.02(19)
O(2)-C(10)-H(10A)	111.0

C(11)-C(10)-H(10A)	111.0
O(2)-C(10)-H(10B)	111.0
C(11)-C(10)-H(10B)	111.0
H(10A)-C(10)-H(10B)	109.0
O(3)-C(11)-C(10)	104.53(17)
O(3)-C(11)-H(11A)	110.8
C(10)-C(11)-H(11A)	110.8
O(3)-C(11)-H(11B)	110.8
C(10)-C(11)-H(11B)	110.8
H(11A)-C(11)-H(11B)	108.9
C(17)-C(12)-C(13)	119.25(19)
C(17)-C(12)-C(2)	121.21(19)
C(13)-C(12)-C(2)	119.48(18)
C(14)-C(13)-C(12)	121.02(19)
С(14)-С(13)-Н(13)	119.5
С(12)-С(13)-Н(13)	119.5
C(13)-C(14)-C(15)	117.96(18)
C(13)-C(14)-H(14)	121.0
C(15)-C(14)-H(14)	121.0
C(16)-C(15)-C(14)	122.68(19)
C(16)-C(15)-N(15)	119.22(19)
C(14)-C(15)-N(15)	118.09(19)
O(15)-N(15)-O(16)	123.2(2)
O(15)-N(15)-C(15)	118.3(2)
O(16)-N(15)-C(15)	118.47(19)
C(15)-C(16)-C(17)	118.72(19)
C(15)-C(16)-H(16)	120.6
C(17)-C(16)-H(16)	120.6
C(16)-C(17)-C(12)	120.38(19)
С(16)-С(17)-Н(17)	119.8
С(12)-С(17)-Н(17)	119.8
C(19)-C(18)-C(23)	118.7(2)
C(19)-C(18)-C(3)	121.4(2)
C(23)-C(18)-C(3)	119.9(2)
C(18)-C(19)-C(20)	120.7(2)
C(18)-C(19)-H(19)	119.6

C(20)-C(19)-H(19)	119.6
C(21)-C(20)-C(19)	120.3(2)
С(21)-С(20)-Н(20)	119.9
C(19)-C(20)-H(20)	119.9
C(20)-C(21)-C(22)	120.0(2)
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-H(21)	120.0
C(23)-C(22)-C(21)	119.2(2)
С(23)-С(22)-Н(22)	120.4
С(21)-С(22)-Н(22)	120.4
C(22)-C(23)-C(18)	121.1(2)
С(22)-С(23)-Н(23)	119.5
C(18)-C(23)-H(23)	119.5
O(33)-C(31)-O(32)	106.14(19)
O(33)-C(31)-O(31)	106.1(2)
O(32)-C(31)-O(31)	110.2(2)
O(33)-C(31)-C(35)	112.3(2)
O(32)-C(31)-C(35)	109.3(2)
O(31)-C(31)-C(35)	112.6(2)
C(31)-O(31)-C(32)	111.70(16)
O(31)-C(32)-C(42)	108.90(16)
O(31)-C(32)-C(33)	107.61(17)
C(42)-C(32)-C(33)	116.42(17)
O(31)-C(32)-H(32)	107.9
С(42)-С(32)-Н(32)	107.9
С(33)-С(32)-Н(32)	107.9
C(31)-O(32)-C(40)	106.57(17)
C(34)-C(33)-C(48)	110.6(2)
C(34)-C(33)-C(32)	107.37(19)
C(48)-C(33)-C(32)	114.12(19)
С(34)-С(33)-Н(33)	108.2
C(48)-C(33)-H(33)	108.2
С(32)-С(33)-Н(33)	108.2
C(31)-O(33)-C(41)	105.10(18)
C(39)-C(34)-C(35)	119.2(2)
C(39)-C(34)-C(33)	120.7(2)

C(35)-C(34)-C(33)	120.0(2)
C(36)-C(35)-C(34)	119.8(2)
C(36)-C(35)-C(31)	119.1(2)
C(34)-C(35)-C(31)	121.2(2)
C(37)-C(36)-C(35)	120.6(2)
C(37)-C(36)-H(36)	119.7
C(35)-C(36)-H(36)	119.7
C(36)-C(37)-C(38)	119.8(2)
C(36)-C(37)-H(37)	120.1
C(38)-C(37)-H(37)	120.1
C(39)-C(38)-C(37)	119.7(2)
C(39)-C(38)-H(38)	120.2
C(37)-C(38)-H(38)	120.2
C(38)-C(39)-C(34)	121.0(2)
C(38)-C(39)-H(39)	119.5
C(34)-C(39)-H(39)	119.5
O(32)-C(40)-C(41)	104.5(2)
O(32)-C(40)-H(40A)	110.9
C(41)-C(40)-H(40A)	110.9
O(32)-C(40)-H(40B)	110.9
C(41)-C(40)-H(40B)	110.9
H(40A)-C(40)-H(40B)	108.9
O(33)-C(41)-C(40)	103.95(18)
O(33)-C(41)-H(41A)	111.0
C(40)-C(41)-H(41A)	111.0
O(33)-C(41)-H(41B)	111.0
C(40)-C(41)-H(41B)	111.0
H(41A)-C(41)-H(41B)	109.0
C(43)-C(42)-C(47)	118.7(2)
C(43)-C(42)-C(32)	119.53(19)
C(47)-C(42)-C(32)	121.53(19)
C(44)-C(43)-C(42)	121.0(2)
C(44)-C(43)-H(43)	119.5
C(42)-C(43)-H(43)	119.5
C(43)-C(44)-C(45)	118.5(2)
C(43)-C(44)-H(44)	120.7

C(45)-C(44)-H(44)	120.7
C(46)-C(45)-C(44)	122.5(2)
C(46)-C(45)-N(45)	119.0(2)
C(44)-C(45)-N(45)	118.5(2)
O(45)-N(45)-O(46)	123.1(2)
O(45)-N(45)-C(45)	118.2(2)
O(46)-N(45)-C(45)	118.7(2)
C(45)-C(46)-C(47)	118.5(2)
C(45)-C(46)-H(46)	120.8
C(47)-C(46)-H(46)	120.8
C(46)-C(47)-C(42)	120.8(2)
C(46)-C(47)-H(47)	119.6
C(42)-C(47)-H(47)	119.6
C(53)-C(48)-C(49)	119.2(3)
C(53)-C(48)-C(33)	120.0(3)
C(49)-C(48)-C(33)	120.7(2)
C(50)-C(49)-C(48)	120.5(2)
C(50)-C(49)-H(49)	119.7
C(48)-C(49)-H(49)	119.7
C(51)-C(50)-C(49)	120.3(2)
C(51)-C(50)-H(50)	119.9
C(49)-C(50)-H(50)	119.9
C(50)-C(51)-C(52)	119.3(2)
C(50)-C(51)-H(51)	120.4
C(52)-C(51)-H(51)	120.4
C(51)-C(52)-C(53)	120.5(2)
C(51)-C(52)-H(52)	119.8
C(53)-C(52)-H(52)	119.8
C(48)-C(53)-C(52)	120.2(2)
C(48)-C(53)-H(53)	119.9
C(52)-C(53)-H(53)	119.9
O(102)-C(101)-O(103)	114.1(16)
O(102)-C(101)-O(101)	103(2)
O(103)-C(101)-O(101)	103.9(18)
O(102)-C(101)-C(105)	114.4(18)
O(103)-C(101)-C(105)	111.5(19)

O(101)-C(101)-C(105)	108.5(16)
C(102)-O(101)-C(101)	112.1(17)
O(101)-C(102)-C(112)	109.3(18)
O(101)-C(102)-C(103)	107.0(17)
C(112)-C(102)-C(103)	113.0(17)
O(101)-C(102)-H(10C)	109.2
С(112)-С(102)-Н(10С)	109.2
С(103)-С(102)-Н(10С)	109.2
C(101)-O(102)-C(110)	105.7(16)
C(104)-C(103)-C(102)	109.9(17)
C(104)-C(103)-C(118)	110.7(18)
C(102)-C(103)-C(118)	120.2(18)
С(104)-С(103)-Н(103)	104.9
С(102)-С(103)-Н(103)	104.9
С(118)-С(103)-Н(103)	104.9
C(101)-O(103)-C(111)	97.6(16)
C(105)-C(104)-C(109)	120.0
C(105)-C(104)-C(103)	118.2(17)
C(109)-C(104)-C(103)	121.5(17)
C(106)-C(105)-C(104)	120.0
C(106)-C(105)-C(101)	116.7(16)
C(104)-C(105)-C(101)	123.3(16)
C(105)-C(106)-C(107)	120.0
С(105)-С(106)-Н(106)	120.0
С(107)-С(106)-Н(106)	120.0
C(108)-C(107)-C(106)	120.0
С(108)-С(107)-Н(107)	120.0
С(106)-С(107)-Н(107)	120.0
C(107)-C(108)-C(109)	120.0
С(107)-С(108)-Н(108)	120.0
С(109)-С(108)-Н(108)	120.0
C(108)-C(109)-C(104)	120.0
C(108)-C(109)-H(109)	120.0
С(104)-С(109)-Н(109)	120.0
O(102)-C(110)-C(111)	105.9(17)
O(102)-C(110)-H(11C)	110.6

С(111)-С(110)-Н(11С)	110.6
O(102)-C(110)-H(11D)	110.6
С(111)-С(110)-Н(11D)	110.6
H(11C)-C(110)-H(11D)	108.7
C(110)-C(111)-O(103)	106.3(15)
С(110)-С(111)-Н(11Е)	110.5
O(103)-C(111)-H(11E)	110.5
С(110)-С(111)-Н(11F)	110.5
O(103)-C(111)-H(11F)	110.5
H(11E)-C(111)-H(11F)	108.7
C(113)-C(112)-C(117)	120.0
C(113)-C(112)-C(102)	118.6(13)
C(117)-C(112)-C(102)	120.8(13)
C(114)-C(113)-C(112)	120.0
С(114)-С(113)-Н(113)	120.0
С(112)-С(113)-Н(113)	120.0
C(115)-C(114)-C(113)	120.0
C(115)-C(114)-H(114)	120.0
С(113)-С(114)-Н(114)	120.0
C(114)-C(115)-C(116)	120.0
C(114)-C(115)-N(115)	117.6(10)
C(116)-C(115)-N(115)	122.4(10)
C(115)-C(116)-C(117)	120.0
С(115)-С(116)-Н(116)	120.0
С(117)-С(116)-Н(116)	120.0
C(116)-C(117)-C(112)	120.0
С(116)-С(117)-Н(117)	120.0
С(112)-С(117)-Н(117)	120.0
O(115)-N(115)-O(116)	143(2)
O(115)-N(115)-C(115)	96.1(19)
O(116)-N(115)-C(115)	121.3(18)
C(119)-C(118)-C(123)	120.0
C(119)-C(118)-C(103)	120.4(13)
C(123)-C(118)-C(103)	119.1(13)
C(118)-C(119)-C(120)	120.0
C(118)-C(119)-H(119)	120.0

С(120)-С(119)-Н(119)	120.0
C(121)-C(120)-C(119)	120.0
С(121)-С(120)-Н(120)	120.0
С(119)-С(120)-Н(120)	120.0
C(120)-C(121)-C(122)	120.0
С(120)-С(121)-Н(121)	120.0
С(122)-С(121)-Н(121)	120.0
C(123)-C(122)-C(121)	120.0
С(123)-С(122)-Н(122)	120.0
С(121)-С(122)-Н(122)	120.0
C(122)-C(123)-C(118)	120.0
С(122)-С(123)-Н(123)	120.0
С(118)-С(123)-Н(123)	120.0
O(133)-C(131)-O(131)	110.9(16)
O(133)-C(131)-O(132)	108.6(16)
O(131)-C(131)-O(132)	104.4(17)
O(133)-C(131)-C(135)	112.5(16)
O(131)-C(131)-C(135)	113.8(15)
O(132)-C(131)-C(135)	106.2(18)
C(131)-O(131)-C(132)	110.9(17)
C(131)-O(132)-C(140)	99.7(17)
O(131)-C(132)-C(142)	109(2)
O(131)-C(132)-C(133)	108.2(18)
C(142)-C(132)-C(133)	118.0(18)
O(131)-C(132)-H(132)	107.0
С(142)-С(132)-Н(132)	107.0
С(133)-С(132)-Н(132)	107.0
C(131)-O(133)-C(141)	107.4(14)
C(134)-C(133)-C(132)	109.4(14)
C(134)-C(133)-C(148)	113.0(14)
C(132)-C(133)-C(148)	113.1(18)
С(134)-С(133)-Н(133)	107.0
С(132)-С(133)-Н(133)	107.0
С(148)-С(133)-Н(133)	107.0
C(135)-C(134)-C(139)	120.0
C(135)-C(134)-C(133)	119.8(13)

C(139)-C(134)-C(133)	120.1(13)
C(136)-C(135)-C(134)	120.0
C(136)-C(135)-C(131)	120.0(12)
C(134)-C(135)-C(131)	119.8(12)
C(135)-C(136)-C(137)	120.0
С(135)-С(136)-Н(136)	120.0
С(137)-С(136)-Н(136)	120.0
C(138)-C(137)-C(136)	120.0
С(138)-С(137)-Н(137)	120.0
С(136)-С(137)-Н(137)	120.0
C(139)-C(138)-C(137)	120.0
С(139)-С(138)-Н(138)	120.0
С(137)-С(138)-Н(138)	120.0
C(138)-C(139)-C(134)	120.0
С(138)-С(139)-Н(139)	120.0
С(134)-С(139)-Н(139)	120.0
C(141)-C(140)-O(132)	106.1(16)
C(141)-C(140)-H(14A)	110.5
O(132)-C(140)-H(14A)	110.5
C(141)-C(140)-H(14B)	110.5
O(132)-C(140)-H(14B)	110.5
H(14A)-C(140)-H(14B)	108.7
O(133)-C(141)-C(140)	103.9(16)
O(133)-C(141)-H(14C)	111.0
C(140)-C(141)-H(14C)	111.0
O(133)-C(141)-H(14D)	111.0
C(140)-C(141)-H(14D)	111.0
H(14C)-C(141)-H(14D)	109.0
C(143)-C(142)-C(147)	120.0
C(143)-C(142)-C(132)	118.6(16)
C(147)-C(142)-C(132)	121.3(16)
C(142)-C(143)-C(144)	120.0
С(142)-С(143)-Н(143)	120.0
C(144)-C(143)-H(143)	120.0
C(143)-C(144)-C(145)	120.0
C(143)-C(144)-H(144)	120.0

C(145)-C(144)-H(144)	120.0
C(146)-C(145)-C(144)	120.0
C(146)-C(145)-N(145)	120.7(12)
C(144)-C(145)-N(145)	119.3(12)
C(147)-C(146)-C(145)	120.0
C(147)-C(146)-H(146)	120.0
C(145)-C(146)-H(146)	120.0
C(146)-C(147)-C(142)	120.0
С(146)-С(147)-Н(147)	120.0
С(142)-С(147)-Н(147)	120.0
O(146)-N(145)-O(145)	127(2)
O(146)-N(145)-C(145)	114.6(18)
O(145)-N(145)-C(145)	118.6(18)
C(149)-C(148)-C(153)	120.0
C(149)-C(148)-C(133)	119.8(11)
C(153)-C(148)-C(133)	120.2(11)
C(148)-C(149)-C(150)	120.0
C(148)-C(149)-H(149)	120.0
C(150)-C(149)-H(149)	120.0
C(151)-C(150)-C(149)	120.0
С(151)-С(150)-Н(150)	120.0
С(149)-С(150)-Н(150)	120.0
C(152)-C(151)-C(150)	120.0
С(152)-С(151)-Н(151)	120.0
С(150)-С(151)-Н(151)	120.0
C(151)-C(152)-C(153)	120.0
С(151)-С(152)-Н(152)	120.0
С(153)-С(152)-Н(152)	120.0
C(152)-C(153)-C(148)	120.0
С(152)-С(153)-Н(153)	120.0
С(148)-С(153)-Н(153)	120.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	14(1)	17(1)	11(1)	0(1)	-3(1)	-2(1)
O(1)	12(1)	17(1)	16(1)	-1(1)	-1(1)	1(1)
C(2)	13(1)	13(1)	13(1)	-1(1)	-1(1)	1(1)
O(2)	16(1)	17(1)	15(1)	0(1)	3(1)	-1(1)
C(3)	14(1)	14(1)	10(1)	-1(1)	2(1)	2(1)
O(3)	16(1)	21(1)	15(1)	-1(1)	-1(1)	4(1)
C(4)	19(1)	14(1)	13(1)	1(1)	1(1)	-1(1)
C(5)	20(1)	13(1)	12(1)	2(1)	-3(1)	-1(1)
C(6)	19(1)	16(1)	14(1)	-2(1)	1(1)	0(1)
C(7)	22(1)	18(1)	12(1)	-2(1)	-1(1)	-3(1)
C(8)	20(1)	16(1)	14(1)	-1(1)	1(1)	-3(1)
C(9)	21(1)	13(1)	13(1)	-3(1)	-1(1)	-2(1)
C(10)	26(1)	27(1)	21(1)	-3(1)	7(1)	3(1)
C(11)	20(1)	26(1)	17(1)	-2(1)	2(1)	5(1)
C(12)	18(1)	14(1)	11(1)	0(1)	2(1)	-3(1)
C(13)	15(1)	16(1)	14(1)	-3(1)	1(1)	1(1)
C(14)	12(1)	19(1)	14(1)	1(1)	0(1)	0(1)
C(15)	16(1)	16(1)	10(1)	-1(1)	2(1)	-5(1)
N(15)	18(1)	22(1)	13(1)	-2(1)	1(1)	-4(1)
O(15)	19(1)	29(1)	21(1)	-5(1)	-6(1)	2(1)
C(16)	21(1)	14(1)	17(1)	-2(1)	-1(1)	0(1)
O(16)	24(1)	22(1)	24(1)	-9(1)	-3(1)	-1(1)
C(17)	18(1)	16(1)	18(1)	2(1)	-3(1)	2(1)
C(18)	21(1)	16(1)	11(1)	-6(1)	6(1)	0(1)
C(19)	21(1)	14(1)	18(1)	0(1)	2(1)	1(1)
C(20)	34(1)	16(1)	31(1)	5(1)	9(1)	2(1)
C(21)	38(2)	18(1)	51(2)	2(1)	15(1)	-7(1)
C(22)	22(1)	26(1)	42(2)	-3(1)	8(1)	-6(1)
C(23)	19(1)	21(1)	29(1)	-3(1)	2(1)	1(1)
C(31)	14(1)	18(1)	20(1)	5(1)	2(1)	3(1)
O(31)	14(1)	15(1)	19(1)	2(1)	1(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for JF2983FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(32)	13(1)	14(1)	16(1)	3(1)	0(1)	-1(1)
O(32)	19(1)	21(1)	21(1)	6(1)	-3(1)	3(1)
C(33)	14(1)	15(1)	15(1)	2(1)	0(1)	-1(1)
O(33)	16(1)	24(1)	18(1)	2(1)	1(1)	-4(1)
C(34)	21(1)	13(1)	16(1)	5(1)	3(1)	1(1)
C(35)	20(1)	13(1)	20(1)	4(1)	2(1)	1(1)
C(36)	20(1)	18(1)	22(1)	4(1)	3(1)	2(1)
C(37)	31(1)	17(1)	23(1)	3(1)	11(1)	5(1)
C(38)	32(1)	15(1)	22(1)	0(1)	4(1)	-1(1)
C(39)	24(1)	14(1)	21(1)	2(1)	2(1)	-2(1)
C(40)	26(1)	30(1)	24(1)	-1(1)	-6(1)	2(1)
C(41)	20(1)	36(1)	23(1)	-1(1)	-2(1)	-9(1)
C(42)	16(1)	16(1)	15(1)	5(1)	-3(1)	3(1)
C(43)	15(1)	16(1)	17(1)	2(1)	-2(1)	0(1)
C(44)	13(1)	22(1)	19(1)	5(1)	-2(1)	-2(1)
C(45)	17(1)	18(1)	17(1)	1(1)	-1(1)	4(1)
N(45)	19(1)	21(1)	21(1)	-1(1)	1(1)	4(1)
O(45)	18(1)	31(1)	30(1)	-4(1)	8(1)	-3(1)
C(46)	18(1)	16(1)	22(1)	0(1)	-2(1)	-2(1)
O(46)	31(1)	22(1)	32(1)	-7(1)	7(1)	-1(1)
C(47)	16(1)	16(1)	22(1)	4(1)	-1(1)	-1(1)
C(48)	20(1)	14(1)	16(2)	-1(1)	-3(1)	1(1)
C(49)	20(1)	15(1)	17(1)	-1(1)	0(1)	0(1)
C(50)	28(1)	15(1)	15(1)	0(1)	-2(1)	-2(1)
C(51)	29(1)	16(1)	17(1)	1(1)	-8(1)	1(1)
C(52)	19(1)	22(1)	32(1)	0(1)	-5(1)	2(1)
C(53)	18(1)	20(1)	24(1)	3(1)	-1(1)	-2(1)

	х	У	Z	U(eq)
H(2)	2109	5691	3659	16
H(3)	1209	5707	4806	15
H(6)	3812	6038	5876	19
H(7)	3429	7018	7157	21
H(8)	2234	7230	7421	20
H(9)	1427	6455	6438	19
H(10A)	4332	5486	3213	30
H(10B)	3690	4948	2688	30
H(11A)	3835	3643	3620	25
H(11B)	4518	4143	4075	25
H(13)	786	5561	3099	18
H(14)	131	4798	1891	18
H(16)	1491	2544	1904	21
H(17)	2149	3316	3104	21
H(19)	2209	3935	6091	21
H(20)	1773	2503	6750	32
H(21)	626	2057	6487	43
H(22)	-95	3025	5496	36
H(23)	341	4464	4856	28
H(32)	2887	10561	6012	17
H(33)	3773	10614	7182	18
H(36)	1147	10934	8147	24
H(37)	1492	11910	9435	28
H(38)	2683	12119	9768	27
H(39)	3513	11354	8807	24
H(40A)	1283	9757	5001	32
H(40B)	649	10275	5560	32
H(41A)	507	8903	6393	32
H(41B)	1218	8459	5961	32
H(43)	4243	10452	5518	19

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2983FMI.

H(44)	4894	9748	4279	22
H(46)	3538	7494	4179	23
H(47)	2875	8215	5403	21
H(49)	2741	8867	8451	21
H(50)	3184	7552	9315	23
H(51)	4369	7172	9228	25
H(52)	5098	8079	8218	29
H(53)	4653	9389	7342	25
H(10C)	2901	5625	3741	40
H(103)	3774	5601	4870	33
H(106)	1252	6078	6002	32
H(107)	1686	7032	7263	36
H(108)	2890	7182	7486	25
H(109)	3659	6377	6449	24
H(11C)	1362	4686	2766	36
H(11D)	699	5248	3201	36
H(11E)	1194	3468	3776	40
H(11F)	499	3995	4156	40
H(113)	4211	5515	3236	43
H(114)	4852	4784	1997	44
H(116)	3525	2500	2015	43
H(117)	2883	3231	3253	43
H(119)	4664	4427	5067	34
H(120)	5083	3015	5801	25
H(121)	4343	2073	6762	36
H(122)	3184	2543	6988	33
H(123)	2764	3955	6254	34
H(132)	2079	10654	6340	19
H(133)	1221	10689	7482	21
H(136)	3806	11016	8575	26
H(137)	3414	12008	9834	30
H(138)	2218	12231	10078	32
H(139)	1415	11463	9063	29
H(14A)	4504	9104	6752	32
H(14B)	3814	8608	6314	32
H(14C)	4336	10412	5874	49
H(14D)	3698	9864	5350	49
--------	------	-------	------	----
H(143)	771	10535	5813	31
H(144)	125	9785	4591	28
H(146)	1495	7551	4556	32
H(147)	2142	8301	5779	29
H(149)	2225	8939	8783	20
H(150)	1784	7543	9523	21
H(151)	618	7104	9296	40
H(152)	-107	8060	8327	26
H(153)	334	9456	7587	22

Table 6. Torsion angles [°] for JF2983FMI.

O(3)-C(1)-O(1)-C(2)	171.70(17)	
O(2)-C(1)-O(1)-C(2)	-74.2(2)	
C(5)-C(1)-O(1)-C(2)	48.0(3)	
C(1)-O(1)-C(2)-C(12)	161.94(18)	
C(1)-O(1)-C(2)-C(3)	-72.1(2)	
O(3)-C(1)-O(2)-C(10)	35.2(2)	
O(1)-C(1)-O(2)-C(10)	-79.0(2)	
C(5)-C(1)-O(2)-C(10)	156.63(19)	
O(1)-C(2)-C(3)-C(4)	56.8(2)	
C(12)-C(2)-C(3)-C(4)	178.52(18)	
O(1)-C(2)-C(3)-C(18)	-67.2(2)	
C(12)-C(2)-C(3)-C(18)	54.5(2)	
O(1)-C(1)-O(3)-C(11)	79.0(2)	
O(2)-C(1)-O(3)-C(11)	-38.2(2)	
C(5)-C(1)-O(3)-C(11)	-157.21(18)	
C(18)-C(3)-C(4)-C(9)	-80.0(3)	
C(2)-C(3)-C(4)-C(9)	155.3(2)	
C(18)-C(3)-C(4)-C(5)	100.2(2)	
C(2)-C(3)-C(4)-C(5)	-24.5(3)	
C(9)-C(4)-C(5)-C(6)	0.6(3)	
C(3)-C(4)-C(5)-C(6)	-179.6(3)	
C(9)-C(4)-C(5)-C(1)	-176.3(3)	
C(3)-C(4)-C(5)-C(1)	3.5(3)	
O(3)-C(1)-C(5)-C(6)	49.7(3)	
O(1)-C(1)-C(5)-C(6)	169.5(2)	
O(2)-C(1)-C(5)-C(6)	-67.5(3)	
O(3)-C(1)-C(5)-C(4)	-133.5(2)	
O(1)-C(1)-C(5)-C(4)	-13.6(3)	
O(2)-C(1)-C(5)-C(4)	109.4(2)	
C(4)-C(5)-C(6)-C(7)	0.1(3)	
C(1)-C(5)-C(6)-C(7)	177.0(2)	
C(5)-C(6)-C(7)-C(8)	-0.6(3)	
C(6)-C(7)-C(8)-C(9)	0.6(3)	
C(7)-C(8)-C(9)-C(4)	0.0(3)	

C(5)-C(4)-C(9)-C(8)	-0.6(3)
C(3)-C(4)-C(9)-C(8)	179.6(2)
C(1)-O(2)-C(10)-C(11)	-17.8(2)
C(1)-O(3)-C(11)-C(10)	25.8(2)
O(2)-C(10)-C(11)-O(3)	-4.8(2)
O(1)-C(2)-C(12)-C(17)	2.8(3)
C(3)-C(2)-C(12)-C(17)	-118.9(2)
O(1)-C(2)-C(12)-C(13)	-174.48(18)
C(3)-C(2)-C(12)-C(13)	63.9(2)
C(17)-C(12)-C(13)-C(14)	-0.8(3)
C(2)-C(12)-C(13)-C(14)	176.57(18)
C(12)-C(13)-C(14)-C(15)	0.8(3)
C(13)-C(14)-C(15)-C(16)	-0.6(3)
C(13)-C(14)-C(15)-N(15)	-179.21(19)
C(16)-C(15)-N(15)-O(15)	-178.9(2)
C(14)-C(15)-N(15)-O(15)	-0.2(3)
C(16)-C(15)-N(15)-O(16)	0.0(3)
C(14)-C(15)-N(15)-O(16)	178.71(19)
C(14)-C(15)-C(16)-C(17)	0.4(3)
N(15)-C(15)-C(16)-C(17)	178.96(19)
C(15)-C(16)-C(17)-C(12)	-0.3(3)
C(13)-C(12)-C(17)-C(16)	0.5(3)
C(2)-C(12)-C(17)-C(16)	-176.78(19)
C(4)-C(3)-C(18)-C(19)	-36.6(3)
C(2)-C(3)-C(18)-C(19)	85.0(3)
C(4)-C(3)-C(18)-C(23)	145.5(2)
C(2)-C(3)-C(18)-C(23)	-92.9(2)
C(23)-C(18)-C(19)-C(20)	0.4(3)
C(3)-C(18)-C(19)-C(20)	-177.4(2)
C(18)-C(19)-C(20)-C(21)	-0.6(4)
C(19)-C(20)-C(21)-C(22)	1.1(4)
C(20)-C(21)-C(22)-C(23)	-1.5(4)
C(21)-C(22)-C(23)-C(18)	1.4(4)
C(19)-C(18)-C(23)-C(22)	-0.9(4)
C(3)-C(18)-C(23)-C(22)	177.0(2)
O(33)-C(31)-O(31)-C(32)	-171.34(17)

O(32)-C(31)-O(31)-C(32)	74.2(2)
C(35)-C(31)-O(31)-C(32)	-48.1(3)
C(31)-O(31)-C(32)-C(42)	-159.93(18)
C(31)-O(31)-C(32)-C(33)	73.0(2)
O(33)-C(31)-O(32)-C(40)	-32.5(3)
O(31)-C(31)-O(32)-C(40)	81.9(2)
C(35)-C(31)-O(32)-C(40)	-153.85(19)
O(31)-C(32)-C(33)-C(34)	-57.3(2)
C(42)-C(32)-C(33)-C(34)	-179.84(17)
O(31)-C(32)-C(33)-C(48)	65.7(2)
C(42)-C(32)-C(33)-C(48)	-56.8(3)
O(32)-C(31)-O(33)-C(41)	38.4(2)
O(31)-C(31)-O(33)-C(41)	-78.8(2)
C(35)-C(31)-O(33)-C(41)	157.8(2)
C(48)-C(33)-C(34)-C(39)	77.6(3)
C(32)-C(33)-C(34)-C(39)	-157.3(2)
C(48)-C(33)-C(34)-C(35)	-100.8(3)
C(32)-C(33)-C(34)-C(35)	24.3(3)
C(39)-C(34)-C(35)-C(36)	0.9(3)
C(33)-C(34)-C(35)-C(36)	179.2(2)
C(39)-C(34)-C(35)-C(31)	179.3(2)
C(33)-C(34)-C(35)-C(31)	-2.3(3)
O(33)-C(31)-C(35)-C(36)	-49.4(3)
O(32)-C(31)-C(35)-C(36)	68.1(3)
O(31)-C(31)-C(35)-C(36)	-169.09(19)
O(33)-C(31)-C(35)-C(34)	132.2(2)
O(32)-C(31)-C(35)-C(34)	-110.3(2)
O(31)-C(31)-C(35)-C(34)	12.5(3)
C(34)-C(35)-C(36)-C(37)	-1.0(3)
C(31)-C(35)-C(36)-C(37)	-179.4(2)
C(35)-C(36)-C(37)-C(38)	0.4(3)
C(36)-C(37)-C(38)-C(39)	0.2(3)
C(37)-C(38)-C(39)-C(34)	-0.3(3)
C(35)-C(34)-C(39)-C(38)	-0.2(3)
C(33)-C(34)-C(39)-C(38)	-178.6(2)
C(31)-O(32)-C(40)-C(41)	13.7(3)

C(31)-O(33)-C(41)-C(40)	-28.5(2)
O(32)-C(40)-C(41)-O(33)	8.9(2)
O(31)-C(32)-C(42)-C(43)	175.84(18)
C(33)-C(32)-C(42)-C(43)	-62.3(3)
O(31)-C(32)-C(42)-C(47)	1.0(3)
C(33)-C(32)-C(42)-C(47)	122.8(2)
C(47)-C(42)-C(43)-C(44)	1.1(3)
C(32)-C(42)-C(43)-C(44)	-173.87(19)
C(42)-C(43)-C(44)-C(45)	-0.6(3)
C(43)-C(44)-C(45)-C(46)	-0.6(3)
C(43)-C(44)-C(45)-N(45)	177.31(19)
C(46)-C(45)-N(45)-O(45)	-178.7(2)
C(44)-C(45)-N(45)-O(45)	3.3(3)
C(46)-C(45)-N(45)-O(46)	2.5(3)
C(44)-C(45)-N(45)-O(46)	-175.5(2)
C(44)-C(45)-C(46)-C(47)	1.1(3)
N(45)-C(45)-C(46)-C(47)	-176.7(2)
C(45)-C(46)-C(47)-C(42)	-0.6(3)
C(43)-C(42)-C(47)-C(46)	-0.5(3)
C(32)-C(42)-C(47)-C(46)	174.4(2)
C(34)-C(33)-C(48)-C(53)	-142.3(3)
C(32)-C(33)-C(48)-C(53)	96.5(3)
C(34)-C(33)-C(48)-C(49)	35.4(3)
C(32)-C(33)-C(48)-C(49)	-85.8(3)
C(53)-C(48)-C(49)-C(50)	0.9(4)
C(33)-C(48)-C(49)-C(50)	-176.8(2)
C(48)-C(49)-C(50)-C(51)	0.4(3)
C(49)-C(50)-C(51)-C(52)	-1.4(3)
C(50)-C(51)-C(52)-C(53)	1.1(4)
C(49)-C(48)-C(53)-C(52)	-1.2(4)
C(33)-C(48)-C(53)-C(52)	176.5(2)
C(51)-C(52)-C(53)-C(48)	0.2(4)
O(102)-C(101)-O(101)-C(102)	77(2)
O(103)-C(101)-O(101)-C(102)	-163(2)
C(105)-C(101)-O(101)-C(102)	-44(3)
C(101)-O(101)-C(102)-C(112)	-165(2)

C(101)-O(101)-C(102)-C(103)	72(3)
O(103)-C(101)-O(102)-C(110)	-33(3)
O(101)-C(101)-O(102)-C(110)	79(2)
C(105)-C(101)-O(102)-C(110)	-163.0(19)
O(101)-C(102)-C(103)-C(104)	-63(3)
C(112)-C(102)-C(103)-C(104)	177(2)
O(101)-C(102)-C(103)-C(118)	67(2)
C(112)-C(102)-C(103)-C(118)	-53(2)
O(102)-C(101)-O(103)-C(111)	33(2)
O(101)-C(101)-O(103)-C(111)	-79(2)
C(105)-C(101)-O(103)-C(111)	164.4(18)
C(102)-C(103)-C(104)-C(105)	30(2)
C(118)-C(103)-C(104)-C(105)	-105.0(17)
C(102)-C(103)-C(104)-C(109)	-155.6(17)
C(118)-C(103)-C(104)-C(109)	69(2)
C(109)-C(104)-C(105)-C(106)	0.0
C(103)-C(104)-C(105)-C(106)	174(2)
C(109)-C(104)-C(105)-C(101)	-180(2)
C(103)-C(104)-C(105)-C(101)	-5(2)
O(102)-C(101)-C(105)-C(106)	76(2)
O(103)-C(101)-C(105)-C(106)	-55(2)
O(101)-C(101)-C(105)-C(106)	-169.0(17)
O(102)-C(101)-C(105)-C(104)	-104(2)
O(103)-C(101)-C(105)-C(104)	124.6(18)
O(101)-C(101)-C(105)-C(104)	11(3)
C(104)-C(105)-C(106)-C(107)	0.0
C(101)-C(105)-C(106)-C(107)	180(2)
C(105)-C(106)-C(107)-C(108)	0.0
C(106)-C(107)-C(108)-C(109)	0.0
C(107)-C(108)-C(109)-C(104)	0.0
C(105)-C(104)-C(109)-C(108)	0.0
C(103)-C(104)-C(109)-C(108)	-174(2)
C(101)-O(102)-C(110)-C(111)	15(3)
O(102)-C(110)-C(111)-O(103)	4(3)
C(101)-O(103)-C(111)-C(110)	-21(2)
O(101)-C(102)-C(112)-C(113)	171.1(16)

C(103)-C(102)-C(112)-C(113)	-70(2)
O(101)-C(102)-C(112)-C(117)	0(3)
C(103)-C(102)-C(112)-C(117)	119.4(17)
C(117)-C(112)-C(113)-C(114)	0.0
C(102)-C(112)-C(113)-C(114)	-170.8(15)
C(112)-C(113)-C(114)-C(115)	0.0
C(113)-C(114)-C(115)-C(116)	0.0
C(113)-C(114)-C(115)-N(115)	179.7(4)
C(114)-C(115)-C(116)-C(117)	0.0
N(115)-C(115)-C(116)-C(117)	-179.7(4)
C(115)-C(116)-C(117)-C(112)	0.0
C(113)-C(112)-C(117)-C(116)	0.0
C(102)-C(112)-C(117)-C(116)	170.6(16)
C(114)-C(115)-N(115)-O(115)	179.6(5)
C(116)-C(115)-N(115)-O(115)	-0.7(8)
C(114)-C(115)-N(115)-O(116)	0.7(10)
C(116)-C(115)-N(115)-O(116)	-179.6(7)
C(104)-C(103)-C(118)-C(119)	-141.0(17)
C(102)-C(103)-C(118)-C(119)	89(2)
C(104)-C(103)-C(118)-C(123)	47(2)
C(102)-C(103)-C(118)-C(123)	-83.0(19)
C(123)-C(118)-C(119)-C(120)	0.0
C(103)-C(118)-C(119)-C(120)	-172.1(17)
C(118)-C(119)-C(120)-C(121)	0.0
C(119)-C(120)-C(121)-C(122)	0.0
C(120)-C(121)-C(122)-C(123)	0.0
C(121)-C(122)-C(123)-C(118)	0.0
C(119)-C(118)-C(123)-C(122)	0.0
C(103)-C(118)-C(123)-C(122)	172.2(17)
O(133)-C(131)-O(131)-C(132)	-78(2)
O(132)-C(131)-O(131)-C(132)	164.7(19)
C(135)-C(131)-O(131)-C(132)	49(2)
O(133)-C(131)-O(132)-C(140)	-38(2)
O(131)-C(131)-O(132)-C(140)	80(2)
C(135)-C(131)-O(132)-C(140)	-159.0(17)
C(131)-O(131)-C(132)-C(142)	160.3(19)

C(131)-O(131)-C(132)-C(133)	-70(2)
O(131)-C(131)-O(133)-C(141)	-78(2)
O(132)-C(131)-O(133)-C(141)	36(2)
C(135)-C(131)-O(133)-C(141)	153.7(18)
O(131)-C(132)-C(133)-C(134)	56(3)
C(142)-C(132)-C(133)-C(134)	-179(2)
O(131)-C(132)-C(133)-C(148)	-71(2)
C(142)-C(132)-C(133)-C(148)	54(3)
C(132)-C(133)-C(134)-C(135)	-28(2)
C(148)-C(133)-C(134)-C(135)	99.3(16)
C(132)-C(133)-C(134)-C(139)	156.1(19)
C(148)-C(133)-C(134)-C(139)	-76.9(18)
C(139)-C(134)-C(135)-C(136)	0.0
C(133)-C(134)-C(135)-C(136)	-176.2(17)
C(139)-C(134)-C(135)-C(131)	-175(2)
C(133)-C(134)-C(135)-C(131)	9(2)
O(133)-C(131)-C(135)-C(136)	-66.9(19)
O(131)-C(131)-C(135)-C(136)	166.0(14)
O(132)-C(131)-C(135)-C(136)	52(2)
O(133)-C(131)-C(135)-C(134)	108.0(17)
O(131)-C(131)-C(135)-C(134)	-19(2)
O(132)-C(131)-C(135)-C(134)	-133.3(17)
C(134)-C(135)-C(136)-C(137)	0.0
C(131)-C(135)-C(136)-C(137)	175(2)
C(135)-C(136)-C(137)-C(138)	0.0
C(136)-C(137)-C(138)-C(139)	0.0
C(137)-C(138)-C(139)-C(134)	0.0
C(135)-C(134)-C(139)-C(138)	0.0
C(133)-C(134)-C(139)-C(138)	176.2(17)
C(131)-O(132)-C(140)-C(141)	26(3)
C(131)-O(133)-C(141)-C(140)	-17(3)
O(132)-C(140)-C(141)-O(133)	-6(3)
O(131)-C(132)-C(142)-C(143)	-172.5(15)
C(133)-C(132)-C(142)-C(143)	64(3)
O(131)-C(132)-C(142)-C(147)	3(3)
C(133)-C(132)-C(142)-C(147)	-121(2)

C(147)-C(142)-C(143)-C(144)	0.0
C(132)-C(142)-C(143)-C(144)	175.5(19)
C(142)-C(143)-C(144)-C(145)	0.0
C(143)-C(144)-C(145)-C(146)	0.0
C(143)-C(144)-C(145)-N(145)	179.8(18)
C(144)-C(145)-C(146)-C(147)	0.0
N(145)-C(145)-C(146)-C(147)	-179.8(19)
C(145)-C(146)-C(147)-C(142)	0.0
C(143)-C(142)-C(147)-C(146)	0.0
C(132)-C(142)-C(147)-C(146)	-175(2)
C(146)-C(145)-N(145)-O(146)	-2(3)
C(144)-C(145)-N(145)-O(146)	178.4(18)
C(146)-C(145)-N(145)-O(145)	-179.3(19)
C(144)-C(145)-N(145)-O(145)	1(3)
C(134)-C(133)-C(148)-C(149)	-38.3(18)
C(132)-C(133)-C(148)-C(149)	86.6(17)
C(134)-C(133)-C(148)-C(153)	143.2(14)
C(132)-C(133)-C(148)-C(153)	-91.9(17)
C(153)-C(148)-C(149)-C(150)	0.0
C(133)-C(148)-C(149)-C(150)	-178.5(15)
C(148)-C(149)-C(150)-C(151)	0.0
C(149)-C(150)-C(151)-C(152)	0.0
C(150)-C(151)-C(152)-C(153)	0.0
C(151)-C(152)-C(153)-C(148)	0.0
C(149)-C(148)-C(153)-C(152)	0.0
C(133)-C(148)-C(153)-C(152)	178.5(15)

Symmetry transformations used to generate equivalent atoms:

Table 7.	Hydrogen	bonds	for JF2983F	MI [Å and '	י].
	J U			L .		_

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3^a)-H(3^a)O(15^a)#1	1.00	2.60	3.412(3)	138.8
C(33^a)-H(33^a)O(45^a)#2	1.00	2.59	3.432(3)	142.2
C(46^a)-H(46^a)O(2^a)	0.95	2.52	3.441(3)	162.4
C(133^b)-H(133^b)O(145^b)#31.00	2.61	3.42(2)	138.9

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,z+1/2 #2 -x+1,-y+2,z+1/2 #3 -x,-y+2,z+1/2

CCDC 2087129

Table 1. Crystal data and structure refinement for $[C_{22}H_{18}O_4]$.

Identification code	JF2998FMI (MG-4-175)
Empirical formula	C22 H18 O4
Formula weight	346.36
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a = 9.7117(6) Å $\langle = 90^{\circ}.$
	$b = 17.1656(11) \text{ Å}$ $\mathbb{B} = 90^{\circ}.$
	$c = 19.8546(13) \text{ Å}$ $\odot = 90^{\circ}.$
Volume	3309.9(4) Å ³
Z	8
Density (calculated)	1.390 Mg/m ³
Absorption coefficient	0.095 mm ⁻¹
F(000)	1456
Crystal size	0.395 x 0.170 x 0.150 mm ³

Crystal color and habit	Yellow Block
Diffractometer	Bruker Photon100 CMOS
Theta range for data collection	2.051 to 27.496°.
Index ranges	-12<=h<=12, -22<=k<=22, -25<=l<=25
Reflections collected	28507
Independent reflections	3807 [R(int) = 0.0282]
Observed reflections (I > 2sigma(I))	3347
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9873 and 0.9155
Solution method	SHELXT (Sheldrick, 2014)
Refinement method	SHELXL-2017/1 (Sheldrick, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	3807 / 0 / 308
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0417, $wR2 = 0.1076$
R indices (all data)	R1 = 0.0476, $wR2 = 0.1131$
Extinction coefficient	0.0115(9)
Largest diff. peak and hole	0.383 and -0.324 e.Å ⁻³

	х	У	Z	U(eq)
C(1)	2203(1)	5023(1)	5957(1)	19(1)
O(1)	3628(1)	5102(1)	5816(1)	19(1)
C(2)	4572(1)	4861(1)	6343(1)	19(1)
O(2)	1559(1)	5088(1)	5329(1)	21(1)
C(3)	4387(1)	3972(1)	6477(1)	19(1)
O(3)	1715(1)	5642(1)	6351(1)	21(1)
C(4)	2867(1)	3778(1)	6555(1)	18(1)
C(5)	1848(1)	4266(1)	6303(1)	18(1)
C(6)	1256(2)	5904(1)	5225(1)	27(1)
C(7)	1557(2)	6290(1)	5899(1)	26(1)
C(8)	4310(1)	5302(1)	6990(1)	21(1)
C(9)	5180(2)	5816(1)	7249(1)	23(1)
C(10)	6485(2)	6012(1)	6912(1)	25(1)
O(10)	7226(1)	6546(1)	7110(1)	36(1)
C(11)	6843(1)	5548(1)	6311(1)	24(1)
C(12)	5961(1)	5041(1)	6043(1)	22(1)
C(13)	5033(1)	3446(1)	5948(1)	18(1)
C(14)	6084(1)	2935(1)	6131(1)	21(1)
C(15)	6666(1)	2436(1)	5658(1)	24(1)
C(16)	6213(1)	2441(1)	4997(1)	24(1)
C(17)	5171(1)	2952(1)	4810(1)	24(1)
C(18)	4575(1)	3447(1)	5281(1)	22(1)
C(19)	2482(1)	3080(1)	6870(1)	22(1)
C(20)	1107(2)	2879(1)	6929(1)	25(1)
C(21)	89(1)	3376(1)	6683(1)	25(1)
C(22)	458(1)	4070(1)	6375(1)	22(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for JF2998FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(2)	1.3983(15)
C(1)-O(3)	1.4016(15)
C(1)-O(1)	1.4178(15)
C(1)-C(5)	1.5106(17)
O(1)-C(2)	1.4509(15)
C(2)-C(12)	1.5065(18)
C(2)-C(8)	1.5123(17)
C(2)-C(3)	1.5602(17)
O(2)-C(6)	1.4475(16)
C(3)-C(13)	1.5209(17)
C(3)-C(4)	1.5209(17)
C(3)-H(3)	0.971(16)
O(3)-C(7)	1.4371(16)
C(4)-C(5)	1.3898(18)
C(4)-C(19)	1.4023(18)
C(5)-C(22)	1.3981(18)
C(6)-C(7)	1.521(2)
C(6)-H(6A)	0.968(19)
C(6)-H(6B)	1.00(2)
C(7)-H(7A)	0.987(19)
C(7)-H(7B)	0.96(2)
C(8)-C(9)	1.3265(19)
C(8)-H(8)	0.967(18)
C(9)-C(10)	1.472(2)
C(9)-H(9)	0.962(18)
C(10)-O(10)	1.2293(17)
C(10)-C(11)	1.475(2)
C(11)-C(12)	1.3327(19)
С(11)-Н(11)	0.967(17)
С(12)-Н(12)	0.960(18)
C(13)-C(14)	1.3928(17)
C(13)-C(18)	1.3977(18)
C(14)-C(15)	1.3910(19)
C(14)-H(14)	0.959(17)

Table 3. Bond lengths [Å] and angles [°] for JF2998FMI.

C(15)-C(16)	1.385(2)
С(15)-Н(15)	0.969(19)
C(16)-C(17)	1.3895(19)
C(16)-H(16)	0.941(16)
C(17)-C(18)	1.3890(19)
C(17)-H(17)	0.957(17)
C(18)-H(18)	0.967(18)
C(19)-C(20)	1.384(2)
C(19)-H(19)	0.966(17)
C(20)-C(21)	1.394(2)
C(20)-H(20)	0.968(17)
C(21)-C(22)	1.3858(19)
C(21)-H(21)	0.95(2)
C(22)-H(22)	0.970(17)
O(2)-C(1)-O(3)	106.65(10)
O(2)-C(1)-O(1)	104.72(10)
O(3)-C(1)-O(1)	111.53(10)
O(2)-C(1)-C(5)	111.78(10)
O(3)-C(1)-C(5)	108.70(10)
O(1)-C(1)-C(5)	113.24(10)
C(1)-O(1)-C(2)	116.63(9)
O(1)-C(2)-C(12)	102.82(10)
O(1)-C(2)-C(8)	111.31(10)
C(12)-C(2)-C(8)	112.67(11)
O(1)-C(2)-C(3)	109.16(10)
C(12)-C(2)-C(3)	111.78(10)
C(8)-C(2)-C(3)	108.96(10)
C(1)-O(2)-C(6)	107.16(10)
C(13)-C(3)-C(4)	109.97(10)
C(13)-C(3)-C(2)	114.61(10)
C(4)-C(3)-C(2)	110.09(10)
C(13)-C(3)-H(3)	108.5(9)
C(4)-C(3)-H(3)	107.8(9)
C(2)-C(3)-H(3)	105.6(9)
C(1)-O(3)-C(7)	105.86(10)

C(5)-C(4)-C(19)	119.05(12)
C(5)-C(4)-C(3)	121.50(11)
C(19)-C(4)-C(3)	119.42(11)
C(4)-C(5)-C(22)	120.34(12)
C(4)-C(5)-C(1)	121.31(11)
C(22)-C(5)-C(1)	118.34(11)
O(2)-C(6)-C(7)	104.82(11)
O(2)-C(6)-H(6A)	107.2(11)
C(7)-C(6)-H(6A)	112.3(11)
O(2)-C(6)-H(6B)	108.3(11)
C(7)-C(6)-H(6B)	110.6(11)
H(6A)-C(6)-H(6B)	113.1(15)
O(3)-C(7)-C(6)	103.51(11)
O(3)-C(7)-H(7A)	107.5(10)
C(6)-C(7)-H(7A)	113.6(10)
O(3)-C(7)-H(7B)	108.7(12)
C(6)-C(7)-H(7B)	114.4(12)
H(7A)-C(7)-H(7B)	108.8(15)
C(9)-C(8)-C(2)	123.63(13)
C(9)-C(8)-H(8)	119.5(10)
C(2)-C(8)-H(8)	116.9(10)
C(8)-C(9)-C(10)	121.66(13)
C(8)-C(9)-H(9)	122.9(10)
C(10)-C(9)-H(9)	115.4(10)
O(10)-C(10)-C(9)	121.88(14)
O(10)-C(10)-C(11)	121.50(14)
C(9)-C(10)-C(11)	116.59(12)
C(12)-C(11)-C(10)	121.60(13)
С(12)-С(11)-Н(11)	122.6(10)
C(10)-C(11)-H(11)	115.8(10)
C(11)-C(12)-C(2)	123.43(13)
С(11)-С(12)-Н(12)	120.5(11)
C(2)-C(12)-H(12)	116.0(11)
C(14)-C(13)-C(18)	118.76(12)
C(14)-C(13)-C(3)	119.78(11)
C(18)-C(13)-C(3)	121.45(11)

C(15)-C(14)-C(13)	120.65(12)
C(15)-C(14)-H(14)	120.6(10)
C(13)-C(14)-H(14)	118.7(10)
C(16)-C(15)-C(14)	120.43(12)
C(16)-C(15)-H(15)	120.7(10)
C(14)-C(15)-H(15)	118.9(10)
C(15)-C(16)-C(17)	119.22(12)
C(15)-C(16)-H(16)	121.6(10)
C(17)-C(16)-H(16)	119.2(10)
C(18)-C(17)-C(16)	120.69(13)
C(18)-C(17)-H(17)	118.8(10)
С(16)-С(17)-Н(17)	120.5(10)
C(17)-C(18)-C(13)	120.25(12)
C(17)-C(18)-H(18)	119.5(10)
C(13)-C(18)-H(18)	120.2(10)
C(20)-C(19)-C(4)	120.53(12)
C(20)-C(19)-H(19)	119.2(10)
C(4)-C(19)-H(19)	120.2(10)
C(19)-C(20)-C(21)	120.12(12)
C(19)-C(20)-H(20)	118.5(10)
C(21)-C(20)-H(20)	121.3(10)
C(22)-C(21)-C(20)	119.81(13)
C(22)-C(21)-H(21)	119.8(11)
C(20)-C(21)-H(21)	120.4(11)
C(21)-C(22)-C(5)	120.12(13)
C(21)-C(22)-H(22)	120.9(10)
C(5)-C(22)-H(22)	119.0(10)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(1)	20(1)	18(1)	-2(1)	0(1)	0(1)
O(1)	19(1)	20(1)	18(1)	1(1)	0(1)	0(1)
C(2)	18(1)	19(1)	20(1)	-1(1)	-1(1)	0(1)
O(2)	25(1)	20(1)	19(1)	0(1)	-4(1)	2(1)
C(3)	20(1)	19(1)	17(1)	0(1)	-2(1)	0(1)
O(3)	24(1)	18(1)	20(1)	-2(1)	2(1)	3(1)
C(4)	22(1)	18(1)	15(1)	-3(1)	1(1)	0(1)
C(5)	21(1)	19(1)	16(1)	-2(1)	1(1)	0(1)
C(6)	33(1)	21(1)	27(1)	3(1)	-5(1)	2(1)
C(7)	31(1)	20(1)	28(1)	0(1)	-1(1)	4(1)
C(8)	23(1)	20(1)	20(1)	0(1)	-2(1)	3(1)
C(9)	30(1)	19(1)	21(1)	-1(1)	-6(1)	2(1)
C(10)	29(1)	20(1)	27(1)	5(1)	-11(1)	-2(1)
O(10)	44(1)	28(1)	36(1)	2(1)	-11(1)	-14(1)
C(11)	21(1)	20(1)	33(1)	5(1)	-3(1)	0(1)
C(12)	21(1)	19(1)	25(1)	2(1)	1(1)	2(1)
C(13)	18(1)	16(1)	21(1)	-1(1)	0(1)	-2(1)
C(14)	20(1)	21(1)	22(1)	2(1)	-1(1)	0(1)
C(15)	22(1)	20(1)	31(1)	4(1)	4(1)	3(1)
C(16)	23(1)	19(1)	29(1)	-4(1)	6(1)	-2(1)
C(17)	24(1)	27(1)	21(1)	-4(1)	0(1)	-1(1)
C(18)	21(1)	23(1)	23(1)	-2(1)	-2(1)	2(1)
C(19)	29(1)	20(1)	17(1)	-1(1)	0(1)	0(1)
C(20)	33(1)	22(1)	19(1)	-1(1)	4(1)	-7(1)
C(21)	24(1)	29(1)	21(1)	-3(1)	3(1)	-7(1)
C(22)	22(1)	26(1)	19(1)	-3(1)	1(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for JF2998FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	у	Z	U(eq)
		20.52(0)	600.640	10(4)
H(3)	4833(16)	3873(9)	6906(8)	18(4)
H(6A)	290(20)	5942(11)	5101(9)	35(5)
H(6B)	1890(20)	6107(11)	4870(10)	41(5)
H(7A)	2428(19)	6586(10)	5905(9)	30(4)
H(7B)	830(20)	6619(11)	6064(10)	38(5)
H(8)	3470(18)	5179(9)	7230(9)	24(4)
H(9)	4997(17)	6097(10)	7658(9)	28(4)
H(11)	7741(17)	5649(9)	6119(8)	22(4)
H(12)	6175(18)	4780(10)	5628(9)	28(4)
H(14)	6396(17)	2933(10)	6589(9)	26(4)
H(15)	7383(19)	2080(11)	5801(9)	32(4)
H(16)	6591(16)	2105(9)	4671(8)	21(4)
H(17)	4845(17)	2966(10)	4356(9)	27(4)
H(18)	3838(18)	3791(10)	5144(8)	27(4)
H(19)	3175(17)	2736(9)	7052(8)	21(4)
H(20)	876(17)	2388(10)	7141(8)	26(4)
H(21)	-850(20)	3244(11)	6729(9)	36(5)
H(22)	-238(17)	4426(10)	6208(9)	25(4)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2998FMI.

Table 6. Torsion angles [°] for JF2998FMI.

O(2)-C(1)-O(1)-C(2)	-164.55(9)	
O(3)-C(1)-O(1)-C(2)	80.47(12)	
C(5)-C(1)-O(1)-C(2)	-42.52(14)	
C(1)-O(1)-C(2)-C(12)	-178.44(10)	
C(1)-O(1)-C(2)-C(8)	-57.58(14)	
C(1)-O(1)-C(2)-C(3)	62.74(13)	
O(3)-C(1)-O(2)-C(6)	28.17(13)	
O(1)-C(1)-O(2)-C(6)	-90.17(11)	
C(5)-C(1)-O(2)-C(6)	146.85(11)	
O(1)-C(2)-C(3)-C(13)	76.28(13)	
C(12)-C(2)-C(3)-C(13)	-36.79(15)	
C(8)-C(2)-C(3)-C(13)	-161.97(10)	
O(1)-C(2)-C(3)-C(4)	-48.31(13)	
C(12)-C(2)-C(3)-C(4)	-161.37(10)	
C(8)-C(2)-C(3)-C(4)	73.44(12)	
O(2)-C(1)-O(3)-C(7)	-36.21(13)	
O(1)-C(1)-O(3)-C(7)	77.57(12)	
C(5)-C(1)-O(3)-C(7)	-156.89(10)	
C(13)-C(3)-C(4)-C(5)	-106.29(13)	
C(2)-C(3)-C(4)-C(5)	20.92(16)	
C(13)-C(3)-C(4)-C(19)	71.67(14)	
C(2)-C(3)-C(4)-C(19)	-161.12(11)	
C(19)-C(4)-C(5)-C(22)	1.31(18)	
C(3)-C(4)-C(5)-C(22)	179.27(11)	
C(19)-C(4)-C(5)-C(1)	-179.79(11)	
C(3)-C(4)-C(5)-C(1)	-1.83(18)	
O(2)-C(1)-C(5)-C(4)	128.56(12)	
O(3)-C(1)-C(5)-C(4)	-113.98(12)	
O(1)-C(1)-C(5)-C(4)	10.56(16)	
O(2)-C(1)-C(5)-C(22)	-52.51(15)	
O(3)-C(1)-C(5)-C(22)	64.95(14)	
O(1)-C(1)-C(5)-C(22)	-170.51(11)	
C(1)-O(2)-C(6)-C(7)	-9.49(14)	
C(1)-O(3)-C(7)-C(6)	28.81(14)	

O(2)-C(6)-C(7)-O(3)	-11.73(14)
O(1)-C(2)-C(8)-C(9)	-112.00(14)
C(12)-C(2)-C(8)-C(9)	2.90(18)
C(3)-C(2)-C(8)-C(9)	127.56(13)
C(2)-C(8)-C(9)-C(10)	1.0(2)
C(8)-C(9)-C(10)-O(10)	172.12(13)
C(8)-C(9)-C(10)-C(11)	-6.15(19)
O(10)-C(10)-C(11)-C(12)	-170.83(13)
C(9)-C(10)-C(11)-C(12)	7.44(19)
C(10)-C(11)-C(12)-C(2)	-3.6(2)
O(1)-C(2)-C(12)-C(11)	118.36(13)
C(8)-C(2)-C(12)-C(11)	-1.57(18)
C(3)-C(2)-C(12)-C(11)	-124.68(13)
C(4)-C(3)-C(13)-C(14)	-117.53(12)
C(2)-C(3)-C(13)-C(14)	117.82(13)
C(4)-C(3)-C(13)-C(18)	60.93(15)
C(2)-C(3)-C(13)-C(18)	-63.72(16)
C(18)-C(13)-C(14)-C(15)	-0.10(19)
C(3)-C(13)-C(14)-C(15)	178.41(12)
C(13)-C(14)-C(15)-C(16)	0.4(2)
C(14)-C(15)-C(16)-C(17)	0.0(2)
C(15)-C(16)-C(17)-C(18)	-0.7(2)
C(16)-C(17)-C(18)-C(13)	1.0(2)
C(14)-C(13)-C(18)-C(17)	-0.55(19)
C(3)-C(13)-C(18)-C(17)	-179.03(12)
C(5)-C(4)-C(19)-C(20)	0.00(18)
C(3)-C(4)-C(19)-C(20)	-178.00(11)
C(4)-C(19)-C(20)-C(21)	-0.88(19)
C(19)-C(20)-C(21)-C(22)	0.5(2)
C(20)-C(21)-C(22)-C(5)	0.85(19)
C(4)-C(5)-C(22)-C(21)	-1.74(19)
C(1)-C(5)-C(22)-C(21)	179.32(11)

CCDC 2087130

Table 1. Crystal data and structure refinem	nent for $[C_{31}H_{25}NO_4]$.	
Identification code	JF2999FMI (MG-4-165)
Empirical formula	C31 H25 N O4	
Formula weight	475.52	
Temperature	90(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.2681(8) Å	⟨= 75.214(3)°.
	b = 13.4445(10) Å	®= 78.879(3)°.
	c = 18.5225(14) Å	© = 68.820(2)°.
Volume	2290.9(3) Å ³	
Z, Z'	4, 2	
Density (calculated)	1.379 Mg/m ³	
Absorption coefficient	0.732 mm ⁻¹	
F(000)	1000	
Crystal size	0.271 x 0.184 x 0.056 mm ³	i
Crystal color and habit	Pale Yellow Block	
Diffractometer	Bruker Duo APEXII CCD	
Theta range for data collection	2.483 to 67.903°.	
Index ranges	-12<=h<=12, -16<=k<=16,	-22<=1<=22
Reflections collected	14547	
Independent reflections	7860 [R(int) = 0.0144]	
Observed reflections (I > 2sigma(I))	7357	
Completeness to theta = 67.679°	94.3 %	
Absorption correction	Semi-empirical from equiv	alents
Max. and min. transmission	0.9126 and 0.8432	
Solution method	SHELXT (Sheldrick, 2014))

Refinement method	SHELXL-2017/1 (Sheldrick, 2017) Full-matrix least-squares on F ²
Data / restraints / parameters	7860 / 0 / 850
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0328, wR2 = 0.0875
R indices (all data)	R1 = 0.0347, wR2 = 0.0893
Extinction coefficient	0.00103(12)
Largest diff. peak and hole	0.228 and -0.248 e.Å ⁻³

	Х	у	Z	U(eq)
C(1)	3219(1)	8214(1)	3208(1)	18(1)
O(1)	2960(1)	8386(1)	2447(1)	21(1)
C(2)	1630(1)	9102(1)	2240(1)	19(1)
O(2)	1759(1)	10110(1)	1843(1)	23(1)
C(3)	484(1)	9278(1)	2888(1)	20(1)
O(3)	1291(1)	8658(1)	1721(1)	23(1)
C(4)	684(1)	8627(1)	3605(1)	19(1)
C(5)	2098(1)	7740(1)	3713(1)	18(1)
C(6)	4707(1)	7354(1)	3265(1)	19(1)
N(6)	5461(1)	7734(1)	3596(1)	19(1)
O(6)	5113(1)	6489(1)	3062(1)	24(1)
C(7)	4707(1)	8806(1)	3692(1)	19(1)
C(8)	3379(1)	9158(1)	3449(1)	19(1)
C(9)	2390(2)	9935(1)	1105(1)	31(1)
C(10)	1755(2)	9146(1)	981(1)	36(1)
C(11)	-771(1)	10127(1)	2762(1)	23(1)
C(12)	-1834(1)	10335(1)	3348(1)	25(1)
C(13)	-1636(1)	9695(1)	4062(1)	24(1)
C(14)	-395(1)	8841(1)	4189(1)	22(1)
C(15)	2432(1)	7242(1)	4515(1)	19(1)
C(16)	2266(1)	7862(1)	5050(1)	21(1)
C(17)	2617(1)	7353(1)	5772(1)	24(1)
C(18)	3164(1)	6225(1)	5968(1)	24(1)
C(19)	3341(1)	5607(1)	5442(1)	24(1)
C(20)	2965(1)	6112(1)	4724(1)	22(1)
C(21)	2486(1)	10205(1)	3492(1)	21(1)
C(22)	2941(1)	10877(1)	3774(1)	25(1)
C(23)	4262(1)	10504(1)	4018(1)	25(1)
C(24)	5166(1)	9451(1)	3985(1)	23(1)
C(25)	6949(1)	7198(1)	3690(1)	21(1)
C(26)	7278(1)	6884(1)	4499(1)	20(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for JF2999FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	6240(1)	6895(1)	5105(1)	22(1)
C(28)	6595(1)	6572(1)	5838(1)	23(1)
C(29)	7987(1)	6232(1)	5969(1)	23(1)
C(30)	9029(1)	6217(1)	5366(1)	24(1)
C(31)	8678(1)	6544(1)	4635(1)	22(1)
C(41)	-592(1)	6880(1)	1602(1)	18(1)
O(41)	-1566(1)	7908(1)	1725(1)	22(1)
C(42)	-2719(1)	8416(1)	1295(1)	19(1)
O(42)	-2486(1)	9308(1)	762(1)	24(1)
C(43)	-3035(1)	7681(1)	908(1)	19(1)
O(43)	-3879(1)	8861(1)	1791(1)	24(1)
C(44)	-2432(1)	6549(1)	1105(1)	18(1)
C(45)	-1454(1)	6099(1)	1715(1)	18(1)
C(46)	398(1)	6469(1)	2230(1)	18(1)
N(46)	1749(1)	6154(1)	1893(1)	17(1)
O(46)	33(1)	6407(1)	2896(1)	25(1)
C(47)	1795(1)	6432(1)	1107(1)	17(1)
C(48)	432(1)	6901(1)	895(1)	18(1)
C(49)	-2737(2)	10118(1)	1195(1)	30(1)
C(50)	-3923(2)	9940(1)	1785(1)	36(1)
C(51)	-3938(1)	8148(1)	349(1)	21(1)
C(52)	-4234(1)	7495(1)	-23(1)	22(1)
C(53)	-3633(1)	6370(1)	167(1)	22(1)
C(54)	-2750(1)	5902(1)	730(1)	20(1)
C(55)	-582(1)	4903(1)	1804(1)	18(1)
C(56)	-629(1)	4237(1)	2513(1)	22(1)
C(57)	113(1)	3126(1)	2626(1)	25(1)
C(58)	919(1)	2668(1)	2028(1)	24(1)
C(59)	1000(1)	3328(1)	1321(1)	22(1)
C(60)	259(1)	4440(1)	1205(1)	19(1)
C(61)	2980(1)	6294(1)	592(1)	21(1)
C(62)	2780(1)	6659(1)	-167(1)	22(1)
C(63)	1438(1)	7149(1)	-391(1)	22(1)
C(64)	256(1)	7273(1)	141(1)	21(1)
C(65)	2981(1)	5792(1)	2294(1)	19(1)
C(66)	3994(1)	4684(1)	2187(1)	18(1)

C(67)	5426(1)	4448(1)	2210(1)	19(1)
C(68)	6361(1)	3411(1)	2164(1)	22(1)
C(69)	5875(1)	2610(1)	2088(1)	23(1)
C(70)	4450(1)	2843(1)	2058(1)	22(1)
C(71)	3516(1)	3877(1)	2105(1)	20(1)

C(1)-O(1)	1.4305(14)
C(1)-C(8)	1.5184(16)
C(1)-C(6)	1.5512(16)
C(1)-C(5)	1.5543(16)
O(1)-C(2)	1.4147(14)
C(2)-O(3)	1.4060(14)
C(2)-O(2)	1.4069(14)
C(2)-C(3)	1.5102(17)
O(2)-C(9)	1.4343(17)
C(3)-C(11)	1.3910(17)
C(3)-C(4)	1.3970(17)
O(3)-C(10)	1.4317(18)
C(4)-C(14)	1.3954(17)
C(4)-C(5)	1.5188(16)
C(5)-C(15)	1.5145(17)
C(5)-H(5)	0.982(14)
C(6)-O(6)	1.2174(14)
C(6)-N(6)	1.3646(16)
N(6)-C(7)	1.4076(15)
N(6)-C(25)	1.4582(15)
C(7)-C(24)	1.3798(17)
C(7)-C(8)	1.3954(16)
C(8)-C(21)	1.3880(16)
C(9)-C(10)	1.512(2)
C(9)-H(9A)	1.047(18)
C(9)-H(9B)	0.997(17)
C(10)-H(10A)	1.05(2)
C(10)-H(10B)	0.96(2)
C(11)-C(12)	1.3870(18)
C(11)-H(11)	1.001(16)
C(12)-C(13)	1.3896(19)
С(12)-Н(12)	0.978(15)
C(13)-C(14)	1.3849(18)
C(13)-H(13)	0.985(15)

Table 3. Bond lengths [Å] and angles [°] for JF2999FMI.

C(14)-H(14)	1.003(15)
C(15)-C(20)	1.3929(17)
C(15)-C(16)	1.3987(17)
C(16)-C(17)	1.3895(18)
С(16)-Н(16)	0.969(15)
C(17)-C(18)	1.3889(18)
С(17)-Н(17)	0.975(15)
C(18)-C(19)	1.3828(19)
C(18)-H(18)	0.978(16)
C(19)-C(20)	1.3875(18)
С(19)-Н(19)	0.976(16)
C(20)-H(20)	1.000(15)
C(21)-C(22)	1.3953(18)
С(21)-Н(21)	0.992(15)
C(22)-C(23)	1.3871(18)
C(22)-H(22)	0.958(16)
C(23)-C(24)	1.3936(18)
С(23)-Н(23)	0.965(16)
C(24)-H(24)	0.967(15)
C(25)-C(26)	1.5183(17)
C(25)-H(25A)	0.968(16)
C(25)-H(25B)	0.979(15)
C(26)-C(27)	1.3898(17)
C(26)-C(31)	1.3953(17)
C(27)-C(28)	1.3926(18)
C(27)-H(27)	0.990(15)
C(28)-C(29)	1.3851(18)
C(28)-H(28)	0.978(16)
C(29)-C(30)	1.3885(19)
C(29)-H(29)	0.955(16)
C(30)-C(31)	1.3872(18)
C(30)-H(30)	0.985(16)
C(31)-H(31)	0.982(15)
C(41)-O(41)	1.4271(13)
C(41)-C(48)	1.5140(16)
C(41)-C(46)	1.5529(15)

C(41)-C(45)	1.5558(16)
O(41)-C(42)	1.4163(14)
C(42)-O(43)	1.4014(14)
C(42)-O(42)	1.4078(14)
C(42)-C(43)	1.5105(17)
O(42)-C(49)	1.4341(15)
C(43)-C(51)	1.3935(17)
C(43)-C(44)	1.3977(16)
O(43)-C(50)	1.4315(16)
C(44)-C(54)	1.3950(17)
C(44)-C(45)	1.5168(16)
C(45)-C(55)	1.5153(15)
C(45)-H(45)	0.979(15)
C(46)-O(46)	1.2092(15)
C(46)-N(46)	1.3680(15)
N(46)-C(47)	1.4022(15)
N(46)-C(65)	1.4572(14)
C(47)-C(61)	1.3804(17)
C(47)-C(48)	1.3988(16)
C(48)-C(64)	1.3825(17)
C(49)-C(50)	1.516(2)
C(49)-H(49A)	0.995(16)
C(49)-H(49B)	1.014(17)
C(50)-H(50A)	0.98(2)
C(50)-H(50B)	1.05(2)
C(51)-C(52)	1.3858(18)
C(51)-H(51)	0.988(14)
C(52)-C(53)	1.3887(18)
C(52)-H(52)	0.986(15)
C(53)-C(54)	1.3872(17)
C(53)-H(53)	0.981(16)
C(54)-H(54)	0.969(15)
C(55)-C(56)	1.3916(18)
C(55)-C(60)	1.3988(17)
C(56)-C(57)	1.3914(17)
C(56)-H(56)	0.980(15)

C(57)-C(58)	1.3837(19)
C(57)-H(57)	0.966(17)
C(58)-C(59)	1.3887(19)
C(58)-H(58)	0.949(16)
C(59)-C(60)	1.3916(17)
C(59)-H(59)	0.991(16)
C(60)-H(60)	0.978(15)
C(61)-C(62)	1.3954(18)
C(61)-H(61)	0.981(15)
C(62)-C(63)	1.3886(18)
C(62)-H(62)	0.967(15)
C(63)-C(64)	1.3964(18)
C(63)-H(63)	0.960(16)
C(64)-H(64)	0.974(16)
C(65)-C(66)	1.5146(15)
C(65)-H(65A)	0.995(15)
C(65)-H(65B)	0.965(15)
C(66)-C(71)	1.3920(17)
C(66)-C(67)	1.3943(17)
C(67)-C(68)	1.3909(17)
C(67)-H(67)	0.976(15)
C(68)-C(69)	1.3859(18)
C(68)-H(68)	0.968(15)
C(69)-C(70)	1.3901(18)
C(69)-H(69)	0.977(15)
C(70)-C(71)	1.3873(17)
C(70)-H(70)	0.993(15)
C(71)-H(71)	0.956(15)
O(1)-C(1)-C(8)	116.97(9)
O(1)-C(1)-C(6)	105.24(9)
C(8)-C(1)-C(6)	102.22(9)
O(1)-C(1)-C(5)	106.89(9)
C(8)-C(1)-C(5)	114.67(9)
C(6)-C(1)-C(5)	110.29(9)
C(2)-O(1)-C(1)	117.70(9)

O(3)-C(2)-O(2)	105.90(9)
O(3)-C(2)-O(1)	105.85(9)
O(2)-C(2)-O(1)	109.16(9)
O(3)-C(2)-C(3)	111.16(9)
O(2)-C(2)-C(3)	109.66(9)
O(1)-C(2)-C(3)	114.70(10)
C(2)-O(2)-C(9)	105.01(9)
C(11)-C(3)-C(4)	120.40(11)
C(11)-C(3)-C(2)	118.45(11)
C(4)-C(3)-C(2)	121.13(10)
C(2)-O(3)-C(10)	108.19(10)
C(14)-C(4)-C(3)	118.88(11)
C(14)-C(4)-C(5)	123.20(11)
C(3)-C(4)-C(5)	117.88(11)
C(15)-C(5)-C(4)	116.84(10)
C(15)-C(5)-C(1)	113.81(9)
C(4)-C(5)-C(1)	106.30(9)
C(15)-C(5)-H(5)	107.0(8)
C(4)-C(5)-H(5)	107.1(8)
C(1)-C(5)-H(5)	105.0(8)
O(6)-C(6)-N(6)	126.48(11)
O(6)-C(6)-C(1)	125.73(10)
N(6)-C(6)-C(1)	107.78(9)
C(6)-N(6)-C(7)	111.03(9)
C(6)-N(6)-C(25)	124.25(10)
C(7)-N(6)-C(25)	123.54(10)
C(24)-C(7)-C(8)	122.72(11)
C(24)-C(7)-N(6)	126.66(11)
C(8)-C(7)-N(6)	110.61(10)
C(21)-C(8)-C(7)	118.96(11)
C(21)-C(8)-C(1)	133.25(11)
C(7)-C(8)-C(1)	107.73(10)
O(2)-C(9)-C(10)	102.70(11)
O(2)-C(9)-H(9A)	109.6(9)
C(10)-C(9)-H(9A)	111.9(9)
O(2)-C(9)-H(9B)	109.0(10)

C(10)-C(9)-H(9B)	115.1(10)
H(9A)-C(9)-H(9B)	108.3(13)
O(3)-C(10)-C(9)	104.56(11)
O(3)-C(10)-H(10A)	109.0(11)
C(9)-C(10)-H(10A)	112.2(11)
O(3)-C(10)-H(10B)	110.5(12)
C(9)-C(10)-H(10B)	112.2(12)
H(10A)-C(10)-H(10B)	108.4(16)
C(12)-C(11)-C(3)	120.20(12)
C(12)-C(11)-H(11)	122.1(9)
C(3)-C(11)-H(11)	117.7(9)
C(11)-C(12)-C(13)	119.65(12)
C(11)-C(12)-H(12)	120.2(9)
C(13)-C(12)-H(12)	120.1(9)
C(14)-C(13)-C(12)	120.32(12)
C(14)-C(13)-H(13)	119.0(9)
С(12)-С(13)-Н(13)	120.7(9)
C(13)-C(14)-C(4)	120.54(12)
C(13)-C(14)-H(14)	119.5(8)
C(4)-C(14)-H(14)	120.0(8)
C(20)-C(15)-C(16)	118.41(11)
C(20)-C(15)-C(5)	118.31(11)
C(16)-C(15)-C(5)	123.26(10)
C(17)-C(16)-C(15)	120.37(11)
C(17)-C(16)-H(16)	119.5(9)
C(15)-C(16)-H(16)	120.2(9)
C(18)-C(17)-C(16)	120.46(12)
С(18)-С(17)-Н(17)	119.8(9)
С(16)-С(17)-Н(17)	119.7(9)
C(19)-C(18)-C(17)	119.53(12)
C(19)-C(18)-H(18)	121.3(9)
C(17)-C(18)-H(18)	119.2(9)
C(18)-C(19)-C(20)	120.14(12)
C(18)-C(19)-H(19)	119.6(9)
C(20)-C(19)-H(19)	120.3(9)
C(19)-C(20)-C(15)	121.08(12)

C(19)-C(20)-H(20)	121.2(8)
С(15)-С(20)-Н(20)	117.7(8)
C(8)-C(21)-C(22)	119.14(11)
C(8)-C(21)-H(21)	121.3(8)
C(22)-C(21)-H(21)	119.6(8)
C(23)-C(22)-C(21)	120.77(11)
C(23)-C(22)-H(22)	119.0(9)
C(21)-C(22)-H(22)	120.2(9)
C(22)-C(23)-C(24)	120.77(11)
C(22)-C(23)-H(23)	119.7(9)
C(24)-C(23)-H(23)	119.5(9)
C(7)-C(24)-C(23)	117.61(11)
C(7)-C(24)-H(24)	119.6(9)
C(23)-C(24)-H(24)	122.8(9)
N(6)-C(25)-C(26)	114.55(10)
N(6)-C(25)-H(25A)	107.5(9)
C(26)-C(25)-H(25A)	110.5(9)
N(6)-C(25)-H(25B)	105.8(8)
C(26)-C(25)-H(25B)	110.4(8)
H(25A)-C(25)-H(25B)	107.8(12)
C(27)-C(26)-C(31)	119.11(11)
C(27)-C(26)-C(25)	122.35(11)
C(31)-C(26)-C(25)	118.51(11)
C(26)-C(27)-C(28)	120.36(11)
С(26)-С(27)-Н(27)	118.4(9)
C(28)-C(27)-H(27)	121.2(9)
C(29)-C(28)-C(27)	120.23(12)
C(29)-C(28)-H(28)	120.0(9)
C(27)-C(28)-H(28)	119.8(9)
C(28)-C(29)-C(30)	119.66(12)
C(28)-C(29)-H(29)	120.6(9)
C(30)-C(29)-H(29)	119.7(9)
C(31)-C(30)-C(29)	120.24(12)
С(31)-С(30)-Н(30)	119.1(9)
C(29)-C(30)-H(30)	120.7(9)
C(30)-C(31)-C(26)	120.39(12)

C(30)-C(31)-H(31)	121.5(9)
C(26)-C(31)-H(31)	118.1(9)
O(41)-C(41)-C(48)	116.34(9)
O(41)-C(41)-C(46)	105.94(9)
C(48)-C(41)-C(46)	102.19(9)
O(41)-C(41)-C(45)	106.97(9)
C(48)-C(41)-C(45)	115.74(9)
C(46)-C(41)-C(45)	108.95(9)
C(42)-O(41)-C(41)	118.62(9)
O(43)-C(42)-O(42)	105.90(9)
O(43)-C(42)-O(41)	106.02(9)
O(42)-C(42)-O(41)	108.74(9)
O(43)-C(42)-C(43)	110.57(9)
O(42)-C(42)-C(43)	109.87(10)
O(41)-C(42)-C(43)	115.29(9)
C(42)-O(42)-C(49)	104.11(9)
C(51)-C(43)-C(44)	120.38(11)
C(51)-C(43)-C(42)	118.95(10)
C(44)-C(43)-C(42)	120.66(11)
C(42)-O(43)-C(50)	107.67(10)
C(54)-C(44)-C(43)	118.72(11)
C(54)-C(44)-C(45)	123.81(10)
C(43)-C(44)-C(45)	117.47(10)
C(55)-C(45)-C(44)	116.31(10)
C(55)-C(45)-C(41)	114.62(9)
C(44)-C(45)-C(41)	107.08(9)
C(55)-C(45)-H(45)	106.4(8)
C(44)-C(45)-H(45)	107.9(8)
C(41)-C(45)-H(45)	103.6(8)
O(46)-C(46)-N(46)	126.52(11)
O(46)-C(46)-C(41)	125.99(11)
N(46)-C(46)-C(41)	107.44(10)
C(46)-N(46)-C(47)	111.32(9)
C(46)-N(46)-C(65)	123.58(10)
C(47)-N(46)-C(65)	123.89(10)
C(61)-C(47)-C(48)	122.68(11)

C(61)-C(47)-N(46)	127.00(11)
C(48)-C(47)-N(46)	110.32(10)
C(64)-C(48)-C(47)	119.09(11)
C(64)-C(48)-C(41)	132.94(11)
C(47)-C(48)-C(41)	107.97(10)
O(42)-C(49)-C(50)	102.89(10)
O(42)-C(49)-H(49A)	107.6(9)
C(50)-C(49)-H(49A)	114.7(9)
O(42)-C(49)-H(49B)	109.3(9)
C(50)-C(49)-H(49B)	111.4(10)
H(49A)-C(49)-H(49B)	110.5(13)
O(43)-C(50)-C(49)	104.45(11)
O(43)-C(50)-H(50A)	110.1(12)
C(49)-C(50)-H(50A)	111.4(12)
O(43)-C(50)-H(50B)	106.2(11)
C(49)-C(50)-H(50B)	111.8(11)
H(50A)-C(50)-H(50B)	112.5(16)
C(52)-C(51)-C(43)	120.26(11)
C(52)-C(51)-H(51)	121.6(8)
C(43)-C(51)-H(51)	118.1(8)
C(51)-C(52)-C(53)	119.68(11)
C(51)-C(52)-H(52)	121.0(8)
C(53)-C(52)-H(52)	119.3(8)
C(54)-C(53)-C(52)	120.21(11)
C(54)-C(53)-H(53)	120.2(9)
C(52)-C(53)-H(53)	119.5(9)
C(53)-C(54)-C(44)	120.73(11)
C(53)-C(54)-H(54)	119.6(9)
C(44)-C(54)-H(54)	119.7(9)
C(56)-C(55)-C(60)	118.71(11)
C(56)-C(55)-C(45)	118.31(11)
C(60)-C(55)-C(45)	122.98(11)
C(57)-C(56)-C(55)	121.03(12)
C(57)-C(56)-H(56)	120.8(9)
C(55)-C(56)-H(56)	118.2(9)
C(58)-C(57)-C(56)	119.94(12)

C(58)-C(57)-H(57)	120.6(9)
C(56)-C(57)-H(57)	119.5(9)
C(57)-C(58)-C(59)	119.61(11)
C(57)-C(58)-H(58)	119.5(9)
C(59)-C(58)-H(58)	120.8(9)
C(58)-C(59)-C(60)	120.62(12)
C(58)-C(59)-H(59)	119.3(9)
C(60)-C(59)-H(59)	120.0(9)
C(59)-C(60)-C(55)	120.06(11)
C(59)-C(60)-H(60)	119.1(8)
C(55)-C(60)-H(60)	120.8(8)
C(47)-C(61)-C(62)	117.39(11)
C(47)-C(61)-H(61)	121.2(9)
C(62)-C(61)-H(61)	121.4(9)
C(63)-C(62)-C(61)	120.98(11)
C(63)-C(62)-H(62)	120.3(8)
C(61)-C(62)-H(62)	118.7(8)
C(62)-C(63)-C(64)	120.56(12)
C(62)-C(63)-H(63)	119.5(9)
C(64)-C(63)-H(63)	120.0(9)
C(48)-C(64)-C(63)	119.27(11)
C(48)-C(64)-H(64)	121.4(9)
C(63)-C(64)-H(64)	119.4(9)
N(46)-C(65)-C(66)	113.25(9)
N(46)-C(65)-H(65A)	105.4(8)
C(66)-C(65)-H(65A)	110.1(8)
N(46)-C(65)-H(65B)	109.2(8)
C(66)-C(65)-H(65B)	110.0(8)
H(65A)-C(65)-H(65B)	108.8(12)
C(71)-C(66)-C(67)	119.34(11)
C(71)-C(66)-C(65)	121.24(10)
C(67)-C(66)-C(65)	119.32(10)
C(68)-C(67)-C(66)	120.19(11)
C(68)-C(67)-H(67)	121.4(8)
C(66)-C(67)-H(67)	118.4(8)
C(69)-C(68)-C(67)	120.08(11)

C(69)-C(68)-H(68)	121.3(9)
C(67)-C(68)-H(68)	118.6(9)
C(68)-C(69)-C(70)	119.98(11)
C(68)-C(69)-H(69)	119.8(9)
C(70)-C(69)-H(69)	120.2(9)
C(71)-C(70)-C(69)	119.98(11)
С(71)-С(70)-Н(70)	119.9(8)
C(69)-C(70)-H(70)	120.2(8)
C(70)-C(71)-C(66)	120.42(11)
C(70)-C(71)-H(71)	120.3(9)
C(66)-C(71)-H(71)	119.3(9)

Symmetry transformations used to generate equivalent atoms:
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	22(1)	18(1)	15(1)	-3(1)	-5(1)	-5(1)
O(1)	21(1)	23(1)	16(1)	-4(1)	-5(1)	-3(1)
C(2)	23(1)	16(1)	19(1)	-2(1)	-7(1)	-7(1)
O(2)	30(1)	17(1)	21(1)	-2(1)	-2(1)	-8(1)
C(3)	22(1)	19(1)	21(1)	-6(1)	-5(1)	-9(1)
O(3)	29(1)	25(1)	18(1)	-5(1)	-6(1)	-11(1)
C(4)	21(1)	18(1)	22(1)	-5(1)	-5(1)	-9(1)
C(5)	22(1)	16(1)	18(1)	-5(1)	-3(1)	-7(1)
C(6)	22(1)	20(1)	13(1)	-1(1)	-3(1)	-6(1)
N(6)	18(1)	19(1)	17(1)	-4(1)	-2(1)	-4(1)
O(6)	27(1)	20(1)	24(1)	-8(1)	-6(1)	-3(1)
C(7)	22(1)	19(1)	14(1)	-1(1)	-1(1)	-7(1)
C(8)	22(1)	19(1)	14(1)	-1(1)	-2(1)	-8(1)
C(9)	39(1)	26(1)	22(1)	0(1)	1(1)	-9(1)
C(10)	52(1)	40(1)	19(1)	-7(1)	-1(1)	-20(1)
C(11)	25(1)	22(1)	23(1)	-4(1)	-8(1)	-7(1)
C(12)	21(1)	25(1)	30(1)	-8(1)	-7(1)	-5(1)
C(13)	21(1)	28(1)	26(1)	-10(1)	-2(1)	-9(1)
C(14)	24(1)	24(1)	22(1)	-5(1)	-4(1)	-11(1)
C(15)	19(1)	20(1)	19(1)	-3(1)	-2(1)	-7(1)
C(16)	22(1)	20(1)	21(1)	-4(1)	-2(1)	-6(1)
C(17)	25(1)	30(1)	19(1)	-7(1)	-1(1)	-10(1)
C(18)	24(1)	30(1)	18(1)	1(1)	-3(1)	-11(1)
C(19)	25(1)	20(1)	24(1)	1(1)	-3(1)	-8(1)
C(20)	24(1)	20(1)	21(1)	-4(1)	-2(1)	-8(1)
C(21)	23(1)	18(1)	22(1)	-1(1)	-5(1)	-6(1)
C(22)	30(1)	18(1)	25(1)	-3(1)	-5(1)	-7(1)
C(23)	34(1)	24(1)	24(1)	-4(1)	-6(1)	-14(1)
C(24)	24(1)	25(1)	21(1)	-2(1)	-4(1)	-11(1)
C(25)	18(1)	25(1)	19(1)	-4(1)	-3(1)	-4(1)
C(26)	23(1)	16(1)	19(1)	-4(1)	-4(1)	-6(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for JF2999FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(27)	21(1)	21(1)	22(1)	-4(1)	-3(1)	-6(1)
C(28)	27(1)	22(1)	20(1)	-4(1)	-1(1)	-9(1)
C(29)	30(1)	21(1)	19(1)	-2(1)	-7(1)	-8(1)
C(30)	23(1)	24(1)	25(1)	-5(1)	-7(1)	-6(1)
C(31)	21(1)	22(1)	21(1)	-5(1)	-2(1)	-6(1)
C(41)	18(1)	16(1)	19(1)	-5(1)	-3(1)	-2(1)
O(41)	21(1)	18(1)	26(1)	-9(1)	-8(1)	0(1)
C(42)	18(1)	17(1)	20(1)	-2(1)	-3(1)	-2(1)
O(42)	32(1)	20(1)	22(1)	-2(1)	-5(1)	-11(1)
C(43)	16(1)	20(1)	19(1)	-5(1)	1(1)	-5(1)
O(43)	21(1)	21(1)	28(1)	-9(1)	1(1)	-3(1)
C(44)	15(1)	20(1)	17(1)	-3(1)	2(1)	-6(1)
C(45)	17(1)	19(1)	16(1)	-4(1)	0(1)	-4(1)
C(46)	20(1)	16(1)	17(1)	-5(1)	-2(1)	-4(1)
N(46)	18(1)	17(1)	16(1)	-3(1)	-4(1)	-4(1)
O(46)	23(1)	32(1)	18(1)	-7(1)	-2(1)	-3(1)
C(47)	22(1)	14(1)	17(1)	-3(1)	-4(1)	-7(1)
C(48)	20(1)	14(1)	20(1)	-4(1)	-3(1)	-6(1)
C(49)	43(1)	19(1)	30(1)	-4(1)	-12(1)	-10(1)
C(50)	49(1)	23(1)	36(1)	-13(1)	1(1)	-9(1)
C(51)	18(1)	20(1)	23(1)	-2(1)	-2(1)	-4(1)
C(52)	18(1)	27(1)	22(1)	-3(1)	-4(1)	-6(1)
C(53)	19(1)	25(1)	23(1)	-7(1)	-2(1)	-9(1)
C(54)	17(1)	19(1)	22(1)	-4(1)	1(1)	-6(1)
C(55)	16(1)	18(1)	21(1)	-3(1)	-4(1)	-6(1)
C(56)	20(1)	24(1)	21(1)	-3(1)	-3(1)	-8(1)
C(57)	24(1)	22(1)	27(1)	3(1)	-7(1)	-10(1)
C(58)	22(1)	16(1)	35(1)	-2(1)	-9(1)	-6(1)
C(59)	19(1)	22(1)	28(1)	-9(1)	-4(1)	-6(1)
C(60)	19(1)	20(1)	20(1)	-4(1)	-4(1)	-7(1)
C(61)	19(1)	21(1)	22(1)	-4(1)	-4(1)	-7(1)
C(62)	24(1)	25(1)	20(1)	-5(1)	0(1)	-11(1)
C(63)	27(1)	24(1)	17(1)	-1(1)	-4(1)	-10(1)
C(64)	22(1)	20(1)	21(1)	-2(1)	-6(1)	-7(1)
C(65)	20(1)	19(1)	19(1)	-5(1)	-7(1)	-5(1)
C(66)	21(1)	19(1)	11(1)	-1(1)	-2(1)	-5(1)

C(67)	22(1)	22(1)	14(1)	-3(1)	-3(1)	-8(1)
C(68)	19(1)	28(1)	16(1)	-5(1)	-3(1)	-4(1)
C(69)	26(1)	20(1)	18(1)	-5(1)	-3(1)	-1(1)
C(70)	27(1)	20(1)	20(1)	-4(1)	-4(1)	-7(1)
C(71)	20(1)	22(1)	18(1)	-4(1)	-3(1)	-6(1)

	X	У	Z	U(eq)
H(5)	2118(14)	7147(11)	3488(8)	17(3)
H(9A)	3483(19)	9595(14)	1101(9)	41(4)
H(9B)	2171(17)	10649(14)	744(10)	38(4)
H(10A)	890(20)	9542(16)	673(12)	61(6)
H(10B)	2430(20)	8599(17)	726(12)	58(6)
H(11)	-857(15)	10588(12)	2244(9)	28(4)
H(12)	-2723(16)	10923(12)	3257(8)	28(4)
H(13)	-2373(15)	9840(12)	4487(9)	26(4)
H(14)	-266(15)	8386(12)	4708(9)	25(4)
H(16)	1907(15)	8650(12)	4918(8)	24(4)
H(17)	2477(15)	7792(12)	6144(9)	27(4)
H(18)	3438(16)	5885(12)	6474(9)	29(4)
H(19)	3743(16)	4816(13)	5576(9)	32(4)
H(20)	3085(15)	5677(12)	4336(8)	24(4)
H(21)	1528(16)	10480(11)	3334(8)	23(3)
H(22)	2336(16)	11601(13)	3809(8)	28(4)
H(23)	4559(16)	10978(13)	4214(9)	30(4)
H(24)	6088(16)	9164(12)	4158(8)	27(4)
H(25A)	7445(15)	7682(12)	3390(9)	26(4)
H(25B)	7246(15)	6551(12)	3471(8)	23(3)
H(27)	5253(16)	7115(12)	5002(8)	28(4)
H(28)	5856(16)	6588(12)	6261(9)	29(4)
H(29)	8239(15)	6000(12)	6470(9)	26(4)
H(30)	10024(17)	5980(12)	5450(9)	32(4)
H(31)	9400(16)	6537(12)	4201(9)	26(4)
H(45)	-2029(14)	6189(11)	2196(8)	19(3)
H(49A)	-2980(16)	10841(13)	847(9)	31(4)
H(49B)	-1858(18)	9974(13)	1431(9)	39(4)
H(50A)	-3770(20)	9986(16)	2281(12)	58(6)
H(50B)	-4910(20)	10464(16)	1625(11)	58(5)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF2999FMI.

H(51)	-4334(14)	8951(12)	220(8)	21(3)
H(52)	-4853(15)	7817(11)	-427(8)	23(3)
H(53)	-3827(16)	5910(12)	-104(9)	28(4)
H(54)	-2345(15)	5116(12)	863(8)	23(4)
H(56)	-1213(15)	4570(12)	2930(9)	25(4)
H(57)	43(16)	2677(13)	3121(9)	31(4)
H(58)	1412(16)	1908(13)	2108(9)	30(4)
H(59)	1599(16)	3000(12)	898(9)	29(4)
H(60)	327(14)	4887(11)	701(8)	21(3)
H(61)	3925(16)	5957(12)	755(8)	27(4)
H(62)	3596(15)	6554(11)	-538(8)	21(3)
H(63)	1327(15)	7391(12)	-917(9)	26(4)
H(64)	-677(17)	7620(12)	-27(9)	30(4)
H(65A)	2607(15)	5767(11)	2834(9)	23(4)
H(65B)	3456(15)	6327(11)	2135(8)	21(3)
H(67)	5747(15)	5024(12)	2263(8)	25(4)
H(68)	7349(16)	3266(12)	2188(8)	26(4)
H(69)	6539(16)	1888(13)	2044(8)	27(4)
H(70)	4097(15)	2269(12)	2010(8)	27(4)
H(71)	2533(16)	4036(11)	2096(8)	24(4)

Table 6. Torsion angles [°] for JF2999FMI.

_

C(8)-C(1)-O(1)-C(2)	-70.52(13)	
C(6)-C(1)-O(1)-C(2)	176.85(9)	
C(5)-C(1)-O(1)-C(2)	59.57(12)	
C(1)-O(1)-C(2)-O(3)	-144.02(9)	
C(1)-O(1)-C(2)-O(2)	102.39(11)	
C(1)-O(1)-C(2)-C(3)	-21.10(14)	
O(3)-C(2)-O(2)-C(9)	-36.67(12)	
O(1)-C(2)-O(2)-C(9)	76.88(11)	
C(3)-C(2)-O(2)-C(9)	-156.69(10)	
O(3)-C(2)-C(3)-C(11)	-72.88(13)	
O(2)-C(2)-C(3)-C(11)	43.88(14)	
O(1)-C(2)-C(3)-C(11)	167.10(10)	
O(3)-C(2)-C(3)-C(4)	108.89(12)	
O(2)-C(2)-C(3)-C(4)	-134.35(11)	
O(1)-C(2)-C(3)-C(4)	-11.13(15)	
O(2)-C(2)-O(3)-C(10)	22.72(13)	
O(1)-C(2)-O(3)-C(10)	-93.10(11)	
C(3)-C(2)-O(3)-C(10)	141.76(11)	
C(11)-C(3)-C(4)-C(14)	0.16(17)	
C(2)-C(3)-C(4)-C(14)	178.36(10)	
C(11)-C(3)-C(4)-C(5)	-177.69(10)	
C(2)-C(3)-C(4)-C(5)	0.51(16)	
C(14)-C(4)-C(5)-C(15)	-12.99(16)	
C(3)-C(4)-C(5)-C(15)	164.76(10)	
C(14)-C(4)-C(5)-C(1)	-141.26(11)	
C(3)-C(4)-C(5)-C(1)	36.49(13)	
O(1)-C(1)-C(5)-C(15)	165.21(9)	
C(8)-C(1)-C(5)-C(15)	-63.41(13)	
C(6)-C(1)-C(5)-C(15)	51.30(12)	
O(1)-C(1)-C(5)-C(4)	-64.76(11)	
C(8)-C(1)-C(5)-C(4)	66.62(12)	
C(6)-C(1)-C(5)-C(4)	-178.67(9)	
O(1)-C(1)-C(6)-O(6)	-50.55(15)	
C(8)-C(1)-C(6)-O(6)	-173.23(12)	

C(5)-C(1)-C(6)-O(6)	64.41(15)
O(1)-C(1)-C(6)-N(6)	130.62(10)
C(8)-C(1)-C(6)-N(6)	7.94(12)
C(5)-C(1)-C(6)-N(6)	-114.42(10)
O(6)-C(6)-N(6)-C(7)	174.53(12)
C(1)-C(6)-N(6)-C(7)	-6.65(13)
O(6)-C(6)-N(6)-C(25)	6.61(19)
C(1)-C(6)-N(6)-C(25)	-174.58(10)
C(6)-N(6)-C(7)-C(24)	-177.81(12)
C(25)-N(6)-C(7)-C(24)	-9.78(18)
C(6)-N(6)-C(7)-C(8)	2.41(13)
C(25)-N(6)-C(7)-C(8)	170.43(10)
C(24)-C(7)-C(8)-C(21)	0.95(18)
N(6)-C(7)-C(8)-C(21)	-179.26(10)
C(24)-C(7)-C(8)-C(1)	-176.75(11)
N(6)-C(7)-C(8)-C(1)	3.04(13)
O(1)-C(1)-C(8)-C(21)	61.93(17)
C(6)-C(1)-C(8)-C(21)	176.27(13)
C(5)-C(1)-C(8)-C(21)	-64.40(17)
O(1)-C(1)-C(8)-C(7)	-120.83(11)
C(6)-C(1)-C(8)-C(7)	-6.49(12)
C(5)-C(1)-C(8)-C(7)	112.84(11)
C(2)-O(2)-C(9)-C(10)	35.10(13)
C(2)-O(3)-C(10)-C(9)	-0.59(14)
O(2)-C(9)-C(10)-O(3)	-20.98(14)
C(4)-C(3)-C(11)-C(12)	0.04(18)
C(2)-C(3)-C(11)-C(12)	-178.20(11)
C(3)-C(11)-C(12)-C(13)	0.48(18)
C(11)-C(12)-C(13)-C(14)	-1.22(19)
C(12)-C(13)-C(14)-C(4)	1.43(18)
C(3)-C(4)-C(14)-C(13)	-0.90(17)
C(5)-C(4)-C(14)-C(13)	176.84(11)
C(4)-C(5)-C(15)-C(20)	132.92(11)
C(1)-C(5)-C(15)-C(20)	-102.54(12)
C(4)-C(5)-C(15)-C(16)	-48.76(16)
C(1)-C(5)-C(15)-C(16)	75.78(14)

C(20)-C(15)-C(16)-C(17)	-0.50(18)
C(5)-C(15)-C(16)-C(17)	-178.82(11)
C(15)-C(16)-C(17)-C(18)	1.36(19)
C(16)-C(17)-C(18)-C(19)	-0.90(19)
C(17)-C(18)-C(19)-C(20)	-0.41(19)
C(18)-C(19)-C(20)-C(15)	1.28(19)
C(16)-C(15)-C(20)-C(19)	-0.82(18)
C(5)-C(15)-C(20)-C(19)	177.59(11)
C(7)-C(8)-C(21)-C(22)	0.21(17)
C(1)-C(8)-C(21)-C(22)	177.20(12)
C(8)-C(21)-C(22)-C(23)	-0.77(19)
C(21)-C(22)-C(23)-C(24)	0.2(2)
C(8)-C(7)-C(24)-C(23)	-1.49(18)
N(6)-C(7)-C(24)-C(23)	178.75(11)
C(22)-C(23)-C(24)-C(7)	0.89(19)
C(6)-N(6)-C(25)-C(26)	-121.54(12)
C(7)-N(6)-C(25)-C(26)	72.01(14)
N(6)-C(25)-C(26)-C(27)	12.83(16)
N(6)-C(25)-C(26)-C(31)	-168.96(10)
C(31)-C(26)-C(27)-C(28)	0.08(17)
C(25)-C(26)-C(27)-C(28)	178.29(11)
C(26)-C(27)-C(28)-C(29)	-0.34(18)
C(27)-C(28)-C(29)-C(30)	0.22(18)
C(28)-C(29)-C(30)-C(31)	0.16(18)
C(29)-C(30)-C(31)-C(26)	-0.42(18)
C(27)-C(26)-C(31)-C(30)	0.29(17)
C(25)-C(26)-C(31)-C(30)	-177.98(11)
C(48)-C(41)-O(41)-C(42)	75.45(13)
C(46)-C(41)-O(41)-C(42)	-171.82(9)
C(45)-C(41)-O(41)-C(42)	-55.69(13)
C(41)-O(41)-C(42)-O(43)	139.41(10)
C(41)-O(41)-C(42)-O(42)	-107.12(11)
C(41)-O(41)-C(42)-C(43)	16.74(15)
O(43)-C(42)-O(42)-C(49)	39.18(12)
O(41)-C(42)-O(42)-C(49)	-74.37(11)
C(43)-C(42)-O(42)-C(49)	158.61(10)

O(43)-C(42)-C(43)-C(51)	73.55(14)
O(42)-C(42)-C(43)-C(51)	-42.97(14)
O(41)-C(42)-C(43)-C(51)	-166.23(11)
O(43)-C(42)-C(43)-C(44)	-106.45(12)
O(42)-C(42)-C(43)-C(44)	137.02(11)
O(41)-C(42)-C(43)-C(44)	13.76(16)
O(42)-C(42)-O(43)-C(50)	-26.51(13)
O(41)-C(42)-O(43)-C(50)	88.91(12)
C(43)-C(42)-O(43)-C(50)	-145.47(11)
C(51)-C(43)-C(44)-C(54)	0.19(17)
C(42)-C(43)-C(44)-C(54)	-179.80(10)
C(51)-C(43)-C(44)-C(45)	179.70(10)
C(42)-C(43)-C(44)-C(45)	-0.29(16)
C(54)-C(44)-C(45)-C(55)	11.99(16)
C(43)-C(44)-C(45)-C(55)	-167.50(10)
C(54)-C(44)-C(45)-C(41)	141.65(11)
C(43)-C(44)-C(45)-C(41)	-37.84(14)
O(41)-C(41)-C(45)-C(55)	-165.10(9)
C(48)-C(41)-C(45)-C(55)	63.43(13)
C(46)-C(41)-C(45)-C(55)	-51.00(13)
O(41)-C(41)-C(45)-C(44)	64.28(11)
C(48)-C(41)-C(45)-C(44)	-67.18(12)
C(46)-C(41)-C(45)-C(44)	178.39(9)
O(41)-C(41)-C(46)-O(46)	51.37(15)
C(48)-C(41)-C(46)-O(46)	173.63(11)
C(45)-C(41)-C(46)-O(46)	-63.41(14)
O(41)-C(41)-C(46)-N(46)	-130.92(9)
C(48)-C(41)-C(46)-N(46)	-8.65(11)
C(45)-C(41)-C(46)-N(46)	114.30(10)
O(46)-C(46)-N(46)-C(47)	-174.70(11)
C(41)-C(46)-N(46)-C(47)	7.60(12)
O(46)-C(46)-N(46)-C(65)	-6.80(18)
C(41)-C(46)-N(46)-C(65)	175.50(9)
C(46)-N(46)-C(47)-C(61)	176.11(11)
C(65)-N(46)-C(47)-C(61)	8.25(17)
C(46)-N(46)-C(47)-C(48)	-3.22(13)

C(65)-N(46)-C(47)-C(48)	-171.07(10)
C(61)-C(47)-C(48)-C(64)	-2.02(17)
N(46)-C(47)-C(48)-C(64)	177.34(10)
C(61)-C(47)-C(48)-C(41)	177.86(10)
N(46)-C(47)-C(48)-C(41)	-2.78(12)
O(41)-C(41)-C(48)-C(64)	-58.50(17)
C(46)-C(41)-C(48)-C(64)	-173.37(12)
C(45)-C(41)-C(48)-C(64)	68.40(16)
O(41)-C(41)-C(48)-C(47)	121.65(10)
C(46)-C(41)-C(48)-C(47)	6.78(11)
C(45)-C(41)-C(48)-C(47)	-111.45(11)
C(42)-O(42)-C(49)-C(50)	-35.35(12)
C(42)-O(43)-C(50)-C(49)	3.90(14)
O(42)-C(49)-C(50)-O(43)	19.30(14)
C(44)-C(43)-C(51)-C(52)	-0.74(18)
C(42)-C(43)-C(51)-C(52)	179.25(11)
C(43)-C(51)-C(52)-C(53)	0.38(19)
C(51)-C(52)-C(53)-C(54)	0.54(19)
C(52)-C(53)-C(54)-C(44)	-1.10(18)
C(43)-C(44)-C(54)-C(53)	0.73(17)
C(45)-C(44)-C(54)-C(53)	-178.75(11)
C(44)-C(45)-C(55)-C(56)	-126.99(11)
C(41)-C(45)-C(55)-C(56)	107.07(12)
C(44)-C(45)-C(55)-C(60)	52.54(15)
C(41)-C(45)-C(55)-C(60)	-73.41(14)
C(60)-C(55)-C(56)-C(57)	-1.65(17)
C(45)-C(55)-C(56)-C(57)	177.90(11)
C(55)-C(56)-C(57)-C(58)	0.33(18)
C(56)-C(57)-C(58)-C(59)	1.10(18)
C(57)-C(58)-C(59)-C(60)	-1.19(18)
C(58)-C(59)-C(60)-C(55)	-0.14(18)
C(56)-C(55)-C(60)-C(59)	1.55(17)
C(45)-C(55)-C(60)-C(59)	-177.98(10)
C(48)-C(47)-C(61)-C(62)	1.02(17)
N(46)-C(47)-C(61)-C(62)	-178.23(11)
C(47)-C(61)-C(62)-C(63)	0.46(18)

C(61)-C(62)-C(63)-C(64)	-0.92(18)
C(47)-C(48)-C(64)-C(63)	1.50(17)
C(41)-C(48)-C(64)-C(63)	-178.34(11)
C(62)-C(63)-C(64)-C(48)	-0.09(18)
C(46)-N(46)-C(65)-C(66)	125.52(11)
C(47)-N(46)-C(65)-C(66)	-68.09(14)
N(46)-C(65)-C(66)-C(71)	-33.79(16)
N(46)-C(65)-C(66)-C(67)	149.68(11)
C(71)-C(66)-C(67)-C(68)	-1.01(17)
C(65)-C(66)-C(67)-C(68)	175.59(11)
C(66)-C(67)-C(68)-C(69)	0.57(18)
C(67)-C(68)-C(69)-C(70)	-0.02(18)
C(68)-C(69)-C(70)-C(71)	-0.08(18)
C(69)-C(70)-C(71)-C(66)	-0.37(18)
C(67)-C(66)-C(71)-C(70)	0.91(17)
C(65)-C(66)-C(71)-C(70)	-175.62(11)

CCDC 2240749

Table 1. Crystal data and structure refinement for $[C_{28}H_{26}N_2O_3]$.				
Identification code	JF3055FMI (JMR-II-1	75)		
Empirical formula	C28 H26 N2 O3			
Formula weight	438.51			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/n			
Unit cell dimensions	a = 7.9089(3) Å	α= 90°.		
	b = 21.0205(9) Å	β=96.0784(16)°.		
	c = 13.3410(6) Å	$\gamma = 90^{\circ}$.		
Volume	2205.46(16) Å ³			

Z	4
Density (calculated)	1.321 Mg/m ³
Absorption coefficient	0.086 mm ⁻¹
F(000)	928
Crystal size	0.401 x 0.302 x 0.150 mm ³
Crystal color and habit	Colorless Block
Diffractometer	Bruker Photon2 CMOS
Theta range for data collection	2.472 to 29.999°.
Index ranges	-11<=h<=11, -29<=k<=29, -18<=l<=18
Reflections collected	24830
Independent reflections	6426 [R(int) = 0.0166]
Observed reflections (I > 2sigma(I))	5835
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9749 and 0.9261
Solution method	SHELXT (Sheldrick, 2014)
Refinement method	SHELXL-2018/3 (Sheldrick, 2018) Full-matrix least-squares on F^2
Data / restraints / parameters	6426 / 0 / 402
Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.0945
R indices (all data)	R1 = 0.0413, wR2 = 0.0978
Largest diff. peak and hole	0.393 and -0.191 e.Å ⁻³

	Х	у	Z	U(eq)
C(1)	5436(1)	3419(1)	2173(1)	13(1)
C(2)	5230(1)	3274(1)	3277(1)	15(1)
C(3)	6171(1)	2807(1)	2683(1)	15(1)
C(4)	7988(1)	2824(1)	3126(1)	16(1)
N(4)	8130(1)	3296(1)	3869(1)	16(1)
O(4)	9144(1)	2496(1)	2900(1)	20(1)
C(5)	6556(1)	3568(1)	4019(1)	16(1)
O(5)	6353(1)	3968(1)	4645(1)	23(1)
C(6)	6581(1)	3959(1)	1942(1)	13(1)
C(7)	8075(1)	3839(1)	1503(1)	16(1)
C(8)	9139(1)	4334(1)	1276(1)	19(1)
C(9)	8713(1)	4955(1)	1498(1)	21(1)
C(10)	7231(1)	5079(1)	1940(1)	19(1)
C(11)	6131(1)	4589(1)	2152(1)	15(1)
C(12)	4492(1)	4734(1)	2601(1)	16(1)
N(12)	3961(1)	5397(1)	2478(1)	15(1)
C(13)	2585(1)	5524(1)	3106(1)	18(1)
C(14)	2028(2)	6211(1)	2992(1)	24(1)
O(14)	1475(1)	6367(1)	1963(1)	23(1)
C(15)	2820(1)	6242(1)	1352(1)	21(1)
C(16)	3362(1)	5549(1)	1428(1)	16(1)
C(17)	3909(1)	3304(1)	1418(1)	14(1)
C(18)	2642(1)	2870(1)	1609(1)	17(1)
C(19)	1302(1)	2739(1)	874(1)	20(1)
C(20)	1191(1)	3040(1)	-56(1)	20(1)
C(21)	2435(1)	3476(1)	-251(1)	20(1)
C(22)	3784(1)	3608(1)	481(1)	17(1)
C(23)	9689(1)	3477(1)	4441(1)	17(1)
C(24)	10231(1)	4105(1)	4424(1)	24(1)
C(25)	11699(2)	4283(1)	5030(1)	29(1)
C(26)	12617(1)	3837(1)	5632(1)	27(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for JF3055FMI. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	12070(1)	3212(1)	5627(1)	24(1)
C(28)	10600(1)	3025(1)	5032(1)	20(1)

C(1)-C(6)	1.5038(12)	C(14)-H(14A)	0.981(15)
C(1)-C(17)	1.5082(12)	C(14)-H(14B)	1.014(16)
C(1)-C(2)	1.5299(12)	O(14)-C(15)	1.4316(12)
C(1)-C(3)	1.5401(12)	C(15)-C(16)	1.5186(14)
C(2)-C(5)	1.4973(13)	C(15)-H(15A)	0.996(15)
C(2)-C(3)	1.5058(13)	C(15)-H(15B)	0.970(14)
C(2)-H(2)	0.956(14)	C(16)-H(16A)	1.015(14)
C(3)-C(4)	1.4953(13)	C(16)-H(16B)	0.996(13)
C(3)-H(3)	0.960(14)	C(17)-C(18)	1.3980(12)
C(4)-O(4)	1.2088(12)	C(17)-C(22)	1.3983(12)
C(4)-N(4)	1.3985(12)	C(18)-C(19)	1.3925(13)
N(4)-C(5)	1.4030(12)	C(18)-H(18)	0.956(15)
N(4)-C(23)	1.4312(12)	C(19)-C(20)	1.3881(14)
C(5)-O(5)	1.2068(12)	C(19)-H(19)	0.975(16)
C(6)-C(7)	1.3962(12)	C(20)-C(21)	1.3892(15)
C(6)-C(11)	1.4067(12)	C(20)-H(20)	0.960(15)
C(7)-C(8)	1.3910(13)	C(21)-C(22)	1.3959(13)
C(7)-H(7)	0.982(14)	C(21)-H(21)	0.958(16)
C(8)-C(9)	1.3884(14)	C(22)-H(22)	0.965(14)
C(8)-H(8)	0.971(14)	C(23)-C(28)	1.3870(13)
C(9)-C(10)	1.3915(14)	C(23)-C(24)	1.3884(14)
C(9)-H(9)	0.967(15)	C(24)-C(25)	1.3939(15)
C(10)-C(11)	1.3961(12)	C(24)-H(24)	1.005(16)
C(10)-H(10)	0.970(15)	C(25)-C(26)	1.3883(17)
C(11)-C(12)	1.5154(12)	C(25)-H(25)	0.956(19)
C(12)-N(12)	1.4609(11)	C(26)-C(27)	1.3842(17)
C(12)-H(12A)	1.001(14)	C(26)-H(26)	0.967(16)
C(12)-H(12B)	0.987(14)	C(27)-C(28)	1.3924(14)
N(12)-C(16)	1.4657(12)	C(27)-H(27)	0.969(16)
N(12)-C(13)	1.4659(12)	C(28)-H(28)	0.976(15)
C(13)-C(14)	1.5132(14)		
C(13)-H(13A)	0.963(14)	C(6)-C(1)-C(17)	116.23(7)
C(13)-H(13B)	1.008(15)	C(6)-C(1)-C(2)	118.38(7)
C(14)-O(14)	1.4342(12)	C(17)-C(1)-C(2)	116.84(7)

Table 3. Bond lengths [Å] and angles [°] for JF3055FMI.

C(6)-C(1)-C(3)	120.89(7)	C(9)-C(10)-C(11)	121.29(9)
C(17)-C(1)-C(3)	113.51(7)	C(9)-C(10)-H(10)	120.8(9)
C(2)-C(1)-C(3)	58.74(6)	C(11)-C(10)-H(10)	117.9(9)
C(5)-C(2)-C(3)	105.47(7)	C(10)-C(11)-C(6)	118.53(8)
C(5)-C(2)-C(1)	114.57(7)	C(10)-C(11)-C(12)	120.63(8)
C(3)-C(2)-C(1)	60.97(6)	C(6)-C(11)-C(12)	120.84(8)
C(5)-C(2)-H(2)	119.3(8)	N(12)-C(12)-C(11)	113.26(7)
C(3)-C(2)-H(2)	123.8(8)	N(12)-C(12)-H(12A)	110.8(8)
C(1)-C(2)-H(2)	119.2(8)	C(11)-C(12)-H(12A)	108.6(8)
C(4)-C(3)-C(2)	106.49(7)	N(12)-C(12)-H(12B)	107.2(8)
C(4)-C(3)-C(1)	117.14(7)	C(11)-C(12)-H(12B)	109.9(8)
C(2)-C(3)-C(1)	60.29(6)	H(12A)-C(12)-H(12B)	106.9(11)
C(4)-C(3)-H(3)	118.7(8)	C(12)-N(12)-C(16)	112.01(7)
C(2)-C(3)-H(3)	123.1(8)	C(12)-N(12)-C(13)	109.32(7)
C(1)-C(3)-H(3)	117.8(8)	C(16)-N(12)-C(13)	108.80(7)
O(4)-C(4)-N(4)	125.14(9)	N(12)-C(13)-C(14)	109.99(8)
O(4)-C(4)-C(3)	127.46(9)	N(12)-C(13)-H(13A)	109.3(8)
N(4)-C(4)-C(3)	107.40(8)	C(14)-C(13)-H(13A)	108.2(8)
C(4)-N(4)-C(5)	112.57(8)	N(12)-C(13)-H(13B)	112.0(8)
C(4)-N(4)-C(23)	124.48(8)	C(14)-C(13)-H(13B)	108.8(8)
C(5)-N(4)-C(23)	122.92(8)	H(13A)-C(13)-H(13B)	108.5(12)
O(5)-C(5)-N(4)	124.52(9)	O(14)-C(14)-C(13)	111.77(8)
O(5)-C(5)-C(2)	127.58(9)	O(14)-C(14)-H(14A)	106.7(9)
N(4)-C(5)-C(2)	107.89(8)	C(13)-C(14)-H(14A)	110.0(9)
C(7)-C(6)-C(11)	119.74(8)	O(14)-C(14)-H(14B)	109.1(9)
C(7)-C(6)-C(1)	120.31(8)	C(13)-C(14)-H(14B)	108.5(9)
C(11)-C(6)-C(1)	119.94(8)	H(14A)-C(14)-H(14B)	110.7(13)
C(8)-C(7)-C(6)	121.03(9)	C(15)-O(14)-C(14)	109.44(8)
C(8)-C(7)-H(7)	119.7(8)	O(14)-C(15)-C(16)	111.14(8)
C(6)-C(7)-H(7)	119.2(8)	O(14)-C(15)-H(15A)	109.6(8)
C(9)-C(8)-C(7)	119.37(9)	C(16)-C(15)-H(15A)	109.8(8)
C(9)-C(8)-H(8)	120.2(8)	O(14)-C(15)-H(15B)	105.7(8)
C(7)-C(8)-H(8)	120.4(8)	C(16)-C(15)-H(15B)	111.4(9)
C(8)-C(9)-C(10)	120.00(9)	H(15A)-C(15)-H(15B)	109.1(12)
C(8)-C(9)-H(9)	120.7(9)	N(12)-C(16)-C(15)	109.42(8)
C(10)-C(9)-H(9)	119.3(9)	N(12)-C(16)-H(16A)	111.5(8)

C(15)-C(16)-H(16A)	110.8(8)	C(21)-C(22)-H(22)	119.0(8)
N(12)-C(16)-H(16B)	108.8(8)	C(17)-C(22)-H(22)	120.3(8)
C(15)-C(16)-H(16B)	110.8(8)	C(28)-C(23)-C(24)	121.19(9)
H(16A)-C(16)-H(16B)	105.6(11)	C(28)-C(23)-N(4)	119.16(9)
C(18)-C(17)-C(22)	118.52(8)	C(24)-C(23)-N(4)	119.61(8)
C(18)-C(17)-C(1)	121.46(8)	C(23)-C(24)-C(25)	119.04(10)
C(22)-C(17)-C(1)	119.93(8)	C(23)-C(24)-H(24)	119.7(9)
C(19)-C(18)-C(17)	120.49(9)	C(25)-C(24)-H(24)	121.3(9)
C(19)-C(18)-H(18)	119.1(9)	C(26)-C(25)-C(24)	120.44(11)
C(17)-C(18)-H(18)	120.4(9)	C(26)-C(25)-H(25)	118.9(11)
C(20)-C(19)-C(18)	120.68(9)	C(24)-C(25)-H(25)	120.7(11)
C(20)-C(19)-H(19)	120.2(9)	C(27)-C(26)-C(25)	119.64(10)
C(18)-C(19)-H(19)	119.1(9)	C(27)-C(26)-H(26)	121.5(10)
C(19)-C(20)-C(21)	119.35(9)	C(25)-C(26)-H(26)	118.9(10)
C(19)-C(20)-H(20)	119.6(9)	C(26)-C(27)-C(28)	120.79(10)
C(21)-C(20)-H(20)	121.0(9)	C(26)-C(27)-H(27)	120.0(9)
C(20)-C(21)-C(22)	120.23(9)	C(28)-C(27)-H(27)	119.2(9)
C(20)-C(21)-H(21)	120.2(9)	C(23)-C(28)-C(27)	118.90(10)
C(22)-C(21)-H(21)	119.6(9)	C(23)-C(28)-H(28)	119.2(9)
C(21)-C(22)-C(17)	120.74(9)	C(27)-C(28)-H(28)	122.0(9)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	14(1)	11(1)	13(1)	1(1)	2(1)	0(1)
C(2)	16(1)	15(1)	13(1)	1(1)	2(1)	0(1)
C(3)	17(1)	12(1)	16(1)	1(1)	1(1)	1(1)
C(4)	20(1)	13(1)	15(1)	3(1)	1(1)	1(1)
N(4)	16(1)	16(1)	16(1)	0(1)	-1(1)	2(1)
O(4)	21(1)	19(1)	21(1)	1(1)	2(1)	6(1)
C(5)	17(1)	18(1)	14(1)	2(1)	1(1)	1(1)
O(5)	23(1)	27(1)	17(1)	-6(1)	0(1)	4(1)
C(6)	14(1)	12(1)	14(1)	1(1)	1(1)	-1(1)
C(7)	16(1)	15(1)	18(1)	0(1)	3(1)	1(1)
C(8)	14(1)	20(1)	25(1)	2(1)	5(1)	0(1)
C(9)	15(1)	18(1)	30(1)	4(1)	2(1)	-2(1)
C(10)	16(1)	13(1)	27(1)	1(1)	2(1)	-1(1)
C(11)	13(1)	13(1)	18(1)	0(1)	2(1)	0(1)
C(12)	16(1)	12(1)	22(1)	0(1)	5(1)	1(1)
N(12)	16(1)	12(1)	16(1)	-1(1)	1(1)	2(1)
C(13)	22(1)	17(1)	15(1)	-1(1)	4(1)	4(1)
C(14)	33(1)	20(1)	19(1)	-2(1)	2(1)	11(1)
O(14)	24(1)	24(1)	21(1)	2(1)	2(1)	10(1)
C(15)	21(1)	20(1)	21(1)	4(1)	1(1)	4(1)
C(16)	16(1)	18(1)	15(1)	0(1)	2(1)	1(1)
C(17)	15(1)	11(1)	14(1)	-1(1)	2(1)	1(1)
C(18)	17(1)	15(1)	19(1)	1(1)	2(1)	-2(1)
C(19)	16(1)	17(1)	26(1)	-3(1)	1(1)	-1(1)
C(20)	18(1)	18(1)	22(1)	-6(1)	-3(1)	4(1)
C(21)	23(1)	18(1)	16(1)	0(1)	-1(1)	4(1)
C(22)	20(1)	15(1)	16(1)	1(1)	2(1)	0(1)
C(23)	16(1)	20(1)	15(1)	2(1)	1(1)	0(1)
C(24)	27(1)	21(1)	24(1)	5(1)	-3(1)	-3(1)
C(25)	28(1)	28(1)	30(1)	2(1)	-2(1)	-10(1)
C(26)	16(1)	41(1)	22(1)	0(1)	0(1)	-5(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for JF3055FMI. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

C(27)	16(1)	35(1)	23(1)	8(1)	1(1)	4(1)
C(28)	17(1)	21(1)	21(1)	6(1)	2(1)	2(1)

	Х	У	Z	U(eq)
H(2)	4117(17)	3199(6)	3471(10)	19(3)
H(3)	5695(17)	2408(7)	2443(10)	22(3)
H(7)	8375(17)	3399(7)	1353(10)	21(3)
H(8)	10175(18)	4246(7)	969(10)	22(3)
H(9)	9439(19)	5306(7)	1348(11)	26(3)
H(10)	6928(19)	5510(7)	2109(11)	28(4)
H(12A)	3584(18)	4441(7)	2289(10)	20(3)
H(12B)	4631(17)	4643(7)	3331(11)	21(3)
H(13A)	2992(17)	5451(7)	3803(11)	22(3)
H(13B)	1569(19)	5241(7)	2921(11)	25(3)
H(14A)	1060(19)	6289(7)	3378(12)	29(4)
H(14B)	3030(20)	6493(8)	3241(12)	34(4)
H(15A)	3809(18)	6521(7)	1567(11)	24(3)
H(15B)	2371(18)	6352(7)	669(11)	24(3)
H(16A)	2394(18)	5259(7)	1156(11)	23(3)
H(16B)	4299(17)	5464(6)	1002(10)	17(3)
H(18)	2692(18)	2655(7)	2243(11)	26(3)
H(19)	440(20)	2432(8)	1023(12)	34(4)
H(20)	248(19)	2950(7)	-549(11)	27(4)
H(21)	2390(20)	3681(7)	-895(12)	32(4)
H(22)	4638(17)	3911(6)	329(10)	19(3)
H(24)	9540(20)	4424(8)	3992(12)	33(4)
H(25)	12100(20)	4713(9)	5034(13)	45(5)
H(26)	13620(20)	3974(8)	6052(12)	34(4)
H(27)	12700(20)	2899(7)	6049(12)	31(4)
H(28)	10189(19)	2587(7)	5023(11)	27(3)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for JF3055FMI.

Table 6. Torsion angles [°] for JF3055FMI.

C(6)-C(1)-C(2)-C(5)	-16.09(11)	C(3)-C(1)-C(6)-C(11)	-135.86(9)
C(17)-C(1)-C(2)-C(5)	-162.86(8)	C(11)-C(6)-C(7)-C(8)	0.65(14)
C(3)-C(1)-C(2)-C(5)	94.68(8)	C(1)-C(6)-C(7)-C(8)	179.39(8)
C(6)-C(1)-C(2)-C(3)	-110.77(9)	C(6)-C(7)-C(8)-C(9)	0.45(15)
C(17)-C(1)-C(2)-C(3)	102.46(8)	C(7)-C(8)-C(9)-C(10)	-0.18(15)
C(5)-C(2)-C(3)-C(4)	2.40(9)	C(8)-C(9)-C(10)-C(11)	-1.21(16)
C(1)-C(2)-C(3)-C(4)	112.26(8)	C(9)-C(10)-C(11)-C(6)	2.28(14)
C(5)-C(2)-C(3)-C(1)	-109.86(8)	C(9)-C(10)-C(11)-C(12)	-177.93(9)
C(6)-C(1)-C(3)-C(4)	12.27(12)	C(7)-C(6)-C(11)-C(10)	-1.98(13)
C(17)-C(1)-C(3)-C(4)	157.54(8)	C(1)-C(6)-C(11)-C(10)	179.27(8)
C(2)-C(1)-C(3)-C(4)	-94.28(9)	C(7)-C(6)-C(11)-C(12)	178.23(8)
C(6)-C(1)-C(3)-C(2)	106.55(9)	C(1)-C(6)-C(11)-C(12)	-0.52(13)
C(17)-C(1)-C(3)-C(2)	-108.18(8)	C(10)-C(11)-C(12)-N(12)	18.33(12)
C(2)-C(3)-C(4)-O(4)	175.81(9)	C(6)-C(11)-C(12)-N(12)	-161.88(8)
C(1)-C(3)-C(4)-O(4)	-119.60(10)	C(11)-C(12)-N(12)-C(16)	70.90(10)
C(2)-C(3)-C(4)-N(4)	-4.02(9)	C(11)-C(12)-N(12)-C(13)	-168.43(8)
C(1)-C(3)-C(4)-N(4)	60.57(10)	C(12)-N(12)-C(13)-C(14)	179.65(8)
O(4)-C(4)-N(4)-C(5)	-175.56(9)	C(16)-N(12)-C(13)-C(14)	-57.75(10)
C(3)-C(4)-N(4)-C(5)	4.27(10)	N(12)-C(13)-C(14)-O(14)	58.01(12)
O(4)-C(4)-N(4)-C(23)	2.86(15)	C(13)-C(14)-O(14)-C(15)	-57.65(12)
C(3)-C(4)-N(4)-C(23)	-177.31(8)	C(14)-O(14)-C(15)-C(16)	58.55(11)
C(4)-N(4)-C(5)-O(5)	177.22(9)	C(12)-N(12)-C(16)-C(15)	179.62(7)
C(23)-N(4)-C(5)-O(5)	-1.23(15)	C(13)-N(12)-C(16)-C(15)	58.65(10)
C(4)-N(4)-C(5)-C(2)	-2.72(10)	O(14)-C(15)-C(16)-N(12)	-60.03(10)
C(23)-N(4)-C(5)-C(2)	178.83(8)	C(6)-C(1)-C(17)-C(18)	-171.94(8)
C(3)-C(2)-C(5)-O(5)	-179.91(9)	C(2)-C(1)-C(17)-C(18)	-24.46(12)
C(1)-C(2)-C(5)-O(5)	115.38(11)	C(3)-C(1)-C(17)-C(18)	41.08(11)
C(3)-C(2)-C(5)-N(4)	0.03(10)	C(6)-C(1)-C(17)-C(22)	11.56(12)
C(1)-C(2)-C(5)-N(4)	-64.68(10)	C(2)-C(1)-C(17)-C(22)	159.04(8)
C(17)-C(1)-C(6)-C(7)	-98.98(10)	C(3)-C(1)-C(17)-C(22)	-135.42(9)
C(2)-C(1)-C(6)-C(7)	114.05(10)	C(22)-C(17)-C(18)-C(19)	0.90(14)
C(3)-C(1)-C(6)-C(7)	45.40(12)	C(1)-C(17)-C(18)-C(19)	-175.65(8)
C(17)-C(1)-C(6)-C(11)	79.76(10)	C(17)-C(18)-C(19)-C(20)	-0.61(14)
C(2)-C(1)-C(6)-C(11)	-67.21(11)	C(18)-C(19)-C(20)-C(21)	0.10(14)

C(19)-C(20)-C(21)-C(22)	0.10(14)
C(20)-C(21)-C(22)-C(17)	0.21(14)
C(18)-C(17)-C(22)-C(21)	-0.70(14)
C(1)-C(17)-C(22)-C(21)	175.90(8)
C(4)-N(4)-C(23)-C(28)	-59.92(13)
C(5)-N(4)-C(23)-C(28)	118.35(10)
C(4)-N(4)-C(23)-C(24)	122.43(11)
C(5)-N(4)-C(23)-C(24)	-59.30(13)
C(28)-C(23)-C(24)-C(25)	-1.38(16)
N(4)-C(23)-C(24)-C(25)	176.22(10)
C(23)-C(24)-C(25)-C(26)	0.85(18)
C(24)-C(25)-C(26)-C(27)	0.13(18)
C(25)-C(26)-C(27)-C(28)	-0.61(17)
C(24)-C(23)-C(28)-C(27)	0.91(15)
N(4)-C(23)-C(28)-C(27)	-176.71(9)
C(26)-C(27)-C(28)-C(23)	0.10(16)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(12)-H(12B)O(5)	0.987(14)	2.537(14)	3.3684(12)	141.8(11)
C(13)-H(13A)O(5)#1	0.963(14)	2.414(14)	3.2131(12)	140.1(11)

Table 7. Hydrogen bonds for JF3055FMI [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

Copy of NMR Spectra

C13CPD CDCl3 /home/nmrdata/Shaw amines19 6 100.53 MHz

f1 (ppm)

