Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction for construction of 5oxazoylmethyl α-silyl alcohol

Xinpeng Sang, Yuhao Mo, Shiya Li, Xiaohua Liu, Weidi Cao* and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

*E-mail: wdcao@scu.edu.cn; xmfeng@scu.edu.cn;

Table of Contents

1. General information	2
2. Synthesis of the substrates	2
3. General procedures for the catalytic asymmetric reaction	6
4. Scope limitation	8
5. Optimization of the reaction conditions	8
6. Gram-scale synthesis	13
7. Control experiments and mechanistic studies	13
8. X-ray crystal structure	17
9. The analytical and spectral characterization data for the products	19
10. References	65

1. General information

¹H NMR spectra were recorded at 400 MHz or 600 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, m = multiple), coupling constants (Hz), integration. ¹³C NMR data were collected at 101 MHz with complete proton decoupling. ¹⁹F NMR spectra were collected on commercial instruments (377 MHz or 565 MHz) with complete proton decoupling. Melting points (Mp) were determined using OptiMelt automated melting point system. Enantiomeric excesses (ee) were determined by chiral HPLC analysis by using the corresponding commercial chiralpak or chiralcel column as stated in the experimental procedures at 25 °C, and UPC² at 35 °C with UV detector at 254 nm or 210 nm. Optical rotations were reported as follows: $[\alpha]^{T}_{D}$ (c: g/100 mL, in solvent). High resolution mass spectra (HRMS) analyses were recorded on a Thermo Scientific LTQ Orbitrap XL with positive ion mode and methanol were used to dissolve the sample. UV-vis absorbance spectra were recorded on SHIMADZU UV-2600 UV-Vis spectrophotometer in a 10.0 mm quartz cuvette. IR spectra were recorded on Pierkin Elmer 100 FT/IR spectrometer, and the wave numbers of the absorption peaks are given in cm⁻¹. Solvents were dried and distilled prior to use according to the standard methods. Unless noted, other commercially available reagents were used without further purification. The chiral N, N'-dioxide ligands were synthesized by the same procedure in the literature¹.

2. Synthesis of the substrates

2.1 General procedures for the preparation of silylglyoxylate A1-A12

Silylglyoxylate A1, A3, A7-12 and were known compounds and synthesized according to the reported procedures². Silylglyoxylate A2, A4, A5, A6 were synthesized according to the following procedure:

$$Ar^{Br} \xrightarrow{Mg/l_2} Ar^{MgBr} \xrightarrow{Me_2SiCl_2} Ar^{Si}Cl \xrightarrow{AgOTf} Ar^{Si}OTf$$

A solution of substituted bromobenzene (20 mmol, 1.0 equiv.) in THF (12 mL) was added slowly to a suspension of magnesium (20 mmol, 1.0 equiv.) in THF (8 ml) activated by I_2 (One grain) under N_2 atmosphere. The mixture was reacted at room temperature for 2 hours until the magnesium strips disappeared, and the reaction process would be violently exothermic. Then the mixture was cooled to 0 °C and added to a solution of Me₂SiCl₂ in Et₂O (5 mL), the mixture was stirred at r.t. for 24 h. The solvent was evaporated and added hexane, filtered, concentrated and purified by vacuum distillation. A solution of chlorodimethylarylsilane³ (12 mmol, 1.2 equiv.) in CH₂Cl₂ (10 mL) was added to a suspension of AgOTf (12 mmol, 1.2 equiv.) in CH₂Cl₂ (3 mL). The resulting mixture was left stirring at room temperature in the dark for 24 h. The AgCl precipitate was removed by filtration and the solvent was removed in vacuo and used without purification⁴.

Under a nitrogen atmosphere, to a solution of diazoacetate⁵ (10 mmol, 1.0 equiv.) and ${}^{1}P_{2}NEt$ (14 mmol, 1.4 equiv.) was added Et₂O (15 mL) under N₂. This solution was cooled to -78 °C and ArMe₂SiOTf (13 mmol, 1.3 equiv.) in DCM (10 mL) was added slowly via syringe over the course of 20 min. The resultant solution was stirred at -60 °C for 36 h and the ammonium salts were removed by filtration. The filtrate was concentrated in vacuo to afford the crude silyl diazoacetate. Oxone[®] (92 g, 150 mmol, 15.0 equiv.) was added in portions to a stirred solution of NaHCO₃ (50.4 g, 600 mmol, 60.0 equiv.) in H₂O/acetone (300 ml, 1.5:1) at 0 °C. After 20 min, a solution of the crude silyl diazoacetate in CH₂Cl₂ (40 mL) was added slowly over 30 min via syringe. Once addition was complete, the reaction was warmed to room temperature and stirring was continued for an additional 15 min (bright yellow solution). The organic phase was decanted into a separatory funnel and was washed with H₂O and dried (Na₂SO₄). Concentration of the organic phase by rotary evaporation afforded the crude silylglyoxylate which was purified by flash chromatography using the specified solvent system (PE/Et₂O = 40 : 1).

cyclohexyl 2-(dimethyl(phenyl)silyl)-2-oxoacetate (A2)

Bright yellow liquid; 14% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.44 – 7.36 (m, 3H), 4.91 – 4.71 (m, 1H), 1.85 – 1.77 (m, 2H), 1.74 – 1.61 (m, 3H), 1.57 – 1.49 (m, 1H), 1.45 – 1.30 (m, 4H), 0.59 (s, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 161.4, 134.5, 133.0, 130.4, 128.3, 75.1, 31.5, 25.3, 23.9, -4.4.
HRMS (ESI+) *m*/*z* calcd for C₁₆H₂₄O₃Si [M+H]⁺: 291.1411, found: 291.1419.
IR (neat): 2938, 1711, 1252, 1116, 1037, 1009, 833, 789, 699 cm⁻¹.

Tert-butyl 2-((2-dimethylphenyl) dimethylsilyl)-2-oxoacetate (A4)

Bright yellow liquid; 17% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 1H), 7.37 – 7.29 (m, 1H), 7.25 – 7.15 (m, 2H), 2.30 (s, 3H), 1.32 (s, 9H), 0.58 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 161.5, 143.9, 135.1, 132.6, 130.5, 130.1, 125.5, 83.7, 27.8, 23.1, -3.4.

HRMS (ESI+) *m/z* calcd for C₁₅H₂₂O₃Si [M+H]⁺: 279.1411, found: 279.1410.

IR (neat): 2963, 1711, 1371, 1257, 1024, 792 cm⁻¹.

Tert-butyl 2-((3-methoxyphenyl) dimethylsilyl)-2-oxoacetate (A5)

Bright yellow liquid; 20% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 1H), 7.16 – 7.11 (m, 1H), 7.10 – 7.06 (m, 1H), 6.98 – 6.91 (m, 1H), 3.8 (s, 3H), 1.4 (s, 9H), 0.6 (s, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 161.6, 159.3, 134.7, 129.5, 126.7, 119.8, 115.7, 83.8, 55.3, 28.0, -4.4.

HRMS (ESI+) *m/z* calcd for C₁₅H₂₂O₄Si [M+H]⁺: 295.1360, found: 295.1356.

IR (neat): 2978, 1709, 1369, 1283, 1245, 1041, 782 cm⁻¹.

Tert-butyl 2-((3,5-dimethylphenyl) dimethylsilyl)-2-oxoacetate (A6)

Bright yellow liquid; 23% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 2H), 7.08 – 7.02 (m, 1H), 2.33 – 2.29 (m, 6H), 1.43 (s, 9H), 0.56 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 161.8, 137.6, 132.8, 132.1, 132.1, 83.7, 28.0, 21.5, -4.3.

HRMS (ESI+) m/z calcd for C₁₆H₂₄O₃Si [M+H]⁺: 293.1567, found: 293.1569.

IR (neat): 2977, 1739, 1369, 1247, 1038, 787 cm⁻¹.

2.2 General procedures for the preparation of propargyl amides

Propargyl amides **B1-B10**^{6a-c}, **B11**^{6g}, **B12-B14**^{6a-c}, **B15-B22**^{6f}, **B23**^{6e}, **B24**^{6d}, **B28**^{6h}, **B29**^{6c}, **B30**^{6d}, **B31**^{6d}, **B32**^{6h} were prepared according to the reported literature.

General procedure for propargyl amide synthesis via EDC coupling: To a solution of the appropriate carboxylic acid (5.0 mmol, 1.0 equiv.) in CH_2Cl_2 (15 mL) was added EDC hydrochloride (1.15 g, 6.0 mmol, 1.2 equiv.) and stirred for 2 min, then HOBt (0.74 g, 5.5 mmol, 1.1 equiv.) was added and stirred for a further 2 min. Propargylamine (0.35 mL, 5.5 mmol, 1.1 equiv.) was then added and the mixture stirred at r.t. for 24 h (monitored by TLC). The mixture was diluted with CH_2Cl_2 (10 mL), washed with saturated aqueous Na_2CO_3 solution (20 mL), 1 N aqueous HCl solution (20 mL), saturated NaCl solution in sequence and dried by anhydrous Na_2SO_4 . The solvent was evaporated under reduced

pressure after filtration. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give pure product.

4-(N, N-dipropylsulfamoyl)-N-(prop-2-yn-1-yl) benzamide (B25)

51% yield, white solid; mp: 90-95 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.84 (m, 2H), 7.78 – 7.67 (m, 2H), 7.51 (s, 1H), 4.15 (dd, *J* = 5.2, 2.4 Hz, 2H), 3.08 – 2.91 (m, 4H), 2.20 (t, *J* = 2.4 Hz, 1H), 1.46 (m, 4H), 0.78 (t, *J* = 7.2 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 166.1, 142.7, 137.3, 128.1, 127.1, 79.3, 71.6, 49.9, 29.7, 21.9, 11.1.
HRMS (ESI+) *m*/*z* calcd for C₁₆H₂₂N₂O₃S [M+H]⁺: 323.1424, found: 323.1423.
IR (neat): 3289, 2967, 2876, 1649, 1533, 1486, 1465, 1334, 1146, 1089, 990, 856, 797, 740, 603 cm⁻¹.

3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-N-(prop-2-yn-1-yl)benzamide (B26)

67% yield, white solid; mp: 169-173 °C.

¹**H NMR** (400 MHz, DMSO- d_6) δ 9.26 (t, J = 5.6 Hz, 1H), 8.59 (m, 1H), 8.32 – 8.18 (m, 2H), 8.16 – 8.07 (m, 1H), 7.86 – 7.77 (m, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.62 – 7.44 (m, 2H), 4.22 – 4.11 (m, 2H), 3.42 (s, 1H), 3.21 (s, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 173.1 (d, *J* = 4.3 Hz), 168.0, 165.6, 161.7, 159.1, 136.2 (d, *J* = 8.9 Hz), 135.2, 131.3, 130.8, 130.3, 130.0, 126.6 (d, *J* = 8.8 Hz), 125.9 (d, *J* = 3.4 Hz), 117.7 (d, *J* = 20.6 Hz), 112.1 (d, *J* = 11.4 Hz) , 81.6, 73.5, 29.1.

¹⁹**F NMR** (377 MHz, DMSO-*d*₆) δ -109.31.

HRMS (ESI+) *m/z* calcd for C₁₈H₁₂FN₃O₂ [M+H]⁺: 322.0986, found: 322.0982.

IR (neat): 3300, 1647, 1621, 1591, 1536, 1517, 1468, 1369, 1348, 1294, 1268, 1227, 1165, 1110, 920, 824, 749, 722, 682 cm⁻¹.

3-methyl-4-oxo-2-phenyl-N-(prop-2-yn-1-yl)-4H-chromene-8-carboxamide (B27)

35% yield, white solid; mp: 200-204 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (dd, J = 7.6, 2.0 Hz, 1H), 8.38 (dd, J = 7.6, 1.6 Hz, 1H), 7.75 – 7.64 (m, 2H), 7.62 – 7.50 (m, 4H), 7.47 (t, J = 8.0 Hz, 1H), 4.25 (dd, J = 4.8, 2.4 Hz, 2H), 2.21 (t, J = 2.4 Hz, 1H), 2.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.0, 163.1, 160.1, 153.3, 136.4, 132.6, 130.7, 130.1, 129.0, 128.9, 124.8, 122.7, 122.1, 118.1, 79.0, 72.1, 29.9, 11.7.

HRMS (ESI+) m/z calcd for C₂₀H₁₅NO₃ [M+H]⁺ : 318.1125, found: 318.1119.

IR (neat): 3239, 2360, 1626, 1540, 1478, 1439, 1389, 1301, 1234, 1132, 1076, 761, 697 cm⁻¹.

5-(2,5-dimethylphenoxy)-2,2-dimethyl-N-(prop-2-yn-1-yl)pentanamide (B33)

64% yield, white solid; mp: 55-60 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (d, *J* = 7.6 Hz, 1H), 6.69 – 6.64 (m, 1H), 6.63 – 6.59 (m, 1H), 5.91 (s, 1H), 4.05 (dd, *J* = 5.2, 2.4 Hz, 2H), 3.92 (t, *J* = 5.6 Hz, 2H), 2.31 (s, 3H), 2.23 (t, *J* = 2.8 Hz, 1H), 2.19 (s, 3H), 1.80 – 1.67 (m, 4H), 1.24 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 177.2, 156.9, 136.5, 130.3, 123.5, 120.8, 112.1, 71.6, 67.9, 41.9, 37.5, 29.4, 25.4, 25.1, 21.4, 15.9.

HRMS (ESI+) *m/z* calcd for C₁₈H₂₅NO₂ [M+H]⁺:288.1958, found: 288.1956.

IR (neat): 3307, 2951, 1643, 1583, 1509, 1475, 1415, 1390, 1262, 1156, 1129, 1040, 804, 750, 651, 448 cm⁻¹.

3. General procedures for the catalytic asymmetric reaction

3.1 General procedures for the preparation of racemic products

Representative experimental procedure for the reaction of silylglyoxylate A and propargyl amides B.

Procedure A: IPrAuCl (3.1 mg, 5 mol%), AgNTf₂ (1.9 mg, 5 mol%), Co(OTf)₂ (3.5 mg, 10 mol%), silylglyoxylate **A** (0.10 mmol) and propargyl amides **B** (0.10 mmol) are successively added into a dry catalytic tube. CH_2Cl_2 (1 mL) was added and the mixture was stirred at 35 °C until the solution becomes to be colorless. After the silylglyoxylate **A** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **C**.

Procedure B: IPrAuCl (3.1 mg, 5 mol%), AgNTf₂ (1.9 mg, 5mol%), Co(OTf)₂ (3.5 mg, 10 mol%), *race*-L₃-PiEt₂ (5.9 mg, 10 mol%), silylglyoxylate A (0.10 mmol) and propargyl amides B (0.10 mmol) are successively added into a dry catalytic tube. CH₂Cl₂ (1 mL) was added and the mixture was stirred at 35 °C until the solution becomes to be colorless. After the silylglyoxylate A was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product C.

The racemic products C25 were prepared with procedure B.

3.2 General procedures for the catalytic asymmetric reaction

Representative experimental procedure for the reaction of silylglyoxylate A1 and propargyl amides B1.

$$\begin{array}{c|c} O \\ TBuO \\ O \\ O \\ O \\ O \\ O \\ A1 \\ B1 \\ Calculate (1:1, 5 \text{ mol}\%) \\ Co(OTf)_2/L_3 - PiPr_2 \\ (1:1, 10 \text{ mol}\%) \\ CH_2Cl_2, 35^\circ C \\ C1 \\ \end{array}$$

Procedure for the synthesis of the adduct C: Under an atmosphere of nitrogen, IPrAuCl (3.1 mg, 5 mol%), AgNTf₂ (1.9 mg, 5 mol%), Co(OTf)₂ (3.5 mg, 10 mol%), L₃-PiPr₂ (6.5 mg, 10 mol%), silylglyoxylate A1 (0.10 mmol) and propargyl amides B1 (0.12 mmol) were stirred in DCM (1 mL) at 35 °C. The mixture was stirred until A1 disappeared (bright orange faded, or TLC monitor). the residue was purified by column chromatography (petroleum ether:ethyl acetate: = 8.5 :1) on silica gel to afford the product C1.

4. Scope limitation

Figure S1. Unsuccessful substrate scope of silyl glyoxylate.

Figure S2. Unsuccessful substrate scope of N-propargylamides.

5. Optimization of the reaction conditions

Table S1. The screening of metal salts

5	Al(OTf) ₃	26	2
6	In(OTf) ₃	18	10
7	Fe(OTf) ₂	25	39
8	Zn(OTf) ₂	65	96
9	Ni(OTf) ₂	74	98
10	Co(OTf) ₂	84	99

^{*a*} Unless otherwise noted, all reactions were performed with metal salt/L₃-PrEt₃ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase. N.D. = no detected.

Table S2. The screening of counterbalance ions in cobalt metal salts

Entry ^a	Metal salts	C1 yield (%) ^b	C1 ee (%) ^c
1	Co(OTf) ₂	84	99
2	Co(NTf ₂) ₂	82	99
3	Co(BF ₄) ₂ ·6H ₂ O	79	98
4	Co(ClO ₄) ₂ ·6H ₂ O	68	97
5	Co(acac) ₂	N.D.	-
6	CoCl ₂	N.D.	-

^{*a*} Unless otherwise noted, all reactions were performed with metal salt/L₃-PrEt₃ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase. N.D. = no detected.

^t BuO SiMe ₂ Ph +	O IPrAuCl/AgNTf2 Ph (1:1, 5 mol%) Co(OTf)2/L3-PrEt3 (1:1, 10 mol%) B1 Solvent, 35°C	Ph N HO SiMe ₂ Ph C1	$O = \underbrace{\overset{+}{\overset{+}}_{N-H}}_{N-H} \underbrace{\overset{+}{\overset{+}}_{H-N}}_{H-N} O$ $Ar L_3-PrEt_3 Ar$ $Ar = 2,4,6-Et_3C_6H_2$
Entry ^a	Solvent	Yield $(\%)^b$	ee (%) ^c
1	THF	19	72
2	CH ₃ CN	44	76
3	Toluene	31	84
4	EA	47	93
5	Et ₂ O	56	93
6	CHCl ₃	73	99
7	CH ₂ ClCH ₂ Cl	74	99

Table S3. The screening of solvent

8	CH ₂ Cl ₂	84	99

^{*a*} Unless otherwise noted, all reactions were performed with Co(OTf)₂/L₃-PrEt₃ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in solvent (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

Entry ^a	Ligand	Yield $(\%)^b$	ee (%) ^c
1	L ₃ -PrPr ₂	73	97
2	L ₃ -PrEt ₃	84	99
3	L ₃ -RaPr ₂	68	98
4	L ₃ -PiPr ₂	88	99
5	L ₃ -PiAd	13	20
6	L ₃ -PiCHPh ₂	38	83
7	L ₃ -PiMe ₂	74	99
8	L ₃ -PiEt ₂ Me	77	99
9	L ₃ -PiEt ₃	85	99
9	L_3 -Pi(O ⁱ Pr) ₂	64	96
10^d	CPA-1	N.D.	-
11^{d}	CPA-2	N.D.	-
12	tBu-Box	39	4
13	<i>i</i> Pr-PyBox	14	0

14	BINOL	56	0

^{*a*} Unless otherwise noted, all reactions were performed with Co(OTf)₂/**Ligand** (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), **A1** (0.10 mmol), **B1** (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase. ^{*d*} without Co(OTf)₂.

^t BuO SiMe ₂ Ph +	$\begin{array}{c c} & & & \\ & & \\ & & \\ Ph & & \\ & H & \\ & $	Ph N HO SiMe ₂ Ph C1	$O = \underbrace{}{} \underbrace{}{} \underbrace{}{} \underbrace{}{}$
Entry ^a	Additives	Yield $(\%)^b$	ee (%) ^c
1	-	88	99
2	3Å M.S. (20 mg)	75	99
3	4Å M.S. (20 mg)	84	99
4	5Å M.S. (20 mg)	83	99
5	Et ₃ N (30 mol%)	N.D.	-
6	K ₂ CO ₃ (10 mol%)	N.D.	-
7	PhCO ₂ H (10 mol%)	83	99
8	NaBAr ^F ₄ (10 mol%)	83	98

Table S5. The screening of additives

^{*a*} Unless otherwise noted, all reactions were performed with $Co(OTf)_2/L_3$ -**PiPr**₂ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), **A1** (0.10 mmol), **B1** (0.12 mmol) and additives in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

^t BuO SiMe ₂ Ph +	$\begin{array}{c c} & & & & \\ & & & \\ Ph & N \\ H \\ B1 \\ \end{array} \begin{array}{c} & & & \\ $	Ph N HO SiMe ₂ Ph C1	$ \begin{array}{c} $
Entry ^a	B1/A1	Yield $(\%)^b$	ee (%) ^c
1	3.0	78	99
2	2.0	83	99
3	1.5	86	99
4	1.2	88	99
5	1.0	80	99

Table S6. The screening of the ratio of substrates

^{*a*} Unless otherwise noted, all reactions were performed with $Co(OTf)_2/L_3$ -**PiPr**₂ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), **A1** (0.10 mmol), **B1** (x mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

Table S7. The screening of temperature

^{*a*} Unless otherwise noted, all reactions were performed with Co(OTf)₂/L₃-PiPr₂ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at T °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

^t BuO SiMe ₂ Ph A1	+ Ph H H H $T-acid (5 mol%)$ Co(OTf) ₂ /L ₃ -PiPr ₂ (1:1, 10 mol%) CH ₂ Cl ₂ , 35 °C	Ph- N-HO SiMe ₂ Ph C1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
Entry ^a	π-acid	Yield (%) ^{b}	ee (%) ^c
1	AuCl·PPh ₃	20	99
2	IPrAuCl	48	99
3	AuCl ₃	61	98
4	AuCl(CH ₃ SCH ₃)/AgNTf ₂	8	99
5	AuCl·PPh ₃ /AgNTf ₂	84	99
6	Me4 ^t BuXPhOSAuCl/AgNTf2	86	99
7	IPrAuCl/AgNTf ₂	88	99
8	IPrAuCl/AgNO ₃	42	92
9	IPrAuCl/AgOA _C	73	99
10	IPrAuCl/AgBF ₄	73	99
11	IPrAuCl/AgOTf	84	99
12	Cyclohexyl JohnPhos AuNTf ₂	63	99

Table S8. The screening of π -acid

^{*a*} Unless otherwise noted, all reactions were performed with Co(OTf)₂/ L_3 -PiPr₂(1:1, 10 mol%), π -acid (5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

^t BuO SiMe ₂ Ph A1	+ 0 Ph N H B1	IPrAuCl/AgNTf ₂ (1:1, 5 mol%) Co(OTf) ₂ /L ₃ -PiPr ₂ (1:1, x mol%) CH ₂ Cl ₂ , 35 °C	O [°] Bu HO [°] SiMe ₂ Ph C1 L ₃	$\vec{N} - \vec{H}$ PiPr₂: Ar = 2,6- ^{<i>i</i>} Pr ₂ C ₆ H ₃
Entry ^a	Х	Reaction time (h)	Yield $(\%)^b$	ee (%) ^c
1	1.0	18	75	90
2	2.0	18	77	93
3	5.0	8	81	99
4	10.0	5	88	99

Table S9. Screening of the the amount of the L_3 -PiPr₂/Co(OTf)₂

^{*a*} Unless otherwise noted, all reactions were performed with $Co(OTf)_2/L_3$ -**PiPr**₂(1:1, x mol%), IPrAuCl/AgNTf₂(1:1, 5 mol%), **A1** (0.10 mmol), **B1** (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

6. Gram-scale synthesis

A 100 mL of dry round-bottom flask was charged with the IPrAuCl (77.6 mg, 5 mol%), AgNTf₂ (48.5 mg, 5 mol%), Co(OTf)₂ (89.3 mg, 10 mol%), *N,N'*-dioxide ligand L₃-PiPr₂ (162.5 mg, 10 mol%) and silylglyoxylate A1 (660.0 mg, 2.50 mmol, 1.0 equiv.) under nitrogen atmosphere. DCM (25 mL) was added and the mixture were stirred at 35 °C for 5 h. Then, B9 (657.0 mg, 3.0 mmol, 1.2 equiv.) was added. The mixture was stirred at 35 °C for 15 h (detection by TLC). The residue was purified by column chromatography (petroleum ether: ethyl acetate: = 4 :1) on silica gel to afford the desired product C20 in 88% yield (1.06 g) with 98% ee as a white solid.

7. Control experiments and mechanistic studies

7.1 Control experiments

Table S10. Control experiments

Entry ^a	variation from the standard conditions	Yield $(\%)^b$	ee (%) ^c
1	-	88	99
2	No Co(OTf) ₂ /L ₃ -PiPr ₂	7	0
3	No AgNTf ₂	48	99
4	No IPrAuCl	3	99
5	No Co(OTf) ₂	trace	0
6	No L ₃ -PiPr ₂	70	0
7	No IPrAuCl/AgNTf ₂ and Zn(OTf) ₂ instead of Co(OTf) ₂	48	94

^{*a*} Unless otherwise noted, all reactions were performed with Co(OTf)₂/L₃-PiPr₂ (1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), **A1** (0.10 mmol), **B1** (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product. ^{*c*} ee values were determined by UPC² on a chiral stationary phase.

Table S11

Entry ^a	conditions	Yield of C1' ^b
1	In(OTf) ₃ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
2	Sc(OTf) ₃ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
3	Co(OTf) ₂ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
4	IPrAuCl/AgNTf ₂ (1:1, 5 mol%), In(OTf) ₃ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
5	IPrAuCl/AgNTf ₂ (1:1, 5 mol%), Sc(OTf) ₃ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
6	IPrAuCl/AgNTf ₂ (1:1, 5 mol%), Co(OTf) ₂ /L ₃ -PrEt ₃ (1:1, 10 mol%)	0
7	$IPrAuCl/AgNTf_2 (1:1, 5 mol\%), In(OTf)_3/L_3 - PrEt_3 (1:1, 10 mol\%) + 10 uL H_2O$	0
8	IPrAuCl/AgNTf ₂ (1:1, 5 mol%), Sc(OTf) ₃ /L ₃ -PrEt ₃ (1:1, 10 mol%) + 10 uL H ₂ O	0
9	IPrAuCl/AgNTf ₂ (1:1, 5 mol%), Co(OTf) ₂ /L ₃ -PrEt ₃ (1:1, 10 mol%) + 10 uL H ₂ O	0

^{*a*} Unless otherwise noted, all reactions were performed in CH_2Cl_2 (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product.

Table S12

3

46

^{*a*} Unless otherwise noted, all reactions were performed with Metal salts / L_3 -PrEt₃(1:1, 10 mol%), IPrAuCl/AgNTf₂ (1:1, 5 mol%), A1 (0.10 mmol), B1 (0.12 mmol) in CH₂Cl₂ (1.0 mL) under N₂ atmosphere at 35 °C for 5 h. ^{*b*} Yield of isolated product.

To make clear the α -proton source of C1', the deuterium labeling experiment was carried out with addition of D₂O. Under an atmosphere of nitrogen, IPrAuCl (3.1 mg, 5 mol%), AgNTf₂ (1.9 mg, 5 mol%), Sc(OTf)₃ (4.9 mg, 10 mol%), L₃-PrEt₃ (6.2 mg, 10 mol%), silylglyoxylate A1 (0.10 mmol) and propargyl amides B1 (0.12 mmol) were stirred in DCM (1 mL) and D₂O (10 µL) at 35 °C for 5 h. C1' was observed with 63% deuterated ratio, suggesting the α -proton of C1' might come from water. Based on the above control experimental results, a possible mechanism for the production of C1' was also proposed in Figure S3.

Figure S3. The two competing reaction processes

7.2 Mechanistic studies

7.2.1 UV-Vis spectroscopy

General: $Co(OTf)_2 (0.01 \text{ mmol})$, L_3 -PiPr₂ (0.01 mmol), $Co(OTf)_2+L_3$ -PiPr₂ (1:1, 0.01 mmol), A1 (0.01 mmol), $Co(OTf)_2+A1$ (1:1, 0.01 mmol), $Co(OTf)_2+L_3$ -PiPr₂+A1 (1:1:1, 0.01 mmol) were dissolved in CH_2Cl_2 (1.0 mL), separately. The above solution (0.01 M) stirred at room temperature for 3 hours, then diluted to 0.002 M and analyzed by UV-Vis spectroscopy using a 10.0 mm quartz cuvette. (The concentration shown in below picture is 0.002 M).

Figure S4. UV-Vis spectroscopy of the catalytical components

7.2.2 The relationship of the ee values of product C1 and L₃-PiPr₂

Combined certain amount of optically pure (*S*)-L₃-PiPr₂ with pure (*R*)-L₃-PiPr₂ led to L₃-PiPr₂ with specified ee values. Six different control reactions were performed in parallel by using L₃-PiPr₂ with 0% ee, 20% ee, 40% ee, 60% ee, 80% ee, and 100% ee. Under an atmosphere of nitrogen, the IPrAuCl (3.1 mg, 5 mol%), AgNTf₂ (1.9 mg, 5mol%), Co(OTf)₂ (3.5 mg, 10 mol%), L₃-PiPr₂ (6.5 mg, 10 mol%), silylglyoxylate A1 (0.10 mmol) and propargyl amides B1 (0.12 mmol) were stirred in DCM (1 mL) at 35 °C for 5 h. The residue was purified by column chromatography (petroleum ether : ethyl acetate = 8.5:1) on silica gel to afford the product C1. The ee values were determined by UPC² on a chiral stationary phase.

Figure S5. The relationship of the ee values of product C1 and L₃-PiPr₂

7.2.3 The operando IR experiment

General: The reaction was monitored by the operando IR spectrometer using a Mettler Toledo ReactIRTM. First, the infrared absorption spectra of each reactants **A1** and **B1**, intermediate **D** and product **C1** in CH₂Cl₂ (1.0 mL) were collected. The following figure shows the absorption of each participant minus the absorption of solvent. Peak at 1516 cm⁻¹ was identified as the characteristic absorption of reactant **B1**, 1114 cm⁻¹ for **A1**, 1263 cm⁻¹ for **D**, and 955 cm⁻¹ for **C1**.

Then, an oven-dried flask with three necks was equipped with a stir bar and attached to a React IR probe. And then the system was charged with 5.0 mL of a stock solution containing the 0.025 mmol (IPrAuCl /AgNTf₂, 1:1, 5 mol%), 0.05 mmol catalyst (Co(OTf)₂/L₃-PiPr₂,1:1, 10 mol%), 0.6 mmol propargyl amides (**B1**) and 0.5 mmol silylglyoxylate (**A1**) in CH₂Cl₂. The reaction was heated to 35 °C using a water bath. Then staring to collect data. The React IR spectra were recorded over the process of the reaction. The reaction progress is monitored by the absorbance of **D** increased and then decreased at 1263 cm⁻¹.

Figure S6. The operando IR experiment

8. X-ray crystal structure

The crystal of product C20 was obtained in the solvents of PE and CH_2Cl_2 . CCDC: 2207796 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Figure S7. X-ray crystal structure of product C20

Crystallographic Data for C26 H33 N O6 Si.

Formula	C26 H33 N O6 Si
Formula mass (amu)	483.62
Space group	C 2 2 21
<i>a</i> (Å)	12.5846(4)
<i>b</i> (Å)	22.3829(7)

<i>c</i> (Å)	20.1826(6)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(Å^3)$	5685.0(3)
Ζ	8
λ (Å)	1.54178
Т(К)	142 K
$ ho_{ m calcd}~(m g~ m cm^{-3})$	1.130
μ (mm ⁻¹)	1.031
Transmission factors	0.766-0.928
$\theta_{\max}(\deg)$	68.349
No. of unique data, including $F_0^2 < 0$	5225
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	5021
No. of variables	318
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0252
$R_{\rm w}(F_{\rm o}{}^2) b$	0.0644
Goodness of fit	1.037

 $^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

^b $R_{\rm w}(F_{\rm o}^2) = \left[\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \sum wF_{\rm o}^4\right]^{1/2}; w^{-1} = \left[\sigma^2(F_{\rm o}^2) + (Ap)^2 + Bp\right], \text{ where } p = \left[\max(F_{\rm o}^2, 0) + 2F_{\rm c}^2\right] / 3.$

9. The analytical and spectral characterization data for the products

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C1)

 $(C_{24}H_{29}NO_4Si)$ 37.3 mg, 88% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -8.2$ (c = 1.60, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak IA-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.54 min, tr (major) = 4.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.92 (m, 2H), 7.67 – 7.60 (m, 2H), 7.44 – 7.36 (m, 6H), 6.94 – 6.88 (m, 1H), 3.29 (d, *J* = 15.6 Hz, 1H), 3.23 (s, 1H), 3.13 (d *J* = 15.6, 1H), 1.33 (s, 9H), 0.49 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 160.9, 148.6, 134.7, 134.4, 130.0, 129.9, 128.7, 127.8, 127.6, 126.1, 126.0, 82.8, 72.0, 31.9, 28.0, -5.4, -5.4.

HRMS (ESI+) *m/z* calcd for C₂₄H₂₉NO₄Si [M+H]⁺:424.1939, found: 424.1933.

IR (neat): 2974, 1706, 1539, 1547, 1482, 1426, 1368, 1249, 1152, 1120, 1065, 954, 833, 810, 779, 735, 692 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.431	5394795	50.08
2	5.182	5377490	49.92

Entry	Retention Time	Area	% Area
1	4.536	2159	0.14
2	4.932	1535827	99.86

Cyclohexyl (R)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C2)

(C₂₆H₃₁NO₄Si) 36.4 mg, 81% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -9.7$ (c = 0.91, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 5.72 min, tr (major) = 9.84 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.88 (m, 2H), 7.65 – 7.58 (m, 2H), 7.46 – 7.34 (m, 6H), 6.90 (s, 1H), 4.88 – 4.66 (m, 1H), 3.44 – 3.25 (d, *J* = 15.2 Hz, 1H), 3.23 – 3.07 (m, 2H), 1.85 – 1.59 (m, 5H), 1.54 – 1.47 (m, 1H), 1.40 – 1.28 (m, 4H), 0.50 (d, *J* = 1.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.9, 161.1, 148.6, 134.8, 134.3, 130.1, 130.1, 128.8, 128.0, 127.8, 126.3, 126.2, 74.9, 72.2, 32.1, 31.9, 27.1, 25.4, 23.9, 23.8, -5.3, -5.3.

ESI-HRMS: calcd for $C_{26}H_{32}NO_4Si^+$ ([M + H]⁺) = 450.2095, found: 450.2100.

IR (neat): 2937, 1709, 1548, 1450, 1427, 1247, 1121, 1067, 1011, 811, 780, 735, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	5.719	30582	0.40
2	9.842	7700711	99.60

Benzyl (R)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C3)

 $(C_{27}H_{27}NO_4Si)$ 26.1 mg, 57% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -19.4$ (c = 0.66, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak AY-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 6.84 min, tr (major) = 5.49 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.53 – 7.47 (m, 2H), 7.42-7.37 (m, 4H), 7.36 – 7.30 (m, 5H), 7.27 – 7.23 (m, 2H), 6.85-6.82 (m, 1H), 5.17 – 5.05 (m, 2H), 3.34 (d, *J* = 15.6 Hz, 1H), 3.13 (dd, *J* = 15.6, 0.8 Hz, 1H), 3.08 (s, 1H), 0.44 (d, *J* = 4.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 176.4, 161.2, 148.4, 135.1, 134.7, 134.0, 130.2, 130.2, 128.9, 128.8, 128.0, 127.7, 126.4, 126.2, 72.7, 67.9, 32.0, -5.4, -5.6.

ESI-HRMS: calcd for $C_{27}H_{28}NO_4Si^+$ ([M + H]⁺) = 458.1782, found: 458.1780.

IR (neat): 2958, 1718, 1593, 1548, 1485, 1249, 1214, 1174, 1069, 952, 836, 815, 780, 696 cm⁻¹.

Entry	Retention Time	Area	% Area
1	5.474	12735225	50.33
2	6.922	12566080	49.67

Entry	Retention Time	Area	% Area
1	5.493	2772671	99.51
2	6.843	13706	0.49

Tert-butyl (*R*)-2-(dimethyl(o-tolyl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C4)

(C₂₅H₃₁NO₄Si) 31.1 mg, 71% yield, 88% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{23} = -8.1$ (c = 0.78, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak AZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 4.91 min, tr (minor) = 4.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 7.92 (m, 2H), 7.57 – 7.49 (m, 1H), 7.44 – 7.39 (m, 3H), 7.33 – 7.26 (m, 1H), 7.22 – 7.12 (m, 2H), 6.93 (s, 1H), 3.33 (d, *J* = 15.6 Hz, 1H), 3.23 (s, 1H), 3.14 (d, *J* = 15.6 Hz, 1H), 2.55 (s, 3H), 1.29 (s, 9H), 0.57 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 161.0, 148.8, 145.1, 136.2, 133.0, 130.5, 130.2, 130.1, 128.8, 127.8, 126.3, 124.9, 83.0, 72.5, 32.6, 28.1, 24.2, -2.4, -2.6.

ESI-HRMS: calcd for $C_{25}H_{32}NO_4Si^+([M + H]^+) = 438.2095$, found: 438.2093.

IR (neat): 2975, 1710, 1592, 1450, 1368, 1155, 1126, 1068, 952, 838, 779, 747, 713, 690 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.069	15613317	49.11
2	4.707	16177185	50.89

Entry	Retention Time	Area	% Area
1	3.996	38713264	94.24
2	4.914	2366028	5.76

Tert-butyl (*R*)-2-hydroxy-2-((3-methoxyphenyl)dimethylsilyl)-3-(2-phenyloxazol-5-yl)propanoate (C5)

(C₂₅H₃₁NO₅Si) 36.7 mg, 81% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{25} = -8.6$ (c = 0.92, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.39 min, tr (major) = 4.92 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.91 (m, 2H), 7.46 – 7.37 (m, 3H), 7.35 – 7.28 (m, 1H), 7.23 – 7.14 (m, 2H), 6.97 – 6.91 (m, 2H), 3.82 (s, 3H), 3.28 (d, *J* = 15.2 Hz, 1H), 3.22 (s, 1H), 3.13 (d, *J* = 15.6 Hz, 1H), 1.34 (s, 9H), 0.47 (d, *J* = 5.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.0, 159.0, 148.8, 136.1, 130.1, 129.2, 128.8, 127.8, 127.1, 126.3, 126.2, 120.6, 115.0, 83.0, 72.1, 55.3, 32.1, 28.2, -5.2, -5.2.

ESI-HRMS: calcd for $C_{25}H_{32}NO_5Si^+$ ([M + H]⁺) = 454.2044, found: 454.2044.

IR (neat): 2974, 1709, 1570, 1481, 1407, 1368, 1248, 1155, 1068, 955, 806, 779, 712, 692 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.387	112021	0.23
2	4.921	47741720	99.77

Tert-butyl (R)-2-((3,5-dimethylphenyl)dimethylsilyl)-2-hydroxy-3-(2-phenyloxazol-5-

yl)propanoate (C6)

(C₂₆H₃₃NO₄Si) 37.0 mg, 82% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). [α]_D²⁴ = -9.4 (c = 0.93, in CH₂Cl₂). Colorless oil; 82% yield, 99% ee. Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, λ = 254 nm), retention time: tr (minor) = 2.76 min, tr (major) = 4.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 7.88 (m, 2H), 7.47 – 7.37 (m, 3H), 7.23 – 7.18 (m, 2H), 7.08 – 7.00 (m, 1H), 6.92 (s, 1H), 3.28 (d, *J* = 15.6, 1H), 3.19 (s, 1H), 3.14 (d, *J* = 15.6 Hz, 1H), 2.33 (s, 6H), 1.35 (s, 9H), 0.46 (d, *J* = 5.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 161.0, 148.9, 137.2, 134.2, 132.5, 131.8, 130.1, 128.8, 127.8, 126.2, 126.1, 82.8, 72.2, 32.0, 28.2, 21.5, -5.2.

ESI-HRMS: calcd for $C_{26}H_{34}NO_4Si^+$ ([M + H]⁺) = 452.2252, found: 452.2254.

IR (neat): 2975, 1708, 1594, 1481, 1368, 1250, 1155, 1067, 952, 869, 833, 799, 779, 712, 692 cm⁻¹.

Entry	Retention Time	Area	% Area
1	2.776	12903108	49.94
2	4.463	12932711	50.06

Entry	Retention Time	Area	% Area
1	2.760	110098	0.28
2	4.360	39753475	99.72

Tert-butyl (*R*)-2-(dimethyl(p-tolyl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C7) (C₂₅H₃₁NO₄Si) 36.3 mg, 83% yield, 99% ee; Colorless oil; R_f = 0.4 (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{23} = -7.3$ (c = 0.91, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.12 min, tr (major) = 5.00 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.56 – 7.48 (m, 2H), 7.45-7.38 (m, 3H), 7.23 – 7.17 (m, 2H), 6.94-6.89 (m, 1H), 3.28 (dd, *J* = 15.6, 0.8 Hz, 1H), 3.20 (s, 1H), 3.12 (d, *J* = 15.6 Hz, 1H), 2.35 (s, 3H), 1.35 (s, 9H), 0.46 (d, *J* = 1.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 161.0, 148.9, 140.0, 134.9, 130.8, 130.1, 128.8, 127.8, 126.3, 126.1, 82.9, 72.2, 32.0, 28.2, 21.7, -5.2, -5.3.

ESI-HRMS: calcd for $C_{25}H_{32}NO_4SiK^+$ ([M + K]⁺) = 476.1654, found: 476.1647.

IR (neat): 2975, 1708, 1548, 1482, 1368, 1250, 1155, 1107, 1067, 954, 836, 795, 712, 691 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.123	61883	0.12
2	5.002	51285007	99.88

Tert-butyl (*R*)-2-((4-fluorophenyl)dimethylsilyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C8)

 $(C_{24}H_{28}FNO_4Si)$ 38.9 mg, 88% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -9.6$ (c = 0.97, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 2.65 min, tr (major) = 3.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 2H), 7.64-7.55 (m, 2H), 7.46-7.36 (m, 3H), 7.13 – 7.02 (m, 2H), 6.94-6.89 (m, 1H), 3.32 – 3.18 (m, 2H), 3.10 (d, *J* = 15.2 Hz, 1H), 1.34 (s, 9H), 0.47 (d, *J* = 3.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 165.6, 163.2, 161.1, 148.6, 136.8 (d, *J* = 7.1 Hz), 130.1 (d, *J* = 8.1 Hz), 128.8, 127.7, 126.3, 115.3, 115.1, 83.1, 72.0, 32.1, 28.2, -5.0, -5.1.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.51.

ESI-HRMS: calcd for $C_{24}H_{29}FNO_4Si^+$ ([M + H]⁺) = 442.1844, found: 442.1842.

IR (neat): 2976, 1710, 1589, 1499, 1369, 1251, 1159, 1105, 1068, 955, 836, 781, 713, 691 cm⁻¹.

Entry	Retention Time	Area	% Area
1	2.653	44319	0.14
2	3.467	32610094	99.86

Tert-butyl (*R*)-2-((4-chlorophenyl)dimethylsilyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C9)

 $(C_{24}H_{28}CINO_4Si)$ 35.3 mg, 77% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -4.1$ (c = 0.88, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.71 min, tr (major) = 5.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.58 – 7.51 (m, 2H), 7.45 – 7.38 (m, 3H), 7.38 – 7.32 (m, 2H), 6.94 – 6.87 (m, 1H), 3.25 (dd, *J* = 15.6, 0.8 Hz, 1H), 3.22 (s, 9H), 3.10 (d, *J* = 15.2 Hz, 1H), 1.35 (s, 9H), 0.47 (d, *J* = 1.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 161.1, 148.5, 136.5, 136.2, 132.9, 130.2, 128.9, 128.2, 127.7, 126.3, 83.2, 72.0, 32.1, 28.2, -5.1, -5.2.

ESI-HRMS: calcd for $C_{24}H_{29}{}^{35}CINO_4Si^+$ ([M + H]⁺) = 458.1549, found: 458.1546. $C_{24}H_{29}{}^{37}CINO_4Si^+$ ([M + H]⁺) = 460.1519, found: 460.1519.

IR (neat): 2976, 1711, 1577, 1484, 1369, 1252, 1154, 1083, 955, 835, 806, 781, 712, 691 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.713	37005	0.05
2	5.506	68879175	99.95

Tert-butyl (*R*)-2-((4-bromophenyl)dimethylsilyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C10)

 $(C_{24}H_{28}BrNO_4Si)$ 41.7 mg, 83% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_{365}^{25} = -12.6$ (c = 0.46, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.63 min, tr (major) = 7.44 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.91 (m, 2H), 7.56 – 7.45 (m, 4H), 7.44 – 7.37 (m, 3H), 6.91 (s, 1H), 3.37 – 3.18 (m, 2H), 3.10 (d, *J* = 15.2 Hz, 1H), 1.35 (s, 9H), 0.46 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 161.1, 148.5, 136.4, 133.4, 131.2, 130.2, 128.9, 127.7, 126.3, 126.3, 125.1, 83.2, 72.0, 32.1, 28.2, -5.2, -5.3.

ESI-HRMS: calcd for $C_{24}H_{29}^{79}BrNO_4Si^+$ ([M + H]⁺) = 502.1044, found: 502.1041. $C_{24}H_{29}^{81}BrNO_4Si^+$ ([M + H]⁺) = 504.1023, found: 504.1021.

IR (neat): 2923, 2360, 1713, 1572, 1370, 1252, 1370, 1154, 1067, 1011, 834, 804, 782, 713, 691 cm⁻¹.

Lindy		Theu	70 TH cu
1	4.594	8824	0.15
2	7.583	5981474	99.85

Tert-butyl (*R*)-2-(dimethyl(naphthalen-2-yl)silyl)-2-hydroxy-3-(2-phenyloxazol-5-yl)propanoate (C11)

(C₂₈H₃₁NO₄Si) 38.8 mg, 82% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -5.1$ (c = 0.97, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak AY-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 7.50 min, tr (minor) = 5.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 1H), 8.00 – 7.91 (m, 2H), 7.89 – 7.81 (m, 3H), 7.71 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.42 – 7.36 (m, 3H), 6.92 (s, 1H), 3.38 – 3.25 (m, 2H), 3.17 (d, *J* = 15.6 Hz, 1H), 1.33 (s, 9H), 0.58 (d, *J* = 2.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.0, 148.8, 135.9, 134.2, 132.9, 132.1, 130.7, 130.1, 128.8, 128.3, 127.9, 127.7, 127.2, 126.9, 126.2, 126.2, 83.0, 72.3, 32.1, 28.2, -5.1, -5.2.

ESI-HRMS: calcd for $C_{28}H_{32}NO_4Si^+$ ([M + H]⁺) = 474.2095, found: 474.2092.

IR (neat): 2975, 1708, 1592, 1548, 1482, 1368, 1250, 1154, 1085, 953, 857, 806, 780, 743, 712, 691 cm⁻¹.

Entry	Retention Time	Area	% Area
1	5.136	97536583	99.93
2	7.501	73112	0.07

Tert-butyl (R)-2-hydroxy-2-(methyldiphenylsilyl)-3-(2-phenyloxazol-5-yl)propanoate (C12)

(C₂₉H₃₁NO₄Si) 35.6 mg, 73% yield, 29% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{23} = +2.6$ (c = 0.89, in CH₂Cl₂). Dissolved in *i*-PrOH for **HPLC** (Daicel Chiralcel **OZH**, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 5.02 min, tr (minor) = 4.16 min.

¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.89 (m, 2H), 7.78 – 7.70 (m, 4H), 7.45 – 7.37 (m, 9H), 6.91 (s, 1H), 3.42 (s, 1H), 3.38 (d, *J* = 10.4 Hz, 1H), 3.26 (d, *J* = 10.4 Hz, 1H), 1.21 (s, 9H), 0.80 (s, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 175.4, 161.1, 148.5, 135., 133.4,133.0, 130.2, 130.1, 128.8, 128.1,

128.1, 127.7, 126.4, 126.3, 83.2, 72.6, 32.9, 27.9, -5.5.

ESI-HRMS: calcd for $C_{29}H_{32}NO_4Si^+$ ([M + H]⁺) = 486.2095, found: 486.2094.

IR (neat): 2917, 1745, 1549, 1483, 1428, 1368, 1255, 1118, 793, 736, 698 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.161	20142056	64.71
2	5.017	10985070	35.29

Tert-butyl (*R*)-3-(2-(2-chlorophenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C13)

 $(C_{24}H_{28}CINO_4Si)$ 34.8 mg, 76% yield, 96% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{27} = -12.5$ (c = 0.87, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.95 min, tr (major) = 5.19 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.81 (m, 1H), 7.65 – 7.59 (m, 2H), 7.49 – 7.44 (m, 1H), 7.42 – 7.34 (m, 3H), 7.34 – 7.27 (m, 2H), 7.00 (s, 1H), 3.30 (d, *J* = 15.6 Hz, 1H), 3.24 (s, 1H), 3.14 (d, *J* = 15.2 Hz, 1H), 1.30 (s, 9H), 0.48 (d, *J* = 5.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 149.1, 134.7, 134.4, 132.2, 131.1, 130.7, 129.9, 127.8, 126.7, 126.0, 82.9, 72.0, 31.9, 27.9, -5.4, -5.4.

ESI-HRMS: calcd for $C_{24}H_{29}{}^{35}CINO_4Si^+$ ([M + H]⁺) = 458.1549, found: 458.1546. $C_{24}H_{29}{}^{37}CINO_4Si^+$ ([M + H]⁺) = 459.1582, found: 459.1573.

IR (neat): 2975, 1707, 1474, 1428, 1368, 1250, 1155, 1114, 1066, 955, 835, 811, 783, 736, 701, 654 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.945	1030393	2.18
2	5.190	46138656	97.82

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(3-(trifluoromethyl)phenyl)oxazol-5yl)propanoate (C14)

 $(C_{25}H_{28}F_3NO_4Si)$ 42.8 mg, 87% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -1.9$ (c = 1.07, in CH₂Cl₂). Dissolved in *i*-PrOH for **HPLC** (Daicel Chiralcel **OZH**, *i*-PrOH/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.35 min, tr (major) = 5.14 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.17 (m, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 7.69 – 7.59 (m, 3H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.45 – 7.31 (m, 3H), 6.95 (s, 1H), 3.30 (d, *J* = 15.2 Hz, 1H), 3.21 (s, 1H), 3.14 (d, *J* = 15.6 Hz, 1H), 1.35 (s, 9H), 0.49 (d, *J* = 3.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 159.7, 149.6, 134.8, 134.4, 131.3, 130.1, 129.5, 129.3, 128.5, 128.0, 126.6, 126.6 (dd, *J* = 7.5, 3.7 Hz), 123.1(dd, *J* = 7.9, 4.0 Hz), 122.6, 83.1, 72.0, 32.0, 28.2, -5.3, -5.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -62.89.

ESI-HRMS: calcd for $C_{25}H_{29}F_3NO_4Si^+$ ([M + H]⁺) = 492.1812, found: 492.1808.

IR (neat): 2076, 1712, 1426, 1369, 1325, 1250, 1155, 1126, 1066, 957, 835, 808, 783, 697, 654 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.352	22349	0.24
2	5.141	9270575	99.76

Tert-butyl (R)-3-(2-(3,4-difluorophenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-

hydroxypropanoate (C15)

 $(C_{24}H_{27}F_2NO_4Si)$ 39.5 mg, 86% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{26} = -9.0$ (c = 0.99, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 2.83 min, tr (major) = 4.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 1H), 7.71 – 7.66 (m, 1H), 7.65 – 7.57 (m, 2H), 7.48 – 7.33 (m, 3H), 7.24 – 7.14 (m, 1H), 6.90 (s, 1H), 3.27 (d, *J* = 15.6 Hz, 1H), 3.21 (s, 1H), 3.12 (d, *J* = 15.6 Hz, 1H), 1.33 (s, 9H), 0.48 (d, *J* = 4.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.6, 159.1, 152.8 (d, *J* = 13.0 Hz), 151.9 (d, *J* = 13.1 Hz), 150.4 (d, *J* = 12.7 Hz), 149.5, 134.8, 134.4, 130.1, 128.0, 126.4, 122.7 (dd, *J* = 7.0, 3.8 Hz), 118.0 (d, *J* = 18.2 Hz), 115.5 (d, *J* = 19.6 Hz), 83.0, 72.1, 32.0, 28.2, -5.3, -5.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -134.88 (d, *J* = 22.0 Hz), -136.68 (d, *J* =22.0 Hz).

ESI-HRMS: calcd for $C_{24}H_{28}F_2NO_4Si^+$ ([M + H]⁺) = 460.1750, found: 460.1748.

IR (neat): 2923, 1713, 1560, 1510, 1443, 1369, 1254, 1155, 1114, 1071, 961, 834, 776, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	2.828	56369	0.25
2	4.080	22415741	99.75

Tert-butyl (R)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(p-tolyl)oxazol-5-yl)propanoate (C16)

(C₂₅H₃₁NO₄Si) 37.6 mg, 86% yield, 98% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{25} = -8.7$ (c = 0.94, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.57 min, tr (major) = 4.98 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.67 – 7.57 (m, 2H), 7.45 – 7.34 (m, 3H), 7.21 (d, J = 7.6 Hz, 2H), 6.89 (s, 1H), 3.27 (d, J = 15.2 Hz, 1H), 3.21 (s, 1H), 3.12 (d, J = 15.2 Hz, 1H), 2.38 (s, 3H), 1.32 (s, 9H), 0.48 (d, J = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.2, 148.4, 140.3, 134.8, 134.6, 130.0, 129.5, 128.0, 126.2, 126.0, 125.1, 82.9, 72.1, 32.0, 28.2, 21.6, -5.2, -5.3.

ESI-HRMS: calcd for $C_{25}H_{32}NO_4Si^+([M + H]^+) = 438.2095$, found:438.2090.

IR (neat): 2975, 1708, 1498, 1427, 1368, 1250, 1155, 1117, 1069, 955, 827, 783, 734, 701, 648 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.464	12457869	49.93
2	5.168	12494010	50.07

Entry	Retention Time	Area	% Area
1	3.572	838804	0.90
2	4.983	91868787	99.10

Tert-butyl (*R*)-3-(2-(4-bromophenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C17)

 $(C_{24}H_{28}BrNO_4Si)$ 44.2 mg, 88% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{25} = -9.0$ (c = 1.10, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.25 min, tr (major) = 4.60 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.76 (m, 2H), 7.69 – 7.58 (m, 2H), 7.57 – 7.49 (m, 2H), 7.46 – 7.33 (m, 3H), 6.91 (s, 1H), 3.27 (d, *J* = 15.6 Hz, 1H), 3.22 (s, 1H), 3.12 (d, *J* = 15.2 Hz, 1H), 1.32 (s, 9H), 0.48 (d, *J* = 4.8 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 160.1, 149.2, 134.8, 134.5, 132.1, 130.1, 128.0, 127.7, 126.7, 126.3, 124.5, 83.0, 72.1, 32.0, 28.2, -5.3, -5.3.

ESI-HRMS: calcd for $C_{24}H_{29}^{79}BrNO_4Si^+$ ([M + H]⁺) = 502.1044, found: 502.1041. $C_{24}H_{29}^{81}BrNO_4Si^+$ ([M + H]⁺) = 504.1023, found: 504.1022.

IR (neat): 2975, 1710, 1604, 1479, 1427, 1401, 1368, 1250, 1154, 1071, 955, 834, 783, 733, 700 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.190	25172390	49.77
2	4.477	25400224	50.23

Entry	Retention Time	Area	% Area
1	3.249	8586	0.15
2	4.596	5713714	99.85

O₂N·

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(4-nitrophenyl)oxazol-5-yl)propanoate (C18)

 $(C_{24}H_{28}N_2O_6Si)$ 38.9 mg, 83% yield, 98% ee; Light yellow solid, mp: 107-111 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). [α]_D²⁵ = -13.1 (c = 0.97, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.77 min, tr (major) = 5.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 – 8.22 (m, 2H), 8.14 – 8.15 (m, 2H), 7.66 – 7.58 (m, 2H), 7.47 – 7.33 (m, 3H), 7.03-6.97 (m, 1H), 3.30 (d, *J* = 15.2 Hz, 1H), 3.23 (s, 1H), 3.15 (d, *J* = 15.6 Hz, 1H), 1.34 (s, 9H), 0.49 (d, *J* = 2.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 158.9, 150.8, 148.5, 134.8, 134.3, 133.1, 130.2, 128.0, 127.2, 126.9, 124.3, 83.2, 72.1, 32.0, 28.2, -5.3, -5.3.

ESI-HRMS: calcd for $C_{24}H_{29}N_2O_6Si^+([M + H]^+) = 469.1789$, found: 469.1786.

IR (neat): 2975, 1709, 1520, 1427, 1337, 1251, 1154, 1110, 1063, 955, 836, 811, 784, 737, 714 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.699	7100273	50.03
2	6.112	7091262	49.97

Entry	Retention Time	Area	% Area
1	4.765	40933	0.87
2	5.985	4680981	99.13

Tert-butyl (*R*)-3-(2-(4-cyanophenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C19)

 $(C_{25}H_{28}N_2O_4Si)$ 42.6 mg, 95% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -8.4$ (c = 1.06, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.16 min, tr (major) = 5.34 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.74 – 7.67 (m, 2H), 7.66 – 7.57 (m, 2H), 7.45 – 7.34 (m, 3H), 6.99 – 6.95 (m, 1H), 3.29 (d, *J* = 15.6 Hz, 1H), 3.21 (s, 1H), 3.14 (d, *J* = 15.6 Hz, 1H), 1.33 (s, 9H), 0.48 (d, *J* = 2.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 159.2, 150.4, 134.8, 134.4, 132.7, 131.5, 130.1, 128.0, 127.0, 126.6, 118.6, 113.4, 83.1, 72.2, 32.0, 28.2, -5.3, -5.3.

ESI-HRMS: calcd for $C_{25}H_{29}N_2O_4Si^+([M + H]^+) = 449.1891$, found: 449.1889.

IR (neat): 2976, 2228, 1711, 1592, 1490, 1427, 1369, 1251, 1155, 1069, 840, 784, 740, 702, 552 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.103	3617325	49.92
2	5.350	3629564	50.08

Entry	Retention Time	Area	% Area
1	4.157	9321	0.19
2	5.341	4860305	99.81

Tert-butyl (R)-3-(2-(3,4-dimethoxyphenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-

hydroxypropanoate (C20)

(C₂₆H₃₃NO₆Si) 44.0 mg, 91% yield, 99% ee; Light yellow solid, mp: 78-82 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 2:1). [α]₄₃₆²⁶ = -2.4 (c = 1.20, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 5.84 min, tr (major) = 8.20 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.59 (m, 2H), 7.53 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.45 – 7.34 (m, 3H), 6.90 (s, 1H), 6.88 (s, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.28 (d, *J* = 15.6 Hz, 1H), 3.21 (s, 1H), 3.12 (d, *J* = 15.6 Hz, 1H), 1.33 (s, 9H), 0.49 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.1, 150.8, 149.2, 148.3, 134.8, 134.6, 130.1, 128.0, 126.0, 120.8, 119.4, 111.1, 109.0, 82.9, 72.1, 56.2, 56.1, 32.1, 28.2, -5.2, -5.3.

ESI-HRMS: calcd for $C_{26}H_{34}NO_6Si^+$ ([M + H]⁺) = 484.2150, found: 484.2148.

IR (neat): 2971, 1717, 1603, 1553, 1502, 1425, 1368, 1269, 1248, 1152, 1025, 813, 784, 702, 646 cm⁻¹.

Entry	Retention Time	Area	% Area
1	5.827	2573439	50.16
2	8.242	2557072	49.84

Entry	Retention Time	Area	% Area
1	5.844	53583	0.36
2	8.202	14951457	99.64

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(naphthalen-2-yl)oxazol-5-yl)propanoate (C21)

(C₂₈H₃₁NO₄Si) 39.3 mg, 83% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{25} = -3.6$ (c = 0.98, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 6.24 min, tr (major) = 9.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.06 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.86 – 7.81 (m, 1H), 7.70 – 7.60 (m, 2H), 7.56 – 7.48 (m, 2H), 7.46 – 7.34 (m, 3H), 6.97 (s, 1H), 3.33 (d, *J* = 15.6 Hz, 1H), 3.26 (s, 1H), 3.17 (d, *J* = 15.2 Hz, 1H), 1.35 (s, 9H), 0.50 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.2, 149.0, 134.8, 134.6, 134.1, 133.2, 130.1, 128.8, 128.7, 128.0, 127.2, 126.8, 126.4, 126.0, 125.1, 123.4, 83.0, 72.2, 32.1, 28.2, -5.2, -5.3.

ESI-HRMS: calcd for $C_{28}H_{32}NO_4Si^+$ ([M + H]⁺) = 474.2095, found: 474.2095.

IR (neat): 2924, 1712, 1592, 1459, 1369, 1252, 1155, 1118, 1070, 960, 834, 784, 754, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.252	11003093	49.99
2	9.912	11006018	50.01

Entry	Retention Time	Area	% Area
1	6.241	31313	0.16
2	9.730	19841325	99.84

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(Ferrocene)oxazol-5-yl)propanoate (C22) (C₂₈H₃₃FeNO₄Si) 47.8 mg, 90% yield, 99% ee; Brown yellow oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). [α]₃₆₅ ²⁵ = -19.7 (c = 0.21, in CH₂Cl₂). Dissolved in *i*-PrOH for HPLC (Daicel Chiralcel OZH, *i*-PrOH/*n*-hexane = 15/85, flow rate = 1.0 mL/min, λ = 254 nm), retention time: tr (minor) = 13.84 min, tr (major) = 15.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69-7.60 (m, 2H), 7.46-7.34 (m, 3H), 6.77 (s, 1H), 4.82 (d, *J* = 6.4 Hz, 2H), 4.36-4.31 (m, 2H), 4.12 (s, 5H), 3.30-3.15 (m, 2H), 3.08 (d, *J* = 15.2 Hz, 1H), 1.37 (s, 9H), 0.49 (d, *J* = 8.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 163.0, 147.5, 134.8, 134.7, 130.0, 128.0, 125.9, 82.8, 72.0, 71.4, 70.0, 70.0, 69.7, 67.4, 67.4, 32.1, 28.3, -5.2, -5.2.

ESI-HRMS: calcd for $C_{28}H_{34}FeNO_4Si^+$ ([M + H]⁺) = 532.1601, found: 532.1604.

IR (neat): 2974, 1707, 1584, 1426, 1369, 1249, 1154, 1119, 1064, 957, 811, 700, 642 cm⁻¹.

Entry	Retention Time	Area	% Area
1	13.886	3232057	49.34
2	15.818	3319158	50.66

Entry	Retention Time	Area	% Area
1	13.844	177704	0.37
2	15.470	47418241	99.63

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-3-(2-(furan-2-yl)oxazol-5-yl)-2-hydroxypropanoate (C23) (C₂₂H₂₇NO₅Si) 33.0 mg, 80% yield, 98% ee; Colorless oil; R_f = 0.4 (petroleum ether/ethyl acetate = 4:1). $[\alpha]_D^{25} = -4.8$ (c = 0.67, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.10 min, tr (major) = 4.90 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.52 – 7.47 (m, 1H), 7.44 – 7.32 (m, 3H), 6.95 – 6.82 (m, 2H), 6.49 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.26 (d, *J* = 15.6 Hz, 1H), 3.18 (s, 1H), 3.09 (d, *J* = 15.6 Hz, 1H), 1.35 (s, 9H), 0.47 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 153.9, 148.3, 144.1, 143.3, 134.8, 134.5, 130.1, 128.0, 126.1, 111.9, 110.8, 83.1, 72.0, 31.9, 28.1, -5.3, -5.3.

ESI-HRMS: calcd for $C_{22}H_{28}NO_5Si^+$ ([M + H]⁺) = 414.1731, found: 414.1727.

IR (neat): 2976, 1708, 1534, 1455, 1369, 1252, 1155, 1117, 1011, 955, 835, 812, 784, 740, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.101	74924	1.05
2	4.903	7084825	98.95

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(thiophen-2-yl)oxazol-5-yl)propanoate (C24)

 $(C_{22}H_{27}NO_4SSi)$ 32.7 mg, 76% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{25} = -1.4$ (c = 0.83, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 4.03 min, tr (major) = 6.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.55 (dd, *J* = 4.0, 1.6 Hz, 1H), 7.42 – 7.34 (m, 4H), 7.06 (dd, *J* = 4.8, 3.6 Hz, 1H), 6.88 – 6.83 (m, 1H), 3.26 (d, *J* = 15.2 Hz, 1H), 3.19 (s, 1H), 3.09 (d, *J* = 15.6 Hz, 1H), 1.34 (s, 9H), 0.48 (d, *J* = 4.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 157.2, 148.2, 134.8, 134.5, 130.4, 130.1, 128.0, 127.9, 127.3, 126.2, 83.0, 72.0, 32.0, 28.2, -5.2, -5.3.

ESI-HRMS: calcd for $C_{22}H_{28}NO_4SSi^+$ ([M + H]⁺) = 430.1503, found: 430.1504.

IR (neat): 2976, 1709, 1596, 1426, 1369, 1249, 1155, 1117, 1066, 954, 836, 811, 784, 724, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.071	2143798	50.33
2	6.990	2116017	49.67

Entry	Retention Time	Area	% Area
1	4.032	27655	0.31
2	6.824	8824815	99.69

Tert-butyl (R)-3-(2-(benzo[b]thiophen-2-yl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-

hydroxypropanoate (C25)

 $(C_{26}H_{29}NO_4SSi)$ 43.2 mg, 90% yield, 99% ee; white solid; mp: 94-98 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). [α]_D²⁵ = +0.9 (c = 1.08, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralpak **AD-3**, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 6.61 min, tr (minor) = 9.41 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.82 (m, 1H), 7.81 – 7.77 (m, 2H), 7.66 – 7.60 (m, 2H), 7.43 – 7.34 (m, 5H), 6.94 (s, 1H), 3.30 (d, *J* = 15.6 Hz, 1H), 3.24 (s, 1H), 3.13 (d, *J* = 15.2 Hz, 1H), 1.36 (s, 9H), 0.50 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 157.1, 149.2, 140.4, 139.7, 134.8, 134.5, 130.1, 130.0, 128.0, 126.6, 125.8, 125.0, 124.6, 123.8, 122.6, 83.1, 72.1, 32.0, 28.2, -5.3, -5.3.

ESI-HRMS: calcd for $C_{26}H_{30}NO_4SSi^+$ ([M + H]⁺) = 480.1659, found: 480.1657.

IR (neat): 2975, 1709, 1598, 1456, 1368, 1252, 1155, 1116, 1068, 835, 811, 784, 747, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.391	5507392	50.05
2	8.915	5497137	49.95

Entry	Retention Time	Area	% Area
1	6.610	25392529	99.87
2	9.407	34184	0.13

Methyl (*R*)-4-(5-(3-(tert-butoxy)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-oxopropyl)oxazol-2yl)butanoate (C26)

(C₂₃H₃₃NO₆Si) 21.9 mg, 49% yield, 88% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1). $[\alpha]_D^{23} = -16.1$ (c = 0.36, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 4.67 min, tr (major) = 5.82 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.52 (m, 2H), 7.44 – 7.32 (m, 3H), 6.72-6.61 (m, 1H), 3.65 (s, 3H), 3.20-3.10 (m, 2H), 2.99 (d, *J* = 15.2 Hz, 1H), 2.71 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 7.6 Hz, 2H), 2.08-1.98 (m, 2H), 1.34 (s, 9H), 0.45 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 173.5, 163.2, 148.2, 134.8, 130.0, 127.9, 124.7, 82.9, 72.1, 51.8, 33.1, 31.9, 29.9, 28.1, 27.5, 22.3, -5.3, -5.3.

ESI-HRMS: calcd for $C_{23}H_{34}NO_6Si^+([M + H]^+) = 448.2150$, found: 448.2147.

IR (neat): 2927, 1737, 1568, 1430, 1369, 1252, 1155, 1113, 1067, 836, 812, 783, 737, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.837	41116409	49.93
2	6.013	41232818	50.07

Entry	Retention Time	Area	% Area
1	4.664	175874	5.99
2	5.817	2762199	94.01

Tert-butyl (R)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-undecyloxazol-5-yl)propanoate (C27)

 $(C_{29}H_{47}NO_4Si)$ 20.1 mg, 40% yield, 90% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{25} = -13.3$ (c = 0.51, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 4.05 min, tr (major) = 5.27 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 2H), 7.43-7.32 (m, 3H), 6.66 (s, 1H), 3.16 (d, *J* = 15.2 Hz, 1H), 2.99 (d, *J* = 15.6 Hz, 1H), 2.63 (t, *J* = 7.6 Hz, 2H), 1.73-1.63 (m, 3H), 1.34 (s, 9H), 1.29-1.22 (m, 15H), 0.89-0.84 (m, 3H), 0.45 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 164.4, 147.8, 134.8, 134.7, 130.0, 127.9, 124.6, 82.8, 72.1, 32.1, 31.9, 29.8, 29.6, 29.5, 29.4, 29.3, 28.3, 28.1, 27.1, 22.9, 14.3, -5.3, -5.3.

ESI-HRMS: calcd for $C_{29}H_{48}NO_4Si^+$ ([M + H]⁺) = 502.3347, found: 502.3339.

IR (neat): 2925, 1711, 1568, 1461, 1369, 1252, 1155, 1066, 967, 835, 811, 783, 736, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.046	294663	5.14
2	5.268	5437206	94.86

Tert-butyl (R)-3-(2-(2-cyclopentylethyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-

hydroxypropanoate (C28)

(C₂₅H₃₇NO₆Si) 19.5 mg, 44% yield, 94% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{24} = -13.5$ (c = 0.48, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 4.44 min, tr (major) = 5.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 2H), 7.43 – 7.34 (m, 3H), 6.66 (s, 1H), 3.18-3.13 (d, J = 15.2, 1H), 3.12 (s, 1H), 2.99 (dd, J = 15.2, 0.8 Hz, 1H), 2.72 – 2.59 (m, 2H), 1.77 – 1.67 (m, 5H), 1.62 – 1.55 (m, 2H), 1.53 – 1.45 (m, 2H), 1.34 (s, 9H), 1.13 – 1.02 (m, 2H), 0.45 (d, J = 5.6 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.6, 164.5, 147.8, 134.8, 134.7, 130.0, 127.9, 124.6, 82.8, 72.1, 39.8,

33.4, 32.5, 31.9, 28.1, 27.6, 25.3, -5.2, -5.3.

ESI-HRMS: calcd for $C_{25}H_{38}NO_4Si^+$ ([M + H]⁺) = 444.2565, found: 444.2557. **IR** (neat): 2952, 1710, 1568, 1455, 1368, 1251, 1156, 1115, 1068, 969, 836, 812, 783, 735, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.442	134239	2.76
2	5.962	4737353	97.24

Tert-butyl (R)-3-(2-benzyloxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C29)

 $(C_{25}H_{31}NO_4Si)$ 19.3 mg, 44% yield, 93% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{23} = -12.4$ (c = 0.48, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 6.32 min, tr (major) = 7.55 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 2H), 7.42 – 7.33 (m, 3H), 7.32 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 6.74 – 6.68 (m, 1H), 4.00 (d, *J* = 15.6, 18.0 Hz, 2H), 3.22 – 3.09 (m, 2H), 2.99 (d, *J* = 15.6 Hz, 1H), 1.27 (s, 9H), 0.43 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 162.3, 148.6, 135.8, 134.8, 134.6, 130.0, 128.9, 128.8, 127.9, 127.1, 125.0, 82.8, 72.0, 34.8, 31.9, 28.0, -5.3, -5.3.

ESI-HRMS: calcd for $C_{25}H_{32}NO_4Si^+$ ([M + H]⁺) = 438.2095, found: 438.2095.

IR (neat): 2926, 1709, 1563, 1427, 1369, 1266, 1155, 1109, 1067, 968, 836, 735, 700 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.148	33139527	50.18
2	7.412	32897832	49.82

Entry	Retention Time	Area	% Area
1	6.323	135606	3.59
2	7.549	3645680	96.41

Tert-butyl (*R*)-3-(2-cyclobutyloxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoaten (C30) (C₂₂H₃₁NO₄Si) 13.7 mg, 34% yield, 95% ee; Colorless oil; R_f = 0.4 (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{23} = -16.2$ (c = 0.68, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 3.70 min, tr (major) = 4.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 2H), 7.43 – 7.33 (m, 3H), 6.69 (s, 1H), 3.57 – 3.45 (m, 1H), 3.17 (dd, *J* = 15.2, 0.8 Hz, 1H), 3.12 (s, 1H), 3.00 (d, *J* = 15.2 Hz, 1H), 2.41 – 2.22 (m, 4H), 2.09 – 1.95 (m, 1H), 1.94 – 1.84 (m, 1H), 1.33 (s, 9H), 0.45 (d, *J* = 7.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 166.5, 147.8, 134.8, 134.7, 130.0, 127.9, 124.7, 82.8, 72.0, 33.2, 32.0, 28.1, 27.4, 27.3, 18.7, -5.3, -5.3.

ESI-HRMS: calcd for $C_{22}H_{32}NO_4Si^+$ ([M + H]⁺) = 402.2095, found: 402.2100.

IR (neat): 2976, 1709, 1564, 1427, 1369, 1250, 1155, 1117, 1066, 961, 835, 811, 783, 737, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.704	278366	2.26
2	4.658	12026396	97.74

Tert-butyl (*R*)-3-(2-cyclohexyloxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C31) (C₂₄H₃₅NO₄Si) 32.2 mg, 75% yield, 99% ee; Colorless oil; R_f = 0.4 (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{25} = -16.0$ (c = 0.80, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 4.39 min, tr (major) = 5.58 min.

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 2H), 7.42 – 7.33 (m, 3H), 6.68 – 6.63 (m, 1H), 3.21 – 3.09 (m, 2H), 3.00 (d, *J* = 15.2 Hz, 1H), 2.74 – 2.59 (m, 1H), 2.03 – 1.93 (m, 2H), 1.81 – 1.71 (m, 3H), 1.70 – 1.61 (m, 1H), 1.55 – 1.44 (m, 2H), 1.32 (s, 9H), 1.28 – 1.20 (m, 2H), 0.44 (d, *J* = 9.6 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 175.7, 167.5, 147.6, 134.8, 130.0, 127.9, 124.4, 82.7, 72.1, 37.6, 32.0, 30.7, 30.6, 28.1, 25.9, 25.8, -5.3, -5.3.

ESI-HRMS: calcd for $C_{24}H_{36}NO_4Si^+$ ([M + H]⁺) = 430.2408, found: 430.2406.

IR (neat): 2930, 1710, 1562, 1451, 1427, 1368, 1251, 1156, 1110, 1067, 962, 836, 811,783, 737, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	4.391	39602	0.44
2	5.577	8941836	99.56

Tert-butyl (*R*)-3-(2-(tert-butyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C32) (C₂₂H₃₃NO₄Si) 33.9 mg, 84% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{24} = -23.5$ (c = 0.85, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak IE-3, CO₂/EtOH = 95/5, flow rate = 1.0 mL/min, $\lambda = 210$ nm), retention time: tr (major) = 9.72 min, tr (minor) = 10.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 2H), 7.43 – 7.32 (m, 3H), 6.66 (s, 1H), 3.16 (m, 2H), 3.03 (d, *J* = 15.6 Hz, 1H), 1.31 (s, 18H), 0.45 (d, *J* = 12.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 170.4, 147.9, 134.8, 134.7, 130.0, 127.9, 124.2, 82.7, 72.0, 33.7, 32.0, 28.7, 28.2, -5.2, -5.3.

ESI-HRMS: calcd for $C_{22}H_{34}NO_4Si^+$ ([M + H]⁺) = 404.2252, found: 404.2249.

2

IR (neat): 2973, 1710, 1560, 1368, 1251, 1156, 1114, 1067, 960, 836, 811, 783, 734, 701 cm⁻¹.

14929035

49.94

10.454

Entry	Retention Time	Area	% Area
1	9.724	17989412	99.98
2	10.688	3475	0.02

Tert-butyl (R)-3-(2-((3R,5R,7R)-adamantan-1-yl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2hydroxypropanoate (C33)

 $(C_{28}H_{39}NO_4Si)$ 29.4 mg, 61% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{24} = -20.0$ (c = 0.74, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak IA-3, $CO_2/MeOH = 95/5$, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (major) = 5.47 min, tr (minor) = 6.61 min.

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.42 – 7.32 (m, 3H), 6.67 (s, 1H), 3.24 – 3.09 (m, 2H), 3.05 (d, J = 15.6 Hz, 1H), 2.03 (s, 3H), 1.96 (m, 6H), 1.76 – 1.69 (m, 6H), 1.31 (s, 9H), 0.44 (d, J = 13.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 170.2, 147.5, 134.8, 134.7, 130.0, 127.9, 124.1, 82.7, 72.1, 40.4, 36.6, 35.6, 32.0, 28.2, 28.1, -5.2, -5.3.

ESI-HRMS: calcd for $C_{28}H_{40}NO_4Si^+$ ([M + H]⁺) = 482.2721, found: 482.2726.

IR (neat): 2906, 1710, 1555, 1453, 1368, 1252, 1155, 1115, 1068, 955, 835, 811, 783, 736, 701 cm⁻¹.

5.00 Minutes 2.00 4.50 5.50 6.00 6.50 7.00 8.00 8.50 1 00 2 50 3 00 4 00 9.00 0.50

Entry	Retention Time	Area	% Area
1	5.686	10466847	49.68
2	6.694	10603254	50.32

Entry	Retention Time	Area	% Area
1	5.468	21913028	99.69
2	6.613	67305	0.31

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(prop-1-en-2-yl)oxazol-5-yl)propanoate (C34)

(C₂₁H₂₉NO₄Si) 35.7 mg, 92% yield, 83% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). [α]₃₆₅ ²⁴ = +11.8 (c = 0.89, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak IE-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, λ = 254 nm), retention time: tr (major) = 3.37 min, tr (minor) = 3.83 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.43 – 7.34 (m, 3H), 6.82 (s, 1H), 5.80 (s, 1H), 5.28 (s, 1H), 3.21 (d, *J* = 15.6 Hz, 1H), 3.16 (s, 1H), 3.05 (d, *J* = 15.6 Hz, 1H), 2.10 (s, 3H), 1.32 (s, 9H), 0.46 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 162.0, 148.4, 134.8, 134.6, 131.8, 130.0, 127.9, 125.9, 117.3, 82.9, 72.0, 32.0, 28.1, 19.2, -5.3, -5.3.

ESI-HRMS: calcd for $C_{21}H_{30}NO_4Si^+([M + H]^+) = 388.1939$, found: 388.1932.

IR (neat): 2976, 1707, 1526, 1368, 1252, 1154, 1117, 1066, 836, 782, 701, 650 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.367	14407064	91.37
2	3.830	1361548	8.63

Tert-butyl (R)-3-(2-(2-acetoxyphenyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-

hydroxypropanoate (C35)

(C₂₆H₃₁NO₆Si) 38.5 mg, 80% yield, 96% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). [α]_D²⁴ = -29.3 (c = 1.93, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 3.35 min, tr (major) = 6.03 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.45 – 7.35 (m, 4H), 7.32 – 7.27 (m, 1H), 7.12 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.91 (s, 1H), 3.25 (d, *J* = 15.6 Hz, 1H), 3.19 (s, 1H), 3.09 (d, *J* = 15.2 Hz, 1H), 2.34 (s, 3H), 1.32 (s, 9H), 0.48 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 170.2, 157.9, 148.8, 148.1, 134.8, 134.5, 131.1, 130.0, 129.1, 127.9, 126.4, 126.0, 124.0, 120.9, 83.0, 72.4, 31.9, 28.1, 21.3, -5.3, -5.4.

ESI-HRMS: calcd for $C_{26}H_{32}NO_6Si^+$ ([M + H]⁺) = 482.1993, found: 482.1992.

IR (neat): 2974, 1768, 1708, 1487, 1368, 1250, 1191, 1155, 1063, 955, 835, 784, 704, 654 cm⁻¹.

Entry	Retention Time	Area	% Area
1	3.348	1246327	1.92
2	6.028	63515629	98.08

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-3-(2-(4-(N,N-dipropylsulfamoyl)phenyl)oxazol-5-yl)-2hydroxypropanoate (C36)

 $(C_{30}H_{42}N_2O_6SSi)$ 39.3 mg, 67% yield, 97% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{23} = -1.0$ (c = 1.95, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 8.18 min, tr (major) = 9.08 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.8 Hz, 2H), 7.66 – 7.55 (m, 2H), 7.46 – 7.33 (m, 3H), 6.96 (s, 1H), 3.29 (d, J = 15.6 Hz, 1H), 3.22 (s, 1H), 3.14 (d, J = 15.2 Hz, 1H), 3.11 – 3.06 (m, 4H), 1.58 – 1.50 (m, 4H), 1.33 (s, 9H), 0.86 (t, J = 7.2 Hz, 6H), 0.48 (d, J = 3.6 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 159.5, 150.0, 141.3, 134.8, 134.4, 131.0, 130.1, 128.0, 127.6, 126.8, 126.6, 83.1, 72.1, 50.0, 32.0, 28.1, 22.0, 11.3, -5.3, -5.3.

ESI-HRMS: calcd for $C_{30}H_{43}N_2O_6SSi^+([M + H]^+) = 587.2606$, found: 587.2601.

IR (neat): 2967, 1732, 1593, 1462, 1368, 1340, 1252, 1154, 1117, 991, 835, 781, 702, 602, 567 cm⁻¹.

Entry	Retention Time	Area	% Area
1	8.178	210706	1.38
2	9.084	15075991	98.62

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-3-(2-(3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)oxazol-5-yl)-2-hydroxypropanoate (C37)

 $(C_{32}H_{32}FN_3O_5Si)$ 50.4 mg, 86% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{23} = +3.7$ (c = 1.26, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak AD-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 6.47 min, tr (minor) = 8.54 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.79-8.71 (m, 1H), 8.31 – 8.19 (m, 2H), 8.16-8.10 (m, 1H), 7.71 – 7.53 (m, 4H), 7.44 – 7.36 (m, 3H), 7.35 – 7.26 (m, 2H), 6.98 (s, 1H), 3.33 (d, *J* = 15.6 Hz, 1H), 3.26 (s, 1H), 3.20 – 3.13 (m, 1H), 1.36 (s, 9H), 0.50 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 173.1 (d, J = 4.0 Hz), 168.3, 162.2, 160.2, 159.6, 149.3, 134.9, 134.8, 134.5, 131.2, 130.1, 129.5, 128.9 (d, J = 7.1 Hz), 128.5, 128.0, 127.6, 126.5, 125.3, 124.9 (d, J = 4.0 Hz), 117.3 (d, J = 21.2 Hz), 112.9 (d, J = 11.1 Hz), 83.1, 72.0, 32.1, 28.2, -5.2, -5.3.
¹⁹F NMR (377 MHz, CDCl₃) δ -108.17.

ESI-HRMS: calcd for $C_{32}H_{33}FN_3O_5Si^+$ ([M + H]⁺) = 586.2168, found: 586.2166.

IR (neat): 2976, 1709, 1621, 1466, 1368, 1251, 1155, 1116, 1066, 955, 830, 811, 757, 719 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.642	4106926	50.15
2	8.478	4082284	49.85

Entry	Retention Time	Area	% Area
1	6.471	52468500	99.93
2	8.542	34950	0.07

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-(3-methyl-4-oxo-2-phenyl-4H-chromen-8-yl)oxazol-5-yl)propanoate (C38)

 $(C_{34}H_{35}NO_6Si)$ 52.9 mg, 91% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). $[\alpha]_D^{24} = +8.0$ (c = 1.33, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralpak IA-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (major) = 7.87 min, tr (minor) = 10.53 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (dd, *J* =7.6, 1.6 Hz, 1H), 8.28 (dd, *J* =7.6, 1.6 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.65 – 7.57 (m, 2H), 7.52 – 7.36 (m, 7H), 7.01 (s, 1H), 3.27 (d, *J* = 15.6 Hz, 1H), 3.22 (s, 1H), 3.13 (d, *J* = 15.2 Hz, 1H), 2.28 (s, 3H), 1.24 (s, 9H), 0.47 (d, *J* = 3.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 178.7, 175.5, 161.0, 157.6, 152.9, 149.6, 134.8, 134.5, 133.6, 133.2, 130.6, 130.1, 129.8, 128.5, 128.1, 128.0, 126.2, 124.6, 123.3, 117.8, 117.6, 83.0, 72.2, 32.0, 28.0, 12.1, -5.2, -5.3.

ESI-HRMS: calcd for $C_{34}H_{36}NO_6Si^+$ ([M + H]⁺) = 582.2306, found: 582.2307.

IR (neat): 2974, 1710, 1631, 1580, 1438, 1390, 1252, 1153, 1112, 1064, 1020, 947, 835, 762, 736, 698, 645 cm⁻¹.

Entry	Retention Time	Area	% Area
1	7.622	32233922	50.08
2	10.411	32131765	49.92

Entry	Retention Time	Area	% Area
1	7.868	10556446	99.95
2	10.532	5238	0.05

Tert-butyl (*R*)-3-(2-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C39)

(C₄₅H₅₁NO₅Si) 57.1 mg, 80% yield, 98% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{23} = -4.2$ (c = 2.87, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 15.17 min, tr (major) = 16.47 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.50 – 8.43 (m, 1H), 8.09 (dd, *J* = 8.8, 1.6 Hz, 1H), 8.03 – 7.97 (m, 1H), 7.93 (dd, *J* = 8.4, 2.4 Hz, 2H), 7.78 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.54 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.07 – 6.94 (m, 2H), 3.90 (s, 3H), 3.35 (d, *J* = 15.2 Hz, 1H), 3.30 (s, 1H), 3.23 – 3.16 (m, 1H), 2.26 – 2.16 (m, 6H), 2.16 – 2.08 (m, 3H), 1.85 – 1.78 (m, 6H), 1.37 (s, 9H), 0.53 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 161.3, 158.9, 148.9, 140.3, 139.1, 134.8, 134.6, 134.5, 132.9, 131.9, 130.1, 129.1, 128.8, 128.0, 126.6, 126.4, 126.1, 125.8, 125.0, 124.6, 123.7, 112.2, 83.0, 72.2, 55.3, 40.8, 37.3, 37.3, 32.1, 29.3, 28.2, -5.2, -5.3.

HRMS (ESI+) *m/z* calcd for C₄₅H₅₂NO₅Si [M+H]⁺: 714.3609, found: 714.3611.

IR (neat): 2903, 1711, 1598, 1492, 1368, 1238, 1155, 1118, 1063, 884, 810, 784, 735, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	15.135	9122657	49.58
2	16.336	9278946	50.42

Entry	Retention Time	Area	% Area
1	15.169	235928	1.09
2	16.466	21479011	98.91

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-((11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)methyl)oxazol-5-yl)propanoate (C40)

(C₃₃H₃₅NO₆Si) 22.8 mg, 40% yield, 90% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 2:1). $[\alpha]_D^{24} = -4.3$ (c = 1.15, in CH₂Cl₂). Dissolved in *i*-PrOH for **UPC²** (Daicel Chiralcel **OZ-3**, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 6.79 min, tr (major) = 7.73 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, *J* = 2.4 Hz, 1H), 7.87 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.60 – 7.52 (m, 3H), 7.49 – 7.43 (m, 1H), 7.42 – 7.32 (m, 5H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.72 (s, 1H), 5.16 (s, 2H), 4.01 (s, 2H), 3.19 – 3.12 (m, 2H), 2.99 (d, *J* = 15.6 Hz, 1H), 1.28 (s, 9H), 0.43 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 191.0, 175.6, 162.0, 160.6, 148.8, 140.6, 136.0, 135.7, 134.8, 134.6, 132.9, 132.1, 130.0, 129.7, 129.5, 129.4, 128.0, 127.9, 125.3, 125.1, 121.4, 82.9, 73.8, 72.0, 33.9, 31.9, 28.1, -5.3, -5.3.

ESI-HRMS: calcd for $C_{33}H_{36}NO_6Si^+$ ([M + H]⁺) = 570.2306, found: 570.2314.

IR (neat): 2972, 1712, 1648, 1611, 1567, 1489, 1455, 1369, 1299, 1254, 1155, 1069, 1017, 834, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.786	1296576	4.97
2	7.725	24804345	95.03

Tert-butyl (*R*)-3-(2-((1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)methyl)oxazol-5-yl)-2-(dimethyl(phenyl)silyl)-2-hydroxypropanoate (C41)

 $(C_{36}H_{39}ClN_2O_6Si)$ 34.9 mg, 53% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). $[\alpha]_D^{24} = -3.0$ (c = 1.73, in CH₂Cl₂). Colorless oil; 53% yield, 99% ee. Dissolved in *i*-PrOH for **HPLC** (Daicel Chiralcel **OZH**, *i*-PrOH/*n*-hexane = 15/85, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: tr (minor) = 27.66 min, tr (major) = 33.66 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 2H), 7.61-7.53 (m, 2H), 7.49 – 7.42 (m, 2H), 7.42 – 7.30 (m, 3H), 6.90 (d, *J* = 2.8 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.70 (s, 1H), 6.63 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.04 (s, 2H), 3.78 (s, 3H), 3.16-3.07 (m, 2H), 3.02-2.94 (m, 1H), 2.38 (s, 3H), 1.23 (s, 9H), 0.42 (d, *J* = 8.0 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 168.5, 161.3, 156.1, 148.7, 139.4, 135.5, 134.8, 134.1, 131.4, 131.0, 130.6, 130.0, 129.3, 127.9, 124.8, 115.1, 113.8, 112.0, 101.4, 82.8, 72.0, 55.8, 31.9, 28.0, 24.0, 13.5, -5.3, -5.4.

ESI-HRMS: calcd for $C_{36}H_{40}{}^{35}ClN_2O_6Si^+$ ([M + H]⁺) = 659.2339, found: 659.2330. $C_{36}H_{40}{}^{37}ClN_2O_6Si^+$ ([M + H]⁺) = 660.2372, found: 660.2372.

IR (neat): 2928, 1683, 1593, 1478, 1397, 1367, 1319, 1250, 1152, 1065, 1015, 835, 811, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	27.519	13603938	50.71
2	34.063	13223039	49.29

Entry	Retention Time	Area	% Area
1	27.657	44768	0.17
2	33.659	26481225	99.83

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-((S)-1-(3-isobutylphenyl)ethyl)oxazol-5-yl)propanoate (C42)

(C₃₀H₄₁NO₄Si) 39.1 mg, 77% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{20} = -9.3$ (c = 0.85, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (major) = 2.55 min, tr (minor) = 2.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.54 (m, 2H), 7.43 – 7.32 (m, 3H), 7.13 – 7.01 (m, 4H), 6.73 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 1H), 3.20 – 3.07 (m, 2H), 2.99 (d, *J* = 15.2 Hz, 1H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.85 – 1.79 (m, 1H), 1.63 (d, *J* = 7.6 Hz, 3H), 1.22 (s, 9H), 0.88 (d, *J* = 6.4 Hz, 6H), 0.43 (d, *J* = 8.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 166.0, 148.2, 140.3, 139.4, 134.8, 134.6, 130.0, 129.5, 127.9, 127.1, 124.6, 82.7, 72.0, 45.2, 39.3, 31.9, 30.3, 28.0, 22.5, 22.5, 20.3, -5.3, -5.4.

ESI-HRMS: calcd for $C_{30}H_{42}NO_4Si^+$ ([M + H]⁺) = 508.2878, found: 508.2878.

IR (neat): 2956, 1709, 1560, 1512, 1458, 1368, 1251, 1155, 1117, 1065, 957, 835, 810, 783, 700, 654 cm⁻¹.

Entry	Retention Time	Area	% Area
1	2.455	27282132	47.22
2	2.893	30490394	52.78

Entry	Retention Time	Area	% Area
1	2.551	39885882	99.90
2	2.993	38074	0.10

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-3-(2-((S)-1-(6-methoxynaphthalen-2-yl)ethyl)oxazol-5-yl)propanoate (C43)

(C₃₁H₃₇NO₅Si) 38.8 mg, 73% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). $[\alpha]_D^{20} = -20.5$ (c = 1.00, in CH₂Cl₂). Dissolved in *i*-PrOH for UPC² (Daicel Chiralcel OZ-3, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 210$ nm), retention time: tr (minor) = 6.62 min, tr (major) = 8.33 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (dd, *J* = 8.8, 3.2 Hz, 2H), 7.61-7.55 (m, 3H), 7.42 – 7.28 (m, 4H), 7.15 – 7.06 (m, 2H), 6.76 (s, 1H), 4.30 (q, *J* = 3.2 Hz, 1H), 3.90 (s, 3H), 3.20 – 3.08 (m, 2H), 2.99 (d, *J* = 15.6 Hz, 1H), 1.72 (d, *J* = 7.2 Hz, 3H), 1.16 (s, 9H), 0.42 (d, *J* = 8.0 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 165.9, 157.6, 148.4, 137.3, 134.7, 134.6, 133.7, 130.0, 129.4, 129.1, 127.9, 127.3, 126.2, 125.7, 124.6, 119.0, 105.7, 82.7, 72.0, 55.4, 39.6, 31.8, 27.9, 20.2, -5.3, -5.4.

ESI-HRMS: calcd for $C_{31}H_{38}NO_5Si^+([M + H]^+) = 532.2514$, found: 532.2505.

IR (neat): 2976, 1709, 1606, 1559, 1505, 1426, 1369, 1264, 1156, 1117, 1067, 836, 811, 702 cm⁻¹.

Entry	Retention Time	Area	% Area
1	6.317	4971026	50.34
2	8.259	4903171	49.66

Entry	Retention Time	Area	% Area
1	6.579	7426376	99.58
2	8.388	31513	0.42

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-3-(2-(5-(2,5-dimethylphenoxy)-2-methylpentan-2yl)oxazol-5-yl)-2-hydroxypropanoate (C44)

(C₃₂H₄₅NO₅Si) 46.4 mg, 84% yield, 99% ee; Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). $[\alpha]_D^{23} = -18.0$ (c = 1.16, in CH₂Cl₂). Dissolved in *i*-PrOH for **HPLC** (Daicel Chiralpak **IA**, *i*-PrOH/*n*-hexane = 5/95, flow rate = 1.0 mL/min, $\lambda = 210$ nm), retention time: tr (major) = 8.27 min, tr (minor) = 9.33 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.45 – 7.33 (m, 3H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.69 (s, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.58 (s, 1H), 3.86 (t, *J* = 6.0 Hz, 2H), 3.20 – 3.12 (m, 2H), 3.08 – 2.96 (m, 1H), 2.30 (s, 3H), 2.16 (s, 3H), 1.85 – 1.79 (m, 2H), 1.66 – 1.57 (m, 2H), 1.35 (s, 6H), 1.31 (s, 9H), 0.46 (d, *J* = 11.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.7, 169.5, 157.1, 148.0, 136.6, 134.8, 134.7, 130.4, 130.0, 127.9, 124.2, 123.7, 120.7, 112.1, 82.7, 72.0, 68.0, 38.4, 36.9, 31.9, 28.1, 26.5, 26.4, 25.1, 21.6, 15.9, -5.2, -5.3.

ESI-HRMS: calcd for C₃₂H₄₆NO₅Si⁺ ([M + H]⁺) = 552.3140, found: 552.3146. **IR** (neat): 2972, 1710, 1557, 1509, 1458, 1369, 1252, 1156, 1129, 1066, 836, 809, 783, 701 cm⁻¹.

Entry	Retention Time	Area	% Area
1	8.094	30027675	49.87
2	9.133	30188215	50.13

Entry	Retention Time	Area	% Area
1	8.267	4183849	99.96
2	9.325	1529	0.04

10. References

- (a) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie and X. M. Feng, *Angew. Chem. Int. Ed.*, 2008, 47, 1308-1311; (b) X. Zhou, D. J. Shang, Q. Zhang, L. L. Lin, X. H. Liu and X. M. Feng, *Org. Lett.*, 2009, 11, 1401-1404.
- (a) D. A. Nicewicz and J. S. Johnson, J. Am. Chem. Soc., 2005, 127, 6170-6171; (b) C. Bolm, A. Kasyan, P. Heider, S. Saladin, K. Drauz, K. Günther and C. Wagner, Org. Lett., 2002, 4, 2265-2267; (c) M. M. Guan, S. Y. Wang, Y. Luo, W. D. Cao, X. H. Liu and X. M. Feng, Chem. Sci. 2021, 12, 7498-7503.
- 3 W. D. Cao, D. Tan, R. Lee and C. H. Tan, J. Am. Chem. Soc. 2018, 140, 1952-1955.
- 4 S. A. Weicker and D. W. Stephan, *Chem. Eur. J.* 2015, **21**, 13027-13034.
- 5 (a) S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale and V. K. Singh, Org. Lett., 2019, 21, 417-422; (b) J. Kim and E. J. Yoo, Org. Lett. 2021, 23, 4256-4260.
- (a) G. C. Senadi, W. P Hu, J. S. Hsiao, J. K. Vandavasi, C.Y. Chen, and J. J. Wang, Org. Lett., 2012, 14, 4478-4481. (b) J. P. Weyrauch, A. S. Hashmi, A. Schuster, T. Hengst, S. Schetter, A. Littmann, M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey, J. W. Bats, Chem. Eur. J. 2010, 16, 956-963; (c) G. Z. Dong, M. Bao, X. D. Xie, S. K. Jia, W. H. Hu and X. F. Xu, Angew. Chem. Int. Ed., 2021, 60, 1992–1999. (d) J. S. Poh, S. Makai, T. Von Keutz, D. N. Tran, C. Battilocchio, P. Pasau, and S. V. Ley, Angew. Chem. Int. Ed. 2017, 56, 1864-1868; (e) F. Yu, Y. Z. Wang, Y. Hang, W. M. Tang, Z. F. Zhao, D. Oupický. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2235–2242. (f) Q. Wang, J. N. Jin, X. Chen, X. G. Wang, B. S. Zhang, J. W. Ma, and Y. M. Liang, J. Org. Chem. 2018, 83, 14626–14636. (g) B. J. Lim, I. Hwang, A. D. Ellington and J. L. Sessler, Helv. Chim. Acta 2019, 102, e1800186. (h) F. S. He, P. Bao, F. Yu, L. H. Zeng, W. P. Deng and J. Wu, Org. Lett., 2021, 23, 7472-7476.
- 7.....Y. H. Mo, Q. Y. Chen, J. Z. Li, D. Ye, Y. Q. Zhou, S. X. Dong, X. H. Liu, and X. M. Feng, ACS Catal., 2023, 13, 877–886.
- 8.....(a) G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei and D. W. Stephan, *Dalton Trans.*, 2007, 3407–3414; (b) J. J. Tian, N. Liu, Q. F. Liu, W. Sun and X. C. Wang, J. Am. *Chem. Soc.*, 2021, **143**, 3054-3059.

11. Copies of the NMR spectra for new compounds

A2

 $210 \ 200 \ 190 \ 180 \ 170 \ 160 \ 150 \ 140 \ 130 \ 120 \ 110 \ 100 \ 90 \ 80 \ 70 \ 60 \ 50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10$

A4

A5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

A6

B25

7.26 7.28 7.28 7.73 7.71 7.71 7.71

$\begin{array}{c} 4.16\\ 4.16\\ 4.14\\ 4.14\\ 4.14\\ 4.14\\ 1.05\\ 2.20\\ 1.05\\$

73

f1 (ppm)

B26

F	O-N N		1
	Į	н	-

	Parameters	
	Parameter	Value
1	Title	pdata/ 1
2	Solvent	DMSO
3	Temperature	295.3
4	Number of Scans	16
5	Spectrometer Frequency	376.55
6	Nucleus	19F

)7	-99	-101	-103	-105	-107 f1 (ppm	-109 n)	-111	-113	-115	-117

$$f1$$
 (pp)

B27

 $\begin{array}{c} 0.56\\$

Ph HO SiMe₂Ph

83

-1.35< 0.47< 0.463.30 3.19 3.16 3.16 3.16 3.16 3.12 3.12 -2.33 7.977.957.957.957.957.957.417.417.417.417.417.217.217.217.217.217.217.227.95HO SI-Value sangxp-20220517-239.7.1.1r CDCI3 294.9 16 r40° Parameters Parameter Parameter Title sangxp-/ Solvent CDCl3 Temperature 294.9 Number of Scans 16 Spectrometer Frequency 400.18 Nucleus 1H 1 2 3 4 5 6 MM -56-7.99 7.94 7.89 M -66 7.425 7.370 1.09⁴ 1.03⁴ 0.97₄ F00.9 6.04-1 F80.6 F26. F66 0.98 $8.5 \hspace{0.1in} 8.0 \hspace{0.1in} 7.5 \hspace{0.1in} 7.0 \hspace{0.1in} 6.5 \hspace{0.1in} 6.0 \hspace{0.1in} 5.5 \hspace{0.1in} 5.0 \hspace{0.1in} 4.5 \hspace{0.1in} 4.0 \hspace{0.1in} 3.5 \hspace{0.1in} 3.0 \hspace{0.1in} 2.5 \hspace{0.1in} 2.0 \hspace{0.1in} 1.5 \hspace{0.1in} 1.0 \hspace{0.1in} 0.5 \hspace{0.1in} 0.0$ -175.7-161.0-148.9 137.2 137.2 132.5 132.5 132.5 132.8 132.8 127.8 126.2 126.2~32.0 ~28.2 ~21.5 -82.8 -72.2 ---5.2 Value sangxp-20220517-239.8.1.1r CDCI3 Parameters Paran Parameter 1 Title sangxp-7 2 Solvent CDCl3 3 Temperature 295.6 4 Number of Scans 256 5 Spectrometer Frequency 100.63 Nucleus 13C

 $210 \ 200 \ 190 \ 180 \ 170 \ 160 \ 150 \ 140 \ 130 \ 120 \ 110 \ 100 \ 90 \ 80 \ 70 \ 60 \ 50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10$

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

7.95

4	4	3	3	9	9	S	S	4	4	0	0	3	0	0	-	0	0	0	6	6	∞	∞	-	00004
6	6	6	6	C.	C.	C.	5	C.	C.	C.	r.	4	4	4	4	4	4	4	ŝ	ŝ	ŝ	ŝ	6	4 0 0 0 0
0	-	-	-	5	5	5	0	0	-	-	-	-	-	0	-	0	5	-	0	0	5	5	9	m m m m m

-1.21 -0.80

	P	arameters
	Parameter	Value
1	Title	sangxp-20220504-212.1.1.1r
2	Solvent	CDCI3
3	Temperature	292.8
4	Number of Scans	16
5	Spectrometer Freque	ency 600.17
6	Nucleus	1H

7.188 <t

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

fl (ppm)

--62.89

fl (ppm)

	P	arameters
	Parameter	Value
1	Title	as-20220331-SXP-171.9.1.1r
2	Solvent	CDCI3
3	Temperature	293.4
4	Number of Scans	16
5	Spectrometer Freque	ncy 564.72
6	Nucleus	19F

<-134.86
<-134.89
<-134.89
<-136.66
<-136.70</pre>

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

fl (ppm)

100

8.05 8.05 8.04 8.04 8.04 8.04 8.04 7.7.71 7.7.71 7.7.71 7.7.71 7.7.61 7.7.70 7.7.61 7.7.73 7.7.61 7.7.73 7.7.61 7.7.73 7.7.61 7.7.70 7.7.70 7.7.70 7.7.70 7.7.71 7.7.70 7.7.71 7.7.70 7.70 7.7	3.31 3.27 3.21 3.216 3.16 3.12 3.12	-1.33	0.49 0.48
		1	Y

	P	arameters
	Parameter	Value
1	Title	sangxp-20220510-223.5.1.1r
2	Solvent	CDCI3
3	Temperature	295.4
4	Number of Scans	16
5	Spectrometer Freque	incy 400.18
6	Nucleus	1H

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-0.5

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

104

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

107

$\begin{array}{c} 7.61 \\ 7.$

$\begin{array}{c} 3.18\\ 3.12\\ 3.12\\ 3.12\\ 3.12\\ 3.12\\ 2.01\\ 1.70\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 0.89\\ 0.89\\ 0.89\\ 0.88\\ 0.46\\$

	P	arameters
	Parameter	Value
1	Title	sangxp-20220518-241.1.1.1r
2	Solvent	CDCI3
3	Temperature	295.0
4	Number of Scans	16
5	Spectrometer Freque	ncy 400.18
6	Nucleus	1H

 $\begin{array}{c} 7.561\\ 7.561\\ 7.562\\ 7.562\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.575\\ 7.555\\ 7.$

 $\begin{array}{c} 7.561\\ 7.661\\ 7.661\\ 7.662\\ 7.758\\ 7.$

1	72	2
J	ັງ	4

×.		0
\bigcirc	N N	N HO SiMe ₂ Ph

	Parameters	
	Parameter	Value
1	Title	pdata/ 1
2	Solvent	CDCI3
3	Temperature	295.1
4	Number of Scans	16
5	Spectrometer Frequency 376.55	
6	Nucleus	19F

20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -2:

8.09 8.00 8.00 8.00 8.00 9.00

7.62 7.62 7.60 7.60 7.739 6.69 6.69 6.69 6.68

