Supporting Information

Bicyclic (alkyl)(amino)carbene (BICAAC) as Dual Catalyst: Activation of Primary Amides and CO₂ towards N-methylation

Nimisha Gautam,^a Ratan Logdi,^a Sreejyothi P,^a Antara Roy,^b Ashwani K. Tiwari^{*a} and Swadhin K. Mandal^{*a}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
^bDepartment of Chemistry, Indian Institute of Technology Kharagpur,

Kharagpur 721302, India

*Correspondence to: swadhin.mandal@iiserkol.ac.in

Table of Contents:		Page
1)	Materials and Methods	S2
2)	Synthesis and characterisation of primary amide compounds	S2
3)	A typical procedure for BICAAC-catalysed methylation of amides	S 6
4)	Analytical and spectral characterisation of N-methyl	S 7
	amides 3a-3al'	
5)	Control reactions	S26
6)	¹ H and ¹³ C{ ¹ H} NMR spectra of N-methyl amide 3a-3al'	S49
7)	¹ H and ¹³ C{ ¹ H} NMR spectra of primary amide substrates	S93
8)	Computational study	S98
9)	References	S137

1) Materials and Methods

Unless stated otherwise, substrates were obtained from commercial vendors and used as supplied. Pinacolborane was stored under an inert atmosphere in the glovebox and obtained from Sigma Aldrich chemicals. BICAAC^{S1} was synthesised and stored in the MBraun glovebox, maintained below 0.1 ppm of O2 and H2O levels. Substrates 2ak and 2al were prepared from their corresponding acid following the literature procedure.^{S2} Solvents were dried over a sodium/benzophenone mixture or CaH₂ and distilled prior to use. Column chromatography was performed on neutral alumina. The reactions were performed with a 25 mL Schlenk tube equipped with a stir bar and a J. Young valve using standard Schlenk techniques or inside an Mbraun glovebox. Carbon dioxide was purchased in a 5.5 purity gas cylinder with 99.995% purity from Praxair. ¹³CO₂ cylinder was obtained from Sigma Aldrich. ¹H, ¹³C, ¹¹B and ¹⁹F spectra were recorded on a Bruker Avance 500 MHz spectrometer with residual undeuterated solvent as a reference. All ¹³C, ¹¹B and ¹⁹F NMR spectra were obtained with ¹H decoupling. Chemical shifts (δ) are given in ppm, and J values are given in Hz. Highresolution mass spectrometry (HRMS) was acquired on a Bruker maXis impact spectrometer. GC analysis has been performed using MS and TCD detectors using Clarus 590 (PerkinElmer) instrument.

2) Synthesis and characterisation of primary amide compounds

2.1) Synthesis of substrates 2x, 2y, 2ah and 2ai

Compounds **2x**, **2y**, **2ah** and **2ai** were prepared by etherification of aryl chlorides containing cyano group, followed by hydration of nitrile to amide as in the reported literature.^{S3, S4}

4-(Cyclododecyloxy)benzamide (**2x**): ¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.75 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 5.79 (brs, 2H), 4.52-4.47 (m, 1H), 1.83-1.76 (m, 2H), 1.69-1.62 (m, 2H), 1.49-1.44 (m, 4H), 1.41-1.38 (m, 14H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): δ = 169.1, 161.7, 129.4, 125.2, 115.5, 75.8, 28.7, 24.7, 24.4, 23.3, 23.2, 20.8; **HRMS**: m/z calcd. For C₁₉H₃₀NO₂⁺ [M + H]⁺ 304.2271, found 304.2281. The compound was purified by column chromatography on neutral alumina with ethyl acetate as eluent.

4-((Tetrahydro-2H-pyran-4-yl)oxy)benzamide (**2y**): ¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.77 (d, *J* = 9.0 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 5.89 (brs, 2H),), 4.59-4.55 (m, 1H), 4.00-3.96 (m, 2H), 3.62-3.57 (m, 2H), 2.06-2.01 (m, 2H), 1.84-1.77 (m, 2H); ¹³C{¹H} **NMR**(125 MHz, CDCl₃, 25 °C): δ = 169.1, 160.5, 129.5, 125.9, 115.6, 71.8, 65.1, 31.7; **HRMS**: m/z calcd. For C₁₂H₁₅NO₃Na⁺ [M + Na]⁺ 244.0944, found 244.0951. The compound was purified by column chromatography on neutral alumina with ethyl acetate as eluent.

4-(((1S,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)benzamide (**2ah**): ¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.75 (d, *J* = 9.0 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 5.98 (brs, 2H), 4.38-4.35 (m, 1H), 2.42-2.36 (m, 1H), 2.24-2.18 (m, 1H), 1.80-1.75 (m, 2H), 1.38-1.32 (m, 1H), 1.28-1.22 (m, 1H), 1.10-1.07 (m, 1H), 0.95 (s, 3H), 0.925 (s, 3H), 0.919 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 169.3, 162.4, 129.4, 125.1, 115.3, 83.3, 49.7, 47.8, 45.3, 36.8, 28.0, 26.9, 19.8, 19.1, 13.8; **HRMS**: m/z calcd. For C₁₇H₂₃NO₂Na⁺ [M + Na]⁺ 296.1621, found 296.1620. The compound was purified by column chromatography on neutral alumina with ethyl acetate as eluent.

2.2) Synthesis of substrate 2aj

The amide derivative of estrone was prepared by first methylation of its -OH functionality, followed by reduction of ketone moiety. The obtained alcohol was then treated with 4-

chlorobenzonitrile to give the nitrile derivative of estrone which then underwent hydration in presence of 10 mol% of NaOH to give the desired primary amide. ^{S3, S4, S5, S6}

4-(((8R,9S,13S,14S)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]5henanthrene-17-yl)oxy)benzamide (**2aj**): ¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.75$ (d, J = 9.0 Hz, 2H), 7.20 (d, J = 8.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 6.72-6.70 (m, 1H), 6.64-6.63 (m, 1H), 5.90 (brs, 2H), 4.29 (t, J = 8.0 Hz, 1H), 3.78 (s, 3H), 2.90-2.86 (m, 2H), 2.61 (s, 1H), 2.34-2.27 (m, 2H), 2.25-2.20 (m, 1H), 2.01-1.97 (m, 1H), 1.93-1.90 (m, 1H), 1.84-1.78 (m, 1H), 1.69-1.61 (m, 1H), 1.55-1.47 (m, 3H), 1.41-1.31 (m, 3H), 0.95 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 169.1$, 162.3, 157.6, 138.0, 132.6, 129.3, 126.5, 125.2, 115.6, 114.0, 111.7, 86.7, 55.3, 50.0, 44.03, 43.99, 41.1, 38.7, 37.7, 29.9, 28.3, 27.4, 26.4, 23.7, 12.2; HRMS: m/z calcd. For C₂₆H₃₁NO₃Na⁺ [M + Na]⁺ 428.2196, found 428.2184. The compound was purified by column chromatography on neutral alumina with ethyl acetate as eluent.

2.3) Synthesis of the substrate 2am

The amide derivative of α -tocopherol was prepared by following the reported literatures. ^{S2, S7}

4-((((S)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-

yl)oxy)methyl)benzamide (**2am**): ¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.86 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 6.10 (d, NH, 2H), 4.76 (s, 2H), 2.59 (t, *J* = 6.5 Hz, 2H), 2.20 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 1.86-1.75 (m, 3H), 1.64-1.50 (m, 3H), 1.44-1.35 (m, 4H), 1.30-1.21 (m, 10H), 1.16-1.07 (m, 6H), 0.88-0.84 (m, 12H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 169.4, 148.2, 148.1, 142.5, 132.7, 127.9, 127.7, 127.6, 126.0, 123.2, 117.8, 75.0, 74.0, 40.21, 40.16, 39.5, 37.7, 37.6, 37.5, 37.4, 32.9, 32.8, 31.44, 31.39, 28.1, 24.9, 24.6, 24.0, 22.85, 22.76, 21.2, 20.8, 19.89, 19.83, 19.77, 13.0, 12.1, 11.9; **HRMS**: m/z calcd. For C₃₇H₅₇NO₃Na⁺ [M + Na]⁺ 586.4231, found 586.4235. The compound was purified by column chromatography on neutral alumina with ethyl acetate as eluent.

3) Typical procedure for BICAAC-catalysed methylation of amides, synthesis of N-methyl amide derivatives 3a-3al'

Scheme S1. Freeze-pump-thaw technique during catalysis using Schlenk tube with a J. Young valve.

Inside an argon-filled glovebox, a 25 mL Schlenk tube equipped with a stir bar and a J. Young valve was charged with amide (0.2 mmol), BICAAC (10 mol%), pinacolborane (0.8 mmol) and dioxane (1 mL). The mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of $CO_2/^{13}CO_2$. The reaction flask was sealed tightly and stirred for 24 h at 120 °C. Then the reaction mixture was dried using a high vacuum pump and purified by column chromatography on neutral alumina. The N-methyl amide was then obtained as an analytically pure compound using a hexane-ethyl acetate mixture as the eluent. The corresponding product was identified by ¹H and ¹³C{¹H} NMR spectroscopy in CDCl₃ or DMSO-d6.

4) Analytical and spectral characterisation of N-methyl amide 3a-3al'

¹H and ¹³C{¹H} NMR data for N-methylated products:

4-Methyl-*N*-methylbenzamide (3a)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.65$ (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.34 (brs, NH, 1H), 2.98 (d, J = 5.0 Hz, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 141.8, 131.8, 129.3, 127.0, 27.0, 21.5. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 77%.

4-Methoxy-*N*-methylbenzamide (3b)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.73 (d, *J* = 9.0 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.34 (brs, NH, 1H), 3.82 (s, 3H), 2.97 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃,

25 °C): δ = 168.0, 162.1, 128.7, 127.0, 113.8, 55.5, 26.9. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 68%.

4-Ethoxy-*N*-methylbenzamide (3c)^{S9}:

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.71$ (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.24 (brs, NH, 1H), 4.05 (q, J = 7.0 Hz, 2H), 2.98 (d, J = 5.0 Hz, 3H), 1.41 (t, J = 7.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.0$, 161.5, 128.7, 126.8, 114.2, 63.7, 26.9, 14.8; **HRMS:** m/z calcd. For C₁₀H₁₃O₂Nna⁺ [M + Na]⁺ 202.0838, found 202.0845. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 55%.

4-Tert-butyl-*N*-methylbenzamide (3d)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.70$ (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 6.42 (brs, NH, 1H), 2.98 (d, J = 4.5 Hz, 3H), 1.31 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 154.8, 131.8, 126.8, 125.5, 35.0, 31.3, 26.9. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 69%.

N-Methylbenzamide (3e) ^{S10}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.76$ (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 6.39 (brs, NH, 1H), 3.00 (d, J = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 134.7, 131.4, 128.6, 127.0, 26.9. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 57%.

N-Methyl-4-(methylthio)benzamide (3f)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.67$ (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.41 (brs, NH, 1H), 2.97 (d, J = 4.5 Hz, 3H), 2.48 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.9$, 143.3, 130.8, 127.4, 125.5, 26.9, 15.1. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 57%.

4-(Dimethylamino)-*N*-methylbenzamide (3g)^{S11}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.67$ (d, J = 9.0 Hz, 2H), 6.65 (d, J = 9.0 Hz, 2H), 6.17 (brs, NH, 1H), 2.99 (s, 6H), 2.96 (d, J = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.3$, 152.5, 128.4, 121.6, 111.2, 40.2, 26.8. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 62%.

N-Methyl-4-(trifluoromethyl)benzamide (3h)^{S12}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.86$ (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 6.48 (brs, NH, 1H), 3.01 (d, J = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C, TMS): $\delta = 167.2$, 138.0, 133.3 (q, J = 32.7 Hz), 127.5, 125.7 (q, J = 3.9 Hz), 123.8 (q, J = 270.5 Hz), 27.1; ¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C): $\delta = -62.9$. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 58%.

4-Fluoro-N-methylbenzamide (3i) S13, S14, S15:

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.78-7.75$ (m, 2H), 7.07 (t, J = 9.0 Hz, 2H), 6.39 (brs, NH, 1H), 2.98 (d, J = 4.5 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 167.4$, 164.7 (d, J = 250 Hz), 130.9 (d, J = 3.3 Hz), 129.3 (d, J = 8.9 Hz), 115.6 (d, J = 21.8 Hz), 27.0; ¹⁹F{¹H} **NMR** (470 MHz, CDCl₃, 25 °C): $\delta = -108.5$. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 55%.

¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.69$ (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 6.29 (brs, NH, 1H), 2.99 (d, J = 4.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 167.4$, 137.7, 133.1, 128.9, 128.4, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 67%.

4-Iodo-N-methylbenzamide (3k)^{S16}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.75$ (d, J = 7.0 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 6.37 (brs, NH, 1H), 2.98 (d, J = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta =$ 167.7, 137.8, 134.1, 128.6, 98.3, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (86:14 v/v) as eluent. Yield: 62%.

2-Fluoro-N-methylbenzamide (31)^{S17}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 8.11(td, *J* = 8.0, 2.0 Hz, 1H), 7.49-7.44 (m, 1H), 7.28-7.25 (m, 1H), 7.14-7.10 (m, 1H), 6.77 (brs, NH, 1H), 3.04 (dd, *J* = 4.5, 1.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 164.1 (d, *J* = 3.2 Hz), 160.7 (d, *J* = 245.7 Hz), 133.2 (d, *J* = 9.2 Hz), 132.1 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 124.9 (d, *J* = 2.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 121.1 (d, *J* = 11.8 Hz), 116.0 (d, *J* = 1.9 Hz), 121.1 (d, J = 1.9 Hz), 121.1 (d, J = 1.9 Hz), 121.1 (d, J = 1.9 Hz

24.9 Hz), 26.9; ¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C): δ = -114.0. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (90:10 v/v) as eluent. Yield: 37%.

3-Methyl-N-methylbenzamide (3m)^{S8}:

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.56$ (s, 1H), 7.51-7.49 (m, 1H), 7.25 (d, J = 4.5 Hz, 2H), 6.46 (brs, NH, 1H), 2.95 (d, J = 4.5 Hz, 3H), 2.33 (s, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 138.4, 134.7, 132.1, 128.4, 127.7, 123.9, 26.9, 21.4. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 69%.

3-Methoxy-*N*-methylbenzamide (3n)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.33-7.27 (m, 2H), 7.24-7.23 (m, 1H, overlapped with CDCl₃), 7.00-6.99 (m,1H), 6.23 (brs, NH, 1H), 3.81 (s, 3H), 2.98 (d, *J* = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 168.3, 160.0, 136.3, 129.7, 118.7, 117.7, 112.4, 55.6, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 48%.

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.51-7.47$ (m, 2H), 7.40-7.36 (m, 1H), 7.19-7.16 (m, 1H), 6.31 (brs, NH, 1H), 3.01 (d, J = 5.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 167.2$, 163.9, 161.9, 137.0 (d, J = 6.8 Hz), 130.3 (d, J = 7.6 Hz), 122.4 (d, J = 2.8 Hz), 118.5 (d, J = 21.5 Hz), 114.4 (d, J = 22.9 Hz), 27.0; ¹⁹F{¹H} **NMR** (470 MHz, CDCl₃, 25 °C): $\delta = -111.9$. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 46%.

3-Chloro-*N***-methylbenzamide** (**3p**)^{S8}**:**

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.74$ (s, 1H), 7.63-7.61 (m, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 6.54 (brs, NH, 1H), 2.98 (d, J = 5.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 167.2$, 136.5, 134.8, 131.5, 130.0, 127.4, 125.1, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 68%.

3-Bromo-*N***-methylbenzamide** (**3**q)^{S18}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.94 (m, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 6.58 (brs, NH, 1H), 3.02 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H}

NMR (125 MHz, CDCl₃, 25 °C): δ = 167.0, 136.7, 134.4, 130.3, 130.2, 125.6, 122.8, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 60%.

3-Fluoro-4-methoxy-*N***-methylbenzamide** (**3r**):

¹**H** NMR (500 MHz, DMSO-d₆, 25 °C): $\delta = 8.37$ (brs, NH, 1H), 7.69-7.66 (m, 2H), 7.22 (t, J = 9.0 Hz, 1H), 3.88 (s, 3H), 2.77 (d, J = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆, 25 °C): $\delta = 165.1$, 150.9 (d, J = 242.7 Hz), 149.4 (d, J = 10.4 Hz), 127.1 (d, J = 5.6 Hz), 124.04 (d, J = 2.9 Hz), 114.6 (d, J = 19.2 Hz), 113.2, 56.1, 26.2; ¹⁹F{¹H} NMR (470 MHz, DMSO-d₆, 25 °C): $\delta = -135.3$; HRMS: m/z calcd. For C₉H₁₀O₂NFNa⁺ [M + Na]⁺ 206.0588, found 206.0593. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (74:26 v/v) as eluent. Yield: 75%.

3-Chloro-4-methoxy-N-methylbenzamide (3s)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.79 (s, 1H), 7.66 (d, *J* = 9.0 Hz, 1H), 6.87 (d, *J* = 8.5 Hz, 1H), 6.71 (brs, NH, 1H), 3.89 (s, 3H), 2.95 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 166.9, 157.4, 129.2, 127.8, 127.1, 122.5, 111.5, 56.3, 26.9. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 74%.

N,3,4-Trimethylbenzamide (3t)^{S13, S19}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.55 (brs, 1H), 7.47 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 6.36 (brs, NH, 1H), 2.97 (d, *J* = 4.5 Hz, 3H), 2.27 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 168.5, 140.4, 136.9, 132.3, 129.8, 128.3, 124.3, 26.8, 19.85, 19.82. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 66%.

N-Methyl-2-naphthamide (3u)^{S15}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.27$ (s, 1H), 7.84-7.82 (m, 4H), 7.51 (dt, J = 23.0, 7.0 Hz, 2H), 6.70 (brs, NH, 1H), 3.04 (d, J = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.5$, 134.8, 132.7, 132.0, 129.0, 128.5, 127.8, 127.7, 127.4, 126.8, 123.7, 27.1. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 58%.

4-(Benzyloxy)-N-methylbenzamide (3v):

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.73 (d, *J* = 8.5 Hz, 2H), 7.42-7.37 (m, 4H), 7.34-7.31 (m, 1H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.33 (brs, NH, 1H), 5.08 (s, 2H), 2.97 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 167.9, 161.3, 136.5, 128.8, 128.7, 128.2, 127.6, 127.3, 114.7, 70.2, 26.9; **HRMS:** m/z calcd. For $C_{15}H_{15}O_2Nna^+$ [M + Na]⁺ 264.0995, found 264.0995. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (78:22 v/v) as eluent. Yield: 68%.

N-Methyl-(1,1'-biphenyl)-4-carboxamide (3w)^{S10}:

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.85$ (d, J = 8.0 Hz, 2H), 7.59 (q, J = 8.5 Hz, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.0 Hz, 1H), 6.67 (brs, NH, 1H), 3.02 (d, J = 4.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 144.1, 140.1, 133.3, 128.9, 128.0, 127.5, 127.22, 127.21, 26.9. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 69%.

4-(Cyclododecyloxy)-N-methylbenzamide (3x):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.70$ (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.16 (brs, NH, 1H), 4.49-4.45 (m, 1H), 2.98 (d, J = 5.0 Hz, 3H), 1.82-1.75 (m, 2H), 1.67-1.61 (m, 2H), 1.48-1.43 (m, 4H), 1.42-1.37 (m, 14H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.0$, 161.1, 128.7, 126.6, 115.5, 75.7, 28.7, 26.9, 24.6, 24.4, 23.25, 23.20, 20.8; **HRMS**: m/z calcd. For C₂₀H₃₁O₂Nna⁺ [M + Na]⁺ 340.2247, found 340.2251. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 70%.

N-Methyl-4-[(tetrahydro-2*H*-pyran-4-yl)oxy]benzamide (3y):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.71$ (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 6.36 (brs, NH, 1H), 4.55-4.50 (m, 1H), 3.98-3.94 (m, 2H), 3.59-3.55 (m, 2H), 2.96 (d, J = 4.5 Hz, 3H), 2.02-1.99 (m, 2H), 1.80-1.74 (m, 2H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 167.8$, 159.8, 128.8, 127.2, 115.5, 71.6, 65.1, 31.7, 26.9; HRMS: m/z calcd. For C₁₃H₁₇O₃Nna⁺ [M + Na]⁺ 258.1101, found 258.1110. The compound was purified by column chromatography on neutral alumina with hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 72%.

N-Methylbenzo[d][1,3]dioxole-5-carboxamide (3z)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.26-7.24 (m, 2H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.18 (brs, NH, 1H), 5.98 (s, 2H), 2.95 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 167.7, 150.2, 148.1, 129.0, 121.5, 108.0, 107.7, 101.7, 27.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 70%.

N-Methylthiophene-2-carboxamide (3aa)^{S8}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.53-7.52 (m, 1H), 7.42 (d, *J* = 4.5 Hz, 1H), 7.04 (t, *J* = 4.5 Hz, 1H), 6.47 (brs, NH, 1H), 2.97 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 162.9, 139.2, 129.8, 128.1, 127.7, 26.8. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (84:16 v/v) as eluent. Yield: 67%.

N-Methylfuran-2-carboxamide (3ab) ^{S20, S21}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.40 (dd, *J* = 1.0 Hz, 1H), 7.08 (m, 1H), 7.47-7.46 (m, 1H), 2.96 (d, *J* = 5.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 159.2, 148.3, 143.9, 114.0, 112.2, 26.0. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 45%.

N,3-Dimethylthiophene-2-carboxamide (3ac) ^{S22}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.22$ (d, J = 5.0 Hz, 1H), 6.86 (d, J = 5.0 Hz, 1H), 5.92 (brs, NH, 1H), 2.95 (d, J = 5.0 Hz, 3H), 2.49 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 164.0$, 141.0, 132.0, 131.0, 126.3, 26.8, 15.7. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (88:12 v/v) as eluent. Yield: 63%.

N,2-Dimethylthiophene-3-carboxamide (3ad):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.08$ (d, J = 5.5 Hz, 1H), 7.00 (d, J = 5.0 Hz, 1H), 5.99 (brs, NH, 1H), 2.93 (d, J = 4.0 Hz, 3H), 2.68 (s, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 165.5$, 144.4, 132.1, 126.4, 121.9, 26.5, 14.9; **HRMS:** m/z calcd. For C8H₉ONS⁺ [M + H]⁺ 156.0478, found 156.0482. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 58%.

N-Methylferrocenecarboxamide (3ag) ^{S23}:

¹**H** NMR (500 MHz, DMSO-d₆, 25 °C): δ = 7.70 (brs, NH, 1H), 4.74 (s, 2H), 4.32 (s, 2H), 4.15 (s, 5H), 2.70 (d, *J* = 4.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆, 25 °C): δ = 169.3, 76.9, 69.7, 69.2, 68.0, 25.9. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (78:22 v/v) as eluent. Yield: 57%.

N-Methyl-4-(((1S,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)benzamide (3ah):

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.69 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 6.11 (brs, NH, 1H), 4.36-4.35 (m, 1H), 2.99 (d, J = 4.5 Hz, 3H), 2.40-2.36 (m, 1H), 2.23-2.18

(m, 1H), 1.75 (s, 2H), 1.71 (s, 1H), 1.37-1.32 (m, 1H), 1.27-1.22 (m, 1H), 1.10-1.06 (m, 1H), 0.95 (s, 3H), 0.96 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): δ = 168.1, 161.8, 128.7, 126.3, 115.2, 83.1, 49.6, 47.7, 45.2, 36.8, 28.0, 26.9, 26.8, 19.8, 19.0, 13.8; HRMS: m/z calcd. For C₁₈H₂₅O₂Nna⁺ [M + Na]⁺ 310.1777, found 310.1789. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 71%.

4-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)-N-methylbenzamide (3ai):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.71$ (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 6.40 (brs, NH, 1H), 4.09-4.04 (m, 1H), 2.96 (d, J = 4.5 Hz, 3H), 2.15-2.10 (m, 2H), 1.72-1.70 (m, 2H), 1.53-1.46 (m, 2H), 1.12-0.99 (m, 2H), 0.97-0.93 (m, 1H), 0.91-0.89 (m, 6H), 0.73 (d, J = 7.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.0$, 161.1, 128.8, 126.5, 115.2, 77.7, 48.1, 40.2, 34.5, 31.5, 26.8, 26.2, 23.8, 22.2, 20.8, 16.7; **HRMS:** m/z calcd. For C₁₈H₂₇O₂Nna⁺ [M + Na]⁺ 312.1934, found 312.1900. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 67%.

4-(((8R,9S,13S,14S)-3-Methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]21henanthrene-17-yl)oxy)-N-methylbenzamide (3aj):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.72 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 9.0 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.73-6.70 (m, 1H), 6.64 (s, 1H), 6.31 (brs, NH, 1H), 4.28 (t, *J* = 8.0 Hz, 1H), 3.78 (s, 3H), 2.99 (d, *J* = 3.5 Hz, 3H), 2.90-2.84 (m, 2H), 2.34-2.28 (m, 2H), 2.24-2.19 (m, 1H), 2.00-1.97 (m, 1H), 1.93-1.90 (m, 1H), 1.83-1.77 (m, 1H), 1.68-1.61 (m, 1H), 1.54-1.45 (m, 3H), 1.41-1.28 (m, 3H), 0.96 (s, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): δ = 168.0, 161.7, 157.6, 138.0, 132.5, 128.6, 126.6, 126.4, 115.5, 113.9, 111.6, 86.6, 55.3, 50.0, 44.0, 43.9, 38.6, 37.6, 29.9, 28.3, 27.4, 26.9, 26.4, 23.6, 12.2; **HRMS:** m/z calcd. For C₂₇H₃₄O₃N [M + H]⁺ 420.2533, found 420.2554. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 59%.

4-(*N*,*N*-dipropylsulfamoyl)-*N*-methylbenzamide (3ak)^{S24}:

¹**H** NMR (500 MHz, CDCl₃, 25 °C): δ = 7.84 (d, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 6.73 (brs, NH, 1H), 3.05 (t, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 2.98 (d, *J* = 4.5 Hz, 3H), 1.50 (sext, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, *J* = 4.5 Hz, 3H), 3.05 (t, *J* = 7.5 Hz, 4H), 3.05 (t, J = 4.5 Hz, 3H), 3.05 (t, J = 7.5 Hz, 4H), 3.05 (t, J = 7.5 Hz

4H), 0.83 (t, J = 7.0 Hz, 6H; ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.1$, 142.6, 138.4, 127.8, 127.2, 50.0, 27.0, 22.0, 11.2. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (70:30 v/v) as eluent. Yield: 63%.

6-(3-(Adamantan-1-yl)-4-methoxyphenyl)-N-methyl-2-naphthamide (3al):

¹**H NMR** (500 MHz, DMSO-d₆, 25 °C): $\delta = 8.59-8.58$ (m, 1H), 8.42 (s, 1H), 8.18 (s, 1H), 8.06-8.03 (m, 2H), 7.92 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.11 (d, J = 8.5 Hz, 1H), 3.86 (s, 3H), 2.85 (d, J = 4.0 Hz, 3H), 2.13 (s, 6H), 2.06 (s, 3H), 1.76 (s, 6H); ¹³C{¹H} **NMR** (125 MHz, DMSO-d₆, 25 °C): $\delta = 166.7$, 158.5, 139.4, 138.0, 134.6, 131.7, 131.5, 130.9, 129.4, 128.0, 127.0, 125.8, 125.6, 125.0, 124.4, 124.0, 112.7, 55.3, 40.1, 36.6, 36.5, 28.4, 26.3; **HRMS:** m/z calcd. For C₂₉H₃₁O₂N [M + Na]⁺ 448.2247, found 448.2265. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 63%.

N-Methyl-4-((((S)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6yl)oxy)methyl)benzamide (3am):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.81 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.5 Hz, 2H), 6.41 (brs, NH, 1H), 4.74 (s, 2H), 3.02 (d, *J* = 5.0 Hz, 3H), 2.59 (t, *J* = 6.5 Hz, 2H), 2.20 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 1.86-1.75 (m, 2H), 1.61-1.49 (m, 4H), 1.45-1.35 (m, 4H), 1.29-1.25 (m, 10H), 1.15-1.08 (m, 6H), 0.88-0.85 (m, 12H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): δ = 168.2, 148.2, 148.1, 141.6, 134.0, 127.9, 127.6, 127.2, 126.0, 123.1, 117.8, 75.0, 74.1, 40.2, 39.5, 37.7, 37.6, 37.5, 37.4, 32.9, 32.8, 31.4, 31.3, 28.1, 27.0, 24.9, 24.5, 24.0, 22.8, 22.7, 21.1, 20.8, 19.9, 19.8, 19.7, 13.0, 12.1, 11.9; **HRMS:** m/z calcd. For C₃₈H₅₉O₃NK⁺ [M + K]⁺ 616.4127, found 616.4170. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 79%.

N-(Methyl-¹³C)-4-(((1S,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)benzamide (3ah'):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.70$ (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.44 (brs, NH, 1H), 4.35-4.33 (m, 1H), 2.95 (dd, $J_I = 138$ Hz, $J_2 = 4.5$ Hz, 3H), 2.39-2.33 (m, 1H), 2.22-2.17 (m, 1H), 1.77-1.73 (m, 2H), 1.38-1.31 (m, 1H), 1.26-1.22 (m, 1H), 1.08-1.05 (m, 1H), 0.93 (s, 3H), 0.91 (s, 6H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.1$, 161.8, 128.7, 126.4, 115.2, 83.2, 49.6, 47.7, 45.2, 36.8, 28.0, 26.8, 19.8, 19.0, 13.8; **HRMS:** m/z calcd. For ¹³CC₁₇H₂₅O₂Nna⁺ [M + Na]⁺ 311.1856, found 311.1834. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 71%.

4-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)-*N*-(methyl-¹³C)benzamide (3ai'):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.70$ (d, J = 8.5 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 6.35 (brs, NH, 1H), 4.10-4.05 (m, 1H), 2.95 (dd, $J_I = 138.5$ Hz, $J_2 = 4.5$ Hz, 3H), 2.16-2.10 (m, 2H), 1.73-1.69 (m, 2H), 1.53-1.45 (m, 2H), 1.12-1.00 (m, 2H), 0.97-0.93 (m, 1H), 0.92-0.89 (m, 6H), 0.74 (d, J = 7.0 Hz, 3H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 168.0$, 161.1, 128.8, 126.6, 115.2, 77.7, 48.1, 40.2, 34.5, 31.5, 26.8, 26.3, 23.9, 22.2, 20.8, 16.7; **HRMS:** m/z calcd. For ¹³CC₁₇H₂₈O₂N⁺ [M + H]⁺ 291.2193, found 291.2170. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (82:18 v/v) as eluent. Yield: 69%.

4-(((8R,9S,13S,14S)-3-Methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]24henanthrene-17-yl)oxy)-*N*-(methyl-¹³C)benzamide (3aj'):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.72 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.5 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.65 (s, 1H), 6.41 (brs, NH, 1H), 4.28 (t, *J* = 7.5 Hz, 1H), 3.78 (s, 3H), 2.97 (dd, *J*₁ = 138.5 Hz, *J*₂ = 4.5 Hz, 3H), 2.90-2.86 (m, 2H), 2.34-2.28 (m, 2H), 2.24-2.20 (m, 1H), 2.00-1.97 (m, 1H), 1.93-1.90 (m, 1H), 1.83-1.78 (m, 1H), 1.67-1.61 (m, 1H), 1.52-1.48 (m, 3H), 1.39-1.27 (m, 3H), 0.95 (s, 3H); ¹³C{¹H} NMR (125) MHz, CDCl₃, 25 °C): δ = 168.0, 161.7, 157.6, 138.0, 132.5, 128.6, 126.6, 126.4, 115.4, 113.9, 111.6, 86.6, 55.3, 50.0, 43.95, 43.89, 38.6, 37.6, 29.8, 28.2, 27.4, 26.8, 26.4, 23.6, 12.1; **HRMS:** m/z calcd. For ¹³CC₂₆H₃₃O₃Nna⁺ [M + Na]⁺ 443.2431, found 443.2418. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (76:24 v/v) as eluent. Yield: 63%.

4-(*N*,*N*-Dipropylsulfamoyl)-*N*-(methyl-¹³C)benzamide (3ak'):

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.84$ (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 6.81 (brs, NH, 1H), 3.04 (t, J = 7.5 Hz, 4H), 2.96 (dd, $J_I = 138.5$ Hz, $J_2 = 4.5$ Hz, 3H), 1.50 (sext, J = 7.5 Hz, 4H), 0.83 (t, J = 7.0 Hz, 6H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta =$ 167.1, 142.6, 138.4, 127.8, 127.2, 50.0, 27.0, 22.0, 11.2; **HRMS:** m/z calcd. For ¹³CC₁₃H₂₃N₂ O₃S⁺ [M + H]⁺ 300.1502, found 300.1524. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (74:26 v/v) as eluent. Yield: 67%.

6-(3-(Adamantan-1-yl)-4-methoxyphenyl)-N-(methyl-¹³C)-2-naphthamide (3al'):

¹**H NMR** (500 MHz, DMSO-d₆, 25 °C): δ = 8.58 (s, 1H), 8.42 (s, 1H), 8.18 (s, 1H), 8.06-8.04 (m, 2H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.65-7.63 (m, 1H), 7.57 (s, 1H),

7.11 (d, J = 8.5 Hz, 1H), 3.86 (s, 3H), 2.84 (dd, $J_1 = 137.5$ Hz, $J_2 = 4.5$ Hz, 3H), 2.14 (s, 6H), 2.07 (s, 3H), 1.76 (s, 6H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆, 25 °C): $\delta = 166.6$, 158.5, 139.4, 138.0, 134.5, 131.7, 131.5, 130.9, 129.3, 128.0, 127.0, 125.8, 125.6, 125.0, 124.3, 124.0, 112.7, 55.3, 40.1, 36.6, 36.5, 28.4, 26.3; HRMS: m/z calcd. For ¹³CC₂₈H₃₁O₂Nna⁺ [M + Na]⁺ 449.2325, found 449.2363. The compound was purified by column chromatography on neutral alumina with a hexane and ethyl acetate mixture (80:20 v/v) as eluent. Yield: 56%.

5) Control reactions

i) BICAAC-CO₂ adduct (1B) catalysed N-methylation of 4-methyl benzamide: proof to establish that 1B is catalytically active species

Scheme S2. Investigating 1B as a catalyst for N-methylation of 2a

A 25 mL Schlenk tube equipped with a stir bar and a J. Young valve was charged with 4methyl benzamide, **2a** (0.2 mmol), BICAAC-CO₂ (10 mol%), pinacolborane (0.8 mmol) and dioxane (1 mL) inside an argon-filled glovebox. The mixture was degassed by a freezepump-thaw cycle and exposed to 1 atm of carbon dioxide. The reaction flask was sealed tightly and stirred for 24 h at 120 °C. Then the reaction mixture was dried using high vacuum pump and analysed by ¹H NMR spectroscopy. NMR conversion of 71% was obtained.

Fig. S1 Reaction mixture ¹H NMR spectrum in CDCl₃.^{S8} denotes residual dioxane.

ii) Characterization of reaction intermediates, 4 and boron formate (5)

Scheme S3. The stoichiometric reaction of **1B** with HBpin in the presence of 1atm CO_2 Inside an argon-filled glovebox, a J. Young NMR tube was charged with BICAAC-CO₂ adduct (35.5 mg), pinacolborane (1 equiv.) and CD_3CN (0.5 mL). The reaction mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of carbon dioxide. This was then heated at 100 °C for 12 h. ¹H and ¹¹B{¹H} NMR spectra were recorded for the reaction mixture. From the spectroscopic data, it is clear that a 1:1 diastereomeric mixture of **4**, along with boron formate intermediate (**5**), was identified.

*Fig. S2*¹¹B{¹H} NMR reaction mixture spectrum of **1B** with HBpin (in the presence of CO_2) in CD₃CN.^{S25}

Fig. S3 Reaction mixture ¹H NMR spectrum of **1B** with HBpin in the presence of CO_2 in CD_3CN . The peaks marked in the green and blue boxes correspond to compound **4** and boron formate, **5**, respectively. ^{S25}

iii) Stoichiometric reaction of 1B with HBPin in the absence of CO2

Scheme S4. Reaction of BICAAC-CO2 adduct with 1 equiv. of HBpin in absence of CO2

Inside an argon-filled glovebox, a J. Young NMR tube was charged with BICAAC-CO₂ adduct (35.5 mg), pinacolborane (1 equiv.) and CD₃CN (0.5 mL). This was then heated at 100 °C for 12 h. ¹H NMR spectrum was recorded for the reaction mixture. From the spectroscopic data, it is clear that boron formate intermediate (**5**) was obtained in less amount in absence of CO₂, indicating that a continuous supply of CO₂ is necessary for generation of boron formate. A stacked ¹¹B{¹H} NMR spectrum of the two reactions supports the same (Fig. S5)

Fig. S4 Reaction mixture ¹H NMR spectrum of **1B** with HBpin (in absence of CO_2) in CD_3CN .

26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15. f1 (ppm)

Fig. S5 Stacked ¹¹B{¹H} NMR plot in the presence and absence of CO₂.

iv) Characterization of ¹³C labelled reaction intermediates, 4' and boron formate (5')

Scheme S5. The stoichiometric reaction of **1B'** with HBpin in the presence of 1atm ${}^{13}CO_2$. Inside an argon-filled glovebox, a J. Young NMR tube was charged with BICAAC- ${}^{13}CO_2$ adduct (35.6 mg), pinacolborane (1 equiv.) and CD₃CN (0.5 mL). The reaction mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of ${}^{13}C$ labelled carbon dioxide. This was then heated at 100 °C for 12 h. On completion, ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{11}B{}^{1}H$ NMR spectra were recorded for the reaction mixture. From the spectroscopic data, it is clear that a 1:1 diastereomeric mixture of **4'** along with ${}^{13}C$ labelled boron formate intermediate (**5'**)

was obtained. ¹H NMR analysis showed that in the case of **4**', the -CH peak of the two diastereomers comes as two doublets with coupling constant values of 3.5 and 1.5 Hz, ^{S26, S27} while the formate peak comes as a doublet with a coupling constant value of 206.5 Hz. ^{S28} This arises due to the coupling with ¹³C nucleus.

Fig. S6 Stacked plot indicating the effect of ${}^{13}CO_2$. ¹H NMR spectrum of **1B** with HBpin in presence of ${}^{13}CO_2$ and CO_2 in CD₃CN is given at the top and bottom, respectively. The peaks marked in the green and blue box corresponds to compound **4**' and **5**', respectively.

Fig. S7 Reaction mixture ${}^{13}C{}^{1}H$ NMR spectrum of **1B**' with HBpin in presence of ${}^{13}CO_2$ in CD₃CN.

Fig. S8 Reaction mixture ${}^{11}B{}^{1}H$ NMR spectrum of **1B**' with HBpin in presence of ${}^{13}CO_2$ in CD₃CN.

Fig. S9 HRMS spectrum of 4'.

v) Reaction of HBPin with CO2 in the absence of catalyst BICAAC

Scheme S6. The reaction between HBpin and CO₂ in CD₃CN

A J. Young NMR tube was charged with pinacolborane (0.2 mmol) and CD₃CN (0.5 mL) inside an argon-filled glovebox. The reaction mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of carbon dioxide. This was then heated at 100 °C for 12 h. Then ¹H NMR spectrum was recorded where the formation of boron formate was not observed, supporting the fact that BICAAC is necessary for this step.

Fig. S10 ¹H NMR spectrum of the reaction mixture (HBpin and CO₂ in CD₃CN).

vi) Proof of boron formate

Scheme S7. The reaction between HBpin and CO_2 in the presence of catalyst 1

Inside an argon-filled glovebox, a 25 mL Schlenk flask was charged with pinacolborane (0.3 mmol), BICAAC (10 mol%) and dioxane (1 mL). The mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of carbon dioxide. The reaction flask was stirred for 12 h at 120 °C. After the reaction was over, it was treated with HCl and its ¹H NMR spectrum was recorded. Spectroscopic peak at δ 8.31 ppm was obtained and it therefore confirmed the formation of formic acid, thereby establishing boron formate to be the catalytic intermediate.

vii) H₂ evolution experiment

A 2.5 mL screw cap NMR tube was charged with 4-methyl benzamide (0.1 mmol), BICAAC (10 mol%), HBpin (1 equiv.) and C₆D₆ (0.6 mL) under an argon atmosphere. Eventually, gas evolution was observed, which was confirmed to be dihydrogen from ¹H NMR (δ = 4.47 ppm) spectroscopy and GC analysis.

Fig. S12 Reaction mixture ¹H NMR spectrum of **2a**, HBpin, and BICAAC at 25 °C in C₆D₆.^{S30}
Software Version	:	6.3.4.0700	Date	:	03-01-2023 14:21:52
Sample Name	2		Data Acquisition Time	:	03-01-2023 13:33:36
Instrument Name	2	Clarus590	Channel	:	В
Rack/Vial	2	0/0	Operator	:	manager
Sample Amount	2	1.000000	Dilution Factor	:	1.000000
Cycle	5	1			

Fig. S13 Retention time graph of the reaction mixture (4-methyl benzamide, HBpin, and BICAAC in C_6D_6 at 25 °C) in gas chromatography confirming H₂ evolution.

viii) Characterisation of N-borylated amide, 6a

(a) The reaction of 2a with HBpin in the presence of 1 at 25 °C

$$\begin{array}{c} & \begin{array}{c} & 1 \\ & 1.0 \\ & 2a \end{array} \end{array} \xrightarrow{\begin{array}{c} 0 \\ & 1.0 \\ \end{array}} \begin{array}{c} 1 \\ & 1.0 \\ & 12 \\ \end{array} \xrightarrow{\begin{array}{c} 1 \\ & 12 \\ \end{array}} \begin{array}{c} 1 \\ & 12 \\ \end{array} \begin{array}{c} 0 \\ & 0 \\ & 0 \\ \end{array} \xrightarrow{\begin{array}{c} 0 \\ & 0 \\ & 0 \\ \end{array}} \begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array} \xrightarrow{\begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array}} \begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array} \xrightarrow{\begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array}} \begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array} \xrightarrow{\begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array}} \begin{array}{c} 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array}$$

Scheme S9. Reaction between 4-methyl benzamide, HBpin in the presence of 10 mol% catalyst, **1** in CD₃CN at 25 °C.

A 2.5 mL screw cap NMR tube was charged with 4-methyl benzamide **2a** (0.15 mmol), BICAAC (10 mol%), HBpin (1 equiv.) and acetonitrile-d₃ (0.6 mL) under an argon atmosphere. After 12 h, it was analysed by ¹H and ¹¹B{¹H} NMR spectroscopy (see Fig. S14 and S15). It was then transferred to a vial and solvent was removed and washed with hexane to remove unreacted HBpin, and ¹H, ¹¹B{¹H} and ¹³C{¹H} spectrum was further recorded.

¹**H NMR** (500 MHz, CDCl₃, 25 °C): $\delta = 7.72$ (d, J = 8.0 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 6.50 (brs, NH, 1H), 2.38 (s, 3H), 1.33 (s, 12H); ¹³C{¹H} **NMR** (125 MHz, CDCl₃, 25 °C): $\delta = 169.5$, 142.8, 131.9, 129.4, 127.7, 83.9, 24.7, 21.6; ¹¹B{¹H} **NMR** (128 MHz, CDCl₃, 25 °C): 24.1ppm.

Fig. S14 Reaction mixture ¹H NMR spectrum in CD₃CN. \star denotes peak arising from HBpin.

Fig. S16 ¹H NMR spectrum of 6a in CDCl₃.^{S31}

Fig. S18 ¹¹B{¹H} NMR spectrum of **6a** in CDCl₃. ^{S31} \star denotes (Bpin)₂O

(b) <u>BICAAC(H).Bpin (1A) catalysed N-borylation of amide: proof to establish that</u> <u>1A is a catalytically active species</u>

Scheme S10. The reaction between 4-methyl benzamide, HBpin in the presence of 10 mol% of 1A in CD₃CN at 25 °C.

A 2.5 mL screw cap NMR tube was charged with 4-methyl benzamide **2a** (0.15 mmol), **1A** (10 mol%), HBpin (1 equiv.) and acetonitrile- $d_3(0.6 \text{ mL})$ under an argon atmosphere. After 12 h, it was analysed by ¹¹B{¹H} NMR spectroscopy. ¹¹B{¹H} NMR spectrum revealed that N-borylated amide was obtained, supporting **1A** to be the active catalyst for this step.

Fig. S19 ¹¹B{¹H} NMR spectrum of the reaction mixture **2a**, HBpin, and **1A** in CD₃CN at 25 °C. \star denotes (Bpin)₂O.

(c) Reaction of 2a with HBpin in the absence of catalyst at 25 °C

Scheme S11. Reaction between 4-methyl benzamide and HBpin in CD₃CN at 25 °C. A 2.5 mL screw cap NMR tube was charged with 4-methyl benzamide **2a** (0.15 mmol), HBpin (1 equiv.) and acetonitrile-d₃ (0.6 mL) under an argon atmosphere. After 12 h, it was analysed by ${}^{11}B{}^{1}H{}$ NMR spectroscopy, where the formation of N-borylated amide was not observed, supporting the fact that BICAAC is necessary for this step.

*Fig. S20*¹¹B{¹H} NMR spectrum of the reaction mixture **2a**, and HBpin in CD₃CN at 25 °C. ★ denotes (Bpin)₂O.

viii) Proof of formyl transfer

Scheme S12. Reaction of 6a and boron formate at 50 °C

Inside an argon-filled glovebox, a 25 mL Schlenk flask was charged with 4-methyl benzamide **2a** (0.2 mmol), pinacol borane (1 equiv.), BICAAC (10 mol%) in acetonitrile (1 mL) at 25 °C and stirred overnight. In another 50 mL Schlenk flask, CO₂ hydroboration was carried out by treating HBpin (0.2 mmol), with 10 mol% of **1** under atmospheric pressure of CO₂ and the reaction was stirred at 100 °C for 12 h. Then, the reaction mixture containing N-borylated amide (**7a**) was transferred to the 50 mL Schlenk flask comprising of CO₂ reduced product reaction mixture, and this reaction was continued for stirring for 24 h at 50 °C. After completion of the reaction, the solvent was removed by vacuum, and the reaction mixture was analysed by ¹H NMR spectroscopy. A doublet at δ 9.41 ppm was observed in ¹H NMR reaction mixture spectrum in CDCl₃, thus, an N-formylated product was detected.

Fig. S21 Reaction mixture ¹H NMR spectrum confirming the formation of **7a** in CDCl₃.^{S32} ix) Reaction between N-formylated amide (**7a**) and HBpin: proof to establish that N-methylation proceeds via N-formylation

Scheme S14. The reaction of 7a with HBpin in the presence of 10 mol% 1

Inside an argon-filled glovebox, a 25 mL Schlenk tube equipped with a stir bar and a J. Young valve was charged with *N*-formyl-4-methylbenzamide **7a** (0.2 mmol), BICAAC (10 mol%), pinacolborane (0.46 mmol) and dioxane (1 mL). The mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of carbon dioxide. The reaction flask was sealed tightly and stirred for 24 h at 120 °C. Then the reaction mixture was dried using a high vacuum pump and was analysed by ¹H spectroscopy in CDCl₃. It was then purified by column chromatography

on neutral alumina. The N-methyl amide was obtained as an analytically pure compound using a hexane-ethyl acetate mixture as the eluent. The corresponding product was identified by ¹H spectroscopy in CDCl₃.

¹**H NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.66 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.36 (brs, NH, 1H), 2.98 (d, *J* = 4.5 Hz, 3H), 2.37 (s, 3H) ppm. Yield: 67%.

Fig. S22 ¹H NMR spectrum of 3a in CDCl₃.^{S8}

ix) Catalysis of 4-methyl benzamide (2a) carried out in presence of ¹³C labelled CO₂:

proof of CO₂ as methyl source

Scheme S15. N-methylation of 2a using ¹³CO₂

A 25 mL Schlenk tube equipped with a stir bar and a J. Young valve was charged with 4-methyl benzamide, **2a** (0.2 mmol), BICAAC (10 mol%), pinacolborane (0.8 mmol) and dioxane (1 mL) inside an argon-filled glovebox. The mixture was degassed by a freeze-pump-thaw cycle and exposed to 1 atm of ¹³C labelled carbon dioxide. The reaction flask was sealed tightly and stirred for 24 h at 120 °C. On completion, the reaction mixture was dried using a high vacuum pump and was then purified by column chromatography on neutral alumina. The N-methyl amide was obtained as an analytically pure compound using a hexane-ethyl acetate mixture as the eluent. The corresponding product was identified by ¹H and ¹³C{¹H} NMR spectroscopy in CDCl₃. ¹H NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.65$ (d, J = 8.0 Hz, 2H), 7.19 (d, J = 7.5 Hz, 2H), 6.40 (brs, NH, 1H), 2.96 (dd, $J_I = 138.0$ Hz, $J_2 = 4.5$ Hz, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 141.8, 131.9, 129.3, 127.0, 26.9, 21.5; HRMS: m/z calcd. for ¹³CC8H₁₂NO⁺ [M + H]⁺ 151.0992, found 151.0949. Yield: 73%.

- 6.40

Fig. S24 ${}^{13}C{}^{1}H$ NMR spectrum of **3a'** in CDCl₃.

x) Characterization of (Bpin)₂O dimer as a by-product:

Under an argon atmosphere, a 25 mL Schlenk tube equipped with a stir bar and a J. Young valve was charged with amide (0.2 mmol), 1 (10 mol%), pinacolborane (0.8 mmol) and dioxane (1 mL). The mixture was degassed by freeze-pump-thaw and was exposed to carbon dioxide in the frozen state. It was next allowed slowly to warm to room temperature and stirred at 120 °C for 24 h. Next, the solvent was evaporated under reduced pressure and analysed by NMR spectroscopy. The ¹H and ¹¹B NMR spectra identified the formation of Bpin-O-Bpin as a by-product.

Fig. S25 ¹H NMR spectrum of 8 in C_6D_6 .^{S33}

Fig. S26 ¹¹B{¹H} NMR spectrum of **8** in C_6D_6 . ^{S33}

6) ¹H and ¹³C{¹H} NMR spectra of N-methyl amide 3a-3al'

Fig. S28 $^{13}C{^{1}H}$ NMR spectrum of **3a** in CDCl₃.

Fig. S29 ¹H NMR spectrum of 3b in CDCl₃.

Fig. S30 $^{13}C{^{1}H}$ NMR spectrum of **3b** in CDCl₃.

$\int_{-7.26}^{-7.72} \int_{-7.26}^{-7.26} \int_{-7.26}^{-7.26} \int_{-6.87}^{-6.89} \int_{-6.24}^{-6.24} \int_{-4.06}^{-6.24} \int_{-4.03}^{-6.24} \int_{-4.03}^{-6.24} \int_{-1.40}^{-4.04} \int_{-1.40}$

Fig. S31 ¹H NMR spectrum of 3c in CDCl₃.

Fig. S32 ${}^{13}C{}^{1}H$ NMR spectrum of 3c in CDCl₃.

Fig. S33 ¹H NMR spectrum of 3d in CDCl₃.

Fig. S34 ¹³C{¹H} NMR spectrum of **3d** in CDCl₃.

Fig. S36 $^{13}C{^{1}H}$ NMR spectrum of **3e** in CDCl₃.

Fig. S37 ¹H NMR spectrum of 3f in CDCl₃.

Fig. S38 ¹³C{¹H} NMR spectrum of **3f** in CDCl₃.

Fig. S39 ¹H NMR spectrum of 3g in CDCl₃.

Fig. S40 $^{13}C{^{1}H}$ NMR spectrum of **3g** in CDCl₃.

Fig. S41 ¹H NMR spectrum of **3h** in CDCl₃.

Fig. S42 ${}^{13}C{}^{1}H$ NMR spectrum of **3h** in CDCl₃.

Fig. S43 $^{19}F{^{1}H}$ NMR spectrum of **3h** in CDCl₃.

Fig. S44 ¹H NMR spectrum of 3i in CDCl₃.

Fig. S45 $^{13}C{^{1}H}$ NMR spectrum of 3i in CDCl₃.

Fig. S46 19 F{ 1 H} NMR spectrum of **3i** in CDCl₃.

Fig. S47 ¹H NMR spectrum of 3j in CDCl₃.

Fig. S48 ${}^{13}C{}^{1}H$ NMR spectrum of 3j in CDCl₃.

Fig. S49 ¹H NMR spectrum of 3k in CDCl₃.

Fig. S50 $^{13}C{^{1}H}$ NMR spectrum of **3k** in CDCl₃.

Fig. S52 $^{13}C{^{1}H}$ NMR spectrum of 3l in CDCl₃.

Fig. S53 19 F{ 1 H} NMR spectrum of 3l in CDCl₃.

Fig. S54 ¹H NMR spectrum of **3m** in CDCl₃.

Fig. S56 ¹H NMR spectrum of **3n** in CDCl₃.

Fig. S58 ¹H NMR spectrum of **30** in CDCl₃.

Fig. S59 $^{13}C{^{1}H}$ NMR spectrum of **30** in CDCl₃.

Fig. S60 19 F{ 1 H} NMR spectrum of **30** in CDCl₃.

Fig. S61 ¹H NMR spectrum of **3p** in CDCl₃.

Fig. S61 $^{13}C{^{1}H}$ NMR spectrum of **3p** in CDCl₃.

Fig. S63 ${}^{13}C{}^{1}H$ NMR spectrum of **3q** in CDCl₃.

Fig. S64 ¹H NMR spectrum of 3r in DMSO-d₆.

Fig. S65 $^{13}C{^{1}H}$ NMR spectrum of **3r** in DMSO-d₆.

Fig. S66 19 F{ 1 H} NMR spectrum of **3r** in DMSO-d₆.

Fig. S67 ¹H NMR spectrum of 3s in CDCl₃.

Fig. S69 ¹H NMR spectrum of 3t in CDCl₃.

Fig. S71 ¹H NMR spectrum of **3u** in CDCl₃.

Fig. S73 ¹H NMR spectrum of 3v in CDCl₃.

Fig. S75 ¹H NMR spectrum of **3w** in CDCl₃.

Fig. S77 ¹H NMR spectrum of **3x** in CDCl₃.

Fig. S79 ¹H NMR spectrum of **3y** in CDCl₃.

Fig. S80 $^{13}C{^{1}H}$ NMR spectrum of **3y** in CDCl₃.

Fig. S81 ¹H NMR spectrum of 3z in CDCl₃.

Fig. S83 ¹H NMR spectrum of 3aa in CDCl₃.

Fig. S85 ¹H NMR spectrum of 3ab in CDCl₃.

Fig. S87 ¹H NMR spectrum of 3ac in CDCl₃.

Fig. S89 ¹H NMR spectrum of 3ad in CDCl₃.

Fig. S91 ¹H NMR spectrum of 3ag in DMSO-d₆.

Fig. S92 $^{13}C{^{1}H}$ NMR spectrum of **3ag** in DMSO-d₆.

Fig. S93 ¹H NMR spectrum of 3ah in CDCl₃.

Fig. S95 ¹H NMR spectrum of 3ai in CDCl₃.

Fig. S96 ¹³C{¹H} NMR spectrum of **3ai** in CDCl₃.

Fig. S97 ¹H NMR spectrum of **3aj** in CDCl₃.

Fig. S99 ¹H NMR spectrum of 3ak in CDCl₃.

Fig. S101 ¹H NMR spectrum of 3al in in DMSO-d₆.

Fig.S102 $^{13}C{^{1}H}$ NMR spectrum of **3al** in in DMSO-d₆.

Fig.S103 ¹H NMR spectrum of 3am in CDCl₃.

Fig.S104 ¹³C{¹H} NMR spectrum of **3am** in CDCl₃.

Fig.S105 ¹H NMR spectrum of 3ah' in CDCl₃.

Fig.S106 $^{13}C{^{1}H}$ NMR spectrum of **3ah'** in CDCl₃.

Fig.S107¹H NMR spectrum of 3ai' in CDCl₃.

Fig.S108¹³C{¹H} NMR spectrum of **3ai'** in CDCl₃.

Fig.S109 ¹H NMR spectrum of 3aj' in CDCl₃.

Fig.S110 ¹³C{¹H} NMR spectrum of **3aj**' in CDCl₃.

Fig.S111 ¹H NMR spectrum of **3ak'** in CDCl₃.

Fig.S112 ¹³C{¹H} NMR spectrum of **3ak'** in CDCl₃.

Fig.S113 ¹H NMR spectrum 3al' in DMSO-d₆.

Fig.S114 ¹³*C*{¹*H*} *NMR spectrum 3al' in DMSO-d*₆.

7) ¹H and ¹³C{¹H} NMR spectra of primary amide substrates

Fig.S117 ¹H NMR spectrum of 2y in CDCl₃.

Fig.S119 ¹H NMR spectrum 2ah in CDCl₃.

Fig.S121 ¹H NMR spectrum of 2aj in CDCl₃.

Fig.S122 ¹³C{¹H} NMR spectrum of **2aj** in CDCl₃.

Fig.S123 ¹H NMR spectrum of 2am in CDCl₃.

Fig.S124 ¹³C{¹H} NMR spectrum of **2am** in CDCl₃.

8) Computational study

All the geometries of reactants, products, transition states and intermediates are optimised by employing M06-2X^{S34-S36} functional adapting with a 6-31G* basis set. The DFT calculations are carried out using the gaussian 16 program package. The frequency calculations are executed using the same level of theory to affirm the true optimisation. The IRC calculations are employed to ensure the transition states. The solvent calculations are carried out using the CPCM solvent model considering 1,4-dioxane as a solvent by employing M06-2X/6-311++G**// M06-2X/6-31G* methodology.

Fig.S125 Computed HOMO (A) and LUMO (B) of BICAAC, 1

Detailed pathway for the dehydrogenation and formation of N-B bond step

The conversion of amide, **2** to N-borylated amide, **6** catalysed by **1A** may occur through a concerted transition state. In the amide molecule, the nitrogen atom in the HOMO-1 orbital contains a p orbital with a Mulliken atomic charge of -0.806. This p orbital can donate electron density to the vacant p orbital of the boron atom in **1A**, which has a Mulliken atomic charge of 0.600 and is the LUMO of **1A** (see Fig. S127). This interaction can cause the hydrogen atom attached to **1A** to become hydridic, while the hydrogen atom attached to the nitrogen atom in the amide molecule becomes protonic, ultimately resulting in the release of H₂.

The formation of N-B bond may be the driving force for this reaction.

Fig.S127 Probable mechanism for formation of N-borylated amide, 6e

Fig.S128 Computed HOMO-1 of benzamide, 2e (C) and LUMO (D) of 1A

NBO analysis for reactivity difference between electron-rich and electron-poor amides

We have observed the electron-deficient amides results in significantly inferior reactivity over the electron-rich amides. The reason behind such low-reactivity may be related to the availability of electron density on the N atom of amide molecule. As the first step of amide activation involves the interaction of primary amide with borane to form N-borylated amide, more electron rich the N atom would facilitate its interaction with electron deficient boron moiety.

We have computed the NBO (Natural Bond Orbital) analysis for nitrogen atom charge for two *para* substituted amides, **2a** and **2h**, and for two *meta* substituted amides, **2m** and **2o** using M06-2X/6-311++ $G^{**}//M06-2X/6-31G^*$ level of theory, which also supports the explanation.

Fig.S129 The calculated atomic charge on amide nitrogen by M06-2X/6-311++G**//M06-2X/6-31G*

Coordinates:

1

С	-3.10064500	0.32652800	0.20606200
С	-2.41543600	-0.79252800	-0.62808900
С	-0.96331900	-0.24208700	1.43914000
С	-2.20538100	0.66475900	1.42079500
Н	-4.05454100	-0.08651500	0.56363000
Н	-1.90101300	1.71636300	1.39700000
Н	-2.74292700	0.51949700	2.36475700
С	-1.00054700	-0.37955400	-1.01635100
С	-1.49478100	-1.68443200	1.56237100
Н	-0.67251700	-2.37898700	1.76152000
Н	-2.15222700	-1.71892100	2.43829500
С	-2.25865800	-2.04445000	0.27513300
Н	-1.72100000	-2.81190900	-0.29508900
Н	-3.25100000	-2.45342900	0.49874700
Ν	-0.31710500	-0.12455900	0.08269500
С	-3.21802400	-1.14837900	-1.87572000
Н	-3.19547000	-0.33119900	-2.60117400
Н	-2.77969200	-2.02512300	-2.36301900

Н	-4.26296100	-1.37440200	-1.62875300
С	-0.01460200	0.11656500	2.56976300
Н	0.86387600	-0.53591300	2.57785400
Н	0.33092000	1.15269100	2.49215800
Н	-0.53992900	0.00029100	3.52335700
С	1.10074000	0.16938100	-0.02923400
С	1.52618700	1.50672100	-0.06815200
С	2.00959900	-0.89609900	-0.12086100
С	2.89573900	1.76202400	-0.14680800
С	3.37116600	-0.59312200	-0.20251700
С	3.81526300	0.72175500	-0.19972700
Н	3.24791900	2.78833600	-0.17563200
Н	4.09284000	-1.40103200	-0.27746700
Н	4.87786400	0.93755700	-0.25692400
С	1.54895800	-2.33815000	-0.23859600
С	2.41700200	-3.31958300	0.55236300
С	1.47065700	-2.72495600	-1.72186400
Н	0.53520500	-2.40293400	0.15940800
Н	2.52190600	-3.01094600	1.59782200
Н	1.96490100	-4.31624600	0.53141700
Н	3.42052600	-3.41187700	0.12443500
Н	0.78235700	-2.05318900	-2.24377600
Н	2.45890400	-2.64954600	-2.18964900
Н	1.11692600	-3.75627800	-1.83179200
С	0.52370500	2.64262400	-0.15102300
С	0.15119500	2.86605200	-1.62412600
С	1.00215400	3.94119400	0.49998000
Н	-0.38365800	2.32784600	0.37081600
Н	-0.22520900	1.93766500	-2.06722800
Н	-0.61292500	3.64624800	-1.71671400

Η	1.03488000	3.18253600	-2.18979300
Н	1.34942100	3.77560000	1.52516800
Н	1.81952500	4.39981800	-0.06614200
Н	0.18294200	4.66625400	0.52678000
С	-3.40328700	1.58185000	-0.61449000
Н	-4.11624000	1.38289500	-1.41895700
Н	-3.83022500	2.36079500	0.02638500
Н	-2.48574900	1.97928900	-1.06460800

Π

С	-2.28759500	2.66605100	0.56038200
С	-1.20900400	2.38116500	-0.54030600
С	-2.75075700	0.31472300	-0.21668500
С	-3.03795000	1.35396900	0.88140300
Н	-2.98987900	3.37212600	0.09463400
Н	-2.71459400	0.95432300	1.84903200
Н	-4.11896600	1.52082700	0.94193800
С	-0.46775000	1.10683600	-0.18698600
С	-3.06648000	1.01703200	-1.55718400
Н	-3.18419400	0.29810000	-2.37173400
Н	-4.04233500	1.49929800	-1.43000800
С	-1.97766800	2.05273800	-1.84776400
Н	-1.26354500	1.67929000	-2.59095700
Н	-2.40443900	2.97927300	-2.24579200
Ν	-1.26514000	0.06822200	-0.11327100
С	-0.29410700	3.57807100	-0.78321700
Н	0.33646900	3.79500600	0.07978100
Н	0.37088600	3.38178800	-1.62736100
Н	-0.90859300	4.45845000	-1.00596900
С	-3.55789800	-0.96310700	-0.06660900

Н	-3.33296500	-1.67221100	-0.86934600
Н	-3.37447900	-1.46315400	0.88629800
Н	-4.61971100	-0.70521500	-0.12645700
С	3.01941800	-0.16560300	0.31276500
С	3.26301200	1.16868000	-0.48292100
В	1.10717000	1.18926300	0.29263900
0	1.73277300	0.01855000	0.88147200
0	1.95019300	1.58400200	-0.82950100
С	4.02657800	-0.40933800	1.43572100
Н	3.79944200	-1.36161800	1.92675000
Н	5.04981200	-0.46451500	1.04566600
Н	3.97814300	0.38137800	2.18784100
С	2.97109600	-1.40636700	-0.57939000
Н	3.95864700	-1.67370900	-0.97200900
Н	2.58840300	-2.24199500	0.01599300
Н	2.28833800	-1.25351300	-1.41554400
С	3.89811700	2.26088700	0.38587700
Н	4.93705300	2.03217200	0.64462100
Н	3.87578000	3.20125600	-0.17310500
Н	3.32895700	2.40202900	1.30964400
С	4.07232200	0.99542300	-1.76189900
Н	4.19432100	1.96617200	-2.25210800
Н	5.06815200	0.59159000	-1.54632500
Н	3.56340800	0.32395800	-2.45812000
С	-0.75400700	-1.27954500	0.09796200
С	-0.48586600	-1.73277400	1.39804100
С	-0.56526300	-2.08161300	-1.03908000
С	-0.04836600	-3.05181100	1.53584200
С	-0.10745500	-3.38544300	-0.84656200
С	0.13962100	-3.87159700	0.43127700

Н	0.16237900	-3.43672700	2.52907600
Н	0.05125500	-4.03030900	-1.70467000
Н	0.48697100	-4.89157700	0.56549500
С	-0.84557900	-1.55212700	-2.43823200
С	-1.33811500	-2.63540800	-3.40167300
С	0.35764900	-0.81282600	-3.04066400
Н	-1.65104500	-0.82217300	-2.34820500
Н	-2.16627500	-3.21103800	-2.97544900
Н	-1.68098700	-2.17424000	-4.33302400
Н	-0.53770100	-3.33464200	-3.66427900
Н	0.74109100	-0.02138800	-2.38474900
Н	1.17537000	-1.51638900	-3.23348300
Н	0.07333300	-0.36308300	-3.99899100
С	-0.63666100	-0.86509200	2.63930600
С	0.57776500	-0.96616500	3.57040300
С	-1.90832900	-1.22599600	3.42098500
Н	-0.69909900	0.18037000	2.31787900
Н	1.49219400	-0.75775500	3.01428000
Н	0.47682600	-0.23382600	4.37816700
Н	0.64489100	-1.95553400	4.03628000
Н	-2.82155700	-1.09481600	2.83348100
Н	-1.86941900	-2.27219600	3.74477800
Н	-1.99225600	-0.60017000	4.31580200
Н	0.92292600	2.04866500	1.18337200
С	-1.73990700	3.31195800	1.83025300
Н	-1.31860500	4.30091600	1.63276200
Н	-2.54496900	3.42938400	2.56347500
Н	-0.95395600	2.69480800	2.27829100

TS1

С	-1.57188100	3.11291600	0.33517100
С	-0.70744400	2.45295200	-0.78907400
С	-2.65463100	0.88298700	-0.08351100
С	-2.57767400	2.07523700	0.88049400
Н	-2.13239800	3.91083100	-0.17364800
Н	-2.27571600	1.72378700	1.87339500
Н	-3.57514600	2.51659200	0.98839600
С	-0.24965400	1.05706000	-0.38131600
С	-2.93372300	1.48236400	-1.48131000
Н	-3.27650000	0.71466800	-2.18037400
Н	-3.76147100	2.19264300	-1.37142000
С	-1.66513700	2.18940200	-1.98113300
Н	-1.14173100	1.57922000	-2.72703600
Н	-1.90436600	3.14668600	-2.45693500
N	-1.29519700	0.25406300	-0.10173500
С	0.42136100	3.37728900	-1.22940300
Н	1.17757500	3.49710700	-0.45184600
Н	0.92894600	2.97990800	-2.11118700
Н	0.00020500	4.36024700	-1.47279000
С	-3.73084200	-0.11589900	0.30493900
Н	-3.75977200	-0.96016200	-0.39116300
Н	-3.57601900	-0.51263800	1.31099700
Н	-4.70161900	0.38827900	0.27454800
С	3.04474200	-0.75891600	-0.08960500
С	3.50253600	0.72114200	-0.28987100
В	1.24278500	0.68472700	-0.11676400
0	1.67278000	-0.61603800	0.28152000
0	2.31594000	1.33613900	-0.79096700
С	3.77636600	-1.51311400	1.01377500
Н	3.35326800	-2.51849000	1.10418500

Н	4.84357100	-1.60637400	0.78253900
Н	3.67059100	-1.01344000	1.97924500
С	3.10338900	-1.56513200	-1.38764900
Н	4.13138500	-1.83459700	-1.65257700
Н	2.52080300	-2.48180100	-1.25135000
Н	2.66615700	-0.99911000	-2.21445700
С	3.87578100	1.39722000	1.03260700
Н	4.82254800	1.01853800	1.43060400
Н	3.97530100	2.47277000	0.85819700
Н	3.09440000	1.24500000	1.78510400
С	4.62026600	0.91243900	-1.30468100
Н	4.87811900	1.97368200	-1.37073500
Н	5.51730000	0.35953500	-1.00436800
Н	4.31268800	0.57494800	-2.29644800
С	-1.10747800	-1.14413700	0.22188400
С	-0.84133300	-1.51426800	1.54891900
С	-1.17302000	-2.09518600	-0.81021600
С	-0.65668000	-2.86983800	1.82834900
С	-0.96564200	-3.43586300	-0.48679500
С	-0.71330400	-3.82433500	0.82381000
Н	-0.44921100	-3.17640900	2.85021000
Н	-1.00575200	-4.18833900	-1.26819500
Н	-0.55940000	-4.87319500	1.05917500
С	-1.41487200	-1.67898600	-2.25068700
С	-2.20850800	-2.71070200	-3.05614400
С	-0.08925700	-1.35380100	-2.94893900
Н	-2.00407200	-0.75959600	-2.23066100
Н	-3.12207000	-3.01368900	-2.53443100
Н	-2.48876900	-2.28880000	-4.02633800
Н	-1.61665900	-3.61020100	-3.25495900
Н	0.45383600	-0.56343500	-2.42162900
---	-------------	-------------	-------------
Н	0.55353300	-2.24064300	-2.97518400
Н	-0.26817500	-1.02794100	-3.97996600
С	-0.70138700	-0.50649200	2.67855200
С	0.66850700	-0.61729200	3.35973400
С	-1.82143000	-0.65174200	3.71622900
Н	-0.75683300	0.49501300	2.24500400
Н	1.46251100	-0.55268700	2.61285600
Н	0.78877200	0.19050100	4.08976500
Н	0.76974900	-1.56763600	3.89620800
Н	-2.81401500	-0.50392900	3.27986900
Н	-1.80264600	-1.64894600	4.16971600
Н	-1.69224400	0.08276300	4.51830600
Н	0.75803100	1.38748200	0.94362600
С	-0.77885500	3.76027500	1.46706700
Н	-0.16514600	4.59256500	1.11284800
Н	-1.46838600	4.15020000	2.22335200
Н	-0.11964600	3.03272500	1.95392000

1A

С	-2.49059600	2.71621900	-0.02384600
С	-1.08324700	2.38834900	-0.59057500
С	-2.61130300	0.28921800	-0.76452600
С	-3.24956900	1.37642000	0.12948300
Н	-3.00001700	3.33033700	-0.78154100
Н	-3.23548600	1.04670200	1.17585100
Н	-4.30416400	1.49805900	-0.14589700
С	-0.53732400	1.17523100	0.21238700
С	-2.45256000	0.94850400	-2.15208900
Н	-2.28112900	0.19911300	-2.93175800

Н	-3.38626700	1.46325100	-2.41333600
С	-1.27834000	1.94710000	-2.05641200
Н	-0.34693200	1.48720100	-2.40869600
Н	-1.46441600	2.82902100	-2.68181000
Ν	-1.25302200	-0.01216800	-0.26338300
С	-0.12861800	3.57538600	-0.50765900
Н	0.17159200	3.77989500	0.52744000
Н	0.77637500	3.37454300	-1.09260500
Н	-0.59437800	4.48259600	-0.91035100
С	-3.48313200	-0.95326600	-0.79326800
Н	-3.02118200	-1.75133800	-1.37886800
Н	-3.65300800	-1.33253500	0.22055000
Н	-4.45225000	-0.71347600	-1.24207300
С	3.07962400	0.47735300	0.97783000
С	3.19123800	0.86704000	-0.52738500
В	1.03212200	0.97571100	0.15805600
0	1.77229000	0.98519300	1.31511300
0	1.80930800	0.79171300	-0.95970200
С	4.11419800	1.11974900	1.88611000
Н	3.95162700	0.78817600	2.91543200
Н	5.12508300	0.82302000	1.58643900
Н	4.04398800	2.20909900	1.86250900
С	3.02566400	-1.03480200	1.19169000
Н	4.00639800	-1.49707000	1.04152900
Н	2.69644300	-1.23369800	2.21580400
Н	2.30388300	-1.50170200	0.51095800
С	3.63880900	2.31314800	-0.73117200
Н	4.70008800	2.43999000	-0.49707600
Н	3.47697400	2.58849900	-1.77719600
Н	3.05727000	2.99384900	-0.10120100

С	4.04570100	-0.07355200	-1.36064900
Н	4.03831300	0.24755000	-2.40652700
Н	5.08127200	-0.05251300	-1.00360600
Н	3.68041100	-1.10087500	-1.31321400
С	-0.76187600	-1.30290800	0.09600900
С	-0.74623800	-1.72189900	1.44736100
С	-0.20624900	-2.15051800	-0.89688400
С	-0.13814900	-2.93334700	1.78657200
С	0.36353800	-3.36747600	-0.51472500
С	0.41618000	-3.75666800	0.81735600
Н	-0.11596200	-3.24192900	2.82911400
Н	0.78370600	-4.01745500	-1.27865200
Н	0.87750000	-4.69958600	1.09588200
С	-0.21667100	-1.80070700	-2.37588600
С	-1.06771900	-2.79195100	-3.18257200
С	1.19433100	-1.73884200	-2.97089100
Н	-0.64900700	-0.80371200	-2.46600800
Н	-2.08422800	-2.88753300	-2.79155200
Н	-1.13351200	-2.47131700	-4.22786800
Н	-0.61506900	-3.79009200	-3.16971100
Н	1.77510700	-0.95467900	-2.48495400
Н	1.72034300	-2.69420600	-2.85872900
Н	1.13976900	-1.51560700	-4.04227900
С	-1.40813900	-0.92091900	2.55596800
С	-0.38763200	-0.42744800	3.58858100
С	-2.51760500	-1.73245300	3.23728200
Н	-1.87960500	-0.04972600	2.09867500
Н	0.40026300	0.16468000	3.11430000
Н	-0.88073600	0.18638000	4.35045700
Н	0.08402000	-1.27504800	4.10029000

Н	-3.25307900	-2.09165700	2.51059300
Н	-2.10950500	-2.60537400	3.75805600
Н	-3.03752800	-1.11607900	3.97836900
Н	-0.75116900	1.38362500	1.28015200
С	-2.49728200	3.50576100	1.28354200
Н	-2.06127200	4.50196300	1.16390400
Н	-3.52527600	3.63177300	1.63977100
Н	-1.93967600	2.98291000	2.06976800

III

С	-1.63607700	-3.25320000	-0.64242000
С	-0.30843800	-2.55308200	-0.25296600
С	-2.30849500	-1.34191500	0.89590500
С	-2.78980800	-2.33264700	-0.18836700
Н	-1.67707500	-4.19021200	-0.06679600
Н	-3.18822300	-1.77118600	-1.04291700
Н	-3.62237800	-2.92499200	0.21018300
С	-0.43207600	-1.05544500	-0.66143100
С	-1.54784600	-2.19388800	1.93229100
Н	-1.37812900	-1.62803400	2.85425100
Н	-2.15018300	-3.07189100	2.19956500
С	-0.20729200	-2.61527600	1.28485600
Н	0.58997700	-1.93633900	1.61010000
Н	0.07788100	-3.62853100	1.59387700
Ν	-1.31752400	-0.41357900	0.30929500
С	0.90218900	-3.20732300	-0.91130500
Н	0.93385700	-3.00225000	-1.98721900
Н	1.83373300	-2.83312500	-0.47101200
Н	0.88220200	-4.29441200	-0.76928200
С	-3.50947600	-0.60465100	1.46638100

Н	-3.21783900	0.19565500	2.14783000
Н	-4.09824500	-0.15352400	0.65936800
Н	-4.14936700	-1.30830800	2.00838300
С	-1.41530600	1.00827700	0.35748400
С	-1.96685200	1.73072600	-0.72655800
С	-0.91975800	1.71556700	1.48370200
С	-1.99592100	3.12730100	-0.68269900
С	-1.02596700	3.10837500	1.50705000
С	-1.54348600	3.81783800	0.43165900
Н	-2.40477400	3.67775400	-1.52656700
Н	-0.67394200	3.65283200	2.37919600
Н	-1.59539600	4.90214500	0.46448100
С	-0.26579700	1.02774000	2.67499300
С	-1.17418400	1.03498300	3.91358600
С	1.07503600	1.66822800	3.05375000
Н	-0.06294700	-0.00553700	2.38097000
Н	-2.12526000	0.52500400	3.74552700
Н	-0.67225200	0.53933300	4.75167700
Н	-1.39696500	2.06443800	4.21797300
Н	1.78069000	1.60076100	2.22442600
Н	0.95929800	2.71934400	3.33928800
Н	1.51013400	1.14007600	3.90704500
С	-2.54940600	1.04309000	-1.94993600
С	-1.67900100	1.28886600	-3.18929500
С	-3.99749900	1.47485400	-2.21149100
Н	-2.56566600	-0.02945700	-1.75075400
Н	-0.65071500	0.94758600	-3.03063300
Н	-2.08740800	0.76126100	-4.05831500
Н	-1.64932100	2.35817500	-3.43054800
Н	-4.62398300	1.32202000	-1.32712200

Н	-4.05882800	2.53320500	-2.48603500
Н	-4.42058200	0.89446400	-3.03815700
С	-1.77048700	-3.61724400	-2.11948900
Н	-1.65725100	-2.73447200	-2.76020000
Н	-1.02854600	-4.35861500	-2.42978300
Н	-2.76358300	-4.03696000	-2.31222400
С	3.10726300	-1.48396900	1.97073900
0	3.59628500	-2.06015000	1.08424900
0	2.64520700	-0.93391500	2.88284300
С	2.73475000	0.53027500	-1.96894300
С	2.64156400	1.16200300	-0.54354700
В	0.94653600	-0.30370900	-0.83934900
0	1.44027400	-0.09149300	-2.10131400
0	1.74757400	0.24059200	0.13989300
С	3.77949300	-0.57823500	-2.06959900
Н	3.62618000	-1.11851300	-3.00783100
Н	4.79489000	-0.16975000	-2.06527800
Н	3.68354600	-1.28786300	-1.24270600
С	2.90977200	1.53179900	-3.09976100
Н	3.83689400	2.10075100	-2.97087900
Н	2.96519100	0.99838500	-4.05274700
Н	2.07024600	2.22835900	-3.14546300
С	3.96239900	1.23610400	0.20368100
Н	4.65539300	1.90120700	-0.32290800
Н	3.80107800	1.64289600	1.20670000
Н	4.43079500	0.25364500	0.29266000
С	1.94745600	2.52396400	-0.55518100
Н	1.75090000	2.84496700	0.47035600
Н	2.57069200	3.27887900	-1.04412600
Н	0.98229900	2.46996300	-1.07320500

С	-0.38418500	3.25813100	0.55324400
С	0.00970300	2.50999700	-0.76122100
С	-2.27753300	1.60956500	0.09322800
С	-1.75673400	2.71517700	1.03843600
Н	-0.52935300	4.30176400	0.24518400
Н	-1.70669500	2.34739300	2.06761100
Н	-2.49717500	3.52440900	1.04658400
С	0.06344400	0.98370100	-0.41567900
С	-2.46518600	2.26510700	-1.28604100
Н	-2.81637300	1.50981800	-1.99450000
Н	-3.24360100	3.03389000	-1.21376600
С	-1.12651600	2.87627000	-1.74479900
Н	-0.88122400	2.58947700	-2.76643600
Н	-1.18847300	3.97093200	-1.74641700
Ν	-1.27835400	0.51758500	-0.07492800
С	1.32771800	3.05527400	-1.30180500
Н	2.16607800	2.86390600	-0.63016400
Н	1.58005000	2.60267600	-2.26574800
Н	1.23027900	4.13828200	-1.44554700
С	-3.60186100	1.06029800	0.59945200
Н	-4.03546900	0.36214500	-0.12044400
Н	-3.48947300	0.54106800	1.55549900
Н	-4.30400100	1.88863700	0.73529200
С	-1.43214500	-0.77190000	0.55330000
С	-0.98061300	-1.02118700	1.87088900
С	-2.03811300	-1.82738900	-0.17051900
С	-1.05880000	-2.30974600	2.39810800

С	-2.09112400	-3.10445400	0.39588500
С	-1.59178700	-3.35814100	1.66300200
Н	-0.70195100	-2.48961200	3.40928600
Н	-2.54226400	-3.91402300	-0.17219500
Н	-1.63843600	-4.35836800	2.08329000
С	-2.68883500	-1.65091800	-1.53406400
С	-4.18133600	-2.01545400	-1.49306100
С	-2.00641000	-2.50452000	-2.61398300
Н	-2.60250900	-0.59851700	-1.81121900
Н	-4.71780500	-1.48131500	-0.70436300
Н	-4.65359200	-1.78014000	-2.45277400
Н	-4.31639600	-3.08723200	-1.31203000
Н	-0.92088300	-2.38344900	-2.61999500
Н	-2.20991900	-3.56822900	-2.44598400
Н	-2.39160100	-2.24425700	-3.60529700
С	-0.45682500	0.07515500	2.77707500
С	0.94737400	-0.22240400	3.30303600
С	-1.42266800	0.34691400	3.93675400
Н	-0.39252300	0.98309600	2.18464500
Н	1.60624300	-0.45289900	2.46490000
Н	1.34434500	0.63990000	3.85172400
Н	0.95200600	-1.08084200	3.98412100
Н	-2.42773500	0.59165100	3.57884600
Н	-1.50582900	-0.53065200	4.58720600
Н	-1.06206400	1.18477600	4.54450800
С	0.69218800	3.30401900	1.64281900
Н	1.10087200	2.32110900	1.89928400
Н	1.53229000	3.93483200	1.33779300
Н	0.27323800	3.73055300	2.56087000
С	0.06679400	-0.04269400	-2.36372300

0	0.95950200	-0.88220400	-2.28088000
0	-0.82463500	0.39966700	-2.96829000
С	3.65999300	-0.08731700	-0.36955000
С	3.03294700	-1.46859500	0.01076700
В	1.43132100	-0.16020400	-0.88272100
0	2.62541200	0.51423500	-1.16803900
0	1.62826300	-1.14360200	0.09698000
С	4.92940400	-0.17755800	-1.20402300
Н	5.29423200	0.82931400	-1.42628200
Н	5.71293900	-0.71322900	-0.65680600
Н	4.74535000	-0.68973100	-2.15011000
С	3.89371100	0.81605800	0.84044800
Н	4.72447600	0.45977500	1.45755000
Н	4.13398000	1.82304200	0.48612700
Н	2.99685300	0.87837800	1.46573300
С	3.22220900	-2.52561200	-1.08225300
Н	4.25369700	-2.89050500	-1.10211300
Н	2.55711300	-3.36661000	-0.86725400
Н	2.97380100	-2.13913400	-2.07321500
С	3.50016000	-2.04443400	1.33913900
Н	2.91336400	-2.93877000	1.56846500
Н	4.55557500	-2.33029000	1.27312300
Н	3.38677900	-1.34091200	2.16418500
Н	0.71547700	0.94097900	0.48159700

4

С	0.05211700	-2.80624700	1.32930900
С	0.15011100	-2.37598800	-0.15565600
С	2.23895000	-1.52870100	1.14089500
С	1.17440900	-2.08546100	2.10941800

Н	0.25142800	-3.88790000	1.34079800
Н	0.76153000	-1.26380600	2.70769300
Н	1.65308900	-2.77376300	2.81618800
С	0.28776800	-0.81554700	-0.17607400
С	2.64077400	-2.69413700	0.22046800
Н	3.54260200	-2.43742300	-0.34518300
Н	2.88041600	-3.57424300	0.83105500
С	1.45351400	-2.97425300	-0.72663200
Н	1.63693000	-2.54098400	-1.71477200
Н	1.30982900	-4.05228900	-0.86610400
Ν	1.62779000	-0.49099100	0.27624000
С	-1.04649900	-2.86145100	-0.97053900
Н	-1.97324800	-2.36862300	-0.66402600
Н	-0.89156700	-2.68310000	-2.04089000
Н	-1.17510000	-3.94083000	-0.83023400
С	3.41066200	-0.97698800	1.93686800
Н	4.15886500	-0.51148700	1.29288500
Н	3.07404700	-0.22282100	2.65649400
Н	3.88635800	-1.79425300	2.48806600
С	-4.49277600	1.01815100	-0.86475100
С	-4.10733700	-0.05282700	0.20812500
В	-2.38627400	0.29141300	-1.21710100
0	-3.46238700	0.84025800	-1.85743400
0	-2.66733700	-0.11801100	0.06525800
С	-4.37105900	2.44786200	-0.34211400
Н	-4.43989200	3.13696200	-1.18758300
Н	-5.16917000	2.68297000	0.36831800
Н	-3.40600700	2.60609400	0.15059500
С	-5.84810000	0.80362500	-1.51840400
Н	-6.64574300	0.83907200	-0.76873100

Н	-6.02889800	1.59608900	-2.24942200
Н	-5.89190500	-0.15544800	-2.03774600
С	-4.44205500	0.32318400	1.64107800
Н	-5.52345600	0.45097300	1.75817500
Н	-4.11670800	-0.47474200	2.31510700
Н	-3.94495700	1.24881400	1.93696000
С	-4.64910400	-1.44194300	-0.12036500
Н	-4.18020600	-2.17067900	0.54750100
Н	-5.73307500	-1.48983000	0.01850300
Н	-4.41669900	-1.71990100	-1.15370800
С	2.10571600	0.85641100	0.22557600
С	1.57107100	1.85586400	1.06882100
С	3.13966900	1.18854900	-0.68305300
С	2.07611500	3.15583600	1.00020600
С	3.63569600	2.49452200	-0.69300400
С	3.11305100	3.47646000	0.13633500
Н	1.65678100	3.92520600	1.64398100
Н	4.43938400	2.74818200	-1.37945600
Н	3.50750500	4.48778200	0.10500800
С	3.72867500	0.19444600	-1.67253600
С	5.19255700	-0.14204600	-1.35770200
С	3.62852800	0.72205700	-3.11071800
Н	3.12887500	-0.71525200	-1.61385700
Н	5.31555700	-0.60728200	-0.37558400
Н	5.58797500	-0.83560400	-2.10795400
Н	5.81412800	0.76055200	-1.37899500
Н	2.60756100	1.02451500	-3.34841300
Н	4.29622700	1.57688900	-3.26883200
Н	3.92532700	-0.06232900	-3.81501700
С	0.43739300	1.58036700	2.04117100

С	-0.84235700	2.28617200	1.57582200
С	0.78640100	1.97718100	3.47950400
Н	0.24626300	0.50679800	2.04269200
Н	-1.07428100	2.02149800	0.53895500
Н	-1.69453100	2.00173200	2.20336200
Н	-0.72503500	3.37471100	1.62501600
Н	1.69559600	1.47181000	3.81993500
Н	0.94933200	3.05594900	3.57120000
Н	-0.03073800	1.70639000	4.15667600
С	-1.31223200	-2.58058100	1.98031500
Н	-1.63088100	-1.53533100	1.89020200
Н	-2.08646200	-3.20884300	1.52822700
Н	-1.26153700	-2.82932700	3.04577300
С	0.04266900	-0.30519800	-1.59376500
0	0.85213200	-0.34719900	-2.47551800
0	-1.19423000	0.19613800	-1.88406700
Н	-0.50004500	-0.39241700	0.46147500

IV

С	2.95735900	-0.56160300	-0.78672700
С	2.24189900	-1.16048000	0.46292800
С	0.62798300	-1.14641200	-1.55964200
С	1.92607400	-0.40856100	-1.92860600
Н	3.71414200	-1.30035800	-1.08831500
Н	1.69917900	0.64960700	-2.10177000
Н	2.31321300	-0.81305000	-2.87086100
С	0.95435900	-0.40390900	0.75012100
С	1.03136800	-2.59624900	-1.21684600
Н	0.15474500	-3.25003200	-1.18522800
Н	1.65815400	-2.95605100	-2.04108500

С	1.80490200	-2.60411200	0.10920300
Н	1.17631200	-2.98509900	0.92369100
Н	2.68824800	-3.25085500	0.05518800
Ν	0.15809100	-0.47536000	-0.29483900
С	3.14034100	-1.16731800	1.69506000
Н	3.33538000	-0.15004500	2.04368300
Н	2.64848600	-1.70817500	2.51042800
Н	4.09803300	-1.65937500	1.48454700
С	-0.40836200	-1.10358900	-2.66924400
Н	-1.32570400	-1.62575100	-2.37866500
Н	-0.67492500	-0.07862800	-2.94158500
Н	0.00339300	-1.60099000	-3.55335000
С	-1.14489200	0.16252400	-0.25011100
С	-1.26567500	1.53278000	-0.52307400
С	-2.26198500	-0.62604600	0.07716900
С	-2.55089900	2.08480600	-0.54376800
С	-3.52139700	-0.02966100	0.05390700
С	-3.67069500	1.31336200	-0.27468800
Н	-2.66808700	3.14213500	-0.76530900
Н	-4.39825300	-0.61973900	0.30034500
Н	-4.65956000	1.76093700	-0.29846300
С	-2.08847700	-2.05783400	0.55146000
С	-3.27861300	-2.96347500	0.23129100
С	-1.78872700	-2.05433200	2.05809100
Н	-1.21408100	-2.47552500	0.04526200
Н	-3.55461400	-2.91106000	-0.82713800
Н	-3.02916900	-4.00163200	0.47097600
Н	-4.15870700	-2.69851800	0.82637400
Н	-0.91003500	-1.43953000	2.27806100
Н	-2.63970100	-1.63758800	2.60820900

Н	-1.61296800	-3.07466400	2.41708500
С	-0.07250100	2.44413000	-0.75530100
С	-0.13378700	3.68283500	0.15045000
С	0.03435700	2.87983800	-2.22188300
Н	0.83101700	1.89058000	-0.48589900
Н	-0.39084900	3.41625800	1.17917000
Н	0.83281100	4.19566200	0.15424000
Н	-0.88786700	4.39452400	-0.20288700
Н	0.12105900	2.02595500	-2.90061100
Н	-0.85459700	3.44877600	-2.51671600
Н	0.91019200	3.52119100	-2.36797600
С	3.67429900	0.75910100	-0.50326000
Н	2.99429800	1.48842500	-0.04849800
Н	4.51653100	0.62326300	0.18051100
Н	4.06372300	1.18599200	-1.43386800
С	0.76864500	1.58262100	2.56270300
0	-0.28515600	1.32785100	2.98656600
0	1.81766900	1.98094800	2.23580100

С	2.98923600	-0.41864900	-0.75954200
С	2.27562200	-1.10602800	0.44572800
С	0.68636500	-1.02348400	-1.59809100
С	1.96899300	-0.23254600	-1.90662600
Н	3.76974000	-1.11970200	-1.08889300
Н	1.71585400	0.82675300	-2.02856300
Н	2.37920400	-0.57723200	-2.86266100
С	0.96442700	-0.40406600	0.74645000
С	1.12367300	-2.47875200	-1.32764900
Н	0.26404700	-3.15508900	-1.34157800

Н	1.76810100	-2.77716500	-2.16259300
С	1.88300000	-2.53922000	0.00532000
Н	1.25802600	-2.98423200	0.78931900
Н	2.78640100	-3.15456700	-0.07420100
Ν	0.18022400	-0.43469500	-0.30604600
С	3.15771000	-1.15781900	1.68876900
Н	3.32411800	-0.15750100	2.09521200
Н	2.67021400	-1.75559900	2.46617900
Н	4.12860000	-1.61533100	1.46255700
С	-0.33706500	-0.94647200	-2.71747900
Н	-1.24394100	-1.50676700	-2.46814100
Н	-0.62630500	0.08478900	-2.93742300
Н	0.09867800	-1.38455600	-3.62113700
С	-1.13954300	0.16877300	-0.24334700
С	-1.28843800	1.54850600	-0.44375800
С	-2.23860700	-0.66340300	0.03038800
С	-2.58612500	2.07062200	-0.44485900
С	-3.51120200	-0.09525500	0.02991600
С	-3.68898800	1.26004200	-0.22569600
Н	-2.72668400	3.13535800	-0.60966500
Н	-4.37583600	-0.71757300	0.23690000
Н	-4.68773500	1.68568700	-0.23189500
С	-2.03586000	-2.11624600	0.42205300
С	-3.20097000	-3.02792800	0.03347400
С	-1.75327800	-2.19793200	1.92960600
Н	-1.14696800	-2.48357000	-0.09806800
Н	-3.46705900	-2.91794600	-1.02305500
Н	-2.92963200	-4.07264600	0.21329800
Н	-4.09308800	-2.81969700	0.63307800
Н	-0.89148600	-1.58033900	2.20119700

Н	-2.61792200	-1.83057900	2.49324700
Н	-1.56220100	-3.23492400	2.22787400
С	-0.11568500	2.49885600	-0.61833800
С	-0.20695000	3.68145500	0.35689400
С	-0.01524800	3.01825300	-2.05796900
Н	0.80090000	1.95381700	-0.37740300
Н	-0.44016500	3.34951800	1.37178400
Н	0.74371900	4.22263100	0.38035800
Н	-0.98610700	4.38768100	0.05003600
Н	0.09431400	2.20613900	-2.78334800
Н	-0.91644300	3.58165300	-2.32475100
Н	0.84536800	3.68743800	-2.16363600
С	3.66418400	0.90338400	-0.39265100
Н	2.95978700	1.58418900	0.09862300
Н	4.50470800	0.75142600	0.28977500
Н	4.04828500	1.39465900	-1.29313300
С	0.63517900	1.25283100	2.50945100
0	-0.42404800	0.96729200	2.91736300
0	1.66246800	1.79103300	2.31398200

1B

С	-3.05388800	0.07878200	0.64115800
С	-2.37470700	-0.98051100	-0.28055200
С	-0.79877300	-0.41186800	1.71556600
С	-2.07655600	0.44432700	1.78578200
Н	-3.93368400	-0.42118700	1.06712000
Н	-1.79638500	1.50266400	1.73322500
Н	-2.53776000	0.28465100	2.76622700
С	-1.02525300	-0.44439600	-0.64994600
С	-1.21429000	-1.89522000	1.78471600

Н	-0.32038500	-2.52474600	1.83073400
Н	-1.75695900	-2.03754600	2.72509800
С	-2.09063400	-2.24770300	0.56805400
Н	-1.59865900	-2.98829600	-0.07088800
Н	-3.05323800	-2.67128400	0.87390600
Ν	-0.23126000	-0.18379800	0.34522000
С	-3.20156200	-1.31777400	-1.51625600
Н	-3.29058100	-0.44965400	-2.17371700
Н	-2.71451900	-2.11413700	-2.08586300
Н	-4.20202400	-1.64967400	-1.21947200
С	0.19491300	-0.04965300	2.80432100
Н	1.10739000	-0.64684500	2.73087700
Н	0.47597000	1.00525200	2.75845900
Н	-0.26932400	-0.24324200	3.77574100
С	1.12830500	0.28110400	0.13306900
С	1.36808900	1.66179900	0.06694100
С	2.14633600	-0.67711200	0.00980200
С	2.69892400	2.07497400	-0.02314500
С	3.45785400	-0.20676600	-0.07756500
С	3.73643800	1.15373600	-0.07224400
Н	2.91945300	3.13763200	-0.07016900
Н	4.27053100	-0.92207300	-0.16621300
Н	4.76429700	1.49706300	-0.13697800
С	1.88540400	-2.17233300	-0.07692600
С	2.46274300	-2.91706800	1.13305500
С	2.44730800	-2.74402700	-1.38489200
Н	0.80354500	-2.33359100	-0.10975700
Н	2.05918500	-2.54839500	2.08228000
Н	2.24051300	-3.98677200	1.06125400
Н	3.55176200	-2.80504800	1.17255100

Н	2.00996200	-2.22333700	-2.23888500
Н	3.53867300	-2.65578100	-1.41903100
Н	2.19741200	-3.80758400	-1.45865900
С	0.26128000	2.70264600	0.03086900
С	0.33869400	3.52628400	-1.26108000
С	0.29385300	3.61877300	1.25978100
Н	-0.69861100	2.18074500	0.00716500
Н	0.28731600	2.86875600	-2.13099700
Н	-0.50574300	4.22226600	-1.30342900
Н	1.26071700	4.11688900	-1.29936700
Н	0.18595100	3.06419900	2.19790600
Н	1.23820100	4.17183100	1.30877100
Н	-0.51833400	4.35089400	1.20454800
С	-3.51517600	1.31208800	-0.13906600
Н	-2.71857900	1.68081100	-0.79794000
Н	-4.37953200	1.08295300	-0.76790800
Н	-3.80530500	2.11209400	0.54935200
С	-0.60242400	-0.21885400	-2.10281700
0	-0.05444100	-1.20294400	-2.60953300
0	-0.94477200	0.90415600	-2.50349700

V

С	-0.47493600	-2.48522400	-1.79556100
С	-0.40030700	-2.37848600	-0.24169800
С	-2.67434000	-1.42180300	-1.08683000
С	-1.80475800	-1.85624600	-2.28034800
Н	-0.48076700	-3.56043600	-2.01735800
Н	-1.60976300	-0.98138500	-2.91161600
Н	-2.38361100	-2.56414500	-2.88294000
С	-0.67796000	-0.94898300	0.11245300

С	-2.92360500	-2.65995800	-0.20143300
Н	-3.62208400	-2.40320400	0.60083200
Н	-3.41670700	-3.41046100	-0.82808900
С	-1.58674700	-3.17995300	0.35660200
Н	-1.54793300	-3.08538600	1.44662300
Н	-1.43236000	-4.23693600	0.11490400
Ν	-1.81981100	-0.47854700	-0.29015800
С	0.93026500	-2.86314400	0.32311000
Н	1.75578300	-2.21403100	0.01369900
Н	0.89228500	-2.86423500	1.41577600
Н	1.12879700	-3.88129900	-0.02975000
С	-3.97435200	-0.77206900	-1.52529900
Н	-4.57242700	-0.45201800	-0.66817200
Н	-3.79802500	0.09970400	-2.15963000
Н	-4.55115600	-1.50568800	-2.09603100
С	4.94959100	0.96435800	0.33780400
С	4.35361500	-0.44927100	0.64832200
В	3.18681500	0.55331900	-1.01602400
0	3.92475200	1.56978500	-0.47507900
0	3.50513400	-0.68085000	-0.50225600
С	6.21073000	0.90262200	-0.52411600
Н	6.45242400	1.91263500	-0.86589700
Н	7.06396300	0.50836700	0.03652700
Н	6.04836800	0.27364600	-1.40503000
С	5.18911100	1.83747900	1.55946000
Н	5.90951000	1.36497800	2.23628600
Н	5.59668900	2.80175200	1.24257300
Н	4.25921000	2.01822200	2.10077800
С	5.37851000	-1.57148300	0.71936200
Н	6.09661800	-1.38554900	1.52551500

Н	4.86672900	-2.51511200	0.93092000
Н	5.92320400	-1.68058000	-0.22076400
С	3.47480500	-0.45448400	1.89563900
Н	2.93890300	-1.40601900	1.95744200
Н	4.08374400	-0.34613100	2.79932700
Н	2.72488100	0.33843300	1.86149700
С	-2.25691200	0.86671100	0.04378000
С	-1.95454600	1.91866100	-0.83469100
С	-2.98005500	1.04826000	1.23259600
С	-2.50340600	3.16849100	-0.54206400
С	-3.50030700	2.32124800	1.47597200
С	-3.28656800	3.36631900	0.58758300
Н	-2.29645600	4.00319400	-1.20552800
Н	-4.07128800	2.49397000	2.38383200
Н	-3.70592000	4.34659500	0.79194500
С	-3.17713900	-0.04492900	2.27119300
С	-4.65713300	-0.41250000	2.43240800
С	-2.57172100	0.37505600	3.61696000
Н	-2.62610300	-0.93416900	1.95063200
Н	-5.11115400	-0.73611500	1.48961300
Н	-4.76896300	-1.22267000	3.16028500
Н	-5.23244800	0.44496800	2.79795100
Н	-1.50826900	0.59395900	3.50121000
Н	-3.08426300	1.25327600	4.02433600
Н	-2.67966000	-0.44026000	4.33974300
С	-1.02942600	1.77510400	-2.03224600
С	0.13970200	2.76409700	-1.93389600
С	-1.77552700	1.95986000	-3.35927800
Н	-0.59267600	0.77312800	-2.00920700
Н	0.67722000	2.62598300	-0.99372000

Н	0.83747600	2.59099200	-2.75943600
Н	-0.21098000	3.79964400	-2.00635000
Н	-2.58034400	1.22975000	-3.49429400
Н	-2.22111600	2.95901900	-3.41801900
Н	-1.08032500	1.85455900	-4.19842400
С	0.73598600	-1.84168400	-2.47048100
Н	0.88187600	-0.81716500	-2.10812000
Н	1.65923000	-2.38787000	-2.26143600
Н	0.59616200	-1.80856200	-3.55575500
С	0.26839800	-0.10320200	0.96185000
0	0.18687000	-0.40071400	2.16073000
0	0.95794100	0.69714200	0.31090800
Н	2.47294900	0.70390400	-1.95279700

С	0.46207500	-2.69641100	1.70067900
С	0.38388900	-2.45089800	0.16174500
С	2.53718200	-1.35212300	1.14591300
С	1.64294000	-1.88529900	2.27790600
Н	0.68317500	-3.76770600	1.80153500
Н	1.27468300	-1.03332300	2.86274500
Н	2.25540700	-2.49797600	2.94769400
С	0.55549100	-0.98300000	-0.11468200
С	2.91876200	-2.54149700	0.23617200
Н	3.67670800	-2.22919700	-0.48770300
Н	3.38217300	-3.29683700	0.87993900
С	1.66132600	-3.08966300	-0.45742600
Н	1.66403500	-2.87435000	-1.53070000
Н	1.57734500	-4.17503200	-0.33962500
Ν	1.64958100	-0.44617600	0.33854500

С	-0.86976900	-3.03718800	-0.47756900
Н	-1.76819200	-2.49332000	-0.17212700
Н	-0.79274500	-2.98374700	-1.56656700
Н	-0.96558700	-4.08726700	-0.17930100
С	3.76288300	-0.62618200	1.67090300
Н	4.37223200	-0.22180300	0.85888800
Н	3.49282100	0.19791600	2.33519100
Н	4.36794300	-1.34219900	2.23463200
С	-4.53571300	1.01873400	-0.25892300
С	-4.12480500	-0.42186400	-0.71743800
В	-2.53435200	0.44276000	0.66528400
0	-3.33779500	1.52774600	0.34155200
0	-3.10359000	-0.75985500	0.23851800
С	-5.60653000	1.00466800	0.83384800
Н	-5.70150100	2.01503800	1.24112800
Н	-6.58132500	0.68870300	0.44848900
Н	-5.31445000	0.33471200	1.64842100
С	-4.95718000	1.94394700	-1.39153200
Н	-5.83049900	1.54233300	-1.91795500
Н	-5.22370200	2.92256900	-0.98155700
Н	-4.14395600	2.08265200	-2.10606200
С	-5.23381900	-1.46073000	-0.61740400
Н	-6.08259800	-1.18406100	-1.25261900
Н	-4.85569000	-2.42937700	-0.95918800
Н	-5.58390200	-1.57380900	0.41063800
С	-3.51592200	-0.45194500	-2.12027700
Н	-3.05563300	-1.43171500	-2.28465700
Н	-4.28613000	-0.30057300	-2.88421800
Н	-2.73577800	0.30269000	-2.23547900
С	2.05174800	0.91801600	0.02220000

С	1.68169400	1.95712900	0.88950700
С	2.84048100	1.12468900	-1.12122600
С	2.22281200	3.21942700	0.63781500
С	3.34412700	2.41078700	-1.32745000
С	3.06199300	3.44390200	-0.44502400
Н	1.96367000	4.04325400	1.29611300
Н	3.96147100	2.60142600	-2.20062600
Н	3.47257000	4.43381900	-0.61801500
С	3.13958300	0.04670900	-2.15126600
С	4.64057900	-0.25989800	-2.22909500
С	2.60229800	0.45147800	-3.53042000
Н	2.60666800	-0.86503200	-1.86856800
Н	5.05872500	-0.55081600	-1.25957900
Н	4.82415400	-1.07380600	-2.93805300
Н	5.19781700	0.61621100	-2.57772800
Н	1.52728200	0.63521800	-3.48415600
Н	3.10829500	1.34850900	-3.90328400
Н	2.78178800	-0.35658400	-4.24696700
С	0.68486300	1.79374400	2.02401800
С	-0.46965900	2.79209000	1.86222900
С	1.34094600	1.95694800	3.40058000
Н	0.24853600	0.79189600	1.95963500
Н	-0.92587100	2.70360600	0.87367100
Н	-1.24256300	2.59148400	2.60986400
Н	-0.12126000	3.82086100	2.00634500
Н	2.11737500	1.20794000	3.58795900
Н	1.80257500	2.94592500	3.49637800
Н	0.58601100	1.86233600	4.18754200
С	-0.83874200	-2.40147500	2.44123200
Н	-1.15607000	-1.36574300	2.28593300

Н	-1.65286600	-3.04844700	2.10616400
Н	-0.69832100	-2.55886900	3.51585600
С	-0.31592200	-0.19405100	-1.09515400
0	-0.10964400	-0.59583700	-2.24275000
0	-1.03922600	0.71972300	-0.64174700
Н	-1.84375300	0.44745600	1.63996700

VI

С	0.11040600	-2.50067600	1.85929800
С	0.30021400	-2.45464700	0.31259200
С	2.22473200	-1.15698000	1.49294500
С	1.15277400	-1.57138900	2.51390600
Н	0.34937200	-3.53902200	2.12812900
Н	0.67266500	-0.67199400	2.91487500
Н	1.65255200	-2.06761100	3.35264800
С	0.52135800	-1.03627400	-0.15792600
С	2.77952900	-2.44354700	0.83982100
Н	3.65462400	-2.20457200	0.22918100
Н	3.12303000	-3.08951600	1.65489700
С	1.67714900	-3.12228000	0.01289900
Н	1.87165300	-3.04409900	-1.06136500
Н	1.58516900	-4.18544400	0.25738000
Ν	1.50662900	-0.39593000	0.40683100
С	-0.81179900	-3.17501100	-0.44407900
Н	-1.76793100	-2.65008400	-0.36342200
Н	-0.55036900	-3.26893500	-1.50268300
Н	-0.92142000	-4.18323600	-0.03000100
С	3.33023900	-0.33315800	2.12615500
Н	4.05969100	0.00654800	1.38810300
Н	2.93612300	0.54268000	2.64254400

Н	3.84528400	-0.96222900	2.85796600
С	-4.12103400	1.14350000	-0.35105200
С	-4.27231800	-0.38809000	-0.61245700
В	-2.04060400	0.14306900	-0.37737200
0	-2.74598300	1.36650600	-0.63092300
0	-3.02367700	-0.88759500	-0.14085800
С	-4.37922800	1.50363200	1.11541600
Н	-4.05705000	2.53606600	1.28268000
Н	-5.43852000	1.42237600	1.38137100
Н	-3.79844800	0.84965900	1.77511700
С	-4.96329600	2.02730000	-1.26151100
Н	-6.03053200	1.80470400	-1.14731300
Н	-4.80311000	3.07857800	-1.00313900
Н	-4.68122500	1.88863700	-2.30712600
С	-5.39538200	-1.06022500	0.16526600
Н	-6.36478300	-0.61021400	-0.07744900
Н	-5.43881200	-2.12273500	-0.09429500
Н	-5.22753900	-0.97952300	1.24178400
С	-4.39797800	-0.70630700	-2.10511300
Н	-4.26556300	-1.78369000	-2.24434200
Н	-5.37921100	-0.42280800	-2.50063700
Н	-3.62013200	-0.19033700	-2.67508200
С	1.94822000	0.93233200	-0.00950100
С	1.45546700	2.05958800	0.67612300
С	2.90858100	1.03155800	-1.03515200
С	1.94862700	3.30878700	0.29184300
С	3.36301800	2.30913700	-1.36822900
С	2.89255800	3.43881100	-0.71531300
Н	1.57787800	4.19520800	0.79767900
Н	4.10179800	2.41391700	-2.15707500

Н	3.26068100	4.42145100	-0.99324300
С	3.50273600	-0.15473100	-1.78137600
С	4.98221700	-0.35109900	-1.42025100
С	3.36084100	0.00832400	-3.30050700
Н	2.94613700	-1.05345300	-1.50852200
Н	5.13875900	-0.51419100	-0.34939300
Н	5.38704200	-1.21577100	-1.95656900
Н	5.57072400	0.52640000	-1.70910200
Н	2.32476000	0.20350000	-3.57845500
Н	3.99382800	0.82117600	-3.67268800
Н	3.67928300	-0.91299900	-3.79821900
С	0.42827500	2.01767000	1.79951700
С	-0.80649000	2.86236400	1.45493800
С	1.01058700	2.51166200	3.13241200
Н	0.08952100	0.98622300	1.92240400
Н	-1.25500400	2.58052400	0.50078700
Н	-1.56713200	2.72274500	2.23080500
Н	-0.55108500	3.92805000	1.43113900
Н	1.86098000	1.92055100	3.48195700
Н	1.34380200	3.55148100	3.04740900
Н	0.23674500	2.47476700	3.90570500
С	-1.30659700	-2.20612400	2.34687600
Н	-1.64958900	-1.22065800	2.02159900
Н	-2.02285000	-2.93934100	1.96861500
Н	-1.32670100	-2.24444500	3.44141100
С	-0.03715100	-0.67000500	-1.54001300
0	0.70011200	-1.05242000	-2.43389800
0	-1.19650800	-0.15669400	-1.64965900
Н	-1.19755600	0.15472500	0.53052200

С	0.03164300	-2.46688500	1.87705200
С	0.23766200	-2.43414900	0.33358300
С	2.15652800	-1.14040000	1.52324300
С	1.05832800	-1.51944700	2.53028900
Н	0.28002800	-3.49935800	2.16054400
Н	0.56973800	-0.60622900	2.88833700
Н	1.53189200	-1.99026400	3.39852900
С	0.46462800	-1.01405000	-0.15111000
С	2.70625800	-2.44622200	0.90768200
Н	3.60514700	-2.23469400	0.32185900
Н	3.00913600	-3.09047900	1.74034600
С	1.61504000	-3.10833300	0.05470900
Н	1.83135500	-3.02351700	-1.01495500
Н	1.51193100	-4.17298300	0.28803500
Ν	1.47535000	-0.39090700	0.40774700
С	-0.85716700	-3.17397200	-0.42901200
Н	-1.82414800	-2.67023800	-0.36252000
Н	-0.58422500	-3.27265400	-1.48467000
Н	-0.95121000	-4.18192000	-0.01001600
С	3.26374400	-0.32480300	2.16541600
Н	4.01652600	-0.01565700	1.43759100
Н	2.87874200	0.57046500	2.65416600
Н	3.74940400	-0.94914200	2.92110400
С	-4.03283900	1.16613100	-0.34091800
С	-4.28442300	-0.34573800	-0.63675600
В	-2.01935900	0.04417900	-0.48671500
0	-2.65462400	1.31377000	-0.66287400
0	-3.04766100	-0.93051800	-0.23531600
С	-4.22658900	1.50277700	1.14007700

Н	-3.86429100	2.51932100	1.31953300
Н	-5.27908400	1.45301300	1.43799300
Н	-3.64978400	0.81409000	1.76740700
С	-4.84580200	2.12353700	-1.20226000
Н	-5.92055400	1.96447500	-1.05736400
Н	-4.61185300	3.15583600	-0.92455600
Н	-4.60689800	1.99462300	-2.25966300
С	-5.41007400	-0.97664800	0.17058000
Н	-6.36143200	-0.46596500	-0.01687600
Н	-5.52466600	-2.02658500	-0.11627100
Н	-5.19229200	-0.93807500	1.24048300
С	-4.48749400	-0.61418400	-2.13041900
Н	-4.42932700	-1.69316900	-2.30171300
Н	-5.46265200	-0.25804000	-2.47914700
Н	-3.70081700	-0.13259300	-2.71850700
С	1.95107700	0.92016500	-0.01496100
С	1.45465200	2.06311800	0.64169600
С	2.95390500	0.99604500	-1.00161100
С	1.98955300	3.30021400	0.27458400
С	3.44697700	2.26226700	-1.32330900
С	2.97617400	3.40511100	-0.69393900
Н	1.62011400	4.19688500	0.76304300
Н	4.21867300	2.34736400	-2.08261000
Н	3.37748800	4.37811000	-0.95977400
С	3.55253200	-0.20567800	-1.71844200
С	5.01777100	-0.42306800	-1.31389300
С	3.45928100	-0.05204300	-3.24247300
Н	2.97269500	-1.09181200	-1.45379700
Н	5.14146100	-0.58397800	-0.23854200
Н	5.42372000	-1.29675500	-1.83458700

Н	5.62864700	0.44326200	-1.58992000
Н	2.43638900	0.16154600	-3.55346200
Н	4.11875200	0.74600800	-3.60076200
Н	3.77444700	-0.98291500	-3.72431600
С	0.37988700	2.04499000	1.72106000
С	-0.80855100	2.93423800	1.33235800
С	0.91835400	2.50722900	3.08333900
Н	0.00044300	1.02440700	1.81826300
Н	-1.24139000	2.64857500	0.37211200
Н	-1.59219300	2.83848300	2.09136000
Н	-0.51084400	3.98833600	1.29757700
Н	1.72006800	1.87441300	3.47201800
Н	1.30463300	3.53013500	3.01882900
Н	0.10664600	2.50532600	3.81776000
С	-1.39178000	-2.18665500	2.35425000
Н	-1.74186900	-1.20360000	2.02981300
Н	-2.09827000	-2.92622400	1.96974100
Н	-1.41958700	-2.22633600	3.44856000
С	-0.01055800	-0.71156800	-1.58326000
0	0.76964200	-1.06996900	-2.44511400
0	-1.19640900	-0.25802400	-1.74337100
Н	-1.13124100	-0.03997100	0.41644500

9) References

S1. E. Tomás-Mendivil, M. M. Hansmann, C. M. Weinstein, R. Jazzar, M. Melaimi and G. Bertrand, *J. Am. Chem. Soc.*, 2017, **139**, 7753-7756.

S2. M. H. Al-Huniti, J. Rivera-Chávez, K. L. Colón, J. L. Stanley, J. E. Burdette, C. J. Pearce,

- N. H. Oberlies and M. P. Croatt, Org. Lett., 2018, 20, 6046-6050.
- S3. S. Ando, M. Tsuzaki and T. Ishizuka, J. Org. Chem., 2020, 85, 11181-11189.

S4. N. Wang, P. Ma, J. Xie and J. Zhang, Mol. Diversity, 2020, 25, 1131-1136.

S5. A. M. Sheta, A. Alkayal, M. A. Mashaly, S. B. Said, S. S. Elmorsy, A. V. Malkov and B.
R. Buckley, *Angew. Chem.*, *Int. Ed.*, 2021, **60**, 21832-21837.

S6. F. Romanov-Michailidis, B. D. Ravetz, D. W. Paley and T. K. Rovis, *J. Am. Chem. Soc.*, 2018, 16, 5370-5374.

S7. F. Mazzini, M. Betti, B. Canonico, T. Netscher, F. Luchetti, S. Papa and F. Galli, *ChemMedChem*, 2010, **5**, 540-543.

S8. B. Paul, D. Panja and S. Kundu, Org. Lett., 2019, 21, 5843-5847.

S9. C. G. Jorgensen, B. Frolund, J. Kehler and A. A. Jensen, *ChemMedChem*, 2011, **6**, 725-736.

S10. S. N. Rao, N. N. K. Reddy, S. Samanta and S. Adimurthy, J. Org. Chem., 2017, 82, 13632-13642.

S11. G. Wu, Y. Li, X. Yu, Y. Gao and H. Chen, Adv. Synth. Catal., 2017, 359, 687-692.

S12. X. Sun, W. Zhao and B.-J. Li, Chem. Commun., 2020, 56, 1298-1301.

S13. H. Suzuki, T. Shiomi, K. Yoneoka and T. Matsuda, Org. Biomol. Chem., 2020, 18, 7545-7548.

S14. L. Ackermann, A. V. Lygin and N. Hofmann, *Angew. Chem., Int. Ed.*, 2011, **50**, 6379-6382.

S15. Y. Guo, R.-Y. Wang, J.-X. Kang, Y.-N. Ma, C.-Q. Xu, J. Li and X. Chen, *Nat. Commun.*, 2021, 12, 5964.

S16. Y. Liu, H. Li and S. Chiba, Org. Lett., 2021, 23, 427-432.

S17. X.-Q. Ning, S.-J. Lou, Y.-J. Mao, Z.-Y. Xu and D.-Q. Xu, Org. Lett., 2018, 20, 2445-2448.

S18. S. Miyamura, M. Araki, Y. Ota, Y. Itoh, S. Yasuda, M. Masuda, T. Taniguchi, Y. Sowa,

T. Sakai, T. Suzuki, K. Itami and J. Yamaguchi, Org. Biomol. Chem., 2016, 14, 8576-8585.

S19. M. Kissane, D. Lynch, J. Chopra, S. E. Lawrence and A. R. Maguire, *Org. Biomol. Chem.*, 2010, 8, 5602-5613.

S20. T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132, 10565-10569.

S21. M. Maji, K. Chakrabarti, B. Paul, B. C. Roy and S. Kundu, *Adv. Synth. Catal.*, 2018, **360**, 722-729.

S22. T. Sato, T. Yoshida, H. H. Al Mamari, L. Ilies and E. Nakamura, Org. Lett., 2017, 19, 5458-5461.

S23. 7 L. Baris^{*}ic, M. C^{*}akic, K. A. Mahmoud, Y.-N. Liu, H.-B. Kraatz, H. Pritzkow, S. I.
Kirin, N. Metzler-Nolte and V. Rapic^{*}, *Chem. – Eur. J.*, 2006, **12**, 4965-4980.

- S24. M. D'Ascenzio, S. Carradori, D. Secci, D. Vullo, M. Ceruso, A. Akdemir and C.T. Supuran, *Bioorg. Med. Chem.*, 2014, 22, 3982-3988.
- S25. X. Wang, K. Chang and X. Xu, Dalton Trans., 2020, 49, 7324-7327.
- S26. G. J. Karabatsos, J. Am. Chem. Soc., 1961, 83, 1230-1232.
- S27. P. Mohanakrishnan and K. R. K. Easwaran, Chemical physics., 1986, 104, 409-414.

S28. A. Das, P. Sarkar, S. Maji, S. K. Pati and S. K. Mandal, *Angew. Chem., Int. Ed.*, 2022, **61**, e202213614.

S29. Y. Tang, Y. Li, V. Fung, D. E. Jiang, W. Huang, S. Zhang, Y. Iwasawa, T. Sakata, L.Nguyen, X. Zhang, A. I. Frenkel and F. F. Tao, *Nat. Commun.*, 2018, 9, 1231.

- S30. S. Maji, A. Das and S. K. Mandal, Chem. Sci., 2021, 12, 12174-12180.
- S31. C. Yu, C. Guo, L. Jiang, M. Gong and Y. Luo, Organometallics, 2021, 40, 1201-1206.
- S32. P. K. Hota, S. C. Sau and S. K. Mandal, ACS Catal., 2018, 8, 11999-12003.

S33. S. Bontemps, L. Vendier and S. Sabo-Etienne, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 1671-1674.

- S34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
- G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
- S35. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- S36. R. Logdi, A. Bag and A. K. Tiwari, J. Phys. Chem. A 2021, 125, 5718-5725.