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Unless specified, references to equations and figures correspond to those of the text.

I. LINEAR RESPONSE EXPRESSION OF ε⊥(z), EQS. 9-12

For small perturbing fields such that the linearisation in eq. 5 applies, the minimisation of the

polarisation functional in eq. 8 for a fixed n(z) yields∫
dz2 χ

−1
0 (z1, z2)P (z2) = αdE0(z1) (1)

with

χ−10 (z1, z2) =
1

n(z1)
δ(z12)−

1

3
cL(z12) (2)

which gives by inversion the linear response formula 9 relating the polarisation to the external field.

Classically, after decomposition of the susceptibility in a self and distinct contribution as in eq. 11,

writing ∫
dz3 χ

−1
0 (z1, z3)χ0(z3, z2) = δ(z12) (3)

is equivalent to solving the following inhomogeneous Ornstein-Zernike-like integral equation for hL know-

ing cL1

hL(z1, z2) = cL(z12) +
1

3

∫
dz3 cL(z13)n(z3)hL(z3, z2) (4)

The dependence of the ideal part of χ−10 in the local density n(z1) makes that both χ0 and hL depend

on z1 and z2 rather than just z12.

A few remarks are worth mentioning here:

1) Even though the c-function cL(z12 appearing above in the inverse susceptibility is that of the bulk,

the pair distribution hL(z1, z2) that follows from the OZ inversion is not the bulk one; it depends on both

z1 and z2, not on z12 only. The fact that the presence of boundaries modifies the fluid response function

with respect to the bulk and makes it depend on the two bodies positions rather than only on their

relative distance is familiar to inhomogeneous OZ approaches. This fact was also brought up by David

Chandler using a Gaussian field theory of fluids with excluded volumes2, and his findings were further

interpreted in a classical DFT framework3. Using the bulk hL(z12) may turn out to be a reasonable

approximation, especially with a smooth, coarse-grained n(z) as input as done in Ref.4. It relates to the

inverse dielectric approximation proposed by Vorotyntsev et al.7.

2) The inhomogeneous fluid density n(z) does enter in eq. 12 at two places; the first one indicates

that the local response function should be zero where there is no particle, n(z) = 0. The second one

excludes the nonlocal contribution to the polarisation response coming from region where the density
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is zero, n(z2) = 0. This nonlocal cut-off effect on the polarisation response near the boundaries was

pointed out recently by Olivieri et al.5. It is contained in the field theoretical approach of Monet et al.4.

3) Following the behaviour of cL(z12) that is short-ranged (see Fig. 1), hL(z1, z2) is also short-ranged,

and the influence of the walls is expected to be short-ranged too. The bulk value of f(z) and ε⊥(z)

should thus be reached after only a few particle diameters from the walls.
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Figure 1. Top: Microscopic polarisation of the Stockmayer fluid in a slab of width h = 50A
◦
(in terms of the

response function f(z) = 4πP (z)/E0) (blue curve) and its coarse-grained equivalents obtained with different

coarse-graining lengths σP = 0.7, 1.0, 1.3A
◦
(green, black and red curves, respectively). Bottom: Same for the

coarse-grained dielectric constant ε̃⊥(z).
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II. INFLUENCE OF THE COARSE-GRAINING LENGTH σP

As noted in the text when introducing the coarse-grained polarisation P̃ (z), the coarse-graining length

σP should not be considered as fundamental quantity, but rather as an observation length scale. To

keep a microscopic character in our analysis, we suggest to take σP large enough to smooth the spurious

behaviour of ε(z), but small enough keep its overall behaviour unchanged in particular the value at which

the bulk value is reached. The influence of parameter λ = σP/σLJ is illustrated in Fig. 1 of this SI for

the Stockmayer fluid in a 50A
◦
slab. Both the coarse-grained polarisation (in terms of the coarse-grained

response function f̃(z) = 4πP̃ (z)/E0) and the coarse-grained dielectric constant ε̃⊥(z) are plotted for

various values of λ. It is seen that one should have typically λ <∼ 1 to minimise the propagation of f̃(z)

into the walls and to remain at a microscopic level. Besides we find that the condition of positivity of

ε̃⊥(z) is realised only for λ >∼ 0.6. The choice of λ = 0.7 in the text is a compromise between those two

requirements. It insures in particular that the near equality in eq. 16 is realised.

We note that the two peaks appearing for the ε̃⊥(z)-curves in the interfacial regions for λ <∼ 1 are

unimportant when looked from the point of view of the dielectric response, indeed the fundamental

quantity to be considered. If the results presented here were to guide the modelling of an effective,

coarse-grained dielectric constant, one should rather focus on the coarse-grained dielectric response that

can be well approximated with two inverted sigmoid-like curves in the form f̃(z) = S(z−z0)S(h−z+z0),

yielding smooth curves when converted to ε̃⊥(z). The choice λ = 0.7 remains relevant in that context.

Choosing a larger value, such as λ = 1, implies a further smoothing of the dielectric boundaries. The

best modelling strategy is left to applications.

III. INFLUENCE OF THE UNCERTAINTY ON THE SLAB THICKNESS.

CONNECTION TO THE DIELECTRIC CONTINUUM THEORY

Here we adopt some notations compatible with Ref.8. Let us call w the slab thickness defined as in

the text as the distance between the center of the surface atoms of each plates, d/2 the width of the

depletion layer due to wall-solvent repulsion that can be inferred from, e.g., in Fig. 1 (d/2 ∼ 2A
◦
). Now

we call h the experimental definition/measure of the device thickness, typically h = w + δ (δ positive

or negative); our convention up to now was to take h = w. The effective dielectric constant of the slab

can be defined as

1

4π

(
1− 1

ε̄⊥

)
E0 = M/V = µ/h (5)
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Figure 2. Effective dielectric constant computed using cDFT for the model Stockmayer fluid embedded in a

slab of width h as function of h. We compare the previous result of Fig. 6 obtained for h = w (blue curve) to

those obtained with h = w − 2 (black) or h = w + 2 (red).

where M is the total dipole of the device, V = hA its volume, µ = M/A its dipole per unit area, i.e.,

µ =

∫ w

0

P (z) =

∫ w−δ/2

δ/2

P (z)

The second equality applies for any δ < d, since P (z) = 0 for z < d/2 and z > w − d/2. Thus within

this limit, the total dipole of the device does not depend on the choice of the boundaries whereas the

polarisation does through the definition of the device thickness h = w±δ. This is illustrated in the Fig. 2

of this SI where we plot ε̄⊥(h) versus h and compare our natural, previous choice h = w to h = w± 2A
◦
,

the typical range presented in Ref.8. We recover indeed a similar influence of the parameter δ (or h),

monitoring the uncertainty in the definition of the "confining volume", on the location of the curves.
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