Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Chiral Aldehyde Catalysis Enables Direct Asymmetric α–Substitution Reaction of *N*-Unprotected Amino Acids with Halohydrocarbons

Hao-Ran Shen, Chao-Xing Li, Xin Jiang, Yao Lin, Jian-Hua Liu, Fang Zhu, Zhu-Lian Wu, Tian Cai, Wei Wen*, Rong-Xing He, Qi-Xiang Guo*

Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

wenwei1989@swu.edu.cn; qxguo@swu.edu.cn

Table of Contents

1. General data	1
2. Reaction condition optimization	1
3. General procedures for the catalytic asymmetric reactions	9
4. Determination of the absolute configuration	55
5. The formal synthesis of (+)-AG-041R	56
6. References	59
7. The spectra of ¹ H NMR and ¹³ C NMR	60

1. General data

All non-aqueous reactions were carried out in a flame-dried glassware under nitrogen atmosphere or in a nitrogen-filled glove box unless otherwise noted. Solvents for reactions were dried appropriately before use: toluene, THF and Et₂O were dried by refluxing with sodium and benzophenone as indicator, CH2Cl2 and CHCl3 were dried by refluxing with CaH2. Reagents were purchased from Aladdin, Adamas-beta®, Sigma-Aldrich, TCI, Bide or Alfa Aesar and used as received unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 600 MHz or 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Proton signal multiplicities are given as s(singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. Jvalues are in Hz. HRMS (ESI-Q-TOF) spectra were recorded on Bruker Impact-II mass spectrometer. Enantiomer ratios were determined by HPLC (Chiralpak AD-H, IC, OD-H, IG, IA, IH columns were purchased from Daicel Chemical Industries, LTD). Optical rotations were determined at $\lambda = 589$ nm (sodium D line) by using a Rudolph-API automatic polarimeter. Amino acid esters^[1], chiral aldehydes catalysts^[2] and allylic chloride^[3,4,5] were prepared according to literature procedures. The racemic samples were prepared by running reactions with a racemic catalyst.

2. Reaction condition optimization

2.1 Reaction condition optimization for the asymmetric α-arylation

Me H₂N COO ^t Bu [−] 1a	F F -	CA-1 (10 mol %) base (10 equiv.) PhMe (1 mL), 50 °C, 48 h	H ₂ N Me COO ¹ Bu NO ₂ 3a	СНО ОН СА-1
entry	base	time (h)	yield (%) ^b	ee (%) ^c
1	TMG^d	48	N.R. ^e	N.D. ^{<i>f</i>}
2	DBU^{g}	48	N.R.	N.D.
3	Et ₃ N	48	N.R.	N.D.
4	CH ₃ OK	48	N.R.	N.D.
5	CsOH	48	N.R.	N.D.
6	Cs_2CO_3	48	25	>99
7	K ₂ CO ₃	48	Trace	N.D.
8	LiOH·H ₂ O	48	N.R.	N.D.

Table S1: Base screening^a

9	KF	48	N.R.	N.D.
10	КОН	48	N.R.	N.D.
11	Na ₂ CO ₃	48	N.R.	N.D.
12	K ₃ PO ₄	48	31	>99

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.10 mmol), **4a**(0.01 mmol) and base (1.0 mmol) in toluene (1.0 mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 1,1,3,3-tetramethylguanidine. ^{*e*} N.R. = No reaction. ^{*f*} N.D. = Not determined. ^{*g*} 1,8-Diazabicyclo[5.4.0]undec-7-ene.

 Table S2: Reaction temperature screening^a

	$H_2N \xrightarrow{Me}_{COO'Bu} + \underbrace{V}_{NO_2}^F$	CA-1 (10 K ₃ PO ₄ (10 PhMe (1 mL),	$ \begin{array}{c} \text{mol } \%) \\ \text{equiv.)} \\ \text{T } ^{\circ}\text{C}, 48 \text{ h} \\ \end{array} \begin{array}{c} \text{H}_2\text{N} & \text{Me} \\ \text{COO}^{1} \\ \text{NO}_2 \\ \textbf{3a} \end{array} $	Bu
entry	T (°C)	time (h)	yield (%) ^b	ee (%) ^c
1	30	48	23	>99
2	40	48	26	>99
3	50	48	31	>99
4	80	48	16	>99
5	100	48	trace	$N.D.^d$
6	120	48	trace	N.D.

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.10 mmol), **4a**(0.01 mmol) and K₃PO₄ (1.0 mmol) in toluene (1.0 mL) at T °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined.

Table S3: Solvent screening^a

	$H_{2}N \xrightarrow{\text{Me}} F \xrightarrow{\text{NO}_{2}} Ia \xrightarrow{\text{P}} 2a$	CA-1 (10 mol % K ₃ PO ₄ (10 equiv solvent (1 mL), 50 °C	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	DO ^t Bu
entry	solvent	time (h)	yield (%) ^b	ee (%) ^c
1	mesitylene	48	28	>99
2	C_6F_6	48	32	>99
3	CHCl ₃	48	29	>99
4	PhF	48	19	>99
5	PhCl	48	16	>99
6	CH ₃ OH	48	N.R. ^e	$N.D.^d$
7	DMF	48	trace	N.D.
8	CH ₃ CN	48	N.R.	N.D.
9	CH_2Cl_2	48	59	>99
10	CCl ₄	48	37	>99
11	EA	48	N.R.	N.D.
12	CH ₂ Cl ₂ :PhMe=1:4	48	36	>99
13	Et ₂ O	48	86	>99
14	THF	48	21	>99
15	ⁿ Bu ₂ O	48	48	>99
16	1,2-dimethoxyethane	48	N.R.	N.D.

17 1,4-dioxane 48 N.R. N.D.	
-----------------------------	--

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.10 mmol), **4a**(0.01 mmol) and K₃PO₄ (1.0 mmol) in solvent (1.0 mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined. ^{*e*} N.R. = No reaction.

Table S4: Base equivalents screening^a

ŀ	$H_{2}N \xrightarrow{\text{Me}} + \underbrace{\text{F}}_{\text{NO}_{2}} + 1a \qquad 2a$	CA-1 (10 mol K ₃ PO ₄ (x equi Et ₂ O (1 mL), 50 °C	(3) (3)	D'Bu
entry	X	time (h)	yield (%) ^b	ee (%) ^c
1	1	48	65	>99
2	2	48	73	>99
3	3	48	81	>99
4	5	48	86	>99
5	10	48	86	>99
6	15	48	78	>99

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.10 mmol), **4a**(0.01 mmol) and K₃PO₄ (x equiv.) in Et₂O (1.0 mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S5: Reaction concentration screening^a

	$H_2N \xrightarrow{\text{Me}} COO^{t}Bu + \underbrace{\text{F}}_{NO_2} - 1a \\ 2a$	CA-1 (10 mol K ₃ PO ₄ (500 mol Et ₂ O (x mL), 50 °C	$\overset{\%)}{\stackrel{(\%)}{\stackrel{(7,48 \text{ h})}{\stackrel{(7,48 \text{ h})}$	D ⁱ Bu
entry	X	time (h)	yield (%) ^b	ee (%) ^c
1	0.5	48	78	>99
2	1	48	86	>99
3	1.5	48	84	>99
4	2	48	79	>99
5	3	48	74	>99
6	4	48	68	>99

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.10 mmol), **4a**(0.01 mmol) and K₃PO₄ (0.50 mmol) in Et₂O (x mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

2.2 Reaction condition optimization for the asymmetric α-allylation

Table S6: Chiral aldehyde screening

entry	СА	time (h)	yield (%) ^b	ee (%) ^c
1	CA-1	8	89	16
2	CA-2	8	96	30
3	CA-3	8	85	18
4	CA-4	8	81	4
5	CA-5	8.5	98	30
6	CA-6	8	62	78
7	CA-7	8	$N.R.^d$	N.D. ^e
8	CA-8	8	86	12
9	CA-9	8	88	16
10	CA-10	8	22	52
11	CA-11	8	8	22
12	CA-12	8	19	26
13	CA-13	7	99	22
14	CA-14	8	49	84
15	CA-15	8	61	94
16	CA-16	8	39	4
17	CA-17	8	49	58
18	CA-18	8	38	24

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (0.08 mmol) in mesitylene (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.R. = No reaction. ^{*e*} N.D. = Not determined.

Me H₂N └ COO ^t 1a	Bu ⁺ ^{Ph} Cl 5a	CA-15 (10 mc ZnCl ₂ (40 mo Base (250 mc mesitylene (0.5 mL)	$\begin{array}{ccc} & \text{Me} & \text{Me} & \text{Me} \\ & \frac{1 & \%)}{\text{pl} & \%)} & & \text{Ph} \\ & & \text{pl} & & \\ & & & \text{pl} & & \\ & & & & & \\ & & & & \text{pl} & & \\ & & & & & \\ & & & & & \\ & & & & $	lH ₂ COO ^t Bu
entry	base	time (h)	yield (%) ^b	ee (%) ^c
1	TMG	8	49	94
2	2- <i>t</i> BuTMG ^d	9	trace	N.D. ^e
3	metformin	8	49	98
4	DBN	8.5	15	66
5	ectoine	8	22	70
6	TBD^g	9	20	94
7	Cs_2CO_3	11	trace	N.D.
8	^t BuOK	10	trace	N.D.
9	DBU	9	10	70
10	$TMEDA^{h}$	10	$N.R.^i$	N.D.
11	quinuclidine	9	N.R.	N.D.
12	N N	8.5	22	70

Table S7: Base screening^a

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), base (0.50 mmol), and ZnCl₂ (0.08 mmol) in mesitylene (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 2-tertbutyl-1,1,3,3-tetramethylguanidine. ^{*e*} N.D. = Not determined. ^{*f*} 1,5-diazabicyclo [4.3.0] non-5-ene. ^{*g*} 1,5,7-Triazabicyclo[4.4.0]dec-5-ene. ^{*h*} N,N,N,N'-tetramethylethylenediamine. ^{*i*} N.R. = No Reaction.

Table S8: Lewis acid screening^a

Me H₂N └COO′Bu 1a	+ Ph_Cl 5a	CA-15 (10 mol %) Lewis acid (40 mol %) TMG (250 mol %) mesitylene (0.5 mL), N ₂ , 60 ⁰	Ph PC 6a	NH ₂ `COO ¹ Bu
entry	Lewis acid	time (h)	yield (%) ^b	ee (%) ^c
1	ZnCl ₂	8	49	94
2	Ni(acac) ₂	8	trace	$N.D.^d$
3	Cu(OTf) ₂	8	N.R. ^e	N.D.
4	MgCl ₂	8	9	62
5	FeCl ₃	8	34	88
6	ZnF_2	8	42	94
7	ZnBr ₂	8	35	94
8	Zn(OTf) ₂	8.5	24	94
9	Zn(OAc) ₂	8.5	12	94
10	Zn(BF ₄) ₂ •xH ₂ O	8	22	94
11	$Zn(ClO_4)_2 \bullet 6H_2O$	8	21	92
12	benzoic acid	9	N.R.	N.D.
13	dipicolinic acid	9	N.R.	N.D.

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and Lewis acid (0.08 mmol) in mesitylene (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined. ^{*e*} N.R. = No reaction.

Table	S9 :	Solvent	screening

Me H₂N └ COO′Bu + 1a	PhCl 5a	CA-15 (10 mol %) ZnCl ₂ (40 mol %) TMG (250 mol %) solvent (0.5 mL), N ₂ , 60 °C	Ph 6a	H ₂ COO [/] Bu
entry	solvent	time (h)	yield (%) ^b	ee (%) ^c
1	mesitylene	12	61	94
2	toluene	8	35	94
3	PhCF ₃	12	13	85
4	<i>p</i> -xylene	8	10	94
5	<i>m</i> -xylene	8	22	98
6	o-xylene	8.5	28	94
7	THF	8	52	90
8	dioxane	8	12	96
9	DME	8	40	78
10	PhC ₂ H ₅	8	17	96
11	DCE	8.5	15	98
12	CH ₃ CN	4.5	trace	$N.D.^d$
13	C ₂ H ₅ OH	9.5	29	96
14	EA	8	17	96
15	chlorobenzene	8	17	99
16	cyclohexane	10.5	37	94
17	n-heptane	11	49	94
18 1	methylcyclohexane	11	36	92

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (0.08 mmol) in solvent (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined.

Me H₂N └ COO'Bu + 1a	PhCl 5a	CA-15 (10 mol 9 ZnCl ₂ (40 mol 9 TMG (250 mol 9 mesitylene (0.5 mL), t		H₂ COO′Bu
entry	Τ (°C)	time (h)	yield (%) ^b	ee (%) ^c
1	30	40	N.R. ^d	N.D. ^e
2	40	40	46	95
3	50	24	65	94
4	60	24	61	94
5	70	24	58	93
6	80	24	39	92

Table S10: Reaction temperature screening^a

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂(0.08 mmol) in mesitylene (0.5 mL) at T °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.R. = No Reaction. ^{*e*} N.D. = Not Determined.

Table S11: Lewis acid equivalents screening^a

Me H₂N ↓ COO¹Bu + 1a	PhCl 5a	CA-15 (10 mol % ZnCl ₂ (x mol % TMG (250 mol % mesitylene (0.5 mL), N	$\stackrel{(6)}{}_{(6)} \qquad Ph \begin{array}{c} Me \\ Fh \\ \hline \\ Gh \\ Gh \\ Gh \\ Gh \\ Gh \\ Gh \\ Gh$	H ₂ COOʻBu
entry	X	time (h)	yield (%) ^b	ee (%) ^c
1	20	24	62	94
2	40	24	65	94
3	60	24	64	94
4	80	24	61	94
5	100	24	62	94

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (x mol %) in mesitylene (0.5 mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table	S12.	Rase	equivale	nts se	reening ^a
Table	514.	Dase	cyuivaic	ints se	leening

Me H₂N	PhCl 5a	CA-15 (10 mol % ZnCl ₂ (40 mol % TMG (x mol % mesitylene (0.5 mL), N		H ₂ COO ^r Bu
entry	X	time (h)	yield (%) ^b	ee (%) ^c
1	150	24	44	94
2	200	24	56	94
3	250	24	65	94
4	400	24	49	89
5	600	24	46	88
6	800	24	38	88

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **5a** (0.20 mmol), **CA** (0.02 mmol), TMG (x mol %), and ZnCl₂ (0.08 mmol) in mesitylene (0.5 mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Me H₂N └ COO′Bu ⁺ 1a	PhCl 5a	CA-15 (10 mol % ZnCl ₂ (40 mol % TMG (250 mol % mesitylene (x mL), N ₂	$ \stackrel{(b)}{\xrightarrow{(b)}} \qquad Ph \xrightarrow{(b)} \\ \stackrel{(b)}{\xrightarrow{(c)}} \\ \stackrel{(c)}{\xrightarrow{(c)}} \\ \stackrel{(c)}{\xrightarrow$	H ₂ COO ^f Bu
entry	X	time (h)	yield (%) ^b	ee (%) ^c
1	0.5	24	65	94
2	0.4	24	70	94
3	0.3	24	59	94
4	0.2	24	39	93
5	0.4	48	73	94

Table S13: Reactant concentration screening^a

^a Unless noted otherwise, reactions were performed with 1a (0.30 mmol), 5a (0.20 mmol), CA (0.02 mmol), TMG

(0.50 mmol), and ZnCl₂ (0.08 mmol) in mesitylene (x mL) at 50 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

2.3 Reaction optimization for the asymmetric α-benzylation

Table S14: Chiral aldehyde screening^a

Ν		CA (10 mol % ZnCl ₂ (40 mol	%) Me_N⊦	l ₂
H ₂ N	COO ^t Bu + CI P	n TMG (250 mol	%) FII C	OO ^t Bu
1	a 8a	mesitylene (0.5 mL),	N ₂ , 60 °C 9a	
	$\begin{array}{l} \textbf{CA-1: R = H} & \textbf{C} \\ \textbf{CA-2: R = SiMe_3} & \textbf{C} \\ \textbf{CA-3: R = 3,5-Me_2C_6H_3} & \textbf{C} \\ \textbf{CA-4: R = 3,5-'Bu_2C_6H_3} & \textbf{C} \\ \textbf{CA-5: R = 9-Anthryl} & \textbf{C} \\ \textbf{CA-6: R = CN} & \textbf{C} \\ \textbf{CA-7: R = 2-Naphthyl} & \textbf{C} \end{array}$	A-8: R = 4-CF ₃ C ₆ H ₄ A-9: R = 4-FC ₆ H ₄ A-10: R = Ph A-11: R = Br A-12: R = I A-13: R = Me A-19: R = 3,5-2CF ₃ C ₆ H ₃	Br OH CA-14: CA-15: CHO CA-20: Ar CA-21: CA-22:	Ar = 2-naphthyl Ar = 3, 5-(CF ₃) ₂ C ₆ H ₃ Ar = 4-OMeC ₆ H ₄ Ar =3,5-2'Bu ₂ C ₆ H ₃ Ar =4-'BuC ₆ H ₄
entry	СА	time (h)	yield (%) ^b	ee (%) ^c
1	CA-1	12	15	5
2	CA-2	12	68	25
3	CA-3	12	85	18
4	CA-4	12	57	0
5	CA-5	11.5	57	47
6	CA-6	12	18	78
7	CA-7	12	34	46
8	CA-8	11.5	55	12
9	CA-9	12.5	75	17
10	CA-10	12	22	48
11	CA-11	13.5	trace	$N.D.^d$
12	CA-12	11.5	6	22
13	CA-13	12	48	14
14	CA-14	12	23	83
15	CA-15	11	20	88
16	CA-20	8	20	88
17	CA-21	8	10	90
18	CA-22	8	14	86

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **8a** (0.20 mmol), **CA** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (0.08 mmol) in mesitylene (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC

analysis. d N.D. = Not determined.

Me		CA-15 (10 mol %) ZnCl ₂ (40 mol %)	Me NH ₂	
H ₂ N´ `(1a	COO ^t Bu 8a	base (250 mol %) mesitylene (0.5 mL), N ₂ ,	60 °C 9a	O'Bu
entry	base	time (h)	yield (%) ^b	ee (%) ^c
1	TMG	12	34	86
2	metformin	13.5	trace	$N.D.^d$
3	DBN ^e	11.5	trace	N.D.
4	TDMAIP ^f	11.5	trace	N.D.
5	TBD	12	trace	N.D.
6	Cs_2CO_3	12	trace	N.D.
7	^t BuOK	10.5	N.R. ^g	N.D.
8	MTBD^h	10	11	78
9	DBU	13	18	77
10	MTMG	12	trace	N.D.
11	TEA	7.5	N.R.	N.D.
12	$TMEDA^i$	7.5	N.R.	N.D.
13	N N	11.5	trace	N.D.

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **8a** (0.20 mmol), **CA-15** (0.02 mmol), base (0.50 mmol), and ZnCl₂ (0.08 mmol) in mesitylene (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not Determined. ^{*e*} 1,5-diazabicyclo [4.3.0] non-5-ene. ^{*f*} Iminotris(dimethylamino)phosphorane. ^{*g*} N.R. = No Reaction. ^{*h*} 7-Methyl-1,5,7-triazabicyclo[4.4.0]decene-5. ^{*i*} N,N,N,N'-tetramethylethylenediamine.

Me H₂N └COO¹Bu 1a	+ Cl Ph - 8a	CA-15 (10 mol %) ZnCl ₂ (40 mol %) TMG (250 mol %) solvent (0.5 mL), N ₂ , 60 °C	→ Ph Ph Ph COO ^t E	3u
entry	solvent	time (h)	yield (%) ^b	ee (%) ^c
1	mesitylene	11	20	88
2	toluene	12	34	86
3	PhCF ₃	12	13	85
4	<i>p</i> -xylene	12	15	86
5	<i>m</i> -xylene	12	trace	$N.D.^d$
6	o-xylene	13.5	33	85
7	THF	12.5	45	78
8	dioxane	12	trace	N.D.
9	DME	12	trace	N.D.
10	PhC ₂ H ₅	12.5	34	75
11	DCE	12.5	trace	N.D.
12	CH ₃ CN	12	15	82
13	C ₂ H ₅ OH	12	trace	N.D.
14	EA	12.5	30	74
15	chlorobenzene	12.5	16	75

Table S16: Solvent screening^a

16	cyclohexane	12.5	55	86
17	octane	12	48	90
18	methylcyclohexane	10.5	52	91
19	<i>n</i> -hexane	13.5	60	90
20	<i>n</i> -heptane	11.5	52	89
21	2,2,4-trimethylpentane	11.5	45	90

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.30 mmol), **8a** (0.20 mmol), **CA-15** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (0.08 mmol) in solvent (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined.

Table S17: Alkoxyl group screening^a

H ₂ N CC	DOR + CI Ph 8a	CA-15 (10 mol ZnCl ₂ (40 mol TMG (250 mol n-hexane (0.5 mL), t		2 DOR
entry	R	time (h)	yield (%) ^b	ee (%) ^c
1	^t Bu	13.5	60	90
2	Me	11	trace	$N.D.^d$
3	Et	11	trace	N.D.
4	ⁱ Pr	11	22	89
5	Bn	11	trace	N.D.
6	CF ₃	10.5	N.R. ^e	N.D.

^{*a*} Unless noted otherwise, reactions were performed with **1** (0.30 mmol), **8a** (0.20 mmol), **CA-15** (0.02 mmol), TMG (0.50 mmol), and $ZnCl_2$ (0.08 mmol) in ^{*n*}Hexane (0.5 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} N.D. = Not determined. ^{*e*} N.R. = No reaction.

Table S18: Reaction temperature screening

Me		CA-15 (10 mol %) ZnCl ₂ (40 mol %)	Me NH ₂	
H₂N ∕COO 1a	[#] Bu + Cl´ Ph · 8a	TMG (250 mol %) n-hexane (0.5 mL), N ₂ , T °C	9a	O ^t Bu
entry	Τ ([°] C)	time (h)	yield (%) ^b	ee (%) ^c
1	50	24	67	90
2	50	48	71	90
3	60	13.5	60	90
4	60	24	61	89
5	60	48	58	88
6	80	24	55	83

^{*a*} Unless noted otherwise, reactions were performed with **1** (0.30 mmol), **8a** (0.20 mmol), **CA-15** (0.02 mmol), TMG (0.50 mmol), and ZnCl₂ (0.08 mmol) in ^{*n*}Hexane (0.5 mL) at T °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

3. General procedures for the catalytic asymmetric reactions

3.1 General procedure for the asymmetric α-arylation

Chiral aldehyde catalyst (6.3 mg, 0.02 mmol), amino acid ester (0.4 mmol), Et₂O (2 mL) and K_3PO_4 (212 mg, 1 mmol) were successively added to a 10 mL reaction tube with stirring magneton. The mixture was stirred at room temperature for 10 minutes, then nitrobenzene derivative **2** (0.2 mmol) was added. The reaction system was sealed and continuously stirred at 50 °C. After the reaction completed (detected by TLC), the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3).

tert-Butyl (S)-2-amino-2-(2-nitrophenyl)propanoate (3a):

A pale yellow oil (45.8 mg, 86%); $R_f = 0.30$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30

°C), UV 254 nm, $t_R(major)$ 7.186 min; $[\alpha]_D^{25} = -58.93$ (c = 0.67, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 6.0 Hz, 1H), 7.87 (d, J = 6.0 Hz, 1H), 7.60 (t, J = 6.0 Hz, 1H), 7.42 (t, J = 6.0 Hz, 1H), 2.02 (s, 2H), 1.77 (s, 3H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.81, 148.84, 138.88, 132.82, 128.45, 128.03, 124.95, 82.10, 60.27, 27.87, 27.59. HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₄H₂₁N₂O₄⁺ 267.1334; found 267.1349.

Isopropyl (S)-2-amino-2-(2-nitrophenyl)propanoate (3b):

 NO_2 A pale yellow oil (36.4 mg, 72%); $R_f = 0.38$ (petroleum ether/ ethyl acetate = 2:1); NH_2 the enantiomeric excess was determined to be 98% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 8.362 min, t_R(minor) 14.792 min; $[\alpha]_D{}^{25}$ = -65.85 (c = 0.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 6.0 Hz, 1H), 7.89 (d, *J* = 6.0 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.43 (t, *J* = 9.0 Hz, 1H), 4.99 – 5.05 (m, 1H), 2.09 (s, 2H), 1.79 (s, 3H), 1.18 – 1.21 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 174.26, 148.66, 138.69, 132.97, 128.40, 128.21, 125.12, 69.33, 59.85, 27.80, 21.43, 21.39. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₁H₁₇N₂O₄⁺ 253.1183; found 253.1189.

A pale yellow oil (35.5 mg, 59%); $R_f = 0.29$ (petroleum ether/ ethyl acetate = 2:1); H_3C COOBn the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 19.592 min, $t_R(minor)$ 12.693 min; $[\alpha]_D^{25} = -77.13$ (c = 0.36, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 12.0 Hz, 1H), 7.88 (d, J = 6.0 Hz, 1H), 7.60 (t, J = 9.0 Hz, 1H), 7.43 (t, J =9.0 Hz, 1H), 7.34 – 7.24 (m, 5H), 5.12 (s, 2H), 1.99 (s, 2H), 1.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.64, 148.69, 138.50, 135.49, 133.04, 128.53, 128.40, 128.36, 128.32, 125.15, 67.28, 59.94, 27.79; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₇N₂O₄⁺ 301.1183; found 301.1189.

Ethyl (S)-2-amino-2-(2-nitrophenyl)propanoate (3d):

A pale yellow oil (39.1 mg, 82%); $R_f = 0.29$ (petroleum ether/ ethyl acetate = 2:1); NO_2 NH_2 H_3C COOEt H_3C H_3C

Methyl (S)-2-amino-2-(2-nitrophenyl)propanoate (3e):

A pale yellow oil (26.2 mg, 52%); $R_f = 0.26$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T =

30 °C), UV 254 nm, t_R(major) 12.437 min, t_R(minor) 29.962 min; $[\alpha]_D^{25} = -85.43$ (c = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 6.0 Hz, 1H), 7.88 (d, *J* = 6.0 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.45 (t, *J* = 9.0 Hz, 1H), 3.70 (s, 3H), 1.97 (s, 2H), 1.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.31, 148.71, 138.49, 132.99, 128.35, 128.27, 125.09, 59.75, 52.42, 27.86; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₀H₁₃N₂O₄⁺ 225.0870; found 225.0878.

A pale yellow oil (48.7 mg, 87%); $R_f = 0.31$ (petroleum ether/ ethyl acetate = 2:1); NH_2 $COO^{1}Bu$ the enantiomeric excess was determined to be 98% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 7.077 min; $[\alpha]_D^{25} = -38.53$ (c = 0.78, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.57 (t, J = 6.0 Hz, 1H), 7.40 (t, J = 6.0 Hz, 1H), 2.23 – 2.29 (m, 1H), 2.13 – 2.60 (m, 1H), 2.08 (s, 2H), 1.42 (s, 9 H), 0.90 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.92, 149.79, 136.97, 132.09, 129.25, 127.96, 124.95, 82.28, 63.29, 32.00, 27.69, 8.23; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₁N₂O₄⁺ 281.1496; found 281.1501.

A pale yellow oil (33.3 mg, 54%); $R_f = 0.49$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min,

T = 30 °C), UV 254 nm, t_R(major) 11.379 min, t_R(minor) 20.724 min; $[\alpha]_D^{25}$ = -6.18 (c = 0.36, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.80 (m, 2H), 7.59 (t, *J* = 6.0 Hz, 1H), 7.42 (t, *J* = 6.0 Hz, 1H), 4.21 – 4.12 (m, 2H), 2.22 – 2.11 (m, 2H), 1.97 (s, 2H), 1.36 – 1.26 (m, 2H), 1.22 (t, *J* = 6.0 Hz, 3H), 1.17 – 1.10 (m, 1H), 0.89 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.17,

149.53, 137.01, 132.29, 129.07, 128.17, 125.01, 62.60, 61.50, 38.88, 25.94, 22.89, 13.94, 13.85. HRMS(ESI) m/z: $[M+H]^+$ Calculated for $C_{14}H_{21}N_2O_4^+$ 281.1496; found 281.1502.

Ethyl (S)-2-amino-2-(2-nitrophenyl)butanoate (3h):

A pale yellow oil (41.2 mg, 64%); R_f = 0.48 (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30

^oC), UV 254 nm, $t_R(major)$ 13.929 min, $t_R(minor)$ 25.271 min; $[\alpha]_D^{25} = -13.13$ (c = 0.72, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.59 (t, *J* = 6.0 Hz, 1H), 7.42 (t, *J* = 6.0 Hz, 1H), 4.16 (m, 2H), 2.22 – 2.09 (m, 2H), 2.06 (s, 2H), 1.30 (m, 5H), 1.21 (t, *J* = 9.0 Hz, 3H), 1.16 (m, 1H), 0.89 – 0.83 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.18, 149.55, 137.09, 132.24, 129.05, 128.13, 124.98, 62.64, 61.46, 39.13, 31.96, 23.42, 22.37, 13.92, 13.86. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₅H₂₃N₂O₄⁺ 295.1652; found 295.1674.

A pale yellow oil (43.9 mg, 65%); $R_f = 0.48$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 10.527 min, $t_R(minor)$ 17.661min; $[\alpha]_D^{25} = -6.56$ (c = 0.43, CHCl₃); ¹H **NMR (600 MHz, CDCl₃)** δ 7.81 (m, 2H), 7.59 (t, J = 6.0 Hz, 1H), 7.42 (t, J = 6.0 Hz, 1H), 4.22 – 4.10 (m, 2H), 2.16 (m, 2H), 1.99 (s, 2H), 1.34 – 1.19 (m, 11H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (**151 MHz, CDCl**₃) δ 174.19, 149.55, 137.08, 132.25, 129.05, 128.14, 125.01, 62.65, 61.49, 39.19, 31.56, 29.46, 23.74, 22.50, 13.94, 13.93; **HRMS(ESI)** m/z: [M+H]⁺ Calculated for C₁₆H₂₅N₂O₄⁺ 309.1809; found 309.1824.

 $-NO_2$ NH₂

White solid (47.1 mg, 84%); m.p. = 82-84 °C; $R_f = 0.41$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be >99% by HPLC `COO^tBu analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.437 min, t_R(minor) 18.990 min; $[\alpha]_D^{25} = -39.58$ (c = 0.32, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 6.0 Hz, 1H), 7.80 (d, J = 6.0 Hz, 1H), 7.56 (t, J = 6.0 Hz, 1H), 7.40 (t, J = 6.0 Hz, 1H), 2.17 (dd, J = 18.0, 6.0 Hz, 1H), 2.04 (dd, J = 18.0, 6.0 Hz, 1 6.0 Hz, 1H), 1.86 (s, 2H), 1.72 - 1.65 (m, 1H), 1.41 (s, 9H), 0.95 (d, J = 6.0 Hz, 3H), 0.70 (d, J = 6.0 Hz, 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.24, 149.42, 137.82, 131.98, 129.29, 127.90, 124.87, 82.08, 63.50, 46.92, 27.68, 24.81, 24.38, 23.91; HRMS(ESI) m/z: [M+H]⁺ Calculated for $C_{16}H_{25}N_2O_4^+$ 309.1809; found 309.1812.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	7.434	VB	1.3465	26026.7568	2010.0685	50.6475		7.437	VB	1.9991	31987.6405	2481.2305	99.7228
	18.493	BB	3.4567	25361.2462	664.7665	49.3525		18.990	BB	2.1917	88.9280	2.5982	0.2772

Methyl (S)-2-amino-3-cyclohexyl-2-(2-nitrophenyl)propanoate (3k):

A pale yellow oil (31.1 mg, 51%); $R_f = 0.42$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.234 min, $t_R(minor)$ 7.983 min; $[\alpha]_D^{25} = 8.05$ (c = 0.29, CHCl₃);¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 6.0 Hz, 1H), 7.80 (d, J = 6.0 Hz, 1H), 7.59 (t, J = 6.0 Hz, 1H), 7.48(t, J = 6.0 Hz, 1H), 3.68 (s, 3H), 2.12 – 2.05 (m, 2H), 1.86 (s, 2H), 1.70 – 1.62 (m, 2H), 1.56 – 1.52 (m, 2H), 1.37 – 1.27 (m, 2H), 1.21–0.97 (m, 4H), 0.91–0.85 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 174.86, 149.43, 137.40, 132.33, 128.93, 128.30, 125.09, 62.67, 52.28, 46.15, 35.22, 35.01, 33.11, 26.37, 26.21, 26.10; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃N₂O₄⁺ 307.1652; found 307.1666.

tert-Butyl (S)-2-amino-2-(2-nitrophenyl)pent-4-enoate (31):

A pale yellow oil (48.4 mg, 83%); $R_f = 0.42$ (petroleum ether/ ethyl acetate = $^{NO_2}_{^{1}BuOOC}$ 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.515 min, $t_R(minor)$ 13.024 min; $[\alpha]_D^{25} = -78.53$ (c = 0.29, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.78 (m, 2H), 7.56 (t, J = 6.0 Hz, 1H), 7.40 (t, J = 6.0 Hz, 1H), 5.69 – 5.70 (m, 1H), 5.16 – 5.12 (m, 2H), 2.98 – 2.89 (m, 2H), 1.96 (s, 2H), 1.42 (s, 9H) ; ¹³C NMR (151 MHz, CDCl₃) δ 172.54, 149.58, 137.32, 132.27, 132.04, 129.16, 128.05, 124.91, 119.86, 82.48, 62.47, 43.70, 27.71; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₅H₂₁N₂O₄⁺ 293.1496; found

tert-Butyl (S)-2-amino-2-(2-nitrophenyl)-4-phenylbutanoate (3m):

A pale yellow oil (71.4 mg, 89%); $R_f = 0.46$ (petroleum ether/ ethyl acetate = $^{NO_2}_{BuOOC}$ Ph 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 7.404 min, $t_R(minor)$ 16.385 min; $[\alpha]_D^{25} = -36.27$ (c = 0.82, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 12.0 Hz, 1H), 7.83 (d, J = 12.0 Hz, 1H), 7.58 (t, J = 12.0 Hz, 1H), 7.42 (t, J = 9.0 Hz, 1H), 7.27 (t, J = 6.0 Hz, 2H), 7.17 (m, 3H), 2.72 – 2.61 (m, 1H), 2.53 – 2.43 (m, 3H), 2.16 (s, 2H), 1.45 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 172.86, 149.62, 141.41, 136.96, 132.27, 129.16, 128.52, 128.29, 128.17, 126.07, 125.07, 82.53, 63.09, 40.89, 30.38, 27.74; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₅N₂O₄⁺ 357.1809; found 357.1822.

A pale yellow oil (48.4 mg, 64%); $R_f = 0.47$ (petroleum ether/ ethyl acetate $^{NH_2}_{BuOOC}$ = 2:1); the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 $^{\circ}$ C), UV 254 nm, t_R (major) 10.283 min, t_R (minor) 8.419 min; $[\alpha]_D^{25} = -75.11$ (c = 0.29, CHCl₃); 1 H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 6.0 Hz, 1H), 7.86 (d, J = 6.0 Hz, 1H), 7.59 (t, J = 6.0 Hz, 1H), 7.42 (t, J = 6.0 Hz, 1H), 2.51 (t, J = 6.0 Hz, 2H), 2.26 – 2.33 (m, 1H), 2.11 – 2.15 (m, 1H), 1.80 (s, 2H), 1.42 (s, 9H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.64, 172.46, 149.37, 136.74, 132.42, 129.20, 128.19, 125.16, 82.44, 80.46, 62.68, 33.35, 30.41, 28.06, 27.65; HRMS(ESI) m/z: [M+H]⁺ Calculated. for C₁₉H₂₉N₂O₆⁺ 381.2020; found 381.2031.

A pale yellow oil (32.2 mg, 52%); $R_f = 0.42$ (petroleum ether/ ethyl acetate = $H_{2} = 0.012$ (petroleum ether/ ethyl acetate = 0.012 (petroleum ethyl acetate

Ethyl (2S, 5R)-2-amino-4-(methylsulfinyl)-2-(2-nitrophenyl)butanoate (3p):

EtOOC S²O 2

A pale yellow oil (42.3 mg, 67%); $R_f = 0.46$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 16.443 min, t_R(minor) 22.888 min; $[\alpha]_D^{25}$ = -54.76 (c = 0.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 6.0 Hz, 1H), 7.87 (d, *J* = 6.0 Hz, 1H), 7.62 (t, *J* = 6.0 Hz, 1H), 7.46 (t, *J* = 9.0 Hz, 1H), 4.17 (q, *J* = 6.0 Hz, 2H), 2.55 – 2.48 (m, 3H), 2.30 – 2.26 (m, 1H), 2.08 (s, 3H), 1.61 (s, 2H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.59, 149.21, 136.29, 132.59, 128.99, 128.51, 125.28, 62.59, 61.71, 38.49, 28.68, 15.55, 13.92; HRMS(ESI) m/z: [M+Na]⁺ Calculated for C₁₃H₁₉N₂O₅SNa⁺ 315.1009; found 315.1010.

A pale yellow oil (33.4 mg, 49%); $R_f = 0.48$ (petroleum ether/ ethyl acetate = $^{NO_2}_{Bu}$ 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 8.820 min, t_R (minor) 27.267 min; $[\alpha]_D^{25} = -58.86$ (c = 0.25, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.69 (m, 2H), 7.51 (t, J = 6.0 Hz, 1H), 7.38 (t, J = 6.0 Hz, 1H), 3.92 (d, J = 6.0 Hz, 1H), 3.83 (d, J = 6.0 Hz, 1H), 2.01 (s, 2H), 1.44 (s, 9H), 1.18 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 171.79, 150.11, 135.95, 131.55, 129.47, 128.06, 124.69, 82.39, 73.66, 67.09, 63.85, 27.81, 27.45; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₇N₂O₅⁺ 339.1914; found 339.1914.

Ethyl (S)-2-amino-3-(1H-indol-2-yl)-2-(2-nitrophenyl)propanoate(3r):

A pale yellow oil (28.9 mg, 41%); m.p. = 95-97 °C, $R_f = 0.49$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol

= 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 14.276 min, $t_R(minor)$ 15.798 min; $[\alpha]_D^{25}$ = -24.15 (c = 0.43, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.04 (s, 1H), 7.70 (d, *J* = 6.0 Hz, 1H), 7.64 (d, *J* = 6.0 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.22 (d, *J* = 6.0 Hz, 1H), 7.06 (t, *J* = 9.0 Hz, 1H), 6.95 (t, *J* = 6.0 Hz, 1H), 6.83 (s, 1H), 4.04 – 3.97 (m, 2H), 3.65 (dd, *J* = 24.0, 12.0 Hz, 2H), 1.94 (s, 2H), 1.05 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.78, 149.54, 137.46, 135.85, 131.90, 129.32, 128.52, 128.20, 124.75, 124.09, 122.02, 119.62, 118.90, 110.98, 109.61, 63.72, 61.63, 34.77, 13.79; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₀N₃O₄⁺354.1448; found 354.1469.

tert-Butyl (S)-2-amino-2-(4-fluoro-2-nitrophenyl)propanoate (3s):

A pale yellow oil (52.1 mg, 91%); R_f= 0.36 (petroleum ether/ ethyl acetate = ^{Bu} 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 8.586 min; $[\alpha]_D^{25}$ = -77.35 (c = 0.75, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.94 (dd, J = 12.0, 6.0 Hz, 1H), 7.59 (dd, J = 8.3, 2.8 Hz, 1H), 7.34 – 7.26 (m, 1H), 2.06 (s, 2H), 1.75 (s, 3H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.44, 161.81, 160.15, 149.24, 134.88, 130.42, 130.37, 119.75, 119.61, 112.59, 112.41, 82.34, 60.03, 27.86, 27.56; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₃H₁₈FN₂O₄⁺ 285.1245; found 285.1259.

 H_3C NH_2 A pale H_3C $OO^{t}Bu$ 2:1); the second second

A pale yellow oil (48.7 mg, 71%); $R_f = 0.38$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 10.941 min, t_R(minor) 8.513 min; $[\alpha]_D^{25}$ = -81.92 (c = 0.78, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.82 (d, *J* = 12.0 Hz, 1H), 7.70 (d, *J* = 12.0 Hz, 1H), 1.98 (s, 2H), 1.74 (s, 3H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.23, 149.29, 138.13, 135.66, 130.15, 127.75, 121.11, 82.42, 60.16, 27.76, 27.58; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₃H₁₈BrN₂O₄⁺ 345.0444; found 345.0458.

tert-Butyl (S)-2-amino-2-(4-iodo-2-nitrophenyl)propanoate (3u):

H₃C NH₂ COO^tBu

A pale yellow oil (43.3 mg, 55%); $R_f = 0.38$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 9.297 min, t_R(minor) 8.154 min; $[\alpha]_D^{25}$ = -51.67 (c = 0.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.89 (d, *J* = 6.0 Hz, 1H), 7.66 (d, *J* = 6.0 Hz, 1H), 2.02 (s, 2H), 1.73 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.22, 149.18, 141.67, 138.77, 133.35, 130.25, 91.62, 82.44, 60.20, 27.71, 27.59; HRMS(ESI) m/z: [M+Na]⁺ Calculated for C₁₃H₁₇IN₂NaO₄⁺ 415.0125; found 415.0123.

tert-Butyl (S)-2-amino-2-(4-methyl-2-nitrophenyl)propanoate (3v):

H₃C NH₂ COO^tBu

A pale yellow oil (38.6 mg, 69%); $R_f = 0.26$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 8.375 min, $t_R(minor)$ 13.806 min; $[\alpha]_D^{25}$ = -27.6 (c = 0.51, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* =6.0 Hz, 1H), 7.68 (s, 1H), 7.39 (d, *J* = 12.0 Hz, 1H), 2.41 (s, 3H), 1.97 (s, 2H), 1.74 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.03, 148.62, 138.44, 135.86, 133.52, 128.29, 125.35, 81.99, 60.04, 27.86, 27.59, 20.53; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₁N₂O₄⁺ 281.1496; found 281.1495.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area% Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	8.404	BV	1.2208	5592.0718	386.0433	49.9962	8.375	BB	2.1733	10494.6017	713.3597	98.5177
	14.024	BB	1.9467	5592.9119	238.2571	50.0038	13.806	BB	1.4833	157.9042	3.6360	1.4823

tert-Butyl (S)-2-amino-2-(4-methoxy-2-nitrophenyl)propanoate (3w):

A pale yellow oil (45.6 mg, 77%); $R_f = 0.27$ (petroleum ether/ ethyl acetate $H_3C_{NO_2}$ H_2 H_2

tert-Butyl (S)-2-amino-2-(3-nitro-[1,1'-biphenyl]-4-yl)propanoate (3x):

H₃C NH₂ Ph A pale yellow oil (47.2 mg, 69%); R_f = 0.38 (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 99% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 10.551 min, t_R(minor) 8.497 min; $[\alpha]_D^{25}$ = -31.17 (c = 0.80, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.09 (s, 1H), 7.96 (d, *J* = 12.0 Hz, 1H), 7.81 (d, *J* = 6.0 Hz, 1H), 7.61 (d, *J* = 6.0 Hz, 2H), 7.49 – 7.40 (m, 3H), 2.04 (s, 2H), 1.80 (s, 3H), 1.43 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.85, 149.20, 141.38, 138.22, 137.49, 130.97, 129.10, 129.01, 128.45, 126.99, 123.35, 82.19, 60.20, 27.90, 27.64; HRMS(ESI) m/z: [M+H]⁺Calculated for C₁₉H₂₃N₂O₄⁺ 343.1652 ; found 343.1652.

tert-Butyl (S)-2-amino-2-(4'-fluoro-3-nitro-[1,1'-biphenyl]-4-yl)propanoate (3y):

A pale yellow oil (42.8 mg, 60%); $R_f = 0.38$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 98% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol =

70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 8.648 min, $t_R(minor)$ 12.074 min; [α] $_D^{25}$ = -40.20 (c = 0.60, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.03 (s, 1H), 7.96 (d, *J* = 6.0 Hz, 1H), 7.75 (d, *J* = 6.0 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.17 (t, *J* = 9.0 Hz, 2H), 2.08 (s, 2H), 1.80 (s, 3H), 1.43 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.69, 163.93, 162.29, 149.20, 140.40, 137.36, 134.32, 130.84, 129.17, 128.74, 128.69, 123.18, 116.17, 116.02, 82.31, 60.18, 27.80, 27.62; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₂FN₂O₄⁺ 361.1558; found 361.1557.

A pale yellow oil (38.6 mg, 69%); $R_f = 0.26$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 8.396 min; $[\alpha]_D^{25}$ = -11.95 (c = 0.66, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 6.0 Hz, 1H), 7.70 (s, 1H), 7.20 (d, J = 12.0 Hz, 1H), 2.45 (s, 3H),

2.06 (s, 2H), 1.75 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.97, 146.50, 144.09, 138.75, 128.95, 128.46, 125.28, 81.99, 60.26, 27.61, 27.59, 21.64; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₁N₂O₄⁺ 281.1496; found 281.1496.

tert-Butyl (S)-2-amino-2-(5-methoxy-2-nitrophenyl)propanoate (3aa):

MeO NO₂ H₃C_{NH₂} COO^tBu

A pale yellow oil (34.9 mg, 59%); $R_f = 0.27$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow

rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 10.975 min; $[\alpha]_D^{25} = -31.47$ (c = 0.62, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 12.0 Hz, 1H), 7.48 (s, 1H), 6.85 (d, J = 12.0 Hz, 1H), 3.91 (s, 3H), 2.09 (s, 2H), 1.74 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.70, 163.35, 142.04, 141.61, 127.97, 114.38, 111.85, 81.87, 60.53, 55.79, 27.60, 27.21; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₁N₂O₅⁺ 297.1445; found 297.1445.

tert-Butyl (S)-2-amino-2-(2-fluoro-6-nitrophenyl)propanoate (3ab):

A pale yellow oil (36.9 mg, 65%); $R_f = 0.62$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min,

T = 30 °C), UV 254 nm, t_R(major) 8.250 min, t_R(minor) 6.601 min; $[\alpha]_D^{25}$ = 85.05 (c = 0.66, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35 (m, 1H), 7.30 – 7.25 (m, 1H), 7.23 – 7.17 (m, 1H), 1.86 (s, 2H), 1.76 (d, *J* = 6.0 Hz, 3H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.00, 161.16, 159.50, 151.06, 128.90, 128.84, 126.14, 126.03, 119.76, 119.74, 118.75, 118.59, 82.09, 59.74, 27.59, 26.03, 25.99; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₃H₁₈FN₂O₄⁺ 285.1245; found 285.1247.

tert-Butyl (S)-2-amino-2-(2-fluoro-3-methoxy-6-nitrophenyl)propanoate (3ac):

White solid (35.8 mg, 57%); m.p. = 81-82 °C; $R_f = 0.27$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol =

70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 10.031 min, $t_R(minor)$ 8.852 min; [α]_D²⁵ = 116.16 (c = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 6.0 Hz, 1H), 6.90 (t, *J* = 9.0 Hz, 1H), 3.94 (s, 3H), 1.89 (s, 2H), 1.82 (d, *J* = 6.0 Hz, 3H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.96, 168.25, 154.38, 135.47, 131.26, 125.17, 124.24, 123.42, 119.20, 117.46, 116.46, 79.63, 61.78, 59.82, 30.96, 28.44, 24.11, 23.97, 14.05; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀FN₂O₅⁺ 315.1351; found 315.1352.

tert-Butyl (S)-2-amino-2-(4-fluoro-5-methyl-2-nitrophenyl)propanoate (3ad):

White solid (43.5 mg, 73%); m.p. = 85-87 °C; $R_f = 0.42$ (petroleum $M_F + COO^{1}Bu$ ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be >99% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 6.792 min; $[\alpha]_D^{25} = -39.38$ (c = 0.77, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 6.0 Hz, 1H), 7.60 (d, *J* = 12.0 Hz, 1H), 2.36 (s, 3H), 2.12 (s, 2H), 1.74 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.68, 160.02, 158.37, 146.90, 146.85, 134.66, 134.63, 131.45, 131.42, 130.83, 130.72, 112.38, 112.20, 82.15, 60.03, 27.65, 27.56, 14.81, 14.79.; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀FN₂O₄⁺ 299.1402; found 299.1405.

tert-Butyl (S)-2-amino-2-(5-chloro-4-methyl-2-nitrophenyl)propanoate (3ae):

^{H₃C_{COO¹Bu} White solid (34.6 mg, 55%); m.p. = 89-90 °C; $R_f = 0.58$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 7.353 min, t_R (minor) 9.440 min; $[\alpha]_D^{25} = -44.03$ (c = 0.54, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (s, 1H), 7.79 (s, 1H), 2.42 (s, 3H), 2.19 (s, 2H), 1.74 (s, 3H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.32, 146.63, 139.48, 138.04, 136.50, 129.21, 127.20, 82.33, 60.03, 27.58, 27.48, 19.43; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀ClN₂O₄⁺ 315.1106; found 315.1109.}

tert-Butyl (S)-2-amino-2-(2,4-dinitrophenyl)propanoate (3af):

A pale yellow oil (33.0 mg, 50%); $R_f = 0.62$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow

rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 14.257 min, $t_R(minor)$ 11.888 min; $[\alpha]_D^{25} = -130.02$ (c = 0.37, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 6.0, 2.4 Hz, 1H), 8.22 (d, J = 12.0 Hz, 1H), 1.97 (s, 2H), 1.81 (s, 3H), 1.42 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.45, 149.05, 146.93, 145.99, 130.36, 126.67, 120.30, 83.08, 60.64, 27.85, 27.62; HRMS(ESI) m/z: [M+Na]⁺ Calculated for C₁₃H₁₇N₃NaO₆⁺ 334.1010; found 334.1011.

tert-Butyl (S)-2-amino-2-(4-cyano-2-nitrophenyl)propanoate (3ag):

White solid (39.1 mg, 63%); m.p. = 78-79 °C; $R_f = 0.26$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol =

70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.585 min, $t_R(minor)$ 7.666 min; $[\alpha]_D^{25} = -178.52$ (c = 0.72, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.15 – 8.12 (m, 2H), 7.86 (d, J = 12.0 Hz, 1H), 2.02 (s, 2H), 1.78 (s, 3H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.52,

149.08, 144.36, 135.54, 130.03, 128.31, 116.39, 112.52, 82.90, 60.52, 27.71, 27.56; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₁₈N₃O₄⁺ 292.1292; found 292.1294.

tert-Butyl (S)-2-amino-2-(2-nitro-4-(trifluoromethyl)phenyl)propanoate (3ah):

A pale yellow oil (59.4 mg, 85%); $R_f = 0.63$ (petroleum ether/ethyl acetate H₃C NH₂ COO^tBu = 2:1); the enantiomeric excess was determined to be 92% by HPLC F₃C NO_2 analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow

rate 1 mL/min, T = 30 °C), UV 254 nm, t_R(major) 4.819 min, t_R(minor) 6.207 min; $[\alpha]_D^{25}$ = -113.01 $(c = 0.50, CHCl_3);$ ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 12.0 Hz, 1H), 8.11 (s, 1H), 7.84 (d, J = 12.0 Hz, 1H), 2.07 (s, 2H), 1.79 (s, 3H), 1.42 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.91, 148.91, 143.04, 131.10, 130.87, 130.64, 129.68, 129.16, 129.14, 129.12, 129.09, 125.51, 123.71, 122.18, 122.15, 122.12, 122.10, 121.90, 82.67, 60.41, 27.78, 27.57; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₁₈F₃N₂O₄⁺ 335.1213; found 335.1215.

Methyl (S)-4-(2-amino-1-(tert-butoxy)-1-oxopropan-2-yl)-3-nitrobenzoate (3ai):

 H_3C NH_2 COO^tBu MeOOC NO₂

A pale yellow oil (46.8 mg, 69%); $R_f = 0.45$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol =

70/30, flow rate 1 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 32.480 min, $t_R(minor)$ 17.663 min; $[\alpha]_D^{25} = -82.76$ (c = 0.71, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.47 (s, 1H), 8.22 (d, J = 6.0 Hz, 1H), 8.02 (d, J = 6.0 Hz, 1H), 3.96 (s, 3H), 2.04 (s, 2H), 1.78 (s, 3H), 1.41 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.16, 164.87, 148.93, 143.58, 133.30, 130.43, 129.02, 126.03, 82.54, 60.47, 52.64, 27.86, 27.62; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₅H₂₁N₂O₆⁺ 325.1394; found 325.1395.

tert-Butyl (S)-2-amino-2-(2-nitro-5-(trifluoromethyl)phenyl)propanoate (3aj):

 $F_{3}C + F_{3}C + F$

mL/min, T = 30 °C), UV 254 nm, t_R(major) 6.259 min, t_R(minor) 9.549 min; $[\alpha]_D^{25}$ = -92.15 (c = 0.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 1H), 7.93 (d, *J* = 6.0 Hz, 1H), 7.69 (d, *J* = 12.0 Hz, 1H), 2.06 (s, 2H), 1.80 (s, 3H), 1.42 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.88, 150.82, 140.35, 134.58, 134.36, 134.14, 133.92, 126.19, 126.17, 126.14, 126.12, 125.36, 125.26, 125.24, 125.21, 125.19, 123.97, 122.17, 82.68, 60.37, 27.77, 27.55; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₁₈F₃N₂O₄⁺ 335.1213; found 335.1215.

tert-Butyl (S)-2-amino-2-(5-nitroquinolin-8-yl)propanoate (3ak):

70/30, flow rate 1 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 17.301 min, $t_R(minor)$ 12.002 min; [α] $_D^{25}$ = -8.99 (c = 0.46, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 9.04 (d, *J* = 6.0 Hz, 1H), 8.95 (d, *J* = 6.0 Hz, 1H), 8.38 (d, *J* = 6.0 Hz, 1H), 7.98 (d, *J* = 12.0 Hz, 1H), 7.62 (dd, *J* = 12.0, 6.0 Hz 1H), 2.40 (s, 2H), 1.83 (s, 3H), 1.25 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.21, 150.34, 149.54, 145.59, 144.76, 132.39, 124.55, 124.05, 123.43, 121.24, 80.71, 60.10, 27.63, 25.63; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₀N₃O₄⁺ 318.1448; found 318.1449.

tert-Butyl (S)-1-methyl-5-nitro-3-oxoisoindoline-1-carboxylate (3al):

White solid (37.4 mg, 64%); m.p. = 124-126 °C; $R_f = 0.27$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 75% by HPLC aalysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30,

flow rate 1 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 22.616 min, $t_R(minor)$ 10.133 min; $[\alpha]_D^{25}$ = -9.97 (c = 0.49, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, *J* = 6.0 Hz, 1H), 8.48 (m, 1H), 7.85 (d, *J* = 12.0 Hz, 1H), 7.38 (s, 1H), 1.84 (s, 3H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 168.63, 167.22, 152.01, 149.08, 132.58, 127.25, 124.51, 119.49, 84.21, 65.45, 27.78, 25.53; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₁₇N₂O₅⁺ 293.1132; found 293.1131.

tert-Butyl (S)-1-(2-(methylthio)ethyl)-5-nitro-3-oxoisoindoline-1-carboxylate (3am):

A pale yellow oil (41.0 mg, 58%); $R_f = 0.34$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 67% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol =

70/30, flow rate 1 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 23.316 min, $t_R(minor)$ 20.853 min; [α] $_D^{25}$ = 2.64 (c = 0.32, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.65 (s, 1H), 8.48 (d, *J* = 6.0 Hz, 1H), 7.85 (d, *J* = 6.0 Hz, 1H), 7.48 (s, 1H), 2.67 – 2.62 (m, 1H), 2.55 – 2.50 (m, 1H), 2.37 – 2.33 (m, 1H), 2.24 – 2.19 (m, 1H), 2.08 (s, 3H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 167.81, 167.46, 150.46, 149.28, 132.84, 127.34, 124.44, 119.60, 84.64, 68.58, 37.81, 28.82, 27.82, 15.63; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₀N₂NaO₅S⁺ 375.0985; found 375.0986.

Under nitrogen atmosphere, amino acid ester 1 (0.30 mmol), allylic chloride derivative 5 (0.20 mmol), chiral aldehyde CA-15 (11.8 mg, 0.02 mmol), ZnCl₂ (10.9 mg, 0.08 mmol), TMG (57.5 mg,

0.50 mmol) and super dry mesitylene (0.4 ml) were added to a 10 mL vial. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed (detected by TLC), the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3).

tert-Butyl (*S*, *E*)-2-amino-2-methyl-5-phenylpent-4-enoate (6a)^[3]:

Colorless oil (38.7 mg, 74%); $R_f = 0.33$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IA column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.992 min, $t_R(minor)$ 7.381 min; $[\alpha]_D^{20} = -10.83$ (c = 0.74, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, J = 6.0 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.20 (t, J = 9.0 Hz, 1H), 6.47 (d, J = 18.0 Hz, 1H), 6.16 – 6.11 (m, 1H), 2.64 (dd, J = 12.0, 6.0 Hz, 1H), 2.39(dd, J = 13.6, 8.3 Hz, 1H), 1.67 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.37, 137.27, 133.95, 128.49, 127.28, 126.15, 124.82, 80.92, 58.09, 44.55, 28.03, 26.42.

tert-Butyl (S, E)-2-amino-2-methyl-5-(4-(trifluoromethyl)phenyl)pent-4-enoate(6b)^[3]:

 F_3C Colorless oil (44.8 mg, 68%); $R_f = 0.44$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by

HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.858 min, t_R(minor) 9.360 min; $[\alpha]_D^{20}$ = -6.56 (c = 0.78, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.50 (d, *J* = 6.0 Hz, 1H), 7.46 (d, *J* = 6.0 Hz, 1H), 7.40 (t, *J* = 6.0 Hz, 1H), 6.51 (d, *J* = 18.0 Hz, 1H), 6.27 – 6.22 (m, 1H), 2.65 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.44 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.78 (s, 2H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.13, 138.01, 132.50, 131.12, 130.90, 129.24, 128.94, 127.09, 125.01, 123.85, 123.83, 123.80,

CI

Colorless oil (37.3 mg, 54%); $R_f = 0.47$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96%

by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.565 min, t_R(minor) 9.114 min; $[\alpha]_D^{20}$ = -6.69 (c = 0.61, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.50 (d, *J* = 6.0 Hz, 1H), 7.46 (d, *J* = 12.0 Hz, 1H), 7.40 (t, *J* = 9.0 Hz 1H), 6.50 (d, *J* = 12.0 Hz, 1H), 6.26 – 6.21 (m, 1H), 2.65 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.43 (dd, *J* = 18.0, 12.0 Hz, 1H), 1.71 (s, 2H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.18, 138.01, 132.49, 131.12, 130.91, 129.24, 128.94, 127.11, 123.84, 123.81, 122.81, 122.78, 81.13, 77.19, 76.98, 76.77, 58.08, 44.40, 28.00, 26.33; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₂F₃NO₃⁺346.1625 ; found 346.1776.

tert-Butyl (S, E)-2-amino-5-(4-chlorophenyl)-2-methylpent-4-enoate (6d)^[3]:

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T

= 30 °C), UV 254 nm, t_R(major) 5.345 min, t_R(minor) 7.049 min; $[\alpha]_D^{20}$ = -10.68 (c = 0.70, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.17 (s, 4H), 6.35 (d, *J* = 18.0 Hz, 1H), 6.07 – 6.02 (m, 1H), 2.55 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.31 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.69 (s, 2H), 1.39 (s, 9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.23, 135.74, 132.91, 132.66, 128.65, 127.33, 125.62, 81.01, 58.07, 44.46, 28.01, 26.35.

tert-Butyl (S, E)-2-amino-5-(4-bromophenyl)-2-methylpent-4-enoate (6e):

Me NH₂ Colorless oil (40.7 mg, 51%); $R_f = 0.34$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.641 min, $t_R(minor)$ 7.558 min; $[\alpha]_D{}^{20}$ = -10.3 (c = 0.38, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 6.0 Hz, 2H), 7.19 (d, *J* = 6.0 Hz, 2H), 6.40 (d, *J* = 18.0 Hz, 1H), 6.16 - 6.11 (m, 1H), 2.62 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.38 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.74 (s, 2H), 1.46 (s, 9H), 1.33 (s, 3H);¹³C NMR (151 MHz, CDCl₃) δ 176.22, 136.18, 132.72, 131.61, 127.67, 125.77, 121.02, 81.04, 58.07, 44.47, 28.02, 26.35; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₂BrNO₂⁺ 340.0907; found 340.0908.

tert-Butyl (S, E)-2-amino-5-(4-fluorophenyl)-2-methylpent-4-enoate (6f)^[3]:

Colorless oil (39.6 mg, 71%); $R_f = 0.51$ (petroleum ether/ ethyl acetate Bu = 3:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 4.985 min, $t_R(minor)$ 5.994 min; $[\alpha]_D^{20}$ = -8.64 (c = 0.61, CHCl₃); ¹**H NMR (600 MHz, CDCl₃)** δ 7.29 – 7.27 (m, 2H), 6.97 (t, J = 9.0 Hz, 2H), 6.44 (d, J = 18.0 Hz,

1H), 6.08 – 6.03 (m, 1H), 2.62 (dd, J = 18.0, 12.0 Hz, 1H), 2.38 (dd, J = 18.0, 12.0 Hz, 1H), 1.73 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.30, 162.99, 161.35, 133.43, 133.41, 132.71, 127.61, 127.56, 124.56, 115.43, 115.29, 80.96, 58.53, 44.44, 28.44, 26.36.

 CF_3 Colorless oil (45.3 mg, 69%); $R_f = 0.39$ (petroleum ether/ ethyl acetate = $Me_{\rm NH_2}$ 2:1); the enantiomeric excess was determined to be 95% by HPLC COO^tBu analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.149 min, $t_R(minor)$ 6.150 min; $[\alpha]_D^{20} = -8.96$ (c = 0.80, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.49 (d, J = 12.0 Hz, 1H), 7.46 (d, J = 12.0 Hz, 1H), 7.40 (t, J = 6.0 Hz, 1H), 6.50 (d, J = 12.0 Hz, 1H), 6.26 - 6.21 (m, 1H), 2.65 (dd, J = 12.0, 6.0 Hz, 1H),2.42 (dd, J=12.0, 6.0 Hz, 1H), 1.68 (s, 2H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) 8 176.19, 138.02, 132.48, 131.13, 130.91, 129.24, 128.94, 127.13, 123.84, 123.81, 123.78, 122.83, 122.81, 122.78, 122.76, 81.12, 58.08, 44.41, 28.00, 26.33; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₂F₃NO₂⁺ 330.1675; found 330.1673.

tert-Butyl (S, E)-2-amino-5-(3-fluorophenyl)-2-methylpent-4-enoate (6h)^[3]:

Colorless oil (37.2 mg, 67%); $R_f = 0.44$ (petroleum ether/ ethyl acetate = Me NH₂ COO^tBu 3:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 6.192 min, t_R (minor) 7.208 min; $[\alpha]_D^{20} = -8.88$ (c = 0.53, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 7.09 (d, J = 6.0 Hz, 1H), 7.02 (d, J = 12.0 Hz, 1H), 6.90 (t, J = 9.0 Hz, 1H), 6.44 (d, J = 12.0 Hz, 1H), 6.19 – 6.13 (m, 1H), 2.63 (dd, J = 18.0, 12.0 Hz, 1H), 2. 40 (dd, J = 18.0, 12.0 Hz, 1H), 1.65 (s, 2H), 1.47 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.24, 163.94, 162.32, 139.63, 139.58, 132.83, 132.81, 129.94, 129.89, 126.40, 122.01, 121.99, 114.14, 113.99, 112.66, 112.52, 81.05, 58.07, 44.40, 28.02, 26.38.

Me Colorless oil (33.6 mg, 61%); $R_f = 0.28$ (petroleum ether/ ethyl acetate = Me NH₂ 3:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 4.603 min, $t_R(minor)$ 5.135 min; $[\alpha]_D^{20} = -10.06$ (c = 0.66, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.18 (t, J = 9.0 Hz, 1H), 7.13 (t, J = 6.0 Hz, 2H), 7.03 (d, J = 6.0Hz, 1H), 6.45 (d, J = 18.0 Hz, 1H), 6.15 – 6.10 (m, 1H), 2.63 (dd, J = 12.0, 6.0 Hz, 1H), 2.38 (dd, J = 12.0, 6.0 Hz, 1H), 2.32 (s, 3H), 1.71 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 138.02, 137.21, 134.05, 128.39, 128.08, 126.90, 124.54, 123.31, 80.92, 58.09, 44.53, 28.03, 26.40, 21.32; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₅NO₂⁺ 276.1958; found 276.1953.

tert-Butyl (S, E)-2-amino-5-(3,5-dimethoxyphenyl)-2-methylpent-4-enoate (6j):

Colorless oil (34.7 mg, 54%); $R_f = 0.28$ (petroleum ether/ ethyl OMe acetate = 2:1); the enantiomeric excess was determined to be 94%Me_NH₂ COO^tBu MeC by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 92/8, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 7.606 min, $t_{\rm R}({\rm minor})$ 9.052 min; $[\alpha]_{\rm D}^{20} = -14.25$ (c = 0.55, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.49 (d, J = 2.3 Hz, 2H), 6.40 (d, J = 18.0 Hz, 1H), 6.35 (s, 1H), 6.15 – 6.11 (m, 1H), 3.78 (s, 6H), 2.63 (dd, J = 12.0, 6.0 Hz, 1H), 2.39 (dd, J = 12.0, 6.0 Hz, 1H), 1.69 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) & 176.30, 160.94, 139.29, 133.92, 125.36, 104.39, 99.67, 80.98, 58.09, 55.29, 44.43, 28.02, 26.39; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₇NO₄⁺ 322.2013; found 322.2005.

tert-Butyl (S, E)-2-amino-5-(2-chlorophenyl)-2-methylpent-4-enoate (6k):

Colorless oil (43.2 mg, 73%); $R_f = 0.44$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 82% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 4.953 min, $t_R(minor)$ 6.013 min; $[\alpha]_D{}^{20}$ = -8.04 (c = 0.79, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 6.0 Hz, 1H), 7.33 (d, J = 6.0 Hz, 1H), 7.20 – 7.14 (m, 2H), 6.85 (d, J = 18.0 Hz, 1H), 6.17 – 6.12 (m, 1H), 2.67 (dd, J = 12.0, 6.0 Hz, 1H), 2.45 (dd, J = 12.0, 6.0 Hz, 1H), 1.68 (s, 2H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.24, 135.37, 132.74, 130.10, 129.63, 128.29, 127.86, 126.84, 126.76, 81.07, 58.05, 44.62, 28.02, 26.42; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₂ClNO₂⁺ 296.1412; found 296.1413.

tert-Butyl (S, E)-2-amino-2-ethyl-5-phenylpent-4-enoate (61)^[3]:

 H_2N

 Me Colorless oil (31.4 mg, 57%); $R_f = 0.51$ (petroleum ether/ ethyl acetate = $^{COO^tBu}$ 3:1); the enantiomeric excess was determined to be 92% by HPLC

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.171 min, $t_R(minor)$ 7.145 min; $[\alpha]_D{}^{20}$ = -16.51 (c = 0.22, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 6.0 Hz, 2H), 7.29 (t, J = 9.0 Hz, 2H), 7.21 (t, J = 6.0 Hz, 1H), 6.49 (d, J = 18.0 Hz, 1H), 6.15 – 6.10 (m, 1H), 2.68 (dd, J = 12.0, 6.0 Hz, 1H), 2.36 (dd, J= 12.0, 6.0 Hz, 1H), 1.86 – 1.79 (m, 1H), 1.67 (s, 2H), 1.61 – 1.55 (m, 1H), 1.48 (s, 9H), 0.90 (t, J= 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.83, 137.25, 133.97, 128.50, 127.27, 126.15, 124.72, 80.97, 61.52, 43.39, 32.95, 28.09, 8.14.

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.092 min, $t_R(minor)$ 8.913 min; $[\alpha]_D^{20}$ = -15.29 (c = 0.51, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 6.0 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.21 (t, *J* = 6.0 Hz, 1H), 6.48 (d, *J* = 18.0 Hz, 1H), 6.14 – 6.09 (m, 1H), 2.67 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.37 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.77 – 1.72 (m, 1H), 1.63 (s, 2H), 1.56 – 1.51 (m, 1H), 1.47 (s, 9H), 1.44 – 1.37 (m, 1H), 1.25 – 1.19 (m, 1H), 0.93 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.96, 137.25, 134.00, 128.50, 127.28, 126.16, 124.66, 80.97, 61.23, 43.75, 42.49, 28.09, 17.21, 14.44; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₇NO₂⁺ 290.2115; found 290.2117.

H₂N (CH₂)₂CH₃

Colorless oil (41.5 mg, 68%); $R_f = 0.72$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 94% by HPLC

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.058 min, $t_R(minor)$ 7.039 min; $[\alpha]_D^{20}$ = -13.35 (c = 0.69, CHCl₃);

¹**H NMR (600 MHz, CDCl₃)** δ 7.33 (d, *J* = 6.0 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.21 (t, *J* = 9.0 Hz, 1H), 6.48 (d, *J* = 12.0 Hz, 1H), 6.14 – 6.09 (m, 1H), 2.67 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.37 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.80 – 1.75 (m, 1H), 1.67 (s, 2H), 1.58 – 52 (m, 1H), 1.48 (s, 9H), 1.41 – 1.29 (m, 3H), 1.18 – 1.14 (m, 1H), 0.91 (t, *J* = 6.0 Hz, 3H); ¹³**C NMR (151 MHz, CDCl₃)** δ 175.97, 137.25, 134.00, 128.49, 127.27, 126.15, 124.67, 80.94, 61.21, 43.77, 39.83, 28.09, 26.04, 22.97, 13.90.

 H_2N_{j}

 $(CH_2)_3CH_3$ Colorless oil (28.2 mg, 43%); R_f= 0.69 (petroleum ether/ ethyl acetate $COO^{t}Bu$ = 3:1).; the enantiomeric excess was determined to be 95% by HPLC

analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 6.007 min, t_R(minor) 15.275 min; $[\alpha]_D^{20}$ = -13.5 (c = 0.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 6.0 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.20 (t, *J* = 6.0 Hz, 1H), 6.47 (d, *J* = 18.0 Hz, 1H), 6.14 – 6.09 (m, 1H), 2.67 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.36 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.78 – 1.74 (m, 1H), 1.67 (s, 2H), 1.56 – 1.51 (m, 1H), 1.47 (s, 9H), 1.42 – 1.36 (m, 1H), 1.34 – 1.26 (m, 4H), 1.23 – 1.16 (m, 1H), 0.89 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.97, 137.27, 133.99, 128.48, 127.26, 126.15, 124.67, 80.94, 61.25, 43.77, 40.12, 32.09, 28.09, 23.49, 22.42, 13.89; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₃₁NO₂⁺ 318.2428; found 318.2424.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	6.020	BB	1.2500	2652.5662	214.3539	49.9881		6.007	BB	1.8258	9036.1141	729.1401	97.3859
	15.286	BB	3.0767	2653.8247	77.3951	50.0119		15.275	BB	1.9133	242.5510	7.1045	2.6141

tert-Butyl (S, E)-2-amino-2-cinnamyloctanoate (6p):

Colorless oil (34.3 mg, 50%); $R_f = 0.64$ (petroleum ether/ ethyl acetate = 4:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 4.339 min, $t_R(minor)$ 5.437 min; $[\alpha]_D^{20} = -17.3$ (c = 0.21, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 6.0 Hz, 2H), δ 7.30 – 7.26 (m, 2H),7.20 (t, J = 12.0 Hz, 1H), 6.48 (d, J = 18.0 Hz, 1H), 6.14 – 6.09 (m, 1H), 2.67 (dd, J = 12.0, 6.0 Hz, 1H), 2.37 (dd, J = 12.0, 6.0 Hz, 1H), 1.79 – 1.74 (m, 1H), 1.65 (s, 2H), 1.56 – 1.51 (m, 1H), 1.47 (s, 9H), 1.40 – 1.35 (m, 1H), 1.33 – 1.26 (m, 6H), 1.20 – 1.14 (m, 1H), 0.89 – 0.87 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.98, 137.25, 134.00, 128.49, 127.28, 126.16, 124.65, 80.95, 61.25, 43.77, 40.17, 31.63, 29.55, 28.09, 23.79, 22.50, 13.9; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₁H₃₃NO₂⁺ 332.2584; found 332.2583.

tert-Butyl (S, E)-2-amino-2-isobutyl-5-phenylpent-4-enoate (6q):

Me Colorless oil (26.5 mg, 44%); $R_f = 0.69$ (petroleum ether/ ethyl acetate = H₂N, Me Colorb_{Bu} 3:1); the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.125 min, $t_R(minor)$ 7.484 min; $[\alpha]_D^{20} = -29.9$ (c = 0.38, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, J = 6.0 Hz, 2 H), 7.30 – 7.26 (m, 2H), 7.20 (t, J = 9.0 Hz, 1H), 6.47 (d, J = 12.0 Hz, 1H), 6.12 – 6.06 (m, 1H), 2.66 (dd, J = 12.0, 6.0 Hz, 1H), 2.34 (dd, J =12.0, 6.0 Hz, 1H), 1.80 – 1.76 (m, 2H), 1.69 (s, 2H), 1.55 – 1.52 (m, 1H), 1.48 (s, 9H), 0.97 (d, J =12.0 Hz, 3H), 0.91 (d, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.43, 137.23, 134.17,

128.50, 127.29, 126.17, 124.41, 81.08, 61.02, 48.45, 45.30, 28.07, 24.65, 24.48, 23.46; **HRMS(ESI)** m/z: $[M+H]^+$ Calculated for $C_{19}H_{29}NO_2^+$ 304.2271; found 304.2268.

tert-Butyl (S, E)-2-allyl-2-amino-5-phenylpent-4-enoate (6r)^[3]:

Colorless oil (27.3 mg, 48%); $R_f = 0.53$ (petroleum ether/ ethyl acetate = $H_2N_{COO^{1}Bu}$ 3:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.067 min, $t_R(minor)$ 8.125 min; $[\alpha]_D^{20} = 2.63$ (c = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.27 (m, 4H), 7.20 (t, J = 9.0 Hz, 1H), 6.49 (d, J = 18.0 Hz, 1H), 6.15 – 6.10 (m, 1H), 5.78 – 5.71 (m, 1H), 5.16 (t, J = 10.0 Hz, 2H), 2.68 (dd, J = 12.0, 6.0 Hz, 1H), 2.59 (dd, J = 12.0, 6.0 Hz, 1H), 2.38 (dd, J = 18.0, 12.0 Hz, 1H), 2.28 (dd, J = 18.0, 12.0 Hz, 1H), 1.71 (s, 2H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.33, 137.20, 134.13, 132.77, 128.50, 127.32, 126.17, 124.35, 119.22, 81.22, 60.76, 44.29, 43.58, 28.10.

tert-Butyl (R, E)-2-amino-2-(2-(methylthio)ethyl)-5-phenylpent-4-enoate (6s)^[3]:

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} H_2N \\ \hline \\ COO^{t}Bu \end{array} \end{array} \begin{array}{c} CH_2SCH_3 \\ \hline \\ COO^{t}Bu \end{array} \begin{array}{c} Colorless oil (33.2 \text{ mg}, 52\%); R_f = 0.53 \text{ (petroleum ether/ ethyl acetate} \\ \hline \\ = 3:1); \text{ the enantiomeric excess was determined to be 92\% by HPLC} \end{array}$

analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T

= 30 °C), UV 254 nm, t_R(major) 6.475 min, t_R(minor) 9.890 min; $[\alpha]_D^{20}$ = -2.73 (c = 0.46, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.28 (m, 4H), 7.21 (t, *J* = 6.0 Hz, 1H), 6.48 (d, *J* = 18.0 Hz, 1H), 6.12 – 6.07 (m, 1H), 2.67 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.58 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.45 – 2.38 (m, 2H), 2.11 (s, 3H), 2.09 – 2.06 (m, 1H), 1.88 – 1.83 (m, 1H), 1.67 (s, 3H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.15, 137.06, 134.45, 128.53, 127.42, 126.18, 123.95, 81.46, 61.10, 43.77, 39.61, 28.86, 28.08, 15.56.

3.3 General procedure for the asymmetric α-benzylation

Under nitrogen atmosphere, amino acid ester 1 (0.30 mmol), benzylic chloride derivative 8 (0.20 mmol), chiral aldehyde CA-15 (11.8 mg, 0.02 mmol), ZnCl₂ (10.9 mg, 0.08 mmol), TMG (57.5 mg, 0.50 mmol) and n-hexane (0.5 ml) were added to a 10 mL vial. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed (detected by TLC), the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =300/100/4).

tert-Butyl (S)-2-amino-2-methyl-3-phenylpropanoate (9a):

Me NH₂ Colorless oil (33.4 mg, 71%); $R_f = 0.6$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 90% by HPLC analysis on

Daicel Chirapak OJ-H column (hexane/isopropanol = 98/2, flow rate 0.8 mL/min, T = 30 °C), UV 220 nm, t_R(major) 6.518 min, t_R(minor) 7.736 min; $[\alpha]_D^{25}$ = -12.96 (c = 0.58, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 6.0 Hz, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.10 (d, *J* = 12.0 Hz, 1H), 2.78

 $(d, J = 12.0 \text{ Hz}, 1\text{H}), 1.58 (s, 2\text{H}), 1.45 (s, 9\text{H}), 1.34 (s, 3\text{H}); {}^{13}\text{C}$ NMR (151 MHz, CDCl₃) δ 176.28, 136.92, 130.22, 128.12, 126.74, 81.04, 58.74, 46.50, 27.99, 26.99; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₂NO₂⁺ 236.1645; found 236.1642.

tert-Butyl (S)-2-amino-3-(2-fluorophenyl)-2-methylpropanoate (9b):

Colorless oil (35.7 mg, 66%); $R_f = 0.49$ (petroleum ether/ ethyl acetate = 4:1); the enantiomeric excess was determined to be 89% by HPLC analysis on Daicel Chirapak IF column (hexane/isopropanol = 80/20, flow rate 1 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 7.960 min, $t_R(minor)$ 4.751 min; $[\alpha]_D^{25} = -5.64$ (c = 0.39, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.07 – 7.01 (m, 2H), 3.05 (d, *J* = 12.0 Hz, 1H), 2.95 (d, *J* = 18.0 Hz, 1H), 1.69 (s, 2H), 1.45 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.89, 162.36, 160.73, 132.54, 132.51, 128.54, 128.49, 123.97, 123.86, 123.69, 123.67, 115.38, 115.23, 81.19, 58.72, 39.11, 27.89, 26.26; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀FNO₂⁺ 254.1551; found 254.1548.

Colorless oil (29.2 mg, 54%); $R_f = 0.56$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 86% by HPLC analysis on Daicel Chirapak OJ-H column (hexane/isopropanol = 99/1, flow rate 0.5 mL/min, T = 30 °C), UV 220 nm, t_R(major) 11.402 min, t_R(minor) 13.129 min; $[\alpha]_D^{25}$ = -6.61 (c = 0.22, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.36 (m, 1H), 7.32 – 7.31 (m, 1H), 7.19 – 7.15 (m, 2H), 3.15 (t, *J* = 15.0 Hz, 2H), 1.70 (s, 2H), 1.47 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.98, 135.28, 135.01, 132.00, 129.69, 128.04, 126.40, 81.23, 59.30, 42.37, 27.93, 26.35; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀ClNO₂⁺ 270.1255; found 270.1245.

tert-Butyl (S)-2-amino-2-methyl-3-(o-tolyl)propanoate (9d) [7]:

Me NH_2 Colorless oil (29.9 mg, 60%); $R_f = 0.56$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 89% by HPLC analysis on

the enantiomeric excess was determined to be 89% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 80/20, flow rate 1 mL/min, T = 30 °C), UV 220 nm, t_R(major) 5.676 min, t_R(minor) 4.972 min; $[\alpha]_D^{25}$ = -8.66 (c = 0.46, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.19 (d, *J* = 12.0 Hz, 1H), 7.15 (d, *J* = 6.0 Hz, 1H), 7.13 – 7.08 (m, 2H), 3.06 (d, *J* = 12.0 Hz, 1H), 2.94 (d, *J* = 12.0 Hz, 1H), 2.37 (s, 3H), 1.54 (s, 2H), 1.46 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.72, 137.47, 135.47, 130.49, 130.39, 126.65, 125.56, 81.02, 59.43, 42.19, 27.94, 27.04, 20.36.

tert-Butyl (S)-2-amino-3-(3-fluorophenyl)-2-methylpropanoate (9e):

^F Colorless oil (31.8 mg, 63%); $R_f = 0.44$ (petroleum ether/ ethyl acetate = 3:1); Me NH₂ COO'Bu the enantiomeric excess was determined to be 86% by HPLC analysis on Daicel Chirapak IF column (hexane/isopropanol = 80/20, flow rate 1 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 5.550 min, $t_R(minor)$ 4.346 min; $[\alpha]_D^{25} = -7.41$ (c = 0.38, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.21 (m, 1H), 7.01 (d, J = 6.0 Hz, 1H), 6.96 – 6.92 (m, 2H), 3.09 (d, J = 12.0Hz, 1H), 2.78 (d, J = 18.0 Hz, 1H), 1.70 (s, 2H), 1.46 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.93, 163.45, 161.83, 139.44, 139.39, 129.53, 129.48, 125.91, 125.89, 117.13, 113.74, 113.60, 81.37, 58.77, 46.10, 27.97, 26.91; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀FNO₂H⁺ 254.1551; found 254.1547.

tert-Butyl (S)-2-amino-3-(3-chlorophenyl)-2-methylpropanoate (9f):

Cl Colorless oil (40.1 mg, 74%); $R_f = 0.56$ (petroleum ether/ ethyl acetate = 3:1); Me NH₂ COO'Bu the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IF column (hexane/isopropanol = 70/30, flow rate 1 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 4.793 min, $t_R(minor)$ 4.096 min; $[\alpha]_D^{25} = -6.61$ (c = 0.22, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.19 (m, 3H), 7.12 (d, J = 6.0 Hz, 1H), 3.07 (d, J = 12.0 Hz, 1H), 2.75 (d, J = 18.0 Hz, 1H), 1.58 (s, 2H), 1.46 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.98, 139.02, 133.98, 130.26, 129.32, 128.38, 126.94, 81.38, 58.74, 46.10, 27.98, 26.98; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₀ClNO₂⁺ 270.1255; found 270.1256.

Me Colorless oil (39.8 mg, 80%); $R_f = 0.49$ (petroleum ether/ ethyl acetate = 4:1); Me NH₂ COO^tBu the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IF column (hexane/isopropanol = 70/30, flow rate 1 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 5.279 min, $t_R(minor)$ 3.948 min; $[\alpha]_D^{25} = -7.56$ (c = 0.52, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.16 (t, J = 6.0 Hz, 1H), 7.04 – 7.01 (m, 3H), 3.09 (d, J = 18.0 Hz, 1H), 2.73 (d, J = 12.0 Hz, 1H), 2.31 (s, 3H), 1.71 (s, 2H), 1.46 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.26, 137.65, 136.74, 130.95, 128.05, 127.51, 127.21, 81.06, 58.79, 46.36, 28.00, 27.05, 21.29; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₅H₂₃NO₂⁺ 250.1802; found 250.1796.

Me NH₂ COO^tBu

Colorless oil (29.4 mg, 58%); $R_f = 0.39$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis

on Daicel Chirapak IC column (hexane/isopropanol = 95/5, flow rate 1 mL/min, T = 30 °C), UV 220 nm, t_R(major) 9.483 min, t_R(minor) 8.270 min; $[\alpha]_D^{25}$ = -5.52 (c = 0.72, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.19 (t, *J* = 6.0 Hz, 2H), 6.96 (t, *J* = 9.0 Hz, 1H), 3.07 (d, *J* = 12.0 Hz, 1H), 2.75 (d, *J* = 18.0 Hz, 1H), 1.71 (s, 2H), 1.45 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.15,

162.78, 161.15, 132.64, 132.62, 131.66, 131.61, 114.97, 114.83, 81.17, 58.71, 45.58, 27.98, 26.85.

tert-Butyl (S)-2-amino-2-methyl-3-(p-tolyl)propanoate (9i) [7]:

Colorless oil (37.4 mg, 75%); $R_f = 0.53$ (petroleum ether/ ethyl acetate = 3:1); The enantiomeric excess was determined to be 89% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 14.995 min, t_R (minor) 8.045 min; $[\alpha]_D^{25}$ = -16.58 (c = 0.71, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.11 – 7.07 (m, 4H), 3.07 (d, *J* = 18.0 Hz, 1H), 2.73 (d, *J* = 12.0 Hz, 1H), 2.31 (s, 3H), 1.58 (s, 2H), 1.46 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.39, 136.26, 133.74, 130.07, 128.84, 80.99, 58.75, 46.01, 28.01, 26.95, 20.97.

^{tBu} Colorless oil (34.4 mg, 59%); $R_f = 0.21$ (petroleum ether/ ethyl acetate = 4:1); the enantiomeric excess was determined to be 79% by HPLC

analysis on Daicel Chirapak IF column (hexane/isopropanol = 99/1, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 15.570 min, $t_R(minor)$ 13.528 min; $[\alpha]_D^{25}$ = -9.03 (c = 0.74, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 12.0 Hz, 2H), δ 7.15 (d, *J* = 6.0 Hz, 2H), 3.08 (d, *J* = 12.0 Hz, 1H), 2.75 (d, *J* = 12.0 Hz, 1H), 1.70 (s, 2H), 1.46 (s, 9H), 1.35 (s, 3H), 1.30 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.27, 149.62, 133.65, 129.89, 125.07, 81.09, 58.83, 45.84, 34.38, 31.34,

tert-Butyl (S)-3-methyl-1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (9k):

the enantiomeric excess was determined to be 92% by HPLC analysis on ′′COO^tBu Daicel Chirapak IF column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 8.237 min, t_R(minor) 9.619 min; $[\alpha]_D^{25} = 6.55$ (c = 0.39, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 12.0 Hz, 1H), 7.45 (t, J = 6.0 Hz, 1H), 7.35 (t, *J* = 9.0 Hz, 1H), 7.21 (d, *J* = 12.0 Hz, 1H), 3.32 (d, *J* = 12.0 Hz, 1H), 3.06 (d, *J* = 18.0 Hz, 1H), 1.71 (s, 1H), 1.49 (s, 3H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.36, 165.34, 136.13, 132.41, 128.00, 127.71, 127.34, 82.61, 58.93, 37.98, 27.73, 25.33; HRMS(ESI) m/z: [M+Na]⁺ Calculated for C₁₅H₁₉NO₃Na⁺ 284.1257; found 284.1252.

Colorless oil (27.2 mg, 52%); $R_f = 0.52$ (petroleum ether/ ethyl acetate = 3:2);

Colorless oil (22.9 mg, 46%); $R_f = 0.42$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 84% by HPLC analysis on

Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 11.278 min, t_R(minor) 5.475 min; $[\alpha]_D^{25} = -15.43$ (c = 0.32, CHCl₃); ¹H NMR **(600 MHz, CDCl₃)** δ 7.27 (t, *J* = 6.0 Hz, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.16 (d, *J* = 18.0 Hz, 1H), 2.74 (d, *J* = 12.0 Hz, 1H), 1.94 – 1.88 (m, 1H), 1.59 (s, 2H), 1.57 – 1.55 (m, 1H), 1.46 (s, 9H), 0.91 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.62, 136.81, 130.23, 128.17, 126.76, 81.18, 62.28, 45.55, 33.58, 28.07, 8.16.

tert-Butyl (S)-2-amino-2-benzylpentanoate (9m):

(600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.15 (d, *J* = 12.0 Hz, 1H), 2.73 (d, *J* = 12.0 Hz, 1H), 1.86 – 1.81 (m, 1H), 1.58 (s, 2H), 1.56 – 1.51 (m, 1H), 1.45 (s, 9H), 1.42 – 1.39 (m, 1H), 1.23 – 1.20 (m, 1H), 0.94 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.77, 136.76, 130.24, 128.16, 126.76, 81.15, 61.98, 45.85, 43.17, 28.07, 17.24, 14.43; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₅NO₂⁺ 264.1958; found 264.1953.

tert-Butyl (S)-2-amino-2-benzylhexanoate (9n):

 $(CH_2)_2 Me$ Colorless oil (22.7 mg, 41%); R_f = 0.5 (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 89% by HPLC analysis on

Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 13.736 min, t_R(minor) 5.059 min; $[\alpha]_D^{25}$ = -12.36 (c = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.15 (d, *J* = 12.0 Hz, 1H), 2.74 (d, *J* = 18.0 Hz, 1H), 1.88 – 1.83 (m, 1H), 1.58 (s, 2H), 1.55 – 1.52 (m, 1H), 1.46 (s, 9H), 1.41 – 1.29 (m, 3H), 1.19 – 1.12 (m, 1H), 0.91 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.79, 136.78, 130.23, 128.16, 126.75, 81.13, 61.96, 45.89, 40.54, 28.08, 26.05, 23.00, 13.89; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₇NO₂⁺ 278.2115; found 278.2113.

tert-Butyl (S)-2-amino-2-benzylheptanoate (90):

 H_2N_1

 $(CH_2)_3CH_3$ Colorless oil (26.8 mg, 46%); $R_f = 0.75$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 85% by HPLC analysis

on Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 13.151 min, $t_R(minor)$ 5.004 min; $[\alpha]_D^{25} = -10.13$ (c = 0.46, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.22 (d, J = 6.0 Hz, 3H), 3.15 (d, J = 12.0 Hz, 1H), 2.73 (d, J = 6.0 Hz, 1H), 1.87 – 1.82 (m, 1H), 1.64 (s, 2H), 1.56 – 1.51 (m, 1H), 1.45 (s, 9H), 1.42 – 1.36 (m, 1H), 1.33 – 1.27 (m, 4H), 1.21 – 1.16 (m, 1H), 0.89 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.78, 136.76, 130.23, 128.16, 126.76, 81.14, 61.99, 45.88, 40.83, 32.12, 28.07, 23.52, 22.44, 13.91; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₉NO₂⁺ 292.2271; found 292.2262.

Coo¹Bu Coo¹Bu Colorless oil (26.8 mg, 46%); $R_f = 0.39$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 85% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 18.354 min, $t_R(minor)$ 6.025 min; $[\alpha]_D^{25} = -9.07$ (c = 0.57, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.15 (d, *J* = 12.0 Hz, 1H), 2.73 (d, *J* = 12.0 Hz, 1H), 1.87 – 1.83 (m, 1H), 1.57 (s, 2H), 1.54 – 1.51 (m, 1H)1.45 (s, 9H), 1.41 – 1.37 (m, 1H), 1.30 – 1.27 (m, 7H), 1.17 – 1.15 (m, 1H), 0.88 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.80, 136.78, 130.23, 128.16, 126.75, 81.12, 61.99, 45.90, 40.89, 31.64, 29.58, 28.08, 23.82, 22.50, 13.96. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₃₁NO₂⁺ 306.2428; found 306.2421.

Ph Colorless oil (31.2 mg, 48%); $R_f = 0.63$ (petroleum ether/ ethyl acetate = 3:1); H_2N the enantiomeric excess was determined to be 81% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 14.238 min, t_R (minor) 6.922 min; $[\alpha]_D^{25} = -7.58$ (c = 0.55, CHCl₃); ¹H NMR (600 **MHz, CDCl**₃) δ 7.30 – 7.27 (m, 4H), 7.24 – 7.20 (m, 3H), 7.19 (d, J = 6.0 Hz, 3H), 3.18 (d, J = 12.0 Hz, 1H), 2.79 (d, J = 12.0 Hz, 1H), 2.75 – 2.70 (m, 1H), 2.53 – 2.48 (m, 1H), 2.19 – 2.14 (m, 1H), 1.89 – 1.84 (m, 1H), 1.61 (s, 2H), 1.51 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.50, 141.87, 136.49, 130.26, 128.48, 128.33, 128.24, 126.88, 125.95, 81.45, 62.01, 45.95, 42.86, 30.62, 28.16; **HRMS(ESI)** m/z: [M+H]⁺ Calculated for C₂₁H₂₇NO₂⁺ 326.2115; found 326.2115.

tert-Butyl (R)-2-amino-2-benzyl-3-(tert-butoxy)propanoate (9r) [7]:

H₂N COO^tBu

Colorless oil (28.9 mg, 47%); $R_f = 0.56$ (petroleum ether/ ethyl acetate = 3:1); the enantiomeric excess was determined to be 97% by HPLC analysis on

Daicel Chirapak IC column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 8.735 min, t_R(minor) 5.300 min; $[\alpha]_D^{25} = 2.73$ (c = 0.37, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 (t, *J* = 6.0 Hz, 2H), 7.22 (t, *J* = 6.0 Hz, 3H), 3.72 (d, *J* = 6.0 Hz, 1H), 3.31 (d, *J* = 6.0 Hz, 1H), 3.04 (d, *J* = 12.0 Hz, 1H), 2.70 (d, *J* = 12.0 Hz, 1H), 1.77 (s, 2H), 1.44 (s, 9H), 1.17 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.55, 136.10, 130.18, 128.13, 126.76, 80.90, 72.79, 68.52, 62.57, 42.15, 28.05, 27.44.

4. Determination of the absolute configuration

The absolute configuration of compound 3a was established by comparing its optical rotation value with the literature data:

The absolute configuration of compound **6b** was established by comparing its optical rotation value with the literature data:

The absolute configuration of compound $\mathbf{9a}$ was established by comparing its optical rotation

value with the literature data:

(S)-product (9a) in this work	(<i>S</i>)-product in literature ^[7]
MeNH ₂ COO ^t Bu <i>tert</i> -butyl (S)-2-amino-2-methyl-3-phenylpropanoate	MeNH ₂ COO ^t Bu <i>tert</i> -butyl (S)-2-amino-2-methyl-3-phenylpropanoate
$[\alpha]_D^{25} = -12.96 (c \ 0.58, CHCl_3)$	$[\alpha]_D^{25} = -27.54 (c \ 0.47, CHCl_3)$

The absolute configuration of compound **13** was established by comparing its optical rotation value with the literature data:

(<i>R</i>)-product (13) in this work (<i>R</i>)-product in literature ^[8]
--

5. The formal synthesis of (+)-AG-041R

Diethyl (R)-2-amino-2-(2-nitrophenyl)succinate (30)

Etooc NH₂ Chiral aldehyde CA-1 (6.3 mg, 0.02 mmol), amino acid ester 1b (75.6 mg, 0.04 mmol), Et₂O (2 mL) and K₃PO₄ (212 mg, 1 mmol) were added successively to a 10 mL reaction tube with stirring magneton. The mixture was stirred for 10 min at room temperature, and then compound 2a (28.2 mg, 0.02 mmol) was added. The reaction system was sealed and continuously stirred at 50 °C for 72 h. After the reaction completed (detected by TLC), the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =300/100/4) to give a pale yellow oil 3o (32.2 mg, 52%); R_f = 0.42 (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 16.689 min, t_R (minor) 12.347 min; $[\alpha]_D^{25}$ = -57.86 (c = 0.58, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 6.0 Hz, 1H), 7.77 (d,

J = 6.0 Hz, 1H), 7.58 (t, J = 9.0 Hz, 1H), 7.45 (t, J = 9.0 Hz, 1H), 4.19 (q, J = 6.0 Hz, 2H), 4.11 (q, J = 6.0 Hz, 2H), 3.25 (d, J = 18.0 Hz, 1H), 3.12 (d, J = 18.0 Hz, 1H), 2.61 (s, 2H), 1.25 – 1.20 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 172.73, 170.80, 149.24, 136.29, 132.22, 128.80, 128.77, 124.94, 62.20, 61.95, 60.75, 42.76, 14.03, 13.84; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₀NO₃⁺ 298.1438; found 298.1435.

Ethyl (R)-2-(3-amino-2-oxo`indolin-3-yl)acetate (11)

The compound **30** (31.3 mg, 0.01 mmol), NH_4HCO_2 (63.1 mg, 1 mmol), 10% Pd/C (3.0 mg, 0.001 mmol) and MeOH (1 mL) were added into a 10 mL reaction tube.

The reaction system was sealed and stirred for 5 h at 60 °C. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ =1/3) to give white solid **11** (20.6 mg, 0.088 mmol, 88%); m.p. = 143-145 °C; R_f = 0.26 (petroleum ether/ ethyl acetate = 1:3); ¹H NMR (600 MHz, CDCl₃) δ 8.22 (s, 1H), 7.38 (d, *J* = 12.0 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.04 (t, *J* = 9.0 Hz, 1H), 6.89 (d, *J* = 12.0 Hz, 1H), 4.01 (m, 2H), 2.94 (s, 2H), 1.85 (s, 2H), 1.10 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 180.96, 169.47, 140.71, 131.34, 129.36, 124.14, 122.83, 110.08, 60.65, 58.90, 42.66, 13.87; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₂H₁₅N₂O₃⁺ 235.1077; found 235.1079.

Ethyl (R)-2-(2-oxo-3-(3-(p-tolyl)ureido)indolin-3-yl)acetate (12)

To a solution of **11** (20.6 mg, 0.088 mmol) in MeCN (1.0 mL) was added p-tolyl isocyanate (10.0 μ L, 0.11 mmol), and the mixture was stirred for 30 min at room temperature, After the reaction completed, the solvent

was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ =1/2) to give white solid **12** (31.7 mg, 0.086

mmol, 98%); $R_f = 0.53$ (petroleum ether/ ethyl acetate = 1:3); ¹H NMR (600 MHz, CD₃OD) δ 7.27 (d, J = 6.0 Hz, 1H), 7.22 (t, J = 6.0 Hz, 1H), 7.10 (d, J = 12.0 Hz, 2H), 7.02 – 6.97 (m, 3H), 6.90 (d, J = 6.0 Hz, 1H), 4.09 (m, 2H), 2.88 (d, J = 18.0 Hz, 1H), 2.68 (d, J = 18.0 Hz, 1H), 2.22 (s, 3H), 1.15 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 178.75, 169.39, 154.72, 141.50, 136.29, 132.03, 130.44, 128.82, 128.68, 122.85, 121.93, 119.25, 109.94, 60.77, 59.60, 19.29, 12.87; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₂N₃O₄⁺ 368.1605; found 368.1606.

(*R*)-1-(2,2-diethoxyethyl)-1'-(*p*-tolyl)-1'*H*-spiro[indoline-3,4'-pyrimidine]-2,2',6'(3'*H*,5'*H*)trione (13)

To a solution of **12** (31.7 mg, 0.086 mmol) in DMA (1.5 mL) were added potassium *tert*-butoxide (19.3 mg, 0.172 mmol, 2.0 equiv), bromoacetaldehyde diethyl acetal (19.7 μ L, 0.13 mmol) and tetrabutylammonium iodide (7.9 mg, 0.02 mmol). The mixture was stirred at 80 °C for 20 h and then cooled to ambient temperature. Saturated NH₄Cl (3 mL) was added and the mixture was extracted with Et₂O (2×20

mL). The combined organic layers were washed with brine, dried over MgSO₄,

and concentrated in vacuo. The residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ =1/1) to give white solid **13** (17.3 mg, 0.040 mmol, 46%); m.p. = 162 -163 °C; R_f = 0.46 (petroleum ether/ ethyl acetate = 1:1); the enantiomeric excess was determined to be 97% by HPLC analysis on Daicel Chirapak IA column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 11.402 min, t_R (minor) 19.530 min; $[\alpha]_D^{24}$ = 59.16 (c = 0.22 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.28 (d, *J* = 6.0 Hz, 2H), 7.23 (d, *J* = 6.0 Hz, 2H), 7.17 – 7.12 (m, 2H), 5.58 (s, 1H), 4.70 (t, *J* = 6.0 Hz, 1H), 3.87 (dd, *J* = 12.0, 6.0 Hz, 1H), 3.77 – 3.72 (m, 3H), 3.54 – 3.49 (m, 2H), 3.21 (d, *J* = 18.0 Hz, 1H), 2.39 (s, 3H), 1.14 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 175.29, 167.03, 154.23, 143.08, 138.54, 132.15, 130.81, 129.88, 128.42, 126.60, 123.70, 123.31, 111.01, 100.21, 63.69, 63.56, 43.64, 39.99, 21.22, 15.24, 15.23; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₄H₂₈N₃O₅⁺ 438.2023; found 438.2024.

6. References

- [1] Kasagani, V. P., Kurma, S. H., Bhimapaka, C. R. J. Org. Chem. 2020, 85, 2976-2983.
- [2] Chen, L., Luo, M. J., Zhu, F., Wen, W., Guo, Q. X. J. Am. Chem. Soc. 2018, 140, 9774-9780.
- [3] Huo, X., He, R., Fu, J., Zhang, J., Yang, G., Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819-9822.
- [4] Jette, C. I., Tong, Z. J., Hadt, R. G., Stoltz, B. M. Angew. Chem., Int. Ed. 2020, 132, 2049-2054.
- [5] Ardolino, M. J., Morken, J. P. J. Am. Chem. Soc. 2014, 136, 7092-7100.
- [6] Shirakawa S., Yamamoto K., Tokuda T., Maruoka, K. Asian J. Org. Chem. 2014, 3, 433-436.
- [7] Liu, J. H., Wen, W., Liao, J., Shen, Q. W., Lin, Y., Wu, Z. L., Guo, Q. X. Nat. Commun. 2022, 13, 2509.
- [8] Sato, S., Shibuya, M., Kanoh, N., Iwabuchi, Y. J. Org. Chem. 2009, 74, 7522-7524.

7. The spectra of ¹H NMR and ¹³C NMR

100 90 f1 (ppm) ò

100 90 f1 (ppm) 140 130

S66

S69

S70

