Supporting Information

Molecular Engineering of Locked Alkyl Aryl Carbonyl-Based Thermally Activated Delayed Fluorescence Emitters *via* a Cascade C–H Activation Process

Yunxi Zhang, Zhenmei Huang, Yudong Yang, Jiahui Liu, Yang Tian, Zhengyang Bin* and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University,

29 Wangjiang Road, Chengdu 610064, People's Republic of China.

* E-mail: binzhengyang@scu.edu.cn; yjsou@scu.edu.cn

Table of contents

I.	General remarks
II.	Preparation of substrates
III.	Optimization of the reaction
IV.	General procedure for tandem cyclization reactions of aromatic ketones with
phe	nylboronic acids12
V.	Procedure for the synthesis of 3j on 1.0 mmol scale12
VI.	Experimental data for the described substances13
VII.	Synthesis and characterization of TADF molecules
VII	I. Crystal data
IX.	Additional spectra and data
X.	References
XI.	Copies of NMR spectra

I. General remarks

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. AgSbF₆ was purchased from Beijing Ou He Chemical Engineering (China) Co., Ltd. 9,9-Dimethylcarbazine was obtained from Suzhou GeAo New Materials Co., Ltd. Ketone derivatives were purchased from Energy Chemical Technology (Shanghai) Co., Ltd. [Cp*RhCl₂]₂ was prepared according to the literature procedures.¹ Solvents were dried with an innovative technology solvent purification system (model no.: PS-MD-5).

Measurements: NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal standard (CDCl₃: $\delta = 7.26$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal reference (CDCl₃: $\delta = 77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). X-ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single crystal diffractometer. UV/Vis spectra were measured on a HITACHI U-2910. Fluorescence spectra and phosphorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-3 fluorescence spectrometer. Thermogravimetric analysis (TGA) was carried out using DTG-60(H) at a rate of 10 °C/min under nitrogen atmosphere. Cyclic voltammogram (CV) measurements were performed on LK2005A with a solution of tetrabutylammonium hexafluorophosphate (Bu₄NPF₆, 0.1 M) in dry dichloromethane (DCM) as electrolyte and ferrocene/ferrocenium (Fc/Fc⁺) as standard. Three-electrode system (Ag/Ag⁺, platinum wire and glassy carbon electrode as reference, counter and work electrode respectively) was used in the CV measurements.

OLED fabrication and characterization: Indium-tin-oxide (ITO) coated glass with a sheet resistance of 15 Ω sq⁻¹ was used as the anode substrate. Prior to film deposition, patterned ITO substrates were cleaned with alkaline detergent, boiled deionized water in ultrasonic bath, dried in an oven, and finally treated with oxygen plasma for 10 min

to enhance the surface work function of ITO anode. The organic layers were deposited with the rate of $0.1 \text{ nm} \cdot \text{s}^{-1}$ under high vacuum. The doped and co-doped layers were prepared by co-evaporating dopant and host material from two individual sources, and the doping concentrations were modulated by controlling the evaporation rates of dopant.

Current density-voltage-luminance (*J-V-L*) characteristics were measured by using KEYSIGHT B1500A. The luminance and electroluminescence spectra were collected with model DLM-100Z photometer and OPT2000 spectrophotometer, respectively.

Method of theoretical calculations: All density functional theory (DFT) calculations were performed using Gaussian 09 serials software. The ground-state structures and frontier molecular orbital (FMO) distributions were obtained by B3LYP density functional method with basis set 6-31G*. The singlet (S₁) and triplet (T₁) energies were calculated by time-dependent DFT (TD-DFT) method with the same parameters for ground-state calculations. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) distributions and spin density distribution (SDD) of T₁ state were visualized using Gaussview 5.0 software.

II. Preparation of substrates

1a, **1h** and **2a-2g** were purchased from Energy Chemical (China) CO., Ltd. and used without any further purification.

1) General procedure for the synthesis of $1b-1g^2$

To a stirred suspension of KOH (5.6 g, 0.1 mol) in toluene (10.0 mL) containing acetophenone (0.01 mol) and 18-crown-6 (60.0 mg) was added CH_3I (5.0 mL) dropwise. The mixture was stirred at 70 °C for 24 h. After being cooled to room temperature, the solid phase was separated by filtration and toluene was evaporated. The remainder was purified by column chromatography on silica gel to afford corresponding product.

2) **Procedure for the synthesis of 1i**³

A 25 mL Schlenk tube with a magnetic stir bar was charged with propiophenone (268.4 mg, 2.0 mmol), iodobenzene (204.0 mg, 1.0 mmol), *t*BuOK (561.1 mg, 5.0 mmol), and *N*,*N*-dimethylformamide (DMF, 3.0 mL) under N₂ atmosphere. The resulting mixture was stirred at 60 °C (oil bath) for 13 h. After completion of the reaction, the mixture was cooled to room

temperature and extracted with ethyl acetate (EtOAc, 3×20.0 mL). The combined organic phases were dried over Na₂SO₄ and then filtered. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel to provide the desired product.

3) General procedure for the synthesis of 1j and 1k⁴

A 25 mL Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (11.2 mg, 0.05 mmol), PPh₃ (52.5 mg, 0.2 mmol), Cs₂CO₃ (977.5 mg, 3.0 mmol), acetophenone (1.0 mmol), bromobenzene (0.36 mL, 3.4 mmol), and DMF (5.0 mL) under N₂ atmosphere. The resulting mixture was stirred at 155 °C (oil bath) for 1 h. After completion of the reaction, the mixture was cooled to room temperature and extracted with EtOAc (3 × 20.0 mL). The combined organic phases were dried over Na₂SO₄ and then filtered. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel to provide the desired product.

1-(4-fluorophenyl)-2,2-diphenylethan-1-one (1k)

Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 100/1 to 80/1, v/v) afforded the desired product **1k** as a white solid (208.8 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.04-7.98 (m, 2H), 7.34-7.29 (m, 4H), 7.25 (d, *J* = 7.4 Hz, 6H), 7.05 (t, *J* = 8.7 Hz, 2H), 5.97 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 196.7, 165.8 (d, *J* = 255.2 Hz), 139.0, 133.4 (d, *J* = 3.0 Hz), 131.8 (d, *J* = 9.3 Hz), 129.3, 128.9, 127.4, 115.9 (d, *J* = 21.9 Hz), 59.6 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅O [M+H]⁺ 291.1180, found 291.1181.

4) **Procedure for the synthesis of 11**⁵

Under N₂ atmosphere, TiCl₄ (0.22 mL, 2.0 mmol) was added dropwise using a syringe to stirred suspension of powdered samarium (300.7 mg, 2.0 mmol) in freshly distilled dry tetrahydrofuran (THF, 20.0 mL) at room temperature. After the completion of addition, the mixture was refluxed for 2 h. Then a solution of benzophenone (182.2 mg, 1.0 mmol) and 4-chlorobenzoyl cyanide (165.6 mg, 1.0 mmol) in THF (3.0 mL) was added dropwise. The mixture was stirred at reflux temperature for 8 h. Then, dilute HCl (5%, 4.0 mL) solution was added and the mixture was extracted with ether (3 × 3.0 mL). The combined organic phases were dried over Na₂SO₄ and then filtered. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel to provide the desired product.

III.Optimization of the reaction

Optimization of tandem cyclization reactions of aromatic ketone with phenylboronic acid

A 25 mL flame-dried Schlenk test tube with a magnetic stirring bar was charged with isobutyrophenone **1a** (0.2 mmol), phenylboronic acid **2a** (3.0 equiv), [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%), oxidant (2.0 equiv), additive (1.0-1.4 equiv), and solvent (1.0 mL). The reaction mixture was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere. The reaction mixture was then cooled to room temperature, and diluted with 5.0 mL of CH₂Cl₂. The mixture was filtered through a celite pad and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (petroleum ether/EtOAc =120/1, v/v) to provide the desired product **3a**.

$ \begin{array}{c} 0 \\ \hline \\ \\ 1a \end{array} $ $ \begin{array}{c} B(OH) \\ \hline \\ B(OH) \\ \hline \\ B(OH) \\ \hline \\ B(OH) \\ \hline \\ C \\ $	² [Cp*RhCl ₂] ₂ , AgSbF ₆ , Cu(OAc) ₂ PivOH/NaOTf, solvent, 150 °C, 24 h	\rightarrow
entry	solvent	yield ^b
1	MeCN	N.R.
2	dioxane	8%
3	toluene	N.R.
4	THF	5%
5	DMF	N.R.
6	DMSO	N.R.
7	DCM	45%
8	HFIP	N.R.
9	<i>t</i> BuOH	N.R.
10	NMP	N.R.

	7 7 7	N 1	a	•	e	1	10
	ahla	N /	NOR	noning	nt	CO	vonta
1	une	11.	1701	CCIIIII2	UI.	50	IVCIIL
_		~	~		~ -	~ ~ ~	

11	DCE	66%
12	1,2-dichlorobenzene	N.R.

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (3.0 equiv), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆(20 mol%), Cu(OAc)_2 (2.0 equiv), PivOH (0.5 equiv), NaOTf (0.5 equiv) and solvent (1.0 mL) under N₂, 24 h, 150 °C. ^{*b*} The yield was determined by ¹H NMR analysis of crude product using CH₂Br₂ as an internal standard. MeCN = acetonitrile, DMSO = dimethyl sulfoxide, DCM = dichloromethane, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, NMP = *N*-methyl pyrrolidone, DCE = 1,2-dichloroethane.

Table S2. Screening of oxidant^a

$ \begin{array}{c} 0 \\ + \\ 1a \end{array} $	DH) ₂ [Cp*RhCl ₂] ₂ , AgSbF ₆ , oxidant PivOH/NaOTf, DCE, 150 °C, 24 h	► C C C C C C C C C C C C C C C C C C C
entry	oxidant	yield ^b
1	O ₂	12%
2	Cu(NO ₃) ₂	N.R.
3	$Cu(acac)_2$	16%
4	Cu(OTf) ₂	N.R.
5	Cu(OAc) ₂	66%
6	CuCl	N.R.
7	AgOAc	N.R.
8	Ag ₂ CO ₃	N.R.
9	Ag ₂ O	N.R.
10	AgNO ₃	8%
11	PhI(OAc) ₂	N.R.

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (3.0 equiv), [Cp*RhCl₂]₂ (5 mol %), AgSbF₆(20 mol%), oxidant (2.0 equiv), PivOH (0.5 equiv), NaOTf (0.5 equiv) and DCE (1.0 mL) under N₂, 24 h, 150 °C. ^{*b*} The yield was determined by ¹H NMR analysis of crude product using CH₂Br₂ as an internal standard.

Table S3. Screening of additive^{*a*}

	$(OH)_2 = \frac{[Cp*RhCl_2]_2, AgSbF_6, Cu(OAc)_2}{additive, DCE, 150 °C, 24 h}$	
entry	additive	yield ^b
1	/	trace
2	CsOAc	N.R.
3	NaOAc	33%
4	LiOAc	46%
5	Zn(OTf) ₂	37%
6	LiOTf	60%
7	NaOTf	60%
8	KF	N.R.
9	NaF	52%
10	PivOH	44%
11	PivOH/LiOTf	56% ^c
12	PivOH/NaOTf	66% ^c
13	PivOH/NaF	61% ^c
14	PivOH/LiOAc	$67\%^d$
15	PivOH/NaOAc	$72\%^d$
16	PivOH/NaOAc	84% ^e

^a Conditions: 1a (0.2 mmol), 2a (3.0 equiv), [Cp*RhCl₂]₂ (5 mol %), AgSbF₆ (20 mol%), Cu(OAc)₂ (2.0 equiv), additive (1.0 equiv) and DCE (1.0 mL) under N₂, 24 h, 150 °C.
^b The yield was determined by ¹H NMR analysis of crude product using CH₂Br₂ as an internal standard. ^c PivOH/LiOTf, PivOH/NaOTf and PivOH/NaF (0.5 equiv/0.5 equiv).
^d PivOH/LiOAc and PivOH/NaOAc(1.0 equiv/0.2 equiv). ^e PivOH/NaOAc (1.2 equiv/0.2 equiv).

Table S4. Screening of catalyst^{*a*}

$\begin{array}{c} 0 \\ 0 \\ 1a \end{array} + \begin{array}{c} B(0) \\ 0 \\ 1a \end{array}$	H) ₂ catalyst, Cu(OAc) ₂ PivOH/NaOAc, DCE, 150 °C, 24 h	\rightarrow \downarrow \downarrow $3a$
entry	catalyst	yield ^b
1	/	N.R.
2	[Cp*RhCl ₂] ₂ /AgSbF ₆	41% ^c
3	[Cp*RhCl2]2/AgSbF6	84%

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (3.0 equiv), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆(20 mol%), Cu(OAc)₂ (2.0 equiv), PivOH/NaOAc (1.2 equiv/0.2 equiv) and DCE (1.0 mL) under N₂, 24 h, 150 °C. ^{*b*} The yield was determined by ¹H NMR analysis of crude product using CH₂Br₂ as an internal standard. ^{*c*} [Cp*RhCl₂]₂ (2.5 mol %), AgSbF₆(10 mol%).

IV. General procedure for tandem cyclization reactions of aromatic ketones with phenylboronic acids

A 25 mL flame-dried Schlenk test tube with a magnetic stirring bar was charged with aromatic ketones **1** (0.2 mmol), phenylboronic acid **2** (3.0 equiv), $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), Cu(OAc)₂ (72.7 mg, 2.0 equiv), PivOH (24.5 mg, 1.2 equiv), NaOAc (3.3 mg, 0.2 equiv) and DCE (1.0 mL). The reaction mixture was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere. The reaction mixture was then cooled to room temperature, and diluted with 5.0 mL of CH₂Cl₂. The mixture was filtered through a celite pad and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography to provide the desired product **3**.

V. Procedure for the synthesis of 3j on 1.0 mmol scale

A 100 mL flame-dried Schlenk test tube with a magnetic stirring bar was charged with 1-(4-chlorophenyl)-2-methylpropan-1-one **1d** (167.2 µL, 1.0 mmol) and 4-chlorophenylboronic acid **2e** (468.0 mg, 3.0 mmol), [Cp*RhCl₂]₂ (30.9 mg, 5 mol%), AgSbF₆ (68.7 mg, 20 mol%), Cu(OAc)₂ (363.3 mg, 2.0 equiv), PivOH (122.5 mg, 1.2 equiv), NaOAc (16.5 mg, 0.2 equiv) and DCE (5.0 mL). The reaction mixture was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere. The reaction mixture was then cooled to room temperature, and diluted with 25.0 mL of CH₂Cl₂. The mixture was filtered through a celite pad and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were concentrated under reduced pressure. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3j** as a white solid (194.6 mg, 67% yield).

VI. Experimental data for the described substances

10,10-dimethylphenanthren-9(10H)-one (3a)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1, v/v) afforded the desired product **3a** as a colorless oil (36.4 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (dd, *J* = 7.8, 1.1 Hz, 1H), 8.03-7.97 (m, 2H), 7.70-7.65 (m, 1H), 7.53-7.50 (m, 1H), 7.45-7.40 (m, 1H), 7.40-7.34 (m, 2H), 1.55 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 203.3, 144.2, 137.2, 134.4, 129.3, 129.0, 128.3, 128.0, 127.2, 126.5, 124.1, 123.0, 47.5, 27.4 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄O [M+H]⁺ 223.1117, found 223.1118.

2,10,10-trimethylphenanthren-9(10H)-one (3b)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 4tolylboronic acid **2b** (81.6 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1, v/v) afforded the desired product **3b** as a pale yellow oil (40.1 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (d, *J* = 7.8 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.31 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H), 1.54 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 203.5, 144.1, 139.3, 137.4, 134.3, 128.7, 128.0, 127.9, 127.8, 127.1, 126.5, 124.1, 122.8, 47.4, 27.5, 21.7 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆O [M+H]⁺ 237.1274, found 237.1274.

3,10,10-trimethylphenanthren-9(10H)-one (3c)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 3tolylboronic acid **2c** (81.6 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1, v/v) afforded the desired product **3c** as a pale yellow oil (36.8 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (d, *J* = 7.8 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.80 (s, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 1H), 2.43 (s, 3H), 1.53 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 203.5, 141.2, 137.3, 136.7, 134.3, 130.1, 129.1, 129.0, 128.2, 128.0, 126.4, 124.7, 123.0, 47.2, 27.5, 21.4 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆O [M+H]⁺ 237.1274, found 237.1275.

6,10,10-trimethylphenanthren-9(10*H*)-one (3d)

Following the general procedure, 2-methyl-1-(*p*-tolyl)propan-1-one **1f** (33.0 µL, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1, v/v) afforded the desired product **3d** as a pale yellow oil (29.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, *J* = 7.9 Hz, 2H), 7.82 (s, 1H), 7.51 (d, *J* = 7.1 Hz, 1H), 7.38 (q, *J* = 5.9, 4.2 Hz, 2H), 7.27-7.21 (m, 1H), 2.50 (s, 3H), 1.54 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.9, 145.1, 144.5, 137.2, 129.3, 129.1, 128.1, 127.0, 126.7, 126.5, 124.0, 123.5, 47.3, 27.6, 22.3 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆O [M+H]⁺ 237.1274, found 237.1273.

2-fluoro-10,10-dimethylphenanthren-9(10H)-one (3e)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 4fluorobenzeneboronic acid **2d** (84.0 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3e** as a colorless oil (41.3 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (d, *J* = 7.7 Hz, 1H), 7.98-7.90 (m, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 10.2 Hz, 1H), 7.06 (t, *J* = 8.3 Hz, 1H), 1.53 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.6, 163.4 (d, *J* = 248.7 Hz), 146.9 (d, *J* = 7.2 Hz), 136.5, 134.5, 128.5, 128.2, 128.1, 126.1 (d, *J* = 8.5 Hz), 125.6 (d, *J* = 3.1 Hz), 122.9, 114.3 (d, *J* = 21.6 Hz), 113.5 (d, *J* = 22.4 Hz), 47.7, 27.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃FO [M+H]⁺ 241.1023, found 241.1024.

2-chloro-10,10-dimethylphenanthren-9(10H)-one (3f)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 4chlorophenylboronic acid **2e** (93.8 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3f** as a pale yellow solid (33.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (d, *J* = 7.8 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.32 (dd, *J* = 8.5, 2.2 Hz, 1H), 1.53 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.2, 146.0, 136.2, 135.1, 134.5, 128.7, 128.6, 128.1, 127.9, 127.4, 126.7, 125.5, 123.0, 47.5, 27.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃³⁵ClO [M+H]⁺ 257.0728, found 257.0728; calcd for C₁₆H₁₃³⁷ClO [M+H]⁺ 259.0699, found 259.0700.

3-chloro-10,10-dimethylphenanthren-9(10H)-one (3g)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 3chlorophenylboronic acid **2f** (93.8 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3g** as a pale yellow oil (32.7 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (d, *J* = 7.7 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.50-7.42 (m, 2H), 7.34 (d, *J* = 8.5 Hz, 1H), 1.52 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.5, 142.5, 135.9, 134.5, 133.3, 131.1, 129.1, 129.0, 128.2, 128.0, 124.1, 123.1, 47.3, 27.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃³⁵ClO [M+H]⁺ 257.0728, found 257.0731; calcd for C₁₆H₁₃³⁷ClO [M+H]⁺ 259.0699, found 259.0699.

3-bromo-10,10-dimethylphenanthren-9(10H)-one (3h)

Following the general procedure, isobutyrophenone **1a** (30.0 µL, 0.2 mmol) and 3bromophenylboronic acid **2g** (120.5 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3h** as a pale yellow oil (42.6 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (d, *J* = 9.7 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.51-7.43 (m, 2H), 7.38 (d, *J* = 8.4 Hz, 1H), 1.52 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.4, 143.0, 135.8, 134.5, 132.0, 131.5, 129.0, 128.3, 128.1, 127.1, 123.1, 121.3, 47.3, 27.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃⁷⁹BrO [M+H]⁺ 301.0223, found 301.0223; calcd for C₁₆H₁₃⁸¹BrO [M+H]⁺ 303.0203, found 303.0202.

8-fluoro-10,10-dimethylphenanthren-9(10H)-one (3i)

Following the general procedure, 1-(2-fluorophenyl)-2-methylpropan-1-one **1b** (32.0 µL, 0.2 mmol) and fhenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 40/1 to 20/1, v/v) afforded the desired product **3i** as a yellow solid (10.6 mg, 22% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.59 (td, *J* = 8.1, 5.4 Hz, 1H), 7.49 (d, *J* = 7.3 Hz, 1H), 7.43-7.32 (m, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 1.54 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.2, 161.7 (d, *J* = 262.3 Hz), 143.6, 139.6, 134.7 (d, *J* = 10.0 Hz), 129.9, 129.4 (d, *J* = 3.1 Hz), 127.4, 125.9, 124.9, 119.1 (d, *J* = 3.8 Hz), 118.3 (d, *J* = 7.9 Hz), 116.2 (d, *J* = 21.9 Hz), 48.8, 26.0 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃FO [M+H]⁺ 241.1024, found 241.1022.

2,6-dichloro-10,10-dimethylphenanthren-9(10H)-one (3j)

Following the general procedure, 1-(4-chlorophenyl)-2-methylpropan-1-one **1d** (34.0 µL, 0.2 mmol) and 4-chlorophenylboronic acid **2e** (93.8 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3j** as a white solid (46.4 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.3 Hz, 1H), 7.91 (s, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.48 (s, 1H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 1.53 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.1, 146.4, 141.2, 137.9, 136.0, 129.9, 128.8, 127.6, 127.0, 126.9, 126.7, 125.7, 123.2, 47.6, 27.4 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₂³⁵Cl³⁵ClO [M+H]⁺ 291.0338, found 291.0338; calcd for

 $C_{16}H_{12}{}^{35}Cl^{37}ClO$ [M+H]⁺ 293.0309, found 293.0308, calcd for $C_{16}H_{12}{}^{37}Cl^{37}ClO$ [M+H]⁺ 295.0276, found 295.0273.

2,6-difluoro-10,10-dimethylphenanthren-9(10H)-one (3k)

Following the general procedure, 1-(4-fluorophenyl)-2-methylpropan-1-one **1c** (32.0 μ L, 0.2 mmol) and 4-fluorobenzeneboronic acid **2d** (84.0 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3k** as a white solid (42.3 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (t, *J* = 8.0 Hz, 1H), 7.87 (dd, *J* = 8.7, 5.7 Hz, 1H), 7.56 (d, *J* = 10.5 Hz, 1H), 7.21 (dd, *J* = 10.1, 2.1 Hz, 1H), 7.08 (q, *J* = 7.0, 6.5 Hz, 2H), 1.53 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.9, 167.1 (d, *J* = 254.0 Hz), 163.8 (d, *J* = 249.9 Hz), 147.5 (d, *J* = 7.4 Hz), 139.4 (d, *J* = 9.0 Hz), 131.4 (d, *J* = 9.9 Hz), 126.3 (d, *J* = 8.7 Hz), 125.0, 124.6, 115.7 (d, *J* = 22.3 Hz), 114.6 (d, *J* = 21.8 Hz), 113.7 (d, *J* = 22.5 Hz), 109.5 (d, *J* = 24.2 Hz), 47.6, 27.5 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₂F₂O [M+H]⁺ 259.0929, found 259.0928.

5,5-dimethyltetraphen-6(5H)-one (3l)

Following the general procedure, 2-methyl-1-(naphthalen-2-yl)propan-1-one **1g** (39.6 mg, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 100/1, v/v) afforded the desired product **3l** as a white solid (22.3 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.59 (s, 1H), 8.40 (s, 1H), 8.13 (d, *J* = 7.5 Hz, 1H), 8.01-7.92 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.52 (q, *J* = 7.1 Hz, 2H), 7.45-7.37 (m, 2H), 1.58 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 203.3, 143.2, 136.5, 133.2, 132.6, 130.1,

129.8, 129.2, 128.8, 128.4, 127.8, 127.4, 126.9, 126.3, 124.5, 122.1, 47.8, 27.2 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆O [M+H]⁺ 273.1274, found 273.1274.

10,10-diphenylphenanthren-9(10*H*)-one (3m)

Following the general procedure, 1,2,2-triphenylethan-1-one **1j** (54.4 mg, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 100/1 to 80/1, v/v) afforded the desired product **3m** as a white solid (49.8 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.00 (d, *J* = 7.9 Hz, 1H), 7.96-7.86 (m, 2H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.28-7.19 (m, 7H), 6.96 (s, 4H), 6.75 (d, *J* = 7.9 Hz, 1H). ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.5, 141.9, 141.3, 136.7, 134.2, 132.2, 131.5, 130.8, 130.3, 128.7, 128.5, 128.2, 128.0, 127.5, 124.3, 123.0, 68.4 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈O [M+H]⁺ 347.1431, found 347.1429.

2-chloro-10,10-diphenylphenanthren-9(10H)-one (3n)

Following the general procedure, 1,2,2-triphenylethan-1-one **1j** (54.4 mg, 0.2 mmol) and 4-chlorophenylboronic acid **2e** (93.8 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1 to 80/1, v/v) afforded the desired product **3n** as a yellow solid (48.6 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.96-7.91 (m, 2H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.0 Hz, 1H), 7.40 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.28-7.24 (m, 6H), 6.99-6.93 (m, 4H), 6.76 (d, *J* = 2.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 199.5, 143.3, 141.2, 135.8, 134.8, 134.4, 132.0, 130.3, 130.2, 130.1, 128.8, 128.4, 127.8,

125.7, 123.0, 68.4 ppm. HRMS (ESI⁺): calcd for $C_{26}H_{17}^{35}$ ClO [M+H]⁺ 381.1041, found 381.1041; calcd for $C_{26}H_{17}^{37}$ ClO [M+H]⁺ 383.1012, found 381.1016.

10'H-spiro[cyclopentane-1,9'-phenanthren]-10'-one (30)

Following the general procedure, cyclopentyl(phenyl)methanone **1h** (34.8 mg, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 120/1, v/v) afforded the desired product **3o** as a colorless oil (27.8 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (d, J = 7.7 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.46-7.30 (m, 4H), 2.49 (s, 2H), 1.93 (d, J = 6.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.7$, 144.7, 137.5, 134.1, 129.6, 129.5, 129.2, 128.1, 127.8, 126.9, 126.8, 123.9, 123.0, 59.0, 39.5, 27.0 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₆O [M+H]⁺ 249.1274, found 249.1275.

10-methyl-10-phenylphenanthren-9(10H)-one (3p)

Following the general procedure, 1,2-diphenylpropan-1-one **1i** (42.0 mg, 0.2 mmol) and phenylboronic acid **2a** (73.2 mg, 0.6 mmol) were used at 150 °C for 24 h. Purification *via* silica gel column chromatography (petroleum ether/EtOAc = 100/1, v/v) afforded the desired product **3p** as a colorless oil (34.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.06-7.95 (m, 3H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.22-7.12 (m, 3H), 7.08 (d, *J* = 7.6 Hz, 2H), 1.98 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.0, 143.9, 142.8, 137.2, 134.5, 130.4, 129.4, 129.3, 129.2, 128.5, 128.4, 128.3, 127.7, 127.5, 127.0, 124.0,

123.0, 56.0, 25.5 ppm. HRMS (ESI⁺): calcd for $C_{21}H_{16}O$ [M+H]⁺ 285.1274, found 285.1275.

VII. Synthesis and characterization of TADF molecules

1) Synthesis of 2-DMAC-DMPO, 3-DMAC-DMPO, 2-*t*BuCz-DMPO and 2-DMAC-DPPO

Synthesis of 2-(9,9-dimethylacridin-10(9*H*)-yl)-10,10-dimethylphenanthren-9(10*H*)-one (2-DMAC-DMPO). A mixture of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), S-Phos(30.8 mg, 0.075 mmol), *t*BuONa (96.1 mg, 1.0 mmol), toluene (3.0 mL), **3f** (128.0 mg, 0.5 mmol) and 9,9-dimethyl-9,10-dihydroacridine (DMAC, 104.7 mg, 0.5 mmol) was refluxed under N₂ for 30 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous

Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow solid (167.2 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.24$ (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.54-7.46 (m, 4H), 7.35 (d, J = 8.3 Hz, 1H), 6.97 (p, J = 8.4, 7.9 Hz, 4H), 6.34 (d, J = 8.0 Hz, 2H), 1.73 (s, 6H), 1.57 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.6$, 147.3, 142.1, 140.9, 136.5, 134.6, 130.2, 130.0, 129.4, 129.3, 129.1, 128.8, 128.2, 126.7, 126.6, 125.6, 123.3, 120.9, 114.0, 47.8, 36.2, 31.6, 27.4 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₇NO [M+H]⁺ 430.2165, found 430.2164.

Synthesis of 3-(9,9-dimethylacridin-10(9H)-yl)-10,10-dimethylphenanthren-9(10H)-one (3-DMAC-DMPO). A mixture of Pd(OAc)₂ (5.6 mg, 0.025 mmol), S-Phos(30.8 mg, 0.075 mmol), tBuONa (96.1 mg, 1.0 mmol), toluene (3.0 mL), 3g (190.0 mg, 0.5 mmol) and DMAC (104.7 mg, 0.5 mmol) was refluxed under N₂ for 30 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow powder (154.6 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (dd, J = 7.8, 1.2 Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.63 (td, J = 8.3, 7.9, 1.4 Hz, 1H), 7.51-7.42 (m, 3H), 7.35 (dd, J = 8.3, 2.1 Hz, 1H), 7.02-6.90 (m, 4H), 6.34 (dd, J = 8.0, 1.4 Hz, 2H), 1.74 (s, 6H), 1.67 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.7, 144.2, 140.9, 140.4, 136.4, 134.5, 132.3, 132.0, 130.2, 129.2, 129.0, 128.9, 128.2, 127.0, 126.6, 125.6, 123.3, 120.9, 114.2, 47.6, 36.2, 29.9, 27.6 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₇NO [M+H]⁺ 5430.2165, found 430.2166.

Synthesis of 2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)-10,10-dimethylphenanthren-9(10*H*)-one (2-*t*BuCz-DMPO). A mixture of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (*t*Bu)₃P·HBF₄ (21.8 mg, 0.075 mmol), *t*BuONa (96.1 mg, 1.0 mmol), toluene (3.0 mL), 3f (128.0 mg, 0.5 mmol) and 3,6-di-*tert*-butyl-9*H*-carbazole (*t*BuCz, 139.7 mg, 0.5 mmol) was refluxed under N₂ for 30 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow solid (187.2 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.21-8.13$ (m, 4H), 8.08 (d, J = 8.0 Hz, 1H), 7.76-7.70 (m, 2H), 7.59 (dd, J = 8.4, 2.2 Hz, 1H), 7.53-7.46 (m, 3H), 7.43 (d, J = 8.7 Hz, 2H), 1.61 (s, 6H), 1.49 (s, 18H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.6$, 146.1, 143.4, 139.1, 136.7, 134.6, 128.9, 128.5, 128.2, 127.8, 125.6, 125.1, 124.5, 124.0, 123.8, 123.1, 116.5, 109.3, 47.7, 34.9, 32.2, 27.6 ppm. HRMS (ESI⁺): calcd for C₃₆H₃₇NO [M+Na]⁺ 522.2767, found 522.2766.

Synthesis 2-(9,9-dimethylacridin-10(9H)-yl)-10,10-diphenylphenanthrenof 9(10H)-one (2-DMAC-DPPO). A mixture of Pd(OAc)₂ (5.6 mg, 0.025 mmol), S-Phos (30.8 mg, 0.075 mmol), tBuONa (96.1 mg, 1.0 mmol), toluene (3.0 mL), **3n** (190.0 mg, 0.5 mmol) and DMAC (104.7 mg, 0.5 mmol) was refluxed under N₂ for 30 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a white solid (201.9 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.24$ (d, J = 8.4 Hz, 1H), 8.02 (d, J =7.8 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.64 (td, J = 7.7, 1.4 Hz, 1H), 7.40 (ddd, J = 12.9, 7.6, 1.9 Hz, 4H), 7.26-7.17 (m, 6H), 7.08-7.01 (m, 4H), 6.99-6.89 (m, 4H), 6.85 (d, J = 2.1 Hz, 1H), 6.29 (d, J = 8.0 Hz, 2H), 1.63 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.1, 144.2, 141.5, 141.5, 140.8, 136.1, 135.3, 134.5, 131.3, 130.5, 130.5, 130.4,$ 130.2, 129.0, 128.4, 128.4, 127.7, 127.1, 126.5, 125.3, 123.3, 120.9, 114.1, 68.4, 36.1, 31.1 ppm. HRMS (ESI⁺): calcd for C₄₁H₃₁NO [M+Na]⁺ 576.2298, found 576.2297.

2) Synthesis of 6-DMAC-DMPO, 7-DMAC-DMPO, 8-Cz-DMPO, 8-tBuCz-DMPO and 6-DMAC-DPPO

Synthesis of 6-(9,9-dimethylacridin-10(9*H*)-yl)-10,10-dimethylphenanthren-9(10*H*)-one (6-DMAC-DMPO). A mixture of 1-(4-fluorophenyl)-2-methylpropan-1one 1c (64.3 μ L, 0.40 mmol), phenylboronic acid 2a (146.3 mg, 3.0 equiv), [Cp*RhCl₂]₂ (12.4 mg, 5 mol%), AgSbF₆ (27.4 mg, 20 mol%), Cu(OAc)₂ (145.5 mg, 2.0 equiv), PivOH (49.0 mg, 1.2 equiv), NaOAc (6.6 mg, 0.2 equiv) and DCE (2.0 mL) was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere, and then cooled to room temperature, diluted with 5.0 mL of CH₂Cl₂, filtered through a celite pad, and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were evaporated under reduced pressure for use in the next step. It is worth noting that the pure product **3q** was isolated difficultly, and thus the reaction-treated mixture was directly used for the next reaction step.

DMAC (62.8 mg, 0.3 mmol), *t*BuOK (67.4 mg, 0.6 mmol) and DMF (2.5 mL) were combined and the mixture was allowed to stir at room temperature under N_2 atmosphere

for 30 min. The mixture containing **3q** was dissolved in DMF (2.5 mL) and added to the above stirred solution. The mixture was allowed to heat in a preheated oil bath at 110 °C for 20 h under N₂ atmosphere. After being cooled to room temperature, the reaction mixture was extracted with EtOAc and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (200-300 mesh, petroleum ether/EtOAc = 100:1 to 80:1, v/v) to give a yellow solid (24.0 mg, 14% yield, two steps). ¹H NMR (400 MHz, CDCl₃): δ = 8.35 (d, *J* = 8.1 Hz, 1H), 8.01 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 6.9 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 6.99 (p, *J* = 7.2 Hz, 4H), 6.37 (d, *J* = 8.0 Hz, 2H), 1.73 (s, 6H), 1.64 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.4, 147.2, 144.4, 140.5, 140.2, 131.1, 130.8, 130.6, 129.9, 128.4, 128.3, 127.3, 126.8, 126.7, 125.6, 124.3, 121.3, 114.4, 47.6, 36.2, 31.5, 27.7 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₇NO [M+Na]⁺ 452.1985, found 452.1985.

Synthesis of 7-(10,10-dimethyl-9,10-dihydroanthracen-9-yl)-10,10dimethylphenanthren-9(10*H*)-one (7-DMAC-DMPO). A mixture of 1-(3chlorophenyl)-2-methylpropan-1-one 1e (73.1 mg, 0.40 mmol), phenylboronic acid 2a (146.3 mg, 3.0 equiv), [Cp*RhCl₂]₂ (12.4 mg, 5 mol%), AgSbF₆ (27.4 mg, 20 mol%), Cu(OAc)₂ (145.5 mg, 2.0 equiv), PivOH (49.0 mg, 1.2 equiv), NaOAc (6.6 mg, 0.2 equiv) and DCE (2.0 mL) was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere, and then cooled to room temperature, diluted with 5.0 mL of CH₂Cl₂, filtered through a celite pad, and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were evaporated under reduced pressure. Similarly, the pure product **3r** was isolated difficultly, and thus the reaction-treated mixture was directly used for the next reaction step.

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), S-Phos (24.6 mg, 0.06 mmol), *t*BuONa (76.9 mg, 0.8 mmol), toluene (3.0 mL) and DMAC (62.8 mg, 0.3 mmol) were added to the mixture after the first step of treatment, followed by reflux under N₂ for 24 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the

solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow powder (32.5 mg, 19% yield, two steps). ¹H NMR (400 MHz, CDCl₃): δ = 8.29 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 2.2 Hz, 1H), 8.11-8.04 (m, 1H), 7.66 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.62-7.55 (m, 1H), 7.49 (dd, *J* = 7.3, 1.8 Hz, 2H), 7.47-7.40 (m, 2H), 6.97 (pd, *J* = 7.2, 1.7 Hz, 4H), 6.34 (dd, *J* = 7.8, 1.5 Hz, 2H), 1.72 (s, 6H), 1.62 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 202.1, 144.5, 141.4, 140.8, 137.5, 137.1, 131.4, 130.9, 130.6, 129.8, 128.6, 127.4, 126.7, 126.6, 125.9, 125.4, 124.4, 121.1, 114.2, 47.6, 36.2, 31.2, 27.6 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₇NO [M+Na]⁺ 452.1985, found 452.1983.

Synthesis of 8-(9*H*-carbazol-9-yl)-10,10-dimethylphenanthren-9(10*H*)-one (8-Cz-DMPO). 9*H*-carbazole (Cz, 83.6 mg, 0.5 mmol), NaH (18.0 mg, 0.75 mmol) and DMF (2.5 mL) were combined and the mixture was allowed to stir at room temperature under N₂ atmosphere for 30 min. **3i** (120 mg, 0.5 mmol) dissolved in DMF (2.5 mL) was added to the stirred mixture and then heated in a preheated oil bath at 155 °C for 20 h under N₂ atmosphere. After being cooled to room temperature, the reaction mixture was extracted with EtOAc and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/EtOAc = 40:1 to 20:1, v/v) to give a yellow solid (91.3 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, *J* = 7.4 Hz, 3H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.83 (t, *J* = 7.9 Hz, 1H), 7.48-7.38 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 1.38 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.6, 143.7, 142.2, 139.8, 136.8, 134.1, 131.1, 129.9, 129.8, 129.0, 127.5, 125.8, 125.7, 124.9, 124.3, 123.4, 120.6, 119.6, 109.6, 49.0, 25.5 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₁NO [M+Na]⁺ 410.1515, found 410.1515.

Synthesis of 8-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)-10,10-dimethylphenanthren-9(10*H*)-one (8-*t*BuCz-DMPO). *t*BuCz (139.6 mg, 0.5 mmol), NaH (18.0 mg, 0.75 mmol) and DMF (2.5 mL) were combined and the mixture was allowed to stir at room temperature under N_2 atmosphere for 30 min. **3i** (120.0 mg, 0.5 mmol) dissolved in DMF (2.5 mL) was added to the stirred mixture and then heated in a preheated oil bath at 155 °C for 20 h under N₂ atmosphere. After being cooled to room temperature, the reaction mixture was extracted with EtOAc and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/EtOAc = 40:1 to 20:1, v/v) to give a yellow solid (87.4 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.18 (s, 2H), 8.14 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.80 (t, *J* = 7.9 Hz, 1H), 7.48-7.35 (m, 6H), 6.95 (d, *J* = 8.6 Hz, 2H), 1.47 (s, 18H), 1.41 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.8, 143.7, 142.2, 140.7, 139.7, 137.3, 134.0, 131.1, 129.9, 129.8, 129.0, 127.5, 125.7, 124.9, 124.0, 123.5, 123.3, 116.6, 109.0, 49.0, 34.8, 32.2, 25.6 ppm. HRMS (ESI⁺): calcd for C₃₆H₃₇NO [M+Na]⁺ 522.2767, found 522.2767.

Synthesis of 6-(9,9-dimethylacridin-10(9*H*)-yl)-10,10-diphenylphenanthren-9(10*H*)-one (6-DMAC-DPPO). A mixture of 1-(4-fluorophenyl)-2,2-diphenylethan-1one 1k (116.0 mg, 0.40 mmol), phenylboronic acid 2a (146.3 mg, 3.0 equiv), $[Cp*RhCl_2]_2$ (12.4 mg, 5 mol%), AgSbF₆ (27.4 mg, 20 mol%), Cu(OAc)₂ (145.5 mg, 2.0 equiv), PivOH (49.0 mg, 1.2 equiv), NaOAc (6.6 mg, 0.2 equiv) and DCE (2.0 mL) was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere, then cooled to room temperature, diluted with 5.0 mL of CH₂Cl₂, filtered through a celite pad, and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were evaporated under reduced pressure. Similarly, the pure product 3s was isolated difficultly, and thus the reaction-treated mixture was directly used for the next reaction step.

DMAC (62.8 mg, 0.3 mmol), *t*BuOK (67.4 mg, 0.6 mmol) and DMF (2.5 mL) were combined and the mixture was allowed to stir at room temperature under N₂ atmosphere for 30 min. The mixture containing **3s** was dissolved in DMF (2.5 mL) and added to the above stirred solution, the mixture was allowed to heat in a preheated oil bath at 110 °C for 20 h under N₂ atmosphere. After being cooled to room temperature, the reaction mixture was extracted with EtOAc and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (200-300 mesh, petroleum ether/EtOAc = 100:1 to 80:1,

v/v) to give a yellow solid (35.4 mg, 16% yield, two steps). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.26$ (d, J = 8.1 Hz, 1H), 7.97 (d, J = 6.0 Hz, 2H), 7.56-7.50 (m, 2H), 7.42 (t, J =7.4 Hz, 1H), 7.39-7.28 (m, 8H), 7.10 (s, 4H), 7.04-6.98 (m, 4H), 6.88 (d, J = 7.7 Hz, 1H), 6.38-6.32 (m, 2H), 1.76 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 199.6, 147.0, 141.8, 141.5, 140.4, 139.7, 132.4, 131.1, 130.8, 130.7, 130.5, 130.4, 129.5, 129.3, 128.3, 128.1, 127.6, 126.6, 125.5, 125.3, 124.5, 121.3, 114.5, 68.4, 36.2, 31.3 ppm. HRMS (ESI⁺): calcd for C₄₁H₃₁NO [M+Na]⁺ 576.2298, found 576.2298.

3) Synthesis of 2,6-DMAC-DMPO and 2,6-DMAC-DPPO

Synthesis of 2,6-bis(9,9-dimethylacridin-10(9*H*)-yl)-10,10-dimethylphenanthren-9(10*H*)-one (2,6-DMAC-DMPO). A mixture of Pd(OAc)₂ (11.2 mg, 0.05 mmol), S-Phos(61.6 mg, 0.15 mmol), *t*BuONa (192.2 mg, 2.0 mmol), toluene (6.0 mL), **3j** (145.0 mg, 0.5 mmol), and DMAC (209.3mg, 1.0 mmol) was refluxed under N₂ for 24 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow solid (168.6 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 8.2 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 8.08 (s, 1H), 7.56-7.46 (m, 6H), 7.32 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.06-6.93 (m, 8H), 6.43 (dd, *J* = 7.6, 1.8 Hz, 2H), 6.32 (dd, *J* = 7.6, 1.8 Hz, 2H), 1.74 (d, *J* = 8.3 Hz, 12H), 1.66 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.7, 147.6, 142.7, 140.8, 140.5, 139.4, 131.3, 131.2, 130.9, 130.3, 130.2, 129.7, 128.5, 128.3, 127.0, 126.7, 126.6, 125.8, 125.7, 125.7, 121.4, 121.0, 114.5, 114.0, 47.9, 36.2, 31.6, 27.7 ppm. HRMS (ESI⁺): calcd for C₄₆H₄₀N₂O [M+Na]⁺ 659.3033, found 659.3034. Synthesis of 2,6-bis(9,9-dimethylacridin-10(9*H*)-yl)-10,10-diphenylphenanthren-9(10*H*)-one (2,6-DMAC-DPPO). A mixture of 1-(4-chlorophenyl)-2,2-diphenylethan-1-one 1l (122.4 mg, 0.4 mmol), (4-chlorophenyl)boronic acid 2e (187.2 mg, 1.2 mmol), [Cp*RhCl₂]₂ (12.4 mg, 5 mol%), AgSbF₆ (27.4 mg, 20 mol%), Cu(OAc)₂ (145.5 mg, 2.0 equiv), PivOH (49.0 mg, 1.2 equiv), NaOAc (6.6 mg, 0.2 equiv) and DCE (2.0 mL). The reaction mixture was allowed to heat in a preheated oil bath at 150 °C for 24 h under N₂ atmosphere, then cooled to room temperature, diluted with 5.0 mL of CH₂Cl₂, filtered through a celite pad, and washed with 20.0-30.0 mL of CH₂Cl₂. The combined organic extracts were evaporated under reduced pressure. Similarly, the pure product 3t was isolated difficultly, and thus the reaction-treated mixture was directly used for the next reaction step.

Pd(OAc)₂ (9.0 mg, 0.04 mmol), S-Phos(49.2 mg, 0.12 mmol), *t*BuONa (153.8 mg, 0.16 mmol), toluene (6.0 mL) and DMAC (125.6 mg, 0.6 mmol) were added to the mixture after the first step of treatment, followed by reflux under N₂ for 24 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (100-200 mesh, petroleum ether/dichloromethane = 6:1 to 2:1, v/v) to give a yellow powder (82.0 mg, 27% yield, two steps). ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (d, *J* = 8.1 Hz, 1H), 8.17 (d, *J* = 8.3 Hz, 1H), 7.98 (s, 1H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 6.3 Hz, 3H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 7H), 7.12 (d, *J* = 7.3 Hz, 4H), 7.03-6.88 (m, 9H), 6.34 (d, *J* = 7.4 Hz, 2H), 6.27 (d, *J* = 7.8 Hz, 2H), 1.72 (s, 6H), 1.62 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 199.3, 147.4, 144.5, 142.0, 141.4, 140.6, 140.4, 139.0, 135.5, 131.4, 131.1, 131.0, 130.6, 130.4, 130.3, 130.2, 129.4, 128.5, 127.8, 127.3, 126.7, 126.5, 125.6, 125.5, 125.3, 121.4, 121.0, 114.6, 114.1, 68.4, 36.3, 36.1, 31.3, 31.1 ppm. HRMS (ESI⁺): calcd for C₅₆H₄₄N₂O [M+H]⁺ 761.3527, found 761.3525.

VIII. Crystal data

Table S5. Crystal Data for 2-DMAC-DPPO (CCDC: 2241220)

Table S6. Crystal Data for 2,6-DMAC-DMPO (CCDC: 2241219)

Largest diff. peak/hole / e Å⁻³

IX. Additional spectra and data

Fig. S1 Molecular structures, frontier molecular orbital distributions, calculated energy levels and hydrogen-bonding interactions of γ -locked diaryl carbonyl-based and α -locked alkyl aryl carbonyl-based TADF molecules.

Fig. S2 Photoluminescence spectra in different solvents of the designed TADF molecules. Hex represents *n*-hexane and Tol represents toluene.

Fig. S3 Molecular structures, frontier molecular orbital distributions, calculated energy levels and spin density distribution (SDD) of T_1 states of the designed TADF molecules.

Fig. S4 Fluorescence spectra in THF/ water mixtures with different water fractions (f_w) of the designed TADF molecules.

Fig. S5 TGA thermograms of (a) 2-DMAC-DPPO, (b) 6-DMAC-DMPO, (c) 6-DMAC-DPPO, (d) 2,6-DMAC-DMPO and (e) 2,6-DMAC-DPPO recorded at a heating rate of 10 °C/min.

Fig. S6 cyclic voltammograms (CV) measured in dry DCM at 1.0×10^{-5} M containing 0.1 M tetrabutylammonium hexafluorophosphate of (a) 2-DMAC-DMPO, (b) 3-DMAC-DMPO, (c) 2-*t*BuCz-DMPO, (d) 2-DMAC-DPPO, (e) 6-DMAC-DMPO, (f) 7-DMAC-DMPO, (g) 8-Cz-DMPO, (h) 8-*t*BuCz-DMPO, (i) 6-DMAC-DPPO, (j) 2,6-DMAC-DMPO and (k) 2,6-DMAC-DPPO.

Fig. S7 (a) Optimized device structure for 6-DMAC-DMPO- or 6-DMAC-DPPO-based OLED: ITO/TAPC (10 nm)/TCTA (5 nm)/6-DMAC-DMPO or 6-DMAC-DPPO: DPEPO (40%, 35 nm)/BPhen (55 nm)/LiF (0.8 nm)/Al (100 nm). (b) Optimized device structure for 2,6-DMAC-DMPO- or 2-DMAC-DPPO-based OLED: ITO/TAPC (25 nm)/TCTA (5 nm)/2,6-DMAC-DMPO or 2-DMAC-DPPO: DPEPO (40%, 35 nm)/BPhen (55 nm)/LiF (0.8 nm)/Al (100 nm). (c) Optimized device structure for 2,6-DMAC-DPPO-based OLED: ITO/TAPC (35 nm)/TCTA (5 nm)/2,6-DMAC-DPPO: DPEPO (40%, 35 nm)/BPhen (55 nm)/LiF (0.8 nm)/Al (100 nm). (d) Optimized device structure for 2,6-DMAC-DPPO-based OLED: ITO/TAPC (35 nm)/TCTA (5 nm)/2,6-DMAC-DPPO: DPEPO (40%, 35 nm)/BPhen (55 nm)/LiF (0.8 nm)/Al (100 nm).

Emitter	Host	λ _{EL} [nm]	CE _{max} ^a [cd A ⁻¹]	PE _{max} ^b [Im W ⁻¹]	EQE _{max} ^c [%]	Refs.
	DDEDO	521	99.2	107.4	31.0	This
2,6-DMAC-DMPO	DPEPO					work
	DREDO	545	106.2	102.5	32.6	This
2,0-DMAC-DPPO	DPEPO			123.5		work
QAD-2Cz	mCP	530	103.1	104.4	27.3	6
3-CCP-BP-PXZ	CBP	523	100.1	104.8	29.1	7
3,6-DPXZ-AD	CBP	552	98.0	109.9	30.6	8
DTCBPy	CBP	514	94.6	84.5	27.2	9
3,9-CCP-BP-PXZ	CBP	528	92.1	90.4	26.5	7
2,3-PICz-XT	PPF	508	89.2	100.1	32.7	10
2SPBAC-BP	PPF	532	86.8	85.2	26.4	11
TCP-BP-SFAC	DPEPO	480	74.3	68.6	38.6	12
CP-BP-SFAC	DPEPO	484	73.8	72.4	36.6	12
mCP-BP-SFAC	DPEPO	478	73.1	67.5	38.0	12
OPDPO	CBP	552	73.1	38.2	26.7	13
BPy3-TXDMAc	DPEPO	506	69.8	58.9	25.6	14
TRZ-p-ACRSA	DPEPO	-	69.4	66.1	28.0	15
4BPy-mDTC	mCBP	490	67.0	60.1	28.1	16
QAD-mTDPA	CBP	589	66.7	65.4	26.3	6
P-BP-SFAC	DPEPO	492	66.6	69.7	28.9	12
2BPy-mDTC	mCBP	490	65.4	50.7	28.0	16
SeDF-G	mCBP	-	64.0	-	30.8	17
3DPyM- <i>p</i> DTC	mCBP	464	37.6	37.3	31.9	18
TBP-DMAc	CBP	-	-	-	25.9	19

Table S5. Performance summary of efficient carbonyl-based TADF-OLED.

^{*a*} Maximum current efficiency. ^{*b*} Maximum power efficiency. ^{*c*} Maximum external quantum efficiency.

X. References

- 1. M. Barday, C. Janot, N. R. Halcovitch, J. Muir and C. Aïssa, *Angew. Chem. Int. Ed.* 2017, **56**, 13117-13121.
- B. Zhang, H.-W. Wang, Y.-S. Kang, P. Zhang, H.-J. Xu, Y. Lu and W.-Y. Sun, Org. Lett. 2017, 19, 5940-5943.
- 3. M. P. Drapeau, I. Fabre, L. Grimaud, I. Ciofini, T. Ollevier and M. Taillefer, *Angew. Chem. Int. Ed.* 2015, **54**, 10587-10591.
- 4. F. Churruca, R. SanMartin, I. Tellitu and E. Domínguez, *Org. Lett.* 2002, 4, 1591-1594.
- 5. L. Zhou and Y. Zhang, *Tetrahedron*. 2000, **50**, 2953-2960.
- 6. F. Huang, K.Wang, Y.-Z. Shi, X.-C. Fan, X. Zhang, J. Yu, C.-S. Lee and X.-H. Zhang, *ACS Appl. Mater. Interfaces.* 2021, **13**, 36089-36097.
- J. Xu, X. Zhu, J. Guo, J. Fan, J. Zeng, S. Chen, Z. Zhao and B. Z. Tang, ACS Materials Lett. 2019, 1, 613-619.
- 8. Y. Mei, D. Liu, J. Li, H. Li and W. Wei, J. Mater. Chem. C. 2021, 9, 5885-5892.
- P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang, M.-J. Huang, C.-Z Ren-Wu, C.-Y. Yang, M.-J. Chiu, L.-K. Chu, H.-W. Lin and C.-H. Cheng, *J. Am. Chem.* Soc. 2016, 138, 628-634.
- 10. X. Wu, X. Peng, L. Chen, B. Z. Tang and Z. Zhao, *ACS Materials Lett.* 2023, 5, 664-672.
- X. Song, Z. Liu, M. Lu, S. Zou, F. Guo, S. Gao, Z. Zhao and B. Z. Tang, Y. Zhang, J. Mater. Chem. C. 2022, 10, 17550-17556.
- 12. Y. Fu, H. Liu, D. Yang, D. Ma, Z. Zhao and B. Z. Tang, Sci. Adv. 2021, 7, 2504.
- X. Chen, Z. Yang, Z. Xie, J. Zhao, Z. Yang, Y. Zhang, M. P. Aldred and Z. Chi, *Mater. Chem. Front.* 2018, 2, 1017-1023.
- 14. L. Wang, X. Cai, B. Li, M. Li, Z. Wang, L. Gan, Z. Qiao, W. Xie, Q. Liang, N. Zheng, K. Liu and S.-J. Su, *ACS Appl. Mater. Interfaces*. 2019, **11**, 45999-46007.
- 15. L. Gan, Z. Xu, Z. Wang, B. Li, W. Li, X. Cai, K. Liu, Q. Liang and S.-J. Su, *Adv. Funct. Mater.* 2019, **29**, 1808088.
- 16. P. Rajamalli, V. Thangaraji, N. Senthilkumar, C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, *J. Mater. Chem. C*, 2017, **5**, 2919-2926.
- P. Sharif, E. Alemdar, S. Ozturk, O. Caylan, T. Haciefendioglu, G. Buke, M. Aydemir, A. Danos, A. P. Monkman, E. Yildirim, G. Gunbas, A. Cirpan and A. Oral, *Adv. Funct. Mater.* 2022, **32**, 2207324.

- 18. P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, J. Am. Chem. Soc. 2017, **139**, 10948-10951.
- 19. X. Cai, D. Chen, K. Gao, L. Gan, Q. Yin, Z. Qiao, Z. Chen, X. Jiang and S.-J. Su, *Adv. Funct. Mater.* 2018, **28**, 1704927.

XI. Copies of NMR spectra

¹H NMR spectrum of **1k** (CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectrum of **3b** (CDCl₃)

¹³C NMR spectrum of **3b** (CDCl₃)

¹H NMR spectrum of **3c** (CDCl₃)

¹H NMR spectrum of **3d** (CDCl₃)

¹³C NMR spectrum of **3d** (CDCl₃)

¹H NMR spectrum of **3e** (CDCl₃)

¹H NMR spectrum of **3f** (CDCl₃)

¹H NMR spectrum of **3g** (CDCl₃)

13 C NMR spectrum of **3g** (CDCl₃)

¹H NMR spectrum of **3h** (CDCl₃)

¹³C NMR spectrum of **3h** (CDCl₃)

¹H NMR spectrum of **3i** (CDCl₃)

90 80 70 60 50 40 30 20 10 0

-10

230 220 210 200 190 180 170 180 150 140 130 120 110 100 fl (ppm)

¹H NMR spectrum of **3j** (CDCl₃)

¹³C NMR spectrum of **3j** (CDCl₃)

¹H NMR spectrum of **3k** (CDCl₃)

¹³C NMR spectrum of **3l** (CDCl₃)

¹H NMR spectrum of **3m** (CDCl₃)

8.006 7.986 7.941 7.922 7.904 7.577 7.558 7.558 7.538 7.436 7.338 7.338 7.338 7.259 7.259 7.239 - 6.960 ~ 6.763 ~ 6.744 γγγγ Ŵ λŃ ١A 80 9 é g -76.0 8.8 -76.0 7.0 -(ppm 1.01 2.00 1.06 4 1.06 4 7.7 1.06 4 7 0.97 0.97 0.97 0.97 0.97 0.97 4 6 f1 (ppm)

8.006 7.986 7.986 7.924 7.924 7.577 7.577 7.558 7.577 7.577 7.558 7.533 7.533 7.533 7.233 7.336 7.233 7.233 7.233 7.233 7.233 6.744 6.744

¹³C NMR spectrum of **3m** (CDCl₃)

¹H NMR spectrum of **3n** (CDCl₃)

¹³C NMR spectrum of **3n** (CDCl₃)

¹H NMR spectrum of **30** (CDCl₃)

¹H NMR spectrum of **3p** (CDCl₃)

¹³C NMR spectrum of **3p** (CDCl₃)

¹H NMR spectrum of 2-DMAC-DMPO (CDCl₃)

¹³C NMR spectrum of 2-DMAC-DMPO (CDCl₃)

S61

120 110 f1 (ppm)

100 90 80 70 60

50 40 30 20

-10

10 0

130

230

220 210 200 190 180 170 160 150 140

¹H NMR spectrum of 2-*t*BuCz-DMPO (CDCl₃)

¹³C NMR spectrum of 2-*t*BuCz-DMPO (CDCl₃)

¹³C NMR spectrum of 2-DMAC-DPPO (CDCl₃)

¹H NMR spectrum of 6-DMAC-DMPO (CDCl₃)

¹³C NMR spectrum of 6-DMAC-DMPO (CDCl₃)

¹H NMR spectrum of 7-DMAC-DMPO (CDCl₃)

¹³C NMR spectrum of 8-Cz-DMPO (CDCl₃)

¹³C NMR spectrum of 8-tBuCz-DMPO (CDCl₃)

¹H NMR spectrum of 6-DMAC-DPPO (CDCl₃)

¹³C NMR spectrum of 6-DMAC-DPPO (CDCl₃)

¹H NMR spectrum of 2,6-DMAC-DMPO (CDCl₃)

¹³C NMR spectrum of 2,6-DMAC-DMPO (CDCl₃)

¹H NMR spectrum of 2,6-DMAC-DPPO (CDCl₃)

¹³C NMR spectrum of 2,6-DMAC-DPPO (CDCl₃)

