Supporting Information

Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner

Karthik Sankaranarayanan and Klavs F. Jensen*

Department of Chemical Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

*kfjensen@mit.edu

Sitagliptin

Duloxetine

S-Metalochlor

	Sitagliptin		Duloxetine		S-Metalochlor	
Method Employed	Levin <i>et al.</i>	Coley et al.	Levin <i>et al.</i>	Coley <i>et al.</i>	Levin <i>et al.</i>	Coley <i>et al.</i>
Total # of chemo- enzymatic pathways	1	N/A	6	N/A	11	N/A
Total # of chemical pathways	2	36	2	241	6	500
Chemo-enzymatic synthesis precedent	1,2	N/A	3	N/A	4	N/A
Is literature precedent captured	No	N/A	No	N/A	No	N/A

Figure S1: Demonstration of the current state of the art technique for chemoenzymatic synthesis planning on model compounds that are chemically dissimilar from natural products.⁵ As a control, we use the chemical retrosynthesis planner developed by Coley *et al.* under similar settings.⁶ 'N/A' stands for Not Applicable.

	Sitagliptin		Duloxetine		S-Metalochlor	
Method Employed	Levin <i>et al.</i>	This study	Levin <i>et al.</i>	This study	Levin <i>et al.</i>	This study
Total # of chemo- enzymatic pathways	1	49	6	195	11	31
Total # of chemical pathways	2	8	2	65	6	469
Chemo-enzymatic synthesis precedent	1,2		3		4	
Is literature precedent captured	No	Yes	No	Yes	No	Yes

Figure S2: A comparison of our newly developed method with the current state of art technique developed by Levin et al.⁵ Three model compounds Sitagliptin, Duloxetine, and (S)-Metalochlor were selected because they are manmade molecules with low chemical similarity to natural products.

Intermediates removed from buyables database

We removed all intermediates in the literature pathways presented in Figure 4 from our buyable database to prevent premature termination at expensive starting materials. The following list of SMILES strings were removed from the buyables database:

- 1. N/C(=C\C(=O)N1CCn2c(nnc2C(F)(F)F)C1)Cc1cc(F)c(F)cc1F
- 2. O=C(CC(=O)N1CCn2c(nnc2C(F)(F)F)C1)Cc1cc(F)c(F)cc1F
- 3. CC1(C)OC(=O)C(=C(O)Cc2cc(F)c(F)cc2F)C(=O)O1
- 4. CCN(C)C(=O)Oc1cccc([C@@H](C)OS(C)(=O)=O)c1
- 5. CCN(C)C(=O)Oc1cccc([C@@H](C)O)c1
- 6. N[C@@H](Cc1ccccc1Br)C(=O)O
- 7. CC(=O)[C@H](O)c1ccccc1
- 8. N#C[C@H](O)c1ccccc1Cl
- 9. N[C@@H]1CCc2cccc21
- 10. O[C@H]1CCc2cccc21
- 11.O[C@H]1CCc2cccc21
- 12.N[C@@H]1CCc2cccc21
- 13. CN(C)CC[C@H](Oc1cccc2ccccc12)c1cccs1
- 14. CN(C)CC[C@H](O)c1cccs1
- 15. CN(C)CCC(=O)c1cccs1

References

- 1F. Ye, Z. Zhang, W. Zhao, J. Ding, Y. Wang and X. Dang, *RSC Advances*, 2021, **11**, 4805–4809.
- 2C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman and G. J. Hughes, *Science*, 2010, **329**, 305–309.
- 3X. Chen, Z.-Q. Liu, C.-P. Lin and Y.-G. Zheng, *Bioorganic Chemistry*, 2016, 65, 82–89.
- 4D. A. Jackson, in *Biocatalysis for Green Chemistry and Chemical Process Development*, John Wiley & Sons, Ltd, 2011, pp. 255–276.
- 5I. Levin, M. Liu, C. A. Voigt and C. W. Coley, Nat Commun, 2022, 13, 7747.
- 6C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J. Hart, T. F. Jamison and K. F. Jensen, *Science*, 2019, 365, eaax1566.