
Electronic Supplementary Information for “A path towards single molecule
vibrational strong coupling in a Fabry-Pérot microcavity”

Arghadip Konera, Matthew Du,b Sindhana Pannir-Sivajothi,a Randall H. Goldsmith,c and Joel Yuen-Zhou∗a

aDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA

bDepartment of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637, USA

cDepartment of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322, USA

∗To whom correspondence should be addressed. E-mail: joelyuen@ucsd.edu

S1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2023

mailto:joelyuen@ucsd.edu


Supplementary note 1: Effective Hamiltonian

The full Hamiltonian of the optomechanical setup with the molecular vibrational mode (b†,b) at frequency Ωv and the bare cavity (a†,a)
at frequency ωcav, driven by a laser modeled as a quantum harmonic oscillator (l, l†) with frequency ωL is given as

Hfull = Hmol +Hcav +Hlaser +Hcm +Hlc,

= h̄Ωvb†b+ h̄ωcava†a+ h̄ωLl†l + h̄g0a†a(b† +b)+ h̄J(a† +a)(l† + l),

With the rotating wave approximation (RWA) in the laser-cavity coupling, we have

HRWA
full = h̄Ωvb†b+ h̄ωcava†a+ h̄ωLl†l + h̄g0a†a(b† +b)+ h̄J(a†l +al†). (S1)

Since the cavity and the laser are linearly coupled, we can first diagonalize this part of the Hamiltonian,

HL−C = h̄ωLl†l + h̄ωcava†a+ h̄J(a†l +al†),

= h̄ω̃Lã†ã+ h̄ω̃cav l̃† l̃, (S2)

where

l̃ = sinϕ ·a+ cosϕ · l, ω̃L =
(ωcav +ωL)−

√
4J2 +(ωcav−ωL)2

2
,

ã = cosϕ ·a− sinϕ · l, ω̃cav =
(ωcav +ωL)+

√
4J2 +(ωcav−ωL)2

2
.

Here, ϕ = 1
2 tan−1

(
2J

ωcav−ωL

)
is the mixing angle. For small J, l̃ is a ‘laser-like’ mode and ã is a ‘cavity like’ mode. Rewriting HRWA

full in the

new normal mode basis

HRWA
full = h̄Ωvb†b+ h̄ω̃cavã†ã+ h̄ω̃L l̃† l̃ + h̄g0

(
cosϕ · ã+ sinϕ · l̃

)†(cosϕ · ã+ sinϕ · l̃
)
(b† +b).

For the laser being red detuned (ωL = ωcav−∆, ∆ > 0), keeping only the near resonant terms, we have

HR = h̄Ωvb†b+ h̄ω̃cavã†ã+ h̄ω̃L l̃† l̃ + h̄g0 cosϕ sinϕ · (l̃†ãb† + l̃ã†b).

The Heisenberg equation of motion (EOM) for (l̃†ã) is

d
dt

(l̃†ã) =−i(ω̃cav− ω̃L)l̃
†ã+ ig0 cosϕ sinϕ ·

[
l̃ã†, l̃†ã

]
·b.

Computing the commutator [
l̃ã†, l̃†ã

]
= l̃ã† l̃†ã− l̃†ãl̃ã†.

Using, ãã† = ã†ã+1

= l̃ã† l̃†ã− l̃† l̃(ã†ã+1)

= ã†ã · [l̃, l̃†]− l̃† l̃

= ã†ã− l̃† l̃.

Then,

d
dt

(l̃†ã) =−i(ω̃cav− ω̃L)l̃
†ã+ ig0 cosϕ sinϕ · (ã†ã− l̃† l̃) ·b,

=−i(ω̃cav− ω̃L)l̃
†ã− ig0 cosϕ sinϕ · (l̃† l̃− ã†ã) ·b. (S3)

We will now make the mean-field approximation to linearize the equation of motion. For the three-body operators of the form c†cb
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(where c = l̃ or ã), we have

c†cb = (〈c†c〉︸ ︷︷ ︸
mean

+c†c−〈c†c〉︸ ︷︷ ︸
Fluctuations

) ·b,

= 〈c†c〉 ·b+(c†c−〈c†c〉) ·b,

≈ 〈c†c〉b.

Here we have neglected the fluctuations in 〈c†c〉. Choosing,

〈l̃† l̃〉= ñL,〈ã†ã〉= ña,

and plugging these back into the equation S3

d
dt

(l̃†ã) =−i(ω̃cav− ω̃L)l̃
†ã− ig0 cosϕ sinϕ · (ñL− ña) ·b. (S4)

Now writing down the EOM for b,

d
dt

b =−iΩvb− ig0 cosϕ sinϕ ·
(
l̃†ã). (S5)

To write an effective Hamiltonian, we define a composite mode for the laser-cavity subsystem Aph ≡ l̃†ã√
(ñL−ña)

. The EOM for operators

Aph and b are

d
dt

Aph =−i(ω̃cav− ω̃L)Aph− ig0 cosϕ sinϕ ·
√

(ñL− ña) ·b,

d
dt

b =−iΩvb− ig0 cosϕ sinϕ
√

(ñL− ña) ·Aph.

For J� ∆, we have ω̃L ≈ ω̃cav−∆ and ñL ≈ 〈l†l〉 ≡ nL. Also

cosϕ sinϕ =
1
2

sin2ϕ

=
1
2

sin
(

tan−1
(

2J
ωcav−ωL

))

=
J√

∆2 +4J2
≈ J

∆
.

In this limit, the EOMs transform to

d
dt

Aph =−i∆Aph− ig0

(
J
∆

)
·
√

(nL− ña) ·b,

d
dt

b =−iΩvb− ig0

(
J
∆

)√
(nL− ña) ·Aph.

Now using the fact that nL� ña, we have

d
dt

Aph =−i∆Aph− ig0

(
J
∆

)
·√nL

√
1− ña

nL
·b,

≈−i∆Aph− ig0

(
J
∆

)
√

nL ·b,

d
dt

b =−iΩvb− ig0

(
J
∆

)
√

nL ·Aph.

These EOMs look like two coupled oscillators with coupling constant g0
( J

∆

)√
nL. Thus, we can write an effective Hamiltonian for this

system as
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Heff = h̄∆A †
phAph + h̄Ωvb†b+ h̄g0

(
J
∆

)
√

nL
(
A †

phb+Aphb†). (S6)

We note that for J� ∆ and nL� ña, {Aph,A
†

ph} satisfy bosonic commutation relations,

[Aph,A
†

ph] =
l̃†ãl̃ã†− l̃ã† l̃†ã

(ñL− ña)
,

=
l̃† l̃− ã†ã
(ñL− ña)

,

≈ I.

Supplementary note 2: Decay rate for the composite boson

The full Hamiltonian in the RWA with the decay of the cavity and the vibrational mode as κ and γ (we are assuming that the laser mode
has no incohorent decay) is given as

H = h̄
(

Ωv− i
γ

2

)
b†b+ h̄

(
ωcav− i

κ

2

)
a†a+ h̄ωLl†l + h̄g0a†a(b† +b)+ h̄J(a†l +al†).

Diagonalizing the cavity-laser subsystem

HL−C = h̄
(

ωcav− i
κ

2

)
a†a+ h̄ωLl†l + h̄J(a†l +al†),

the normal mode frequencies are

ω̃L =
ωL +(ωcav− iκ/2)−

√
4J2 +[(ωcav− iκ/2)−ωL]2

2
,

ω̃cav =
ωL +(ωcav− iκ/2)+

√
4J2 +[(ωcav− iκ/2)−ωL]2

2
.

Now, we need the decay for the composite bosons. Let’s consider the Hamiltonian

H0 = h̄ω̃L l̃† l̃ + h̄ω̃cavã†ã.

In the Heisenberg picture

l̃(t) = l̃e−iω̃Lt , ã(t) = ãe−iω̃cavt .

The Heisenberg EOM for (l̃†ã) is

d
dt

(l̃†ã) =
i
h̄
[H0, l̃†ã]

=−i(ω̃cav− ω̃L)l̃
†ã.

Thus

l̃†ã(t) = l̃†ãe−i(ω̃cav−ω̃L)t ,
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where

ω̃cav− ω̃L =
(ωcav− iκ/2)+ωL +

√
4J2 +[(ωcav− iκ/2)−ωL]2

2
−

(ωcav− iκ/2)+ωL−
√

4J2 +[(ωcav− iκ/2)−ωL]2

2
,

=
√

4J2 +[(ωcav− iκ/2)−ωL]2,

≈ (ωcav−ωL)− iκ/2,

for J� (ωcav−ωL).

Thus, we show that the incoherent decay rate for the composite boson is the same as that of the cavity decay assuming that the laser
mode has no incoherent decay. The full Hamiltonian in the normal mode basis is then given as

H = h̄
(

Ωv− i
γ

2

)
b†b+ h̄

(
(ωcav−ωL)− i

κ

2

)
A †

phAph + h̄g0

(
J
∆

)
√

nL
(
A †

phb+Aphb†).
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