Supporting Information

> for

An Interrupted Corey-Chaykovsky Reaction of Designed Azaarenium Salts: Synthesis of Complex Polycyclic Spiro- and Fused Cyclopropanoids Bara Singh, ${ }^{\#}$ Arshad J. Ansari, ${ }^{\text {, Nirmal Malik and S. S. V. Ramasastry* }}$
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India

> ${ }^{\#}$ Contributed equally to this work
> E-mail: ramsastry@iisermohali.ac.in

S. No.	Contents	Page No.
1	General experimental methods	S2
2	General procedure-1: Synthesis of 2-formyl boronic acids (AC)	S3
3	General procedure-2: Synthesis of enone-tethered pyridines ($\mathbf{6 a - 6 i}$, and $\mathbf{6 k}-60$)- and quinolines ($7 \mathbf{a}-7 \mathbf{k}$)	S3
4	General procedure-3: Synthesis of enone-tethered pyridines ($\mathbf{6 p}$ and 6q)	S4
5	General procedure-4: Synthesis of enone-tethered pyridines ($\mathbf{6 j}$ and $\mathbf{6 z}$) and quinoline (7l)	S5
6	General procedure-5: Synthesis of enone-tethered pyridinium (2a-2z)and quinolinium salts ($\mathbf{4 a - 4 m}$)	S21
7	General procedure-6: Synthesis of vicinal bis-spirocyclic indanones (3)	S21
8	General procedure-7: Synthesis of polycyclic benzocycloheptanones (5a-5m)	S34
9	General procedure-8: One-pot synthesis of pyridinium salts and spiroannulation	S41
10	General procedure-9: Reaction of 2a with trideuteromethyl sulfoxonium iodide (TDMSOI)	S41
11	General procedure-10: To study the role of the pyridinium portion	S42
12	General procedure-11: To study the role of the enone moiety	S45
13	General procedure-12: Reaction of 2a in the presence of proton sponge	S45
14	Crystal Structure of 3a (CCDC 2133525)	S46
15	Crystal Structure of 3a' (CCDC 2133527)	S47
16	Crystal Structure of 5a (CCDC 2143316)	S48
17	Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra of all the new compounds reported in this study	S49

General experimental methods: All the reagents, solvents, and catalysts employed in this study were procured from Sigma-Aldrich and were used without further purification. For thin-layer chromatography (TLC), silica aluminum foils with fluorescent indicator 254 nm (from Aldrich) were used, and compounds were visualized by irradiation with UV light and/or by treatment with a solution of p-anisaldehyde (23 mL), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(35 \mathrm{~mL})$ and acetic acid $(10 \mathrm{~mL})$ in ethanol (900 mL) followed by heating. Column chromatography was performed using SD Fine silica gel 60-120 mesh (approximately $15-20 \mathrm{~g}$ per 1 g of the crude product). Dry THF was obtained by distillation over sodium and stored over sodium wire. As indicated, IR spectra were recorded on a Perkin-Elmer FT IR spectrometer as thin films or KBr pellets, with $v \max$ in inverse centimeters. Melting points were recorded on a digital melting point apparatus Stuart SMP30. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a 400 and 500 MHz Bruker Biospin Avance III FT-NMR spectrometer. NMR shifts are reported as delta (δ) units in parts per million (ppm), and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are utilized to describe peak patterns when appropriate: $\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=\mathrm{doublet}$, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, and m=multiplet. Proton chemical shifts are given in δ relative to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) in CDCl_{3} (δ $7.26 \mathrm{ppm})$ or in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\delta 2.50 \mathrm{ppm})$. Carbon chemical shifts are internally referenced to the deuterated solvent signals in $\mathrm{CDCl} 3(\delta 77.1 \mathrm{ppm})$ or $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\delta 39.5 \mathrm{ppm})\right.$. Single crystal X-ray analysis was carried out on a Rigaku XtaLAB mini diffractometer. Highresolution mass spectra were recorded on a Waters QTOF mass spectrometer.

General procedure-1: Synthesis of 2-formyl boronic acids (AC)

All 2-formyl boronic acids were synthesized according to the reported literature. ${ }^{1}$

Scheme S1: Synthesis of 2-formyl boronic acids AC

General procedure-2: Synthesis of enone-tethered pyridines ($6 \mathbf{a}-6 \mathbf{i}$, and $\mathbf{6 k - 6 0}$)- and quinolines (7a-7k)

Scheme S2: General representation of the synthesis of enone-tethered pyridines and quinolines ($\mathbf{6 a - 6 i}, \mathbf{6 k - 6 0}$ and $\mathbf{7 a - 7 k}$)

A representative procedure for the synthesis of AEa-AEi (Scheme S2, step I): $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.005 \mathrm{mmol}), \mathrm{NaHCO}_{3}(4.0 \mathrm{mmol})$, 4-bromopyridine hydrochloride or 4-bromoquinolines AD (1.0 mmol), corresponding boronic acid (1.2 mmol), and toluene (3.0 mL), EtOH (2.0 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$ were added to a sealed tube. The reaction mixture was degassed with nitrogen, and the resulting solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . After the reaction completed (TLC), the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted using ethyl acetate. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane-ethyl acetate to afford biaryl aldehydes AEa-AEi (yield 75-89\%).

[^0]A representative procedure for the synthesis of AF (Scheme S2, step II): An oven-dried 25 mL RB flask was charged with biaryl aldehydes AE in 10 mL dry THF and placed at $0{ }^{\circ} \mathrm{C}$ under an N_{2} atmosphere. Then, methyl magnesium chloride (3.0 M in THF, 1.5 eq .) was added drop wise at the same temperature and stirred for 1 h . Upon completion, the reaction mixture was quenched with water ($\sim 2-3 \mathrm{~mL}$) and extracted with ethyl acetate $(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was forwarded to the next step without any purification.

The crude product was dissolved in ethyl acetate and added IBX (1.2 eq.), and stirred at $80{ }^{\circ} \mathrm{C}$. The reaction progress was monitored by TLC, and on completion, the reaction mixture was filtered through a celite pad and washed with ethyl acetate ($2 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate (5:1) as eluent to afford biaryl ketones AF (yield 85-90\%).
A representative procedure for the synthesis of $\mathbf{6 a - 6 i}, \mathbf{6 k - 6 0}$, and $\mathbf{7 a - 7 k}$ (Scheme $\mathbf{S 2}$, step III): The biaryl ketones AF and the corresponding aldehydes (1.2 eq.) were dissolved in MeOH , and KOH (1.0 eq.) was introduced at $-20^{\circ} \mathrm{C}$ for 2 h . Then, the reaction mixture was shifted to room temperature and stirred for 30 min , monitored the reaction (by TLC) till the complete consumption of the starting material. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($\sim 2-3 \mathrm{~mL}$) and extracted with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate (5:1) as eluent to afford biaryl ketone $\mathbf{6 a - 6 i}, \mathbf{6 k - 6 0}$, and $\mathbf{7 a - 7 k}$ (yield $80-95 \%$).

General procedure-3: Synthesis of enone-tethered pyridinium salts (6p and 6q)

Scheme S3: General representation for the synthesis of $\mathbf{6 p}$ and $\mathbf{6 q}$
A representative procedure for the synthesis of AH (Scheme S3, step I): $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.005$ $\mathrm{mmol}), \mathrm{NaHCO}_{3}(4.0 \mathrm{mmol})$, bromides $\mathbf{A G}(1.0 \mathrm{mmol})$, pyridin-4-ylboronic acids (1.2 $\mathrm{mmol})$, and toluene $(3.0 \mathrm{~mL}), \mathrm{EtOH}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added to a sealed tube. The reaction mixture was degassed with nitrogen, and the resulting solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . After the reaction completed (by TLC), the reaction mixture was quenched
with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted using ethyl acetate. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford biaryl aldehydes AH (yield 70-77\%). The biaryl aldehydes AH were subjected to further transformation to obtain corresponding enone $\mathbf{6 p}$ and $\mathbf{6 q}$, as mentioned in Scheme $\mathbf{S 2}$.

General procedure 4: Synthesis of enone-tethered pyridinium salts ($\mathbf{6 j}, \mathbf{6 z}$, and 71)

Scheme S4: General representation for the synthesis of $\mathbf{6 j}, \mathbf{6 z}$, and $\mathbf{7 1}$
A representative procedure for the synthesis of AL (Scheme S4, steps I and II): All the 2-bromoenones were synthesized according to the reported literature. ${ }^{2}$

A representative procedure for the synthesis of $\mathbf{6 j}, \mathbf{6 z}$, and 71 (Scheme S4, step III): $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.005 \mathrm{mmol}),\left[\mathrm{HP}\left({ }^{t}-\mathrm{Bu}\right)_{3}\right] \mathrm{BF}_{4}(0.012 \mathrm{mmol})$, enone $(1.0 \mathrm{mmol})$, pyridin-4ylboronic acids (1.2 mmol), $\mathrm{KF}(3.3 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(60.0 \mathrm{mmol})$ were added to a sealed tube. The reaction tube was degassed with nitrogen, DMF (2.0 mL) was added using a syringe, and the resulting solution was stirred at $70^{\circ} \mathrm{C}$ for 36 h . After the completion of the starting material, the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted using ethyl acetate. The organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford enone-tethered pyridines $\mathbf{6 j}$, $\mathbf{6 z}$, and enone-tethered quinoline $\mathbf{7 1}$.

Spectral data of aldehydes and enones reported in this study

2-(Pyridin-4-yl)benzaldehyde (AEa).

This compound was isolated as pale-yellow semi-solid by following the general procedure-2. 1000 mg of AD afforded 848 mg of AEa (89% yield). $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2854,1691,1592,1541$,

[^1]

1474, 1407, 1257, 990, 830, 764, 642, 628. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $9.98(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dt}, J=4.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (dt, $J=4.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 191.08,149.80$ (2C), 145.82, 142.67, 133.88, 133.42, 130.36, 129.01, 128.35, 124.72 (2C). HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 184.0762$, found: 184.0767.

3-Methyl-2-(pyridin-4-yl)benzaldehyde (AEb).

This compound was isolated as pale-yellow thick oil following the general procedure-2. 300 mg of $\mathbf{A D}$ afforded 246 mg of $\mathbf{A E b}\left(82 \%\right.$ yield). $\mathrm{R}_{f}=0.4$ (3:7 EtOAc:
 Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2929, 1690, 1675, 1593, 1459, 1430, 1383, 1209, 912, 766. ${ }^{1} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $9.69(\mathrm{~s}, 1 \mathrm{H}), 8.78-8.70(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H})$, 2.13 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 191.43,149.91,145.52$, $142.00,136.56,135.75,133.71,132.15,132.05,128.62,125.64,124.88$,
19.92. HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 198.0919$, found: 198.0922.

4,5-Dimethoxy-2-(pyridin-4-yl)benzaldehyde (AEc).
This compound was isolated as pale-yellow semisolid by following the general procedure-2.

250 mg of $\mathbf{A D}$ afforded 258 mg of $\mathbf{A E c}$ (82% yield). $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2930, 1659, 1594, 1507, 1438, 1355, 1223, 1094, 1064, 920, 887, 831, 724, 659. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.78-8.63(\mathrm{~m}, 2 \mathrm{H}), 7.56$ $(\mathrm{s}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 6 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 189.91,153.64,149.78$ (2C), $149.55,145.61,138.13,126.76$, 125.00 (2C), 112.05, 109.05, 56.38, 56.24. HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 244.0974$, found: 244.0981 .

2-(Pyridin-4-yl)-5-(trifluoromethyl)benzaldehyde (AEd).
This compound was isolated as pale-yellow oil by following the general procedure-2. 200 mg
 of AD afforded 210 mg of AEd (81% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1}$ 2851, 1687, 1591, 1573, 1498, 1460, 1239, 957, 807. ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.99$ $(\mathrm{s}, 1 \mathrm{H}), 8.82-8.73(\mathrm{~m}, 2 \mathrm{H}), 8.38-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{ddd}, J=8.1,1.9,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dt}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 189.64,150.11(2 \mathrm{C}), 145.67$ (apparent $\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=0.92 \mathrm{~Hz}$), 144.45 $133.74,131.59\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right), 131.18,130.18\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 125.48(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.45(2 \mathrm{C}), 123.34\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.9 \mathrm{~Hz}\right) .{ }^{\mathbf{1}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ -62.98.HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 252.0636$ found: 252.0654 .

2-(3-Methylpyridin-4-yl)benzaldehyde (AEe).

This compound was isolated as pale-yellow semi-solid by following the general procedure-2.
 260 mg of AD afforded 225 mg of $\mathbf{A E e}$ (75% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1}$ 1693, 1591, 1571, 1544, 1474, 1403, 1361, 1297, 1061, 992, 836, 813. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$): $\delta 9.76$ ($\mathrm{s}, 1 \mathrm{H}$), 8.56 ($\mathrm{s}, 1 \mathrm{H}$), 8.52 (dd, $J=5.1,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.27$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.98,150.92,147.16,145.91,142.08,134.05,133.18,131.57$, 129.93, 128.80, 128.23, 124.35, 17.01. HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 198.0919, found: 198.0923.

2-(Quinolin-4-yl)benzaldehyde (AEf).

This compound was isolated as yellowish-brown oil by following the general procedure-2.
 500 mg of AD afforded 439 mg of $\mathbf{A E f}$ (78% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2085, 1687, 1589, 1564, 1427, 1370, 1245, 1218, 1018, 821, 757. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{M H z}$, CDCl $_{3}$): $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8$. $4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, 1H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 190.83, 149.62, 148.15, 144.52, 140.93, 134.22, 133.92, 130.97, 129.97, 129.84, 129.14, 127.88, 127.73, 127.43, 125.54, 122.42. HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 234.0919$ found 234.0918.

4,5-Dimethoxy-2-(quinolin-4-yl)benzaldehyde (AEg).

This compound was isolated as pale-yellow sticky oil following general procedure-2. 220 mg
 of $\mathbf{A D}$ afforded 252 mg of $\mathbf{A E g}$ (81% yield), $\mathrm{R}_{f}=0.4$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2923, 1712, 1678, 1594, 1566, 1513, 1503, 1462, 1384, 1280, 1218, 1137, $1098,875,766 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dt}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (ddd, $J=8.4,6.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 189.6,153.6,149.6,149.5,148.2,144.2,136.1,129.9,129.8,128.1,127.6,127.4$, 125.6, 122.7, 112.7, 108.5, 56.4, 56.2. HRMS (ESI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 294.1130, found: 294.1139 .

1-(Quinolin-4-yl)-2-naphthaldehyde (AEh).
This compound was isolated as pale-yellow semi-solid by following the general procedure-2.
 240 mg of AD afforded 279 mg of AEh (85% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 3060, 2863, 1686, 1616, 1589, 1564, 1371, 1331, 1218, 913, 821, 778. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 9.67(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.33-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.99(\mathrm{dt}, \mathrm{J}=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, \mathrm{J}=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.2,6.7,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dtd}, J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{ddd}, J=16.8$, $\left.8.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}\right): \delta 191.1,149.5,148.0,142.5,141.4,136.0$, $131.9,131.5,130.1,129.9,129.5,129.2,128.5,128.4,127.6,127.5,127.1,125.9,123.6$, 122.2. HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 284.1075$ found: 284.1081 .

3-Methyl-2-(quinolin-4-yl)benzaldehyde (AEi).

This compound was isolated as yellowish-brown oil by following the general procedure-2.
 240 mg of \mathbf{A} afforded 244 mg of $\mathbf{A E i}\left(85 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2851,1687, 1591, 1573, 1498, 1460, 1239, 957, 807. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.20(\mathrm{~m}, 1 \mathrm{H})$, 7.96 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 (dd, $J=8.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J$ $=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 191.95,150.76,148.21$, 141.93, 138.34, 135.66, 135.21, 134.83, 133.78, 129.88, 128.94, 128.51, 128.33, 127.61, 125.13, 121.79, 19.65. HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 248.1075$ found: 248.1073.

2-(7-Chloroquinolin-4-yl)benzaldehyde (AEj).

This compound was isolated as yellow solid by following the general procedure-2. 500 mg of
 AD afforded 409 mg of $\mathbf{A E j}$ (88% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). M.P = 110-113 ${ }^{\circ} \mathrm{C} . \mathbf{I R}$ (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3061,2924,1696,1597,1584,1499$, 1416, 1260, 1197, 1070, 882, 827, 766. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDC13): δ 190.60, 150.71, 148.58, 144.79, 140.19, 135.81, 134.20, 134.02, 130.93, 129.41, 128.91, 128.43, 128.39, 126.94, 126.17, 122.49. HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClNO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 268.0529$ found 268.0550.

2-(6,7-Dimethoxyquinolin-4-yl)benzaldehyde (AEk).

This compound was isolated as pale-yellow solid by following the general procedure-2. 500
 mg of AD afforded 424 mg of AEk (77\% yield), $\mathrm{R}_{f}=0.4$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). M.P $=141-143$ ${ }^{\circ} \mathrm{C}$. IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3061,2928,1694,1619,1595$, 1494, 1432, 1351, 1293, 1216, 1120, 1090, 861, 766. ${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}\right): \delta 191.15$, $152.58,150.45,147.41,145.50,142.38,141.60,134.06,130.79,129.08,127.66,123.17$,
120.93, 108.41, 102.77, 102.75, 56.23, 55.92. HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 294.1130$ found 294.1143.

3-(Pyridin-4-yl)benzo[b]thiophene-2-carbaldehyde (AHa).

This compound was isolated as reddish-brown sticky oil by following the general procedure-
 3. 300 mg of AG afforded 284 mg of AHa (82% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2845,2830,1713,1660,1591,1520,1410,1351,1263,1161$, 989, 857, 764, 733. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 9.94$ (s, 1H), 8.87-8.76 (m, 2H), 7.98-7.90 (m, 1H), 7.74 (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=$ 8.2, $7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 184.72, 150.37 (2C), 143.87, 141.96, 140.47, 139.84, 138.44, 128.76, 125.71, 125.10 (2C), 124.81, 123.45184.7, 150.3 (2C), 143.8, 141.9, 140.4, 139.8, 138.4, 128.7, 125.7, 125.1 (2C), 124.8, 123.4. HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+} 240.0483$, found: 240.0479.
(E)-3-Phenyl-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6a).
This compound was isolated as pale-yellow sticky oil following general procedure-2. 500 mg
 of $\mathbf{A F}$ afforded 643 mg of $\mathbf{6 a}$ (89% yield), $\mathrm{R}_{f}=0.4$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2921,2852,1667,1593,1331,1209,1027,983,827,760 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.59(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (dd, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 8 \mathrm{H}), 6.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 195.74,149.91$ (2C), 148.32, 145.62, 139.52, 138.19, 134.22, 130.95, 130.83, 130.04, 128.95 (2C), 128.93, 128.65, 128.34 (2C), 126.57, 123.79 (2C). HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 286.1232$ found 286.1245.
(E)-3-(Naphthalen-1-yl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6b).

This compound was isolated as pale-yellow oil by following the general procedure-2. 150 mg
 of AF afforded 204 mg of $\mathbf{6 b}$ (80% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3068,1664,1641,1595,1509,1396,1347,1311,1289$, 1214, 1027, 979, 827, 779, 762. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.65-$ $8.59(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.81$ (ddd, $J=8.2,7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): δ 195.37, 149.92 (2C), 148.48, 142.02, 139.74, 138.19, 133.65, 131.64, 131.44, 131.13, 131.01, 130.06, 129.13, 129.04, 128.83 (2C), 127.01, 126.30, 125.44, 125.33, 124.00, 123.11. HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 336.1388$ found: 336.1379.
(E)-3-(Pyren-1-yl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6c).

This compound was isolated as yellowish-orange solid by following the general procedure-2.
 100 mg of AF afforded 166 mg of $\mathbf{6 c}$ (80% yield), M.P $=163-$ $167^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.3$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 1659,1637,1592,1580$, 1317, 1286, 1214, 1023, 977, 844 . ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.66-8.59(\mathrm{~m}, 2 \mathrm{H}), 8.49(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.09(\mathrm{~m}$, $3 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{td}, J=6.0,5.6$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{ddd}, J=14.7,7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34$ $(\mathrm{m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 195.16,149.92$ (2C), 148.59 , 141.69, 139.96, 138.28, 132.97, 131.20, 131.11, 130.54, 130.11, 130.06, 129.18, 128.84, 128.81, $128.72,128.28,127.99,127.25,126.30,126.16,125.94,125.02,124.76$, 124.44, 124.15, 124.03 (2C), 122.11. HRMS (ESI): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 410.1545, found: 410.1555 .

(E)-1-(2-(Pyridin-4-yl)phenyl)-3-(p-tolyl)prop-2-en-1-one (6d).

This compound was isolated as pale-yellow oil by following the
 general procedure-2. 100 mg of AF afforded 137 mg of $\mathbf{6 d}(90 \%$ yield), $\mathrm{R}_{f}=0.5$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2921,2851,1666,1642$, 1595,1408, 1326, 1208, 1024, 983, 826, 760. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.62-8.52(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}$, $J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 195.89,149.85(2 \mathrm{C}), 148.38$, $145.86,141.47,139.63,138.13,131.47,130.85,130.02,129.72$ (2C), 128.90, 128.62, 128.39 (2C), 125.67, 123.80 (2C), 21.54. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 300.1388$ found 300.1386 .

(\boldsymbol{E})-3-(4-Methoxyphenyl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6e).

This compound was isolated as pale-yellow sticky oil following
 general procedure-2. 150 mg of AF afforded 227 mg of $\mathbf{6 e}$ (95% yield), $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3054,3025,2839,1663$, 1636, 1592, 1569, 1251, 1172, 1025, 828, 775. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.57-8.56(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60-7.49 (m, 1H), 7.53-7.49 (m, 1H), $7.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J$ $\left.=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 195.85, 161.89, 149.82 (2C), 148.44, 145.69, 139.78, 138.07, 130.73, 130.18 (2C), 129.99, 128.85, 128.60, 126.88, 124.44, 123.80 (2C), 114.44 (2C), 55.40. HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 316.1338$, found: 316.1348.
(E)-3-(3,5-Dimethoxyphenyl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6f).

This compound was isolated as pale-yellow sticky oil following general procedure-2. 120 mg
 of AF afforded 170 mg of $\mathbf{6 f}\left(81 \%\right.$ yield), $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2923,2839,1666,1641,1589,1542,1456,1426,1284$, 1203, 1154, 1064, 989, 828. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.59-$ $8.51(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 195.47,160.94$ (2C), 149.74 (2C), 148.44, 145.47, 139.38, 138.18, 136.07, 131.02, 130.05, 128.99, 128.67, 126.95, 123.86 (2C), 106.10 (2C), 103.08, 55.38, 55.35. HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 346.1443$ found 346.1449.

(E)-3-(3-Fluorophenyl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6g).

This compound was isolated as pale-yellow oil by following the general procedure-2. 140 mg
 of $\mathbf{A F}$ afforded 172 mg of $\mathbf{6 g}$ (80% yield), $\mathrm{R}_{f}=0.4$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2924,2853,1667,1639,1593,1406,1321,1209,1008,981$, 824, 762. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 8.59(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $7.5,1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 195.34,162.92\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $245.6 \mathrm{~Hz}), 149.97(2 \mathrm{C}), 148.26,143.74\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 139.32,138.25,136.47\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $7.6 \mathrm{~Hz}), 131.16,130.50\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 130.06,128.99,128.74,127.53,124.26\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $2.8 \mathrm{~Hz}), 123.79(2 \mathrm{C}), 117.68\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.3 \mathrm{~Hz}\right), 114.47\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}\right) .{ }^{19}$ F NMR ($\mathbf{3 7 6}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta-112.26$. HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 304.1138$ found 304.1187.
(E)-3-(2-Bromophenyl)-1-(2-(pyridin-4-yl)phenyl)prop-2-en-1-one (6h).

This compound was isolated as pale-yellow oil by following the general procedure-2. 125 mg
 of AF afforded 195 mg of $\mathbf{6 h}$ (85% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 1666,1644,1597,1465,1440,1408,1207,1025,828,760 .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.64-8.58(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.61(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J$ $=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 195.78,149.92$ (2C), 148.27, 143.82, 139.22, 138.17, 134.27, 133.43, 131.58, 131.09, 129.95, 129.15, 129.07, 128.73, 127.77, 127.71, 125.69, 123.96 (2C). HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrNO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 364.0337$, found: 364.0351.
(\boldsymbol{E})-1-(2-(Pyridin-4-yl)phenyl)-3-(thiophen-2-yl)prop-2-en-1-one (6i).
This compound was isolated as reddish-brown oil by following the general procedure-2. 150 mg of $\mathbf{A F}$ afforded 195 mg of $\mathbf{6 i}\left(88 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by

254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3105,3063,3026$, 1658, 1636, 1583, 1474, 1409, 1363, 1282, 1209, 1078, 1023, 827, 761. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.63-8.56(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.59(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 194.82,149.78$ (2C), 148.43, 139.66, 139.48, 138.22, $137.55,132.04,130.95,130.06,129.57,128.90,128.66,128.37,125.28,123.83$ (2C). HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+}$292.0796, found: 292.0789.
(\boldsymbol{E})-1-(2-(Pyridin-4-yl)phenyl)hex-2-en-1-one ($\mathbf{6 j}$).
This compound was isolated as pale-yellow oil by following the general procedure-4. 150 mg
 of $\mathbf{A L}$ afforded 155 mg of $\mathbf{6 j}$ (81% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3064,2959$, 2871, 1650, 1617, 1594, 1209, 1118, 970, 804, 762. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 8.61-8.57(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=15.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.02(\mathrm{qd}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 196.70,151.59,149.83,148.34$ (2C), 139.51, 137.81, $130.85,130.60,129.74,128.76,128.55,123.80,123.75,34.51,21.08,13.59$. HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 252.1388$ found: 252.1385.
(E)-3-Phenyl-1-(1-(pyridin-4-yl)naphthalen-2-yl)prop-2-en-1-one (6k).
This compound was isolated as pale-yellow oil by following the general procedure-2. 120 mg
 of AF afforded 163 mg of $\mathbf{6 k}$ (80% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 1658,1642,1598,1340,1207,1051,978,824,766,750$. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.71-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67-7.61 (m, 2H), 7.56-7.52 (m, 1H), 7.38-7.34 (m, 7H), $7.30(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 196.28,149.57$ (2C), 146.04, 137.05, $135.47,134.23,134.21,131.13,130.85,128.97$ (2C), $128.89,128.62,128.38$ (2C), 128.36 (2C), 127.46, 127.41, 126.80, 126.39, 125.77, 124.58. HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 336.1388$ found 336.1375.

(E)-1-(3-Methyl-2-(pyridin-4-yl)phenyl)-3-phenylprop-2-en-1-one (61).

This compound was isolated as pale-yellow oil by following the general procedure-2. 100 mg
 of AF afforded 138 mg of $\mathbf{6 1}\left(91 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3062,2931,1668,1643,1599,1574,1450,1331,1286$, 1232, 1134, 1083, 1054, 981, 764. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 8.61-8.57 (m, 2H), 7.47-7.40 (m, 3H), 7.38-7.33 (m, 5H), $7.29(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 195.93,149.60$ (2C), 147.77, 145.74, 140.02, 137.17, 136.30, 134.32, $132.48,130.74,128.94$ (2C), 128.33 (2C), 128.08, 126.77, 125.79, 124.73(2C), 20.44. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 300.1388$ found: 300.1403 .

(E)-1-(4,5-Dimethoxy-2-(pyridin-4-yl)phenyl)-3-phenylprop-2-en-1-one (6 m).

This compound was isolated as an off-white solid by following the general procedure-2. 150
 mg of $\mathbf{A F}$ afforded 231 mg of $\mathbf{6 m}$ (88% yield), M.P $=155-158{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2935,2849,1660,1637,1596,1351$, 1244, 1156, 1029, 989, 831. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.64-$ $8.56(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, 3.99 (s, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 194.15,151.10,149.92$ (2C), 149.12, 148.53, $144.09,134.40,132.19,132.13,130.59,128.90$ (2C), 128.20 (2C), 126.45, 124.02 (2C), 112.41, 112.19, 56.25 (2C). HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 346.1443$ found: 346.1426 .
(E)-1-(4,5-Dimethoxy-2-(pyridin-4-yl)phenyl)-3-(naphthalen-1-yl)prop-2-en-1-one ($\mathbf{6 n}$).
This compound was isolated as a reddish-orange solid by following the general procedure-2.
 150 mg of $\mathbf{A F}$ afforded 246 mg of $\mathbf{6 n}$ (82% yield), M.P $=95-96$ ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3058,3009,2930,1709$, $1659,1595,1542,1516,1462,1439,1413,1395,1350,1322$, 1272, 1243, 1218, 1203, 1154, 1026, 788. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $8.68-8.61(\mathrm{~m}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-$ $7.93(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (ddd, $J=7.2,4.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 4 \mathrm{H})$, $7.16(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}$, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 193.91,151.21,150.01$ (2C), 149.21, 148.57, 140.65, 133.60, 132.35, 132.18, 131.84, 131.45, 130.78, 129.04, 128.77, 126.93, 126.25, 125.44, 125.18, 124.20 (2C), 123.20, 112.40, 112.31, 56.27, 56.23. HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 396.1600$ found 396.1605 .
(E)-3-Phenyl-1-(2-(pyridin-4-yl)-5-(trifluoromethyl)phenyl)prop-2-en-1-one (60).

This compound was isolated as pale-yellow liquid by following the general procedure-2. 120
 mg of AF afforded 174 mg of $\mathbf{6 o}$ (81% yield), $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3061,2957,2873,1650,1614,1595,1108,973,801,757 .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.70-8.62(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.29$ $(\mathrm{m}, 8 \mathrm{H}), 6.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 194.19, 150.18 (2C), 146.91, 146.55, 141.47, 140.15, 133.87, 131.21, 130.88, 130.62, 129.04 $(2 \mathrm{C}), 128.48(2 \mathrm{C}), 127.50\left(\right.$ apparent $\left.\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 125.86\left(\right.$ apparent $\left.\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right)$,
125.77, 123.54 (2C), $123.50\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.9 \mathrm{~Hz}\right.$). ${ }^{\mathbf{1}}{ }^{\mathbf{9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta-62.69$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 354.1106$ found: 354.1120 .

(E)-3-Phenyl-1-(3-(pyridin-4-yl)benzo[b]thiophen-2-yl)prop-2-en-1-one ($6 \mathbf{p}$).

This compound was isolated as reddish-brown solid by following the general procedure-3.
 100 mg of AI afforded 138 mg of $\mathbf{6 p}(80 \%$ yield), M.P. $=149.6-151.2$ ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 1640,1594,1573,1522,1483,1357$, 1210, 1179, 991, 974, 762. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 8.84-8.78$ $(\mathrm{m}, 2 \mathrm{H}), 7.97-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=$ $8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46-7.39 (m, 3H), 7.38-7.30 (m, 3H), 7.23-7.15 (m, 2H), $6.72(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.52,150.26$ (2C), 144.24, 143.68, 141.59, $140.83,139.52,137.93,134.32,130.85,129.01$ (2C), 128.39 (2C), 127.69, 125.42, 125.08 (2C), 124.82, 123.50, 122.89. HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+}$342.0953, found: 342.0941.

(E)-3-Phenyl-1-(4-(pyridin-4-yl)-2H-chromen-3-yl)prop-2-en-1-one (6q).

This compound was isolated as pale-yellow solid by following the general procedure-3. 150
 mg of $\mathbf{A I}$ afforded 125 mg of $\mathbf{6 q}\left(83 \%\right.$ yield), M.P $=87-90^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.4 (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3036,1645,1591,1574,1481,1449,1373$, 1277, 1239, 1204, 1115, 988, 823, 762. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 8.74-8.65(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25$ $(\mathrm{m}, 6 \mathrm{H}), 7.08(\mathrm{dt}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.07 (s, 2H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.76,155.55,150.08$ (2C), 144.93, 143.34, $138.95,134.29,131.99,130.65,129.75,128.93$ (2C), 128.18 (2C), 127.77, 124.90, 124.86 (2C), 122.93, 121.95, 116.76, 66.40. HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 340.1338 found 340.1333 .

(E)-1-(2-(3-Methylpyridin-4-yl)phenyl)-3-phenylprop-2-en-1-one (6r).

This compound was isolated as pale-yellow oil by following the general procedure-2. 150 mg
 of AF afforded 187 mg of $\mathbf{6 r}\left(82 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3062,2931,1666,1638,1599,1574,1454,1331,1288$, 1232, 1134, 1092, 1054, 983, 764. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $8.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}$, $1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{tt}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=16.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=$ $15.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 194.10,150.84,148.63$, 146.96, 145.11, 139.12, 138.03, 134.33, 131.22, 130.96, 130.74, 130.03, 128.96 (2C), 128.77, 128.33 (2C), 128.22, 125.49, 123.99, 17.02. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$
300.1388 found 300.1399.(E)-1-(2-(3-Methylpyridin-4-yl)phenyl)-3-(naphthalen-1-yl)prop-2-en-1-one ($\mathbf{6 s}$).
This compound was isolated as yellowish-brown oil by following the general procedure-2.
 120 mg of $\mathbf{A F}$ afforded 189 mg of $\mathbf{6 s}\left(89 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2921,2851,1666,1642,1595,1408,1326,1208$, 1024, 983, 826, 760. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.48(\mathrm{~s}, 1 \mathrm{H})$, $8.46(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.97(\mathrm{~m}$, $1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.6$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 193.73,151.05,148.66$, 147.18, 141.65, 139.25, 138.15, 133.68, 131.72, 131.54, 131.29, 131.15, 130.99, 130.13, $128.95,128.82$, 128.33, 127.79, 127.02, 126.30, 125.44, 125.24, 124.08, 123.17, 17.06. HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 350.1545$ found 350.1529 .
(E)-1-(2-(2-Methylpyridin-4-yl)phenyl)-3-phenylprop-2-en-1-one (6t).
This compound was isolated as pale-yellow oil by following the general procedure-2. 120
 mg of AF afforded 136 mg of $\mathbf{6 t}\left(80 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 1669,1643,1603,1573,1545,1494,1448,1331,1261$, 1209, 763, 752. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.47(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 195.89,158.64,149.20,148.69$, 145.43, 139.49, 138.49, 134.29, $130.89,130.77,129.96,128.94$ (2C), 128.90, 128.51, 128.31 (2C), 126.63, 123.39, 120.96, 24.45. HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 300.1388$ found 300.1376 .

3-Methyl-1-(2-(pyridin-4-yl)phenyl)but-2-en-1-one (6z).

This compound was isolated as yellowish-red oil by following the general procedure-4. 160
 mg of $\mathbf{A L}$ afforded 150 mg of $\mathbf{6 z}$ (78% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2925, 1665, 1608, 1583, 1437, 1409, 1225, 1101, 831, 750. ${ }^{1}$ H NMR (400 MHz, CDCl ${ }_{3}$): $\delta 8.63(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.03(\mathrm{~s} 1 \mathrm{H}), 2.09$ (s 3 H), 1.74 (s 3 H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 195.17, 156.97, 149.51 (2C), 148.86, 141.54, 137.76, 130.58, 129.90, 128.65, 128.50 (2C), 124.95, 123.94, 27.67, 20.92. HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 238.1232$ found: 238.1231.
(E)-3-Phenyl-1-(2-(quinolin-4-yl)phenyl)prop-2-en-1-one (7a).

This compound was isolated as yellowish-brown semi-solid by following the general procedure-2. 200 mg of AF afforded 250 mg
of 7a (92% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 1667,1642,1604,1331,1277,1209,1017,981,959,764,750 .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 8.87(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, $J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.85-$ $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=$ $6.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50 (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H})$, 7.23-7.17 (m, 2H), 7.05-7.00 (m, 2H), $6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 194.40,149.70,148.34,147.32,144.76,140.32,136.61,134.09,130.98,130.78$, 130.54, 129.91, 129.52, 129.01, 128.76 (2C), 128.73, 128.14 (2C), 127.07, 127.04, 125.68, 125.51, 122.01. HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 336.1388$ found 336.1376.
(E)-3-(3,5-Dimethoxyphenyl)-1-(2-(quinolin-4-yl)phenyl)prop-2-en-1-one (7b).

This compound was isolated as pale-yellow solid by following the general procedure-2. 150
 mg of AF afforded 210 mg of $\mathbf{7 b}$ (88% yield), M.P $=113.4-$ $116{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3060,2933,2838$, 1667, 1642, 1586, 1507, 1457, 1425, 1284, 1203, 1154, 1061, 1020, 979, 925, 843, 767, 734. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l ~} \mathbf{C l}_{3}$): δ $8.88(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 1 \mathrm{H})$, 7.79 (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 194.23,160.78$ (2C), 149.74, 148.40, 147.18, $144.60,140.29,136.52,135.97,131.05,130.81,129.98,129.53,129.17,128.76,127.03$, 126.97, 125.82, 125.70, 122.16, 105.80 (2C), 103.15, 77.45, 77.13, 76.81, 55.34, 55.31. HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 396.1600$ found 396.1597.
(E)-1-(2-(Quinolin-4-yl)phenyl)-3-(thiophen-2-yl)prop-2-en-1-one (7c).
This compound was isolated as reddish-brown oil by following the general procedure-2. 180
 mg of AF afforded 194 mg of $\mathbf{7 c}\left(78 \%\right.$ yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2954,2924,2853,1660,1639,1582,1508,1420,1387$, 1364, 1280, 1209, 1018, 969, 853, 766, 709. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , CDCl $_{3}$): $\delta 8.89(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.80$ $(\mathrm{m}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=6.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.5,7.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (ddd, $J=4.9,3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 193.5,149.7$ (2C), 148.3, 147.2, 140.2, 139.5, 136.8, 136.6, 131.8, 131.0, 130.8, 129.9, 129.5, 129.2, 128.9, 128.7, 128.1, 127.0, 125.6, 124.1, 121.9. HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+} 342.0953$ found 342.0949.
(\boldsymbol{E})-1-(4,5-Dimethoxy-2-(quinolin-4-yl)phenyl)-3-phenylprop-2-en-1-one (7d).
This compound was isolated as pale-yellow solid by following the general procedure-2. 150 mg of $\mathbf{A F}$ afforded 170 mg of $\mathbf{7 d}\left(88 \%\right.$ yield), $\mathrm{M} . \mathrm{P}=158-161^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.3$ (4:6 EtOAc:

Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3073,2959,2929,2851,1705,1658,1594,1573,1514$, 1464, 1440, 1346, 1263, 1248, 1199, 1145, 1027, 991, 805. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 8.91(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=$ $8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=8.3$, $6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=$ $7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 192.75,151.09,149.65,149.06,148.23,147.79,143.38,134.23,132.93,130.53$, 130.29, 129.77, 129.68, 128.68, 127.95, 127.34, 127.30, 125.70, 125.35, 122.32, 113.26, 112.08, 56.28. HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 396.1600$ found 396.1590.
(E)-1-(4,5-dimethoxy-2-(quinolin-4-yl)phenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (7e).

This compound was isolated as a yellowish-brown solid by following the general procedure-
 2. 125 mg of $\mathbf{A F}$ afforded 136 mg of $\mathbf{7 e}$ (75% yield), M.P = 157$159.4{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2955,2931,2852$, 1654, 1596, 1570, 1513, 1464, 1348, 1274, 1265, 1248, 1213, 1147, 1088, 1028, 976, 804, 777, 749. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 8.91(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.10$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, 7.48-7.40 (m, 2H), 7.38 (dd, $J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ MHz, DMSO- \boldsymbol{d}_{6}): $\delta 192.49,151.22,149.86,149.10,148.49,147.64,140.07,133.47,133.08$, $131.65,131.32,130.66,130.53,129.94,129.68$, 128.63, 127.79, 127.37, 127.33, 126.75, 126.11, 125.73, 125.25, 124.82, 123.15, 122.39, 113.36, 112.17, 56.32, 56.29. HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 446.1756$ found 446.1757.
(E)-3-(2-Bromophenyl)-1-(4,5-dimethoxy-2-(quinolin-4-yl)phenyl)prop-2-en-1-one (7f).
This compound was isolated as yellowish-brown semi-solid by following the general
 procedure-2. 120 mg of $\mathbf{A F}$ afforded 166 mg of $\mathbf{7 f}$ (90% yield), R_{f} $=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2954,2923,2853,1656,1593,1564$, $1513,1464,1439,1345,1275,1200,1145,1100,1026,805,757$, 733. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.90(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dt, $J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (ddd, J $=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=$ $8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08$ (td, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.43$ (dd, $J=$ $7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 192.56,151.22,149.82,149.03,148.43,147.47,141.49,134.31,133.19,132.65$, 131.08, 130.71, 129.88, 129.65, 128.01, 127.46, 127.34, 127.29, 125.72, 125.39, 122.43,
113.27, 113.25, 112.20, 56.31, 56.27. HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{BrNO}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 474.0705 found 474.0692 .
(\boldsymbol{E})-1-(4,5-Dimethoxy-2-(quinolin-4-yl)phenyl)-3-(3-fluorophenyl)prop-2-en-1-one (7g).
This compound was isolated as yellowish-brown oil by following the general procedure-2.
 180 mg of AF afforded 190 mg of $\mathbf{7 g}$ (78% yield). $\mathrm{R}_{f}=0.3$ (4:6 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2990,2933,1661,1592,1515,1447,1348,1275$, $1248,1147,806,750 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.92(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 192.64,162.66\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.3 \mathrm{~Hz}\right), 151.36,150.55,148.83,148.20,140.70\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\left.{ }_{\mathrm{F}}=2.9 \mathrm{~Hz}\right), 139.00,136.62\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 134.08,133.17,132.06,130.10\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2\right.$ $\mathrm{Hz}), 129.77,128.93,128.23,127.46,126.48,123.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 121.67,116.95\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\mathrm{F}=21.3 \mathrm{~Hz}$), 114.0, 113.80, 111.94, $56.24(2 \mathrm{C}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-115.00$. HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 414.1505$ found 414.1508.

(E)-1-(4,5-Dimethoxy-2-(quinolin-4-yl)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (7h).

This compound was isolated as pale-yellow solid by following the general procedure-2. 200
 mg of $\mathbf{A F}$ afforded 221 mg of $\mathbf{7 h}$ (80% yield), M.P $=153-156$ ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (5:5 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2921,1651,1595,1570$, 1510, 1463, 1250, 1100, 991, 828, 806. ${ }^{1}$ H NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 8.90(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 2 \mathrm{H})$, 7.71 (dd, $J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, 3.73 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 193.05,161.34,150.93,150.34,148.08$, $142.62,139.18,134.34,133.65,132.13,132.03,131.64,129.62$ (2C), 128.58, 128.46, 128.19, 127.45, 127.02, 123.24, 121.54, 114.09 (2C), 111.90, 56.19 (2C), 55.29. HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 426.1705$ found 426.1693 .

(\boldsymbol{E})-1-(3-Methyl-2-(quinolin-4-yl)phenyl)-3-phenylprop-2-en-1-one (7i).

This compound was isolated as pale-yellow solid by following the general procedure-2. 150
 mg of AF afforded 157 mg of $7 \mathbf{i}\left(78 \%\right.$ yield), M.P $=86-89^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.4 (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3060,2922,1668,1643,1601,1574,1505$, 1448, 1330, 1266, 1055, 979, 845, 828, 761, 734, 701. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.88(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{dd}, J=$
$8.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{dd}, J=7.4,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 194.92,150.05,148.23,146.38,144.67$, $140.84,137.35,135.50,134.14,132.52,130.47,130.13,129.41,128.73(2 \mathrm{C}), 128.44$, 128.15(2C), 127.31, 127.18, 126.06, 125.81, 125.67, 122.24, 20.21. HRMS (ESI): m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 350.1545$ found 350.1551 .

(\boldsymbol{E})-3-phenyl-1-(1-(quinolin-4-yl)naphthalen-2-yl)prop-2-en-1-one (7j).

This compound was isolated as reddish-brown sticky oil by following the general procedure-
 2. 200 mg of $\mathbf{A F}$ afforded 220 mg of $\mathbf{7 j}$ (90% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2953,2922,2852,1659,1638,1581,1506$, 1420, 1388, 1367, 1207, 1011, 971, 854, 762, 708. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.96(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24-8.15(\mathrm{~m}, 1 \mathrm{H})$, 8.13-8.06 (m, 1H), 8.05-7.96 (m, 1H), 7.85 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (ddd, $J=8.4,6.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.59 (ddd, $J=8.2,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-7.40$ (m, 2H), 7.40-7.34 (m, 2H), 7.32$7.17(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 195.24, 150.00, 148.16, 145.24, 144.73, 138.06, 134.16, 134.07, 131.83, 130.55, 130.04, $129.59,129.20,128.75$ (2C), 128.34, 128.18 (2C), 127.61 (2C), 127.37 (2C), 127.28, 127.06, 126.33, 125.84, 124.93, 123.56. HRMS (ESI): m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 386.1545$ found 386.1539.

(E)-3-(3,5-dimethoxyphenyl)-1-(1-(quinolin-4-yl)naphthalen-2-yl)prop-2-en-1-one (7k).

This compound was isolated as pale-yellow oil by following the general procedure-2. 150 mg of $\mathbf{A F}$ afforded 202 mg of $\mathbf{7 k}$ (90% yield), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2921,1654$, 1593, 1572, 1508, 1462, 1247, 1108, 992, 829, 808. ${ }^{1}$ H NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 8.97(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=8.5,6.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $J=8.2,6.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 195.25,160.78$ (2C), 150.02, 148.13, 145.10, 144.94, 137.96, 135.91, 134.17, 134.03, 131.77, 130.05, 129.65, 129.21, 128.32, 128.11, 127.60, 127.35, 127.17, 127.06, 126.36, 126.07, 124.96, 123.60, 105.90 (2C), 103.16, 55.40, 55.37 HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 446.1756$ found 446.1757 .
(E)-2-methyl-3-phenyl-1-(2-(quinolin-4-yl)phenyl)prop-2-en-1-one (71).
This compound was isolated as a reddish-brown solid by following the general procedure-4.
 200 mg of AL afforded 187 mg of $7 \mathbf{1 l}$ (70% yield), M.P = 132.8-134 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2923,1649,1583,1508,1444$, 1419, 1357, 1240, 1011, 764. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.81$
(d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69$ $(\mathrm{m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15$ $(\mathrm{m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 200.5,149.5,148.3,147.2,142.9,140.7,137.9,136.3,135.0,130.4$, 129.9, 129.7, 129.5, 129.1 (2C), 129.0, 128.6, 128.4, 128.1 (2C), 126.9, 126.7, 126.0, 121.9, 12.9. HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 350.1545$ found 350.1548 .

(E)-1-(2-(7-Chloroquinolin-4-yl)phenyl)-3-phenylprop-2-en-1-one (7o).

This compound was isolated as pale-yellow solid by following the general procedure-2. 150

 mg of AF afforded 166 mg of $\mathbf{7 o}$ (84% yield), $\mathrm{R}_{f}=0.3$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). M.P $=123-125{ }^{\circ} \mathrm{C}$. IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3058$, 2924, 2854, 1667, 1643, 1580, 1497, 1447, 1416, 1331, 1288, 1209, 1070, 1018, 881, 828, 760. ${ }^{1}$ H NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.85$ (d, $\left.J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.09$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l 3}): \delta 194.08,150.79,148.73,147.57$, 145.23, 140.11, 136.23, $135.39,134.02,130.95$ (2C), 130.76, 129.04, 128.91, 128.87 (2C), 128.81, 128.21 (2C), 127.93, 127.13, 125.59, 125.27, 121.96. HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClNO}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 370.0999 found 370.1002 .
(\boldsymbol{E})-1-(2-(6,7-Dimethoxyquinolin-4-yl)phenyl)-3-phenylprop-2-en-1-one (7p).
This compound was isolated as pale-yellow sticky oil by following the general procedure-2.
 150 mg of $\mathbf{A F}$ afforded 173 mg of $\mathbf{7 p}$ (89% yield), $\mathrm{R}_{f}=$ 0.5 (1:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3058,2960,2833$, 1666, 1643, 1602, 1493, 1350, 1244, 1214, 1109, 1005, 861, 760. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.62(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52$ (m, 2H), $7.42(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H})$, 7.21-7.11 (m, 5H), $6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.9, \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}$, 3H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l 3) : ~} \delta 194.49,152.25,150.04,147.52,145.58$, $145.38,144.34,140.38,137.01,134.10,131.06,130.71,130.48,129.06,128.74$ (2C), 128.69, 128.06 (2C), 125.34, 122.35, 120.31, 108.33, 103.11, 56.08, 55.90. HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 396.1600$ found 396.1601.

General procedure-5: Synthesis of enone-tethered pyridinium (2a-2z)- and quinolinium salts (4a-4m)

Scheme S5: Synthesis of enone-tethered pyridinium 2 and quinolinium salts 4
In a sealed tube, biaryl enone 6 or 7 (1.0 eq.) was dissolved in DCM (2 mL). Alkyl bromide or iodide (1.2 eq.) was added in one portion, and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for $3-6 \mathrm{~h}$ and monitored the reaction was on TLC. After the completion of starting material, the solvent was evaporated, and the crude product was washed with ethyl acetate 45 times. The product was dried over a vacuum to get a pale-yellow or reddish-brown solid and transferred to the final step without further purification.

4-(2-Cinnamoylphenyl)-1-methylpyridin-1-ium (Iodide) (2a).

This compound was isolated as an orangish-brown solid by following the general procedure-
 5. 500 mg of $\mathbf{6 a}$ afforded 718 mg of $\mathbf{2 a}$ (98% yield), M.P $=136.8-138.5$ ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.2$ (10:1 DCM: MeOH, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2928,1706,1638,1595,1572,1448,1361$, 1284, 1214, 1015, 982, 764, 727. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 9.26$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{td}, J=6.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=3.7$ $\mathrm{Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDC1 ${ }_{3}$): $\delta 193.0$, $158.5,147.8,144.9$ (2C), $138.5,135.5,133.8,132.1,131.4,131.0,130.7,129.6,129.1$ (2C), 128.8 (2C), 127.8 (2C), 124.6, 48.7. HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}-\mathrm{I})^{+} 300.1383$ found. 300.1403.

General procedure-6: Synthesis of vicinal bis-spirocyclic indanone (3)

Scheme S6: Synthesis of vicinal bis-spirocyclic indanones 3
A mixture of sodium hydride (60% in oil, $12 \mathrm{mg}, 0.28 \mathrm{mmol}$) and trimethylsulfoxonium iodide (TMSOI) ($51 \mathrm{mg}, 0.23 \mathrm{mmol}$) were placed in an oven-dried flask, and dry DMF (4.0 mL) was added to the mixture. After hydrogen evolution ceased, the milky solution turned clear, and the reaction mixture was stirred for 15 min . The compound

2a ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in dry DMF (2.0 mL) and was added to the clear solution drop wise over a period of $5-10 \mathrm{~min}$ and stirred at room temperature until the reactant 2a disappeared as monitored by TLC. The reaction mixture was quenched using ice water and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate.

Spectral data of all vicinal bis-spirocyclic indanones reported in this study

1'-Methyl-2-phenyl-1' $\mathbf{H}, 3$ ' H -dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one

 (3a').This compound was isolated as pale-yellow solid by following the general procedure-6. 100

mg of $\mathbf{2 a}$ afforded 18 mg of $\mathbf{3 a}$ (25% yield), $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light), M.P $=122.6-125.3^{\circ} \mathrm{C}$. IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3055,1697,1674,1600,1497,1408,1290,1113$, 1007, 932, 756, 725. 3a' (Minor): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.72-$ $7.69(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=7.8,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dt}, J=7.8,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35$ (ddd, $J=7.7,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.96$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=7.8,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=9.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{dd}$, $\left.J=7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=9.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta 204.98$, $164.03,137.56,134.80,132.64,130.54,129.37$ (2C), 127.65, 127.55, 127.41, 127.09 (2C), $125.68,121.52,104.21,100.29,53.20,45.23,40.14,32.66,18.85$.
$\mathbf{3 a}$ (Major): This compound was isolated as pale-yellow solid following general procedure-6.

100 mg of $\mathbf{2 a}$ afforded 48 mg of $\mathbf{3 a}\left(61 \%\right.$ yield), $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light), M.P $=102.4-105.6{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}$, 1 H), 7.34 (ddd, $J=8.0,4.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.25-$ 7.18 (m, 1H), $6.20(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dd, $J=7.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}$, $3 \mathrm{H}), 2.99(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=$ 9.1, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.95,162.65$, 136.43, 134.65, 134.46, 130.49, 129.91, 129.28 (2C), 127.74 (2C), 127.71, 127.48, 126.52, 121.56, 101.94, 101.88, 52.93, 46.14, 40.51, 33.67, 18.70. HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}-\mathrm{H})^{+} 312.1388$ found: 312.1395 .

1'-Methyl-2-(naphthalen-1-yl)-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one ($\mathbf{3 b}^{\mathbf{\prime}}$).

This compound was isolated as pale-yellow oil by following the general procedure-6. 80 mg of $\mathbf{2 b}$ afforded 46 mg of $\mathbf{3 b}$ (76% yield combined), $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3051,2953.2907$, 2834, 1695, 1673, 1599, 1462, 1293, 1083, 797. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.05-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.78$ $(\mathrm{m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$,

7.42 (ddd, $J=8.2,5.0,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, $1 \mathrm{H}), 5.90(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08 (dd, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=$ $7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}$, $J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 205.29,163.90$, 134.81, 134.76, 134.16, 133.01, 132.78, 130.26, 128.27, 127.67, $127.43,127.08,126.66,125.93,125.34,124.59,124.36,124.33$, 121.61, 103.19, 99.98, 53.35, 45.37, 39.92, 30.14, 18.51. HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 364.1701$ found 364.1691 .

1'-Methyl-2-(pyren-1-yl)-1' $\mathbf{H}, \mathbf{3}$ ' \boldsymbol{H}-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-

 one ($3 \mathrm{c} / 3 \mathrm{c}^{\prime}$).This compound was isolated as yellowish-brown sticky oil by following the general
 procedure-6. 120 mg of $\mathbf{2 c}$ afforded 57 mg of $\mathbf{3 c} \mathbf{c}^{\mathbf{}}\left(60 \%\right.$ yield) $\mathrm{R}_{f}=$ 0.5 (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2929,1700,1674,1601,1463,1384,1360$, 1206, 1104, 1006, 845, 726. 3c' (Major): ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 8.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.03-7.96(\mathrm{~m}$, $4 \mathrm{H}), 7.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{td}, J=7.4,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{dt}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (s, 3H), 1.83 (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.03,163.92$, $134.82,133.00,131.85,131.79,131.37,130.92,130.43,129.98,127.63,127.46,127.37$ (2C), 127.18, 126.79, 125.80, 125.19, 125.06, 124.86, 124.71, 124.12, 124.10, 123.57, 121.68, 102.89, 99.81, 53.48, 45.42, 39.66, 30.64, 18.88.

3c (Minor): This compound was isolated as pale-yellow sticky oil by following the general
 procedure-6. 100 mg of $\mathbf{2 c}$ afforded 19 mg of $\mathbf{3 c}\left(20 \%\right.$ yield) $\mathrm{R}_{f}=$ 0.4 (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). ${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.15(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.12$ (dd, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dt, $J=$ $7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=7.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=7.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.9,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54$ (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (s, 3H), 2.35 (dd, $J=7.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dd, $J=$ $9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.56,162.45,134.68,134.51,131.67$, $131.39,131.15,130.75,130.36,129.63,128.17,127.68,127.60,127.56$ (2C), 126.96, 126.75, $125.59,124.90,124.88$, 124.77, 124.70, 124.38, 123.56, 121.69, 103.24, 100.21, 52.93, 46.63, 40.55, 31.50, 19.44. HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 438.1858$ found: 438.1859.

1'-Methyl-2-(p-tolyl)-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3d).

This compound was isolated as pale-yellow semi-solid by following the general procedure-6.

70 mg of $\mathbf{2 d}$ afforded 42 mg of $\mathbf{3 d}$ (81% yield, combined) $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathbf{c m}^{-1} 2924,2965,2854,1701,1671,1600,1517,1462,1378,1208$, 1022, 1008, 821, 765, 709. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.65-7.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.6,5.2,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{dd}, J=7.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=8.6 \mathrm{~Hz}$, 1 H), 2.29 (s, 3H), 2.04 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (dd, $J=9.1,4.3$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 202.97,162.66,135.92,134.72,134.36,133.28,130.44$, 129.86, 129.10 (2C), 128.50 (2C), 127.66, 127.42, 121.54, 102.05, 101.95, 52.89, 46.13, 40.48, 33.46, 21.18, 18.73. HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}(\mathrm{M}+\mathrm{Na})^{+} 350.1521$ found. 350.1546 .

2-(4-Methoxyphenyl)-1'-methyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3e).

This compound was isolated as pale-yellow solid by following the general procedure-6. 100
 mg of $\mathbf{2 e}$ afforded 56 mg of $\mathbf{3 e}$ (74% yield, combined), $\mathrm{M} . \mathrm{P}=135-142$ ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (1:4 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2929,2834,1698,1671,1599,1513,1462$, 1320, 1209, 1175, 1007, 973, 800, 726, 708. ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (ddd, $J=$ $8.0,4.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=$ $7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ $(\mathrm{dd}, J=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (dd, $J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 203.09, 162.71, 158.14, 134.70, 134.40, 130.49, 130.20 (2C), 129.88, 128.34, 127.69, 127.45, 121.51, 113.19 (2C), 102.01, 101.87, 55.15, 52.95, 46.12, 40.50, 33.22, 18.90. HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 344.1651$, found: 344.1663 .

2-(3,5-Dimethoxyphenyl)-1'-methyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one ($3 f$).

This compound was isolated as yellowish-brown semi-solid by following the general
 procedure-6. 120 mg of $\mathbf{2 f}$ afforded 70 mg of $\mathbf{3 f}$ (77% yield, combined), $\mathrm{R}_{f}=0.4$ (3:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2927,1688,1671,1595,1495$, 1358, 1277, 1118, 1011, 866, 725. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.44$ (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (dd, $J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}$,

1H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta \mathbf{2 0 2 . 8 6}, 162.57,160.13$ (2C), 139.01, 134.63, 134.49, $130.50,129.91,127.71,127.51,121.57,107.59$ (2C), 101.86, 101.77, 98.45, 55.24, 55.21, 52.93, 46.11, 40.50, 33.81, 18.80. HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 374.1756$ found 374.1768.

2-(3-Fluorophenyl)-1'-methyl-1' $\boldsymbol{H}, \mathbf{3}$ ' \mathbf{H}-dispiro[cyclopropane-1,2'-indene-1',4"-pyridin]-3'-one ($\mathbf{3 g}$).

This compound was isolated as a pale-yellow liquid by following the general procedure-6. 80
 mg of $\mathbf{2 g}$ afforded 48 mg of $\mathbf{3 g}$ (81% yield, combined), $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light).IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2929,1700,1671,1614,1600,1587,1446,1382,1222,1206$, 1011, 942, 729, 680. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.71-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.58$ (dt, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=8.0,4.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dt}, J=10.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{td}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=$ $7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (dd, $J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.80,162.61,162.48\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $243.2 \mathrm{~Hz}), 139.25\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 134.66,134.47,130.58,130.02,129.05\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2\right.$ $\mathrm{Hz}), 127.78(2 \mathrm{C}), 127.58,124.95\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 121.58,116.22\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right)$, $113.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.8 \mathrm{~Hz}\right), 101.68,53.00,46.12,40.51,33.07,18.74 .{ }^{\mathbf{1 9}}{ }^{\mathbf{F}} \mathbf{~ N M R}(\mathbf{3 7 6} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta-114.45$. HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FNO}(\mathrm{M}+\mathrm{H})^{+} 332.1451$ found: 332.1458.

2-(2-Bromophenyl)-1'-methyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3h').

This compound was isolated as yellowish-brown semi-solid by following the general
 procedure- $\mathbf{6}$. 100 mg of $\mathbf{2 h}$ afforded 60 mg of $\mathbf{3 h}$ ' (77% yield, combined), $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3054,2956,2920,2836,1699$, 1674, 1600, 1463, 1378, 1292, 1208, 1023, 1007, 765, 748, 719. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.76(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=$ $7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (t, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{dd}, J=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 204.45,163.63,137.73,134.81,132.82,131.64,130.32$, $128.86,128.76,127.61,127.59,127.45,127.28,126.06,121.70,102.28,100.12,52.25$, 45.25, 39.94, 33.46, 18.44. HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrNO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 392.0650$ found: 392.0643.

1'-Methyl-2-(thiophen-2-yl)-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]3 '-one (3i).

This compound was isolated as reddish-brown semi-solid by following the general
 procedure-6. 100 mg of $\mathbf{2 i}$ afforded 54 mg of $\mathbf{3 i}$ (73% yield, combined), R_{f} $=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2963,2911,1700,1671,1599,1462,1315,1222,1105$, 993, 765, 695. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dt}$, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=8.0,5.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=4.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=7.8$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{dd}, J=7.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=9.0$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.16,162.49,140.39,134.60,134.48$, $130.69,130.00,127.72,127.58,126.59,126.33,123.98,121.64,101.77,101.44,53.06$, 46.13, 40.51, 27.79, 20.30. HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+} 320.1109$ found: 320.1120 .

1''-Methyl-2-propyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3j).

This compound was isolated as pale-yellow oil by following the general procedure-6. 120 mg
 of $\mathbf{2 j}$ afforded 63 mg of $\mathbf{6 j}$ (74% yield, combined) $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 3055, 1697, 1674, 1600, 1497, 1405, 1290, 1107, 1010, 930, 760, 719. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.71-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.37$ (ddd, $J=8.0,6.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.04 (ddd, $J=28.4,7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03 (ddd, $J=35.0$, $7.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{dq}, J=7.9,3.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 205.76,162.87,134.71,134.30,130.05,129.63,127.68,127.37,121.23$, 102.15, 102.00, 49.55, 46.04, 40.43, 30.32, 28.02, 23.14, 21.46, 13.91. HRMS (ESI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}(\mathrm{M})^{+} 279.1623$ found: 279.1654.

1'-Methyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-cyclopenta[a]naphthalene-

 1',4'-pyridin]-3'-one (3k).This compound was isolated as yellowish-brown sticky oil following general procedure-6. 80
 mg of $\mathbf{2 k}$ afforded 44 mg of $\mathbf{3 k}$ (73% yield, combined), $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2929,2958,1711,1699,1674,1594,1454,1310,1221,1038$, 1006, 764, 700. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.61-8.56(\mathrm{~m}, 1 \mathrm{H})$, 7.95-7.89 (m, 1H), 7.81-7.76 (m, 1H), 7.64-7.54 (m, 3H), 7.32-7.22 (m, $4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=7.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81(\mathrm{dd}, J=9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.47,159.10,137.78$, $136.50,133.11,131.05,130.51,130.36,129.31(3 \mathrm{C}), 129.23,127.96,127.77$ (2C), 126.51,
126.36, 126.18, 118.38, 103.04, 102.32, 54.00, 46.51, 40.75, 32.70, 18.12. HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 364.1701$ found 364.1708.

1',7'-Dimethyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-

 one (31).This compound was isolated as reddish-brown oil by following the general procedure-6. 100
 mg of $\mathbf{2 i}$ afforded 52 mg of $\mathbf{3 i}$ (71% yield, combined) $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2927,2854,1697,1671,1599,1478,1379,1217,1199,1015$, 765, 694. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.44$ (ddd, $J=7.6,1.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.12(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 4 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, $2.07(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 203.27, 157.00, 138.21, 136.97, 136.55, 135.33, 130.85, 130.62, 129.29 (2C), 127.73, 127.72 (2C), 126.47, 119.68, 100.74, 100.22, 53.45, 46.01, 40.52, 33.60, 18.78, 17.95. HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 328.1701$ found: 328.1710.

5',6'-Dimethoxy-1'-methyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3m).

This compound was isolated as pale-yellow semi-solid by following the general procedure-6.

100 mg of $\mathbf{2 m}$ afforded 59 mg of $\mathbf{3 m}$ (77% yield, combined) $\mathrm{R}_{f}=0.4$ (1:4 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2929,1689,1670,1593,1494,1359,1279,1121$, 1018, 869, 722. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.30-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.23-7.16 (m, 1H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=7.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07$ (dd, $J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 201.50,157.81,155.29,149.47,136.71,130.57,129.95,129.27$ (2C), 127.70 (3C), 126.39, 108.59, 102.36, 102.16, 101.94, 56.30, 56.11, 53.06, 45.94, 40.52, 32.87, 17.99. HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 374.1756$, found 374.1742.

5',6'-Dimethoxy-1'-methyl-2-(naphthalen-1-yl)-1' $\mathbf{H}, \mathbf{3}^{\prime} \boldsymbol{H}$-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3n').

This compound was isolated as reddish-brown oil by following the general procedure-6. 120
 mg of $\mathbf{2 n}$ afforded 67 mg of $\mathbf{3 n}$ (71% yield, combined) $\mathrm{R}_{f}=0.5$ (1:4 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3064,2959,2871,1670,1594,1278,1118$, 870, 732. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.03-7.92(\mathrm{~m}, 1 \mathrm{H})$, 7.80-7.76 (m, 1H), $7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.32 (dd, $J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ $(\mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$
$7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.11(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=$ $9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 203.59,159.31,155.65,149.54,134.78$, $134.52,132.78,130.25,128.19,127.24,126.50,125.90,125.87,125.29,124.53,124.44$, 124.20, 108.56, 103.31, 102.25, 100.22, 56.28, 56.22, 53.49, 45.16, 39.89, 29.61, 17.70.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 424.1913$ found: 424.1919.

1''-Methyl-2-phenyl-5'-(trifluoromethyl)-1'H,3'H-dispiro[cyclopropane-1,2'-indene-

 1',4'-pyridin]-3'-one (30').This compound was isolated as a pale-yellow oil by following the general procedure-6. 100
 mg of $\mathbf{2 0}$ afforded 20 mg of $\mathbf{3 0}{ }^{\prime}\left(26 \%\right.$ yield) $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2928,1688,1672,1595,1492,1358,1277,1118,1018$, 872, 729. 3o' (Minor):- ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 7.99 (dt, $J=$ $1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=8.1,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}$, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J$ $=9.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{dd}, J=8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=9.4,4.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 203.88,166.33,137.00,132.85,131.20\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right)$, $130.99,130.01\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right), 129.37(2 \mathrm{C}), 128.50,128.03,127.19(2 \mathrm{C}), 125.93,123.94$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.9 \mathrm{~Hz}\right), 118.95\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.90 \mathrm{~Hz}\right), 103.33,99.37,53.54,45.61,40.15,33.19$, 19.35. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 62.22$.

30 (Major): This compound was isolated as a pale-yellow semi-solid following general
 procedure-6. 100 mg of $\mathbf{2 0}$ afforded 40 mg of $\mathbf{3 o}$ (52% yield) $\mathrm{R}_{f}=$ 0.4 (1:8 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2928,1688,1672,1595,1492,1358,1277$, $1118,1018,872,729 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.95-7.73$ (m, $3 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.23(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=$ $7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=7.8,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 4 \mathrm{H}), 2.15(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=$ $9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 201.71,165.09$, $135.89,134.80,131.00,130.89\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 130.36,130.06\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right), 129.24$ (2C), $128.54,127.84$ (2C) $126.74,123.92\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.8 \mathrm{~Hz}\right), 118.93\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.95 \mathrm{~Hz}\right)$, 101.08, 100.91, 53.42, 46.47, 40.52, 34.37, 19.17. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 62.28$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NNaO}(\mathrm{M}+\mathrm{H})^{+} 404.1238$ found: 404.1228 .

1''-Methyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-
 benzo[b]cyclopenta[d]thiophene-1',4'-pyridin]-3'-one (3p).

This compound was isolated as reddish-brown sticky oil by following the general procedure6. 100 mg of $\mathbf{2 p}$ afforded 37 mg of $\mathbf{3 p}$ (49% yield, combined) $\mathrm{R}_{f}=0.4$ (1:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1}$ 2928, 1689, 1671, 1599, $1568,1494,1447,1348,1229,1041,768,747 .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$) : $\delta 8.05-7.99(\mathrm{~m}$, $1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{ddt}, J=8.6,7.2,1.9 \mathrm{~Hz}$,

$1 \mathrm{H}), 6.23$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39 (dd, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (s, $3 \mathrm{H}), 3.00(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=9.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 195.20,167.72$, $148.15,138.34,136.21,134.71,131.38,131.20,129.32$ (2C), 127.80 (2C), 127.33, 126.54, 124.64, 124.61, 124.39, 100.94, 100.54, 56.81, $44.85,40.69,32.01,17.31$. HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NOS}$ $(\mathrm{M}+\mathrm{H})^{+} 370.1266$ found: 370.1270 .

1''-Methyl-2-phenyl-1'H,3'H,4'H-dispiro[cyclopropane-1,2'-cyclopenta[c]chromene1',4' '-pyridin]-3'-one (3q).
This compound was isolated as pale-yellow oil by following the general procedure-6. 80 mg
 of $\mathbf{2 q}$ afforded 48 mg of $\mathbf{3 q}$ (78% yield, combined) $\mathrm{R}_{f}=0.4$ (1:8 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1}$ 2929, 2854, 1711, 1684, 1670, 1601, 1566, 1496, 1450, 1345, 1227, 1038, 993, 762, 750, 696. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.81$ (dd, $J=$ $7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98\left(\mathrm{~d}, J_{A B}=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.93\left(\mathrm{~d}, J_{A B}=\right.$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.30(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.89$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 200.39,162.06,156.93,136.29,132.05,131.57,131.45,129.18$ (2C), $128.42,127.74$ (2C), 126.90, 126.49, 121.01, 120.36, 116.73, 101.42, 100.77, 63.10, 53.81, 46.95, 40.64, 31.78, 17.09.

1',3'-Dimethyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-

 one ($\mathbf{3 r}$).This compound was isolated as pale-yellow oil by following the general procedure-6. 80 mg
 of $\mathbf{2 r}$ afforded 39 mg of $\mathbf{3 r}$ (65% yield, combined) $\mathrm{R}_{f}=0.4$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2954, 2927, 1703, 1682, 1602, 1498, 1464, 1292, 1266, 1105, 1081, 765, 749, 700. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.71$ (dt, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65-7.58$ (m, 2H), 7.35 (ddd, $J=7.6,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dq}, J=6.9$, $2.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.11 (m, 3H), $6.01(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ $(\mathrm{p}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}) 4.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=9.3,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{dd}, J=7.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=9.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 204.75,162.47,136.70,134.71,134.29,130.26$, 128.72 (2C), 127.34, 126.83 (3C), 126.08, 125.56, 121.44, 107.13, 99.21, 50.64, 48.62, 39.92, 31.70, 19.89, 16.50. HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 328.1701$ found: 328.1711 .

1',3'-Dimethyl-2-(naphthalen-1-yl)-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3s).

This compound was isolated as pale-yellow sticky oil by following the general procedure-6.
 100 mg of 2 s afforded 53 mg of $\mathbf{3 s}$ (69% yield, combined) $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3053,2920,1698,1682,1600,1463,1293,1264,1240,1084$, 983, 776, 765. 3s (Major);- ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.23-8.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.52(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dd}, J=$ $7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.31(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 205.21,162.20,134.60,134.51,133.99,133.45,132.89,130.40,128.15$, 127.32, 126.79, 125.97, 125.49, 125.28, 125.14, 124.51, 124.46, 123.73, 121.64, 101.45, 99.0, 52.83, 48.85, 39.95, 27.89, 19.64, 17.03.

3s' (Minor):- 7.89 (ddd, $J=7.8,1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 205.21,162.20,134.80,134.63,134.40,132.8$, $128.25,128.21,127.41,127.32,127.18,126.79,125.97,125.49,125.31,125.28,124.46$, 124.24, 121.91, 107.72, 105.40, 50.68, 48.8, 39.8, 33.0, 19.7, 16.6.

1'-Butyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3u').

This compound was isolated as a pale-yellow semi-solid by following the general procedure-

3u' (Minor)
($d r=6: 1$)
6. 100 mg of $\mathbf{2 u}$ afforded 11 mg of $\mathbf{3 u} \mathbf{'}^{\prime}\left(13 \%\right.$ yield) $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1}$ 2955, 2863, 1699, 1669, 1599, 1497, 1461, 1321, 1029, 998, 766, 696. 3u' (Minor):- ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=$ $7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=7.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=9.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24$ $(\mathrm{m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.06,164.24,137.53$, $134.84,132.41,129.78,129.30$ (2C), 127.68, 127.39, 127.29 (2C), 126.83, 125.65, 121.45, $103.98,100.38,52.93,52.85,45.60,33.21,32.11,19.79,19.07,13.84$.

3u (Major):- This compound was isolated as greenish-yellow oil by following the general procedure- $\mathbf{6} .100 \mathrm{mg}$ of $\mathbf{2 u}$ afforded 56 mg of $\mathbf{3 u}$ (66% yield) $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=$ $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=7.6,4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 4 \mathrm{H})$, $7.17(\mathrm{dt}, J=5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=$ $7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=$ $9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.95,162.76,136.51,134.67,134.45,129.78,129.29$ (2C), 129.18, 127.75 (2C), 127.74, 127.44, 126.51, 121.53, 101.67, 101.59, 53.25, 53.10, 46.52, 33.68, 32.28, 19.82, 18.70, 13.87. HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 356.2014$ found: 356.2027 .

1'-Hexyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4'-pyridin]-3'-one (3v').

This compound was isolated as pale-yellow oil by following the general procedure-6. 80 mg
 of $\mathbf{2 v}$ afforded 7 mg of $\mathbf{3 v} \mathbf{v}^{\prime}\left(12 \%\right.$ yield), $\mathrm{R}_{f}=0.6$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2952$, 2926, 2857, 1699, 1671, 1600, 1498, 1461, 1375, 1147, 1114, 1007, 931, 724, 695. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66-7.62 (m, 1H), $7.56(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.02(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J$ $=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.9,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=9.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=$ $8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.06,164.23,137.53,134.82,132.41,129.78$, 129.29 (2C), 127.68, 127.38, 127.29 (2C), 126.83, 125.65, 121.45, 103.98, 100.38, 53.27, 52.86, 45.61, 33.21, 31.56, 29.97, 26.29, 22.64, 19.07, 14.05.

3v (Major):- This compound was isolated as brownish-yellow oil by following the general
 procedure-6. 80 mg of $\mathbf{2 v}$ afforded 41 mg of $\mathbf{3 v}$ (66% yield), $\mathrm{R}_{f}=0.5$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=$ $7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=$ $8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.33 (qd, $J=5.3,3.6,3.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 202.95,162.76,136.51,134.66,134.43,129.76,129.28$ (2C), 129.18, 127.74 (2C), 127.72, 127.43, 126.50, 121.53, 101.65, 101.58, 53.55, 53.06, 46.51, 33.68, 31.52, 30.12, 26.28, 22.64, 18.70, 14.04. HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 384.2327 found: 384.2339 .

1''-Benzyl-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4''-pyridin]-3'-one (3w).

This compound was isolated as reddish-orange oil by following the general procedure-6. 70 mg of $\mathbf{2 w}$ afforded 45 mg of $\mathbf{3 w}$ (75% yield, combined), $\mathrm{R}_{f}=0.3$ (1:8 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3085,3062,3027,1700$, $1670,1601,1496,1403,1324,1209,1021,766,733 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.72-$ $7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (ddd, $J=7.9$,

$5.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28$ (m, 6H), 7.23 (ddd, $J=8.4,3.9,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): δ 202.89, 162.48, 138.36, 136.36, 134.72, $134.53,130.10,129.49$ (2C), 129.32, 128.84 (2C), 127.79 (2C), 127.72, 127.67, 127.58, 127.01 (2C), 126.58, 121.64, 102.67, 102.56, 57.09, 52.90, 46.34, 33.70, 18.70. HRMS (ESI): m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NNaO}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 412.1677$ found 412.1660.

1''-(3,5-Dimethoxybenzyl)-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-1',4''-

 pyridin]-3'-one ($\mathbf{3 x}$).This compound was isolated as pale-yellow solid by following the general procedure-6. 75
 mg of $\mathbf{2 x}$ afforded 51 mg of $\mathbf{3 x}$ (78% yield, combined), M.P = 94-96 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (1:4 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2955,2923,2853,16999,1671$, 1596, 1462, 1429, 1402, 1321, 1204, 1155, 1064, 1021, 1010, 766, 733, 696. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59$ (dt, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.21 (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}$, $2 \mathrm{H}), 4.18$ (dd, $J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=8.2$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 202.79,162.45$, 161.24 (2C), $140.99,136.32,134.73,134.50,130.13,129.54$ (2C), 129.29 (2C), 127.79, $127.72,127.59,126.59,121.65,104.79$ (2C), 102.56, 102.48, $99.35,57.08,55.39,55.36$, 52.83, 46.32, 33.70, 18.72. HRMS (ESI): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 450.2069$ found 450.2086 .

1''-(Benzo[b]thiophen-2-ylmethyl)-2-phenyl-1'H,3'H-dispiro[cyclopropane-1,2'-indene-

 1',4' '-pyridin]-3'-one (3y).This compound was isolated as reddish-brown oil by following the general procedure-6. 70
 mg of $\mathbf{2 y}$ afforded 42 mg of $\mathbf{3 y}$ (70% yield, combined) $\mathrm{R}_{f}=0.4$ (1:7 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3052,2920,2854,1698,1671,1601,1461,1399$, 1322, 1206, 1190, 1018, 766, 748. ${ }^{1}$ H NMR ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $7.84(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-$ 7.63 (m, 2H), 7.55 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32$ (m, 3H), 7.27 (d, J $=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ $(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.73,162.20,142.40,139.86$, 139.47, 136.27, 134.75, 134.53, 129.38, 129.30 (2C), 128.77, 127.76 (2C), 127.73, 127.62,
126.58, 124.54, 124.48, 123.49, 122.53, 122.02, 121.67, 103.60, 103.47, 53.08, 52.65, 46.20, 33.70, 18.70. HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NOS}\left(\mathrm{M}+\mathrm{H}^{+}\right) 446.1579$ found 446.1566.

1' $\mathbf{\prime}, \mathbf{2 , 2 - T r i m e t h y l - 1 ' H , 3 ' H - d i s p i r o [c y c l o p r o p a n e - 1 , 2 ' - i n d e n e - 1 ' , 4 ' - p y r i d i n] - 3 ' - o n e ~ (3 z) . ~}$
This compound was isolated as a pale-yellow semi-solid by following the general procedure-
 6. 60 mg of $\mathbf{2 z}$ afforded 37 mg of $\mathbf{3 z}\left(88 \%\right.$ yield) $\mathrm{R}_{f}=0.4$ (1:9 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 3054, 1699. 1676, 1600, 1498, 1406, 1293, 1111, 1006, 929, 757, 725. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.70-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{dd}$, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta 206.26$, 163.16, 134.32, 133.50, 130.65, 128.35, 127.40, 127.28, 121.25, 105.80, 100.99, 51.99, 46.21, 40.52, 30.30, 30.06, 25.01, 20.01. HRMS (ESI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 266.1545 found: 266.1549 .

General procedure-7: Synthesis of the polycyclic benzocycloheptanones (5a-5m)

Scheme S7: Synthesis of the polycyclic benzocycloheptanones 5a-5m

A mixture of sodium hydride (60% in oil, $10 \mathrm{mg}, 0.28 \mathrm{mmol}$) and TMSOI (46 mg , 0.23 mmol) was placed in an oven-dried flask, and dry DMF (3.0 mL) was added to the mixture. After the hydrogen evolution ceased and the milky solution turned clear, the reaction mixture was stirred for 15 min . Then $\mathbf{4 a}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in dry DMF (1.0 mL), added to the clear solution drop wise over 5-10 min, and stirred at room temperature until 4a disappeared as monitored by TLC. The reaction mixture was quenched using ice water and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate to afford 5a.

Spectral data of all the polycyclic benzocycloheptanones reported in this study

1-Methyl-2-((methylsulfinyl)methyl)-3-phenyl-2,2a,3,4-tetrahydro-1H benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5a).

This compound was isolated as pale-yellow solid by following the general procedure-7. 100
 mg of $\mathbf{4 a}$ afforded 72 mg of $\mathbf{5 a}$ (78% yield), $\mathrm{M} \cdot \mathrm{P}=225-227^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.3$ (9:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3028,2920,1679,1598,1497,1282,1230,1050,750$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.57$ (ddd, $J=8.9,7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.1,6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.6,7.3$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.48 (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (ddd, $J=10.9,4.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.86$ (d, $J=16.3 \mathrm{~Hz}, 5 \mathrm{H}$), $2.43(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{dd}, J=10.5,5.2 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 206.19,142.71,142.69,140.85,139.31,132.75$, 132.08, 128.96 (2C), 128.25, 128.01, 127.94, 127.41 (2C), 27.15, 127.01, 126.54, 118.29, 112.48, 61.27, 49.65, 48.91, 44.75, 39.01, 35.93, 35.17, 34.66,
31.06. HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 442.1841$ found: 442.1832

3-(3,5-Dimethoxyphenyl)-1-methyl-2-((methylsulfinyl)methyl)-2,2a,3,4-tetrahydro-1Hbenzo[$\left.6^{\prime}, 7^{\prime}\right]$ cyclohepta $\left[1^{\prime}, 2^{\prime}: 2,3\right]$ cyclopropa $[1,2-c] q u i n o l i n-5(2 b H)$-one (5b).

This compound was isolated as an off-white solid by following the general procedure-7. 80 mg of $\mathbf{4 b}$ afforded 55 mg of $\mathbf{5 b}\left(74 \%\right.$ yield), M.P $=102-105{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.1$ (10:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2928,2871,2850$,

1679, 1595, 1483, 1362, 1204, 1057, 845, 830, 750. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\mathbf{M H z}$, CDCl $_{3}$): $\delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dt}$, $J=11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.30-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$, $2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{t}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.97,161.12$ (2C), 145.09, 142.75, 140.80, 139.35, 132.77, 132.14, 128.24, 128.08, 127.89, 127.00, 126.56, 118.27, 112.50, 105.24 (2C), 98.69 , 61.57, 55.39, 55.37, 49.64, 48.45, 44.90, 38.95, 35.90, 35.20, 34.97, 30.99. HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 502.2052$ found: 502.2040.

1-Methyl-2-((methylsulfinyl)methyl)-3-(thiophen-2-yl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5c).

This compound was isolated as a reddish-brown solid by following the general procedure-7.
 80 mg of $\mathbf{4 c}$ afforded 55 mg of $\mathbf{5 c}\left(69 \%\right.$ yield), M.P $=190-193{ }^{\circ} \mathrm{C} \cdot \mathrm{R}_{f}=$ 0.3 (4:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2928,2853,1674,1595,1494,1361,1276,1041,963$, 764, 701. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.56$ (ddd, $J=15.2,7.6,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20 (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.6,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (dd, $J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, $J=8.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 1 \mathrm{H})$, 3.34-3.27 (m, 1H), 3.27-3.13 (m, 2H), 2.97 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=12.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $\mathbf{C D O}_{3}$: $\delta 205.33,146.03,142.84,140.62,139.15,132.86,132.09,128.33$, 128.01, 127.94, 127.08 (2C), 126.45, 124.05, 123.65, 118.42, 112.60, 61.30, 50.30, 49.86, 39.96, 39.36, 35.89, 35.74, 34.89, 30.94. HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 448.1405 found: 448.1394 .

7,8-dimethoxy-1-methyl-2-((methylsulfinyl)methyl)-3-phenyl-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5d).
This compound was isolated as a reddish-brown semi-solid by following the general
 procedure-7. 100 mg of $\mathbf{4 d}$ afforded 71 mg of $\mathbf{5 d}$ (76% yield) $\mathrm{R}_{f}=0.3$ (10:0 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2930,2831,1712,1674,1595,1498,1445$, 1265, 1205, 1171, 1035, 884, 747. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ 7.31 (dd, $J=8.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22$ (m, 1H), 7.22-7.18 (m, 2H), 7.13 (s, 1H), 7.07 (ddd, $J=8.5,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (s, 1H), 6.69 (dd, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=$ $7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}$, $3 \mathrm{H}), 2.83(\mathrm{dt}, J=16.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=5.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 4 \mathrm{H}), 1.81(\mathrm{dd}, J=$ $10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 204.49,152.98,148.82,143.02,142.66$,
133.33, 128.93 (2C), 127.80, 127.38 (2C), 127.08, 126.94, 126.88, 118.22, 113.69, 112.38, 110.84, 61.66, 56.24, 56.05, 49.68, 49.08, 44.75, 39.13, 36.06, 36.02, 34.54, 31.02. HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 502.2052$ found: 502.2067.

7,8-dimethoxy-1-methyl-2-((methylsulfinyl)methyl)-3-(naphthalen-1-yl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5b(2bH)-one

 (5e).This compound was isolated as greenish-yellow stick oil by following the general procedure-

7. 80 mg of $\mathbf{4 e}$ afforded 55 mg of $\mathbf{5 e}\left(73 \%\right.$ yield) $\mathrm{R}_{f}=0.2$ (9:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$ 2925, 2850, 1710, 1664, 1597, 1511, 1363, 1263, 1212, 1038, 750. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.91-7.88$ (m, 2H), 7.75 (dd, $J=7.3,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.08$ (ddd, $J=8.3,7.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{td}, J=7.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56-6.47(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.06-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 204.28,153.20,148.90,142.81$, $139.61,133.92,133.69,132.64,130.80,128.99,127.76,127.22,126.94$ (2C), 126.67, 126.09, 125.82 (2C), 123.79, 122.86, 118.33, 113.94, 112.55, 111.06, 61.92, 56.29, 56.08, 49.68, 49.39, 38.47, 37.30, 36.34, 35.93, 35.78, 31.06. HRMS (ESI): m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 552.2209$ found: 552.2200.

3-(2-bromophenyl)-7,8-dimethoxy-1-methyl-2-((methylsulfinyl)methyl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5f).

This compound was isolated as reddish-brown solid by following the general procedure-7. 80
 mg of $\mathbf{4 f}$ afforded 58 mg of $\mathbf{5 f}\left(77 \%\right.$ yield), M.P $=217-219^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.3 (4:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2929,2856,1710,1665,1597,1511,1497$, 1467, 1361, 1262, 1212, 1171, 1035, 874, 751, 731. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.57$ (dd, $\left.J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.16 (s, 1H), 7.11 (ddd, $J=8.0,6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (ddd, $J=8.3$, $7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (s, 1H), 6.70 (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{td}$, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, 3 H), $3.56(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (dt, $J=17.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (s, 3H), 2.81 (dd, $J=18.7$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 203.92,153.05,148.79,142.72,142.32,133.40,133.19,132.51,128.42,128.21$, 128.07, 127.96, 127.01, 126.97, 124.20 118.33, 113.74, 112.50, 110.88, 61.80, 56.22, 56.02, 50.07, 48.63, 42.29 39.23, 36.15, 34.50, 30.67. HRMS (ESI): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 580.1157$ found: 580.1174 .

3-(3-Fluorophenyl)-7,8-dimethoxy-1-methyl-2-((methylsulfinyl)methyl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5g).

This compound was isolated as an off-white solid by following the general procedure-7. 110
 mg of $\mathbf{4 g}$ afforded 72 mg of $\mathbf{5 g}$ (70% yield), M.P $=242-245^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.3 ($8: 2$ EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3004,2960$, 2932, 2915, 2837, 1667, 1598, 1512, 1463, 1362, 1260, 1212, 1176, 1052, 1035, 750. ${ }^{1}$ H NMR (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.30(\mathrm{td}, J=7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.07$ (ddd, $J=8.3,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{td}, J$ $=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=5.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ $(\mathrm{s}, 3 \mathrm{H}), 2.07(\mathrm{dd}, J=12.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : δ $203.87,162.95\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.8 \mathrm{~Hz}\right), 153.09,148.88,145.67\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 142.73$, $133.26,132.61,130.50\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 127.81,127.03,126.86,122.91\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right)$, $118.37,114.32\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.1 \mathrm{~Hz}\right), 113.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.8 \mathrm{~Hz}\right), 113.71,112.53,110.87,61.27$, $56.26,56.06,49.69,48.69,44.37,39.06,35.95,35.75,34.68,30.85 .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta-111.86$. HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{FNO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 520.1958$ found: 520.1971.
(7,8-dimethoxy-3-(4-methoxyphenyl)-1-methyl-2-((methylsulfinyl)methyl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5h).
This compound was isolated as an off-white solid by following the general procedure-7. 100
 mg of $\mathbf{4 h}$ afforded 72 mg of $\mathbf{5 h}\left(77 \%\right.$ yield), M.P $=242-244{ }^{\circ} \mathrm{C}$. $\mathrm{R}_{f}=0.2$ (10:0 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2927,2850,1664,1596,1505$, 1448, 1362, 1211, 1146, 1018, 743. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.11$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 3 \mathrm{H}$), 7.06 (ddd, $J=8.2,7.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=7.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.96 (s, 3H), 3.92 (ddd, $J=10.9,4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (s, 3H), 3.78 (s, 3H), 3.26$3.14(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=5.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, 2.08 (dd, $J=12.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.77(\mathrm{dd}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 204.67,158.64,152.95,148.79,142.67,135.04,133.37,132.90,128.28$ (2C), 127.77, 126.96, 126.90, 118.21, 114.21 (2C), 113.69, 112.37, 110.82, 61.61, 56.23, 56.04, 55.38, 49.71, 49.36, 43.87, 39.18, 36.22, 36.01, 34.57, 30.99. HRMS (ESI): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 532.2158$ found: 532.2172.

1,9-Dimethyl-2-((methylsulfinyl)methyl)-3-phenyl-1,2,2a,2b,3,4-hexahydro-5H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5-one (5i).

This compound was isolated as pale-yellow oil by following the general procedure-7. 75 mg
 of $\mathbf{4 i}$ afforded 49 mg of $\mathbf{5 i}$ (71% yield) $\mathrm{R}_{f}=0.3$ (4:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2960$, 2927, 1676, 1598, 1493, 1270, 1220, 1041,764. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31$ (ddd, $\left.J=7.6,6.3,1.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.25$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.19 (m, 2H), 7.05 (ddd, $J=8.3,7.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (dd, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=10.9,4.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-$ $3.13(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.22$ $(\mathrm{dd}, J=5.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{dd}, J=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.08,142.77,142.66,142.18,139.27,136.08,134.27,128.96$ (2C), 128.28, 127.49 (2C), 127.14, 127.11, 127.03, 125.63, 124.90, 118.27, 112.42, 61.42, 49.53, 48.99, 44.72, 39.17, 36.09, 36.03, 34.61, 29.71, 20.37. HRMS (ESI): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 456.1997$ found: 456.1972.

5-Methyl-6-((methylsulfinyl)methyl)-7-phenyl-6,6a,7,8-tetrahydro-5H

 naphtho[2',1'':6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-9(6bH)-one (5j).This compound was isolated as a pale-yellow solid by following the general procedure-7.
 85 mg of $\mathbf{4 j}$ afforded 53 mg of $\mathbf{5 j}$ (68% yield), M.P $=240-243{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.4 (4:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2927,2853,1709,1676,1597,1495,1453$, 1398, 1274, 1044, 1029, 815, 762, 701. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 8.07(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48$ (ddd, $J=8.3,6.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.03$ (ddd, $J=8.3,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.32-$ $3.26(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=12.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dd}, J=18.5,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.85 (ddd, $J=13.0,10.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (s, $3 \mathrm{H}), 1.91(\mathrm{dd}, J=10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.37$, 142.46, $142.23,138.83,135.59,134.78,131.79,129.22,129.02$ (2C), 128.78, 127.69, 127.52 (2C), $127.43,127.39,127.22,127.19,126.10,125.68,124.42,118.27,112.60,61.26,50.10,49.13$, 44.78, 39.17, 36.35, 36.20, 34.34, 28.96. HRMS (ESI): m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 492.1997found: 492.1982.

7-(3,5-Dimethoxyphenyl)-5-methyl-6-((methylsulfinyl)methyl)-5,6,6a,6b,7,8-hexahydro-9H-naphtho[2' $\left., 1^{\prime \prime}: 6^{\prime}, 7^{\prime}\right]$ cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-9-one (5k).
This compound was isolated as a pale-yellow oil by following the general procedure-7. 80

mg of $\mathbf{4 k}$ afforded 49 mg of $\mathbf{5 k}$ (65% yield), M.P $=240-243{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=$ 0.2 (9:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2927,2854,1666,1595,1504,1447,1360$, $1218,1140,1011,760 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.08$ (dd, $J=$ $8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 1 \mathrm{H})$,
7.59-7.54 (m, 1H), 7.52-7.47 (m, 2H), 7.06 (ddd, $J=8.6,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{ddd}, J=$ $11.0,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=18.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82$ (ddd, $J=13.0,10.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $207.33,161.18$ (2C), 144.79, 142.26, 138.80, 135.58, 134.75, 131.76, 129.24, 128.79, 127.74, $127.43,127.36,127.20,126.10,125.60,124.45,118.23,112.60,105.28$ (2C), $98.90,61.46$, 55.40, 55.36, 50.00, 48.64, 44.97, 38.97, 36.36, 36.19, 29.72, 28.89. HRMS (ESI): m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 552.2209$ found: 552.2200.

1,4-Dimethyl-2-((methylsulfinyl)methyl)-3-phenyl-1,2,2a,2b,3,4-hexahydro-5H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5-one (51).

This compound was isolated as a dark brownish-red semi-solid by following the general
 procedure-7. 75 mg of $\mathbf{4 1}$ afforded 52 mg of $\mathbf{5 l}$ (75% yield), M.P $=212-$ $214{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.4$ (9:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2955,2928,1677,1594,1495,1430$, 1202, 1152, 1053, 835, 735. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.56$ (td, J $=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.07 (dd, $J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{td}, J$ $=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.16(\mathrm{dd}, J=12.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.38-2.23(\mathrm{~m}$, $2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 211.71,142.74,141.71,141.04,138.60,131.84,131.24,128.96$ (2C), $128.20,128.09,127.87,127.16,127.08,126.99,126.96,118.32,112.41,61.56,52.76,51.59$, 49.54, 39.20, 35.91, 34.48, 34.14, 31.62, 17.90. HRMS (ESI): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 456.1997$ found: 456.2000 .

1-Butyl-3-(3,5-dimethoxyphenyl)-2-((methylsulfinyl)methyl)-2,2a,3,4-tetrahydro-1H-benzo[6',7']cyclohepta[1',2':2,3]cyclopropa[1,2-c]quinolin-5(2bH)-one (5m).
This compound was isolated as a yellowish-green solid by following the general procedure-7.
 70 mg of $\mathbf{4 m}$ afforded 47 mg of $\mathbf{5 m}$ (72% yield), M.P $=212-214{ }^{\circ} \mathrm{C}$. $\mathrm{R}_{f}=0.2$ (9:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2955,2928,1677,1594,1495,1430$, 1202, 1152, 1053, 835, 735. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.59-$ 7.51 (m, 2H), 7.47 (ddd, $J=8.1,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=8.6,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.35 (s, 3H), 4.08 (ddd, $J=11.0,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (d, $J=8.4 \mathrm{~Hz}, 7 \mathrm{H}$), 3.36 (ddd, $J=$ $15.9,11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.12(\mathrm{~m}, 3 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=18.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74$ (ddd, $J=13.3,10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=10.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.94,161.12$ (2C), 145.14, 141.50, 140.76, 139.52,
132.76, 132.12, 128.26, 128.18, 128.08, 126.95, 126.43, 117.74, 112.56, 105.23 (2C), 98.76 , $61.65,55.39,55.36,48.50,48.13,47.72,44.95,39.31,35.19,34.83,30.78,28.40,20.24$, 13.97. HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 544.2522$ found: 544.2527.

12-Chloro-1-methyl-2-((methylsulfinyl)methyl)-3-phenyl-1,2,2a,2b,3,4-hexahydro-5Hbenzo[6',7']cyclohepta[$\left.1^{\prime}, 2^{\prime}: 2,3\right]$ cyclopropa[1,2-c]quinolin-5-one (50).
This compound was isolated as pale-yellow oil by following the general procedure-7. 50 mg
 of $\mathbf{7 o}$ afforded 28 mg of $\mathbf{5 o}$ (60% yield), $\mathrm{R}_{f}=0.2$ (4:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 2924,2855,1675,1594,1494,1456,1401,1284$, 1212, 1109, 1045, 1025, 878, 763. ${ }^{1}$ H NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), ~ 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.29$ (m, $3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=$ 8.2, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H})$, 3.25-3.13 (m, 2H), 2.87-2.76 (m, 5H), 2.38 (t, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=11.9, \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=10.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3): δ 206.00, 143.65, 142.47, 140.82, 138.77, 132.79, 132.68, 131.87, 128.99 (2C), 128.89, 128.44, 128.04, 127.38 (2C), 127.23, 124.93, 117.92, 112.50, 61.97, 49.75, 48.89, 44.70, 39.11, 35.99, 35.49, 34.23, 30.71. HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClNO}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 476.1451$ found 476.1446 .

11,12-Dimethoxy-1-methyl-2-((methylsulfinyl)methyl)-3-phenyl-1,2,2a,2b,3,4-

 hexahydro-5H-benzo[$\left.6^{\prime}, 7^{\prime}\right]$ cyclohepta[$\left.1^{\prime}, 2^{\prime}: 2,3\right]$ cyclopropa[1,2-c]quinolin-5-one (5p).This compound was isolated as yellowish-brown oil by following the general procedure-7. 50
 mg of $\mathbf{7 p}$ afforded 34 mg of $\mathbf{5 p}$ (73% yield), $\mathrm{R}_{f}=0.1$ (10:1 EtOAc: Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\max } / \mathrm{cm}^{-1} 3056,2926,2852,1679,1597,1515$, 1455, 1396, 1221, 1026, 765, 735, 701. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.29$ $(\mathrm{s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}$, $J=18.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-$ $2.82(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{dd}, J=10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}$): $\delta 206.24$, 147.88, 142.67, 141.60, 140.85, 139.30, 137.07, 132.60, 131.95, 128.92 (2C), 128.21, 127.80, 127.38 (2C), 127.11, 118.60, 112.48, 98.73, 61.03, 56.42, 56.13, 50.29, 49.00, 44.70, 39.15, 36.39, 35.39, 34.30, 30.55. HRMS (ESI): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 502.2052$ found 502.2051.

General Procedure-8: One-pot synthesis of pyridinium salts and spirannulation

In DMF: In a sealed tube, biaryl enone $\mathbf{6 a}(0.09 \mathrm{~g}, 0.31 \mathrm{mmol})$ or $\mathbf{6 b}(0.084 \mathrm{~g}, 0.24 \mathrm{mmol})$ was dissolved in DMF (2 mL). Then, methyl iodide (1.2 eq .) was added in one portion and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for $3-6 \mathrm{~h}$, and monitored the reaction on TLC. After complete consumption of the starting material, the reaction mixture was added to a suspension of sodium hydride (60% in oil, 1.2 eq) and TMSOI (1.1 eq .) in a dry DMF (2.0 mL) under an N_{2} atmosphere. The reaction mixture was stirred at room temperature until the salt disappeared (by TLC). Then, quenched the reaction mixture using ice water, and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate to afford 3a in 28% and $\mathbf{3 b}$ in 57% yield.
In DCM: In a sealed tube, biaryl enone $\mathbf{6 a}(0.09 \mathrm{~g}, 0.31 \mathrm{mmol})$ or $\mathbf{6 b}(0.084 \mathrm{~g}, 0.24 \mathrm{mmol})$ or $7 f(0.12 \mathrm{~g}, 0.85 \mathrm{mmol})$ or $7 \mathrm{~m}(0.11 \mathrm{~g}, 0.27 \mathrm{mmol})$ was dissolved in DCM (3.0 mL). Then, alkyl iodide was added in one portion; the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for $3-6 \mathrm{~h}$, and monitored the reaction on TLC. After complete consumption of the starting material, the solvent was evaporated and added to a suspension of sodium hydride (60% in oil, 1.2 eq.) and TMSOI (1.1 eq.) in dry DMF (2.0 mL) was added under N_{2} atmosphere. The reaction mixture was stirred at room temperature until the salt disappeared (as monitored by TLC). Then, quenched the reaction mixture using ice water, and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate to afford 6 or 7 .

General Procedure-9: Reaction of 2a with trideuteromethyl sulfoxonium iodide (TDMSOI)

Scheme S8: Reaction of 2a with TDMSOI

To a sealed reaction tube, TMSOI ($0.18 \mathrm{~g}, 0.82 \mathrm{mmol}$) and DMSO- d_{6} (40.0 eq .) were added and stirred at $120^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to room temperature and a suspension of sodium hydride (60% in oil, $36 \mathrm{mg}, 0.9 \mathrm{mmol}$) in dry DMF (1.0 mL), 2a $(0.21 \mathrm{~g}, 0.75 \mathrm{mmol})$ were added drop wise over a period of $5-10 \mathrm{~min}$ and stirred at $60^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was quenched using ice water and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate. The level of deuterium incorporation in bis-spiro indanone product 3a-D was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The metathesis reaction between DMSO- d_{6} and TMSOI yielded the bis-spiro indanone 3a-D with 40% deuterium incorporation.

General procedure-10: To study the role of the pyridinium portion

Scheme S9: Reaction of $\mathbf{6 a}$ with TMSOI.
A mixture of sodium hydride (60% in oil, $16 \mathrm{mg}, 0.42 \mathrm{mmol}$) and TMSOI (85 mg , 0.23 mmol) was placed in an oven-dried flask, and dry DMF (4.0 mL) was added to the mixture. After the evolution of hydrogen ceased and the milky solution turned clear, the reaction mixture was stirred for 15 min . The compound $\mathbf{6 a}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ dissolved in dry DMF (1.0 mL) was added over a period of 5-10 min and stirred at room temperature until the reactant 6a disappeared as monitored by TLC. The reaction mixture was quenched using ice water and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate.

(2-Phenylcyclopropyl)(2-(pyridin-4-yl)phenyl)methanone (8a).

This compound was isolated as a reddish-brown sticky oil by following the general procedure-10. 100 mg of $\mathbf{6 a}$ afforded 84 mg of $\mathbf{8 a}$ (80% yield), $\mathrm{R}_{f}=0.3$ ($8: 2 \mathrm{EtOAc}$:

Hexanes, visualized by 254 nm UV light). IR (thin film, neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 3052, 2925, 1685, 1598, 1498, 1480, 1288, 1044, 720. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 8.55-8.51(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ 7.24 (m, 2H), $7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 2.59$ (ddd, $J=9.1$, $6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=8.1,5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (ddd, $J=9.2,5.3$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 1 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 203.75,149.74(2 \mathrm{C})$, $148.33,140.50,139.65,138.04,131.15,130.08,128.73,128.43$ (2C), 128.36, 126.69, 125.65 (2C), 123.75 (2C), 34.42, 31.92, 21.72. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 300.1388 found: 300.1424 .

To rule out the reaction goes through the initial formation of $\mathbf{8 a}$ and a subsequent base-mediated cyclization on to the pyridinium moiety, a control experiment has been performed with the salt of $\mathbf{8 a}$, Scheme 10. However, the formation of only a trace of $\mathbf{3 a}$ was observed under the optimized condition. This pathway was not preferred possibly because of the high strain associated with the intermediate enolate $\mathbf{8 a} \mathbf{- E}$. This result further validates the proposed mechanism in Scheme 8.

Scheme S10. A control experiment to rule out the intermediacy of $\mathbf{8 a - E}$
${ }^{1} \mathrm{H}$ NMR of the salt of $\mathbf{8 a}\left(\mathbf{4 0 0} \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}\right)$

${ }^{13} \mathrm{C}$ NMR of the salt of $8 \mathrm{a}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }^{6}\right)$

General procedure-11: To study the role of the enone moiety (General procedure-6 was followed)

Scheme S11: Reaction of 9a with trimethylsulfoxonium iodide

4-Phenylpyridine (10).

This compound was synthesized according to the reported literature. ${ }^{3} \mathrm{R}_{f}=0.4$ (4:1 EtOAc: Hexanes, visualized by 254 nm UV light. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{M H z}$,
 $\left.\mathbf{C D C l}_{3}\right): \delta 8.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 150.11,148.44,138.09,129.15$ (3C), 129.12, 127.01 (3C), 121.80.

General procedure 12: Reaction of 2a in the presence of proton sponge

Scheme S12: reaction of 2a in the presence of proton sponge.
A mixture of sodium hydride (60% in oil, $10 \mathrm{mg}, 0.25 \mathrm{mmol}$) and TMSOI (50 mg , 0.23 mmol) was placed in an oven-dried flask, and dry DMF (4.0 mL) was added to the mixture. After the evolution of hydrogen ceased, the reaction mixture was stirred for 15 min . Then, $\mathbf{2 a}(0.90 \mathrm{mg}, 0.21 \mathrm{mmol})$ and proton sponge ($44 \mathrm{mg}, 0.21 \mathrm{mmol}$) were dissolved in dry DMF (1.0 mL) and were added drop wise over a period of $5-10 \mathrm{~min}$ and stirred at room temperature until 2a disappeared (as monitored by TLC). The reaction mixture was quenched using ice water and extracted with diethyl ether. The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate.

[^2]Crystal Structure of 3a (CCDC 2133525): The structure of the 3a was confirmed by single crystal X-ray diffraction analysis.

Crystal data and structure refinement for 3a (major)

Identification code

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$
Formula weight	311.407

Temperature/K 289
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha 1^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
Monoclinic
P21/n
10.4984(6)
13.6723(8)
12.6001(8)

90
108.468(7)

2Θ range for data collection $/{ }^{\circ} 5.06$ to 65.54

Index ranges
Reflections collected
Independent reflections $\quad 5728\left[\mathrm{R}_{\text {int }}=0.0279, \mathrm{R}_{\text {sigma }}=0.0405\right]$
Data/restraints/parameters
5728/0/218
Goodness-of-fit on F^{2} 1.143

Final R indexes $[I>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0623, \mathrm{wR}_{2}=0.1825$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1075, \mathrm{wR}_{2}=0.2261$
Largest diff. peak/hole /e $\AA^{-3} 0.28 /-0.23$

Crystal Structure of 3a' (CCDC 2133527): The structure of 3a' was confirmed by single crystal X-ray diffraction analysis.

Crystal data and structure refinement for 3a' (minor).

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
106.981(5)
$\beta /{ }^{\circ}$
$\gamma{ }^{\circ} \quad 90$
Volume $/ \AA^{3}$
1724.62(15)

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
4
μ / mm^{-1}
1.207

F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation

90
3a' (minor)
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$
313.402

298
monoclinic
P2 ${ }_{1} / \mathrm{c}$
8.2759(4)
18.6849(8)
11.6613(6)

2Θ range for data collection $/{ }^{\circ} 6.74$ to 65.34
Index ranges $\quad-7 \leq h \leq 11,-28 \leq k \leq 23,-17 \leq 1 \leq 11$
Reflections collected
8796
Independent reflections $\quad 5576\left[\mathrm{R}_{\text {int }}=0.0188, \mathrm{R}_{\text {sigma }}=0.0323\right]$
Data/restraints/parameters 5576/0/218
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.211$
Final R indexes $[I>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0577, \mathrm{wR}_{2}=0.1745$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0778, \mathrm{wR}_{2}=0.1994$
Largest diff. peak/hole / e $\AA^{-3} 0.27 /-0.19$

Crystal Structure of 5a (CCDC 2143316): The structure of the 5a was confirmed by single crystal X-ray diffraction analysis.

Crystal data and structure refinement for 5a.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ} \quad 87.476(3)$
$\gamma{ }^{\circ} \quad 74.544(3)$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ 1.283
μ / mm^{-1} 0.167

F(000) 468.0

Crystal size $/ \mathrm{mm}^{3}$
Radiation
88.918(3)

5a
$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$
441.56

293(2)
triclinic
P-1
9.0157(3)
11.1293(4)
11.8264(3)

2Θ range for data collection $/{ }^{\circ} 6.354$ to 54.952

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0743, \mathrm{wR}_{2}=0.1490$
Largest diff. peak/hole / e $\AA^{-3} 0.38 /-0.34$

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of all the new compounds reported in this study ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^4]${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
㐯

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

∞
$\stackrel{\infty}{\alpha}$
$\dot{\sim}$
\vdots
i

$\quad \square$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{-}{\infty}}{\stackrel{+}{\infty}} \stackrel{+}{\mid}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

荡
風登管
$\stackrel{\square}{\circ}$

${ }^{1} \mathbf{H ~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$ ）

${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

镸

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{l}6 S+\varepsilon \text { 'ss } \\ 008 \varepsilon \text { 'cs }\end{array}\right\rangle$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR（ $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）

\qquad

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^6]
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

\section*{${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-20.4385

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

号

n
$\substack{\text { n } \\ \text { en } \\ 1 \\ 1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-17.0645

| 170 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

تا

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

梁

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

黄

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	大号

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm											

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\tilde{\text { an }}$
$\underset{\sim}{n}$
1

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

し

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1\end{array}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$		® ® N N め人 				∞ ¢ ¢ 	$\begin{gathered} \tilde{j} \\ \underset{\sim}{j} \\ \hline \mathbf{m} \end{gathered}$

[^7]

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 \rightarrow h$ a

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^8]${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)
的

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^9]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3h' (Major)
($d r=1: 4$)

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110
 f 1
 (ppm) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\section*{${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H ~ N M R ~ (5 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$)
$\underbrace{\text { ód }}$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
13}\mathbf{C NMR (125 MHz, CDCl}3
NOM
```


${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{3} \mathrm{C}$ NMR $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \text { N} \\ & \stackrel{\sim}{\dot{W}} \\ & \stackrel{\text { ® }}{1} \end{aligned}$					$\begin{gathered} \text { ờ } \\ \stackrel{\alpha}{\infty} \\ \\ 1 \end{gathered}$	\%	¢	$\underset{\substack{N \\ \underset{\sim}{N} \\ \underset{\sim}{n}}}{ }$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllllllllllllllllll}1300 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Un

						$\begin{gathered} \stackrel{\circ}{1} \\ \stackrel{N}{\mathrm{~m}} \\ 1 \end{gathered}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

 $\underbrace{\dot{\mu} \boldsymbol{m} \boldsymbol{m} \boldsymbol{m}} \boldsymbol{\sim}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | C |

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5 g

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$5 i$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

[^10]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

						Hision		N O- 	Hen					${ }^{2}$		Nive		Co mo				
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		3.5	3.0	2.5	2.0	1.5	1.0		

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^11]

\qquad
 \qquad

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & n \sim \omega \omega \\ & \text { nu un } \\ & \text { fin of } \end{aligned}$	$\begin{aligned} & \text { 눙 } \\ & \text { 认iN } \\ & \text { Ho i } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{gathered} \stackrel{N}{\omega} \\ \underset{\sim}{\circ} \end{gathered}$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\substack{\infty \\ \hline}}$	$\begin{aligned} & \text { uo } \\ & \text { io } \\ & \text { coo } \end{aligned}$

0
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

111 II 111

	1	1		1	
PPM	160	120	80	40	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): expansion of $\mathbf{1 . 6 0 - 4 . 0 0} \mathrm{ppm}$ region

	$\stackrel{\rightharpoonup}{\dot{\omega}}$		$\begin{aligned} & N \\ & \hat{0} \\ & \text { ion } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\substack{u}}$	$\underset{\sim}{\stackrel{\rightharpoonup}{\sim}}$	$\stackrel{\rightharpoonup}{\dot{\sim}}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\underset{\sim}{n}}$		$\stackrel{\sim}{\mathrm{o}}$	-	$\stackrel{\stackrel{\rightharpoonup}{A}}{\stackrel{\rightharpoonup}{*}}$
	,	1		1		1		1		1	
PPM		3.6		3.2		2.8		2.4		. 0	

${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1
PPM	160	120	80	40	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
隻
No No

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{1}$ a) Adamczyk-Woźniak, A. A.; Ejsmont, K.; Gierczyk, B.; Kaczorowska, E.; Matuszewska, A.; Schroeder, G.; Sporzyński, A.; Zarychta, B. J. Organomet. Chem. 2015, 788, 36. b) Tseng, N. -W.; Lautens, M. J. Org. Chem. 2009, 74, 1809.

[^1]: ${ }^{2}$ a) Patel, K.; Mishra, U. K.; Mukhopadhyay, D.; Ramasastry, S. S. V. Chem. Asian J. 2019, 14, 4568. b) Diemer, V.; Berthelot, A.; Bayardon, J.; Jugé, S.; Leroux, F. R.; Colobert, F. J. Org. Chem. 2012, 77, 14, 6117.

[^2]: ${ }^{3}$ Feuerstein, M.; Doucet, H.; Santelli, M. Efficient J. Organomet. Chem. 2003, 687, 327-336.

[^3]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^4]:

[^5]: जّ ?

[^6]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^7]:

[^8]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 10 \\ & & & & & & & & & \\ \mathrm{ppm})\end{array}$

[^9]:

[^10]: $\begin{array}{llllllllllllllllllllllllllllllllllll} & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^11]:

