Electronic supplementary information

Photophysical Studies for Cu(I)-Based Halides: Broad Excitation Band and Highly Efficient Single-Component Warm White-Light-Emitting Diode

Shuigen Zhou, Yihao Chen, Kailei Li, Xiaowei Liu, Ting Zhang, Wei Shen, Ming Li, Lei Zhou* and Rongxing He*

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

Corresponding Authors: Lei Zhou, Rongxing He E-mail addresses: zhoulei25@swu.edu.cn (L. Zhou), herx@swu.edu.cn (R. He)

Experimental Section

Materials: Cuprous chloride (CuCl, 99%), cuprous bromide and (CuBr, 99%) and cuprous iodide (CuI, 99%) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd (China). Hypophoaphoeous acid (H₃PO₂, 50 wt.% in H₂O) and acetonitrile (CH₃CN, 99%) were purchased from Beijing Innochem Science & Technology Co., Ltd (China). 1,4-Diaminobenzene (C₆H₈N₂, 99%) were obtained from Shanghai Macklin Biochemical Co., Ltd (China). All reagents and solvents were used without further purification.

Synthesis of DPCu₄X₆ (X=Cl, Br, I) single crystals: DPCu₄X₆ (X=Cl, Br, I) single crystals were prepared by a same facile hydrothermal method. In short, cuprous halide (0.5 mmol) and C₆H₈N₂ (1 mmol) were dissolved in the mixture of acetonitrile (1 mL for DPCu₄Cl₆ and DPCu₄Cl₆; 3 mL for DPCu₄I₆) and hypophoaphoeous acid (1.5 mL) solution at 120 °C with constant stirring for 1 h to form a colorless transparent solution. Then, the crystals were obtained by cooling to room temperature with 5 °C/h. The crystals were filtered off, washed with acetonitrile and dried at 40 °C for 12 h.

Structural and spectroscopy characterization: Single-crystal X-ray diffraction data were collected at 173 K on a Bruker D8 VENTURE diffractometer with Mo Kα radiation, and the structures were resolved and refined by using Shelxt and Olex2. Powder X-ray diffraction (PXRD) data were obtained by using a Bruker D2 PHASER X-ray diffractometer. The hydrogen nuclear magnetic resonance (¹H-NMR) spectra were collected on a Bruker AVANCE III 600 MHz NMR spectrometer. The steady-state photoluminescence excitation (PLE) and emission (PL) spectra, temperature-dependent PL/PLE spectra, time-resolved PL decay profiles, photoluminescence quantum yield (PLQY) data and power density-dependent PL spectra were got from a Horiba Jobin Yvon Fluorolog-3 spectrometer. Thermogravimetric analysis was conducted on a TA instruments Q50 TGA system under nitrogen atmosphere at a heating rate of 10 °C min/h to 600 °C. XPS measurements of the samples were conducted on a Thermo K-Alpha spectrometer equipped with a monochromatic Al Kα

X-ray source.

Computational method: All the first-principles calculations of DPCu₄X₆ (X = Cl, I) were accomplished based on density functional theory (DFT) applying the Vienna *abinitio* simulation (VASP)¹ code. The interaction between electrons is represented by the augmented wave (PAW)² method, the exchange correlation is represented by the Perdew-Burke-Emzerhof (PBE) form of the generalized gradient approximation (GGA)³, and the cutoff energy was set as 400 eV. Structural geometry optimization was carried out energy convergence of 10⁻⁶ eV and the force convergence on each atom was <0.02 eV/Å. In the Brillouin zone, the k-point spacing is set to 0.04 Å⁻¹, resulting in a corresponding Γ -centered k-point grid of 1 × 1 × 1.

WLED fabrication: A WLED was fabricated using a blue-GaN chip (~445 nm, San'an Optoelectronics Co., Ltd, China) as the excitation source and DPCu₄I₆ as the yellow phosphor. The proper amounts phosphor were mixed with resin (leaftop 9300, Shengzhenshi Tegu New Materials CO., Ltd, China), and the obtained mixture was coated on the chip. The PL spectra, CCT, and CIE color coordinates of the device were tested using OHSP-350M LED Fast-Scan Spectrophotometer (Hangzhou Hopoo Light&Color Technology Co., Ltd, China).

Figure S1. Photographs of DPCu₄ X_6 (X = Cl, Br, I) single crystals under ambient light and 365 nm UV light.

Figure S2. Structural information of DPCu₄X₆ (X = Br, I) single crystals. Crystal structure of DPCu₄Br₆ viewed along the (a) *b* axis and (b) *c* axis (Cu, purple; X, pink; P, blue; O, red; C, brown; N, cyan; H, white). Individual Cu(I)-halogen cluster unit for (c) DPCu₄Br₆ and (f) DPCu₄I₆. Crystal structure of DPCu₄I₆ viewed along the (a) *b* axis and (b) *c* axis.

Figure S3. ¹H-NMR spectrum of $C_6H_8N_2Cl_2$ measured in D_2O .

Figure S4. ¹H-NMR spectrum of DPCu₄Cl₆ measured in D₂O.

Figure S5. XPS spectra of (a) $DPCu_4Cl_6$, (b) $DPCu_4Br_6$ and (c) $DPCu_4I_6$ single crystals and the high-resolution spectra of (d) Cu 2p.

Figure S6. Time-resolved PL spectra of $DPCu_4I_6$ single crystals at RT monitored at different excitation wavelengths.

Figure S7. The PLQY of DPCu₄Br₆ single crystals.

Figure S8. Emission-wavelength dependent PLE spectra of (a) DPCu4Cl6 and (b) $DPCu_4Br_6$ crystals at room temperature. Excitation-wavelength dependent PL spectra of (c) DPCu4Cl6 and (d) DPCu4Br₆ crystals at room temperature.

Figure S9. Normalized Excitation-wavelength dependent PL spectra of (a) $DPCu_4Cl_6$ and (b) $DPCu_4Br_6$ crystals at 80 K.

Figure S10. PL spectra of (a) $DPCu_4Cl_6$ and (b) $DPCu_4Br_6$ recorded by varying the excitation power density. Inset shows the plots of PL intensity as a function of excitation power density

Figure S11. Fitting results of the integrated PL intensity as a function of temperature for (a) $DPCu_4Cl_6$ and (b) $DPCu_4Br_6$. Fitting results of the FWHM as a function of temperature for (c) $DPCu_4Cl_6$ and (d) $DPCu_4Br_6$.

Figure S12. Time-resolved PL spectra of $DPCu_4I_6$ single crystals at 80 K monitored at 600 and 700 nm.

Figure S13. Temperature-dependent PLE spectra of $DPCu_4I_6$ single single crystals monitored at 700 nm.

Figure S14. The corresponding CIE diagram of $DPCu_4I_6$ single crystals at room temperature and 80 K.

Figure S15. Temperature-dependent PL spectra of $DPCu_4I_6$ single crystals under 400 nm excitation

Figure S16. PL spectra of DPCu4I6 under 320 nm and 400 nm excitation at 80 K and RT.

Figure S17. Charge densities of the (a) CBM and (b) VBM for $DPCu_4Cl_6$. Charge densities of the (c) CBM and (d) VBM for $DPCu_4I_6$.

Figure S18. PL spectra of DPCu₄I₆ recorded by varying the excitation power density. The inset shows that the integrated broadband PL intensity of DPCu₄I₆ is linearly related to the excitation power.

Figure S19. PL spectra of $DPCu_4Cl_6$ (a) $DPCu_4Br_6$ (b) and at 200 K and 300 K. (c) PL spectra of $DPCu_4I_6$ (c) and at 200 K and 290 K.

Figure S20. (a) Thermogravimetric curves for DPCu₄X₆ (X = Cl, Br, I). (b) PXRD patterns of DPCu₄X₆ (X = Cl, Br, I) before and after exposure to atmospheric environment with \sim 75 % relative humidity (30 days for DPCu₄Cl₆ and two months for DPCu₄Br₆ and DPCu₄I₆).(c) The PL stability of DPCu₄X₆ (X = Cl, Br, I) single crystals at different times within two months.

Chemical formula	$C_{12}H_{26}Cl_3Cu_2N_4O_6P_3$	$C_{12}H_{26}Br_3Cu_2N_4O_6P_3$	$C_{12}H_{26}I_3Cu_2N_4O_6P_3$
Abbreviation	DPCu4Cl6	DPCu ₄ Br ₆	DPCu ₄ I ₆
Formula weight	648.71	782.09	917.01
Temperature/K	173.00	173.00	193.00
Crystal system	orthorhombic	tetragonal	tetragonal
Space group	Ccce	I4 ₁ /acd	P4/m
<i>a</i> /Å	13.6165(6)	13.6690(6)	13.8592(5)
b/Å	25.2859(10)	13.6690(6)	13.8592(5)
<i>c</i> /Å	13.6152(5)	13.6152(5)	13.1579(7)
α/°	90	90	90
β/°	90	90	90
γ/°	90	90	90
Volume/Å3	4687.8(3)	9588.8(11)	2527.3(2)
pcalc(g/cm3)	1.838	2.167	2.410
μ/mm ⁻¹	2.398	7.011	5.572
F(000)	2624.0	6112.0	1720.0
20 range for data collection/°	5.984 to 55.022	4.504 to 55.016	4.268 to 55.198
Independent	2696 [$R_{int} = 0.0357$,	2759 [$R_{int} = 0.0788$,	$3007 (R_{int} = 0.0571,$
reflections	$R_{sigma} = 0.0200]$	$R_{sigma} = 0.0351$]	$R_{sigma} = 0.0369)$
Final R indexes	$R_1 = 0.0271, wR_2 =$	$R_1 = 0.0323, wR_2 =$	$R_1 = 0.1364, wR2 =$
[I>=2σ (I)]	0.0620	0.0797	0.3418
Final R indexes	$R_1 = 0.0319, wR_2 =$	$R_1 = 0.0402, wR_2 =$	$R_2 = 0.1380, wR2 =$
[all data]	0.0645	0.0840	0.3424

Table S1. The crystal structure parameters of $DPCu_4X_6$ (X = Cl, Br, I) single crystals.

Donor	d (D -	d (H	d (D	∠D – H			
HAcceptor	H)/Å	A)/Å	A)/Å	A/°			
DPCu ₄ Cl ₆							
N1H1AO2	0.91	1.83	2.713(2)	163			
N1H1BO3	0.91	1.86	2.769(2)	172			
N1H1C01	0.91	1.87	2.740(2)	160			
N2H2AO3	0.91	1.83	2.738(2)	173			
N2H2BO1	0.91	1.89	2.778(2)	166			
N2H2CO2	0.91	1.96	2.815(2)	155			
С6Н6О2	0.95	2.54	3.289(3)	136			
DPCu ₄ Br ₆							
N1H1AO3	0.91	1.92	2.777(4)	157			
N1H1B01	0.91	1.85	2.755(4)	174			
N1H1C02	0.91	1.84	2.732(4)	165			
N2H2AO3	0.91	1.88	2.769(4)	167			
N2H2BO2	0.91	1.97	2.824(4)	156			
N2H2CO1	0.91	1.81	2.723(4)	175			
C2H2O1	0.95	2.55	3.265(5)	132			
C3H3Br2	0.95	2.88	3.723(4)	149			
С6Н6О2	0.95	2.55	3.303(5)	136			
DPCu ₄ I ₆							
N1H1AO3	0.91	1.92	2.80(2)	162			
N1H1B01	0.91	1.81	2.72(2)	171			
N1H1CO2	0.91	2.01	2.89(3)	162			
N2H2AO2	0.91	1.87	2.73(2)	156			
N1H2BO1	0.91	1.87	2.75(2)	162			

Table S2. Hydrogen-bond geometry in DPCu₄X₆ (X = Cl, Br, I) SCs (Å, $^{\circ}$)

N2H2CO3	0.91	1.97	2.86(2)	168
С0Н0І1	0.96	2.94	3.81(5)	151
С3Н3О1	0.95	2.55	3.26(5)	131
С5Н5О3	0.95	2.47	3.21(6)	135

Compounds	PLE peak (nm)	PL peaks (nm)	FWHM (nm)	PLQY (%)	Ref
(Bmpip) ₂ Cu ₂ Br ₄	320	620	158	48.2	4
(PTMA) ₃ Cu ₃ I ₆	358	614	160	80.3	5
K(18-crown- 6)Cu ₂ Br ₃	375	668	-	53	6
$CsCu_2I_3$	330	550	115	15	7
(R-MBA) ₄ Cu ₄ I ₄	360	630	118	52.8	0
(S-MBA) ₄ Cu ₄ I ₄	360	630	118	59.7	8
(DTA) ₂ Cu ₂ I ₄	320	533	180	60	9
KCB-DMSO	382	678	157	74.8	10
RCB-DMSO	396	688	166	74.5	
((S)-(-)-α- PEA)4Cu4I4	346	635	146	73.6	11
((R)-(+)-α- PEA)4Cu4I4	346	635	145	67.8	11
[KC2] ₂ [Cu ₄ I ₆]	400	545	145	97.8	12
DPCu ₄ Cl ₆	364	612	148	89.76	T I •
DPCu ₄ Br ₆	377	575	123	95.04	I his
DPCu ₄ I ₆	292	575	185	93.52	work

Table S3. A comparison of the PL properties between $DPCu_4X_6$ and other low-energy emissive Cu(I)-based compounds.

Table S4. Summary of the optical properties of some single-component perovskite-based WLED reported in recent years.

Materials	PLQY (%)	CIE	CRI	CCT (K)	Ref
(C ₆ H ₇ ClN)CdCl ₃	12.3	(0.3433, 0.3044)	83.7	5214	13
$BAPPIn_{1.996}Sb_{0.004}Cl_{10}$	44.0		73.9	6206	14
[(NH ₄)(18-crown-6)] ₂ SbCl ₅ ·DMF	37	(0.46, 0.36)	76	2270	15
[Rb(18-crown-6)]2SbCl5·DMF	54	(0.43, 0.34)	74	2513	15
(C ₁₆ H ₃₆ N)CuI ₂	54.3	(0.28 0.30)	78		16
(TTA) ₂ SbCl ₅	68	(0.46, 0.36)	84	2248	17
PA ₆ InCl ₉ :2.5%Sb	99.3	(0.39, 0.41)	86	3983	18
Na4(18-crown- 6)4In2Cu4Br14.8H2O	97.2	(0.37, 0.42)	75	4429	6
(2-FPMA) ₂ PbBr ₄	5	(0.342, 0.361)	89	5139	19
(2-ClPMA) ₂ PbBr ₄	32	(0.300, 0.330)	86	7215	19
(2-BrPMA) ₂ PbBr ₄	15	(0.312, 0.338)	88	6478	19
γ-ΜΡΑΡΒ	6.85	(0.22, 0.23)	85	53281	20
(Ph ₃ MeP) ₂ Cu ₄ I ₆	69	(0.41, 0.39)	88	3500	21
(TPA)CuI ₂	84.4	(0.31, 0.33)	91.3	6574	22
$(C_5H_7N_2)_2HgBr_4\cdot H_2O$	14.87	(0.34, 0.38)	87	5206	23
$(C_5H_7N_2)_2ZnBr_4$	19.18	(0.25, 0.26)	96	11630	23
(C ₈ NH ₁₂) ₆ InBr ₉ ·H ₂ O:0.1%Sb	23.36	(0.400, 0.361)	84	3347	24
[H ₂ DABCO][Ag ₂ Br ₄ (DABCO)]	6.7	(0.28, 0.32)	85	8375	25
[DTHPE] ₂ Pb ₃ Cl ₁₀	19.45	(0.25, 0.29)	81	14300	26
DPCu ₄ I ₆	93.52	(0.36, 0.35)	85	4415	This work

References

- 1 G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15-50.
- 2 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396-1396.
- 4 T. T. Xu, Y. Y. Li, M. Nikl, R. Kucerkova, Z. Y. Zhou, J. Chen, Y. Y. Sun, G. D. Niu, J. Tang, Q. Wang, G. H. Ren and Y. T. Wu, ACS Appl. Mater. Interfaces, 2022, 14, 14157-14164.
- 5 L. Y. Lian, T. J. Zhang, H. Y. Ding, P. Zhang, X. W. Zhang, Y. B. Zhao, J. B. Gao,
 D. L. Zhang, Y. S. Zhao and J. B. Zhang, *ACS Mater. Lett.*, 2022, 4, 1446-1452.
- 6 X. Liu, Y. Li, L. Zhou, M. Li, Y. Y. Zhou and R. X. He, Adv. Optical. Mater., 2022, 10, 2200944.
- 7 L. T. Wang, Z. Z. Ma, F. Zhang, M. Wang, X. Chen, D. Wu, Y. T. Tian, X. J. Li and Z. F. Shi, *J. Mater. Chem. C*, 2021, 9, 6151-6159.
- 8 L. Yao, G. D. Niu, J. Z. Li, L. Gao, X. F. Luo, B. Xia, Y. H. Liu, P. P. Du, D. H. Li,
 C. Chen, Y. X. Zheng, Z. W. Xiao and J. Tang, *J. Phys. Chem. Lett.*, 2020, 11, 1255-1260.
- 9 F. Liu, D. Mondal, K. Zhang, Y. Zhang, K. K. Huang, D. Y. Wang, W. S. Yang, P. Mahadevan and R. G. Xie, *Mater. Adv.*, 2021, 2, 3744-3751.
- 10 Y. Y. Li, Z. C. Zhou, F. K. Sheong, Z. S. Xing, R. Lortz, K. S. Wong, H. H. Y. Sung, I. D. Williams and J. E. Halpert, ACS Energy Lett., 2021, 6, 4383-4389.
- 11 S. F. Fang, H. N. Li, Y. L. Xie, H. X. Li, Y. Wang and Y. M. Shi, *Small*, 2021, 17, 2103831.
- 12 S. Li, J. Xu, Z. G. Li, Z. C. Zeng, W. Li, M. H. Cui, C. C. Qin and Y. P. Du, Chem. Mater., 2020, 32, 6525-6531.
- 13 H. Xu, Z. Zhang, X. Dong, L. Huang, H. Zeng, Z. Lin and G. Zou, *Inorg. Chem.*, 2022, **61**, 4752-4759.
- 14 J. H. Wei, J. F. Liao, L. Zhou, J. B. Luo, X. D. Wang and D. B. Kuang, *Sci. Adv.*, 2021, 7, eabg3989.
- 15 J. Xu, S. Li, C. Qin, Z. Feng and Y. Du, , J. Phys. Chem. C, 2020, 124, 11625-

11630.

- 16 L. Y. Lian, P. Zhang, G. J. Liang, S. Wang, X. Wang, Y. Wang, X. W. Zhang, J. B. Gao, D. L. Zhang, L. Gao, H. S. Song, R. Chen, X. Z. Lan, W. X. Liang, G. D. Niu, J. Tang and J. B. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 22749-22756.
- 17 Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang and R. J. Xie, *Chem. Mater.*, 2019, **31**, 9363-9371.
- 18 S. W. Feng, Y. J. Ma, S. Q. Wang, S. S. Gao, Q. Q. Huang, H. Y. Zhen, D. P. Yan, Q. D. Ling and Z. H. Lin, *Angew. Chem. Int. Ed.*, 2022, **61**, e202116511.
- 19 M. M. Zhang, L. L. Zhao, J. H. Xie, Q. Zhang, X. Y. Wang, N. Yaqoob, Z. M. Yin, P. Kaghazchi, S. Zhang, H. Li, C. F. Zhang, L. Wang, L. J. Zhang, W. G. Xu and J. Xing, *Nat. Commun.*, 2021, **12**, 4890.
- 20 Y. Li, C. Ji, L. Li, S. Wang, S. Han, Y. Peng, S. Zhang and J. Luo, *Inorg. Chem. Front.*, 2021, 8, 2119-2124.
- 21 P. Fu, S. Geng, R. Mi, R. Wu, G. Zheng, B. Su, Z. Xia, G. Niu, J. Tang and Z. Xiao, *Energy Environ. Mater.*, e12518. https://doi.org/10.1002/eem2.12518.
- 22 L. Lian, S. Wang, H. Ding, G. Liang, Y. B. Zhao, H. Song, X. Lan, J. Gao, R. Chen, D. Zhang and J. Zhang, *Adv. Optical. Mater.*, 2022, **10**, 2101640.
- 23 A. Yangui, R. Roccanova, T. M. McWhorter, Y. T. Wu, M. H. Du and B. Saparov, *Chem. Mater.*, 2019, **31**, 2983-2991.
- 24 Z. Y. Li, G. M. Song, Y. Li, L. Wang, T. L. Zhou, Z. S. Lin and R. J. Xie, J. Phys. Chem. Lett., 2020, 11, 10164-10172.
- 25 C. Sun, Y.-H. Guo, Y. Yuan, W. X. Chu, W. L. He, H. X. Che, Z. H. Jing, C. Y. Yue and X. W. Lei, *Inorg. Chem.*, 2020, **59**, 4311-4319.
- 26 J. Q. Zhao, C. Sun, M. Yue, Y. Meng, X.-M. Zhao, L.-R. Zeng, G. Chen, C. Y.Yue and X. W. Lei, *Chem. Commun.*, 2021, 57, 1218-1221.