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1 Data

1.1 NMRShiftDB

The majority of experiments run were trained and evaluated using data from
the NMRShiftDB1. We selected molecules with at most 128 atoms (including
protons) and with only atoms H, C, O, N, F, S, P and Cl. Below are histograms
showing the distribution of observed experimental shifts of the protons and
carbons for our selected molecules from NMRShiftDB, as well as the distribution
of the size of the selected molecules in terms of number of atoms.
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Figure 1: Distribution of measured experimental shifts for all protons in NMR-
ShiftDB in ppm.
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Figure 2: Distribution of measured experimental shifts for all carbons in NMR-
ShiftDB in ppm.
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Figure 3: Distribution of number of atoms in the molecules for each molecule
in NMRShiftDB.
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1.2 GDB-17

For experiments studying the effects of stereoisomers, we used data from GDB-
172, which contains multiple stereoisomers of the same molecules for some
molecules. Due to the size of the entire GDB-17 dataset, we selected a more
manageable subset to use in our experiments. We also applied the same size and
atom restrictions as in our selections from NMRShiftDB. Below are histograms
showing the distribution of observed shifts of the protons and carbons for our
selected molecules from our subset of GDB-17 and the size of the molecules.
From this GDB-17 subset, we created unique data for multiple stereoisomers of
some molecules, and so also included is a histogram showing the distribution of
the number of stereoisomers per molecule.
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Figure 4: Distribution of calculated ab initio shifts for all protons in chosen
subset of GDB-17 in ppm.
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Figure 5: Distribution of calculated ab initio shifts for all carbons in chosen
subset of GDB-17 in ppm.
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Figure 6: Distribution of number of atoms in the molecules for each molecule
in selected GDB-17 subset.
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Figure 7: Distribution of number of stereoisomers per molecule for chosen subset
of GDB-17.

1.3 Ab Initio Data

For each molecule in NMRShiftDB, we generated simulated results using DFT
(for details see Section 4). In Figure 8, we compare these ab initio values on
proton shifts to our experimental data. We note that ab initio data is imperfect,
with a strong tendency to report smaller than experimental values. However,
these errors to be most prevalent in protons which are not bonded to carbons,
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which is seen easily when coloring the values accordingly. Figure 8 shows that
the majority of ab initio errors are made on protons bonded to either nitrogens
or oxygens (with other non-carbon options removed from the plot for simplicity).
We examine the effect this has on our trained models in Section 3.4
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Figure 8: Ab initio data compared to experimental data for 1H shift predictions,
marked by the atom to which the proton is bonded. Ab initio is noticeably more
reliable in its measurements of shifts for protons bonded to carbons.
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2 Methods

2.1 Featurization

Below we describe how a molecule is featurized. This process generates feature
vectors for each atom (collected in x) and for each pair of atoms (collected in
symmetric matrices Gadj and Gfeat). The tables below detail each element of
these feature vectors.

2.1.1 Atoms

Table 1: Features per Atom

Feature Description Number of Elements
Atomic Number One hot encoded from {H, C, O, N, F, P, S, Cl} 8
Valence Int and one hot encoded from 1-6 7
Aromaticity Whether atom is in aromatic structure, determined by RDKit 1
Hybridization One hot encoded from {s, sp, sp2, sp3, sp3d, sp3d2, UNSPECIFIED} 7
Formal Charge Presence of net charge, one hot encoded from {-1, 0, 1} 3
Default Valence Valence of atom on periodic table, one hot encoded from 1-6 6
Rings Whether the atom is in a ring of size N for N from 3-8 6
Chirality** One hot encoded from RDKit ChiralTypes 9
Electronegativity** Fixed value according to atomic number 1
MMFF Atom Types** Atom type from RDKit’s MMFFMolProperties, one hot encoded 51
Total 99

**Coupling model only features. Note: RDKit ChiralTypes: {UNSPECIFIED,
Tetrahedral CW, Tetrahedral CCW, OTHER, Tetrahedral, Allene, Square Pla-
nar, Trigonal Bipyramidal, Octahedral}. MMFF Atom Types selected: [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 37, 38, 39, 40, 42, 43, 44, 46, 48, 59, 62, 63, 64, 65, 66, 70, 71,
72, 74, 75, 78].
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2.1.2 Atom Pairs

Table 2: Features per Atom Pair

Feature Description Number of Elements

Gadj

Bonded Do atoms share any bond 1
Bond Type One-hot encoding of bond type from [1,1.5,2,3] (or all zeros if no bond) 4

Gfeat

Distance min(d−n/4, 2) for mean distance between atoms d and n from 4-39 36
Conf Gauss Average value of a Gaussian on distance given by set of conformers 20
R Gauss Set of Gaussians evaluated on mean distance d 26
Angle Gauss Set of Gaussians evaluated on mean angle a (in radians) 33

Total 120

Conf Gauss parameters: σ = 0.2, µ evenly chosen 20 times from 0.3-
10. R Gauss parameters: σ = 0.2, µ = n/4 for n from 2-27. Angle
Gauss paramters: σ = 0.1 and µ from [0,1,3] and σ = 0.01 and µ from
[1.70,1.72,1.74,1.76,1.78,1.80,1.82,1.84,1.87,1.89,1.91,1.93,1.95,1.97,1.99,2.01,2.03,
2.05,2.07,2.09,2.11,2.13,2.16,2.18,2.20,2.22,2.24,2.26,2.28,2.30]

2.1.3 ETKDG

ETKDG3 is used to create the conformers from which the features above draw
their distances and angles. This is done using RDKit’s4 EmbedMultipleConfs
function, with maxAttempts set to 20. The molecule has all stereo and chiarlity
tags set before being passed to the embedding function. If the embedding fails
to generate the required number of conformers (50 throughout the paper), the
molecule is considered invalid. The molecule is then run through MMFFOPti-
mizeMoleculeConfs to use RDKit’s MMFF94 optimization on each conformer.

2.2 Hyperparameter Selection

The graph neural network architecture depends on the selection of a set of hy-
perparameters, or variables which are set for each experiment and not changed
during training. Our model contains hyperparameters which control the num-
ber of layers, the size of hidden layers, the normalization functions used, the
optimizer, learning rate and learning schedule used, dropout, as well as the
number of bootstraps and the percentage of data each bootstrap sees. These
hyperparameters were tested and modified over time based on empirical results
to improve performance and avoid overfitting. For example, increasing the num-
ber of message passing layers improves performance up to between 6-8 layers,
at which point overfitting reduces test set performance. Hyperparameters are
not shared between models for predicting proton, carbon and coupling values.
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2.3 Train Test Split

For each of our experiments, we split the datasets into train and test datasets.
This was done using the Morgan fingerprint of each molecule, which can be
converted into an integer5. The train/test split was then done by selecting
molecules by the final digit of their fingerprint. In most experiments, the test
molecules were those with final digits 0 or 1. This technique also allowed for
easy cross-validation, which was done by averaging the error on five experiments,
which used (0,1), (2,3), (4,5), (6,7) and (8,9) as their selections for the test set,
respectively. Only the molecules in the train datasets were presented to the
model during its training loops. All results presented throughout are based on
the model’s performance on test datasets.
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3 Additional Results

3.1 Full Coupling Results

In Figure 9 we present scatterplots for all coupling types reported by our model.
Different nuclei and longer range couplings are not included in the training data
for our models, so our model does not report predictions for those coupling
types. The choice of which coupling types to include was based on their relative
importance and impact in expected use cases such as structure elucidation. In
Figure 10, we present scatterplots for 3JHH coupling predictions for the small
set of experimental coupling values referenced previously6–8.
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Figure 9: Comparison of predicted and ab initio scalar coupling values in Hz
for all reported coupling types.
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Figure 10: Comparison of predicted and experimental scalar coupling values in
Hz for 3

JHH coupling values on three small experimental datasets.
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3.2 BMRB Shifts

With the exception of the small coupling datasets, all of our previous results
have evaluated our models using the same datasets they were trained on, using
the train/test splits as described earlier. Here, we will evaluate our default
proton and carbon shift models on a small subset of data from the BMRB9.
Figure 11 shows scatterplots of the experimental and predicted values for 100
molecules, chosen to ensure they were valid for our model and not in the training
set. They can be found on https://bmrb.io in the metabolomics dataset, by
the IDs listed below (i.e. ID 1 corresponds to bmse000001):

BMSE IDs: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108
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Figure 11: Comparison of predicted and experimental 1H and 13C shifts on 100
molecules from the BMRB9.
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3.3 Quantified Uncertainty

Here, we examine two more results regarding the uncertainty quantification
provided by our model. The first is a closer look at the exact breakdown of
errors when sorted according to the quantified uncertainty. Similar to the plots
showing the mean and 95th percentile error, the x-axis in Figure 12 refers to
the fraction of predictions with lower uncertainty. The y-axis is the error in
the prediction (in Hz or ppm). This plot emphasizes the outliers in the error,
especially when the error is much higher than others with similar uncertainties.
It also once again demonstrates the difference between experimental and ab
initio tasks’ error distributions, with ab initio tasks having less variance in the
error distributions.

Then, o further illustrate the effectiveness of our bootstrapping method for
uncertainty quantification, we compare to a simpler method. In Figure 13, we
once again present our 1H shift predictions sorted according to the uncertainty
value produced by our bootstrapping method. We also present these predictions
sorted according to what percentage of the training data is near the predicted
value. We call this the ”Data Seen” sorting method. For the below figures,
the exact value is derived by measuring what percentage of the training data is
within 0.3 ppm of the predicted value. We expect that if our predicted value lies
near many training data points, then our model should produce more accurate
results. We observe a small correlation here, especially in the ab initio data,
however the bootstrapping method far and away outperforms the Data Seen
method, especially in identifying the very most accurate results.
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Figure 12: An Improvement Factor chart, similar to those in the DP4 paper10,
showing the improvement factor for each molecule, with correct structures in
blue and decoys in green.
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Figure 13: Rolling mean average error of predictions sorted using bootstrapping
and a simple comparison to the training data set, on both experimental and
ab initio prediction tasks. Our bootstrapping method produces uncertainty
values that reliably correlate with accuracy far beyond what the simple method
produces.
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3.4 Effects of Ab Initio Errors

In Section 1.3, we saw that there are systematic errors in the ab initio data we
generated, especially related to the identity of the molecule to which a proton is
bonded. Here, we examine whether this effects persists in the models we build.
In Figure 14, we look at four models’ predictions of proton shift values com-
pared to the experimental values, similarly to Figure ??. Our default model, in
the top left of Figure 14, is trained only on experimental data, so it does not
learn any noticeable systematic errors. However, when we train a model using
ab initio data, we learn the systematic errors that are present in that data. The
bottom two models were parts of the disagreement regularization experiments,
where we use both ab initio and experimental data to train a model. In the ab
initio baseline model, we added in ab initio data for the unobserved small ring
molecules, but do not treat this data differently. In the disagreement regular-
ization model, we add in all of the ab initio data and then predict two channels
for the two data types. Both of these models perform similarly in Figure 14,
however, we can see differences when we move to Figure 15.

In Figure 15, we look only at the predictions made on the small ring molecules,
which is a much smaller dataset, and one for which none of the models shown
were provided experimental training data. This includes the top left plot, which
is now the experimental control, which was trained on only big ring experimen-
tal data. In the top right and bottom left, we can see that the systematic
error persists for both models that were provided ab initio training data but
were not trained using disagreement regularization. However, we see that this
is corrected by the disagreement regularization model in the bottom right. This
gives us hope that the disagreement regularization model is capable of learn-
ing about systematic differences between the different datasets it was trained on.
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Figure 14: Predictions from different models compared to experimental data for
1H shift predictions, marked by the atom to which the proton is bonded.
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Figure 15: Predictions from different models compared to experimental data for
1H shifts in small ring molecules, marked by the atom to which the proton is
bonded.
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3.5 Full DP4 Results

As noted in the main text, our calculations are less reliable in finding the cor-
rect structure from the candidates than the original DP4 work was. We found
the correct structure 45% of the time for those molecules with all 8 candidate
structures, which is clearly better than random guessing, but not the most infor-
mative measure. To see how those predictions break down, we have charted the
improvement factor for each candidate structure in Figure 16. The improve-
ment factor was introduced in the original DP4 paper10, and is equal to the
probability assigned to a structure times the number of candidate structures, as
this gives the ratio between our assigned probability and a uniformly assigned
probability. In the chart, the improvement factor for correct structures are plot-
ted in blue, which we would like to be as high as possible, with the incorrect
structures plotted in green. Note that the cutoffs we used are slightly different
than in the original paper, because we have a maximum of 8 structures, so there
is a maximum improvement factor of 8. Figure 16 reinforces that our model of-
ten does very well, with about half of incorrect structures having improvement
below 0.1, and over half of correct structures having improvement greater than
1. There are still outliers in the correct and incorrect structures, but the overall
shape of the chart is promising.
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Figure 16: An Improvement Factor chart, similar to those in the DP4 paper10,
showing the improvement factor for each molecule, with correct structures in
blue and decoys in green.
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3.6 Multi Shift Models

Our model is designed to use three separate neural networks to predict 1H, 13C
and coupling values. However, it can predict all three simultaneously. Doing so
tends to reduce performance, however, so our default is to use models trained
separately on only one of the three. In Figure 17, we compare four models
trained to for simultaneous 1H and 13C prediction (multi shift models). These
models have an extra hyperparameter, HL, which weights the losses for these
two types of predictions. Figure 17 demonstrates that increasing HL improves
performance on 1H shifts at the cost of performance on 13C shifts, and vice
versa, however we lose performance on both compared to the individual models.
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Figure 17: Performance of Multi Shift Models with different weights. Weighting
the loss function trades off performance between the two types of shifts, but
performance degrades compared to the two separate models.
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3.7 Training Set Size

We also examined the effect of the total quantity of training data by training
five additional models with varying amounts of 1H training data. Note that all
models were tested on identical 1H testing sets, yielding the results in Figure 18.
More training data unsurprisingly improves performance, but it is encouraging
to see that the uncertainty quantification is as valuable with less training data.
We also see a plateau of the improvement in performance, which holds up even
for the top 10 and top 50 percent most confident predictions.
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Figure 18: Performance of Multi Shift Models with different weights. Weighting
the loss function trades off performance between the two types of shifts, but
performance degrades compared to the two separate models.
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4 Ab Initio Simulation

Ab initio simulations were performed by identifying low-energy conformers gen-
erated from parallel tempering and performing gas-phase geometry optimization
using the Orca software package at the B3LYP/6-31g level of theory. Isotropic
shielding and coupling constants were then calculated via GIAO (again with
Orca) at B3LYP/6-311g using a implicit (SMD) chloroform solvent model and
Boltzmann-weighted with the final DFT energies. Shields were converted to
shifts via standard linear scaling procedures referenced to a small experimental
dataset.
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