Supporting Information

Direct Hydrogen Selenide (H₂Se) Release from Activatable Selenocarbamates

Turner D. Newton,^{1,#} Keyan Li,^{1,#} Jyoti Sharma,² Pier Alexandre Champagne,² and Michael D. Pluth^{1,*}

¹ Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA.

² Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, 07103, USA.

These authors contributed equally to this work.

*Corresponding author

e-mail: pluth@uoregon.edu

Table of Contents

1.	NMR Spectra	S4
2.	Full computational details	S14
3.	Estimation of free energies of protonation of anionic species	S15
4.	Transition state structures of COSe, HSe ⁻ , and H ₂ O release from selenocarbamate tautomers	S16
5.	Protonation of 3a for the release of COSe	S17
6.	Release of aniline and carbon dioxide from phenyl isocyanate	S18
7.	Energy, thermochemical correction, and ω B97X-D single-point refinements of all structures	S20
8.	XYZ coordinates for all the computed structures.	S22
9.	Mass spectra	S27
10.	References	S30

NMR Spectra

Figure S1. ¹H NMR (600 MHz, CDCl₃) spectrum of 4-nitrophenyl isoselenocyanate.

Figure S2. ¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 4-nitrophenyl isoselenocyanate.

Figure S3. ⁷⁷Se NMR (115 MHz, CDCl₃) spectrum of 4-nitrophenyl isoselenocyanate.

Figure S4. ¹H NMR (600 MHz, CDCl₃) spectrum of 4-fluorophenyl isoselenocyanate.

Figure S6. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 4-fluorophenyl isoselenocyanate.

Figure S7. ⁷⁷Se NMR (115 MHz, CDCl₃) spectrum of 4-fluorophenyl isoselenocyanate.

Figure S8. ¹H NMR (600 MHz, DMSO-d₆) spectrum of PhotoSeCM.

Figure S9. ¹³C{¹H} NMR (151 MHz, DMSO-d₆) spectrum of PhotoSeCM.

Figure S10. ¹⁹F NMR (564 MHz, DMSO-d₆) spectrum of PhotoSeCM.

Figure S11. ⁷⁷Se NMR (115 MHz, DMSO-d₆) spectrum of PhotoSeCM.

Figure S12. ¹H NMR (600 MHz, DMSO-d₆) spectrum of PNA-MeGKSeCM.

Figure S13. ¹³C{¹H} NMR (151 MHz, DMSO-d₆) spectrum of PNA-MeGKSeCM.

Figure S14. ⁷⁷Se NMR (115 MHz, DMSO-d₆) spectrum of PNA-MeGKSeCM.

Figure S15. ¹H NMR (600 MHz, DMSO-d₆) spectrum of PNA-Me₂GKSeCM.

Figure S16. ¹³C{¹H} NMR (151 MHz, DMSO-d₆) spectrum of PNA-Me₂GKSeCM.

Figure S17. ⁷⁷Se NMR (115 MHz, DMSO-d₆) spectrum of PNA-Me₂GKSeCM.

Figure S18. ³¹P NMR (242 MHz, MeCN-d₃) spectrum of H₂Se trapping mixture after treatment with PPh₃, showing Se=PPh₃ formation. "*" denotes trace O=PPh₃ byproduct and "•" denotes residual PPh₃.

Figure S19. ¹H NMR (500 MHz, MeCN-d₃) spectrum of H₂Se trapping mixture. "*" denotes DMF.

nitroaniline treated with [NBu4][SeH] to produce *p*-phenylenediamine (bottom).

[NBu ₄][SeH]					
and <mark>ung pada</mark> na na pada pada pada ka	nd finising dianakan diana yana pasa aka manaka na dian	indenistikan kantikan kantikan kanta	n de regeladistichen en de service de la company	nyddyddynaugigaranwdaln	lligeniprisisioner/turalepipi/ki/ki/
[NBu ₄][SeH] + PNA					
-	un haddaadda sidda shina diinaadda shaasaa	international and include and an analysis and and	h na shiinii dha ka	ulituuraikaleineikaineikaneite	a sin faifun sina sina an a
		· · · · · · · · · · · · · · · · · · ·			
50 550 450	350 250	150 50 δ(ppm	-50 -150 -	250 -350	-450 -550

Figure S21. ⁷⁷Se NMR (115 MHz, MeCN-d₃) spectra of [NBu4][SeH] (top) and [NBu4][SeH] treated with *p*-nitroaniline (bottom).

Full computational details

Gaussian 16 was used to perform Density Functional Theory (DFT) calculations,¹ where geometry optimizations were conducted with the ω B97X-D² method using the aug-cc-pVDZ basis set.³ Following this, single-point energy refinements were performed using the ω B97X-D functional and the aug-cc-pV(T+d)Z basis set. The SMD implicit solvation model for water was used at all stages to consider solvation effects.⁴ By default, Gaussian 16 request an "ultrafine" pruned (99,590) grid for numerical integrations, eliminating most orientation-specific issues.⁵ Frequency calculations were performed at the optimization level to confirm stationary points as minima or first-order saddle points and obtain corrections for zero-point energy, enthalpy, and free energy at a standard state of 1 atm pressure and 298 K temperature using Goodvibes v2.0.3.⁶ Grimme's scheme for the treatment of small frequencies was applied, setting frequencies below 100 cm⁻¹ to 100 cm⁻¹.⁷ The final free energies were computed by adding the free energy corrections obtained from the frequency analysis to the single-point electronic energies. CYLview was used to prepare visualizations of the computed structures.⁸

Estimation of free energies of protonation of anionic species

The free energy of protonation of the anionic species was evaluated using two methods. In the first method, the free energy of reaction for using water and forming hydroxide was evaluated using the energies of the isolated species. For species that have a known pK_a in water, the free energy of deprotonation was computed from the pH of the solution using the following relationship:⁹

$$\Delta G_{deprot} = -RT \ln \left(10^{(pH-pK_a)} \right) = RT \left(pK_a - pH \right) \ln(10)$$

For phenylcarbamic acid (PhNCO₂H), which has a known pK_a of 4.62, we compute that the free energy of protonation of **4b** at pH 8 and 298.15 K is 4.6 kcal/mol, which is the value shown in Figure 8 for the transformation of **4b** to **5a**. For the same transformation, using an isolated water and forming an isolated hydroxide in DFT calculations, a value of 26.4 kcal/mol is obtained. This large difference can be caused by the fact that this hypothetical reaction does not consider explicit solvation of water and hydroxide, and that it represents the maximum basicity of one hydroxide molecule without hydrogen bonding.

For *p*-nitrophenylcarbamic acid that has a pK_a of 1.2, at pH 8 the protonation of the carbamate has a reaction free energy of 9.3 kcal/mol.

The difference between the pK_{a} - and DFT-computed values for protonation of **4b** (21.7 kcal/mol) allow us to crudely estimate the pK_{a} of species for which no data in water exists. For instance, for anilide protonation with an isolated water has a reaction energy of -5.1 kcal/mol (shown in Figure 8). By comparison with the phenylcarbamic acid, this free energy difference at pH 8 should be -26.8, giving a pK_{a} of anilide at 27.7, in line with its pK_{a} in DMSO (30.6). Due to the obvious limitations of this method considering the approximations, we prefer to use the DFT-computed value in Figure 8.

Transition state structures of COSe, HSe⁻, and H₂O release from selenocarbamate tautomers

The potential energy diagrams for path 1 and path 2 are presented in the main text. Path 2, in the presence of an explicit water molecule (TS1'), is higher in free energy than TS1 by 0.8 kcal/mol and as such presents no free energy benefit.

Path 1

Path 2

Path 3

Scheme S1. Competing pathways for H₂Se, COSe and H₂O release.

Figure S22. TSs for selenocarbamate 3 associated with paths 1 and 2.

Figure S13. Potential energy surface (PES) for path 3

Protonation of 3a for the release of COSe

The protonation of **3a** to form **3a** \cdot **H** was studied using an isolated water molecule (**Figure S24**). For the most stable protonation to **3a** \cdot **H** (**SeH**), the reaction energy is 29.4 kcal/mol, which amounts to 7.7 kcal/mol at pH 8 if estimated based on the difference found for phenylcarbamic acid (see above). This energy difference gives an estimated p*K*_a of 2.4 for **3a**, less basic than dithiocarbamates.¹⁰ For a *p*-nitroselenocarbamate, this p*K*_a would go down to -1.0, by comparison to the carbamate. The zwitterionic **3a** \cdot **H** (**NH**₂) is 11.9 kcal/mol higher in free energy than **3a** \cdot **H** (**SeH**), and so sits at 19.6 kcal/mol (assuming the pH 8 correction). The TS for elimination of COSe and aniline is then 2.4 kcal/mol higher in free energy.

Figure S24. Protonation of **3a** and subsequent elimination of COSe and aniline. Free energies (in kcal/mol) represent the protonation from water forming hydroxide (top value), and the estimated value at pH 8 considering the free energy difference found for phenylcarbamic acid (italics, see above).

Release of Aniline and carbon dioxide from phenyl isocyanate.

We have designed several reaction pathways to investigate the ultimate product synthesis of aniline and carbon dioxide, as presented in Scheme S1. The associated activation and reaction energies are depicted in Table S7. According to our computational analysis, the lowest energy barrier associated with the hydroxy anion (OH⁻) attacking phenylisocyanate is 11.0 (TS3) The resulting product **4a** generates a CO₂ by tautomerization to **4b**, ultimately leading to cleavage and formation of the anilide anion and CO₂ via two potential transition states, namely **TS4** and **TS4**' (in the presence of explicit water). Our calculations show that **TS4** exhibits a lower activation barrier compared to **TS4**' because of the presence of a water molecule that causes entropy loss. A more reasonable pathway for the generation of aniline and CO₂ is from **5b** via **TS5**. As shown in the main text, this pathway has a lower free energy requirement, especially if the protonation free energy for **4b** is computed for pH 8 using the experimental pK_a .

Scheme S2. Possible routes for elimination of aniline and carbon dioxide. All free energies are presented relative to **3a** (0.0 kcal/mol).

Figure S25. TSs for formation of aniline and carbon dioxide from phenylisocyanate.

Energy, thermochemical correction, and ωB97X-D single-point refinements of all structures.

All thermochemical corrections were obtained using the optimization level of theory (ω B97X-D/aug-cc-pVDZ/SMD(H₂O)) at the standard state of 1 atm and 298.15 K, using Grimme's quasiharmonic corrections. Single-point energy refinements were obtained at the ω B97X-D/aug-cc-pV(T+d)Z/SMD(H2O) level of theory.

Table S1. Energies (E), enthalpies (H), quasi-harmonic-corrected free energies (G), and single-point energies (SPE) of ground state structures (in hartrees).

Structure	Ε	Н	G	ωB97X-D SPE
CO ₂	-188.546602	-188.531463	-188.555723	-188.593854
COSe	-2514.89787	-2514.885722	-2514.91346	-2514.998045
H ₂ O	-76.431113	-76.405966	-76.427396	-76.451362
HSe anion	-2402.336637	-2402.327787	-2402.3504	-2402.408145
4a	-475.62769	-475.499254	-475.541304	-475.733479
4b	-475.652788	-475.52362	-475.565807	-475.759062
PhNCO	-399.640514	-399.528349	-399.568091	-399.731905
PhNCSe	-2725.997707	-2725.887861	-2725.930744	-2726.143671
anilide anion	-287.03412	-286.923955	-286.959143	-287.096895
hydroxide	-75.933259	-75.92112	-75.940672	-75.951852
Se dianion	-2401.851633	-2401.849272	-2401.867826	-2401.921936
Aniline	-287.550379	-287.426114	-287.461889	-287.60687
5a	-476.109994	-475.967169	-476.009425	-476.219023
5b	-476.098169	-475.955331	-475.998049	-476.207155

Table S2. Energies (E), enthalpies (H), quasi-harmonic-corrected free energies (G), and singlepoint energies (SPE) of ground state selenocarbamate tautomers and protonated selenocarbamic acids (in hartrees)

Structure	Ε	Н	G	ωB97X-D SPE
3a	-2802.01661	-2801.88896	-2801.933372	-2802.176284
3b	-2801.9824	-2801.860318	-2801.90598	-2802.141503
3c	-2801.993725	-2801.866674	-2801.911302	-2802.152839
3a·H (NH ₂)	-2802.449046	-2802.308503	-2802.353868	-2802.610748
3a·H (SeH)	-2802.462951	-2802.326296	-2802.37214	-2802.625342

Table S3. Energies (E), enthalpies (H), quasi-harmonic-corrected free energies (G), and singlepoint energies (SPE) of transition states from selenocarbamate tautomers and protonated forms (in hartrees).

Structure	Ε	Н	G	ωB97X-D SPE
TS-1	-2801.932923	-2801.810191	-2801.856201	-2802.094787
TS-2	-2801.971713	-2801.850984	-2801.896926	-2802.132687
TS 3c	-2801.923198	-2801.800754	-2801.84721	-2802.084566
TS 3a·H (NH ₂)	-2802.439642	-2802.302	-2802.347971	-2802.60338

Table S4. Energies (E), enthalpies (H), quasi-harmonic-corrected free energies (G), and singlepoint energies (SPE) of transition state structures involve in aniline and carbon dioxide formation (in hartrees).

Structure	Ε	Н	G	ωB97X-D SPE
TS3	-475.573896	-475.448979	-475.492655	-475.682445
TS3'	-475.567214	-475.442539	-475.487092	-475.675612
TS4	-475.58492	-475.459385	-475.503414	-475.694604
TS4'	-552.032775	-551.880527	-551.930483	-552.16165
TS5	-476.092429	-475.952107	-475.995693	-476.203636

XYZ coordinates for all the computed structures.

All structures were optimized at the ω B97X-D/aug-cc-pVDZ/SMD(H₂O) level of theory.

Imaginary frequencies are provided for all transition structures.

Gr	ound states	structures		С	-1.152950	-1.175206	-0.000068
CC	\mathbf{D}_2			Н	0.738359	-2.198370	0.000943
С	0.000000	0.000000	0.000000	Н	0.871023	2.126890	0.001080
Ο	0.000000	0.000000	1.162953	Н	-1.583447	2.192975	0.000023
Ο	0.000000	0.000000	-1.162953	Н	-2.932722	0.080138	-0.000899
				Н	-1.716144	-2.112109	0.000075
CC)Se			Ν	2.392750	-0.136380	-0.000541
С	0.000000	0.000000	-1.020765	Н	2.773687	0.811298	-0.000833
Ο	0.000000	0.000000	-2.178358				
Se	0.000000	0.000000	0.692690	An	iline		
				С	-1.17008	1.20292	0.00360
H_2	0			С	0.22327	1.20835	-0.00465
Η	-0.000000	-0.759193	-0.474324	С	0.93819	-0.00010	-0.01006
Ο	0.000000	0.000000	0.118581	С	0.22324	-1.20839	-0.00463
Η	0.000000	0.759193	-0.474324	С	-1.17023	-1.20281	0.00367
				С	-1.88034	0.00003	0.00671
HS	e anion			Н	-1.70673	2.15268	3 0.00963
Se	0.000000	0.000000	0.042123	Н	0.76923	2.15324	-0.00664
Η	0.000000	0.000000	-1.432196	Н	0.76893	-2.15342	-0.00651
				Н	-1.70693	-2.15255	5 0.00971
Ph	NCO			Н	-2.97014	0.00004	0.01368
С	1.637275	1.386013	0.000048	Ν	2.33270	0.00007	-0.08094
С	0.284600	1.054395	0.000173	Н	2.76632	-0.83761	0.28870
С	-0.091432	-0.292569	0.000153	Н	2.76616	0.83716	0.29019
С	0.873870	-1.300120	-0.000113				
С	2.224871	-0.955132	-0.000193	4 a			
С	2.611326	0.385399	-0.000162	С	-2.04802	-1.27113	-0.27608
Η	1.930198	2.435855	0.000094	С	-0.69260	-0.98718	-0.43418
Η	-0.478132	1.833207	0.000272	С	-0.19326	0.31261	-0.22035
Η	0.563462	-2.344154	-0.000158	С	-1.11173	1.31163	0.14813
Η	2.978489	-1.742558	-0.000351	С	-2.46732	1.02437	0.30799
Η	3.668172	0.650982	-0.000209	С	-2.94735	-0.26982	2 0.09916
Ν	-1.446445	-0.674501	0.000585	Н	-2.40660	-2.28626	5 -0.45414
С	-2.504895	-0.091863	0.000209	Н	-0.00766	-1.77716	5 -0.74306
Ο	-3.593846	0.346429	-0.000554	Н	-0.74808	2.32800	0.30727
				Н	-3.15378	1.82137	0.59803
An	ilide anion			Н	-4.00721	-0.49438	3 0.22054
С	0.235081	-1.227917	0.000466	Ν	1.14417	0.66354	-0.44689
С	1.047535	-0.045010	0.000114	С	2.08568	-0.06233	0.11532
С	0.310024	1.187787	0.000474	0	3.37791	0.29931	-0.24579
С	-1.079759	1.222697	-0.000024	О	2.02907	-1.00078	3 0.95037
С	-1.843267	0.046622	-0.000396	Н	3.30585	1.02658	-0.87693

4h			
C	2 02142	1 32009	-0.05728
C	0.65499	1.03543	-0.08808
C C	0.05499	-0.29657	-0.03631
C	1 17818	-0.27037	-0.03031
C C	1.1/010	-1.32030	0.04013
C	2.33013	-1.02191	0.00721
C II	2.9/303	0.30453	0.02094
H	2.34068	2.36233	-0.09916
H	-0.06/09	1.84215	-0.15413
H	0.84772	-2.35974	0.07814
H	3.25969	-1.83577	0.12727
Н	4.03686	0.53976	0.04345
Ν	-1.12563	-0.69021	-0.08000
С	-2.30493	0.05895	0.01766
0	-3.37385	-0.62286	-0.04927
0	-2.23869	1.30903	0.16193
Н	-1.28152	-1.68795	-0.12254
50			
Sa C	2 09100	1 21045	0.02000
C C	2.08190	1.31043	-0.03900
C	0.71138	1.04398	-0.00074
C	0.27031	-0.28282	-0.030//
C	1.20001	-1.32404	0.02585
C	2.56838	-1.04316	0.05022
C	3.016/2	0.2/901	0.02011
H	2.41577	2.34790	-0.06617
H	0.00123	1.86203	-0.11/24
H	0.85982	-2.35860	0.05116
Н	3.28287	-1.86519	0.09469
Н	4.08339	0.50052	0.04110
Ν	-1.08899	-0.66554	-0.06160
С	-2.18683	0.12849	0.01616
0	-3.37436	-0.51743	-0.01358
0	-2.18829	1.34826	0.10800
Н	-1.24956	-1.66534	-0.09765
Η	-3.28143	-1.47717	-0.08499
5h			
C	-2 20606	1 20946	-0 11530
C	-0 87284	1 21522	0.2016/
C	-0.07204	_0 00001	0.27104
C	-0.22032	-0.00001 -1.21528	0.70900
C	2 20502	1 20057	0.29140
C	-2.20393 2 87186	-1.2093/	-0.11333
	-2.0/100	-0.00000	-0.319/2
п	-2./2498	2.13432	-0.2/191

Н	-0.33993	2.15221	0.45385
Н	-0.33971	-2.15224	0.45343
Н	-2.72477	-2.15463	-0.27235
Η	-3.91415	-0.00008	-0.63750
Ν	1.16965	-0.00000	0.88064
С	2.24942	0.00006	-0.30381
0	3.38730	-0.00028	0.15817
0	1.75361	0.00044	-1.42185
Н	1.38935	-0.81973	1.45411
Η	1.38929	0.81969	1.45420
Se_o	dianion		
Se	0.000000	0.000000	0.000000
Gro taut	und states st omers	tructures of	salenocarbate
39			

Ja			
С	1.121662	0.504674	-0.036884
0	0.916706	1.720390	-0.141648
Se	2.878223	-0.263707	0.015612
Ν	0.099095	-0.403496	0.049422
Η	0.391396	-1.370774	0.092916
С	-1.293314	-0.195505	0.024650
С	-2.095598	-1.346779	-0.039345
С	-1.906687	1.063396	0.076774
С	-3.481902	-1.242471	-0.054457
Η	-1.620539	-2.328222	-0.077039
С	-3.300272	1.152173	0.058742
Η	-1.305993	1.964622	0.132746
С	-4.097023	0.010944	-0.007334
Η	-4.085332	-2.149074	-0.104791
Η	-3.764152	2.138163	0.100213
Η	-5.183482	0.094073	-0.020505

3b

С	1.453743	1.030876	0.025394
0	2.572282	1.603817	0.048342
Se	1.702713	-0.969958	-0.030035
Ν	0.282645	1.583342	0.028698
С	-0.907656	0.843773	0.018092
С	-1.509673	0.435658	1.218994
С	-1.553958	0.543589	-1.191285
С	-2.711206	-0.271682	1.207729
Η	-1.019116	0.672087	2.163849
С	-2.755827	-0.163668	-1.198872

Η	-1.098291	0.863655	-2.128937
С	-3.340727	-0.578184	-0.000538
Η	-3.158829	-0.586394	2.151392
Η	-3.238371	-0.393939	-2.149704
Η	-4.280000	-1.131242	-0.007913
Η	0.297424	-1.401691	-0.072194
3c			
С	-1.378644	0.873480	0.000084
Ο	-2.481455	1.686694	0.000196
Se	-1.730540	-0.998740	-0.000105
Ν	-0.259915	1.495332	0.000144
С	0.949427	0.777371	0.000075
С	1.579166	0.448415	-1.207675
С	1.578979	0.447827	1.207764
С	2.807198	-0.212447	-1.204952
Η	1.096232	0.711577	-2.149203
С	2.807011	-0.213033	1.204909
Η	1.095898	0.710529	2.149344
С	3.428224	-0.547312	-0.000055
Η	3.282938	-0.465799	-2.153178
Η	3.282603	-0.466848	2.153085
Η	4.389146	-1.061841	-0.000106
Η	-3.265579	1.122872	0.000135
3a ·	H (NH ₂)		
C	1.10342	0.00029	-0.43925
O õ	0.56736	0.00072	-1.51842
Se	2.87376	-0.00012	2 0.07714
Ν	0.11096	0.00005	0.78888
Н	0.35419	-0.81929) 1.35578
C	-1.30581	-0.00003	3 0.45385
C	-1.95484	-1.21678	3 0.28370
C	-1.95505	1.21666	0.28412
C	-3.30503	-1.21033	-0.06226
Н	-1.41372	-2.1526	9 0.42156
С	-3.30525	1.21010	-0.06185
Н	-1.41411	2.15263	3 0.42231
С	-3.97864	-0.00013	-0.23476
H	-3.83089	-2.1549:	-0.19571
Н	-3.83127	2.15467	7 -0.19496
Н	-5.03453	-0.00020	0 -0.50387
Н	0.35403	0.81932	1.35593
•			
3a.	H (SeH)	0 =1 10	0.010 0 -
C	-1.05993	0.51406	o 0.01937

0	-0.91227	1.72470	0.09903
Se	-2.83275	-0.30099	-0.00695
Ν	-0.06718	-0.40324	-0.05594
Η	-0.35124	-1.37532	-0.09884
С	1.33135	-0.19490	-0.02878
С	2.12908	-1.34654	0.02485
С	1.93422	1.06714	-0.06327
С	3.51510	-1.23798	0.04757
Η	1.65517	-2.32873	0.04881
С	3.32727	1.15936	-0.03783
Η	1.33171	1.96790	-0.11091
С	4.12468	0.01815	0.01813
Η	4.12132	-2.14280	0.08968
Η	3.78938	2.14632	-0.06453
Η	5.21075	0.10395	0.03745
Η	-3.48586	1.01177	0.05371

Transition states structures TS1

Ima	Imaginary frequency: -253.99 cm ⁻¹				
С	-2.133579	0.642670	0.007095		
0	-2.757294	1.624120	0.021119		
Se	-1.680152	-1.032795	-0.142013		
Ν	0.040034	1.833819	0.560721		
Η	-0.156984	2.392147	-0.271872		
С	1.091040	1.026221	0.287247		
С	1.753232	0.956281	-0.979003		
С	1.583675	0.127877	1.283566		
С	2.812398	0.085474	-1.211751		
Η	1.409856	1.614016	-1.782140		
С	2.642364	-0.739575	1.036986		
Η	1.107765	0.135540	2.266989		
С	3.278970	-0.777260	-0.210724		
Η	3.284907	0.075977	-2.196969		
Η	2.980635	-1.403456	1.836186		
Н	4.108493	-1.459003	-0.398247		

TS1'

Imaginary frequency: -275.70 cm ⁻¹			
С	1.402901	1.461480	0.169552
0	2.538591	1.818659	0.266044
Se	1.592616	-1.118150	-0.188516
Ν	0.192328	1.754018	0.126313
С	-0.931034	0.916457	0.097382
С	-1.280787	0.149623	1.215204
С	-1.740707	0.891610	-1.043076

С	-2.420167	-0.653068	1.178765
Η	-0.655143	0.186045	2.106342
С	-2.878960	0.087320	-1.071222
Η	-1.468604	1.498818	-1.905990
С	-3.222381	-0.689178	0.037069
Η	-2.682844	-1.251869	2.051124
Η	-3.500678	0.067900	-1.966602
Η	-4.113264	-1.316588	0.012378
Η	3.043379	-0.980054	-0.402286

TS2

Ima	Imaginary frequency: -243.42 cm ⁻¹			
С	1.402901	1.461480	0.169552	
0	2.538591	1.818659	0.266044	
Se	1.592616	-1.118150	-0.188516	
Ν	0.192328	1.754018	0.126313	
С	-0.931034	0.916457	0.097382	
С	-1.280787	0.149623	1.215204	
С	-1.740707	0.891610	-1.043076	
С	-2.420167	-0.653068	1.178765	
Η	-0.655143	0.186045	2.106342	
С	-2.878960	0.087320	-1.071222	
Η	-1.468604	1.498818	-1.905990	
С	-3.222381	-0.689178	0.037069	
Η	-2.682844	-1.251869	2.051124	
Η	-3.500678	0.067900	-1.966602	
Η	-4.113264	-1.316588	0.012378	
Η	3.043379	-0.980054	-0.402286	

TS 3c

105	L			
Imaginary frequency: -315.87 cm ⁻¹				
С	1.14418	-0.20972	-0.03588	
0	0.71355	1.67186	1.23685	
Se	2.91422	-0.15983	-0.13669	
Ν	0.05279	-0.67599	-0.22552	
С	-1.30844	-0.37933	-0.16357	
С	-1.78689	0.82234	-0.69759	
С	-2.18289	-1.30951	0.40286	
С	-3.15151	1.09572	-0.64073	
Н	-1.09093	1.52625	-1.15073	
С	-3.54470	-1.01944	0.45866	
Η	-1.79194	-2.24490	0.80079	
С	-4.03252	0.18049	-0.06133	
Н	-3.52775	2.03098	-1.05475	
Н	-4.22805	-1.73923	0.90873	
Η	-5.09893	0.40079	-0.01904	

Η	-0.24714	1.73413	1.27194

TS 3a·H (NH₂)

15 5a 11 (111	.12)		
Imaginary fre	equency:	-304.30 cm ⁻¹	

С	-1.28409	0.00028	0.62609
0	-0.55669	0.00067	1.54128
Se	-2.92323	-0.00007	-0.05975
Ν	0.02044	-0.00027	-1.02462
Η	-0.24951	-0.83405	-1.53936
С	1.36814	-0.00018	-0.60745
С	2.01884	-1.21153	-0.35563
С	2.01886	1.21129	-0.35626
С	3.32486	-1.20640	0.13037
Η	1.50063	-2.15225	-0.54494
С	3.32488	1.20641	0.12974
Н	1.50065	2.15192	-0.54605
С	3.98379	0.00006	0.37494
Н	3.83056	-2.15346	0.31961
Н	3.83059	2.15355	0.31849
Н	5.00505	0.00016	0.75507
Н	-0.24947	0.83320	-1.53987

TS3

ID	5		
Im	aginary frequ	uency: -223.	06 cm^{-1}
С	2.433530	0.875254	0.520216
С	1.112665	1.296550	0.369040
С	0.182333	0.459125	-0.251698
С	0.583212	-0.789562	-0.742081
С	1.905022	-1.201338	-0.587155
С	2.835292	-0.373502	0.045018
Η	3.152407	1.531265	1.011465
Η	0.795237	2.272200	0.735773
Η	-0.143894	-1.429408	-1.240628
Η	2.210199	-2.176165	-0.968058
Η	3.868709	-0.699175	0.162270
Ν	-1.129387	0.923769	-0.428970
С	-2.225844	0.395545	-0.273850
0	-3.393640	0.242785	-0.357155
0	-1.860057	-1.310344	1.289894
Η	-0.904632	-1.397062	1.363121

TS3'

Im	aginary frequ	ency: -277.	83 cm^{-1}
С	-2.553782	-1.158879	0.047830
С	-1.170720	-1.331417	0.058868
С	-0.326514	-0.218123	0.004913

С	-0.875818	1.068381	-0.063761
С	-2.260219	1.230728	-0.076508
С	-3.105605	0.121353	-0.020275
Η	-3.203466	-2.033276	0.091662
Η	-0.735461	-2.329016	0.110259
Η	-0.227225	1.943480	-0.109973
Η	-2.679473	2.235561	-0.132014
Η	-4.187208	0.254325	-0.030665
Ν	1.069698	-0.463714	0.011931
С	1.915633	0.432913	0.057980
0	2.515007	1.443255	0.128013
0	3.794479	-0.933447	-0.114204
Η	3.331215	-1.773275	-0.177532

TS4

чю	•				
Imaginary frequency: -114.79 cm ⁻¹					
С	2.104621	1.252844	-0.220894		
С	0.867073	0.906861	-0.750452		
С	0.314295	-0.406324	-0.601564		
С	1.130629	-1.326319	0.136007		
С	2.367702	-0.965190	0.657848		
С	2.881856	0.328449	0.492066		
Η	2.476758	2.269871	-0.368222		
Η	0.288231	1.650562	-1.303399		
Η	0.760093	-2.344483	0.284921		
Η	2.947154	-1.710173	1.209123		
Η	3.852423	0.606259	0.903044		
Ν	-0.896104	-0.701326	-1.124371		
С	-2.711754	0.305473	0.396322		
0	-2.140220	1.288004	0.664785		
0	-3.443391	-0.595757	0.259387		
Η	-1.109575	-1.675501	-0.904237		

TS4'

Imaginary frequency: -191.67 cm ⁻¹					
С	2.248310	-1.088771	0.774268		
С	0.950916	-0.977344	0.285006		
С	0.553786	0.111138	-0.545639		
С	1.567175	1.070378	-0.840356		
С	2.861463	0.944931	-0.345900		
С	3.226316	-0.133604	0.469673		
Η	2.504710	-1.941410	1.407177		
Η	0.209425	-1.738037	0.537041		
Η	1.310646	1.922785	-1.474666		
Η	3.602964	1.705351	-0.601578		
Η	4.241505	-0.227047	0.855314		

Ν	-0.727459	0.193690	-0.993611
С	-2.302667	0.767492	0.764416
0	-1.763131	0.248912	1.665600
Ο	-3.044671	1.357829	0.074970
Η	-1.672048	-1.139241	-1.039620
0	-2.260507	-1.972634	-1.041188
Η	-2.354439	-2.193107	-0.108955
Н	-0.835867	1.016706	-1.583316

TS5

Imaginary frequency: -316.81 cm⁻¹

	0 7 1	2	
С	-2.226862	-1.199514	0.196353
С	-0.928169	-1.222062	-0.309375
С	-0.277019	-0.020903	-0.598479
С	-0.919042	1.198588	-0.372366
С	-2.217720	1.212058	0.133700
С	-2.877137	0.015375	0.420478
Η	-2.733207	-2.139480	0.416681
Η	-0.416667	-2.169618	-0.482648
Η	-0.400499	2.132041	-0.594081
Η	-2.716914	2.165953	0.304987
Η	-3.892281	0.029503	0.816458
Ν	1.069477	-0.037200	-1.043490
С	2.439652	0.015362	0.453620
0	3.470128	-0.015666	-0.139012
0	1.792703	0.060601	1.447588
Н	1.304943	0.772944	-1.612233
Η	1.303421	-0.883849	-1.556922

Mass Spectra

Figure S26. Mass spectrum (EI-MS) of 4-nitroformanilide. Actual mass: m/z 227.9438 ([C₇H₄N₂O₂Se]⁻), calculated 227.9434.

Figure S27. Mass spectrum (ESI-MS) of PhotoSeCM. Actual mass: m/z 352.9842 ([C₁₄H₁₀FN₂O₃Se]⁻), calculated 352.9841.

Figure S28. Mass spectrum (ESI-MS) of PNA-MeGKSeCM. Actual mass: m/z 329.0038 ([C₁₂H₁₃N₂O₄Se]⁻), calculated 329.0041.

Figure S29. Mass spectrum (ESI-MS) of PNA-Me₂GKSeCM. Actual mass: m/z 345.0351 ([C₁₃H₁₆N₂O₄Se]⁺), calculated 345.0354.

Figure S30. Mass spectrum (API-MS) of the crude product mixture after irradiation products of PhotoSeCM showing *p*-fluoroisocyanate formation. Actual mass of *p*-fluoroisocyanate (bottom) : $m/z \ 138.0388 \ ([C_7H_5FNO]^+), calculated mass (top) \ 138.0355.$

References

- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- 2. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10* (44), 6615-6620.
- Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K., Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. *The Journal of Chemical Physics* 2001, *114* (21), 9244-9253.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *The Journal of Physical Chemistry B* 2009, *113* (18), 6378-6396.
- 5. Bootsma, A. N.; Wheeler, S., Popular integration grids can result in large errors in DFTcomputed free energies. **2019**.
- 6. Funes-Ardoiz, I.; Paton, R. S., GoodVibes version 2.0. 3. O O NH4++ formation of heterocycles containing CN bonds O O NH3+-H 2018.
- 7. Grimme, S., Supramolecular binding thermodynamics by dispersion-corrected density functional theory. *Chemistry–A European Journal* **2012**, *18* (32), 9955-9964.
- 8. Legault, C., CYLview, 1.0 b. Université de Sherbrooke 2009
- 9. Watt, S. K. I.; Charlebois, J. G.; Rowley, C. N.; Keillor, J. W., A mechanistic study of thiol addition to N-acryloylpiperidine. *Org. Biomol. Chem.* **2023**, *21* (10), 2204-2212.

 Humeres, E.; Sun Lee, B.; Debacher, N. A., Mechanisms of Acid Decomposition of Dithiocarbamates. 5. Piperidyl Dithiocarbamate and Analogues. J. Org. Chem. 2008, 73 (18), 7189-7196.