SUPPORTING INFORMATION

Stereoselective Alkyl C-Glycosylation of Glycosyl Esters *via* Anomeric C-O Bonds Homolysis: Efficient Access to C-Glycosyl Amino Acids and C-Glycosyl Peptides

Anrong Chen, ^{[+] [a]} Shiyin Zhao, ^{[+] [a] [b]} Yang Han, ^{[+] [a]} Zhenghong Zhou, ^[a] Bo Yang, ^[a] Lan-Gui Xie^{*[b]}, Maciej A. Walczak^{*[c]}, and Feng Zhu^{*[a]}

^aFrontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

^bSchool of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China ^cDepartment of Chemistry, University of Colorado, Boulder, CO 80309, United States

* xielg@njnu.edu.cn
*maciej.walczak@colorado.edu
* fzchem@sjtu.edu.cn

⁺*These authors contributed equally*

Table of Contents

1. General Information	S 3
2. General Procedures	S4
3. Additional Reaction Optimization Conditions	S7
4. Detailed Experimental Procedures for the Coupling of Glycosyl Esters with Chiral Dehydroala	nines S8
5. Detailed Experimental Procedures for Preparation of Glycosyl 4-Formate-1,4- dihydropyridine	S31
6. Detailed Experimental Procedures for Dehydroalanine Derivatives	S45
7. Synthetic Applications and Transformation	S51
8. Mechanistic Studies	S54
9. Computational Details	S56
10. References	S72
11. Copies of 1D and 2D NMR spectra	S74

1. General Information

Commercially available materials were used as received without further purification unless otherwise noted. All reactions were carried out under anhydrous N₂ in oven-dried glassware. Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆(95% purity) were purchased from Leyan, Anhydrous CH₃CN (99.5% purity), anhydrous 1,4-dioxane (99.5% purity) were purchased from Adamas. Aldrich® Micro Photochemical Reactors (6 W blue LED strips) were purchased from Sigma-Aldrich. Visualizations were performed with UV light and/or Hanessian stain and/or sulfuric acid stain (5% H₂SO₄ in MeOH). Column chromatography was performed on silica gel (200-400 mesh). Automated column chromatography was performed on a Biotage Selekt using Silicycle high-resolution SiO₂ cartridges unless otherwise noted. ¹H and ¹³C NMR spectra were recorded on Bruker 400/500 MHz instruments and were reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. The residual solvent reference peaks were used from published literature. 2D NMR experiments were performed using standard parameters (200 and More NMR Experiments, S. Berger, S. Braun, Wiley-VCH, 2004). High-resolution mass spectra (HR-MS) were recorded on a Waters Micromass Q-Tof Premier mass spectrometer. Optical rotations were measured on JASCO P-1030 and were reported as average of five data points. Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm. Thin layer chromatography was used to monitor reaction progress and analyze fractions from column chromatography.

2. General Procedures

2.1 General Procedure for the Coupling of Glycosyl Esters with Chiral Dehydroalanines Procedure A:

Glycosyl esters (1.50 equiv), chiral dehydroalanines (1.00 equiv), 4CzIPN (2.5 mol%) were added to a onedram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3×). Anhydrous CH₃CN (3.00 mL) were added, and the reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h, cooled to rt, filtered through a pad of Celite®, and concentrated. It is worth noting that the upper edge of the heating block submerges up 1/3 of the reaction mixture. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

Procedure B:

Glycosyl esters (1.50 equiv), chiral dehydroalanines (1.00 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.0 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3×). Anhydrous 1,4-dioxane (3.00 mL) were added, and the reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h or 20 h, cooled to rt, filtered through a pad of Celite®, and concentrated. It is worth noting that the upper edge of the heating block submerges up 1/3 of the reaction mixture. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

Procedure C:

Glycosyl esters (1.00 equiv), chiral dehydroalanines (1.50 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.0 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3×). Anhydrous 1,4-dixoane (3.00 mL) were added, and the reaction mixture was stirred at 85 °C for 10 h under 6W blue LED irradiation, cooled to rt, filtered through a pad of Celite®, and concentrated. It is worth noting that the upper edge of the heating block submerges up 1/3 of the reaction mixture. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

Reaction Set-up for the Radical Addition of Glycosyl Esters with Chiral Dehydroalanines:

2.2 General Procedure D for Preparation of Glycosyl 4-Formate-1,4-dihydropyridine¹

In a round bottom flask, carboxylic acid **S1**, EDCI (EDCI = 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride) and DMAP (DMAP = 4-dimethylaminopyridine) (0.100 equiv) were added to a solution of protected-furanose or -pyranose (1.00 equiv) in DCM (0.200 M) at 0 °C. After stirring for 30 minutes, the resulting yellow reaction mixture was warmed up to rt and stirred for 12 h to 18 h. After solvent removal *in vacuo*, the residue was purified by flash column chromatography to afford the corresponding glycosyl ester. Replacing EDCI with DIC (DIC = *N*, *N*'-diisopropylcarbodiimide) resulted in higher conversion to the ester in a shorter time.

2.3 General Procedure for Preparation of Dehydroalanine Derivatives General Procedure E:²

HCTU (*O*-(6-Chlorobenzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate) (1.07 g, 2.61 mmol, 1.50 equiv) was added to a solution of 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² (0.500 g, 1.74 mmol, 1.00 equiv) in anhydrous DCM:DMF (16:4). The solution was cooled to 0 °C and stirred under N₂ for 0.5 h, then glycine methyl ester (1.74 mmol, 1.00 equiv) and DIPEA (*N*,*N*-Diisopropylethylamine) (0.454 mL, 2.61 mmol, 1.50 equiv) was added. After stirring at rt for another 16 hours, the crude material was quenched with water, extracted with EtOAc (3 × 20.0 mL) and washed with 1.0 M HCl solution (2 × 20.0 mL), sat. aq. NaHCO₃ solution (2 × 20.0 mL) and brine (20.0 mL). The organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography on SiO₂.

General Procedure F:³

2-(Di(tert-butoxycarbonyl)amino)acrylic acid² (5.00 mmol, 1.00 equiv) was dissolved in anhydrous DCM

(10.0 mL), then glycine methyl ester (6.00 mmol, 1.20 equiv), HATU (2-(7-Aza-1*H*-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (3.80 g, 10.00 mmol, 2.00 equiv), and DIPEA (1.75 mL, 10.00 mmol, 2.00 equiv) were subsequently added. After stirring for 4 h, the mixture was diluted with DCM (10.0 mL) and washed with brine (20.0 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on SiO₂.

3. Additional Reaction Optimization Conditions

Entry	Catalyst	17a (equiv)	18 (equiv)	Solvent	Time	Temperature	Yield
1	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (2.0 mol%)	1.50	1.00	MeCN (2.0 mL)	10 h	85 °C	52%
2	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)	1.50	1.00	DMSO (2.0 mL)	10 h	85 °C	ND
3	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (2.0 mol%)	1.50	1.00	Dioxane (2.0 mL)	10 h	85 °C	69%
4	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)	1.50	1.00	DMA (2.0 mL)	10 h	85 °C	7%
5	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.0 mol%)	1.50	1.00	DMF (2.0 mL)	10 h	85 °C	9%
6	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)-	1.50	1.00	THF (2.0 mL)	10 h	85 °C	33%
7	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.0 mol%)-	1.00	1.50	Dioxane (2.0 mL)	10 h	85 °C	36%
8	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)-	1.50	1.00	Dioxane (2.0 mL)	10 h	60 °C	35%
9	$\label{eq:lr} \begin{split} Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6 \\ (2.0 \ mol\%)- \end{split}$	1.50	1.00	Dioxane (2.0 mL)	10 h	75 °C	63%
10	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)-	1.50	1.00	Dioxane (2.0 mL)	10 h	100 °C	60%
11	Ir(ppy) ₃	1.50	1.00	Dioxane (2.0 mL)	10 h	85 °C	ND
12	Ru(bpy) ₃ Cl ₂	1.50	1.00	Dioxane (2.0 mL)	10 h	85 °C	NR
13	9,10-Diphenylanthracene	1.50	1.00	Dioxane (2.0 mL)	10 h	85 °C	NR
14	4CzIPN (2.0 mol%)-	1.50	1.00	Dioxane (2.0 mL)	10 h	85 °C	7%
15	4CzIPN (2.0 mol%)	1.50	1.00	MeCN (2.0 mL)	10 h	85 °C	64%
16	4CzIPN (2.5 mol%)	1.50	1.00	MeCN (2.0 mL)	10 h	85 °C	70%
17	Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.0 mol%)	1.50	1.00	Dioxane (1.0 mL)	10 h	85 °C	54%
18	Ir[dF(CF3)ppy]2(dtbbpy)P F6 (2.0 mol%)	1.50	1.00	Dioxane (3.0 mL)	10 h	85 °C	80%
19	4CzIPN (2.5 mol%)	1.50	1.00	MeCN (2.0 mL)	20 h	85 °C	82%
20	4CzIPN (2.5 mol%)	1.50	1.00	MeCN (3.0 mL)	20 h	85 °C	85%
21	4CzIPN (2.5 mol%)	1.50	1.00	MeCN : H ₂ O=2:1 (3.0 mL)	20 h	85 °C	78%

4. Detailed Experimental Procedures for the Coupling of Glycosyl Esters with Chiral Dehydroalanines

(2S,4S)-2-(tert-butyl)-4-(((3aR,4S,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-Benzvl dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl)-5-oxooxazolidine-3-carboxylate (19a). According to the general procedure A, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) **19a** (90.8 mg, 85%, d.r. >20:1) as a colorless oil: $[\alpha]_D^{25} = +16.6$ (c = 0.740, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.42 - 7.30 \text{ (m, 5H)}, 5.54 \text{ (s, 1H)}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.77 \text{ (dd, } J = 6.0, 3.7 \text{ Hz}, 3.7 \text{ Hz})$ 1H), 4.57 (d, J = 6.0 Hz, 2H), 4.54 - 4.45 (m, 1H), 4.45 - 4.36 (m, 1H), 4.14 - 4.01 (m, 2H), 3.83 (dd, J = 7.7, 3.7 Hz, 1H), 2.06 – 1.87 (m, 2H), 1.50 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H), 1.33 (s, 3H), 0.94 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 155.8, 135.7, 128.8, 128.7, 112.9, 109.3, 96.4, 85.1, 80.7, 80.6, 80.5, 73.4, 68.4, 67.1, 54.0, 37.2, 33.9, 27.0, 26.2, 25.3, 24.9, 24.8; HRMS (ESI) m/z calcd for C₂₈H₃₉O₉NNa [M + Na]⁺ 556.2517, found 556.2522.

Benzyl (2*S*,4*S*)-4-(((3*aS*,4*S*,6*R*,6*aR*)-6-((benzoyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4*d*][1,3]dioxol-4-yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19b). According to the general protocol A, 4-((3*aR*,6*R*,6*aR*)-6-((benzoyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17b¹ (172 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) 19b (89.0 mg, 78%, d.r. = 5.3:1, major β) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.02 (m, 2H), 7.59 – 7.55 (m, 1H), 7.48 – 7.43 (m, 2H), 7.39 – 7.32 (m, 5H), 5.58 – 5.57 (m, 1H), 5.16 – 5.13 (m, 2H), 4.61 – 4.51 (m, 2H), 4.49 – 4.33 (m, 3.20H), 4.25 – 4.22 (m, 1H), 4.09 – 4.05 (m, 0.80H), 2.29 – 2.22 (m, 1.20H), 2.07 – 2.00 (m, 0.80H), 1.52 (s, 2.40H), 1.45 (s, 0.60H), 1.30 – 1.26 (m, 3H), 0.98 (s, 1.80H), 0.95 (s, 7.20H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 166.4, 156.0, 135.2, 133.3, 129.9(2), 129.8, 128.9(2), 128.8, 128.7, 128.6, 115.1, 113.0, 96.6, 84.6, 83.3, 82.2, 81.8, 81.6, 80.7, 68.8, 64.6, 54.0, 37.6, 37.2, 27.6, 26.4, 25.8, 25.2, 25.1, 25.0; **HRMS** (ESI) *m/z* calcd for C₃₁H₃₇NNaO₉ [M + Na]⁺ 590.2361, found 590.2364.

Benzyl (2*S*,4*S*)-4-((((*asS*,4*S*,6*R*,6*aR*)-6-(acetoxymethyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19c). According to the general protocol A, 4-((*aaR*, 6*R*, 6*aR*)-6-(acetoxymethyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17c (153.3 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv), 4CzlPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) 19c (80.0 mg, 79%, d.r. = 5.3:1, major β) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 5H), 5.58 (s, 1H), 5.19 - 5.17 (m, 2H), 4.67 – 4.31 (m, 3.17H), 4.23 – 4.13 (m, 1.83H), 4.09 – 3.95 (m, 2H), 2.28 – 2.21 (m, 1H), 2.07 – 2.06 (m, 3H), 2.04 – 1.97 (m, 1H), 1.50 (s, 2.5H), 1.43 (s, 0.5H), 1.30 – 1.28 (m, 3H), 0.98 – 0.96 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 170.9, 156.1, 135.2, 128.9, 118.1, 96.6, 84.7, 82.1, 81.7, 80.7, 68.7, 64.3, 54.0, 37.5, 37.2, 27.5, 25.7, 25.0, 21.0; HRMS (ESI) *m/z* calcd for C₂₆H₃₅NNaO₉ [M + Na]⁺ 528.2204, found 528.2202.

(2S,4S)-2-(tert-butyl)-4-(((3aS,4S,6R,6aR)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-Benzvl dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl)-5-oxooxazolidine-3-carboxylate (**19d**). According to the general procedure A. 4-((3aR,6R,6aR)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxvlate¹ 17d (212 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) **19d** (77.6 mg, 57%, d.r. = 3.2:1, major β) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.73 - 7.66 (m, 4H), 7.46 - 7.30 (m, 11H), 5.59 (d, J = 2.7 Hz, 1H), 5.21 - 5.11 (m, 2H), 4.83 (d, J = 5.9 Hz, 10.28 Hz)0.24H, 4.70 - 4.61 (m, 1H), 4.53 (t, J = 6.6 Hz, 1H), 4.30 (t, J = 6.0 Hz, 0.68H), 4.18 (q, J = 6.6 Hz, 0.78H), 4.11 (t, J = 4.4 Hz, 0.27H), 3.88 (d, J = 4.1 Hz, 0.74H), 3.75 – 3.62 (m, 2H), 2.27 (dt, J = 14.1, 7.2 Hz, 1H), 2.04 (dt, J = 13.5, 6.6 Hz, 1H), 1.47 (d, J = 26.7 Hz, 3H), 1.32 (d, J = 9.6 Hz, 3H), 1.07 (d, J = 3.8 Hz, 9H), 0.98 (d, J = 7.5 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 172.4, 156.1 (2), 135.8, 135.7, 135.3, 135.2,

133.5, 133.3, 133.1, 132.9, 130.0, 129.9(2), 129.8, 128.8 (2), 128.5, 128.2, 127.9, 127.8 (2), 114.4, 112.5, 96.6, 96.4, 84.8, 84.2, 84.1, 83.5, 82.0 (2), 80.5, 68.6, 68.3, 65.1, 64.2, 54.7, 54.1, 37.8, 37.1, 33.5, 29.8, 27.6, 27.0, 26.4, 25.8, 25.2, 25.0 (2), 19.4, 19.2; **HRMS** (ESI) m/z calcd for C₄₀H₅₁O₈NNaSi [M + Na]⁺ 724.3276, found 724.3283.

Benzyl (2*S*,4*S*)-4-(((3*aS*,4*S*,6*R*,6*aR*)-6-((benzyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4*d*][1,3]dioxol-4-yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19e). According to the general protocol A, 4-((3*aR*,6*R*,6*aR*)-6-((benzyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17e (158.7 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.20 mmol, 1.00 equiv), 4CzlPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) 19e (82.0 mg, 75%, d.r. = 4.3:1, major β) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 10H), 5.59 (s, 0.11H), 5.57 (s, 0.89H), 5.18 – 5.11 (m, 2H), 4.62 – 4.47 (m, 4.11H), 4.31 – 4.16 (m, 2H), 4.01 – 3.98 (m, 0.91H), 3.53 – 3.49 (m, 2H), 2.32 – 2.20 (m, 1.11H), 2.05 – 1.99 (m, 0.89H), 1.49 (s, 2.67H), 1.42 (s, 0.33H), 1.27 (s, 3H), 0.99 (s, 0.99H), 0.96 (s, 8.01H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 156.0, 138.1, 135.3, 128.9, 128.8, 128.5, 128.0, 127.8, 114.6, 96.5, 84.8, 83.3, 82.6, 81.0, 73.7, 70.6, 68.6, 54.1, 37.7, 37.2, 27.5, 25.7, 25.0; HRMS (ESI) *m/z* calcd for C₃₁H₃₉NNaO₈ [M + Na]⁺ 576.2568, found 576.2573.

Benzyl (2*S*,4*S*)-4-(((2*S*,3*S*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19f). According to the general procedure A, 4-((3*R*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate¹ 17f (210 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) 19f (120 mg, 87%, d.r. = 3.5:1, major β) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.22 (m, 20H), 5.58 (s, 1H), 5.13 (q, *J* = 12.0 Hz, 2.22H), 4.61 (t, *J* = 6.7 Hz, 1H), 4.57 (d, *J* = 2.6 Hz, 0.84H), 4.56 – 4.48 (m, 4.35H), 4.46 (d, *J* = 5.4 Hz, 0.65H), 4.36 (d, *J* = 11.8 Hz, 1H), 4.24 (q, *J* = 6.9 Hz, 1H), 3.95 (s, 1H), 3.89 (dd, *J* = 5.5, 3.3 Hz, 1H), 3.57 (dd, *J* = 7.3, 5.4 Hz, 1H), 3.43 (dd, *J* = 10.3, 3.9 Hz, 1H), 3.38 (dd, J = 10.3, 4.9 Hz, 1H), 2.04 (d, J = 6.2 Hz, 2H), 0.96 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 156.3, 138.3, 138.0, 137.9, 135.4, 128.8, 128.7, 128.6, 128.5, 128.5, 128.5, 128.4, 128.0, 127.9, 127.9, 127.8, 96.8, 81.9, 81.3, 76.5, 73.6, 72.2, 71.7, 70.6, 68.6, 54.5, 37.9, 37.0, 29.8, 25.1, 25.0; **HRMS** (ESI) m/z calcd for C₄₂H₄₇O₈NNa [M + Na]⁺ 716.3194, found 716.3198.

(2S,4S)-4-(((2S,3S,4S,5R)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-**Benzyl** yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate (19g). According to the general procedure B, 4-((3R,4S,5R)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate¹ 17g (210 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) **19g** (114 mg, 82%, d.r. = 3.5:1, major β) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 20H), 5.57 (d, J = 7.1 Hz, 1H), 5.22 – 5.07 (m, 2H), 4.63 – 4.38 (m, 7H), 4.37 – 4.28 (m, 0.3H), 4.28 – 4.10 (m, 1.76H), 4.07 – 3.88 (m, 2H), 3.83 – 3.66 (m, 2H), 2.36 (dt, J = 14.1, 7.1 Hz, 0.84H), 2.31 - 2.21 (m, 0.29H), 2.06 (dt, J = 13.5, 6.4 Hz, 0.83H),0.97 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 172.5, 156.1, 156.0, 138.4, 138.3, 138.0, 137.9 (2), 135.4, 128.7 (3), 128.5 (2), 128.4, 127.9 (2), 127.8 (2), 127.7 (2), 127.6, 96.5, 96.4, 86.4, 82.6, 81.5, 80.0, 79.8, 78.6, 73.6, 72.3, 72.0, 71.8, 71.7, 68.5, 68.4, 68.2, 54.9, 54.4, 38.1, 37.1, 37.0, 25.0; HRMS (ESI) m/z calcd for $C_{42}H_{47}O_8NNa [M + Na]^+$ 716.3194, found 716.3195.

Benzyl (2*S*,4*S*)-4-(((2*S*,3*R*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19h). According to the general procedure A, 4-((3*S*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate¹ 17h (210 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) 19h (114.6 mg, 80%, d.r. >20:1) as a colorless oil: $[\alpha]_D^{25} = +30.9$ (c = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 20H), 5.59 (s, 1H), 5.26 – 5.11 (m, 2H), 4.70 – 4.47 (m, 8H), 4.23 – 4.13 (m, 1H), 4.06 (dd, *J* = 3.6, 2.0 Hz, 1H), 3.89 (t, *J* = 2.5 Hz, 1H), 3.62 – 3.49 (m, 2H), 2.41 – 2.27 (m, 1H), 2.10 – 1.98 (m, 1H), 1.00 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 155.8, 138.3, 137.9, 137.8, 135.5, 128.7 (2), 128.5(3), 128.4, 127.8 (3), 127.6, 96.2, 87.5, 85.2, 81.9, 79.0, 73.5, 72.1, 71.8,

(2S,4S)-4-(((2S,4S,5R)-4-(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-yl)methyl)-2-Benzyl (tert-butyl)-5-oxooxazolidine-3-carboxylate (19i). According to the general procedure B, 4-((4S,5R)-4-(benzyloxy)-5-((benzyloxy)methyl)tetrahydrofuran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17i (178 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) **19i** (68.0 mg, 58%, d.r. = 1.9:1, major α) as a colorless oil: ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.43 - 7.26 \text{ (m, 15H)}, 5.57 \text{ (s, 1H)}, 5.19 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}, 1\text{H}), 5.11 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}, 1\text{Hz}), 5.11 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}, 1\text{Hz}), 5.11 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}), 5.11 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}), 5.11 \text{ (dd, } J = 12.0, 2.8 \text{ Hz}), 5.11 \text{ (dd,$ 5.3 Hz, 1H), 4.62 – 4.38 (m, 6H), 4.13 – 3.95 (m, 2H), 3.53 – 3.36 (m, 2H), 2.42 – 2.22 (m, 1.46H), 2.13 – 2.02 (m, 0.85H), 2.00 - 1.88 (m, 0.41H), 1.76 (d, J = 11.6 Hz, 1H), 0.97 - 0.96 (d, 9H); ¹³C NMR (101 MHz, CDCl₃) § 172.8, 172.6, 156.1, 156.0, 138.3 (3), 135.4, 135.3, 128.8 (2), 128.7, 128.6, 128.5 (2), 127.8, 127.7 (2), 96.7, 96.4, 83.4, 82.5, 81.3, 80.9, 75.3, 75.2, 73.6, 73.5, 71.5, 71.1 (2), 70.8, 68.6, 68.4, 55.0, 54.5, 39.5 (2), 38.2, 37.7, 37.2, 37.1, 25.0 (2); **HRMS** (ESI) m/z calcd for C₃₅H₄₁O₇NNa [M + Na]⁺ 610.2775, found 610.2777.

(2S,4S)-2-(tert-butyl)-5-oxo-4-(((3aR,4R,5aR,9aR,9bR)-2,2,8,8-tetramethylhexahydro-Benzyl [1,3]dioxolo[4',5':4,5]pyrano[3,2-d][1,3]dioxin-4-yl)methyl)oxazolidine-3-carboxylate (19j). According general procedure B, 3,5-diethyl 4-((3aS,5aR,9aR,9bS)-2,2,8,8-tetramethylhexahydroto the [1,3]dioxolo[4',5':4,5]pyrano[3,2-d][1,3]dioxin-4-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17j (162 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **19**j (48.4 mg, 45%, d.r. > 20:1) as a colorless oil: $[\alpha]_D^{25} = +7.6$ (c = 0.380, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.43 - 7.32 \text{ (m, 5H)}, 5.55 \text{ (s, 1H)}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.62 \text{ (dd, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.62 \text{ (dd, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.62 \text{ (dd, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.62 \text{ (dd, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 4.62 \text{ (dd, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 10.3, 4.1 \text{ Hz}, 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 2\text{H}), 5.21 \text{ (d, } J = 1.9 \text{ Hz}, 5.2$ 1H), 4.52 - 4.43 (m, 1H), 4.15 (dd, J = 7.6, 6.3 Hz, 1H), 4.02 (dd, J = 6.3, 4.9 Hz, 1H), 3.96 (dd, J = 10.6, 7.6Hz, 1H), 3.81 (dd, J = 10.8, 5.3 Hz, 1H), 3.69 (t, J = 10.4 Hz, 1H), 3.53 - 3.39 (m, 1H), 2.25 - 2.12 (m, 1H), 2.14 - 2.03 (m, 1H), 1.52 (d, J = 4.8 Hz, 6H), 1.45 (s, 3H), 1.34 (s, 3H), 0.96 (s, 9H); ¹³C NMR (101 MHz,

CDCl₃) δ 172.2, 155.7, 135.5, 128.8 (2), 128.6, 109.9, 99.7, 96.3, 76.7, 75.4, 72.6, 70.2, 68.4, 64.1, 62.9, 53.2, 37.3, 35.3, 29.2, 27.9, 25.7, 25.0, 19.1; **HRMS** (ESI) *m*/*z* calcd for C₂₈H₃₉O₉NNa [M + Na]⁺ 556.2517, found 556.2523.

(2S,4S)-2-(tert-butyl)-5-oxo-4-(((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-Benzyl ((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)oxazolidine-3-carboxylate (19k). According to the general protocol B, 3,5-diethyl 4-((3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17k (246 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) **19k** (104 mg, 63%, d.r. > 20:1) as a light yellow oil: $[\alpha]_D^{25} = +21.1$ (c = 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.11 (m, 25H), 5.43 (s, 1H), 5.05 (d, J = 1.8 Hz, 2H), 4.63 (d, J = 11.3 Hz, 1H), 4.57 - 4.39 (m, 10H), 3.85 (t, J = 6.8 Hz, 1H), 3.79 – 3.76 (m, 1H), 3.68 – 3.64 (m, 2H), 3.61 – 3.58 (m, 1H), 3.49 (t, J = 3.8 Hz, 1H), 2.10 – 2.03 (m, 1H), 1.87 – 1.80 (m, 1H), 0.84 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) & 172.3, 155.7, 138.6, 138.5, 138.3, 138.2, 135.5, 128.8, 128.6, 128.4 (3), 128.0 (2), 127.9 (2), 127.7 (2), 127.5, 96.1, 76.2, 74.9, 74.0, 73.50, 72.16, 71.31, 69.25, 68.17, 53.36, 52.76, 37.17, 33.54, 24.94; **HRMS** (ESI) m/z calcd for C₅₀H₅₅NNaO₉ [M + Na]⁺ 836.3769, found 836.3773.

(2R,3R,4R,5R,6R)-2-(Acetoxymethyl)-6-(((2S,4S)-3-((benzyloxy)carbonyl)-2-(tert-butyl)-5oxooxazolidin-4-yl)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (19l). According to the general protocol B, 3,5-diethyl 4-((3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl) 2,6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17l (188 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tertbutyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ **18** (58.0 mg, 0.200 mmol. 1.00 equiv). Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) **19l** (59.6 mg, 48%, d.r. > 20:1) as a light yellow oil: $[\alpha]_{D}^{25} = +21.1$ (c = 2.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 5H), 5.53 (s, 1H), 5.23 – 5.12 (m, 5H), 4.57 – 4.52 (m, 2H), 4.16 – 4.01 (m, 3H), 2.45 – 2.37 (m, 1H), 2.10 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.98 – 1.93 (m, 1H), 0.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 170.8, 170.2, 170.2, 169.6, 155.5, 135.1, 128.9, 128.6, 96.2, 70.6, 70.2, 68.9, 68.6, 66.5, 62.2, 52.6, 37.2, 31.8, 24.9, 20.9 (2), 20.8; **HRMS** (ESI) m/z calcd for C₃₀H₃₉NNaO₁₃ [M + Na]⁺ 644.2314, found 644.2314.

(2*R*,3*S*,4*R*,5*R*,6*R*)-5-Acetamido-2-(acetoxymethyl)-6-(((2*S*,4*S*)-3-((benzyloxy)carbonyl)-2-(*tert*-butyl)-5oxooxazolidin-4-yl)methyl)tetrahydro-2*H*-pyran-3,4-diyl diacetate (19m). According to the general procedure B, 4-((3*S*,4*R*,5*S*,6*R*)-3-acetamido-4,5-diacetoxy-6-(acetoxymethyl)tetrahydro-2*H*-pyran-2-yl) 3,5diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate⁵ 17m (188 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv), and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1:3) 19m (84.0 mg, 68%, d.r. > 20:1) as a light yellow oil: $[\alpha]_D^{25} = +38.5$ (c = 0.460, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 5H), 5.96 (s, 1H), 5.55 (s, 1H), 5.18 (s, 2H), 5.13 – 5.01 (m, 2H), 4.56 – 4.36 (m, 3H), 4.32 – 3.90 (m, 3H), 2.56 – 2.41 (m, 1H), 2.09 – 1.99 (m, 13H), 0.94 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 170.7, 170.3, 170.0, 169.8, 155.6, 135.1, 128.9, 128.5, 96.4, 70.7, 69.7, 68.6, 66.4, 62.0, 52.9, 49.3, 37.3, 33.0, 24.9, 24.8, 23.4, 21.0 (2), 20.9; HRMS (ESI) *m*/z calcd for C₃₀H₄₀O₁₂N₂Na [M + Na]⁺ 643.2473, found 643.2477.

(2S,4S)-2-(tert-butyl)-5-oxo-4-(((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-Benzyl ((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)oxazolidine-3-carboxylate (19n). According to 4-((3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6general procedure B, 3,5-diethyl the ((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ **17n** (246 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO_2 (Petroleum ether: EtOAc = 6:1) **19n** (83.0 mg, 51%, d.r. = 10.1:1, major α) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.23 (m, 25H), 5.50 (s, 1H), 5.16 (d, J = 12.0 Hz, 1H), 5.02 (d, J = 12.1 Hz, 1H), 4.81 (d, J = 11.7 Hz, 1H), 4.76 -4.67 (m, 3H), 4.66 – 4.53 (m, 3H), 4.52 – 4.40 (m, 3H), 4.00 (s, 1H), 3.87 – 3.63 (m, 3H), 3.61 – 3.45 (m, 2H), 2.33 - 2.20 (m, 1H), 2.10 - 1.96 (m, 1H), 0.94 - 0.89 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 155.6, 138.8, 138.7, 138.6, 138.3, 135.7, 128.7, 128.6, 128.5 (3), 128.4 (2), 128.2, 128.1, 128.0, 127.9, 127.8, 127.7 (2), 127.6, 127.5, 95.9, 76.3, 74.4, 73.8, 73.5, 73.1 (2), 68.8, 68.4, 68.1, 53.2, 51.4, 37.3, 29.8, 24.9; HRMS (ESI) m/z calcd for C₅₀H₅₅O₉NNa [M + Na]⁺ 836.3769, found 836.3777.

Benzyl

(2S,4S)-2-(tert-butyl)-5-oxo-4-(((2R,3S,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)oxazolidine-3-carboxylate (190). According to the general procedure A, 3-ethyl 4-((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2Hpyran-2-yl) 5-((ethylperoxy)-l2-methyl)-2,6-dimethyl-1,4-dihydropyridine-3,4-dicarboxylate¹ 170 (246 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5.7:1) **190** (114 mg, 70%, d.r. = 5:1, major α) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.15 (m, 25H), 5.58 (d, J = 13.6 Hz, 1H), 5.14 (s, 2H), 4.99 - 4.76 (m, 4H), 4.68 - 4.52 (m, 4H), 4.48 (d, J = 10.9 Hz, 1H), 4.43 (d, J = 12.2 Hz, 1H), 3.87 - 3.34 (m, 6H), 2.40 - 1.96 (m, 1H), 0.94 (d, J = 22.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 172.5, 156.6 (2), 138.9, 138.7, 138.6, 138.3, 138.0, 137.9, 135.4, 135.3, 128.92 (2), 128.8 (2), 128.7, 128.6, 128.5 (2), 128.4 (2), 128.3, 128.1, 128.0 (2), 127.9 (4), 127.8 (2), 127.7 (2), 97.0, 96.1, 87.5, 82.3, 82.0, 79.3, 78.8, 78.6, 77.9, 75.6, 75.2, 74.9, 73.6, 73.5, 72.8, 71.7, 69.9, 68.8, 68.5, 68.4, 54.2, 52.9, 37.3, 36.9, 29.8, 28.4, 25.2, 25.0; **HRMS** (ESI) m/z calcd for C₅₀H₅₅O₉NNa [M + Na]⁺ 836.3769, found 836.3780.

Benzyl (2S,4S)-2-(tert-butyl)-5-oxo-4-(((2S,3S,4R,5S,6S)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2Hpyran-2-yl)methyl)oxazolidine-3-carboxylate (19p). According to the general protocol A, 3,5-diethyl 4-((3R,4R,5S,6S)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17p (214 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzlPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) **19p** (102 mg, 72%, d.r. > 20:1) as a light yellow oil: $[\alpha]_D^{25} = +19.9$ (c = 1.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 20H), 5.56 (s, 1H), 5.22 – 5.11 (m, 2H), 4.78 (d, J = 11.3 Hz, 1H), 4.63 -4.54 (m, 5H), 4.49 (dd, J = 6.8, 5.0 Hz, 1H), 4.39 - 4.35 (m, 1H), 3.85 - 3.79 (m, 1H), 3.74 (dd, J = 7.4, 3.1Hz, 1H), 3.62 - 3.58 (m, 2H), 2.30 - 2.23 (m, 1H), 1.92 - 1.85 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 0.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 156.1, 138.6, 138.5, 138.3, 135.5, 128.8, 128.7(2), 128.5(2), 128.4, 128.1, 128.0, 127.9, 127.8(2), 96.6, 80.0, 77.9, 76.1, 74.3, 72.3, 71.6, 69.9, 69.8, 68.4, 54.5, 37.1, 34.6, 25.0, 18.1; **HRMS** (ESI) m/z calcd for C₄₃H₄₉NNaO₈ [M + Na]⁺ 730.3350, found 730.3353.

(2*S*,3*S*,4*R*,5*S*,6*S*)-2-(((2*S*,4*S*)-3-((Benzyloxy)carbonyl)-2-(*tert*-butyl)-5-oxooxazolidin-4-yl)methyl)-6methyltetrahydro-2*H*-pyran-3,4,5-triyl triacetate (19q). According to the general procedure B, 3,5-diethyl 4-((3*R*,4*R*,5*S*,6*S*)-3,4,5-triacetoxy-6-methyltetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17q (85.5 mg, 0.150 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5oxooxazolidine-3-carboxylate⁴ 18 (29.0 mg, 0.100 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (1.50 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford 19q (16.0 mg, 28%, d.r. > 20:1) as a colorless oil: $[\alpha]_D^{25} = +14.9$ (c = 0.770, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 5H), 5.58 (s, 1H), 5.24 – 5.02 (m, 5H), 4.52 (dd, J = 6.2, 4.3 Hz, 1H), 4.31 – 4.24 (m, 1H), 3.96 – 3.84 (m, 1H), 2.60 – 2.47 (m, 1H), 2.11 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.97 – 1.90 (m, 1H), 1.23 (d, J = 6.1 Hz, 3H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 170.4, 170.3, 170.1, 156.0, 135.2, 128.8 (2), 96.8, 73.0, 71.3, 70.6, 69.4, 68.8, 68.1, 54.4, 37.2, 33.6, 29.8, 24.9, 21.1, 21.0, 20.8, 17.8; HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₂₈H₃₇O₁₁NNa 586.2259; found 586.2260.

(2S,4S)-4-(((2R,4R,5S,6R)-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-Benzyl vl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate (19r). According to the general procedure B, 3ethyl 4-((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl) 5-((ethylperoxy)-l2-methyl)-2,6-dimethyl-1,4-dihydropyridine-3,4-dicarboxylate¹ **17r** (214 mg, 0.300 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (58.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) to afford **19r** (84.0 mg, 59%, d.r. >20:1) as a colorless oil: $[\alpha]_D^{25} = +32.9$ (c = 0.770, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.19 (m, 20H), 5.55 (s, 1H), 5.23 – 5.06 (m, 2H), 4.82 (d, J = 11.1 Hz, 1H), 4.69 – 4.44 (m, 7H), 3.84 – 3.73 (m, 2H), 3.74 – 3.52 (m, 3H), 2.39 – 2.26 (m, 1H), 2.02 – 1.90 (m, 1H), 1.94 – 1.78 (m, 2H), 0.96 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) § 172.5, 155.7, 138.7, 138.6, 138.5, 135.4, 128.8, 128.7, 128.6, 128.5, 128.4, 128.0 (2), 127.9 (2), 127.7 (2), 127.6, 96.2, 74.3, 73.6, 72.9, 71.6, 69.2, 68.4, 67.4, 53.6, 37.2, 35.6, 33.4, 25.0; **HRMS** (ESI) m/z calcd for C₄₃H₄₉O₈NNa [M + Na]⁺ 730.3350, found 730.3356.

(2R,3R,4S,5R,6R)-2-(((tert-Butyldiphenylsilyl)oxy)methyl)-6-(((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(((2S,4S)-3-((benzyloxy)carbonyl)-2-(tert-butyl)-5-oxooxazolidin-4-yl)methyl)tetrahydro-2H-pyran-

2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (19s). According to the general protocol B, 3,5diethyl 4-((2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((((2R,3R,5R,6R)-3,4,5-tris(benzoyloxy)-6-(((tertbutyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17s (214 mg, 0.150 mmol, 1.50 equiv), benzyl (S)-2-(tertbutyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (29.0)mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **19s** (103 mg, 72%, d.r. > 20:1) as a foam: $[\alpha]_D^{25} = +1.4$ (c = 2.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 - 7.86 (m, 4H), 7.81 - 7.79 (m, 2H), 7.71 – 7.69 (m, 2H), 7.60 – 7.57 (m, 2H), 7.55 – 7.51 (m, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.40 – 7.17 (m, 33H), 5.85 (t, J = 9.7 Hz, 1H), 5.69 – 5.62 (m, 1H), 5.58 – 5.52 (m, 1H), 5.29 – 5.21 (m, 2H), 5.01 – 4.96 (m, 2H), 4.60 - 4.45 (m, 7H), 4.23 - 4.20 (m, 2H), 4.02 - 3.85 (m, 5H), 3.68 - 3.63 (m, 2H), 3.45 (dd, J = 5.4, 2.3Hz, 1H), 2.05 – 1.98 (m, 1H), 1.87 – 1.80 (m, 1H), 1.01 (s, 9H), 0.90 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 165.9, 165.1, 164.9, 155.0, 138.3, 138.1, 138.0, 135.6, 135.5, 133.2, 133.1, 133.0, 129.8 (2), 129.7, 129.6, 129.3, 129.1, 128.6, 128.6, 128.4 (2), 128.3, 128.2, 127.9 (2), 127.7 (2), 127.6, 127.6, 101.3, 95.6, 76.3, 75.3, 75.0, 73.5, 73.4, 73.2, 72.3, 72.0, 71.2, 69.4, 68.8, 67.7, 62.9, 37.1, 33.6, 726.7, 24.7, 19.2; HRMS (ESI) m/z calcd for C₈₆H₈₉NNa O₁₇Si [M + Na]⁺ 1458.5792, found 1458.5794.

(2S,4S)-4-(((2S,3S,4R,5R,6R)-3,4-bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2R,3R,4S,5S,6R)-Benzyl 3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate (19t). According to the general protocol B, 4-((3R,4S,5R,6R)-3,4-bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate 17t (188 mg, 0.150 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (29.0)mg, 0.100 mmol, 1.00 equiv). Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) **19t** (80.2 mg, 64%, d.r. = 5:1, major α) as a foam: ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.15 (m, 1H), 5.56 – 5.49 (m, 1H), 5.20 – 5.17 (m, 0.20H), 5.14 - 5.08 (m, 0.30H), 5.03 - 4.93 (m, 3H), 4.85 - 4.79 (m, 1.80H), 4.76 - 4.72 (m, 1H), 4.70 - 4.65 (m, 3.60H), 4.60 – 4.53 (m, 3.60H), 4.50 (s, 0.10H), 4.48 – 4.45 (m, 0.20H), 4.41 – 4.32 (m, 2.90H), 4.29 – 4.23 (m, 1H), 4.17 (dd, J = 8.8, 6.2 Hz, 0.10H), 4.09 – 4.06 (m, 0.10H), 4.05 – 3.97 (m, 1H), 3.94 – 3.88 (m, 1H), 3.94 (m, 1H), 3.94 (m, 1H), 3.94 (m, 1H), 3 1.80H), 3.86 – 3.82 (m, 0.20H), 3.79 – 3.50 (m, 5.40H), 3.47 – 3.45 (m, 0.10H), 3.43 – 3.42 (m, 0.10H), 3.40 -3.32 (m, 2.90H), 3.25 - 3.16 (m, 0.30H), 2.88 (dd, J = 16.0, 6.8 Hz, 0.10H), 2.71 (dd, J = 16.1, 5.7 Hz, 0.10H), 2.38 – 2.14 (m, 1.80H), 2.07 – 1.93 (m, 0.20H), 0.95 – 0.88 (m, , 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 172.5, 156.6, 155.5, 139.4, 139.2, 139.0, 138.6, 138.4, 138.3, 138.2, 135.5, 128.8 (2), 128.7, 128.5 (2), 128.4 (2), 128.3 (3), 128.2, 128.1 (2), 128.0 (2), 127.9 (3), 127.8 (3), 127.7, 127.6 (3), 127.5 (2), 127.2,

103.1, 102.7, 96.0, 82.6, 80.1, 80.0, 78.5, 77.0, 75.2, 74.8, 73.7, 73.5, 73.3, 73.1, 72.7, 71.9, 69.9, 68.6, 68.3, 54.3, 53.0, 37.3, 36.8, 28.8, 25.0; **HRMS** (ESI) *m/z* calcd for C₇₇H₈₃NNaO₁₄ [M + Na]⁺ 1268.5706, found 1268.5718.

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2R,3R,4S,5R,6R)-4,5-diacetoxy-2-(acetoxymethyl)-6-(((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(((2S,4S)-3-((benzyloxy)carbonyl)-2-(*tert*-butyl)-5oxooxazolidin-4-yl)methyl)tetrahydro-2*H*-pyran-2-yl)methoxy)tetrahydro-2*H*-pyran-3yl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (19u). According to the general protocol B, 3,5-diethyl

4-((2*R*, 3*S*, 4*S*, 5*R*, 6*R*)-3,4,5-tris(benzyloxy)-6-((((2*R*, 3*R*, 4*S*, 5*R*, 6*R*)-3,4-diacetoxy-6-(acetoxymethyl)-5-(((2*R*, 3*R*, 4*S*, 5*R*, 6*R*)-3,4,5-tris(benzyloxy)-6-(acetoxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate **17u** (202 mg, 0.150 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ **18** (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1.5:1) **19u** (101 mg, 75%, d.r. > 20:1) as a foam: $[\alpha]_D^{25} = +24.1$ (c = 1.84, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 20H), 5.61 (s, 1H), 5.41 – 5.33 (m, 3H), 5.22 (t, *J* = 9.3 Hz, 1H), 5.08 – 5.03 (m, 2H), 4.86 – 4.77 (m, 2H), 4.74 – 4.39 (m, 10H), 4.26 – 4.18 (m, 2H), 4.05 – 3.63 (m, 9H), 3.53 – 3.51 (m, 1H), 2.16 – 1.94 (m, 20H), 1.90 (s, 3H), 0.94 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 170.7(2), 170.6, 170.1(3), 169.6, 138.4, 138.2, 138.1, 135.6, 128.8, 128.7, 128.6, 128.5(2), 128.1, 128.0, 127.9(3), 127.8, 100.6, 96.1, 95.5, 76.3, 75.2, 75.0, 72.5, 72.3, 72.0, 71.6, 70.1, 69.5, 68.8, 68.5, 68.1, 62.9, 61.6, 37.2, 25.0, 21.0, 20.8(3), 20.7(2), 20.6; **HRMS** (ESI) *m/z* calcd for C₆₉H₈₃NNaO₂₆ [M + Na]⁺ 1364.5096, found 1364.5105.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-(Acetoxymethyl)-6-(((2*R*,3*R*,4*S*,5*R*,6*R*)-4,5-diacetoxy-2-(acetoxymethyl)-6-(((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((((2*S*,4*S*)-3-((benzyloxy)carbonyl)-2-(*tert*-butyl)-5oxooxazolidin-4-yl)methyl)tetrahydro-2*H*-pyran-2-yl)methoxy)tetrahydro-2*H*-pyran-3yl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (19v). According to the general protocol B, 3,5-diethyl 4-((2*R*,3*S*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((((2*R*,3*R*,4*S*,5*R*,6*R*)-3,4-diacetoxy-6-(acetoxymethyl)-5-(((2*R*,3*R*,4*S*,5*S*,6*R*)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl)oxy)methyl)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17v (202 mg, 0.150 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1.5:1) **19v** (90.5 mg, 67%, d.r. > 20:1) as a foam: $[\alpha]_D^{25}$ = -5.1 (c = 0.965, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.21 (m, 20H), 5.64 (s, 1H), 5.34 – 5.32 (m, 2H), 5.20 – 5.03 (m, 3H), 4.95 – 4.85 (m, 2H), 4.70 – 4.46 (m, 11H), 4.15 – 4.05 (m, 4H), 3.91 – 3.62 (m, 7H), 3.52 (d, *J* = 4.6 Hz, 1H), 2.16 – 1.92 (m, 23H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 170.5(2), 170.3, 170.2(2), 169.8, 169.1, 156.0, 138.4, 138.1(2), 135.7, 128.8, 128.7, 128.5(3), 128.0(2), 127.9(2), 127.8(2), 100.7, 96.2, 76.2, 75.2, 72.5, 72.3, 72.0, 71.7, 71.6, 71.2, 70.7, 69.1, 68.7, 67.9, 66.8, 62.1, 60.9, 37.2, 31.5, 29.8, 24.9, 20.9, 20.8(2), 20.6(2); **HRMS** (ESI) *m/z* calcd for C₆₉H₈₃NNaO₂₆ [M + Na]⁺ 1364.5096, found 1364.5109.

(2R,3R,5R,6R)-2-((((2R,3R,4S,5R,6R)-3,4-Diacetoxy-6-(acetoxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl)oxy)methyl)-6-(((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(((2S,4S)-3-((benzyloxy)carbonyl)-2-(*tert*-butyl)-5oxooxazolidin-4-yl)methyl)tetrahydro-2*H*-pyran-2-yl)methoxy)tetrahydro-2*H*-pyran-3,4,5-triyl tribenzoate (19w). According to the general protocol B, 3,5-diethyl 4-((2R,3S,4S,5R,6R)-3,4,5tris(benzyloxy)-6-((((2R,3R,4S,5R,6R)-3,4-diacetoxy-6-(acetoxymethyl)-5-(((2R,3R,4S,5R,6R)-3,4,5triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2yl)oxy)methyl)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17w (202 mg, 0.150 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were

added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1:1) **19w** (118 mg, 65%, d.r. > 20:1) as a foam: $[\alpha]_D^{25} = -7.3$ (c = 0.78, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 - 7.86 (m, 3H), 7.77 - 7.75 (m, 2H), 7.55 - 7.50 (m, 1H), 7.46 - 7.17 (m, 29H), 5.83 (t, J = 9.6, 9.6 Hz, 1H), 5.50 - 5.39 (m, 2H), 5.33 (d, J = 3.4 Hz, 1H), 5.25 - 5.20 (m, 2H), 5.12 - 5.05 (m, 2H), 5.00 - 4.83 (m, 4H), 4.58 - 4.19 (m, 12H), 4.12 - 3.94 (m, 6H), 3.89 - 3.84 (m, 2H), 3.75 - 3.65 (m, 3H), 3.60 (t, J = 9.4, 9.4Hz, 1H), 3.54 - 3.43 (m, 2H), 2.14 (s, 3H), 2.06 - 1.84 (m, 20H), 0.89 (s, 9H).; ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 170.5 (2), 170.3, 170.2, 169.8, 169.2, 165.8, 165.2, 165.0, 155.2, 138.6, 138.3, 138.2, 133.6, 133.2, 129.9, 129.8, 129.1, 129.0, 128.7, 128.6, 128.5 (2), 128.4, 128.3, 128.1, 127.9, 127.8, 127.7 (3), 101.2, 101.0, 100.8, 95.8, 76.4, 76.3, 73.5, 73.2, 72.8, 72.6, 72.1, 72.0, 71.7, 71.2, 71.1, 70.7, 69.7, 69.1, 68.7, 68.3, 66.7, 62.3, 60.9, 37.1, 25.0, 20.9 (2), 20.8 (3), 20.7 (2); HRMS (ESI) *m/z* calcd for C₉₆H₁₀₅NNaO₃₄ [M + Na]⁺ 1838.6410, found 1838.6412.

Benzyl (2S,4S)-2-(tert-butyl)-5-oxo-4-(((2S,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(((5-(3-cyano-4isobutoxyphenyl)-4-methylthiazole-2-carbonyl)oxy)methyl)tetrahydro-2H-pyran-2 yl)methyl)oxazolidine-3-carboxylate (19x). According to the general protocol B, 3,5-diethyl 4-((2S,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5carbonyl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17x (154 mg, 0.150 mmol, 1.50 equiv), benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ 18 (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO_2 (Petroleum ether: EtOAc = 4:1) **19x** (52.0 mg, 51%, d.r. > 20:1) as a foam: $[\alpha]_D^{25} = +11.4$ (c = 1.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 2.2 Hz, 1H), 7.98 (dd, J = 8.9, 2.3 Hz, 1H), 7.38 – 7.24 (m, 23H), 6.97 (d, J = 8.9 Hz, 1H), 5.55 (s, 1H), 5.14 (s, 2H), 4.83 (d, *J* = 11.2 Hz, 1H), 4.70 – 4.57 (m, 7H), 4.50 – 4.45 (m, 1H), 3.98 – 3.87 (m, 4H), 3.78 (dd, J = 7.7, 2.9 Hz, 1H), 3.61 (t, J = 3.4, 3.4 Hz, 1H), 2.71 (s, 4H), 2.26 - 2.16 (m, 2H), 1.93 - 1.86 (m, 1H), 1.10 (d, J = 6.7 Hz, 6H), 0.95 (s, 9H). 13 C NMR (101 MHz, CDCl₃) δ 172.2, 167.3, 162.6, 161.8, 161.4, 155.6, 138.2, 138.1 (2), 135.1, 132.7, 132.1, 128.8 (2), 128.6, 128.5 (2), 128.4, 128.2, 128.0 (2), 127.9 (2), 127.7, 126.0, 121.8, 115.5, 112.6, 103.0, 96.1, 76.2, 75.7, 74.5, 74.4, 72.4, 71.9, 71.5, 68.5, 63.9, 53.3, 37.2, 33.0, 28.2, 24.9, 19.2, 17.6. HRMS (ESI) m/z calcd for C₅₉H₆₃N₃NaO₁₁S [M + Na]⁺ 1044.4076, found 1044.4087.

carboxylate (19y). According to the general protocol B, 3,5-diethyl 4-((3S, 4S, 5R, 6R)-3,4,5-tris(benzyloxy)-6-((2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetoxy)methyl)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate **17y** (147 mg, 0.150 mmol, 1.50 equiv), benzyl (S)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ **18** (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **19y** (55.0 mg, 56%, d.r. > 20:1) as a

foam: $[\alpha]_D^{25} = +15.6 (c = 1.17, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 7.7, 1.4 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.49 – 7.45 (m, 1H), 7.41 – 7.26 (m, 22H), 6.98 (d, J = 8.4 Hz, 1H), 5.51 (s, 1H), 5.15 – 5.12 (m, 4H), 4.46 – 4.72 (m, 8H), 4.40 – 4.29 (m, 2H), 3.93 – 3.88 (m, 2H), 3.80 – 3.73 (m, 2H), 3.67 – 3.56 (m, 3H), 2.18 – 2.11 (m, 1H), 1.93 – 1.86 (m, 1H), 0.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 172.2, 171.2, 160.5, 155.6, 140.5, 138.2(2), 136.6, 135.8, 135.4, 132.8, 132.7, 129.8, 129.3, 128.8, 128.7, 128.5(3), 128.1, 128.0, 127.9(2), 127.8(2), 125.2, 121.1, 96.1, 76.0, 75.0, 74.1, 73.7, 72.3, 72.1, 71.4, 68.3(2), 53.2, 40.4, 37.1, 25.0; HRMS (ESI) *m/z* calcd for C₅₉H₅₉NNaO₁₂ [M + Na]⁺ 996.3929, found 996.3937.

Benzyl (2S,4S)-2-(*tert*-butyl)-5-oxo-4-(((2S,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(((3-(4,5-diphenyloxazol-2-yl)propanoyl)oxy)methyl)tetrahydro-2*H*-pyran-2-yl)methyl)oxazolidine-3-

carboxylate (19z). According to the general protocol B, 3,5-diethyl 4-((2S,3S,4S,5R,6R)-3,4,5tris(benzyloxy)-6-(((3-(4,5-diphenyloxazol-2-yl)propanoyl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate 17z (154 mg, 0.150 mmol, 1.50 equiv), benzyl (S)-2-(tertbutyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ (29.0)mg, mmol, 18 0.100 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) 19z (50.0 mg, 50%, d.r. > 20:1) as a foam: $[\alpha]_D^{25} = +14.0$ (c = 1.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.57 – 7.54 (m, 2H), 7.37 7.24 (m, 26H), 5.5 (s, 1H), 5.18 – 5.11 (m, 2H), 4.7 (d, J = 11.2 Hz, 1H), 4.66 – 4.54 (m, 6H), 4.41 - 4.27 (m, 2H), 3.88 - 3.81 (m, 3H), 3.59 - 3.57 (m, 1H), 3.1 (dd, J = 8.7, 6.7 Hz, 2H), 2.9 (dd, J = 8.7, 6.7 Hz, 2.9), 2.9 (dd, J = 8.7, 2.9), 2.9 (dd, J = 8.7, 2.9, 2.9, 2.9 (dd, J = 8.7, 2.9, 29.0, 6.6 Hz, 2H), 2.19 – 2.12 (m, 1H), 1.93 – 1.86 (m, 1H), 0.9 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 171.9, 161.9, 155.7, 145.5, 138.2(2), 135.2, 132.6, 129.1, 128.9, 128.8, 128.7, 128.6, 128.5(2), 128.2, 128.1, 128.0(2), 127.9(2), 127.8, 126.6, 96.2, 76.0, 74.8, 72.3, 71.4, 68.4, 63.6, 53.4, 37.2, 31.2, 25.0, 23.6; HRMS (ESI) m/z calcd for C₆₁H₆₂N₂NaO₁₁ [M + Na]⁺ 1021.4246, found 1021.4255.

Benzyl (2S,4S)-4-(((2S,3R,4R,5R,6R)-6-(((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3,4,5-tris(benzyloxy)tetrahydro-2*H*-pyran-2-yl)methyl)-2-(*tert*-butyl)-5-oxooxazolidine-3-carboxylate (19aa). According to the general protocol B, 4-((2S,3S,4S,5R,6R)-6-(((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3,4,5-tris(benzyloxy)tetrahydro-

2*H*-pyran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate **17aa** (149 mg, 0.150 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate⁴ **18** (29.0 mg, 0.100 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **19aa** (52.0 mg, 46%, d.r. = 16:1, major α) as a foam ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.55 (m, 1H), 8.38 (d, *J* = 8.9 Hz, 0.10H), 8.13 (d, *J* = 9.2 Hz, 0.10H), 8.06 – 8.00 (m, 1.90H), 7.91 – 7.83 (m, 1.90H), 7.78 – 7.73 (m, 1H), 7.62 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 0.20H), 7.43 – 7.27 (m, 19.80H), 7.03 – 6.98 (m, 1H), 5.54 (s, 0.95H), 5.47 (s, 0.05H), 5.13 (s, 1.90H), 5.01 (s, 0.10H), 4.83 (d, *J* = 11.2 Hz, 1H), 4.78 – 4.51 (m, 9H), 4.10 – 4.01 (m, 2H), 3.92 (s, 3H), 3.82 (dd, *J* = 7.6, 3.0 Hz, 1H), 3.65 (t, *J* = 3.5, 3.5 Hz, 1H), 2.27 – 2.17 (m, 7H), 2.13 – 2.09 (m, 3H), 1.96 – 1.89 (m, 1H), 1.86 – 1.79 (m, 6H), 0.95 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 166.7, 159.0, 155.6, 141.4, 139.1, 138.3, 138.2, 136.0, 135.2, 132.7, 131.3, 131.1, 129.9, 128.9, 128.8(2), 128.6(2), 128.5(2), 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.0, 126.5, 126.1, 125.9, 125.8, 124.8, 112.2, 96.1, 76.3, 74.7, 74.4, 72.4, 72.2, 71.5, 68.5, 63.8, 55.3, 53.4, 40.7, 37.3, 37.2(2), 31.6, 29.2, 25.0; HRMS (ESI) *m/z* calcd for C₇₁H₇₅NNaO₁₁ [M + Na]⁺ 1140.5232, found 1140.5241.

Methyl 2-(bis(tert-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoate (21a). According to the general protocol B, 4-((3aS, 6R, 6aS)-6-((S)-2, 2-dimethyl-1, 3-dioxolan-4-yl)-2, 2-dimethyltetrahydrofuro[3, 4-d][1, 3]dioxol-4-yl)3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), *N*,*N*-*tert*-butoxycarbonyldehydroalanine² 20a (60.2 0.200 mmol, 1.00 mg. equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred in 6W Blue LEDs irradiation under N₂ at 85 °C for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) **21a** (73.0 mg, 67%, d.r. = 1.5:1) as a foam: ¹H NMR (400 MHz, CDCl₃) δ 5.12 (t, *J* = 6.6, 6.6 Hz, 0.77H), 4.96 (dd, *J* = 10.0, 4.0 Hz, 0.23H), 4.80 – 4.74 (m, 1H), 4.53 (dd, J = 6.2, 2.8 Hz, 1H), 4.38 – 4.29 (m, 1.77H), 4.12 – 4.00 (m, 2.23H), 3.76 – 3.70 (m, 3.23H), 3.65 (dd, J = 8.4, 3.7 Hz, 0.77H), 2.31 - 2.25 (m, 0.77H), 2.02 - 1.95 (m, 0.46H), 1.90 + 1.95 (m,1.82 (m, 0.77H), 1.49 – 1.47 (m, 18H), 1.43 – 1.33 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 171.0, 152.2, 151.9, 112.8, 112.7, 109.4, 109.3, 85.7, 85.4, 83.5, 83.3, 82.5, 81.0, 80.9, 80.8, 80.5, 80.2, 73.4, 73.3, 67.3(2), 55.6, 55.4, 52.5, 52.4, 31.6, 30.9, 28.1(2), 27.1, 27.0, 26.3, 25.4, 25.3, 24.9(2); HRMS (ESI) m/z calcd for $C_{26}H_{43}NNaO_{11}[M + Na]^+$ 568.2728, found 568.2727.

Methyl 2-(N-acetylacetamido)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoate (21b). According to the general protocol B, 4-((3aS, 6R, 6aS)-6-((S)-2, 2-dimethyl-1, 3-dioxolan-4-yl)-2, 2-dimethyltetrahydrofuro[3, 4-d][1, 3]dioxol-4-yl)3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), methyl 2-(N-acetylacetamido)acrylate⁶ 20b (39.8 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) **21b** (75.0 mg, 87%, d.r. = 1.1:1) as a foam: ¹H NMR (400 MHz, $CDCl_3$) δ 4.77 (dd, J = 6.1, 3.9 Hz, 0.53H), 4.70 (dd, J = 6.1, 3.8 Hz, 0.47H), 4.56 (dd, J = 7.1, 4.5 Hz, 0.47H), 4.51 - 4.48 (m, 1H), 4.46 - 4.42 (m, 0.53H), 4.40 - 4.32 (m, 1.47H), 4.07 - 3.88 (m, 3H), 3.76 (dd, J = 6.0, 3.8 Hz, 0.47H), 3.70 – 3.69 (m, 3H), 2.59 – 2.53 (m, 0.53H), 2.42 – 2.41 (m, 6H), 2.21 – 2.16 (m, 1H), 1.70 - 1.62 (m, 0.47H), 1.45 (s, 3H), 1.40 (- 1.38 (s, 3H), 1.34 - 1.33 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) § 173.5, 173.1, 170.4, 170.0, 112.9, 112.8, 109.0, 108.8, 85.2, 85.1, 82.7, 80.6, 80.5, 80.3, 79.9, 79.8, 73.6, 73.5, 66.5, 66.2, 56.6, 56.2, 52.8(2), 31.9, 29.1, 26.9(2), 26.6, 26.4, 26.0(2), 25.2, 25.1, 24.5, 24.4; **HRMS** (ESI) m/z calcd for C₂₀H₃₁NNaO₉ [M + Na]⁺ 452.1891, found 452.1888.

3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-Methyl d[1,3]dioxol-4-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoate (21c). According to the general protocol B, 4-((3aS, 6R, 6aS) - 6 - ((S) - 2, 2 - dimethyl - 1, 3 - dioxolan - 4 - yl) - 2, 2 - dimethyl tetrahydrofuro [3, 4 - d] [1, 3] dioxol - 4 - yl)3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), methyl 2-phthalimidoacrylate⁷ **20c** (46.0 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred under 6W Blue LEDs irradiation at 85 °C for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **21c** (82.0 mg, 86%, d.r. = 1.1:1) as a foam: ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.84 (m, 2H), 7.76 - 7.72 (m, 2H), 5.04 - 5.00 (m, 1H), 4.81 (dd, J = 6.0, 3.8 Hz, 0.50H), 4.71 (dd, J = 6.0, 3.8 Hz, 0.50H), 0.50= 6.0, 3.8 Hz, 0.50 H), 4.53 (dd, J = 6.0, 1.4 Hz, 1 H), 4.40 - 4.36 (m, 0.50 H), 4.25 (dd, J = 10.4, 4.0 Hz, 0.50 Hz), 4.25 (dd, J4.21 - 4.08 (m, 1.50H), 3.91 (dd, J = 12.4, 3.6 Hz, 0.50H), 3.78 (dd, J = 8.1, 3.8 Hz, 0.50H), 3.74 - 3.73 (s, 3H), 3.67 (dd, *J* = 8.6, 6.2 Hz, 0.50H), 3.60 (dd, *J* = 8.2, 3.8 Hz, 0.50H), 3.46 (dd, *J* = 8.6, 5.2 Hz, 0.50H), 2.49 - 2.42 (m, 0.50H), 2.39 - 2.28 (m, 1.50H), 1.48 (s, 1H), 1.44 (s, 2H), 1.42 (s, 2H), 1.37 (s, 1H), 1.32 -1.26 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 169.5, 167.6(2), 134.4, 132.1, 132.0, 123.8, 113.0, 112.9, 109.5, 109.3, 85.9, 85.3, 83.0, 80.7(2), 80.6, 80.3, 80.2, 73.4, 73.1, 67.2, 67.0, 53.1, 49.9, 48.9, 29.8, 28.9, 27.2, 26.9, 26.3, 26.1, 25.5, 25.4, 24.8, 24.5; **HRMS** (ESI) m/z calcd for C₂₄H₂₉NNaO₉ [M + Na]⁺ 498.1735, found 498.1732.

Methyl 2-((tert-butoxycarbonyl)(methyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-vl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-vl)propanoate (21d). According to the general B. 4-((3aS,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4protocol d[[1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), methyl 2-((tert-butoxycarbonyl)(methyl)amino)acrylate⁸ 20d (43.0 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 4:1) **21d** (44.6 mg, 49%, d.r. = 1.1:1) as a foam: ¹**H NMR** (400 MHz, CDCl₃) δ 4.80 – 4.76 (m, 1H), 4.55 (dd, J = 6.2, 2.2 Hz, 1H), 4.40 – 4.35 (m, 1.50H), 4.18 – 4.14 (m, 1H), 4.10 – 3.97 (m, 2.5H), 3.77 – 3.71 (m, 4H), 2.90 – 2.83 (m, 3H), 2.15 – 1.95 (m, 1H), 1.90 – 1.73 (m, 1H), 1.49 – 1.41 (m, 15H), 1.36 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 140.9, 140.1, 138.9, 138.4, 138.2, 128.9, 128.7, 128.6(2), 128.3, 128.1(2), 127.8, 127.4, 127.1, 126.8, 126.4, 98.2, 82.5, 80.0, 77.8, 77.5, 77.2, 76.8, 76.0, 75.3, 73.6(2), 70.7, 55.0, 29.8; HRMS (ESI) m/z calcd for $C_{22}H_{37}NNaO_9 [M + Na]^+ 482.2361$, found 482.2358.

tert-Butyl 5-(((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl)-3-((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)-2,4-dioxoimidazolidine-1-

carboxylate (21e). According to the general procedure C, 3,5-diethyl 4-((3aS,5aR,9aR,9bS)-2,2,8,8tetramethylhexahydro-[1,3]dioxolo[4',5':4,5]pyrano[3,2-*d*][1,3]dioxin-4-yl) 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate¹ 17a (108 mg, 0.200 mmol, 1.00 equiv), tert-butyl (S)-3-(1-methoxy-1oxo-3-phenylpropan-2-yl)-5-methylene-2,4-dioxoimidazolidine-1-carboxylate 20e (112 mg, 0.300 mmol, 1.50 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **21e** (55.0 mg, 44%, d.r. = 1.1:1) as a light yellow oil: ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.13 (m, 5H), 5.07 – 4.96 (m, 1H), 4.72 (dd, J = 6.0, 3.7 Hz, 1H), 4.47 - 4.13 (m, 4H), 4.03 - 3.87 (m, 2H), 3.77 (d, J = 6.1 Hz, 3H), 3.68(dd, J = 8.3, 3.7 Hz, 0.52H), 3.60 (dd, J = 8.1, 3.8 Hz, 0.54H), 3.57 - 3.41 (m, 2H), 2.19 - 1.92 (m, 1H), 1.87-1.72 (m, 0.57H), 1.63 - 1.30 (m, 21H), 1.20 - 1.13 (m, 0.61H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 169.9, 168.6, 168.5, 151.1, 151.0, 148.7, 148.4, 136.5, 136.4, 129.2, 128.9, 128.8, 127.1 (2), 112.9 (2), 109.3, 109.2, 85.5, 85.3, 85.0, 84.9, 80.7 (2), 80.6 (2), 80.5, 79.6, 77.2, 73.2, 73.1, 67.3, 66.8, 57.2, 56.4, 54.0, 53.5, 53.1 (2), 33.9, 33.8, 31.1, 30.3, 28.2, 28.1, 27.0, 26.9, 26.2, 25.4, 25.2, 24.9, 24.7; HRMS (ESI) m/z calcd for $C_{31}H_{42}O_{11}N_2Na [M + Na]^+ 641.2681$, found 641.2684.

Methyl (2S)-3-(4-(benzyloxy)phenyl)-2-(2-(bis(tert-butoxycarbonyl)amino)-N-(tert-butoxycarbonyl)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanamido)propanoate (21f). According to the general protocol B, 4-((3aS,6R,6aS)-6-((S)-2,2dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), N,N-tertbutoxycarbonyldehydroalanine 20f (131 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Toluene: EtOAc = 5:1) **21f** (146 mg, 81%, d.r. = 1.8:1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.41 (m, 2H), 7.39 – 7.35 (m, 2H), 7.34 – 7.29 (m, 1H), 7.28 – 7.27 (m, 0.53H), 7.18 – 7.16 (m, 0.47H), 7.12 – 7.06 (m, 1H), 6.91 - 6.88 (m, 2H), 5.89 (dd, J = 11.0, 4.5 Hz, 0.47H), 5.63 (t, J = 6.7, 6.7 Hz, 0.53H), 5.40 - 6.255.35 (m, 1H), 5.03 - 5.01 (m, 2H), 4.77 (dd, J = 6.0, 3.7 Hz, 0.53 H), 4.70 (dd, J = 6.0, 3.8 Hz, 0.47 H), 4.59 Hz(d, J = 6.0 Hz, 0.53 H), 4.40 - 4.30 (m, 2H), 4.17 - 4.04 (m, 2.47 H), 3.82 (dd, J = 8.4, 3.8 Hz, 0.53 H), 3.76 Hz(dd, J = 8.7, 3.8 Hz, 0.47H), 3.70 - 3.66 (m, 3H), 3.44 - 3.36 (m, 1H), 3.08 (dd, J = 14.1, 9.5 Hz, 0.47H), 2.84(dd, J = 14.0, 3.6 Hz, 0.53H), 2.32 - 2.25 (m, 0.53H), 2.03 - 1.97 (m, 0.47H), 1.49 - 1.47 (m, 20H), 1.45 (m, 20H1.42 (m, 11H), 1.38 (d, J = 2.6 Hz, 3H), 1.33 (d, J = 1.4 Hz, 3H), 1.29 – 1.27 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) § 174.4, 172.6, 171.1, 170.8, 157.9, 157.6, 153.2, 152.6, 151.6, 151.3, 137.3, 137.0, 131.6, 130.8, 130.6, 130.0, 129.2, 128.7, 128.4, 128.1, 128.0, 127.7, 127.6, 115.0, 114.8, 112.6, 109.4, 109.3, 85.8, 85.4, 84.5, 84.0, 83.1, 82.4, 82.3, 80.8, 80.5, 80.4, 73.4, 73.3, 70.3, 70.1, 67.7, 67.4, 58.8 (2), 58.4, 52.4, 52.3, 36.9, 35.6, 34.7, 31.6, 31.1, 30.3, 29.8, 28.1 (2), 28.0 (3), 27.0, 26.9, 26.3, 26.2, 25.6, 25.5, 25.0, 24.8; HRMS (ESI) m/z calcd for C₄₇H₆₆N₂NaO₁₅ [M + Na]⁺921.4355, found 921.4369.

Methyl *N*-(2-(bis(*tert*-butoxycarbonyl)amino)-3-((3aR,4R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)propanoyl)-*O*-(*tert*-butyl)-*L*-serinate (21g). According to the general procedure B, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ **17a** (162 mg, 0.300 mmol, 1.50 equiv), (2-(di(*tert*-butoxycarbonyl)amino)acrylic-L-methionine **20g** (89.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 2:1) **21g** (70.5 mg, 51%, d.r. = 1:1) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 6.85 (d, J = 8.1 Hz, 0.73H), 4.93 – 4.87 (m, 0.77H), 4.79 – 4.69 (m, 1.25H), 4.69 – 4.60 (m, 0.34H), 4.62 – 4.54 (m, 0.78H), 4.52 (d, J = 6.1 Hz, 1H), 4.39 – 4.30 (m, 1H), 4.22 (dd, J = 10.0, 5.1 Hz,

0.74H), 4.09 - 3.95 (m, 2.22H), 3.82 - 3.73 (m, 1.11H), 3.69 (d, J = 7.3 Hz, 3H), 3.65 (dd, J = 8.4, 3.7 Hz, 0.69H), 3.53 (dd, J = 9.0, 3.4 Hz, 0.33H), 3.45 (dd, J = 9.0, 3.5 Hz, 0.64H), 2.41 - 2.25 (m, 0.78H), 2.22 - 2.01 (m, 0.58H), 1.91 - 1.78 (m, 0.78H), 1.51 - 1.29 (m, 30H), 1.10 (d, J = 2.8 Hz, 9H); 13 C NMR (101 MHz, CDCl₃) δ 170.9, 170.7, 170.1, 169.9, 152.4, 152.0, 112.7, 112.6, 109.3, 109.2, 85.5, 85.4, 83.7, 83.6, 82.7, 80.9, 80.8, 80.7, 80.5, 80.1, 73.6, 73.5, 73.4, 73.3, 67.3, 67.2, 62.1, 61.8, 57.0, 56.6, 53.1, 53.0, 52.4, 52.3, 30.5, 30.3, 29.8, 29.5, 28.0(2), 27.3, 27.0, 26.2(2), 25.3(2), 24.9, 24.8; HRMS (ESI) *m/z* calcd for $C_{33}H_{56}O_{13}N_2Na$ [M + Na]⁺ 711.3675, found 711.3678.

Methyl (2-(bis(tert-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)glycinate (21h). According to the general 4-((3aS,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4protocol B. d[1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), N,N-tert-butoxycarbonyldehydroalanine³ 20h (71.6 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.02 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred in 6W Blue LEDs under N2 at 85 °C for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) **21h** (59.0 mg, 49%, d.r. = 1.1:1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 6.62 (t, *J* = 5.2 Hz, 0.62H), 6.39 (t, *J* = 5.2 Hz, 0.38H), 4.94 (t, *J* = 6.6 Hz, 0.38H), 4.13 - 3.93 (m, 4.29H), 3.77 - 3.74 (m, 3.38H), 3.67 (dd, J = 8.3, 3.7 Hz, 0.38H), 2.40 - 2.32 (m, 0.39H), 2.27 – 2.20 (m, 0.62H), 2.13 – 2.05 (m, 0.62H), 1.93 – 1.85 (m, 0.39H), 1.50 – 1.49 (m, 19.03H), 1.42 -1.41 (m, 2.62H), 1.36 - 1.25 (m, 7.99H), 1.14 (d, J = 6.4 Hz, 0.38H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.2, 152.6, 152.2, 112.8(2), 109.3, 85.7, 85.5, 84.1, 83.8, 82.9, 81.1, 80.9, 80.8, 80.5, 80.0, 73.4, 67.3, 67.1, 57.0, 56.8, 52.5(2), 41.5(2), 30.8, 30.2, 28.1, 28.0, 27.1, 27.0, 26.3, 26.2, 25.4, 25.0, 24.9. HRMS (ESI) m/z calcd for $C_{28}H_{46}NNaO_{12}$ [M + Na]⁺ 625.2943, found 625.2945.

Dimethyl (2-(bis(*tert*-butoxycarbonyl)amino)-3-((3*aR*,4*R*,6*R*,6*aS*)-6-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)propanoyl)-*L*-aspartate (21i). According to the general procedure B, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), (2-(di(*tert*-butoxycarbonyl)amino)acrylic-*L* $-dimethyl-asparate 20i (86.0 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) 21i (70.0 mg, 52%, d.r. = 1.2:1) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.00 (d, *J* =

7.8 Hz, 0.67H), 6.85 (d, J = 8.1 Hz, 0.29H), 4.92 – 4.68 (m, 3H), 4.54 (d, J = 6.1 Hz, 1H), 4.41 – 4.30 (m, 1H), 4.24 (dd, J = 10.2, 4.9 Hz, 0.35H), 4.12 – 3.98 (m, 2.60H), 3.75 – 3.63 (m, 7H), 3.03 (d, J = 4.2 Hz, 0.33H), 2.99 (d, J = 4.2 Hz, 0.55H), 2.89 (d, J = 4.8 Hz, 0.37H), 2.85 (d, J = 4.7 Hz, 0.20H), 2.77 (d, J = 4.7 Hz, 0.19H), 2.72 (d, J = 4.7 Hz, 0.13H), 2.43 – 2.30 (m, 0.42H), 2.24 – 2.04 (m, 1.41H), 1.53 – 1.29 (m, 30H); 1³C NMR (101 MHz, CDCl₃) δ 171.4, 171.3, 171.1, 171.0, 170.2, 169.8, 152.5, 152.1, 112.8, 112.7, 109.4, 109.3, 85.6, 85.5, 84.0, 83.9, 83.7, 82.8, 80.9, 80.8, 80.7, 80.5, 80.1, 73.4, 67.2, 56.9, 56.6, 52.9, 52.8, 52.1, 52.0, 48.8, 48.7, 36.3, 36.1, 31.0, 30.5, 29.5, 28.0(2), 27.1, 27.0, 26.3, 26.2, 25.3, 24.9, 24.8; **HRMS** (ESI) m/z calcd for C₃₁H₅₀O₁₄N₂Na [M + Na]⁺ 697.3154, found 697.3162.

Methyl (2-(bis(tert-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)-L-methioninate (21j). According to the procedure 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2general B. dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), (2-(di(*tert*-butoxycarbonyl)amino)acrylic-Lmethionine 20j (86.5 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **21***j* (46.5 mg, 34%, d.r. = 1:1) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, J = 7.7 Hz, 0.43 H), 6.62 (d, J = 7.5 Hz, 0.44 H), 4.90 - 4.63 (m, 3 H), 4.53 (dd, J = 6.1, 2.5 Hz, 1 H), 4.39 - 4.63 (m, 3 H), 4.53 (dd, J = 6.1, 2.5 Hz, 1 H), 4.39 - 4.63 (m, 3 H), 4.53 (dd, J = 6.1, 2.5 Hz, 1 H), 4.39 - 4.63 (m, 3 H), 4.53 (dd, J = 6.1, 2.5 Hz, 1 H), 4.39 - 4.63 (m, 3 H), 4.53 (m, 3 H)4.29 (m, 1H), 4.22 (dd, J = 10.2, 4.9 Hz, 0.53 H), 4.12 - 3.98 (m, 2H), 3.80 - 3.68 (m, 4H), 3.65 (dd, J = 8.3, 3.28 Hz, 0.53 Hz, 0.533.7 Hz, 0.45H), 2.54 – 2.44 (m, 2H), 2.42 – 2.34 (m, 0.43H), 2.21 – 2.04 (m, 5.37H), 2.03 – 1.92 (m, 1H), 1.91 - 1.80 (m, 0.57H), 1.55 - 1.23 (m, 30H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 172.2, 170.3, 169.8, 152.6, 152.2, 112.8, 112.7, 109.4, 109.3, 85.6, 85.5, 84.1, 83.8, 82.9, 80.9, 80.8, 80.7, 80.5, 80.1, 73.4, 67.2(2), 57.1, 56.7, 52.7, 52.6, 51.9, 51.8, 31.9, 31.7, 30.5, 30.0, 29.9, 29.6, 28.1, 28.0, 27.1(2), 26.3, 26.2, 25.3(2), 24.9(2), 15.6, 15.4; **HRMS** (ESI) m/z calcd for C₃₁H₅₂O₁₂N₂SNa [M + Na]⁺ 699.3133, found 699.3135.

Methyl S-benzyl-N-(2-(bis(*tert*-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)-L-cysteinate (21k). According to the general procedure B, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ **17a** (162 mg, 0.300 mmol, 1.50 equiv), (2-(di(*tert*-butoxycarbonyl)amino)acrylic-L-S-benzyl-cysteine **20k** (86.5 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under

6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **21k** (78.3 mg, 53%, d.r. = 1:1) as a colorless oil: ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 5H), 6.83 (d, *J* = 7.7 Hz, 0.52H), 6.65 (d, *J* = 7.6 Hz, 0.41H), 4.89 (t, *J* = 6.5 Hz, 0.48H), 4.82 – 4.71 (m, 2.69H), 4.54 (dd, *J* = 6.2, 2.1 Hz, 1H), 4.39 – 4.32 (m, 1H), 4.23 (dd, *J* = 10.2, 4.8 Hz, 0.47H), 4.12 – 3.98 (m, 2.63H), 3.77 – 3.64 (m, 7H), 2.92 – 2.76 (m, 2.22H), 2.42 – 2.34 (m, 0.52H), 2.26 – 2.06 (m, 1.23H), 1.91 – 1.81 (m, 0.52H), 1.49 (d, *J* = 1.9 Hz, 21H), 1.41 (d, *J* = 5.8 Hz, 3H), 1.35 (d, *J* = 3.1 Hz, 3H), 1.32 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.0, 170.2, 169.8, 152.5, 152.2, 137.6(2), 129.0(2), 128.6, 127.3, 127.3, 112.7(2), 109.3(2), 85.5, 85.4, 84.0, 83.7, 82.8, 80.9, 80.8, 80.7, 80.5, 80.1, 73.3, 67.2, 56.9, 56.7, 52.7, 52.6, 52.0, 51.9, 36.6, 36.5, 33.4, 33.3, 30.6, 29.7, 28.1, 28.0, 27.0, 26.2(2), 25.3(2), 24.9, 24.8; **HRMS** (ESI) *m*/*z* calcd for C₃₆H₅₄O₁₂N₂NaS [M + Na]⁺ 761.3290, found 761.3293.

Methyl (2-(bis(tert-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)-D-tryptophanate (211). According to the general procedure B, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), (2-(di(*tert*-butoxycarbonyl)amino)acryloyl)-Ltryptophanate² 201 (86.5 mg, 0.200 mmol, 1.00 equiv) and Ir[dF(CF₃)(ppy)₂](dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **211** (94.7 mg, 65%, d.r. = 1.2:1) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 19.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.20 - 7.06 (m, 2H), 7.01 (t, J = 3.5 Hz), 7.01 (t, J = 3.5 Hz)Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 4.93 – 4.83 (m, 2H), 4.75 (dd, J = 6.0, 3.7 Hz, 1H), 4.53 (d, J = 6.1 Hz, 1H), 4.42 - 4.32 (m, 1H), 4.28 - 4.18 (m, 1H), 4.15 - 4.00 (m, 2H), 3.72 - 3.59 (m, 4H), 3.30 (d, J = 5.4 Hz, 2H), 2.45 – 2.29 (m, 1H), 1.92 – 1.80 (m, 1H), 1.49 – 1.32 (m, 30H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 169.4, 152.1, 136.2, 127.6, 123.0, 122.3, 119.8, 118.7, 112.7, 111.3, 110.0, 109.3, 85.6, 83.9, 82.8, 80.8, 80.5, 73.5, 67.2, 57.0, 53.1, 52.4, 30.7, 28.1, 28.0, 27.1, 26.3, 25.3, 25.0; HRMS (ESI) m/z calcd for C₃₇H₅₃O₁₂N₃Na [M + Na]⁺ 754.3521, found 754.3530.

Methyl (2-(bis(*tert*-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)-L-alloisoleucyl-L-leucinate (21m). According to the general protocol B, 4-((3aS,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), methyl (2-(bis(*tert*-butoxycarbonyl)amino)acryloyl)-L-alloisoleucyl-L-leucinate 20m (105 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg,

0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1:1) **21m** (87.9 mg, 57%, d.r. = 1.4:1) as a foam: ¹H **NMR** (400 MHz, CDCl₃) δ 6.57 (d, *J* = 8.4 Hz, 0.39H), 6.49 (d, *J* = 8.4 Hz, 0.61H), 6.41 (d, *J* = 8.1 Hz, 0.39H), 6.17 (d, *J* = 8.0 Hz, 0.61H), 4.83 – 4.72 (m, 2H), 4.59 – 4.49 (m, 2H), 4.38 – 4.31 (m, 1H), 4.30 – 4.19 (m, 1.61H), 4.08 – 3.99 (m, 2.39H), 3.75 – 3.70 (m, 3.39H), 3.65 (dd, *J* = 8.3, 3.7 Hz, 0.61H), 2.45 – 2.38 (m, 0.61H), 2.29 – 2.21 (m, 0.39H), 2.09 – 1.93 (m, 1H), 1.82 – 1.77 (m, 1H), 1.76 – 1.53 (m, 4H), 1.50 – 1.48 (m, 18H), 1.45 – 1.40 (m, 5.61H), 1.35 – 1.31 (m, 6.39H), 1.15 – 1.06 (m, 1H), 0.93 – 0.86 (m, 12H); ¹³C **NMR** (101 MHz, CDCl₃) δ 173.2, 173.0, 170.7(2), 170.4, 169.9, 152.7, 152.4, 112.8, 112.7, 109.4, 109.3, 85.6, 85.5, 84.1, 83.9, 82.8, 80.9, 80.8, 80.6, 80.5, 80.2, 73.4, 67.3(2), 58.0, 57.9, 57.0, 56.9, 52.4, 52.3, 50.9(2), 41.4, 41.3, 37.4, 37.1, 30.6, 29.8, 29.4, 28.1, 28.0, 27.1, 27.0, 26.2(2), 25.3(2), 25.0, 24.9, 24.8, 22.9, 22.8, 22.0, 21.9, 15.6, 15.4, 11.6, 11.5; **HRMS** (ESI) *m/z*: [M + Na]⁺ calcd for C₃₈H₆₅N₃NaO₁₃ 794.4410; found 794.4406.

Methyl (2-(bis(tert-butoxycarbonyl)amino)-3-((3aR,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)propanoyl)-L-alloisoleucyl-L-valinate (21n). According to the general protocol B, 4-((3aS,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate¹ 17a (162 mg, 0.300 mmol, 1.50 equiv), methyl (2-(bis(*tert*-butoxycarbonyl)amino)acryloyl)-L-alloisoleucyl-L-valinate 20n (103 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1:1) **21n** (80.2 mg, 53%, d.r. = 1.2:1) as a foam: ¹H NMR (400 MHz, CDCl₃) δ 6.65 (d, J = 8.4 Hz, 0.48H), 6.51 (d, J = 8.3 Hz, 0.52H), 6.43 (d, J = 8.6 Hz, 0.48H), 6.29 (d, J = 8.6 Hz, 0.52H), 4.82 – 4.72 (m, 2H), 4.54 - 4.43 (m, 2H), 4.37 - 4.25 (m, 2H), 4.20 (dd, J = 10.3, 4.8 Hz, 0.52H), 4.07 - 3.99 (m, 2.48H), 3.75 – 3.71 (m, 3.52H), 3.64 (dd, J = 8.3, 3.7 Hz, 0.48H), 2.44 – 2.38 (m, 0.52H), 2.27 – 2.03 (m, 2H), 1.93 (s, 2H), 1.87 – 1.79 (m, 1H), 1.49 – 1.39 (m, 25.52H), 1.35 – 1.30 (m, 6.52H), 1.20 – 1.05 (m, 1.48H), 0.92 – 0.86 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1(2), 170.9, 170.8, 170.5, 169.9, 152.7, 152.4, 112.7(2), 109.4, 109.3, 85.6, 85.5, 84.1, 83.8, 82.9, 80.9, 80.8, 80.6, 80.5, 80.2, 73.4, 67.3, 67.2, 58.0(2), 57.4, 57.3, 57.1, 56.9, 52.3, 52.2, 37.3, 37.2, 31.2, 31.0, 30.5, 29.5, 28.1, 28.0, 27.1, 27.0, 26.3, 26.2, 25.3(2), 25.0, 24.9(2), 24.8, 19.1, 18.1, 17.9, 15.6, 15.5, 11.6, 11.5; **HRMS** (ESI) *m/z* calcd for C₃₇H₆₃N₃NaO₁₃ [M + Na]⁺780.4253, found 780.4260.

Methyl (2-(bis(*tert*-butoxycarbonyl)amino)-3-((3*aR*,4*R*,6*R*,6*aS*)-6-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)propanoyl)-*L*-alloisoleucyl-*L*-leucyl-*L*-

phenylalaninate (210). According to the general protocol B, 4-((3aS,6R,6aS)-6-((S)-2,2-dimethyl-1,3dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3.5-diethyl 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate¹ 17a (81.0 mg, 0.150 mmol, 1.50 equiv), methyl (2-(bis(tertbutoxycarbonyl)amino)acryloyl)-L-alloisoleucyl-L-leucyl-L-phenylalaninate 200 (67.4 mg, 0.100 mmol, 1.0 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.3 mg, 0.002 mmol, 0.02 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs for 24 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: Acetone = 1:1) **210** (57.0 mg, 62%, d.r. = 1.2:1) as a foam: ¹H NMR (400 MHz, CD₃CN) δ 7.31 – 7.26 (m, 2H), 7.25 – 7.22 (m, 1H), 7.21 – 7.17 (m, 2H), 7.08 (d, J = 7.8 Hz, 0.55H), 6.99 (d, J = 7.7 Hz, 0.45H), 6.79 (d, J = 8.1 Hz, 1H), 6.67 (d, J = 7.0 Hz, 0.55H), 6.56 (d, J = 7.4 Hz, 0.45H), 4.89 (dd, J = 7.6, 5.8 Hz, 0.45H), 4.73 (dd, J = 10.3, 4.4 Hz, 0.55H), 4.68 – 4.64 (m, 1H), 4.59 - 4.55 (m, 1H), 4.53 - 4.52 (m, 0.55H), 4.47 (dd, J = 6.0, 0.9 Hz, 0.55H), 4.31 - 4.21 (m, 2H), 4.16 - 6.04.06 (m, 1.55H), 4.00 – 3.97 (m, 1.45H), 3.93 – 3.88 (m, 1H), 3.74 – 3.71 (m, 0.45H), 3.64 – 3.61 (m, 3.55H), 3.12 - 3.05 (m, 1H), 3.02 - 2.95 (m, 1H), 2.24 - 2.22 (m, 0.55H), 1.91 - 1.87 (m, 0.45H), 1.51 - 1.47 (m, 20H), 1.40 – 1.38 (m, 3.35H), 1.35 – 1.34 (m, 3H), 1.28 – 1.26 (m, 6.65H), 0.90 – 0.82 (m, 15H); ¹³C NMR (101 MHz, CD₃CN) δ 172.8, 172.7, 171.9, 171.8, 171.6, 171.2, 153.7, 153.3, 138.0, 137.8, 130.3, 130.3, 129.4, 129.3, 127.8, 127.7, 112.9, 112.7, 109.6(2), 86.4, 86.0, 84.4, 84.2, 84.0, 82.0, 81.7, 81.6, 81.2, 81.0, 74.0, 67.8, 67.8, 59.2, 58.1, 57.6, 54.7, 52.6(2), 52.5(2), 42.4, 41.4, 41.3, 38.2, 38.1, 37.9, 37.8, 36.9, 30.9, 30.8, 29.8, 29.1, 28.2(2), 27.1(2), 26.4, 25.7, 25.6, 25.4(2), 25.3, 24.9(2), 23.5, 23.3(2), 22.9, 21.7, 21.6, 19.7, 16.1, 11.8, 11.7; **HRMS** (ESI) m/z calcd for C₄₇H₇₄N₄NaO₁₄ [M + Na]⁺ 941.5094, found 941.5104.

Unsuccessful examples

Glycosyl esters (1.50 equiv), chiral dehydroalanines (1.00 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.0 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3×). Anhydrous 1,4-dioxane (3.00 mL) were added, and the reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 10 h or 20 h, cooled to rt. It is worth noting that the upper edge of the heating block submerges up 1/3 of the reaction mixture. The experimental results showed that no target compounds (**17a**, **17a**", **17a**") were detected, there are some residual raw materials and by-products of the protonation of glycosyl esters; At the same time, only trace of product (**17b**', **17b**", **17b**") formation can be detected in HRMS, the by-product is also the protonation of glycosyl esters.

5. Detailed Experimental Procedures for Preparation of Glycosyl 4-Formate-1,4dihydropyridine

4-((*3aR*, *6aR***)**-6-(Acetoxymethyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17c). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (653 mg, 2.20 mmol, 1.20 equiv), DIC (290 mg, 2.30 mmol, 1.30 equiv) and DMAP (24.4 mg, 0.180 mmol, 0.100 equiv) were added to a solution of ((*3aR*, *4R*, *6aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)methyl (*2S*)-2-(6-methoxynaphthalen-2-yl)propanoate⁹ **17ca** (410 mg, 1.80 mmol, 1.00 equiv) in DCM (10.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated *in vacuo* and afforded after flash column chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 2:1) **17c** (653 mg, β and α mixture, 71%) as a light-yellow foam: ¹H NMR (400 MHz, CDCl₃) δ 6.16 (s, 1H), 6.08 (s, 1H), 4.85 (s, 1H), 4.66 (d, J = 5.9 Hz, 1H), 4.60 (d, J = 5.9 Hz, 1H), 4.43 – 4.35 (m, 1H), 4.23 – 4.17 (m, 4H), 4.02 – 3.94 (m, 2H), 2.31 (d, J = 2.9 Hz, 6H), 2.09 (s, 3H), 1.47 (s, 3H), 1.32 – 1.27 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.8, 167.1, 167.0, 146.1, 146.0, 113.3, 102.3, 98.4, 98.1, 85.2, 85.1, 82.0, 64.2, 60.3(2), 40.6, 26.5, 25.2, 20.9, 19.5, 19.4, 14.5; HRMS (ESI) *m/z* calcd for C₂₄H₃₃NNaO₁₁ [M + Na]⁺ 534.1946, found 534.1944.

4-((*3aR*, *6R*, *6aR*)-6-((**Benzyloxy**)**methy**])-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17e). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (2.50 g, 8.50 mmol, 1.20 equiv), DIC (1.20 g, 9.30 mmol, 1.30 equiv) and DMAP (86.0 mg, 0.710 mmol, 0.100 equiv) were added to a solution of (*3aR*, *6R*, *6aR*)-6-((benzyloxy)methyl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-ol¹⁰ **17ea** (2.00 g, 7.10 mmol, 1.00 equiv) in DCM (15.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated *in vacuo* and afforded after flash column chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) **17e** (2.20 g, β and α mixture, 56%) as a light-yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.31 (m, 4H), 7.29 – 7.26 (m, 1H), 6.32 (s, 1H), 6.11 (s, 1H), 4.84 (s, 1H), 4.74 (d, *J* = 5.9 Hz, 1H), 4.60 (d, *J* = 6.0 Hz, 1H), 4.57 (s, 2H), 4.41 (dd, *J* = 9.3, 5.6 Hz, 1H), 4.21 – 4.10 (m, 4H), 3.50 – 3.39 (m, 2H), 2.25 – 2.24 (m, 6H), 1.47 (s, 3H), 1.30 – 1.23 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 167.1, 167.0, 146.3, 146.1, 138.1, 128.5, 127.8, 127.6, 113.0, 102.6, 98.1, 97.7, 86.1, 85.1, 82.2, 73.2, 70.3, 60.2, 60.1, 40.4, 26.5, 25.1, 19.2(2), 14.5(2); HRMS (ESI) *m/z* calcd for C₂₉H₃₇NNaO₁₀ [M + Na]⁺ 582.2310, found 582.2309.

3,5-Diethyl 4-((3R,4R,5S,6S)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17p). According to the general protocol D. 3.5bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (1.64 g, 5.50 mmol, 1.10 equiv), DIC (756 mg, 6.00 mmol, 1.20 equiv) and DMAP (61.0 mg, 0.500 mmol, 0.100 equiv) were added to a solution of (3R,4R,5S,6S)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2H-pyran-2-ol¹¹ 17pa (2.17 g, 5.00 mmol, 1.00 equiv) in DCM (10.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated in vacuo and afforded after flash column chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) 17p (2.0 g, β and α mixture, 56%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.34 – 7.23 (m, 13H), 5.95 (s, 1H), 5.52 (s, 1H), 5.01 (s, 1H), 4.91 (dd, *J* = 11.5, 4.5 Hz, 2H), 4.63 (dd, *J* = 18.3, 11.5 Hz, 2H), 4.49 - 4.42 (m, 2H), 4.21 - 4.12 (m, 4H), 3.91 (d, J = 2.8 Hz, 1H), 3.60 - 3.50 (m, 2H), 3.45 - 3.38 (m, 1H), 2.28 – 2.27 (m, 6H), 1.34 – 1.24 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 167.1, 146.1, 139.0, 138.5, 138.2, 128.5(2), 128.3, 128.2, 128.1, 127.8, 127.7(2), 127.6, 98.5, 98.3, 94.3, 81.8, 79.7, 75.5, 74.6, 74.2, 72.9, 71.5, 60.4, 60.3, 40.8, 19.5(2), 18.0, 14.5(2); **HRMS** (ESI) m/z calcd for C₄₁H₄₇NNaO₁₀ [M + Na]⁺ 736.3092, found 736.3094.

3,5-Diethyl 4-((*3R,4R,5S,6S***)-3,4,5-triacetoxy-6-methyltetrahydro-2***H***-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17q).** According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ **S1** (1.12 g, 4.08 mmol, 1.20 equiv), DIC (557 mg, 4.42 mmol, 1.30 equiv) and DMAP (42.0 mg, 0.340 mmol, 0.100 equiv) were added to a solution of (*3R,4R,5S,6S*)-2-hydroxy-6-methyltetrahydro-2*H*-pyran-3,4,5-triyl triacetate⁶ **17qa** (1.00 g, 3.40 mmol, 1.00 equiv) in DCM (20.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated *in vacuo* and afforded after flash column chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 1:1) **17q** (420 mg, β and α mixture, 22%) as a white foam: ¹**H NMR** (400 MHz, CDCl₃) δ 6.17 (s, 1H), 6.06 (s, 1H), 5.91 (d, *J* = 1.9 Hz, 1H), 5.71 (d, *J* = 1.2 Hz, 1H), 5.39 (dd, *J* = 2.9, 1.2 Hz, 1H), 5.21 – 5.16 (m, 2H), 5.10 – 4.98 (m, 3H), 4.98 – 4.94 (m, 2H), 4.28 – 4.12 (m, 10H), 3.88 – 3.81 (m, 1H), 3.62 – 3.55 (m, 1H), 2.36 – 2.28 (m, 14H), 2.20 (s, 4H), 2.14 (s, 3H), 2.06 – 2.04 (m, 7H), 1.98 – 1.97 (m, 3H), 1.33 – 1.23 (m, 18H), 1.18 (d, J = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 170.6, 170.4, 170.1, 170.0, 167.0, 166.9, 146.0(2), 98.2, 97.9, 90.8, 71.5, 71.0, 70.6, 70.4, 69.0, 68.7, 68.4, 60.4, 60.2(2), 40.5, 40.2, 20.9, 20.8, 20.7, 19.4(3), 19.3, 17.5, 17.4, 14.5, 14.4; **HRMS** (ESI) *m/z* calcd for C₂₆H₃₅NNaO₁₃ [M + Na]⁺ 592.2001, found 592.1998.

3.5-Diethyl 4-((2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((((2R,3R,5R,6R)-3,4,5-tris(benzoyloxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17s). NIS (9.30 g, 41.25 mmol, 2.50 equiv) and TFA (673 mg, 5.90 mmol, 1.10 equiv) were added to a solution of 17sa¹² (13.8 g, 16.5 mmol, 1.00 equiv) in a mixture of DCM/H₂O (88.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to proceed under stirring for 2 h at rt and quenched with Et₃N. The mixture was washed with 20% (w/w) aqueous Na₂S₂O₃ (30.0 mL) and saturated aqueous NaHCO₃ (80.0 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×80.0 mL). The organic phase was dried over anhydrous Na₂SO₄ and the solvent was removed. The crude product was purified by short column on SiO_2 (petroleum ether: EtOAc = 5:1) to give the hemiacetal (9.50 g, 79%). The hemiacetal (9.50 g, 13.0 mmol, 1.00 equiv) was treated with trichloroacetonitrile (7.488 g, 52.0 mmol, 4.00 equiv) in anhydrous DCM (30.0 mL) in the presence of DBU (395.2 mg, 2.60 mmol, 0.200 equiv). After stirring at rt for 2 h, the reaction mixture was concentrated and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) the trichloroacetimidate glycosyl donor **7sb** as a white foam. Freshly activated 4Å MS (3.00 g), the above 17sb, ((2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-(ptolylthio)tetrahydro-2H-pyran-2-yl)methanol¹³ 17sc (6.60 g, 12.2 mmol, 1.00 equiv) and anhydrous DCM (60.0 mL) were successively added into a flame dried glassware. The mixture was cooled to -20 °C and TMSOTf (135.4 mg, 0.610 mmol, 0.050 equiv) was added. After stirring at this temperature for 2 h, the resulting mixture was filtered through a pad of silica, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 5:1) to afford 17sd (10.2 g, 74%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.91 (m, 6H), 7.80 – 7.78 (m, 2H), 7.67 – 7.65 (m, 2H), 7.60 – 7.55 (m, 1H), 7.47 – 7.30 (m, 26H), 7.29 – 7.27 (m, 3H), 7.25 – 7.24 (m, 1H), 7.18 – 7.16 (m, 2H), 5.90 (t, J = 9.6, 9.6 Hz, 1H), 5.73 – 5.64 (m, 3H), 4.91 (d, J = 7.9 Hz, 1H), 4.79 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.68 – 4.61 (m, 2H), 4.57 (s, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.57 (s, 2H), 4.57 (s, 2H), 4.57 (s, 2H), 4.58 (s, 2H), 11.2 Hz, 1H), 4.33 – 4.20 (m, 2H), 4.06 – 3.97 (m, 3H), 3.93 – 3.82 (m, 4H), 2.39 (s, 3H), 1.10 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 165.1, 165.0, 138.6, 138.3, 138.1, 137.5, 135.7, 135.6, 133.3, 133.1, 133.0, 132.8, 131.6, 130.9, 130.0, 129.9, 129.8 (2), 129.7 (2), 129.6, 129.3, 129.1, 128.4, 128.3 (3), 128.0, 127.7 (3), 127.6, 101.3, 86.2, 80.2, 75.9, 75.3, 74.8, 74.5, 73.5, 72.8, 72.1, 71.8, 71.7, 69.4, 68.3, 62.8, 26.7, 21.2, 19.2; **HRMS** (ESI) m/z calcd for C₇₇H₇₆NaO₁₃SSi [M + Na]⁺ 1291.4668, found 1291.4689.

NIS (1.20 g, 5.00 mmol, 2.50 equiv) and TFA (250 mg, 2.20 mmol, 1.10 equiv) were added to a solution of **17sd** (2.30 g, 2.00 mmol, 1.00 equiv) in a mixture of DCM/H₂O (22.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir at rt for 2 h and quenched with Et₃N. The mixture was washed with 20% (w/w) aqueous Na₂S₂O₃ (20.0 mL) and saturated aqueous NaHCO₃ (20.0 mL). The organic layer was separated, reextracted

with DCM (2 \times 20 mL), dried over anhydrous Na₂SO₄, and contracted. The crude product was purified by short column on SiO₂ to obtain the hemiacetal (1.15 g, 50%). According to the general protocol D, 3,5bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (297 mg, 1.00 mmol, 1.00 equiv), DIC (151 mg, 1.20 mmol, 1.20 equiv) and DMAP (24.4 mg, 0.200 mmol, 0.200 equiv) were added to a solution of the above hemiacetal (1.15 g, 1.00 mmol, 1.00 equiv) in DCM (10.0 mL) at rt and stirred for 12 h. The reaction mixture was concentrated and afforded after chromatographic purification on SiO₂ (Toluene: ether: EtOAc = 3:1) 17s (620 mg, β and α mixture, 44%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.92 - 7.87 (m, 6H), 7.78 - 7.75 (m, 2H), 7.64 - 7.55 (m, 6H), 7.53 - 7.47 (m, 2H), 7.42 (t, J = 7.8, 7.8 Hz, 2H), 7.38 – 7.29 (m, 16H), 7.27 – 7.26 (m, 2H), 7.25 – 7.22 (m, 2H), 5.82 – 5.72 (m, 2H), 5.56 – 5.52 (m, 2H), 5.33 (s, 1H), 5.16 (d, J = 8.0 Hz, 1H), 5.03 (d, J = 12.2 Hz, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.74 (d, J = 12.2 Hz, 1H), 4.51 – 4.43 (m, 2H), 4.39 – 4.29 (m, 4H), 4.23 (dd, *J* = 10.8, 7.1 Hz, 1H), 4.19 – 4.13 (m, 1H), 4.12 - 4.07 (m, 1H), 4.04 (d, J = 2.8 Hz, 1H), 4.01 - 3.95 (m, 2H), 3.90 - 3.82 (m, 2H), 3.64 - 3.60 (m, 1H), 3.52 – 3.47 (m, 2H), 2.66 (s, 3H), 2.21 (s, 3H), 1.39 (t, J = 7.1, 7.1 Hz, 3H), 1.27 (t, J = 7.1, 7.1 Hz, 3H), 1.08 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 167.2, 167.2, 167.1, 165.2, 164.9, 147.1, 146.3, 138.7, 138.0, 137.9, 135.8, 135.6, 133.7, 133.4, 133.3, 133.0, 130.0, 129.9, 129.7, 129.7, 129.3, 129.1, 128.6, 128.5, 128.5, 128.5, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.7, 127.6, 101.0, 98.6, 97.7, 94.5, 81.7, 78.4, 75.2, 74.9, 74.4, 74.4, 74.0, 73.4, 71.6, 71.3, 69.4, 66.9, 62.7, 60.3, 60.2, 39.8, 26.7, 19.6, 19.3, 18.7, 14.6, 14.5. **HRMS** (ESI) m/z calcd for C₈₄H₈₇NNaO₁₉Si [M + Na]⁺ 1464.5534, found 1464.5540.

4-((3R,4S,5R,6R)-3,4-Bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl) **3.5-diethvl** 2.6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17t). 30% NaOMe in MeOH (58 mg, 0.31 mmol, 0.1 equiv) was added a solution of (2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate¹⁴ 17ta (2.30 g, 3.10 mmol, 1.00 equiv) in anhydrous MeOH (20.0 mL) at rt. The reaction mixture was stirred at 2 h, concentrated, and azeotroped with toluene $(2\times)$. A solution of the crude heptol (3.00 mmol, 1.00 equiv) and TBAI (443 mg, 1.20 mmol, 0.400 equiv) in anhydrous DMF (30.0 mL) was added NaH (60% in oil) (1.10 g, 27.0 mmol, 9.00 equiv) at 0 °C and stirred for 10 minutes. BnBr (5.13 g, 30.0 mmol, 10.0 equiv) was added dropwise to the resulting mixture at 0 °C. After warming up to rt and stirring overnight, the reaction mixture was poured into ice-water and extracted with EtOAc $(3\times)$. The combined organic extracts were washed with H₂O (3×), brine (2×), dried over Na₂SO₄, and filtered. After solvent removal *in vacuo*, the residue afforded after chromatographic purification on SiO_2 (Petroleum ether: EtOAc = 6:1) the corresponding the benzylated lactopyranoside 17tb (1.50 g, 47%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.48

-7.45 (m, 2H), 7.41 - 7.27 (m, 30H), 7.25 - 7.21 (m, 1H), 7.18 - 7.14 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.14 (d, J = 10.4 Hz, 1H), 5.03 (d, J = 11.4 Hz, 1H), 4.88 - 4.81 (m, 4H), 4.80 - 4.71 (m, 3H), 4.64 - 4.56 (m, 2H), 4.51 (d, J = 7.8 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 4.38 (d, J = 11.8 Hz, 1H), 4.29 (d, J = 11.8 Hz, 1H), 4.02 - 3.98 (m, 2H), 3.90 - 3.80 (m, 3H), 3.66 (t, J = 8.9, 8.9 Hz, 1H), 3.58 (t, J = 7.8, 7.8 Hz, 1H), 3.51 - 3.37 (m, 5H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 139.0, 138.8, 138.6, 138.6, 138.5, 138.2, 137.7, 132.9, 129.7, 128.5, 128.5, 128.5, 128.3, 128.3, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.8, 127.6, 127.6, 127.6, 127.5, 127.4, 127.3, 102.9, 87.6, 85.1, 82.7, 80.1, 80.1, 79.5, 76.6, 75.7, 75.6, 75.4, 74.8, 73.7, 73.5, 73.1, 73.1, 72.7, 68.5, 68.1, 21.2; HRMS (ESI) *m/z* calcd for C₆₈H₇₀NaO₁₀S [M + Na]⁺ 1101.4582, found 1101.4580.

NIS (788 mg, 3.50 mmol, 2.50 equiv) and TFA (182 mg, 1.60 mmol, 1.10 equiv) were added to a solution of 17tb (1.50 g, 1.40 mmol, 1.00 equiv) in a mixture of DCM/H₂O (22.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir at rt for 2 h and quenched with Et₃N. After solvent removal in vacuo, the residue was dissolved in DCM (20.0 mL) and washed with 20% (w/w) aqueous Na₂S₂O₃ (20.0 mL) and saturated aqueous NaHCO₃ (20.0 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×20 mL). The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO₂ to obtain the hemiacetal (1.10 g, 73%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (386 mg, 1.30 mmol, 1.30 equiv), DIC (189 mg, 1.50 mmol, 1.50 equiv) and DMAP (24.4 mg, 0.200 mmol, 0.200 equiv) were added to a solution of the above hemiacetal (972 mg, 1.00 mmol, 1.00 equiv) in DCM (15.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Toluene: EtOAc = 3:1) 17t (620 mg, β and α mixture, 49%) as a light-yellow foam: ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 31H), 7.25 -7.19 (m, 2H), 7.16 - 7.12 (m, 2H), 6.22 - 6.21 (m, 1H), 5.63 (d, J = 7.9 Hz, 1H), 5.09 (s, 1.45H), 5.06 (d, J= 6.6 Hz, 1H), 5.02 (s, 0.55H), 4.86 – 4.79 (m, 3H), 4.78 – 4.74 (m, 3H), 4.72 – 4.69 (m, 1H), 4.61 (d, J =11.5 Hz, 1H), 4.56 (s, 0.45H), 4.52 (d, J = 4.2 Hz, 1H), 4.50 (s, 0.55H), 4.42 – 4.37 (m, 2H), 4.31 (d, J = 11.8Hz, 1H), 4.26 - 4.16 (m, 3H), 4.15 - 4.08 (m, 2H), 3.97 (d, J = 2.9 Hz, 1H), 3.89 (dd, J = 11.4, 3.2 Hz, 1H), 3.81 (dd, J = 9.7, 7.7 Hz, 1H), 3.66 - 3.58 (m, 3H), 3.55 - 3.51 (m, 1H), 3.48 - 3.39 (m, 4H), 2.27 (s, 3H),2.18 (s, 3H), 1.28 – 1.23 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 167.1, 167.1, 146.2, 146.0, 139.1, 138.9, 138.7, 138.7, 138.6, 138.3, 138.1, 128.5, 128.4, 128.3 (3), 128.2, 128.0 (2), 127.9, 127.8, 127.7, 127.6 (2), 127.5 (3), 127.4, 127.2, 102.6, 98.0, 97.8, 94.8, 83.0, 82.6, 80.6, 80.0, 76.0, 75.7, 75.6, 75.4, 74.8, 74.7, 73.7, 73.5, 73.1, 73.0, 72.7, 68.1, 67.6, 60.1 (2), 40.4, 19.2, 19.1, 14.5; HRMS (ESI) m/z calcd for $C_{75}H_{81}NNaO_{16} [M + Na]^+ 1274.5448$, found 1274.5453.

4-((2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((((2R,3R,4S,5R,6R)-3,4-diacetoxy-6-3,5-Diethyl (acetoxymethyl)-5-(((2R.3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate (17u). N₂H₄·H₂O (43.8 mmol, 1.60 equiv) and AcOH (43.8 mmol, 2.50 equiv) were added to a solution of acetylated maltose 17ua (17.5 mmol, 1.00 equiv) in THF (80.0 mL). The reaction was allowed to stir at rt for 10 h. The reaction mixture was concentrated, poured into ice-water and extracted with EtOAc (3×). The combined organic layer were dried over Na₂SO₄, filtered, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:1) to give the acetylated maltosyl hemiacetal (4.35 g, 39%). The resulted hemiacetal (5.00 mmol, 1.00 equiv) was treated with trichloroacetonitrile (20.0 mmol, 4.00 equiv) in anhydrous DCM (30.0 mL) in the presence of DBU (1.00 mmol, 0.200 equiv). After stirring at rt for 2 h, the reaction mixture was concentrated and purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:1) to afford the curde 17ub. Freshly activated 4Å MS, the above trichloroacetimidate glycosyl donor 17ub (5.00 mmol, 1.00 equiv), ((2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-(p-tolylthio)tetrahydro-2Hpyran-2-yl)methanol¹³ 17uc (4.00 mmol, 0.800 equiv) and anhydrous DCM (30.0 mL) were successively added into a flame dried glassware. The mixture was cooled to -20 °C and TMSOTf (0.25 mmol, 0.05 equiv.) was added. The resulting mixture was stirred at this temperature for 2 h, filtered through a pad of silica and concentrated. The residue was purified by column chromatography on SiO₂ (petroleum ether: EtOAc = 10:1) to afford 17ud (1.45 g, 24%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.06 (m, 19H), 5.48 (d, J = 1.7 Hz, 1H), 5.43 – 5.34 (m, 2H), 5.19 (t, J = 9.1 Hz, 1H), 5.06 (t, J = 9.9 Hz, 1H), 4.98 (d, J = 11.2 Hz, 1H), 4.91 – 4.81 (m, 2H), 4.71 (d, J = 12.3 Hz, 1H), 4.63 – 4.53 (m, 4H), 4.49 (d, J = 7.9 Hz, 1H), 4.43 (dd, J = 12.1, 2.7 Hz, 1H), 4.30 - 4.20 (m, 2H), 4.17 (dd, J = 12.1, 4.3 Hz, 1H), 4.07 - 3.92 (m, 5H), 3.91 - 3.81 (m, 3H), 3.50 - 3.44 (m, 1H), 2.34 (s, 3H), 2.09 (d, J = 6.4 Hz, 9H), 2.04 - 1.98 (m, 9H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 170.5 (2), 170.3, 169.9, 169.6, 169.4, 138.4, 138.0, 137.8, 137.7, 132.0, 130.7, 130.4, 129.9, 128.5, 128.4(2), 128.2(2), 128.0, 127.9, 127.8(3), 100.3, 95.5, 86.3, 80.0, 76.0, 75.5, 75.1, 74.6, 73.0, 72.7, 72.1, 71.9(2), 71.8, 70.0, 69.3, 68.4(2), 68.0, 62.8, 61.5, 60.4, 21.1, 20.9, 20.8, 20.7, 20.6(3), 14.2; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for C₆₀H₇₀NaSO₂₂ 1197.3972; found 1197.3991.

NIS (652 mg, 2.90 mmol, 2.00 equiv) and TFA (182 mg, 1.60 mmol, 1.10 equiv) were added to a solution of 17ud (1.70 g, 1.45 mmol, 1.00 equiv) in a mixture of DCM/H₂O (22.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir at rt for 2 h and quenched with Et₃N. The mixture was washed with 20% (w/w) aqueous Na₂S₂O₃ (20 mL) and saturated aqueous NaHCO₃ (20 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×20 mL). The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:1) to afford the hemiacetal According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-(1.35 g, 90%). dihydropyridine-4-carboxylic acid¹ S1(357 mg, 1.20 mmol, 1.00 equiv), DIC (190 mg, 1.56 mmol, 1.30 equiv) and DMAP (0.240 mmol, 0.200 equiv) were added to a solution of the above hemiacetal (1.30 g, 1.20 mmol, 1.00 equiv) in DCM (15.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Hexane: Toluene: THF = 3:1:1) to afford 17u (850 mg, β and α mixture, 53%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 2H), 7.35 – 7.22 (m, 13H), 6.78 (s, 1H), 5.54 (s, 1H), 5.38 - 5.33 (m, 2H), 5.13 (t, J = 9.3, 9.3 Hz, 1H), 5.07 - 5.02 (m, 2H), 4.95 - 4.89 (m, 2H), 4.85(dd, J = 10.5, 3.9 Hz, 1H), 4.77 (dd, J = 9.6, 7.9 Hz, 1H), 4.67 (d, J = 12.1 Hz, 1H), 4.56 - 4.44 (m, 4H), 4.38(d, J = 11.8 Hz, 1H), 4.26 - 4.11 (m, 6H), 4.04 - 3.90 (m, 5H), 3.76 (dd, J = 12.3, 6.9 Hz, 1H), 3.66 (t, J = 9.3, 1H), 3.66 (t, J = 9.9.3 Hz, 1H), 3.55 – 3.45 (m, 3H), 2.36 (s, 6H), 2.11 – 2.09 (m, 6H), 2.05 – 2.01 (m, 12H), 1.92 (s, 3H), 1.29 - 1.22 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 171.0, 170.7, 170.5, 170.2, 170.1, 169.5, 167.1, 146.7,
145.8, 138.7, 138.2, 137.9, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7 (2) 100.3, 98.2, 97.9, 95.7, 93.6, 81.7, 77.1, 75.7, 75.1, 74.3, 74.0, 73.7, 73.1, 72.0, 71.9, 71.4, 70.3, 69.4, 68.6, 68.1, 68.0, 62.7, 61.6, 60.4, 60.2, 40.1, 21.2, 21.0, 20.8, 20.7 (2), 20.5, 19.6, 19.1, 14.5 (2); **HRMS** (ESI) *m/z* calcd for $C_{67}H_{81}NNaO_{28}$ [M + Na]⁺ 1370.4837, found 1370.4844.

3.5-Diethyl 4-((2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((((2R,3R,4S,5R,6R)-3,4-diacetoxy-6-(acetoxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2vl)oxy)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4dihydropyridine-3,4,5-tricarboxylate (17v). N₂H₄·H₂O (1.60 g, 32.0 mmol, 1.60 equiv) and AcOH (3.00 g, 50.0 mmol, 2.50 equiv) were added to a solution of acetylated lactose 17va (13.5 g, 20.0 mmol, 1.00 equiv) in THF (80.0 mL). After stirring at rt for 10 h, the mixture was concentrated, poured into ice-water, and extracted with EtOAc (3×). The combined organic layer were dried over Na₂SO₄, filtered, concentrated, purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:2) to give the acetylated lactosyl hemiacetal (7.80 g, 62%). The resulted hemiacetal (3.82 g, 6.00 mmol, 1.00 equiv) was treated with trichloroacetonitrile (3.46 g, 24.0 mmol, 4.00 equiv) in anhydrous DCM (15.0 mL) in the presence of DBU (182 mg, 1.20 mmol, 0.200 equiv). After stirring at rt for 2 h, the reaction mixture was concentrated and purified by short column on SiO₂ (Petroleum ether: EtOAc = 1:1) to afford trichloroacetimidate glycosyl donor 17vb as a white foam. Freshly activated 4Å MS, the above trichloroacetimidate glycosyl donor 17vb, ((2R, 3R, 4S, 5S, 6R)-3, 4, 5tris(benzyloxy)-6-(p-tolylthio) tetrahydro-2H-pyran-2-yl) methanol¹³ 17vc (2.78 g, 5.00 mmol, 1.00 equiv) and anhydrous DCM (30.0 mL) were successively added into a flame dried glassware. The mixture was cooled to -20 °C and TMSOTf (111 mg, 0.500 mmol, 0.100 equiv) was added. After stirring at this temperature for 2 h, the resulting mixture was filtered through a pad of silica, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 1.5:1) to afford 17vd (3.20 g, 54%) as a white foam: ¹H **NMR** (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 17H), 7.16 – 7.13 (m, 2H), 5.47 (d, J = 1.8 Hz, 1H), 5.34 (dd, J = 1.8 3.4, 1.2 Hz, 1H), 5.14 - 5.08 (m, 2H), 4.98 - 4.89 (m, 3H), 4.72 - 4.69 (m, 1H), 4.59 - 4.56 (m, 4H), 4.47 -4.42 (m, 3H), 4.25 – 4.21 (m, 1H), 4.15 – 3.98 (m, 5H), 3.87 – 3.73 (m, 5H), 3.43 – 3.39 (m, 1H), 2.35 (s, 3H), 2.15 (s, 3H), 2.05 – 2.03 (m, 11H), 1.97 – 1.93 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5 (2), 170.3, 170.2, 169.9, 169.7, 169.2, 138.4, 138.1, 137.9 (2), 132.0, 130.8, 130.1, 128.6 (2), 128.5 (2), 128.1, 128.0, 127.9 (4) 101.3, 100.6, 86.4, 80.1, 76.5, 76.1, 75.2, 74.8, 73.3, 73.1, 72.5, 72.0, 71.9, 71.8, 71.1, 70.7, 69.2, 68.4, 66.7, 62.1, 60.9, 21.2, 21.0, 20.9, 20.8, 20.7 (2), 20.6; HRMS (ESI) m/z calcd for C₆₀H₇₀NaO₂₂S [M + Na]⁺ 1197.3972, found 1197.3982.

NIS (956 mg, 4.25 mmol, 2.50 equiv) and TFA (213 mg, 1.87 mmol, 1.10 equiv) were added to a solution of

17vd (2.00 g, 1.70 mmol, 1.00 equiv) in a mixture of DCM/H₂O (22.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir at rt for 2 h and guenched with Et₃N. The mixture was washed with 20% (w/w) agueous Na₂S₂O₃ (20.0 mL) and saturated aqueous NaHCO₃ (20.0 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×20.0 mL). The organic phase was dried over anhydrous Na₂SO₄, concentrated, purified by short column on SiO_2 (Petroleum ether: EtOAc = 1:1) to give the hemiacetal (1.60 g, 88%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4carboxylic acid¹ S1(445 mg, 1.50 mmol, 1.00 equiv), DIC (227 mg, 1.80 mmol, 1.20 equiv) and DMAP (36.6 mg, 0.300 mmol, 0.200 equiv) were added to a solution of the above hemiacetal (1.60 g, 1.50 mmol, 1.00 equiv) in DCM (15.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Hexane: Toluene: THF = 3:1:1) to afford 17v (850 mg, α and β mixture, 42% yield) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.50 (m, 1.35H), 7.35 - 7.27 (m, 10H), 7.26 - 7.25 (m, 1H), 7.23 - 7.20 (m, 2.65H), 5.55 (s, 0.65H), 5.35 - 5.33 (m, 1H), 5.24 (d, J = 1.8 Hz, 0.35H), 5.18 - 5.05 (m, 2H), 4.98 - 4.87 (m, 3.65H), 4.85 - 4.80 (m, 1H), 4.72 - 4.69 (m, 1.35H), 4.60 - 4.40 (m, 6H), 4.36 - 4.33 (m, 0.65H), 4.26 - 4.04 (m, 6H), 4.03 - 3.94 (m, 2H), 3.91 - 3.68 (m, 5.35H), 3.59 - 3.48 (m, 2.35H), 3.45 - 3.41 (m, 0.65H), 2.35 - 2.33 (m, 4H), 2.14 (s, 3.35H), 2.11 (s, 2H), 2.07 - 2.03 (m, 11H), 1.99 - 1.95 (m, 6.65H), 1.42 (s, 0.65H), 1.33 - 1.21 (m, 5.35H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 170.9, 170.7, 170.5, 170.4 (2), 170.2, 170.1 (3), 170.0, 169.8, 169.1, 167.2, 167.1, 147.1, 146.3, 138.6, 138.4 (2), 138.3, 137.9, 137.8, 128.5 (2), 128.4, 128.3 (2), 128.0, 127.9 (3), 127.8, 127.7 (4), 101.2, 101.1, 100.9, 100.7, 97.9, 97.2, 93.3, 92.6, 81.7, 79.8, 77.8, 76.0, 75.6, 75.2 (2), 75.0, 74.8, 74.4, 73.8, 73.5, 73.4, 72.9, 72.8, 72.7, 72.4, 72.0, 71.9, 71.3 (2), 71.0 (2), 70.9, 70.8, 70.7, 70.4, 69.2, 69.1, 67.4, 66.7 (2), 61.8, 61.7, 60.8, 60.2, 60.1, 39.5, 30.4, 21.0, 21.0 (2), 20.9, 20.8, 20.7 (2), 20.6 (3), 20.5, 19.5, 18.8, 14.5, 14.4; HRMS (ESI) m/z calcd for $C_{67}H_{81}NNaO_{28}$ [M + Na]⁺ 1370.4837; found 1370.4841.

3,5-Diethyl 4-((*3S*,*4S*,*5R*,*6R*)-3,4,5-tris(benzyloxy)-6-((((*2R*,*3R*,*5R*,*6R*)-3,4,5-tris(benzoyloxy)-6-((((*2R*,*3R*,*4S*,*5R*,*6R*)-3,4-diacetoxy-6-(acetoxymethyl)-5-(((*2R*,*3R*,*4S*,*5S*,*6R*)-3,4,5-triacetoxy-6-

(acetoxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl)oxy)methyl)tetrahydro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-

tricarboxylate (17w). N₂H₄·H₂O (1.60 g, 32.0 mmol, 1.60 equiv) and AcOH (3.00 g, 50.0 mmol, 2.50 equiv) were added to a solution of acetylated lactose 17wa (13.5 g, 20.0 mmol, 1.00 equiv) in THF (80.0 mL). The reaction was allowed to stir at rt for 10 h. The mixture was concentrated under reduced pressure and the residue was poured into ice-water and extracted with EtOAc (3x). The combined organic layer were dried over Na₂SO₄, filtered, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:2) to give the acetylated lactosyl hemiacetal (7.80 g, 62%). The above acetylated lactosyl hemiacetal (5.10 g, 8.00 mmol, 1.00 equiv) was treated with trichloroacetonitrile (4.60 g, 32.0 mmol, 4.00 equiv) in anhydrous DCM (20.0 mL) in the presence of DBU (243 mg, 1.60 mmol, 0.200 equiv). After stirring at rt for 2 h, the reaction mixture was concentrated and purified by short column on SiO₂ (Petroleum ether: EtOAc, 1:1) to afford trichloroacetimidate glycosyl donor 17wb as a white foam. Freshly activated 4Å MS (5.00 g), the aboved 1.15 equiv), (2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-(pglycosyl donor 17wb (8.00 mmol, tolylthio)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate¹³ 17wc (4.20 g, 7.00 mmol, 1.00 equiv) and anhydrous DCM (50.0 mL) were successively added into a flame dried glassware. The mixture was cooled to -20°C and TMSOTf (155 mg, 0.7 mmol, 0.100 equiv) was added. After stirring at this temperature for 2 h, the reaction mixture was filtered through a pad of silica, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 1.5:1) to afford 17wd (4.50 g, 53%) as a white foam: ¹H NMR (400 MHz, DMSO d_6) δ 7.86 - 7.81 (m, 4H), 7.68 - 7.61 (m, 4H), 7.50 (dtd, J = 20.3, 7.6, 7.5, 5.3 Hz, 5H), 7.38 (t, J = 7.8, 7.8Hz, 2H), 7.33 – 7.31 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.97 (t, J = 9.4, 9.4 Hz, 1H), 5.49 (d, J = 9.9 Hz, 1H), 5.36 - 5.30 (m, 1H), 5.28 - 5.22 (m, 1H), 5.16 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 4.83 (dd, J = 10.2, 3.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 5.13 - 5.0810.2, 8.0 Hz, 1H), 4.77 – 4.72 (m, 3H), 4.38 – 4.34 (m, 1H), 4.26 – 4.21 (m, 2H), 4.04 – 3.99 (m, 3H), 3.88 (d, J = 11.1 Hz, 1H), 3.80 - 3.74 (m, 2H), 3.68 - 3.63 (m, 1H), 2.31 (s, 3H), 2.09 (s, 3H), 2.00 - 1.98 (m, 9H),1.93 – 1.89 (m, 9H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.6, 170.4, 170.3, 170.0, 169.8, 169.7, 169.5, 165.5, 165.0, 164.9, 137.8, 134.3, 131.8, 130.3, 129.7, 129.4, 129.3 (2), 129.2, 129.1, 129.0, 128.9, 100.4, 99.6, 84.3, 74.7, 72.9, 72.1, 70.7, 70.1, 69.3, 61.3, 21.1, 20.9, 20.9, 20.8 (2), 20.7; HRMS (ESI) m/z calcd for $C_{60}H_{64}NaO_{25}S [M + Na]^+ 1239.3350$, found 1239.3357.

NIS (2.08 g, 9.25 mmol, 2.50 equiv) and TFA (464 mg, 4.07 mmol, 1.10 equiv) were added to a solution of 17wd (4.50 g, 3.70 mmol, 1.00 equiv) in a mixture of DCM/H₂O (44.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir at rt for 2 h and guenched with Et₃N. The mixture was washed with 20% (w/w) aqueous Na₂S₂O₃ (30 mL) and saturated aqueous NaHCO₃ (30.0 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×30.0 mL). The organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO_2 (Petroleum ether: EtOAc = 1:1) to give the hemiacetal (3.46 g, 84%). The resulted hemiacetal (3.33 g, 3.00 mmol, 1.00 equiv) was treated with trichloroacetonitrile (1.30 g, 9.00 mmol, 4.00 equiv) in anhydrous DCM (20.0 mL) in the presence of DBU (91.2 mg, 0.600 mmol, 0.200 equiv). After stirring at rt for 2 h, the reaction mixture was concentrated and purified by short column on SiO₂ (Petroleum ether: EtOAc = 1:1) to afford trichloroacetimidate glycosyl donor 17we as a white foam. Freshly activated 5Å MS (4.00 g), the above glycosyl donor 17we, ((2R, 3R, 4S, 5S, 6R)-3, 4, 5-tris(benzyloxy)-6-(p-tolylthio)tetrahydro-2H-pyran-2-yl)methanol¹³ 17wf (1.67 g, 3.00 mmol, 1.00 equiv) and anhydrous DCM (30.0 mL) were successively added into a flame dried glassware. The reaction mixture was cooled to -20 °C and TMSOTf (66.6 mg, 0.300 mmol, 0.100 equiv) was added. After stirring at this temperature for 2 h, the resulting mixture was filtered through a pad of silica, concentrated and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 1:1) to afford 17wg (3.00 g, 61%) as a white foam: ¹H NMR (400 MHz,

CD₃CN) δ 7.91 – 7.89 (m, 2H), 7.82 – 7.79 (m, 1.82H), 7.75 – 7.71 (m, 2.18H), 7.62 – 7.58 (m, 1H), 7.52 – 7.43 (m, 4H), 7.38 – 7.24 (m, 18H), 7.20 – 7.18 (m, 2H), 7.13 – 7.07 (m, 2H), 5.82 – 5.76 (m, 1H), 5.57 (d, *J* = 1.7 Hz, 0.91H), 5.45 – 5.34 (m, 2.09H), 5.30 – 5.29 (m, 1H), 5.12 – 5.08 (m, 1H), 5.03 (dd, *J* = 10.5, 3.6 Hz, 1H), 4.96 – 4.89 (m, 2H), 4.81 (dd, *J* = 9.9, 8.0 Hz, 1H), 4.74 (d, *J* = 2.3 Hz, 0.09H), 4.69 (d, *J* = 12.0 Hz, 1H), 4.61 – 4.52 (m, 4H), 4.47 (d, *J* = 11.8 Hz, 1H), 4.42 – 4.33 (m, 2H), 4.28 (d, *J* = 10.8 Hz, 0.91H), 4.25 – 4.24 (m, 0.09H), 4.12 – 4.02 (m, 7H), 4.01 – 3.96 (m, 2H), 3.86 (dd, *J* = 10.7, 3.5 Hz, 1H), 3.82 – 3.76 (m, 1.92H), 3.72 – 3.61 (m, 3H), 3.42 (dd, *J* = 9.1, 4.3 Hz, 0.09H), 2.34 (s, 2.73H), 2.30 (s, 0.27H), 2.07 (s, 3H), 2.01 – 1.97 (m, 15.27H), 1.90 (s, 2.73H); ¹³C NMR (101 MHz, CD₃CN) δ 171.3, 171.1, 170.7(2), 170.5, 170.3, 166.3, 165.9, 165.8, 139.5, 139.4(2), 138.9, 134.6, 134.5, 134.4, 133.0, 131.3, 131.1, 130.9, 130.4, 130.3, 130.1, 130.0, 129.8, 129.6, 129.5(2), 129.3, 129.2, 129.1, 128.8, 128.7, 128.6, 128.5(2), 128.4, 101.5, 101.4, 101.2, 87.0, 80.6, 77.1, 75.4, 75.0, 74.6, 73.7, 73.4, 73.2, 73.1, 72.9, 72.7, 72.1, 72.0, 71.6, 71.4, 70.1, 69.9, 69.2, 68.6, 68.1, 62.9, 62.0, 21.1(3), 21.0, 20.9, 20.8, 20.7; HRMS (ESI) *m/z* calcd for C₈₇H₉₂NaO₃₀S [M + Na]⁺ 1671.5286, found 1671.5292.

NIS (956 mg, 4.25 mmol, 2.50 equiv) and TFA (213 mg, 1.87 mmol, 1.10 equiv) were added to a solution of 17wg (2.96 g, 1.70 mmol, 1.00 equiv) in a mixture of DCM/H₂O (33.0 mL, 10:1 v/v) at 0 °C. The reaction was allowed to stir for 2 h and quenched with Et₃N. The mixture was washed with 20% (w/w) aqueous Na₂S₂O₃ (20.0 mL) and saturated aqueous NaHCO₃ (20.0 mL). The organic layer was separated, and the aqueous layer was reextracted with DCM (2×30.0 mL). The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO_2 (Petroleum ether: EtOAc = 1:1) to afford the hemiacetal (1.80 g, 72%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4dihydropyridine-4-carboxylic acid¹ S1 (326 mg, 1.10 mmol, 1.10 equiv), DIC (164 mg, 1.30 mmol, 1.30 equiv) and DMAP (36.6 mg, 0.300 mmol, 0.200 equiv) were added to a solution of the above hemiacetal (1.50 g, 1.00 mmol, 1.00 equiv) in DCM (15.0 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated, and purified by column chromatography on SiO_2 (Hexane: Toluene: THF = 3:1:1) to afford the corresponding trisaccharide ester 17w (605mg, α and β mixture, 33% yield) as a white foam and recovered the hemiacetal material (950 mg, 62% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.90 (m, 0.16H), 7.89 – 7.88 (m, 0.16H), 7.86 – 7.78 (m, 5.16H), 7.56 – 7.44 (m, 5.32H), 7.41 – 7.22 (m, 15.16H), 7.20 – 7.16 (m, 3.52H), 7.13 – 7.08 (m, 0.32H), 6.83 - 6.81 (m, 0.16H), 5.88 (t, J = 9.7, 9.7 Hz, 5.88H), 5.68 (t, J = 9.8, 9.8 Hz, 0.84H), 5.58 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.88 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.88 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.58 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.58 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.84H), 5.58 (dd, J = 9.8, 9.8 Hz, 0.84H), 5.58 (dd, J = 9.8 Hz, 0.84H), 5.58 (dd, J = 9.8 Hz, 0.84H), 5.8 Hz, 0.84H), 5J = 10.0, 8.0 Hz, 0.16H), 5.46 (s, 1H), 5.44 – 5.41 (m, 1.16H), 5.38 (s, 0.16H), 5.35 – 5.31 (m, 1H), 5.26 (s, 0.84H), 5.24 – 5.23 (m, 0.16H), 5.21 – 5.15 (m, 1H), 5.12 – 5.07 (m, 1.68H), 4.95 – 4.76 (m, 4H), 4.68 – 4.61 (m, 1.84H), 4.54 (d, J = 2.9 Hz, 0.16H), 4.51 - 4.43 (m, 2H), 4.41 - 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.33 - 4.31(m, 1H), 4.30 + 4.34 (m, 1.68H), 4.31 + 4.34 (m, 1.68H), 4.34 + 4.34 (m, 1.68H), 4.34 + 4.34(d, J = 2.1 Hz, 0.84H), 4.28 - 4.25 (m, 1H), 4.24 - 4.23 (m, 0.32H), 4.21 (d, J = 3.5 Hz, 0.16H), 4.19 - 4.14 (d, J = 3.5 Hz, 0.16H),(m, 0.84H), 4.12 – 3.96 (m, 6.64H), 3.93 – 3.88 (m, 1H), 3.86 – 3.82 (m, 1H), 3.78 – 3.70 (m, 1.84H), 3.64 – 3.58 (m, 1.68H), 3.52 – 3.49 (m, 0.16H), 3.42 – 3.37 (m, 1.68H), 2.63 (s, 2.52H), 2.16 (s, 2.52H), 2.12 (s, 33H), 2.07 – 2.01 (m, 12.96H), 1.97 – 1.95 (m, 2.52H), 1.36 – 1.25 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 170.6, 170.5, 170.3, 170.2, 170.1, 169.7, 169.2, 167.3, 167.3, 167.0, 165.1, 147.0, 146.3, 138.6, 138.1, 137.9, 133.9, 133.8, 133.6, 130.0, 129.8, 129.8, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.4, 128.3, 128.0, 127.8, 127.7, 127.7, 101.2, 101.1, 100.7, 98.8, 97.7, 94.7, 81.6, 78.6, 76.4, 75.3, 74.3, 74.1, 74.0, 73.9, 73.2, 72.9, 72.7, 71.5, 71.4, 71.1, 70.8, 69.7, 69.2, 66.7, 62.3, 60.9, 60.5, 60.3, 39.9, 29.8, 21.0, 20.9, 20.8, 20.8, 20.7, 19.7, 18.8, 14.7, 14.6. HRMS (ESI) m/z calcd for C₉₄H₁₀₃NNaO₃₆ [M + Na]⁺ 1844.6152, found 1844.6158.

3.5-Diethyl 4-((2S,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4methylthiazole-5-carbonyl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (17x). To the solution of ((2R,3R,4S,5S)-3,4,5-tris(benzyloxy)-6-(p-tolylthio) tetrahydro-2H-pyran-2-yl) methanol¹³ S2 (3.30 g, 6.00 mmol, 1.00 equiv) in anhydrous DCM (20.0 mL), 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylic acid 17xa (2.10 g, 6.60 mmol, 1.10 equiv), DCC (1.48 g, 7.20 mmol, 1.20 equiv) and DMAP (73.2 mg, 0.60 mmol, 0.100 equiv) were added. After stirring at rt for 12 h, the reaction was completed by TLC. The reaction mixture was filtered, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford 17xb (4.82 g, 92 %) as a white foam. A mixture of compounds 17xb (4.80 g, 5.50 mmol, 1.00 equiv), NBS (1.96 g, 11.0 mmol, 2.00 equiv) and acetone-H₂O (50.0 mL, 1:1 v/v) was stirred at rt for 2 h. NBS (979 mg, 5.50 mmol, 1.00 equiv) was added and the solution was stirred for another 1 h. The reaction mixture was concentrated, extracted with DCM, dried over anhydrous Na₂SO₄, purified by short column on SiO₂ (Petroleum ether: EtOAc = 2:1) to give the hemiacetal (2.87 g, 70%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4dihydropyridine-4-carboxylic acid¹ S1 (713 mg, 2.40 mmol, 1.20 equiv), DIC (328 mg, 2.60 mmol, 1.30 equiv) and DMAP (24.4 mg, 0.200 mmol, 0.100 equiv) were added to a solution of the above hemiacetal (1.50 g, 2.00 mmol, 1.00 equiv) in anhydrous DCM (20.0 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Toluene: EtOAc = 3:1) to afford 17x (1.10 g, 52%, α and β mixture) as a white foam: ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 2.3 Hz, 1H), 7.97 (dd, J =8.9, 2.3 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.33 – 7.29 (m, 6H), 7.28 – 7.25 (m, 5H), 7.24 – 7.18 (m, 2H), 6.97 (d, *J* = 8.9 Hz, 1H), 6.09 (s, 1H), 5.62 (s, 1H), 4.97 (s, 1H), 4.92 (dd, *J* = 11.4, 6.7 Hz, 2H), 4.69 (d, *J* = 11.9 Hz, 1H), 4.62 – 4.59 (m, 2H), 4.53 (d, J = 11.9 Hz, 2H), 4.41 (dd, J = 11.8, 4.0 Hz, 1H), 4.16 – 3.99 (m, 5H), 3.97 (d, J = 2.8 Hz, 1H), 3.90 (d, J = 6.5 Hz, 2H), 3.67 - 3.61 (m, 2H), 2.67 (s, 3H), 2.26 - 2.17 (m, 7H), 1.23 - 2.8 Hz, 1.23 - 2.81.15 (m, 6H), 1.10 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 167.5, 167.0, 166.9, 162.5, 161.7, 161.4, 146.2, 146.1, 138.9, 137.9 (2), 132.8, 132.1, 128.5, 128.5, 128.3 (2), 128.2, 127.9 (2), 127.8, 127.7, 127.5, 126.0, 121.9, 115.5, 112.6, 102.9, 98.2, 98.1, 94.0, 81.7, 75.7, 75.1, 74.3, 74.1, 74.0, 73.4, 71.6, 63.7, 60.2, 60.2, 40.8, 28.2, 19.4, 19.3, 19.1, 17.6, 14.5, 14.4; HRMS (ESI) m/z calcd for C₅₇H₆₁N₃NaO₁₃S [M + Na]⁺ 1050.3817, found 1050.3835.

3,5-Diethyl 4-((3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate yl)acetoxy)methyl)tetrahydro-2*H*-pyran-2-yl) (17y). To the solution of ((2R, 3R, 4S, 5S)-3, 4, 5-tris(benzyloxy)-6-(p-tolylthio) tetrahydro-2H-pyran-2-yl) methanol¹³ S2 (3.83 g, 7.00 mmol, 1.00 equiv) in anhydrous DCM (20.0 mL), 2-(11-oxo-6,11dihydrodibenzo[b,e]oxepin-2-yl)acetic acid 17ya (2.10 g, 7.70 mmol, 1.10 equiv), DCC (1.80 g, 8.40 mmol, 1.20 equiv) and DMAP (85.4 mg, 0.700 mmol, 0.100 equiv) were added and the reaction was stirred under N2 at rt. After stirring for 12 h, the reaction was filtered, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford 17yb (4.30 g, 76%) as a white foam. A mixture of compounds 17yb (4.30 g, 5.30 mmol, 1.00 equiv), NBS (1.89 g, 10.6 mmol, 2.00 equiv) and acetone-H₂O (40.0 mL, 1:1 v/v) was stirred at rt for 2 h. After removal the solvent, the resulting residue was poured onto DCM and extracted with DCM. The organic phase was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to give the hemiacetal (2.70 g, 89%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (713 mg, 2.40 mmol, 1.20 equiv), DIC (328 mg, 2.60 mmol, 1.3 equiv) and DMAP (24.4 mg, 0.200 mmol, 0.100 equiv) were added to a solution of the hemiacetal (1.40 g, 2.00 mmol, 1.00 equiv) in DCM (20.0 mL) at rt. After stirring for 12 h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Toluene: EtOAc = 3:1) to afford 17y (700 mg, 51%, α and β mixture) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.3 Hz, 1H), 7.84 (dd, J = 7.8, 1.4 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.50 – 7.43 (m, 3H), 7.39 (dd, J = 8.5, 2.4 Hz, 1H), 7.36 - 7.27 (m, 9H), 7.26 - 7.24 (m, 3H), 7.20 - 7.17 (m, 2H), 6.99 (d, J = 8.4 Hz, 1H), 6.44 (s, 1H), 5.59 (d, J = 0.9 Hz, 1H), 5.13 (s, 2H), 5.03 (s, 1H), 4.90 (d, J = 11.9 Hz, 1H), 4.80 (d, J = 10.9Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.52 - 4.38 (m, 4H), 4.26 (dd, J = 11.8, 5.3 Hz, 1H), 4.21 - 4.08 (m, 4H), 3.94 (dd, J = 2.9, 0.9 Hz, 1H), 3.85 - 3.81 (m, 1H), 3.64 - 3.54 (m, 4H), 2.31 (s, 3H), 2.28 (s, 3H), 1.28 - 1.21 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 191.1, 172.0, 171.2, 167.1 (2), 160.7, 146.4, 140.4, 138.9, 138.0 (2), 137.0, 135.7, 133.0, 132.5, 129.6, 129.4, 128.5 (2), 128.3, 128.2, 128.0 (2), 127.9, 127.8, 127.7, 127.6, 125.1, 121.3, 98.3, 98.1, 93.9, 81.4, 75.1, 74.3, 74.0, 73.9 (2), 73.7, 71.5, 63.7, 60.3 (2), 40.7, 40.0, 19.4 (2), 14.5 (2); **HRMS** (ESI) m/z calcd for C₅₇H₅₇NNaO₁₄ [M + Na]⁺ 1002.3671, found 1002.3678.

3,5-Diethyl

4-((2*S*,3*S*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-(((3-(4,5-diphenyloxazol-2vdro-2*H*-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-

yl)propanoyl)oxy)methyl)tetrahydro-2H-pyran-2-yl) tricarboxylate (17z). To the solution of ((2R,3R,4S,5S)-3,4,5-tris(benzyloxy)-6-(p-tolylthio) tetrahydro-2Hpyran-2-yl) methanol¹³ S2 (3.30 g, 6.00 mmol, 1.00 equiv) in anhydrous DCM (20.0 mL), 3-(4,5diphenyloxazol-2-yl) propanoic acid 17za (1.94 g, 6.60 mmol, 1.10 equiv), DCC (1.48 g, 7.20 mmol, 1.20 equiv) and DMAP (73.2 mg, 0.600 mmol, 0.100 equiv) was added at rt. After stirring for 12 h, the reaction was filtered and concentrated under reduced pressure. The resulting residue was purified by short column on SiO2 (Petroleum ether: EtOAc = 3:1) to afford 17zb (4.21 g, 85% yield) as a light-yellow foam. A mixture of compounds 17zb (4.20 g, 5.00 mmol, 1.00 equiv), NBS (1.78 g, 10.0 mmol, 2.00 equiv) and acetone/H₂O (50.0 mL, 1:1 v/v) was stirred at rt for 2 h. NBS (890 mg, 5.00 mmol, 1.00 equiv) was added and the solution was stirred for another 1 h. After the removal of the volatile solvents, the resulting residue was poured onto DCM and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to give the hemiacetal (2.00 g, 55%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (980 mg, 3.30 mmol, 1.20 equiv), DIC (454 mg, 3.60 mmol, 1.30 equiv) and DMAP (36.6 mg, 0.275 mmol, 0.100 equiv) were added to a solution of the hemiacetal (2.00 g, 2.75 mmol, 1.00 equiv) in DCM (20.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Toluene: EtOAc = 3:1) to afford 17z (1.20 g, 44%, α and β mixture) as a light-yellow foam: ¹H **NMR** (400 MHz, CDCl₃) δ 7.61 (dd, J = 7.9, 1.7 Hz, 2H), 7.57 (dd, J = 8.0, 1.8 Hz, 2H), 7.49 – 7.45 (m, 2H), 7.38 - 7.28 (m, 15H), 7.26 (s, 2H), 7.25 - 7.20 (m, 3H), 6.81 (s, 1H), 5.60 (d, J = 0.9 Hz, 1H), 5.02 (s, 1H), 4.89 (dd, J = 11.4, 9.7 Hz, 2H), 4.67 (d, J = 12.0 Hz, 1H), 4.56 - 4.42 (m, 4H), 4.32 - 4.28 (m, 1H), 4.20 (m, 1H), 4.24.08 (m, 4H), 3.95 – 3.93 (m, 1H), 3.88 (t, J = 9.1, 9.1 Hz, 1H), 3.61 – 3.56 (m, 2H), 3.16 – 3.12 (m, 2H), 2.89 -2.85 (m, 2H), 2.24 - 2.23 (m, 6H), 1.28 - 1.21 (m, 7H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 171.6, 167.1, 167.0, 161.9, 146.6, 146.5, 145.6, 138.8, 138.0, 135.0, 132.4, 128.9, 128.7 (2), 128.6, 128.5 (2), 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.5, 126.5, 98.1, 97.8, 93.8, 81.4, 75.1, 74.1, 73.9, 73.7, 73.7, 71.5, 63.4, 60.2, 60.2, 40.5, 31.2, 23.6, 19.2, 19.1, 14.5, 14.4; **HRMS** (ESI) *m/z* calcd for C₅₉H₆₀N₂NaO₁₃ [M + Na]⁺ 1027.3988, found 1027.3990.

4-((2S,3S,4S,5R,6R)-6-(((6-(3-((3r,5r,7r)-Adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3,4,5-tris(benzyloxy)tetrahydro-2H-pyran-2-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5tricarboxylate (17aa). To the solution of ((2R, 3R, 4S, 5S)-3, 4, 5-tris(benzyloxy)-6-(p-tolylthio) tetrahydro-2Hpyran-2-yl) methanol¹³ S2 (2.74 g, 5.00 mmol, 1.00 equiv) was dissolved in anhydrous DCM (20.0 mL), 6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoic acid 17aaa (1.61 g, 5.50 mmol, 1.10 equiv), DCC (1.24 g, 6.00 mmol, 1.20 equiv) and DMAP (61.0 mg, 0.500 mmol, 0.100 equiv) were added and the reaction at rt. After stirring for 12 h, the reaction mixture was filtered, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **17aab** (3.40 g, 82%) as a white foam. A mixture of compounds 17aab (3.40 g, 4.00 mmol, 1.00 equiv), NBS (1.41 g, 8.00 mmol, 2.00 equiv) and acetone/H₂O (40.0 mL, 1:1 v/v) was stirred at rt for 2 h. NBS (712 mg, 4.00 mmol, 1.00 equiv) was added and the solution was stirred for another 1 h. After the removal of the volatile solvents, the resulting residue was poured onto DCM and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by short column on SiO₂ (Petroleum ether: EtOAc = 3:1) to give the hemiacetal (2.16 g, 75%). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ S1 (1.10 g, 3.60 mmol, 1.20 equiv), DIC (492 mg, 3.90 mmol, 1.30 equiv) and DMAP (73.2 mg, 0.300 mmol, 0.100 equiv) were added to a solution of the hemiacetal (2.16 g, 3.00 mmol, 1.00 equiv) in DCM (20.0 mL) at rt. After stirring for 12h, the reaction mixture was concentrated and purified by column chromatography on SiO₂ (Toluene: EtOAc = 3:1) to afford **17aa** (1.60 g, α and β mixture, 53%) as a yellow foam: ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 1.7 Hz, 0.88H), 8.50 (d, *J* = 1.7 Hz, 0.12H), 8.35 (d, *J* = 9.0 Hz, 0.12H), 8.09 (dd, J = 8.9, 1.7 Hz, 0.12H), 8.02 - 7.99 (m, 1.76H), 7.82 - 7.74 (m, 2.64H), 7.68 (d, J = 8.4 Hz, 0.12H), 7.64 (d, J = 2.4 Hz, 0.88H), 7.59 – 7.56 (m, 3H), 7.48 (d, J = 8.4 Hz, 0.12H), 7.42 (d, J = 2.3 Hz, 0.12H), 7.37 -7.28 (m, 10.76H), 7.24 - 7.16 (m, 2.24H), 7.03 - 6.99 (m, 1H), 6.24 - 6.23 (m, 1H), 5.71 (d, J = 2.5 Hz, 1H), 5.01 - 4.94 (m, 3H), 4.75 (d, J = 11.8 Hz, 1H), 4.68 - 4.55 (m, 5H), 4.21 - 4.11 (m, 3H), 4.10 - 3.97 (m, 3H), 3.93 – 3.92 (m, 3H), 3.79 – 3.71 (m, 2H), 2.23 – 2.15 (m, 15H), 1.87 – 1.81 (m, 6H), 1.24 – 1.20 (m, 3H), 1.13 (t, J = 7.1, 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 167.0, 166.9, 166.6, 159.0, 146.1, 146.0, 141.4, 139.1, 138.0, 137.9, 136.0, 132.7, 131.2 (2), 130.0, 128.6, 128.5, 128.4 (3), 128.2, 128.0, 127.9, 127.8 (2), 127.5, 126.8, 126.5, 126.1, 125.9, 125.8, 124.8, 112.2, 98.2 (2), 94.0, 81.6, 75.2, 74.4, 74.3, 74.1, 73.6, 71.8, 63.6, 60.3, 60.2, 55.3, 40.9, 40.7, 37.3, 37.2, 29.2, 19.5, 19.3, 14.5, 14.4; HRMS (ESI) m/z calcd for $C_{69}H_{73}NNaO_{13}$ [M + Na]⁺ 1146.4974, found 1146.4975.

3,5-Diethyl 4-(tetrahydro-2*H***-pyran-2-yl) 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (30a).** According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ **S1** (3.50 g, 12.0 mmol, 1.20 equiv), DIC (1.64 g, 13.0 mmol, 1.30 equiv) and DMAP (122 mg, 1.00 mmol, 0.100 equiv) were added to a solution of tetrahydro-2*H*-pyran-2-ol **30aa** (1.02 g, 10.0 mmol, 1.00 equiv) in DCM (30.0 mL) at rt and stirred for 12 h. After solvent removal *in vacuo*, the residue was purified by flash column chromatography on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **30a** (2.00 g, 52%) as a light-yellow solid: ¹**H NMR** (400 MHz, CDCl₃) δ 6.48 (s, 1H), 5.94 (s, 1H), 4.92 (s, 1H), 4.23 – 4.14 (m, 4H), 3.79 – 3.72 (m, 1H), 3.63 – 3.58 (m, 1H), 2.27 (s, 6H), 1.78 – 1.59 (m, 5H), 1.55 – 1.51 (m, 1H), 1.30 – 1.26 (m, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 172.9, 167.4, 146.1, 145.9, 98.3, 98.2, 92.6, 62.3, 60.1, 40.5, 29.1, 25.1, 19.1, 19.1, 18.0, 14.5; **HRMS** (ESI) *m/z* calcd for C₁₉H₂₇NNaO₇ [M + Na]⁺404.1680, found 404.1678.

4-Cyclohexyl 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (30b). According to the general protocol D, 3,5-bis(ethoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid¹ **S1** (3.50 g, 12.0 mmol, 1.20 equiv), DIC (1.64 g, 13.0 mmol, 1.300 equiv) and DMAP (122 mg, 1.0 mmol, 0.100 equiv) were added to a solution of cyclohexanol **30ba** (1.00 g, 10.0 mmol, 1.00 equiv) in DCM (30.0 mL) at rt and stirred for 12 h. After solvent removal *in vacuo*, the residue was purified by flash column chromatography on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford **30b** (1.40 g, 37%) as a light-yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 6.77 (s, 1H), 4.79 (s, 1H), 4.70 – 4.64 (m, 1H), 4.19 – 4.11 (m, 4H), 2.23 (s, 6H), 1.73 – 1.61 (m, 4H), 1.47 – 1.34 (m, 3H), 1.33 – 1.22 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 167.5, 145.9, 98.4, 72.8, 60.0, 40.8, 31.4, 25.5, 23.3, 18.9, 14.5. HRMS (ESI) *m/z* calcd for C₂₀H₂₉NNaO₆ [M + Na]⁺ 402.1887, found 402.1884.

6. Detailed Experimental Procedures for Dehydroalanine Derivatives

tert-Butyl (*S*)-3-(1-methoxy-1-oxo-3-phenylpropan-2-yl)-5-methylene-2,4-dioxoimidazolidine-1carboxylate (20e). To a solution of methyl (2-((*tert*-butoxycarbonyl)amino)acryloyl)-*L*-phenylalaninate 20ea (2.06 g, 5.90 mmol, 1.00 equiv) in CH₃CN (50.0 mL), DMAP (72.0 mg, 0.590 mmol, 0.100 equiv) and Boc₂O (1.55 g, 7.08 mmol, 2.40 equiv) were added and the solution was stirred under the air at rt for 12 h. After removal of volatiles *in vacuo*, the residue was diluted with EtOAc (20.0 mL), washed with 10% aqueous solution of citric acid (5.00 mL) and brine (10.0 mL), dried over Na₂SO₄, and filtered. The filtrate was S45

concentrated and purified by flash column chromatography on SiO₂ (Petroleum ether: EtOAc = 10: 1) to afford **20e** as colorless oil (1.11 g, 36%): $[\alpha]_D^{25} = -91.3$ (c = 2.23, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.11 (m, 5H), 5.95 (d, *J* = 1.1 Hz, 1H), 5.77 (d, *J* = 1.1 Hz, 1H), 5.06 (dd, *J* = 10.8, 5.8 Hz, 1H), 3.78 (s, 3H), 3.61 – 3.43 (m, 2H), 1.57 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.4, 160.4, 149.5, 147.7, 136.2, 131.5, 128.8 (2), 127.1, 105.7, 85.6, 54.2, 53.1, 33.9, 28.0; **HRMS** (ESI) *m*/*z* calcd for C₁₉H₂₂O₆N₂Na [M + Na]⁺ 397.1370, found 397.1370.

Methyl (S)-3-(4-(benzyloxy)phenyl)-2-(2-(bis(tert-butoxycarbonyl)amino)-N-(tertbutoxycarbonyl)acrylamido)propanoate (20f). O-Benzyl-L-tyrosine methyl ester hydrochloride 20fb (3.86 mg, 12.0 mmol) and N-Boc-L-serine 20fa (2.46 mg, 12.0 mmol) were dissolved in anhydrous DCM (60.0 mL). The reaction mixture was cooled to 0 °C before addition of HOBt hydrate (2.40 g, 18.0 mmol) and TEA (8.40 mL, 15.0 mmol). The reaction mixture was kept at 0 °C for 15 min before EDCI (2.88 g, 3.75 mmol) was added. The reaction mixture was worm up to rt and stirred for 20 h. An additional DCM (60.0 mL) was added, and the organic layer was washed successively with citric acid (1.6 M, 100 mL), saturated NaHCO₃ (100 mL), and saturated NaCl (80.0 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residue obtained was dissolved in anhydrous DCM (100 mL) under N₂, copper(I) chloride (360 mg, 3.60 mmol) and EDCI (2.52 g, 13.2 mmol) were subsequently added, and the resultant suspension was stirred at rt for 20 h. The reaction mixture was filtered under Celite and washed with saturated NaCl (20 mL). The organic phase was dried over Na₂SO₄, concentrated and purified by short column on SiO₂ to afford **20fd**. To a solution of 20fd (2.46 g, 5.50 mmol, 1.00 equiv.) and DMAP (2.42 g, 19.8 mmol, 3.60 equiv) in anhydrous CH₃CN (15.0 mL), Boc₂O (4.30 g, 19.8 mmol, 3.60 equiv) were added at rt. After stirring for 12 h, the reaction mixture was concentrated and purified by flash column chromatography on SiO₂ (Petroleum ether: EtOAc = 8: 1) to afford **20f** as a light yellow oil (0.300 g, 8.3%): $[\alpha]_D^{25} = -31.3$ (c = 0.800, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 7.19 – 7.14 (m, 2H), 6.91 – 6.85 (m, 2H), 5.41 (d, *J* = 1.4 Hz, 1H), 5.25 (dd, J = 9.0, 6.2 Hz, 1H), 5.19 (d, J = 1.4 Hz, 1H), 5.02 (s, 2H), 3.72 (s, 3H), 3.44 (dd, J = 14.3, 6.2 Hz, 1H), 3.14 (dd, *J* = 14.3, 9.0 Hz, 1H), 1.47 (s, 18H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 168.1, 157.6, 151.7, 151.0, 138.2, 137.2, 130.6, 130.4, 130.0, 128.6, 128.0, 127.5 (2), 118.5, 114.9, 84.7, 83.9, 83.4, 70.0, 59.0, 52.3, 35.2, 27.9, 27.8; **HRMS** (ESI) m/z calcd for C₃₅H₄₆O₁₀N₂Na [M + Na]⁺ 677.3045, found 677.3050.

2-(Di(*tert*-butoxycarbonyl)amino)acrylic-*L-O-tert*-Butyl-serine (20g). According to the general protocol F, 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.400 g, 5.00 mmol, 1.00 equiv) was dissolved in DCM (25.0 mL) and *O-tert*-butyl-*L*-serine methyl ester hydrochloride 20ga (1.27 g, 6.00 mmol, 1.20 equiv), HATU (3.80 g, 10.0 mmol, 2.00 equiv), and DIPEA (1.75 mL, 10.0 mmol, 2.00 equiv) were subsequently added. After stirring at rt for 12 h, the mixture was diluted with DCM (10.0 mL) and washed with brine (20.0 mL). The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 3:1) to afford 20g (358 mg, 16%) as a colorless oil: $[\alpha]_D^{25} = +9.6$ (c = 1.50, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.73 (d, *J* = 8.2 Hz, 1H), 6.19 (s, 1H), 5.47 (s, 1H), 4.81 – 4.65 (m, 1H), 3.86 – 3.77 (m, 1H), 3.71 (s, 3H), 3.59 – 3.48 (m, 1H), 1.45 (s, 18H), 1.10 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 163.3, 150.5, 138.8, 121.4, 83.6, 73.6, 62.0, 53.3, 52.5, 52.4, 28.3, 27.9, 27.8, 27.4; HRMS (ESI) *m/z* calcd for C₂₁H₃₆O₈N₂Na [M + Na]⁺ 467.2364, found 467.2363.

2-(Di(*tert*-butoxycarbonyl)amino)acrylic-*L*-dimethyl-asparate (20i). According to the general protocol F, 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.40 g, 5.00 mmol, 1.00 equiv) was dissolved in DCM (25.0 mL) and methyl *L*-aspartate hydrochloride **20ia** (1.27 g, 6.00 mmol, 1.20 equiv), HATU (3.80 g, 10.0 mmol, 2.00 equiv), and DIPEA (1.75 mL, 10.0 mmol, 2.00 equiv) were subsequently added. After stirring at rt for 12 h, the mixture was diluted with DCM (10.0 mL) and washed with brine (20.0 mL). The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 2:1) to afford **20i** (419 mg, 19%) as a colorless oil: $[\alpha]_D^{25} = +23.8$ (c = 1.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, *J* = 7.9 Hz, 1H), 6.18 – 6.12 (m, 1H), 5.47 (s, 1H), 4.85 (dt, *J* = 8.3, 4.4 Hz, 1H), 3.72 (s, 3H), 3.63 (s, 3H), 3.03 (dd, *J* = 17.4, 4.3 Hz, 1H), 2.83 (dd, *J* = 17.4, 4.5 Hz, 1H), 1.42 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 170.7, 169.0, 163.2, 150.5, 138.6, 121.5, 83.6, 52.9, 52.1, 48.8, 36.0, 28.3, 27.8, 27.7; HRMS (ESI) *m/z* calcd for C₁₉H₃₀O₉N₂Na [M + H]⁺ 453.1844, found 453.1841.

2-(Di(*tert*-butoxycarbonyl)amino)acrylic-*L*-methionine (20j). According to the general protocol F, 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.40 g, 5.00 mmol, 1.00 equiv) was dissolved in DCM (25.0 mL) and *L*-Methionine methyl ester hydrochloride 20ja (1.2 g, 6.0 mmol, 1.2 equiv), HATU (3.8 g, 10.0 mmol, 2.0 equiv), and DIPEA (1.75 mL, 10.0 mmol, 2.0 equiv) were subsequently added. After stirring at rt for 12 h, the mixture was diluted with DCM (10 mL) and washed with brine (20 mL). The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 3:1) 20j (770 mg, 36% yield) as a colorless oil: $[\alpha]_D^{25} = +7.8$ (c = 1.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, *J* = 7.8 Hz, 1H), 6.17 (d, *J* = 0.7 Hz, 1H), 5.45 (d, *J* = 0.7 Hz, 1H), 4.75 - 4.69 (m, 1H), 3.71 (s, 3H), 2.46 (t, *J* = 7.4 Hz, 2H), 2.23 - 2.07 (m, 1H), 2.03 (s, 3H), 2.02 - 1.89 (m, 1H), 1.42 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 163.2, 150.5, 138.6, 121.4, 83.7, 82.9, 52.6, 51.8, 31.5, 29.8, 28.3, 27.8, 27.7, 15.4; HRMS (ESI) *m*/*z* calcd for C₁₉H₃₂O₇N₂NaS [M + Na]⁺ 455.1822, found 455.1816.

2-(Di(*tert*-butoxycarbonyl)amino)acrylic-*L*-S-benzyl-cysteine (20k). According to the general protocol F, 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.40 g, 5.00 mmol, 1.00 equiv) was dissolved in DCM (25.0 mL) and benzyl-*L*-cysteine methyl ester hydrochloeide **20ka** (1.57g, 6.00 mmol, 1.20 equiv), HATU (3.80 g, 10.0 mmol, 2.00 equiv) and DIPEA (1.75 mL, 10.0 mmol, 2.00 equiv) were subsequently added. After stirring at rt for 12 h, the mixture was diluted with DCM (10.0 mL) and washed with brine (20.0 mL). The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 4:1) to afford **20k** (1.35 g, 56%) as a colorless oil: $[\alpha]_D^{25} = -0.9$ (c = 0.650, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.18 (m, 5H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.20 (s, 1H), 5.50 (s, 1H), 4.92 – 4.77 (m, 1H), 3.72 (s, 3H), 3.68 (s, 2H), 2.92 (dd, *J* = 13.9, 5.1 Hz, 1H), 2.82 (dd, *J* = 13.9, 5.7 Hz, 1H), 1.45 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 169.1, 169.0, 163.3, 150.6, 138.6, 137.5, 129.0, 128.6, 127.3, 121.6, 83.8, 82.9, 52.7, 52.0, 36.7, 36.5, 33.3, 33.1, 28.3, 27.9, 27.7 (2); HRMS (ESI) *m*/*z* calcd for C₂₄H₃₄O₇N₂NaS [M + Na]⁺ 517.1979, found 527.1978.

Methyl (2-(di(*tert*-butoxycarbonyl)amino)acryloyl)-*D*-tryptophanate (201). According to the general protocol F, 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.40 g, 5.00 mmol, 1.00 equiv) and HATU (2.85 g, 7.50 mmol, 1.50 equiv) were dissolved in anhydrous DMF (15.0 mL). The reaction was cooled to 0 °C before addition of DIPEA (2.60 mL, 15.0 mmol, 3.00 equiv). After stirring at 0 °C for 0.5 h, *D*-tryptophan methyl ester hydrochloride 20la (1.53 g, 6.00 mmol, 1.20 equiv) was added and the reaction mixture was warmed up to rt. After stirring for 10 h, the reaction mixture was diluted with H₂O and extracted with EtOAc (3x). The organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Petroleum ether: EtOAc = 1:1) to afford 20l (480 mg, 20%) as a white foam. Characterization data matched the literature report².

Methyl (2-(bis(tert-butoxycarbonyl)amino)acryloyl)-*D*-isoleucylleucinate (20m). According to the general protocol E, HCTU (1.55 g, 3.75 mmol, 1.50 equiv) and DIPEA (1.30 mL, 7.50 mmol, 3.00 equiv) was added to a solution of 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.55 g, 2.50 mmol, 1.00 equiv) in anhydrous DMF/DCM (18.0 mL, 2:8 v/v). The solution was cooled to 0 °C and stirred under N₂ for 0.5h, then 20ma¹⁵ (0.610 g, 2.50 mmol, 1.00 equiv) was added. After stirring at rt for 12 hours, the reaction mixture was diluted

with H₂O (25.0 mL) and EtOAc (50.0 mL), washed with 1.0 M HCl solution (2 × 30 mL), sat. aq. NaHCO₃ solution (2 × 30.0 mL) and brine (2 × 30.0 mL). The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography on SiO₂ (Petroleum ether: EtOAc = 1.5:1) to afford **20m** (138 mg, 17%) as a white solid: $[\alpha]_D^{25} = -18.2$ (c = 0.71, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.72 (dd, *J* = 12.8, 8.8 Hz, 2H), 6.26 (s, 1H), 5.46 (s, 1H), 4.50 – 4.43 (m, 2H), 3.70 (s, 3H), 2.18 – 2.09 (m, 1H), 1.85 – 1.77 (m, 1H), 1.41 (s, 18H), 1.30 – 1.21 (m, 1H), 1.15 – 1.05 (m, 1H), 0.90 – 0.83 (m, 14H). ; ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 170.9, 170.8, 163.3, 150.7, 138.8, 121.8, 83.8, 67.9, 58.3, 58.0, 57.4, 57.3, 52.4, 52.3 (2), 37.8, 37.4, 31.1 (2), 28.3, 28.2, 27.9, 25.0, 19.1 (2), 18.0, 17.9, 15.5, 15.4, 11.4, 11.3; HRMS (ESI) *m/z* calcd for C₂₆H₄₅N₃NaO₈ [M + Na]⁺ 550.3099, found 550.3097.

Methyl (2-(bis(*tert***-butoxycarbonyl)amino)acryloyl)-D-isoleucylvalinate (20n).** According to the general protocol E, HCTU (3.10 g, 7.50 mmol, 1.50 equiv) and DIPEA (2.60 mL, 15.0 mmol, 3.00 equiv) was added to a solution of 2-(di(*tert*-butoxycarbonyl)amino)acrylic acid² S3 (1.44 g, 5.00 mmol, 1.00 equiv) in anhydrous DMF/DCM (18.0 mL, 2:8 v/v). The solution was cooled to 0 °C and stirred under N₂ for 0.5 h, then **20na**¹⁶ (1.925 g. 5.0 mmol, 1.0 equiv) was added. After stirring at rt for 12 h, the reaction mixture was diluted with H₂O (25.0 mL) and EtOAc (50.0 mL), washed with 1.0 M HCl solution (2 × 30 mL), sat. aq. NaHCO₃ solution (2 × 30.0 mL) and brine (2 × 30.0 mL). The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography on SiO₂ (Petroleum ether:EtOAc = 1.5:1) to afford **20n** (331 mg, 27%) as a white solid: $[\alpha]_D^{25} = -25.7$ (c = 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.64 (d, *J* = 8.7 Hz, 1H), 6.22 (s, 1H), 6.19 (d, *J* = 8.2 Hz, 1H), 5.49 (s, 1H), 4.61 – 4.56 (m, 1H), 4.36 (dd, *J* = 8.7, 6.9 Hz, 1H), 3.73 (s, 3H), 1.91 – 1.84 (m, 1H), 1.58 – 1.46 (m, 20H), 1.41 (d, *J* = 2.3 Hz, 1H), 0.95 – 0.89 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 170.6, 163.4, 150.7, 138.9, 121.7, 83.9, 57.9, 52.5, 50.9, 41.5, 37.9, 27.9, 25.0, 24.9, 22.9, 22.0, 15.4, 11.4; HRMS (ESI) *m*/z calcd for C₂₅H₄₃N₃NaO₈ [M + Na]⁺ 536.2942, found 536.2943.

Methyl (2-(bis(*tert***-butoxycarbonyl)amino)acryloyl)**-*L***-alloisoleucyl**-*L***-leucyl**-*L***-phenylalaninate (200). 20oa** was prepared by following the previously reported procedure¹⁷. To a solution of **20oa** (1.4 g, 8mmol, 1.0 equiv), HATU (4.56 g, 12.0 mmol, 1.50 equiv) in anhydrous DMF (30.0 mL) and DIPEA (3.10 g, 24.0 mmol, 1.50 equiv)

3.00 equiv) was added. After the mixture was stirred at 0 °C for 30 min. **20ob** (3.50 g, 8.80 mmol, 1.10 equiv) was added. The resulting mixture was warmed to rt and stirred for 12 h, after which time the reaction mixture was diluted with H₂O (50.0 mL) and EtOAc (100.0 mL). The crude material was washed with 1 M HCl solution (2 × 50.0 mL), sat. aq. NaHCO₃ solution (2 × 50.0 mL) and brine (2 × 50.0 mL). The organic layers were dried over Na₂SO₄, filtered and the solvent was removed *in vacuo*. The residue was purified by flash column chromatography on silica (Petroleum ether: EtOAc = 1.5:1) to afford the corresponding **20oc** (3.30 g, 91%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.10 – 7.08 (m, 2H), 6.52 (d, J = 7.8 Hz, 0H), 6.35 (d, J = 8.1 Hz, 1H), 5.02 – 5.00 (m, 1H), 4.83 – 4.78 (m, 1H), 4.45 – 4.40 (m, 1H), 3.89 (dd, J = 8.6, 6.8 Hz, 1H), 3.69 (s, 3H), 3.14 – 3.05 (m, 1H), 1.86 – 1.84 (m, 1H), 1.66 – 1.57 (m, 2H), 1.52 – 1.42 (m, 11H), 1.15 – 1.07 (m, 1H), 0.91 – 0.87 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 171.7, 171.4, 135.8, 129.4, 128.8, 127.3, 80.2, 59.5, 53.4, 52.5, 51.7, 41.2, 38.0, 36.9, 28.4, 24.9, 24.7, 23.0, 22.0, 15.7, 11.4. HRMS (ESI) *m/z* calcd for C₂₇H₄₃N₃NaO₆ [M + Na]⁺ 528.3044, found 528.3038.

20of was dissolved in sat. HCl soln in MeOH (20 mL) and stirred at rt for 2 h. The mixture was then evaporated and dried under high vacuum to give 20od. According to the general protocol E, HCTU (3.10 g, 7.50 mmol, 1.50 equiv) and DIPEA (2.60 mL, 15.0 mmol, 3.00 equiv) was added to a solution of 2-(di(tertbutoxycarbonyl)amino)acrylic acid S3 (1.44 g, 5.00 mmol, 1.00 equiv) in anhydrous DCM:DMF (18.0 mL, 2:8). The solution was cooled to 0 °C and stirred under N₂ for 30 min. **20od** (2.10 g, 5.00 mmol, 1.00 equiv) was added to the first solution and the mixture was stirred at rt for 12 h, after which time the reaction mixture was diluted with H₂O (25.0 mL) and EtOAc (50.0 mL). The crude material was washed with 1 M HCl solution $(2 \times 30.0 \text{ mL})$, sat. aq. NaHCO₃ solution $(2 \times 30.0 \text{ mL})$ and brine $(2 \times 30.0 \text{ mL})$. The organic layers were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The product was purified by flash column chromatography with an eluent Petroleum ether: EtOAc = 1.5:1 to afford the corresponding 200 (662 mg, 19%) as a white solid: $[\alpha]_D^{25} = -2.2$ (c = 0.09, CHCl₃); ¹H NMR (400 MHz, CD₃CN) δ 7.32 – 7.16 (m, 5H), 6.97 (d, J = 7.7 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.06 (d, J = 1.1 Hz, 1H), 5.52 (d, J = 1.1 Hz, 1H), 4.60 - 4.54 (m, 1H), 4.32 - 4.22 (m, 2H), 3.61 (s, 3H), 3.08 (dd, J = 13.8, 6.0 Hz, 1H), 2.97(dd, J = 13.9, 7.8 Hz, 1H), 1.83 (m, 1H), 1.62 – 1.55 (m, 1H), 1.50 – 1.40 (m, 21H), 1.14 – 1.08 (m, 1H), 0.90 - 0.83 (m, 12H). ¹³C NMR (101 MHz, CD₃CN) δ 172.7, 172.6, 171.6, 164.6, 151.7, 140.0, 137.7, 130.2, 129.3, 127.7, 121.0, 83.9, 58.8, 54.6, 52.6, 52.4, 41.5, 38.0, 37.9, 28.0, 25.6, 25.2, 23.2, 21.8, 15.9, 11.4; **HRMS** (ESI) m/z calcd for C₃₅H₅₄N₄NaO₉ [M + Na]⁺ 697.3783, found 697.3791.

Methyl ®-3-acetyl-2-(*tert***-butyl)-2,3-dihydrothiazole-4-carboxylate (23).S23-1 was prepared by following the previously reported procedure.¹⁸ To a solution of crude S23-1 (4.58 g, 20.0 mmol, 1.00 equiv) in pyridine (20.0 mL) and Ac₂O (20.0 mL), DMAP (0.244 g, 2.00 mol, 0.10 equiv.) was added. The mixture was stirred at 0 °C for 10 min. The reaction mixture was stirred at 25 °C for 12 h before the solvent was removed under reduced pressure. The obtained residue was treated with 1 M HCl and extracted with ethyl acetate (3 × 100.0 mL). The combined organic layers were washed with brine dried over Na₂SO₄ and the solvent was removed in vacuo. The residue was purified by flash column chromatography on silica (petroleum ether: EtOAc = 3:1) to give product S23-2 as a yellow oil (3.60 g, 71% yield over two steps).**

To a solution of **S23-2** (3.60 g, 15.6 mmol, 1.00 equiv.) in DCM (50.0 mL) the DBU (4.20 mL, 28.0 mmol, 1.80 equiv.) was added. The mixture was stirred at 0 °C for 10 min, then CBrCl₃ (2.00 mL, 20.3 mmol, 1.30 equiv.) was added, and the reaction mixture was stirred at 0 °C for 24 h. After the reaction completed, saturated aqueous NaHCO₃ (50.0 mL) was added at 0 °C, and the reaction mixture was warmed to 25 °C. After the two layers separated, the aqueous phase was extracted with DCM (100.0 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered off, and the solvent was removed in vacuo. The residue was purified by flash column chromatography on silica (EaOAc: Petroleum ether = 1/3) to give product **23** as light yellow oil (0.420 g, 1.70 mmol, 12%): ¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (s, 1H), 5.77 (s, 1H), 3.74 (s, 3H), 2.01 (s, 3H), 0.83 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.2, 160.2, 131.4, 129.5, 78.3, 52.2, 38.7, 24.4, 22.3; **HRMS** (ESI) m/z calcd for C₁₁H₁₇NNaO₃S⁺ [M + Na]⁺ 266.0821; found 266.0821.

7. Synthetic Applications and Transformation

7.1 Gram Scale Reaction

According to the general protocol B, **17a** (1.62 g, 3.00 mmol, 1.50 equiv), **18** (580 mg, 2.00 mmol, 1.00 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (20.0 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (30.0 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs for 30 h and afforded after chromatographic purification on SiO₂ (Petroleum ether:EtOAc = 6:1) **19a** (0.78 g, 77%) as a yellow foam.

7.2 Derivation of (+)-Sclareolide from Deoxygenative Radical Addition

Benzyl

tetramethyldodecahydronaphtho[2,1-*b*]**furan-2-yl**)**methyl**)**oxazolidine-3-carboxylate** (22b). According to the reported method^[1], 22a was prepared from 22a-1 over two steps. According to the general protocol A, 22a (167 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate 18 (58.0 mg, 0.200 mmol, 1.00 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 0.025 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W Blue LEDs irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 5:1) 22b (62.0 mg, 61%, d.r. = 4:1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.36 (m, 5H), 5.57 (s, 1H), 5.22 – 5.15 (m, 2H), 4.55 (dd, *J* = 8.4, 5.9 Hz, 0H), 4.41 – 4.35 (m, 2H), 2.23 – 2.13 (m, 1H), 2.08 – 2.01 (m, 0H), 1.92 – 1.82 (m, 2H), 1.80 – 1.69 (m, 2H), 1.66 – 1.61 (m, 1H), 1.50 – 1.35 (m, 5H), 1.33 – 1.11 (m, 9H), 1.03 (s, 3H), 0.96 – 0.93 (m, 1H), 0.91 – 0.89 (m, 0H), 0.87 – 0.85 (m, 4H), 0.81 – 0.81 (m, 3H), 0.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 156.1, 135.4, 128.9, 128.8, 128.7, 96.6, 80.8, 72.6, 68.4, 59.0, 57.4, 55.1, 42.5, 40.5, 40.0, 39.9, 37.1, 36.1, 33.7, 33.2, 27.5, 25.1, 21.7, 21.2, 20.7, 18.5, 15.1; HRMS (ESI) *m/z* calcd S51

for $C_{32}H_{47}NNaO_5 [M + Na]^+ 548.3346$, found 548.3348.

7.3 Selectivitive Glycosylation of Thiazoline under Photoredox Conditons

(2R,4R)-3-acetyl-2-(tert-butyl)-5-((3aS,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-Methyl dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)thiazolidine-4-carboxylate (24). According to the general protocol B, methyl 3-acetyl-2-(tert-butyl)-2,3-dihydrothiazole-4-carboxylate 23 (162 mg, 0.300 mmol, 1.50 equiv), methyl 2-phthalimidoacrylate¹ 17a (46.0 mg, 0.200 mmol, 1.00 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 85 °C under 6 W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) 24 (65.0 mg, 67%) as a colorless foam. The NMR data supports that 24 exists as a mixture of rotamers. It was recorded at DMSO- d_6 (25 °C and 80 °C), respectively. Both solvent and temperature affect the ratio of isomers. ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ 5.41 (s, 0.80H), 5.16 (d, J = 2.7 Hz, 1H), 4.99 (d, J = 6.9 Hz, 0.20H), 4.79 – 4.73 (m, 2H), 4.25 (dd, J = 4.5, 1.8 Hz, 0.80H), 4.21 – 4.03 (m, 3.20H), 3.99 – 3.90 (m, 1H), 3.80 (dd, *J* = 8.5, 5.3 Hz, 1H), 3.72 (s, 2.40H), 3.67 (s, 0.60H), 2.20 (s, 0.60H), 2.11 (s, 2.40H), 1.39 (s, 2.40H), 1.32 - 1.31 (m, 3H), 1.27 - 1.23 (m, 6.60H), 0.97 (s, 1.80H), 0.82 (s, 7.20H).; ¹³C NMR (101 MHz, DMSO-*d*₆, 25 °C) δ 171.5, 170.4, 111.8, 108.1, 86.6, 84.1, 83.3, 80.9, 72.8, 71.9, 67.2, 66.1, 52.7, 49.9, 37.8, 26.6 (2), 26.3, 25.2, 24.6, 23.4.; ¹H NMR (500 MHz, DMSO-*d*₆, 80 °C) δ 5.09 (d, J = 3.9 Hz, 1H), 4.81 (dd, J = 6.0, 3.8 Hz, 1H), 4.76 (dd, J = 6.0, 1.8 Hz, 1H), 4.22 - 4.12 (m, 4H),3.96 (dd, J = 8.4, 6.3 Hz, 1H), 3.84 (dd, J = 8.4, 5.7 Hz, 1H), 3.74 (s, 3H), 2.15 (s, 3H), 1.43 (s, 3H), 1.35 (s, 3H), 1.43 (s, 3H), 1.43 (s, 3H), 1.43 (s, 3H), 1.43 (s, 3H), 1.44 (3H), 1.30 (s, 3H), 1.28 (s, 3H), 0.91 (s, 9H); **HRMS** (ESI) m/z calcd for C₂₃H₃₇NNaO₈S [M + Na]⁺ 510.2132, found 510.2135.

7.4 Deprotection and Peptide Coupling

(S)-2-(((Benzyloxy)carbonyl)amino)-3-((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)propanoic acid (25)

A solution of **19k** (405 mg, 0.500 mmol, 1.00 equiv) in THF/H₂O (12.0 mL, 3:1 v/v) was cooled to 0 °C and treated with lithium hydroxide monohydrate (42.0 mg, 1.00 mmol, 2.00 equiv). After stirring at 0 °C for 1h and at rt for another 24 h, the mixture was added H₂O (10.0 mL) and concentrated *in vacuum*. The resulted solution was acidified to pH 2-3 by careful addition of 1.0 M hydrochloric acid, and the mixture was extracted with EtOAc (2×10.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated,

and purified by flash column chromatography on SiO₂ (Petroleum ether: acetone = 4:1) to afford **25** (258 mg, 70%) as a white foam: $[\alpha]_D^{25} = +10.7$ (c = 1.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 23H), 7.18 – 7.16 (m, 2H), 6.14 (d, J = 6.3 Hz, 1H), 5.06 (s, 2H), 4.63 (d, J = 11.5 Hz, 1H), 4.57 – 4.43 (m, 7H), 4.36 (t, J = 6.1, 6.1 Hz, 1H), 4.23 – 4.19 (m, 1H), 3.91 – 3.87 (m, 1H), 3.77 – 3.68 (m, 3H), 3.59 (dd, J = 6.6, 3.3 Hz, 2H), 2.19 – 2.15 (m, 1H), 2.10 – 2.03 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 156.3, 138.2, 138.1, 137.9, 136.5, 128.6, 128.5(2), 128.2, 128.1(2), 128.0(2), 127.9(2), 127.8, 76.3, 74.9, 73.7, 73.3, 72.3, 71.9, 69.7, 68.9, 66.9, 52.3, 34.7; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₄₅H₄₇NNaO₉ 768.3143; found 768.3143.

Methyl((S)-2-(((benzyloxy)carbonyl)amino)-3-((2R,3R,4R,5R,6R)-3,4,5-
tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)propanoyl)-
L-phenylalaninate(26).(S)-2-(((Benzyloxy)carbonyl)amino)-3-
((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-
pyran-2-yl)propanoic acid 25 (89.4 mg, 0.120 mmol, 1.00 equiv), HATU (91.2 mg,
0.240 mmol, 2.00 equiv) and DIPEA (46.4 mg, 0.360 mmol, 3.00 equiv) were

added anhydrous DMF (3.00 mL) at 0 °C. After stirring for 0.5 h, *L*-phenylalanine methyl ester hydrochloride (38.9 mg, 0.180 mmol, 1.50 equiv) was added. After stirring at rt for 12 h, the reaction mixture was diluted with H₂O (5.00 mL) and EtOAc (10.0 mL), washed with 1.0 M HCl solution (2 × 5.00 mL), sat. aq. NaHCO₃ solution (2 × 5.00 mL) and brine (2 × 5.00 mL). The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography on SiO₂ (Toluene: EtOAc = 5:1) to afford **26** (64.0 mg, 59%) as a white solid: $[\alpha]_D^{25} = +6.3$ (c = 0.62, CHCl₃); ¹H NMR (400 MHz, CD₃CN) δ 7.35 – 7.24 (m, 25H), 7.22 – 7.15 (m, 3H), 7.11 (d, *J* = 7.3 Hz, 2H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.07 (d, *J* = 7.4 Hz, 1H), 5.04 (s, 2H), 4.66 – 4.43 (m, 9H), 4.21 (q, *J* = 7.4, 7.4, 7.3 Hz, 1H), 4.12 – 4.08 (m, 1H), 3.87 – 3.78 (m, 3H), 3.69 (t, *J* = 6.0, 6.0 Hz, 1H), 3.63 – 3.54 (m, 5H), 3.03 (dd, *J* = 13.9, 5.7 Hz, 1H), 2.85 (dd, *J* = 13.9, 7.7 Hz, 1H), 1.93 – 1.90 (m, 1H), 1.85 – 1.78 (m, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 172.6, 172.1, 156.8, 139.6, 139.5, 139.4, 138.0, 137.7, 130.2, 129.4, 129.3, 129.3, 129.2 (2), 128.9, 128.8 (4), 128.7, 128.5 (2), 127.7, 77.2, 75.6, 74.1, 74.0, 73.3, 72.7, 72.1, 70.1, 69.2, 67.1, 54.5, 53.5, 52.7, 38.0, 33.3, 31.5, 30.4; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₅₅H₅₈N₂NaO₁₀ 929.3984, found 929.3985.

7.5 Comparision with the Reported Method

According to the reported protocol,¹⁹ (3aS,6R,6aS)-4-Chloro-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole **27** (55.6 mg, 0.200 mmol, 1.00 equiv), benzyl (S)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate **18** (83.0 mg, 0.300 mmol, 1.50 equiv), CpTiCl₃ (4.4 mg, 0.0200 mmol, 0.010 equiv), Mn (22.0 mg, 0.400 mmol, 2.00 equiv), Et₃N·HCl(41.3 mg, 0.300 mmol, 1.50 equiv) were added to THF (2.00 mL). The reaction mixture was stirred under N₂ at rt for 16 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 3:1) **19a** (17.0 mg, 18% yield).

8. Mechanistic Studies 8.1 Radical Trapping Experiments

According to the general protocol A, **17a** (162 mg, 0.300 mmol, 1.50 equiv), **18** (58.0 mg, 0.200 mmol, 1.00 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 0.025 equiv) and TEMPO (46.8 mg, 0.200 mmol, 1.00 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h. Trace of **19a** was detected.

According to the general protocol A, **17a** (162 mg, 0.300 mmol, 1.50 equiv), **18** (58.0 mg, 0.200 mmol, 1.00 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) and 1,1-diphenylethylene (54.0 mg, 0.200 mmol, 1.00 equiv) were added to anhydrous CH₃CN (3.00 mL). The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h. The yield of **19a** was calculated by using the NMR internal standard. Radical cross-coupling product **30** and **31** were detected by HRMS.

8.2 Deuterium Labeling Studies

According to the general procedure A, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹ (162 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate² (58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.025 equiv) were added to anhydrous CD₃CN (3.00 mL).

The reaction mixture was stirred at 85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) to afford product **19a** (70.7 mg, 67% yield) as a colorless oil.

According to the general procedure A, 4-((3aS,4R,6R,6aS)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl) 3,5-diethyl 2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate¹**17a**(162 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate²**18**(58.0 mg, 0.200 mmol, 1.00 equiv) and 4CzIPN (4.0 mg, 0.005 mmol, 0.0250 equiv) were added to anhydrous CH₃CN:D₂O (3.0 mL, 2:1 v/v). The reaction mixture was stirred at

85 °C under 6W blue LED irradiation for 20 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 6:1) to afford *d*-19a (87.0 mg, 82%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 5.54 (s, 1H), 5.26 – 5.14 (m, 2H), 4.77 (dd, *J* = 6.0, 3.8 Hz, 1H), 4.56 (dd, *J* = 9.3, 5.8 Hz, 2H), 4.45 – 4.35 (m, 1H), 4.14 – 4.01 (m, 2H), 3.83 (dd, *J* = 7.8, 3.7 Hz, 1H), 2.06 – 1.88 (m, 2H), 1.50 (s, 3H), 1.43 (s, 3H), 1.38 (s, 3H), 0.94 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 155.8, 128.8, 128.7, 112.9, 109.3, 96.5, 85.1, 80.7, 80.5, 80.5, 76.9, 76.8, 73.4, 68.4, 67.1, 54.0, 37.2, 33.8, 27.1, 26.2, 25.3, 24.9, 24.8; **HRMS** (ESI) m/z calcd for C₂₈H₃₈DO₉NNa [M + Na]⁺ 557.2580, found 557.2581.

8.3 Light on-off Experiments

According to the general protocol A, During the light off time, the reaction device is moved into a completely black environment, and during the light on time, the reaction device is in the normal environment. Calculate the yield over each time period by using the NMR internal standard.

8.4 The Role of α-Heteroatoms

Benzyl (2*S*,4*S*)-2-(*tert*-butyl)-5-oxo-4-(((*S*)-tetrahydro-2*H*-pyran-2-yl)methyl)oxazolidine-3-carboxylate (30a).

According to the general protocol B, 3,5-diethyl 4-(tetrahydro-2*H*-pyran-2-yl) 2,6dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate **30a** (115.0 mg, 0.300 mmol, 1.50 equiv), benzyl (*S*)-2-(*tert*-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate **18** (58.0 mg, 0.200 mmol, 1.00 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (4.5 mg, 0.004 mmol, 0.020 equiv) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred

at 85 °C under 6W Blue LEDs irradiation for 10 h and afforded after chromatographic purification on SiO₂ (Petroleum ether: EtOAc = 8:1) to afford **31a** (36.0 mg, 48%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 5H), 5.58 (s, 1H), 5.23 – 5.13 (m, 2H), 4.56 (dd, *J* = 7.2, 5.3 Hz, 1H), 3.85 (dd, *J* = 11.5, 4.3 Hz, 1H), 3.55 – 3.49 (m, 1H), 3.17 (t, *J* = 11.5 Hz, 1H), 2.14 – 2.07 (m, 1H), 1.83 – 1.74 (m, 2H), 1.58 – 1.47 (m, 2H), 1.45 – 1.33 (m, 2H), 1.26 – 1.19 (m, 2H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 156.4, 135.4, 96.6, 73.9, 68.6, 68.4, 54.2, 40.8, 37.1, 31.9, 26.0, 25.1, 23.4; HRMS (ESI) *m/z* calcd for C₂₁H₂₉NNaO₅ [M + Na]⁺ 398.1938, found 398.1937.

9. Computational Details

All DFT calculations were performed with Gaussian09²⁰ or Gaussian16 software packages.²¹ Geometry optimizations of all the minima were performed at B97XD/6-31+G(d,p) (SDM DCM). Vibrational frequencies were computed at the same level to evaluate thermal corrections at 298 K. All structures in Figure 4 were characterized by NIMAG=0 or NIMAG=1 for transition states. The single-point energies were computed at B97XD/6-311+G(d,p) (SDM DCM). SMD solvation model was used for DCM to optimize all structures.²² To correct the Gibbs free energies under pressure of 1 atm to the standard state in solution (1 mol/L), a correction of $RTln(c_S/c_g)$ (about 1.89 kcal/mol) is added to energies of all species. c_S is the standard molar concentration in solution (1 mol/L), c_g is the standard molar corrections reported in Hartrees.

	MeO ₂ C + NH	Correction of the second secon		CO ₂	(°).	MeO ₂ C NH CO ₂ Me	MeO ₂ CN	o ↓ NCO ₂ Me		o → NCO ₂ Me	MeO ₂ C
EE											
	-1164.366429	-459.66758	-459.638966	-188.580463	-271.106847	-704.585648	-745.755307	-1016.926122	-1016.869023	-1017.569581	-704.014942
DG corr	0.2888	0.115437	0.109748	-0.008997	0.10451	0.142052	0.206813	0.337034	0.332054	0.351262	0.134907
DH corr	0.365946	0.158788	0.154901	0.015282	0.140278	0.19946	0.265201	0.410377	0.406975	0.423192	0.190427
DG											
	-1164.077629	-459.552143	-459.529218	-188.58946	-271.002337	-704.443596	-745.548494	-1016.589088	-1016.536969	-1017.218319	-703.880035
DH											
	-1164.000483	-459.508792	-459.484065	-188.565181	-270.966569	-704.386188	-745.490106	-1016.515745	-1016.462048	-1017.146389	-703.824515

C	- f Tl J.		. .	C4
Summary	of inermody	vnamic Para	ameters for	Structures
	or ruciniou.	,		Nel accal es

	MeO ₂ C NH	⊖		CO ₂	Ċ	MeO ₂ C	MeO ₂ CN		Contraction of the second seco	o V NCO2Me	MeO ₂ C
EE											
	-1128.469864	-423.77043	-423.731266	-188.580463	-235.209204	-704.585648	-745.755307	-981.03045	-980.969123	-981.672656	-704.014942
DG											
cor r	0.312638	0.138966	0.133686	-0.008997	0.126539	0.142052	0.206813	0.360506	0.35587	0.373426	0.134907
DH											
cor	0.390007	0 182824	0 178207	0.015282	0 16326	0 19946	0.265201	0.434519	0.430259	0.447271	0 190427
DG	0.570007	0.102021	0.170207	0.010202	0.10520	0.177710	0.205201	0.151519	0.150259	0.11/2/1	0.170127
	-1128.157226	423.631464	-423.59758	-188.58946	-235.082665	-704.443596	-745.548494	-980.669944	-980.613253	-981.29923	-703.880035
DH											
	-1128.079857	423.587606	-423.553059	-188.565181	-235.045944	-704.386188	-745.490106	-980.595931	-980.538864	-981.225385	-703.824515

Cartesian Coordinates

MeO₂C NH Π ĊO₂Me ö

01

O -0.48886700 -1.00155700 -0.36867200 C 0.14589100 -0.07989300 -1.10991300 C 0.89706000 0.90960400 -0.20941400 O 0.12983700 -0.04977100 -2.31845400 C 2.08038000 0.23259800 0.46693200 C 2.06072700 -0.09160500 1.77784100 N 1.01819300 0.25607500 2.59372100 C 0.04580900 1.10591000 2.14319700 C -0.02982100 1.48434600 0.85056500 C 3.26195500 -0.05545700 -0.35908100 C -1.11870100 2.39984100 0.47820000 O -1.15449800 2.60505500 -0.84428900 O -1.91534800 2.90912300 1.25170700 C -2.20570100 3.44133300 -1.33954500 O 3.38474000 0.31005100 -1.51574700 O 4.20799000 -0.75904900 0.28435200 C 5.39563100 -1.05513900 -0.45902600 H 1.25582200 1.69189900 -0.88261700 H 2.88088600 -0.60985800 2.25844100 H 1.06760600 0.03705100 3.57782200 H -0.65369400 1.47061200 2.88599500 H -2.06490500 3.47492700 -2.41912600 H -3.18043200 3.01053900 -1.09876100 H -2.12955700 4.44519800 -0.91546100 H 6.02597200 -1.63020500 0.21861100 H 5.15716500 -1.64680200 -1.34591800 H 5.90358400 -0.13452800 -0.75599500 C -1.38073600 -1.92105800 -1.03504700 C -1.56209300 -3.10206700 -0.09437400 H -0.93440600 -2.21175300 -1.98688700 C -2.36407000 -2.70961300 1.14841300 H -0.57760100 -3.50171500 0.16628500 H -2.09711000 -3.87722700 -0.65478700 C -3.33797500 -0.84894600 -0.20973400 C -3.65574400 -2.00696200 0.72399500 H -2.58474400 -3.59927200 1.74632800 H -1.76812600 -2.03601600 1.77634100

H -2.78512700 -0.06445300 0.32443100 H -4.24369500 -0.40458100 -0.62710700 H -4.20053300 -1.62318000 1.59326700 H -4.31330200 -2.71693800 0.20684000 O -2.57395600 -1.27429900 -1.34662100

02

O 1.17569700 -0.49198500 -0.21429000 C 2.31841400 0.08705400 0.08004000 O 3.27339500 0.20630500 -0.62452500 C 0.13755500 -0.42892900 0.83679100 C -0.95393500 -1.39099200 0.40408500 H 0.61288700 -0.73006100 1.77176900 C -1.01369000 1.43874500 -0.09771700 C -1.75423000 -0.84700100 -0.78071500 H -0.50365300 -2.36298800 0.18458200 H -1.61222800 -1.51980700 1.27059700 C -2.20997100 0.58084700 -0.47427300 H -1.31380100 2.42960600 0.24674400 H -0.33756300 1.56032700 -0.95385200 H -1.13398300 -0.85045600 -1.68514200 H -2.61257400 -1.49655300 -0.97540600 H -2.70713400 1.03103100 -1.33970700 H -2.92758900 0.57509800 0.35546400 O -0.27524600 0.87636300 1.00327600

02

O 1.58828100 -1.04882600 -0.21171600 C 2.16516100 0.02049900 -0.13779100 O 3.14360300 0.63814900 -0.49577600 C -0.31533500 -0.75566300 0.99596900 C -1.26984000 -1.38746800 0.05466600 H 0.12560500 -1.32997100 1.80324600 C -0.77682600 1.47302400 0.21681200 C -1.76489600 -0.43257000 -1.02919500 H -0.78936400 -2.28107700 -0.35935000 H -2.11464200 -1.74860500 0.66147900 C -2.04849100 0.92675400 -0.39438400 H -0.94430500 2.35886900 0.82953100 H -0.03278400 1.69992100 -0.54924800 H -1.00138300 -0.32224000 -1.80722200 H -2.66089600 -0.84166800 -1.50214600 H -2.39700000 1.65147900 -1.13609800 H -2.82791500 0.83506000 0.37172000 O -0.14387800 0.52452300 1.13894600

CO_2

01

C 0.0000000 0.0000000 0.0000000 O 0.0000000 0.0000000 1.16468000 O 0.0000000 0.0000000 -1.16468000

О́.

02 C1.3

C 1.38238500 0.25693800 0.19989800 C -0.32612900 -1.38700900 0.15601400 C -1.40471200 -0.39162500 -0.14169200 C -0.99200600 1.02904300 0.25743800 C 0.40760500 1.31717400 -0.28728800 H 1.48368500 0.30763900 1.29311400 H 2.37110100 0.37758600 -0.24743900 H -1.62227800 -0.40349300 -1.22523300 H -2.32621800 -0.69830200 0.36400900 H -1.71587100 1.75666100 -0.12277400 H -0.98115300 1.11679200 1.35149200 H 0.39021200 1.32006300 -1.38467000 H 0.76792600 2.29859000 0.03958400 H -0.51153600 -2.44918200 0.01571400 O 0.96765900 -1.07168500 -0.14875200

MeO₂C ĊO₂Me

02

C -0.00001800 -0.17912500 0.00001900 C -1.22101900 0.56992300 0.00002800 C -1.20130900 1.93441700 0.00004800 N 0.00002700 2.61073300 0.00009100 C 1.20131300 1.93440000 0.00003900 C 1.22104000 0.56991600 0.00001800 C -2.55732000 -0.07706000 0.00001200

```
C 2.55731800 -0.07706000 -0.00000700
O 2.47045900 -1.40990800 -0.00002000
O 3.62052300 0.51976200 -0.00003900
C 3.70852500 -2.13171600 -0.00008000
O -3.62050800 0.51978200 -0.00001700
O -2.47047600 -1.40990000 0.00001200
C -3.70855200 -2.13169800 -0.00003500
H -0.00002500 -1.25852100 -0.00000100
H -2.09891800 2.53853300 0.00005800
H 0.00004100 3.61978600 -0.00007300
H 2.09893800 2.53849800 0.00004100
H 3.43033000 -3.18484000 -0.00021000
H 4.29006900 -1.89331800 -0.89349100
H 4.29002100 -1.89353000 0.89342100
H -3.43036500 -3.18482400 -0.00014800
H -4.29004300 -1.89348900 0.89346100
H -4.29009000 -1.89330700 -0.89345200
```

```
01
```

C 0.41621100 1.48227100 0.26250100 N 0.48342100 0.11586700 -0.06491600 C -0.78843400 -0.30477800 -0.66335000 O -1.42334500 0.93768200 -1.00723400 C -0.82135600 1.97707600 -0.40582700 C 1.21840100 2.26404800 0.98372600 O -1.25113300 3.10273600 -0.45623200 C -1.70636200 -1.11946400 0.27202600 C -1.01394300 -2.44290500 0.62228600 C -3.00672800 -1.41151800 -0.49030200 C -2.01309000 -0.34450300 1.55979600 C 1.62175300 -0.62324200 -0.30934700 O 2.69748200 -0.06920100 0.24410900 O 1.62166000 -1.66221900 -0.94317100 C 3.94158200 -0.74993600 0.01531400 H -0.59737900 -0.85007100 -1.58951300 H 2.11078600 1.89831700 1.47206600 H 0.95945900 3.31374300 1.07054400 H -1.69086400 -3.05325100 1.22884900 H -0.09991200 -2.28113000 1.20225800 H -0.75286300 -3.01055600 -0.27599300

```
H -3.66164000 -2.03681400 0.12494600
H -3.54693400 -0.49181400 -0.73346700
H -2.80574300 -1.95052700 -1.42330000
H -2.53870900 0.59528600 1.36040200
H -2.66085600 -0.95113000 2.20055400
H -1.10188000 -0.12302300 2.12539600
H 4.69144800 -0.15385200 0.53313700
H 3.90381200 -1.75866200 0.43092400
H 4.16180600 -0.79185100 -1.05309700
```

N -0.91038300 0.21655100 0.07063000 C -2.08208200 -0.19755300 -0.72037500 O -1.91446100 -1.60608100 -0.85027400 C -0.89369800 -2.04288300 -0.05332200 C -0.25054800 -0.90320800 0.53500200 C -0.41104900 1.51183800 -0.04285800 O 0.32389400 1.84117000 1.00989600 O -0.67873900 2.24359100 -0.97440600 C 1.09154400 3.04580400 0.88712500 C 1.04912300 -0.95939700 1.25027400 O -0.63166700 -3.22899000 0.05713800 C -3.43914500 0.11308500 -0.04735400 C -3.60780500 1.63032300 0.10697400 C -4.53937400 -0.42562500 -0.97335500 C -3.53197800 -0.55794900 1.32806800 H -2.03140500 0.25508300 -1.71413600 H 1.75985100 2.97535300 0.02646500 H 0.43287400 3.91088100 0.78798300 H 1.66870800 3.11333900 1.80818300 H 1.13376000 -0.14124600 1.96718600 H 1.08716100 -1.90574200 1.79873600 H -4.61412500 1.84215900 0.48263700 H -2.89634500 2.05141500 0.82478900 H -3.48438700 2.15063000 -0.84787900 H -5.52277000 -0.19692100 -0.55001700 H -4.46586700 -1.51014500 -1.09548900 H -4.48330300 0.03793800 -1.96508000 H -3.44947900 -1.64709900 1.25594800

```
H -2.75411300 -0.19302200 2.00724000
H -4.50227800 -0.32786500 1.77993500
C 2.24523700 -0.93097200 0.28723900
C 3.57920800 -0.88280500 1.02780300
H 2.21358600 -1.83735000 -0.34107800
C 3.10797500 0.28857400 -1.55057000
C 4.73810800 -0.75856100 0.03456000
H 3.57129300 -0.01756400 1.70410200
H 3.68544500 -1.78414400 1.64173200
C 4.48962400 0.41127300 -0.92099800
H 2.86150500 1.16334500 -2.15787300
H 3.06288600 -0.60306400 -2.19722100
H 5.68532700 -0.62868400 0.56814000
H 4.81940400 -1.68840500 -0.54445800
H 5.24673500 0.43993100 -1.71248600
H 4.54782700 1.35996300 -0.37228400
O 2.09216800 0.20202300 -0.55970000
```


N 1.01621200 0.44181300 -0.12404400 C 1.91076300 -0.43270200 0.64087200 O 1.20534500 -1.68104800 0.68592700 C 0.19585300 -1.69830000 -0.21379100 C 0.05619700 -0.35627800 -0.78998100 C 0.90011700 1.76402700 0.22621700 O 0.02765900 2.40483100 -0.55441900 O 1.53578900 2.28660600 1.12595300 C -0.23453100 3.77296900 -0.21590300 C -0.88715400 -0.02796100 -1.69844000 O -0.45252700 -2.69810800 -0.43442700 C 3.30480800 -0.63873800 0.01031000 C 4.04096700 0.70666300 -0.02599800 C 4.07898000 -1.61945500 0.90249600 C 3.19124400 -1.19965300 -1.41277300 H 2.00443300 -0.06092200 1.66336500 H -0.62363500 3.84974000 0.80181200 H 0.67326200 4.37169000 -0.31357100 H -0.98489100 4.10538800 -0.93204000 H -0.90157000 0.93462700 -2.18709000

```
H -1.48517800 -0.83251400 -2.11015600
H 5.05509300 0.55298300 -0.40929200
H 3.54040700 1.42386100 -0.68425800
H 4.11570600 1.15190500 0.97086200
H 5.09395100 -1.75099900 0.51353800
H 3.59743300 -2.60134300 0.93250800
H 4.15808900 -1.24281800 1.92891800
H 2.69424400 -2.17523100 -1.43101500
H 2.64539600 -0.51712700 -2.07257200
H 4.19423400 -1.33423900 -1.83054000
C -3.00666000 0.74538100 -0.62269000
C -2.75153700 0.93409700 0.84268700
H -3.04907100 1.62745000 -1.25666600
C -3.90240900 -1.42877900 -0.32357800
C -2.72907400 -0.38848000 1.61270300
H -1.81776400 1.48881500 0.97197300
H -3.55341900 1.57174200 1.25302000
C -3.91699600 -1.24985900 1.18501600
H -2.99862000 -1.97218100 -0.63095800
H -4.77988100 -1.97103200 -0.68048100
H -2.75223900 -0.19598600 2.68962600
H -1.80009700 -0.92911400 1.40096900
H -3.87688600 -2.23873100 1.65365600
H -4.85874800 -0.77544600 1.48914100
O -3.92966100 -0.17112900 -1.01869900
```

N -0.88608700 0.34546600 0.37914800 C -1.69272200 -0.26488500 -0.67086900 O -1.36967700 -1.66203000 -0.57375000 C -0.75150700 -1.94424300 0.57833500 C -0.42377300 1.62023700 0.22543900 O 0.17002900 2.05706600 1.34313900 O -0.58967800 2.29889300 -0.77482300 C 0.89281100 3.28468500 1.22168100 C 1.17663100 -0.68168200 1.52057700 O -0.53008600 -3.07502400 0.93595800 C -3.22078400 -0.09181200 -0.51630400 C -3.57939500 1.39483600 -0.63671700

C -3.90030900 -0.86954400 -1.65258100 C -3.69597400 -0.62095800 0.84290000 H -1.36382600 0.08512300 -1.65268100 H 1.67711500 3.18594800 0.46757000 H 0.22210500 4.10639600 0.96107000 H 1.33502500 3.45887700 2.20237400 H 1.47161500 0.19423500 2.10069900 H 1.36759800 -1.56570600 2.13747600 H -4.66858000 1.50525000 -0.60847400 H -3.16247900 1.98079500 0.18796400 H -3.21502000 1.82216300 -1.57574300 H -4.98457100 -0.72509300 -1.60381900 H -3.69806300 -1.94253700 -1.58439400 H -3.55817300 -0.51657100 -2.63244300 H -3.50121600 -1.69239800 0.95973300 H -3.21798600 -0.08439000 1.66970700 H -4.77692900 -0.47396000 0.93424100 C 2.03807600 -0.76812400 0.26728700 C 3.47977900 -1.16736700 0.58207500 H 1.62019300 -1.51713400 -0.43021200 C 2.70227600 0.51834900 -1.60860500 C 4.33423800 -1.14128300 -0.68868100 H 3.88311000 -0.46402700 1.32299900 H 3.48741500 -2.16599100 1.03273100 C 4.17849700 0.20000100 -1.40995000 H 2.55669600 1.51855700 -2.02468100 H 2.24388700 -0.21032800 -2.29757500 H 5.38499600 -1.33051200 -0.44566400 H 4.00834600 -1.95039600 -1.35653000 H 4.68171500 0.18256800 -2.38317600 H 4.63659500 0.99979900 -0.81442200 O 2.00195000 0.50267400 -0.37318900 C -0.34445200 -0.66131800 1.28851700 H -0.84761200 -0.63290000 2.26192200

. ĊO₂Me

01

C 0.0000000 -0.10745000 -0.00008100 C -1.19595300 0.60602900 0.00001300 C -1.14186500 2.00159600 0.00013100 N 0.00000100 2.69295000 0.00017700

```
C 1.14186600 2.00159600 0.00012100
C 1.19595400 0.60602900 0.00000100
C -2.53076400 -0.05858100 -0.00001600
C 2.53076400 -0.05858200 -0.00004300
O 2.43556500 -1.38657800 -0.00002000
O 3.58560000 0.54476200 -0.00008600
C 3.67108500 -2.11856900 -0.00007400
O -3.58560000 0.54476300 -0.00004700
O -2.43556600 -1.38657800 0.00000300
C -3.67108600 -2.11856900 -0.00003800
H 0.0000000 -1.19112200 -0.00013600
H -2.06267800 2.57744400 0.00020900
H 2.06267900 2.57744400 0.00018800
H 3.38422900 - 3.16893000 - 0.00013800
H 4.25157000 -1.88206600 -0.89423000
H 4.25157200 -1.88218000 0.89411300
H -3.38423100 -3.16893000 -0.00011100
H -4.25156100 -1.88218300 0.89415700
H -4.25158400 -1.88206200 -0.89418500
```

MeO_oC ĊO₂Me

01

C 4.28436500 0.58253300 -1.18362900 C 5.13433700 -0.31630200 -0.28069500 C 4.44853800 -1.66410600 -0.03681100 C 3.03535300 -1.47950900 0.52745300 C 2.21169500 -0.59081100 -0.39194600 C 2.87238300 0.76503300 -0.61662200 O 0.92408000 -0.40517300 0.24186700 C -0.12206200 -0.13250700 -0.52765100 C -1.39158200 0.15329400 0.28770400 O -0.09371300 -0.09844200 -1.74320200 C -2.50308200 -0.80902500 -0.10653600 C -3.59704800 -0.40933100 -0.78833500 N -3.81524200 0.89960100 -1.11414100 C -2.97096000 1.87201700 -0.65740800 C -1.84786600 1.58492700 0.03380400 C -2.40294600 -2.24070000 0.21552800 C -1.03897200 2.72408600 0.49560600 O 0.04343300 2.31593200 1.16999100

O -1.29248300 3.90247200 0.29833100 C 0.94369600 3.33041800 1.62383100 O -3.23855800 -3.09042900 -0.05163500 O -1.25674700 -2.52263700 0.84951000 C -1.03601000 -3.89198000 1.20257200 H 4.76016200 1.56122600 -1.30737900 H 4.21735200 0.13339900 -2.18396000 H 6.12309100 -0.47224000 -0.72635700 H 5.29316700 0.18730800 0.68299100 H 5.04129700 -2.27617100 0.65126800 H 4.39041200 -2.21713300 -0.98430700 H 2.53658800 -2.44706000 0.64728100 H 3.08956600 -1.00940500 1.51824500 H 2.04939500 -1.09144800 -1.35215900 H 2.25857300 1.37053200 -1.29107800 H 2.92243900 1.28900300 0.34675500 H -1.13061500 0.02072800 1.34105200 H -4.36319300 -1.11273200 -1.09181300 H -4.65703000 1.15900200 -1.60655900 H -3.26185100 2.89527800 -0.86309500 H 1.72296800 2.80393000 2.17365400 H 1.37535600 3.86436200 0.77367800 H 0.43029500 4.03635800 2.28077600 H -0.06718200 -3.91114200 1.70028300 H -1.81640900 -4.24390800 1.88137000 H -1.01481300 -4.51910600 0.30823700

 $\bigcirc^{\circ}]$

0 2 C -1.71638200 1.38531400 0.20979000 C -2.62598400 0.22954300 -0.21698800 C -2.08131000 -1.11432100 0.27579400 C -0.63854600 -1.33989600 -0.19272000 C 0.23638700 -0.17958400 0.24655700 C -0.27417500 1.16019500 -0.25975900 O 1.57760400 -0.43560700 -0.29878900 C 2.57675100 0.17057400 0.29258800 O 3.73380600 0.12634400 -0.00012700 H -2.08573800 2.33431900 -0.19198000 H -1.73158300 1.47537500 1.30437600 H -3.63972300 0.38737900 0.16691900 H -2.69687800 0.21101300 -1.31308400 H -2.71034800 -1.93703600 -0.07898600

S66

H -2.11402900 -1.13908400 1.37347800 H -0.24104300 -2.27710800 0.20972300 H -0.61059000 -1.40730800 -1.28788500 H 0.33243400 -0.16624000 1.33763000 H 0.38049300 1.96392900 0.09625600 H -0.23472500 1.15790500 -1.35668200

 $\left[\textup{response of the second second$

02

O 1.47178600 -0.92166900 -0.17420700 C 2.23810500 0.02631100 -0.14439700 O 3.27934600 0.46426700 -0.56443800 C -0.17998400 -0.65985200 1.02151900 C -1.17117400 -1.43151300 0.22906400 H 0.28351100 -1.18792600 1.85102500 C -0.92185700 1.52461200 -0.03165300 C -1.79378400 -0.64832600 -0.92862100 H -0.71544200 -2.37034000 -0.10749500 H -1.95800600 -1.72470600 0.94372500 C -2.16962100 0.76866300 -0.49115600 H-1.17272300 2.54277400 0.28113300 H -0.23562500 1.61523600 -0.88320600 H -1.07726200 -0.58977300 -1.75709900 H -2.67027200 -1.18866100 -1.29992500 H -2.64642600 1.30564100 -1.31787400 H -2.90226900 0.72107100 0.32677500 C -0.19772900 0.80708100 1.11443600 H -0.60644500 1.07912200 2.09774500 H 0.86815800 1.13491300 1.15920700

\bigcirc

02

C 0.04956700 -0.74956700 1.26377200 C 0.04956700 0.78863900 1.28590000 C 0.54675100 1.36652900 0.000000000 C 0.04956700 0.78863900 -1.28590000 C 0.04956700 -0.74956700 -1.26377200 C -0.62750000 -1.28757000 0.00000000 H -0.99021600 1.12570100 1.45919300 H 0.63485800 1.16205700 2.13349400 H 1.08655600 -1.10999700 1.29552300 H -0.45153900 -1.13390200 2.15954000 H -0.99021600 1.12570100 -1.45919300 H 0.63485800 1.16205700 -2.13349400 H -0.45153900 -1.13390200 -2.15954000 H 1.08655600 -1.10999700 -1.29552300 H -1.68568400 -0.98830900 0.00000000 H -0.60719100 -2.38353100 0.00000000 H 1.02844600 2.34150600 0.00000000

N 0.71623200 0.22365500 -0.33803700 C 1.62288200 -0.37907600 0.64870700 O 1.06852800 -1.68542000 0.84267600 C 0.17400500 -1.98693200 -0.12809200 C -0.08214400 -0.77792600 -0.91845500 C 0.51570300 1.56920000 -0.49497400 O 1.08442600 2.26147200 0.49820800 O -0.10719400 2.06727400 -1.41636200 C 1.05524600 3.68756000 0.36806400 C -1.02552200 -0.69777200 -1.88804900 O -0.30436500 -3.09360200 -0.23779000 C 3.09472200 -0.50982300 0.18810300 C 3.71149300 0.88131800 -0.00982100 C 3.85832900 -1.24305100 1.30101900 C 3.19019600 -1.29885900 -1.12386300 H 1.56131300 0.15463400 1.59893000 H 1.56261600 3.99799600 -0.54829000 H 0.02543300 4.05084400 0.36664000 H 1.58743900 4.06590200 1.23986100 H -1.11830500 0.18002000 -2.51102600 H -1.46898400 -1.63060000 -2.21561100 H 4.77381700 0.76806100 -0.24953300 H 3.24324100 1.42312100 -0.83770300 H 3.62899200 1.49314000 0.89369500 H 4.91776200 -1.31589700 1.03495700 H 3.47556100 -2.25654200 1.45115300 H 3.78662500 -0.70280000 2.25220100 H 2.80134000 -2.31706500 -1.02063400 H 2.65062400 -0.79873100 -1.93501900

```
H 4.24033300 -1.37790100 -1.42291400
C -3.23755900 -0.17934600 -1.07096900
C -3.64070200 -1.30826500 -0.16811200
C -3.22551000 1.21189800 -0.51107800
H -3.54944100 -0.26952000 -2.11064900
C -3.09924600 -1.17136300 1.26018700
H -3.34694500 -2.27080300 -0.60253600
H -4.74495100 -1.32362700 -0.11956800
C -2.68334800 1.28284200 0.92082400
H -2.66233500 1.88224100 -1.16886300
H -4.26638500 1.58387100 -0.50570200
C -3.33858700 0.23237300 1.81945100
H -2.02126700 -1.37251500 1.26583300
H -3.56287800 -1.92847600 1.90208200
H -2.83615100 2.29020100 1.32378100
H -1.60085600 1.10442200 0.91354600
H -2.94183400 0.30492100 2.83848200
H -4.41931100 0.42505900 1.88164000
```

N -0.91612900 0.22757900 0.01825700 C -2.04951300 -0.40875800 -0.68463400 O -1.57971200 -1.73412000 -0.90728300 C -0.46689900 -1.98077000 -0.14873600 C -0.03867700 -0.74777800 0.44889100 C -0.72433600 1.59519400 0.10689400 O -1.46043600 2.22870300 -0.80552800 O 0.01923900 2.13485200 0.90179800 C -1.48849800 3.65980300 -0.71114700 C 1.21145700 -0.56000200 1.22462800 O 0.01855400 -3.09590800 -0.07514300 C -3.36940100 -0.45150500 0.12779400 C -3.89805000 0.96688200 0.38159100 C -4.39168300 -1.21903900 -0.72452300 C -3.16466000 -1.16387200 1.47050700 H -2.20628500 0.06944000 -1.65347700 H -1.87191800 3.96774700 0.26417400 H -0.49000700 4.07211500 -0.86843700 H -2.16186000 3.98557200 -1.50241200

H 1.01904800 0.09745400 2.07751400 H 1.49148900 -1.54682800 1.61081700 H -4.88193400 0.89678200 0.85657900 H -3.25049700 1.53336900 1.05882700 H -4.00846400 1.53260400 -0.54846800 H -5.35467500 -1.24887000 -0.20478000 H -4.07142200 -2.24879000 -0.90611500 H -4.54662700 -0.72944600 -1.69298200 H -2.83431100 -2.19912500 1.34004600 H -2.43645500 -0.64029500 2.09922500 H -4.11430200 -1.18746500 2.01463800 C 2.39650400 0.00801000 0.41052400 C 3.60405700 0.21643500 1.33232100 C 2.77243200 -0.88576000 -0.77746600 H 2.09943600 0.99048700 0.01997500 C 4.81285900 0.76916700 0.57243500 H 3.87212900 -0.74810400 1.78885600 H 3.33064700 0.89220200 2.15194800 C 3.97904700 -0.33194700 -1.54100200 H 3.00594400 -1.89393000 -0.40588700 H 1.91886200 -0.99094300 -1.45828600 C 5.18073400 -0.12389700 -0.61550900 H 5.66707600 0.87071600 1.25174800 H 4.57656900 1.77805600 0.20588100 H 4.24335000 -1.00839500 -2.36190800 H 3.70562900 0.62996400 -1.99763900 H 6.01828300 0.31160500 -1.17273200 H 5.51981300 -1.10017200 -0.24106100

01

N -0.84741600 0.26438200 0.41579000 C -1.65288000 -0.36399200 -0.62960400 O -1.17364400 -1.71760600 -0.63273200 C -0.44708400 -1.99270600 0.46149900 C -0.63136800 1.60078200 0.53944300 O -0.98217400 2.25908700 -0.57507500 O -0.16275400 2.13567000 1.53238500 C -0.95756000 3.68781900 -0.49804500 C 1.27906300 -0.50288500 1.58714500

O -0.06290100 -3.10631500 0.71697300 C -3.18157000 -0.37553600 -0.38510700 C -3.73424800 1.05546300 -0.43181200 C -3.82458300 -1.19552000 -1.51393600 C -3.51331600 -1.00088200 0.97582000 H -1.42406400 0.06727500 -1.60700400 H -1.61751700 4.04143100 0.29778100 H 0.05907200 4.04698400 -0.32456300 H -1.31852700 4.03438900 -1.46575900 H 1.33358100 0.22789700 2.39734500 H 1.64854900 -1.45479100 1.98837000 H -4.82559000 1.01776900 -0.35146700 H -3.36457000 1.66596000 0.39777600 H -3.47860900 1.55841800 -1.36951700 H -4.91395000 -1.18035500 -1.40653900 H -3.49620400 -2.23847700 -1.49265500 H -3.57805900 -0.77715600 -2.49680400 H -3.16824300 -2.03761100 1.04959000 H -3.07581100 -0.42486900 1.79826400 H -4.59863100 -1.00818600 1.11832500 C 2.18964500 -0.03632200 0.44457500 C 3.58726500 0.26127200 1.00979700 C 2.29002900 -1.02587900 -0.72477600 H 1.79687700 0.90947600 0.04484300 C 4.55722700 0.75099200 -0.06774000 H 3.98678500 -0.65653300 1.46635900 H 3.50701900 1.00591000 1.81111900 C 3.26181200 -0.53712900 -1.80392700 H 2.62528900 -2.00047400 -0.34215300 H 1.30823200 -1.18455200 -1.18380800 C 4.64800900 -0.24408200 -1.22680600 H 5.54801700 0.91898100 0.36995700 H 4.21022100 1.72100100 -0.45101900 H 3.33134600 -1.28237900 -2.60452700 H 2.86009000 0.38001200 -2.25787300 H 5.31133600 0.14191500 -2.00951300 H 5.09349900 -1.18118500 -0.86396800 C -0.20867100 -0.72777500 1.26806400 H -0.74706400 -0.84992300 2.21694800

10. References

1. Wei, Y.; Ben-Zvi, B.; Diao, T. Diastereoselective Synthesis of Aryl *C*-Glycosides from Glycosyl Esters via C-O Bond Homolysis. *Angew. Chem. Int. Ed.* **2021**, *60* (17), 9433-9438.

2. Petracca, R.; Bowen, K. A.; Mcsweeney, L.; O'Flaherty, S.; Genna, V.; Twamley, B.; Devocelle, M.; Scanlan, E. M. Chemoselective Synthesis of *N*-Terminal Cysteinyl Thioesters *via* β , γ -*C*,*S* Thiol-Michael Addition. *Org. Lett.* **2019**, *21* (9), 3281-3285.

3. Sim, J.; Campbell, M. W.; Molander, G. A. Synthesis of α-Fluoro-α-amino Acid Derivatives *via* Photoredox-Catalyzed Carbofluorination. *ACS Catal.* **2019**, *9* (2), 1558-1563.

4. Ji, P.; Zhang, Y.; Dong, Y.; Huang, H.; Wei, Y.; Wang, W. Synthesis of Enantioenriched α -Deuterated α -Amino Acids Enabled by an Organophotocatalytic Radical Approach. *Org. Lett.* **2020**, *22* (4), 1557-1562.

5. Wei, Y.; Lam, J.; Diao, T. Synthesis of *C*-Acyl Furanosides *via* the Cross-Coupling of Glycosyl Esters with Carboxylic Acids. *Chem. Sci.* **2021**, *12* (34), 11414-11419.

6. Nugent, W. A.; Feaster, J. E. Practical Synthesis of Methyl Z-2-(*N*-Acetylamino) but-2-Enoate. An Intermediate to *D*- and *L*-2-Aminobutyric Acid. *Synth. Commun.* **1998**, *28* (9), 1617-1623.

7. Chang, M.-Y.; Chen, S.-T.; Chang, N.-C. A Synthesis of Racemic Thalidomide. *Synth. Commun.* **2003**, *33* (8), 1375-1382.

8. Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F. Rh^{III}-Catalyzed Oxidative Olefination of Vinylic C–H Bonds: Efficient and Selective Access to Di-unsaturated α -Amino Acid Derivatives and Other Linear 1,3-Butadienes. *Chem. Eur. J.* **2011**, *17* (26), 7167-7171.

9. Gonzalez, C.; Kavoosi, S.; Sanchez, A.; Wnuk, S. F. Reduction of Sugar Lactones to Hemiacetals with Lithium Triethylborohydride. *Carbohydr. Res.* **2016**, *432*, 17-22.

10. Verdaguer, X.; Hansen, M. C.; Berk, S. C.; Buchwald, S. L. Titanocene-Catalyzed Reduction of Lactones to Lactols. *J. Org. Chem.* **1997**, *62* (24), 8522-8528.

11. Yu, C.-S.; Wang, H.-Y.; Chiang, L.-W.; Pei, K. Synthesis of the Rhamnosyl Trisaccharide Repeating Unit To Mimic the Antigen Determinant of Pseudomonas syringae Lipopolysaccharide. *Synthesis* **2007**, *2007* (09), 1412-1420.

12. Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Iterative One-Pot Synthesis of Oligosaccharides. *Angew. Chem. Int. Ed.* **2004**, *43* (39), 5221-5224.

13. Yin, Z.-J.; Wang, B.; Li, Y.-B.; Meng, X.-B.; Li, Z.-J. Highly Efficient and Mild Method for Regioselective De-*O*-benzylation of Saccharides by Co₂(CO)₈-Et₃SiH-CO Reagent System. *Org. Lett.* **2010**, *12* (3), 536-539.

14. Dasgupta, S.; Rajput, V. K.; Roy, B.; Mukhopadhyay, B. Lanthanum Trifluoromethane-sulfonate-Catalyzed Facile Synthesis of Per-*O*-acetylated Sugars and Their One-Pot Conversion to *S*-Aryl and *O*-Alkyl/Aryl Glycosides. *J. Carbohydr. Chem.* **2007**, *26* (2), 91-106.

15. Furukawa, T.; Akutagawa, T.; Funatani, H.; Uchida, T.; Hotta, Y.; Niwa, M.; Takaya, Y. Cyclic Dipeptides Exhibit Potency for Scavenging Radicals. *Bioorg. Med. Chem.* **2012**, *20* (6), 2002-2009.

16. Sakurai, M.; Sugano, M.; Handa, H.; Komai, T.; Yagi, R.; Nishigaki, T.; Yabe, Y. Studies of HIV-1 Protease Inhibitors. I.Incorporation of a Reduced Peptide, Simple Aminoalcohol, and Statine Analog at the Scissile Site Substrate Sequences. *Chemical & Pharmaceutical Bulletin* **1993**, *41* (8), 1369-1377.

17. Katritzky, A.; Bol'Shakov, O.; Lebedyeva, I. 17α-Ethynylestradiol Peptide Labeling by 'Click' Chemistry. *Synthesis* **2012**, *44* (18), 2926-2932.
18. Yin, H.; Zheng, M.; Chen, H.; Wang, S.; Zhou, Q.; Zhang, Q.; Wang, P. Stereoselective and Divergent Construction of β-Thiolated/Selenolated Amino Acids via Photoredox-Catalyzed Asymmetric Giese Reaction. *J. Am. Chem. Soc.* **2020**, *142* (33), 14201-14209.

19. Jiang, Y.; Wang, Q.; Zhang, X.; Koh, M. J. Synthesis of *C*-glycosides by Ti-Catalyzed Stereoselective Glycosyl Radical Functionalization. *Chem* **2021**, *7* (12), 3377-3392.

20. Gaussian 09, R. B., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

21. Gaussian 16, R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

22. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113* (18), 6378-6396.

11. Copies of 1D and 2D NMR spectra

000000000000000000000000000000000000000	NOVOU4-000001	$OOOOO \leftarrow OOOOOA + OO$	4000000004004004
$\cdots \\ \cdots \\$		44000000000	<u>ೲೲೲ೦ೲೲೲೲೲೲೲೲ</u> 4ოოთ
レフフフフフフフフラフラのの44	4 4 4 4 4 4 4 4 4 4 4 4 4	4444444444	w w w w v v v v v v v v

19a (¹H NMR, 400MHz, CDCl₃)

—172.22	—155.79	∠135.69 ∠128.76 ∠128.72	112.89 109.27	96.43	85.09 80.70 80.55 80.55 80.49 77.16 73.40 68.39 67.10	53.99	37.17 33.85 27.02 26.21 24.93 24.93
---------	---------	-------------------------------	------------------	-------	---	-------	--

19a (¹³C NMR, 101MHz, CDCl₃)

19a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

0000044400000V	0 い 0 0 0 4 4 7 7 7 7 0 0 0 0 1	~70055442070430	N-000/04/00/04/00/00/00/00/00/00/00/00/00/
00000000000000	0 U 4 4 4 4 4 4 0 0 0 0	, u u u - u u u u u u u u u u u u u u u	0000400000040000
$\dot{\alpha}$		ィアアアアアアアちちょう	4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0

19b (¹H NMR, 400MHz, CDCl₃)

10801100011080	<u> </u>	004408708770	4400000000000000
4 α	こうちょう ちょう ちょう ひんり ひんり ひんり ひんり ちょう ちょう ひんりょう ちょう ひんり ひんしょう ひんり	00000000000000	000000000400000
ファット・ファット・ファック	* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4444000000000	$\langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \rangle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle $

19c (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

19e (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

19g (¹³C NMR, 101MHz, CDCl₃)

19h (¹H NMR, 400MHz, CDCl₃)

 \odot =

t-Bu

19i (¹H NMR, 400MHz, CDCl₃)

19i (¹³C NMR, 101MHz, CDCl₃)

19k (¹H NMR, 400MHz, CDCl₃)

19k (¹³C NMR, 101MHz, CDCl₃)

f1 (ppm)

0000000000000	0 7 10 0 7 00 7 00	- 2002002000	04-0000400000400
ຓຓຓຓຓຓຓຓຓຏ	200	000000	444400-000000000
スプスプスプスプスプレ		.	
		<u> </u>	

19I (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

f1 (ppm)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

19m (¹H NMR, 400MHz, CDCl₃)

000077000770	4 2 0 8 5 4 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 9 7	440000000040-0	84-00-0-00000-0940-0040
\circ	1000077700001		444077000000000000000000000000000000000
~~~~~~~~~~~	<u> </u>	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**19n** (¹H NMR, 400MHz, CDCl₃)






















87799999948874	- 0 0 0 0 0 0 0 0 0	94-020-020	400000000407	00400-000004000vu
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 10 10 10 10 10 10 10 10 10 10 10 10 10	· ∞ - ∞ ∞ ∽ ∽ ∽ ∞	UU444000000	$\nabla$
ファット・ファット・ファット	2222-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	0044444444	4444444	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

19p (¹H NMR, 400MHz, CDCl₃)

333333333333333333333333333333333333	522 522 522 525 525 525 525 525 525 525
ちららうとうとうとう	44444666666666666666666666666666666666

19q (¹H NMR, 400MHz, CDCl₃)

19r (¹H NMR, 400MHz, CDCl₃)

19s (¹H NMR, 400MHz, CDCl₃)

19s

19t (¹H NMR, 400MHz, CDCl₃)

19u (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

19v (¹H NMR, 400MHz, CDCl₃)

19w (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

19x (¹H NMR, 400MHz, CDCl₃)

- ※ 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5	$\omega \neg \omega \omega \neg \omega$
0 0 0 0 0 0 0 0 0 0 0 0 0 0	\u03b3
	7 7 6 6 9 9

19x (¹³C NMR, 101MHz, CDCl₃)

19y (¹H NMR, 400MHz, CDCl₃)

19y

19z (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

19aa (¹H NMR, 400MHz, CDCl₃)

19aa, major

-10

f1 (ppm) **\$206** 190

21a (¹H NMR, 400MHz, CDCl₃)

0 0	04	0 M 8 N
40	– o	∞
$\overline{-}$	oi ←	<u>2 2 0 0 0 4 4 6 0 0 0 0 7 4 4 6 0 0 0 0 7 4 7 0 7 7 7 0 0 0 0 0 0 0 0 0</u>
フフ	2 Ci Ci	7+000000000000000000000000000000000000
	$\overline{}$	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>
\searrow	\searrow	

f1 (ppm)

987997000797984	9799779997799797979797979797979797979797	- 0 0 1 - 7 3 3 2 4 7 0 0 - 6 8 8 7 7 8 8 7 7 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000
2777777059944	440000000000000000000000000000000000000	ာဝတတတတတတတထထ	ママシウタイト・トームタのうろ
V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$[\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,\phi,$

21b (¹H NMR, 400MHz, CDCl₃)

∠173.52 ∠173.09 ₹170.37	$ \begin{bmatrix} 112.87 \\ 112.82 \\ 85.22 \\ 825.22 \\ 80.56 \\ 80.56 \\ 80.56 \\ 80.56 \\ 80.56 \\ 80.56 \\ 80.51 \\ 80.56 \\ 80.51 \\ 80.55 \\ 77.26 \\ 81.85 \\ 77.3.58 \\ 66.48 \\ 77.3.58 \\ 66.48 \\ 77.3.58 \\ 77.3$
21b (¹³ C NMR, 101MHz, CDCl ₃)	
MeO ₂ C N Ac	
°∕∕ 21b	
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	and a frequencies and the second of the seco

f1 (ppm)

21c (¹H NMR, 400MHz, CDCl₃)

21c (¹³ C NMR, 101MHz, $\overset{MeO_2C}{\rightarrow} $	CDCl ³)	<pre>134.41 134.41 132.09 131.99 -123.79 142.00</pre>	112.87 109.50 85.93 85.32 85.32 83.03 80.70	80.68 80.61 80.32 80.21 80.21 73.37 66.98 66.98	49.95 48.88 29.80 28.85 7.22	26.85 26.26 25.49 25.35 24.50 24.50	
210							
Ϸ····;ϼϒͰϪϒϟϪϧϙͼϒͷϥϯϲͻϪϗϭϤϲϒϤϷϤϨϤϗϐϤϤϪϤϳϟʹ·ͷϳϯϢͳϔϹͷϒϳͺʹϸϒ·ͷϥϯϐͶʹϙϤʹϧͷϤϲϽϷϤϲϥʹʹϴ·ʹϪϳϐϤϷͷϭ϶ϲ·ϧϼʹϷϤ	nymaal vy fytakito enaatt niise Perint Mederlook yn oert perint Perint Perint Perint Perint Perint Perint Perint	יריייייונועל אינט אינר אינר אינר אינר אינר אינר אינר אינר	10),2-1,2-1,3 ¹ 4,3 ¹ 4,4 ¹ 4,		ng hey shall be the game of the second se		cVittonframen/Afridanterationstation(Lanffratureno
210 SQQ1 190 180	170 160 150 14	40 130 13	20 110 100 90 f1 (ppm)	0 80 70 60	50 40	30 20 10	0 -10

21d (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

21f (¹H NMR, 400MHz, CDCl₃)

00000-004004004400	こううらちゅうこう - つうちゅうらう - らうろう - ろうろう - ろうろ - ろうろ - ろうろう - ろうろう - ろうろう - ろう - ろ - ろ	0
0040170000000	i i i i i i i i i i	, o o o o o o o o o o o o o o o o o o o
V 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	i 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 -	

21m (¹H NMR, 400MHz, CDCl₃)

f1 (ppm)

f1 (ppm)

f1 (ppm)

210 (¹H NMR, 400MHz, CDCl₃)

T

17e (¹H NMR, 400MHz, CDCl₃)

 172.32 167.02 	√146.33 √146.12 −138.12	128.47 127.77 127.63	-113.00	102.59 98.09 97.65 86.15 86.15 77.16 77.16 77.16 77.16 77.16 77.16 77.16 77.16 70.26 60.18 60.18 60.11	-40.39	26.50 25.10 19.21 19.19 14.52
1 Υ	r I	٦r		רר והד ורר א	1	ר ור r

17e (¹³C NMR, 101MHz, CDCl₃)

17p (¹H NMR, 400MHz, CDCl₃)

17q (¹H NMR, 400MHz, CDCl₃)

Т

4	0	らて	- 1	. 00	\sim	-	s o	9 r	t (\mathcal{O} \prec	t 0	o c	n (οc	2 5	7 7	- c	1 C	< L	n c	1 0	~ c	ЪЦ	ດ ເ	D (oц	<u>ט</u> (2 2	ŝ		Q																		
Ó	<u> </u>	С	2	0	4	\sim	ŝ	∩ ¬	- c	⊃ °	ÓЦ	ດ ເ	ກເ	ກດ	סת	ÔΟ	νr	<u> </u>	0	οc	rο	⊃ ¬	t (ກຕ	っっ	V 0.	ット	- 1-	യ	ဖ	2	9	ŝ	∞ (o ¬	7 7	- ∞	N I	ဖ	4	8	ററ	ז ת	トレ	- LO	З	0	∞ (ວ
ര	ц С I	ດ່α	်ထ	တ်	~	ц С I	ഗ് റ	ന്റ	ဂ်ဂ	ກ່ ເ	vi 4	- c		ກ່ເ	ກ່ເ	ກ່ເ	ກ່ເ	ກ່ ເ	ກ່ ເ	ກ່ວ	ກ່ວ	ກ່ວ	ċο	ώα	óα	o r	- ト	- ~	~	∼	. .	<u> </u>	<u> </u>	4 -	<u> </u>	οσ	\sim	∞	4	പ	\sim	۱ o	~ r	~ «	νi	õ	<u>∼</u> '	<u> </u>	ς.
Ō	Ú	¢ م	ဂ်က)	ŝ	()	ς Ω (ο c	ÓĊ	n c	ົດ	າ ຕ	ο c	V C	V C	NC	NC	N C	N C	V C	V C	V C	ЛV	ŃС	νC	ν n	10	V N	N I	N	0	6		<u> </u>	~ (ъс	с С	4	4	\mathfrak{c}	2	\sim		- σ	ായ	N	ω·	, (ວ
	<u> </u>			· ~		$\overline{}$	~ '	~ ~					- 7																~ ~	<u>_</u>		∞	ıα	<u>~ r</u>	~ r	トレ	- 1	~	\sim	\sim	\sim	<u>~ r</u>	<u> </u>	<u> </u>	ט כ	ဖ	2	N 1	-
	L	L I													5	1/		1			_					I															_	_							_

17sd (¹³C NMR, 101MHz, CDCl₃)

TBDPSO-BnO BzO BzO BZO BRO

210 2004 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

17s (¹H NMR, 400MHz, CDCl₃)

17s (¹³C NMR, 101MHz, CDCl₃)

17tb (¹H NMR, 400MHz, CDCl₃)

17t (¹H NMR, 400MHz, CDCl₃)

のアラアの24150014000100014	0 - 0 - 0 0 0 0 + 0	
0007070707070774400000	00/00/00/04/40/00/00/00/04/00/04/00/00/0	80 / Q 0 / A 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
ベアビンのおおおおおおおおおおおおお	8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$i \circ \lor \circ 4 \lor \lor \lor 4 \circ \circ \circ \circ \circ 4 4$
<u> </u>	000000000000000000000000000000000000000	0000004400000004
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		・

17t (¹³C NMR, 101MHz, CDCl₃)



180 170 160 150 140 110 100 f1 (ppm)  $390_0$  190 -10





17ud (¹³C NMR, 101MHz, CDCl₃)

Aco Aco Bno Bno

17ud

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



**17u** (¹H NMR, 400MHz, CDCl₃)









**17wd** (¹H NMR, 400MHz, DMSO-*d*₆)

Aco Aco Aco Bzo OBz OBz

17wd











**17w** (¹H NMR, 400MHz, CDCl₃)



17w, major  $\alpha$ 











**17y** (¹H NMR, 400MHz, CDCl₃)









**17z** (¹³C NMR, 101MHz, CDCl₃)









—172.93 —167.39	<ul><li>&lt;146.09</li><li>&lt;145.94</li></ul>	<ul><li><a>68.29</a></li><li><a>98.20</a></li><li><a>92.62</a></li></ul>	77.48 77.16 76.84	~60.13	40.46	29.07 25.09 19.10 14.48
30a ( ¹³ C NMR, 101MHz, CDCl ₃ ) EtOOC + NH O + OCOEt O = 0 OOEt OOOEt OOOEt						
սինանուներ, մեւցունը, հայ հետ հետր, հայ	ฟอสามุตลาดสี่งหรูรส นี่อยุรางกุญภาพในรายุไฟฟูชาติไดยตัวรายุสามุปรียากูปไปสุขารไปสู่สามุตรีหนูปรายุสามุปรายุศา	fred.t.tergenindigturf uterenenenen ent verves Agounger	Քերոնինիգ,վելությե ^{ց՝} Ալլելչ,չրեվ (ԽուՓգո	ղութուիչ Մա ¹ Կ.Ո. ¹ Ա. դ. ու դ. ու դ. (ծեղել Վանու Ա. Այն Ա. թ. ա	าะประการในบบเหตุ	
200 _S ³ 90 180 170 160	150 140 130 120 110	100 90 f1 (ppm)	80 70	60 50	40	



က N

$\begin{array}{c} 01 & 87 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	 —98.44	77.48 77.16 76.84 72.77	 40.84	- 31.40 - 25.46 - 23.33 - 18.89 - 14.47
	unita da la como una secona que se		 	

210 2992 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)




**20f** (¹³C NMR, 101MHz, CDCl₃)













**20j** (¹H NMR, 400MHz, CDCl₃)





73502292331731735233233333333333333333333333333	20	50	85 84 83 83 83 83	72 79 79 79 79	45
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Ö	Ú.	4444	$\phi$	<u> </u>

20k (¹H NMR, 400MHz, CDCl₃)

Ο Н (Boc)₂N ОМе ö SBn

20k





## **20k** (¹³C NMR, 101MHz, CDCl₃)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)







**20n** (¹H NMR, 400MHz, CDCl₃)

















<b>23</b> ( ¹³ C NMR, 101MHz,	CDCl ³ )	—160.18		~131.44 ~129.52				77.48 77.48 77.16 76.84		52.21		~24.37 ~22.33			
Ac C	<b>\</b>														
210 <b>§9344</b> 190 180	170	160	150 140	130	120	110 100 f1 (ppm)	90 90	80 70	60	50	40	30 20	10	0	-10



**22b** (¹H NMR, 400MHz, CDCl₃)











	し る ら ら み み ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	0-1-00-00-0-C-C	<i>N</i> / M 20 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<b>4</b>	<u>/</u>	000000 <u>0</u> 0000	v $v$ $v$ $d$
000444444444444	1 4 4 4 4 4 4 4 4 4 4 4 4 4 6 0 0	$\dot{\mathbf{n}}$	

**24** (¹H NMR, 400MHz, DMSO-*d*6)













00070000	, JO & L L O 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 0 0 4 0 7 7 7 7 0 0 0 0 0 0 7 7 7 7
00000000	<u>N</u>	$D \otimes B \otimes B \otimes D \cap D \cap D \cap D \cap D \otimes B \otimes B \otimes D \cap D$
0044444444	4 4 4 4 4 4 4 4 4 6 6 6 6 6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

**24** (¹H NMR, 500MHz, DMSO-*d*6, 85°C)





**25** (¹H NMR, 400MHz, CDCl₃)



25











f1 (ppm)


0.5

0.0 -0.5 -1.0

ക S 5.0 f1 (ppm) 11.0 10.5**S360**.0 9.5 2.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 3.5 3.0 2.5 1.5 1.0 5.5 4.0







fl (ppm)















**31a** (¹H NMR, 400MHz, CDCl₃)



31a



