Sequence-Controlled Alternating Block Poly(3-hexylchalcogenophenes): Synthesis, Structural Characterization, Molecular Properties, and Transistors for Bromine Detection

Kuo-Hsiu Huang^a, Huai-Hsuan Liu^a, Kuang-Yi Cheng^a, Chia-Lin Tsai^a and Yen-Ju Cheng^{*ab}

^aDepartment of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan

^bCenter for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan

E-mail: $vjcheng@nycu.edu.tw$

Experimental Details

General measurement and characterization. UV data were collected by the HITACHI U-4100 spectrophotometer. The electrochemical cyclic voltammetry (CV) was conducted on a CH Instruments Model 611D. A carbon glass coated with a thin polymer film was used as the working electrode and Ag/Ag^+ electrode as the reference electrode, while 0.1 M tetrabutylammonium hexafluorophosphate (Bu_4NPF_6) in acetonitrile was the electrolyte. CV curves were calibrated using ferrocene as the standard, whose HOMO is set at −4.8 eV with respect to zero vacuum level. The HOMO energy levels were obtained from the equation $HOMO = - (E_{ox}^{\text{onset}} - E_{\text{(ferrocene)}}^{\text{onset}} +$ 4.8) eV. The LUMO levels were obtained from the equation LUMO = $-(E_{\text{red}}^{\text{onset}} - E_{\text{(ferrocene)}}^{\text{onset}} +$ 4.8) eV. High resolution mass spectra (HRMS) were obtained on a JEOL AccuTOF GCX (EI). Polymer molecular weights were determined with HLC-8321GPC/HT (1,2,4-trichlorobenzene, 140 °C, 1 mL/min flow rate) using Tosoh Bioscience LLC TSKgel GMHHR-HHT2 mixed-bed columns and narrow molecular weight distribution polystyrene standards. H - and H ¹³C-NMR spectra were measured using Varian 600 MHz instrument spectrometer and obtained in deuterated chloroform $(CDCl₃)$ with 0.5 wt% TMS as internal reference unless otherwise stated, and chemical shifts (δ) are reported in parts per million. GIWAXS measurements were performed at the BL23A end-station of the National Synchrotron Radiation Research Center (NSRRC), Taiwan.

Films fabrication for GIWAXS. The wafers with thermal grown 300 nm SiO₂ were ultrasonically cleaned in sequential detergent, water, acetone, isopropyl alcohol and dried under nitrogen purging, followed by UV/Ozone treatment for 20 min. The polychalcogenophene thin films were prepared by spin-coating of 20 mg/mL *o*-DCB solutions on 1.4 × 1.4 cm silicon wafers under a dry nitrogen environment in a glovebox. The post-annealing for films of polychalcogenophenes was carried out in the glovebox to prevent further oxidation.

OFET fabrication. A n-type heavily doped Si wafer with a $SiO₂$ layer of 300 nm and a capacitance of 11.5 nF cm−2 as the gate electrode and dielectric layer was ultrasonically cleaned sequentially in detergent, water and isopropyl alcohol. *n*-Octadecyltrichlorosilane (ODTS) was used as a selfassembled monolayer. The polychalcogenophene samples were prepared from 20 mg/mL solutions in chloroform and were spin-coated on ODTS-treated silicon wafers. The gold source and drain electrodes (40 nm in thickness) were then deposited on the organic layer by vacuum evaporation through a shadow mask, affording a bottom-gate, top-contact device configuration. OFET measurement was carried out at room temperature under a nitrogen atmosphere using an Agilent Technologies B1500A instrument. The mobility calculation was based on the equation I_{DS} = $(W/2L)\mu C_i(V_g - V_t)^2$ in the saturation regime, where I_{DS} is the drain–source current, W is the channel width (1 mm), *L* is the channel length (100 μ m), μ is the field-effect mobility, C_i is the capacitance per unit area of the dielectric layer, V_g is the gate voltage, and V_t is the threshold voltage.

Figure S1. ¹³C-NMR spectra of **P(SSe)***b***(STe)**, **P(SSe)***b***(SeTe) and P(STe)***b***(SeTe)** in *d*chloroform at temperature of 50 °C. 16 peaks in the aromatic region are observed for each polymer.

Figure S2. ¹H NMR spectra of (a) **STePh**₂, (b) **STePh**₂ with 0.5 eq. of Br₂ and (c) **STePh**₂ with 1 eq. of Br₂ in *d*-chloroform.

Figure S3. Mass spectra of (a) **STePh²** and (b) **STePh2Br²** showing the molecular weight of 584 and 742 m/z, respectively.

Figure S4. The I_{DS}/V_{GS} curves of the **PSTe**-based OFETs ($V_{DS} = -80$ V) before and after exposure to different concentration of Br₂.

Figure S5. The I_{DS}/V_{GS} curves of the **PSTe**-based OFETs ($V_{DS} = -80$ V) before and after exposure to different organic solvent vapors for 30 seconds (a) acetone, (b) chloroform, (c) THF, (d) methanol, (e) ethanol, and (f) dichloromethane.

Figure S6. Thermogravimetric analysis of **PSTe** ($T_d = 382$ °C) and **PSTeBr**₂ (first $T_d = 150$ °C, second *T*_d = 382 °C) at a ramping rate of 10 °C min⁻¹. **PSTeBr**₂ shows a 27% weight loss at 150 $\rm{^{\circ}C}$, which is attributed to Br₂ elimination.

Figure S7. UV-vis absorption spectra of the **PSTe** and brominated **PSTeBr²** thin films. After thermal annealing at 150 °C for 10 min, **PSTeBr²** returns back to the original profile of **PSTe**.

Figure S8. The I_{DS}/V_{GS} curves of the **P(SSe)***b*(STe), **P(SSe)***b*(STe), and **P(STe)***b*(SeTe)-based OFETs (V_{DS} = −80 V) before and after exposure to Br₂ of 4 ppm.

Synthetic Procedures

All chemicals were purchased from Aldrich, Acros or TCI and used as received unless specified. ¹H- and ¹³C-NMR spectra were obtained in deuterium-substituted chloroform by Varian 600 MHz spectrometers and 0.5 wt% TMS also used as reference. Compound **SSeI2**, compound **STeI2**, and compound **SeTeI²** were synthesized as reported.

Synthesis of poly(3-hexylthiophene-*alt***-3-hexylselenophene-***block***-3-hexylthiophene-***alt***-3 hexyltellurophene) (P(SSe)***b***(STe)).** To a solution of 1.3 M isopropylmagnesium chloride lithium chloride complex (60.8 μ L, 0.079 mmol) diluted by dried THF (3 mL) was added dropwise a solution of **SSeI²** (50 mg, 0.079 mmol) in dried THF (1 mL) in a glovebox. After Grignard metathesis was completed (monitored by thin layer chromatography), [1,3 bis(diphenylphosphino)propane]dichloronickel(II) (0.85 mg, 0.00158 mmol) was added. The reaction was stirred at room temperature for 30 min to form the first block polymer. At the same time, **STeI²** (53.9 mg, 0.079 mmol in 4 mL THF) was treated with 1.3 M isopropylmagnesium chloride lithium chloride complex (60.8 µL, 0.079 mmol). The **MgSTeI**₂ solution was transferred to the above solution for the second block polymerization. The reaction was continued for another 2 h. After the solution was precipitated with 6 M HCl/MeOH solution and washed with methanol, a deep purple solid $P(SSe)b(STe)$ was yielded. ¹H-NMR (600 MHz, CDCl₃, δ ppm): 7.65 (s, 1H), 7.19 (s, 1H), 6.93 (s, 1H), 6.83 (s, 1H), 2.78 (br, 6H), 2.67 (br, 2H), 1.70-1.71 (br, 8H), 1.25-1.44 (br, 24H), 0.92 (br, 12H). ¹³C-NMR (CDCl3, 150 MHz, *δ* ppm): 148.3, 141.8, 140.0, 139.92, 139.88, 139.78, 139.4, 138.2, 137.8, 136.0, 135.4, 133.4, 133.1, 131.8, 129.7, 129.4, 32.6, 31.9, 31.0, 30.83, 30.76, 29.8, 29.6, 29.5, 29.1, 22.8, 14.2.

Synthesis of poly(3-hexylthiophene-*alt***-3-hexylselenophene-***block***-3-hexylselenophene-***alt***-3 hexyltellurophene) (P(SSe)***b***(SeTe)).** To a solution of 1.3 M isopropylmagnesium chloride lithium chloride complex $(60.8 \mu L, 0.079 \text{ mmol})$ diluted by dried THF (3 mL) was added dropwise a solution of **SSeI²** (50 mg, 0.079 mmol) in dried THF (1 mL) in a glovebox. After Grignard metathesis was completed (monitored by thin layer chromatography), [1,3 bis(diphenylphosphino)propane]dichloronickel(II) (0.85 mg, 0.00158 mmol) was added. The reaction was stirred at room temperature for 30 min to form the first block polymer. At the same time, **SeTeI²** (57.6 mg, 0.079 mmol in 4 mL THF) was treated with and 1.3 M isopropylmagnesium chloride lithium chloride complex (60.8 µL, 0.079 mmol). The MgSeTeI₂ solution was transferred to the above solution for the second block polymerization. The reaction was continued for another 2 h. After the solution was precipitated with 6 M HCl/MeOH solution and washed with methanol, a deep purple solid **P(SSe)***b*(SeTe) was yielded. ¹H-NMR (600 MHz, CDCl₃, δ ppm): 7.57 (s, 1H), 7.18 (s, 1H), 7.00 (s, 1H), 6.92 (s, 1H), 2.75 (br, 4H), 2.51-2.68 (br, 4H), 1.68-1.75 (br, 8H), 1.25- 1.43 (br, 24H), 0.91 (br, 12H). ¹³C-NMR (CDCl3, 150 MHz, *δ* ppm): 147.9, 144.0, 143.1, 141.8, 140.9, 140.6, 140.4, 140.0, 138.1, 134.9, 133.4, 133.2, 133.1, 131.8, 129.5, 129.4, 32.6, 31.9, 31.0, 30.83, 30.76, 29.8, 29.6, 29.5, 29.1, 22.8, 14.2.

Synthesis of poly(3-hexylthiophene-*alt***-3-hexyltellurophene-***block***-3-hexylselenophene-***alt***-3 hexyltellurophene) (P(STe)***b(***SeTe)).** To a solution of 1.3 M isopropylmagnesium chloride lithium chloride complex $(60.8 \mu L, 0.079 \text{ mmol})$ diluted by dried THF (3 mL) was added dropwise a solution of **STeI²** (53.9 mg, 0.079 mmol) in dried THF (1 mL) in a glovebox. After Grignard

metathesis was completed (monitored by thin layer chromatography), [1,3 bis(diphenylphosphino)propane]dichloronickel(II) (0.85 mg, 0.00158 mmol) was added. The reaction was stirred at room temperature for 30 min to form the first block. At the same time, **SeTeI²** (57.6 mg, 0.079 mmol) was treated with THF (4 mL) and 1.3 M isopropylmagnesium chloride lithium chloride complex (60.8 µL, 0.079 mmol). The MgSeTeI₂ solution was transferred to the above solution for the second block polymerization. The reaction was continued for another 2 h. After solution was precipitated with 6 M HCl/MeOH solution and washed with methanol, a deep purple solid **P(STe)***b*(SeTe) was yielded. ¹H-NMR (600 MHz, CDCl₃, δ ppm): 7.64 (s, 1H), 7.57 (s, 1H), 7.00 (s, 1H), 6.82 (s, 1H), 2.77-2.78 (br, 4H), 2.65-2.68 (br, 4H), 1.69 (br, 8H), 1.35- 1.48 (br, 24H), 0.91-0.92 (br, 12H). ¹³C-NMR (CDCl3, 150 MHz, *δ* ppm): 148.3, 147.8, 144.0, 143.1, 140.9, 140.6, 139.9, 139.83,139.78, 139.4, 137.8, 134.9, 134.7, 133.1, 131.5, 129.7, 32.6, 31.9, 31.04, 30.98, 30.8, 30.7, 29.9, 29.6, 29.5, 29.4, 22.8, 14.2.

Figure S9. ¹H NMR spectrum of $P(SSe)b(STe)$ in CDCl₃.

Figure S10. ¹³C NMR spectrum of $P(SSe)b(STe)$ in CDCl₃.

 $\mathbb{Z}^{\mathbb{Z}}$

Figure S11. ¹H NMR spectrum of P(SSe)b(SeTe) in CDCl₃.

 $\ddot{}$

Figure S12. ¹³C NMR spectrum of $P(SSe)b(SeTe)$ in CDCl₃.

 $\ddot{}$

Figure S13. ¹H NMR spectrum of P(STe)b(SeTe) in CDCl₃.

 $\ddot{}$

Figure S14. ¹³C NMR spectrum of $P(STe)b(SeTe)$ in CDCl₃.

 $\mathbb{Z}^{\mathbb{Z}}$