Supplementary Information for

Chalcogen-Doped, (Seco)-Hexabenzocoronene-Based Nanographenes: Synthesis, Properties, and Chalcogen Extrusion Conversion

Ranran Li, Bin Ma, Shengtao Li, Chongdao Lu, and Peng An*

School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650500, P. R. China.

Table of Contents

General Information	S2
Synthesis	S2
Scheme S1 Synthesis of nanographene 50	S2
Scheme S2 Synthesis of sulfur-doped nanographenes	S4
Scheme S3 Synthesis of selenium-doped nanographenes	S8
Scheme S4 Attempts to synthesize tellurium-doped nanographene	S12
Scheme S5 Synthesis of nanographenes 29 _{Seco-HBC} and 30 _{HBC}	S13
Scheme S6 Attempts to synthesize fully cyclized nanographene 31s	S14
Supplementary Figures and Tables	
Figure S1 2D ROESY and 2D H-H COSY spectra of compound 16s	S15
Figure S2 2D ROESY and 2D H-H COSY spectra of compound 18se	S16
Figure S3 2D ROESY and 2D H-H COSY spectra of compound 24so	S17
Table S1. Details of the crystal structure analyses of compounds 5_0 , 17_s , and 18_{se}	S18
Table S2. Details of the crystal structure analyses of compounds 21, 23, 24So, and 30 _{HBC}	S19
Figure S4. X-ray crystallography of compound 5_0	S20
Figure S5. X-ray crystallography of compound 17 _s	S20
Figure S6. X-ray crystallography of compounds 18 _{Se}	S21
Figure S7. X-ray crystallography of compound 24 _{so}	S21
Table S3. Photophysical properties summary	S22
Figure S8. UV-vis spectroscopy of all nanographenes	S22
Figure S9. Fluorescence spectroscopy of compounds 16s, 18se, 24so, 26Seo, 29seco-HBC, and 30HBC	S23
Figure S10. Fluorescence emission of different nanographenes in different solvents	S24
Figure S11 Cyclic Voltammetry of 50, 175, 195e, 2550, 275e0, 28502, 295eco-HBC and 30HBC	S25
Figure S12 Optical resolution of compound 17 _s	S27
Figure S13 Optical resolution of compound 19 _{Se}	S28
Figure S14 Preparation of optically pure enantiomers 25 _{S0} - <i>P</i> and 25 _{S0} - <i>M</i>	S29
Figure S15. CPL dissymmetry factor spectra of 17s-P/17s-M and 25so-P/25so-M	S30
Figure S16 Thermal enantiomerization study of 17 ₈ -P	S31
Figure S17 Thermal enantiomerization study of 19_{Se} -P	S34
Figure S18. UV-vis spectroscopy changes of 5_0 upon heating	S37
Figure S19. HPLC-based thermal study of 25 _{SO}	S38
Figure S20. HPLC-based thermal study of 19_{Se}	S39
Figure S21. HPLC-based thermal study of 27 _{Se0}	S40
Figure S22. HPLC-based stability study of 27seo in acid	S41
Figure S23. UV-vis absorption changes of 5_0 (a), 17_5 (b), 19_{se} (c), 25_{so} (d) in acid	S42
Figure S24. UV-vis absorption changes of 27 _{SeO} in methanesulfonic acid	S43
Figure S25. Solubility comparison of compounds 27_{SeO} and 30_{HBC} in DCM and EtOH	S44
Computational Details	
Figure S26. Calculated ECD spectra of $17_8 - P/17_8 - M$, and $19_{8e} - P/19_{8e} - M$	S45
Figure S27. Isosurface of LOL- π and calculated NICS (0) plot of the backbones	S46
Figure S28. Molecular orbitals (HOMO-1–LUMO+1) with major transitions.	S46
Table S4–S9. Atomic coordinates for the DFT calculated structures	
Table S10–S15. Major transitions of backbones calculated by TD-DFT	
Keterences	\$69
Spectra (Figure S29–Figure S50)	S70

General Information

Solvents and chemicals were purchased from commercial sources and used directly without further purification. Molecular sieves were activated in an oven and solvents for reaction was stored with molecular sieves. Petroleum ether (PE) used had a boiling range of 60-90 °C. Reactions were monitored by TLC on silica gel GF 254 plates. Column chromatography was generally performed through silica gel (200-300 mesh). All reactions were run open to air unless specifically described. NMR spectra were recorded with Bruker-400, 500 or 600 MHz spectrometers. Unless specified otherwise, the NMR spectra were recorded at 22 °C; they were calibrated using the residual solvent signal (¹H) or solvent signal (¹³C). Chemical shifts were reported in parts per million (ppm). Chemical shifts were reported in ppm using TMS or deuterated solvents as internal standards (for ¹H NMR: CDCl₃, 7.26; for ¹³C NMR: CDCl₃, 77.0). Multiplicity was reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, brs = broad. Coupling constants (J) are reported in Hertz (Hz). UV-Vis absorption spectra were recorded using a 1-cm quartz cuvette on a Shimadzu-UV-2600 spectrometer. Fluorescence spectra were recorded using a 1-cm quartz cuvette or powder form on a Gangdong F-320 spectrofluorometer at 25 °C. High-resolution mass spectrometry was performed on a Thermo LTQ-Orbitrap XL mass spectrometer equipped with collision cells for collisioninduced dissociation or Bruker MALDI-TOF MS RapifleX. Fluorescent decay was recorded in the HORIBA FL-3 instrument. Crystallographic data were collected on a Bruker D8 Venture diffractometer.

Syntheses

Scheme S1. Synthesis of nanographene 5₀.

1,2,3,4-Tetrabromotribenzo[b,d,f]oxepine (3): A mixture of dibenzo[b,f]oxepine **1** (194 mg, 1.0 mmol, 1.0 equiv), tetrabromothiophene-S,S-dioxide $2^{[S1]}$ (647 mg, 1.5 mmol, 1.5 equiv) in toluene (5 mL) in the sealed tube was heated to 110–120 °C until no dibenzo[b,f]oxepine **1** left (around 12 hours, checked by TLC: silica, PE: DCM = 4:1, UV). Then the solvent was removed under reduced pressure, after the residue was dissolved in dichloromethane (15 mL), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (340 mg, 1.5 mmol, 1.5 equiv) was added and the mixture was stirred at room temperature for around 30 minutes. The reaction mixture was concentrated under reduced pressure and purified by silica gel flash chromatography (10-20% DCM in PE) to give the compound **3** (420 mg, 75% for two steps) as a faint yellow solid: mp:

189–190 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 8.0, 2.0 Hz, 2H), 7.33 (td, J = 8.0 Hz, 2.0 Hz, 2H), 7.26 (dd, J = 8.0, 2.0 Hz, 2H), 7.15 (td, J = 8.0, 2.0 Hz, 2H); ¹³C NMR (101 MHz, 2.0 Hz, 2H), 7.26 (dd, J = 8.0, 2.0 Hz, 2H), 7.15 (td, J = 8.0, 2.0 Hz, 2H); ¹³C NMR (101 MHz, 2.0 Hz, 2H), 7.15 (td, J = 8.0, 2.0 Hz, 2H); ¹³C NMR (101 MHz, 2.0 Hz, 2H); ¹³C NMR (101 MZ); ¹³C NMR (101 MZ); ¹³C NMR (101 MZ); ¹³C NMR (101 MZ

CDCl₃) *δ* 161.9, 138.3, 133.4, 130.8, 130.6, 130.4, 126.5, 123.8, 120.2; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₈Br₄O 555.7304; Found 555.7318.

1,2,3,4-Tetrakis(4-ethyl phenyl)tribenzo[b,d,f]oxepine (4): To a solution of oxepine 3 (334mg, 0.6 mmol, 1.0 equiv) in toluene (10 mL) was quickly added (4-ethyl phenyl) boronic acid (720 mg, 4.8 mmol, 8.0 equiv), palladium (II) chloride diacetonitrile complex (23 mg, 0.09 mmol, 0.15 equiv), 2-dicyclohexylphosphino-2,6-dimethoxy-1,1-biphenyl (SPhos, 74 mg, 0.18 mmol, 0.3 equiv) and potassium phosphate tribasic (2.04 g, 9.6 mmol, 16.0 equiv) under argon atmosphere. Then the mixture was carefully gas exchanged to keep stirring under argon at 110°C for around 12 hours. The mixture was filtered over a silica pad and washed the filter cake with dichloromethane, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the compound 4 (320 mg, 81%) as a white solid: mp: 240–241 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.19 (m, 4H), 7.04–6.99 (m, 4H), 6.85–6.82 (m, 4H), 6.77 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 8.0 Hz, 2H), 6.55 (t, J = 8.0 Hz, 2H), 6.49 (d, J = 8.0 Hz, 2H), 6.32 (d, J = 8.0 Hz, 2H), 2.43–2.32 (m, 8H), 1.05 (t, J = 8.0 Hz, 6H), 0.97 (t, J = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 142.6, 141.3, 140.9, 140.6, 138.0, 137.9, 135.1, 133.9, 132.6, 131.7, 131.3, 130.8, 130.3, 128.0, 126.5, 126.2, 125.9, 125.2, 123.1, 119.4, 28.4, 28.4, 15.7, 15.6; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₅₀H₄₅O 661.3465; found 661.3465.

5,8,11,14-Tetraethyl-19-oxabenzo[5',6']tetraceno [1',12',11',10':5,6,7,8,9] tetrapheno [10,11,12,1-nopqab]pleiadene (5₀): To a solution of compound 4 (66 mg, 0.1 mmol, 1.0 equiv) in anhydrous dichloromethane (20 mL) in an oven-dried flask with a magnetic stirring bar was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (227 mg, 1 mmol, 10.0 equiv). The mixture was carefully exchanged into an argon atmosphere and stirred in an ice-water bath. Then trifluoromethanesulfonic acid (0.1 mL, 1.3 mmol, 13 equiv) was added dropwise to the above reaction mixture and the mixture was stirred at 0 °C for around 5 minutes. Triethyl amine (1.0 mL, 7.2 mmol, 72 equiv) was added, followed by methanol (1.0 mL, 24.7 mmol, 247 equiv) to quench the reaction and the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (silica, 10–20 % DCM in PE, UV) to give the titled compound 5_0 (43 mg, 65%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 2H), 8.52 (d, J = 6.0Hz, 2H), 8.47 (s, 2H), 8.42 (s, 4H), 7.73 (t, J = 6.0 Hz, 2H), 7.60 (d, J = 6.0 Hz, 2H), 3.10 (q, J = 8.0 Hz, 4H), 3.00 (q, J = 8.0 Hz, 4H), 1.57 (t, J = 8.0 Hz, 6H), 1.49 (t, J = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 142.3, 142.3, 132.5, 129.9, 129.9, 129.7, 128.2, 128.1, 126.2, 123.3, 122.9, 122.8, 122.4, 122.2, 121.3, 120.8, 120.4, 120.3, 119.4, 118.2, 29.9, 29.6, 16.2, 16.0; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₅₀H₃₄O 650.2605; Found 650.2614.

Scheme S2. Synthesis of sulfur-doped nanographenes.

2,2'-Thiodibenzaldehyde (6): A mixture of sulfur S₈ (192 mg, 0.75 mmol, 1.0 equiv), (2-formyl phenyl) boronic acid (2.25 g, 15.0 mmol, 20.0 equiv), CuI (114 mg, 0.6 mmol, 0.8 equiv), 1,10-phenanthroline monohydrate (120 mg, 0.6 mmol, 0.8 equiv), and NH₄BF₄ (156 mg, 1.5 mmol, 2.0 equiv), in DMSO (5 mL) and H₂O (2.5 mL) was stirred at 100 °C for 18 hours. After the residue was cooled to room temperature and dissolved in EtOAc, the solution was washed with H₂O and brine and dried over anhydrous MgSO₄. The solution was concentrated under reduced pressure and purified by silica gel flash chromatography (10-20% EtOAc in PE) to give title compound **6** (1.089 g, 75%) as colorless solid. The NMR data were identical with the reported results^[S2].

Dibenzo[b,f]thiepine (8): To a mixture of zinc powder (1.3 g, 20 mmol, 8.0 equiv) in anhydrous THF, TiCl₄ (1.1ml, 10 mmol, 4.0 equiv) was added cautiously during 10 min at 0°C under argon atmosphere, The resulting suspension was heated at reflux for 2.5 hours. Then the mixture cooled to room temperature and 2,2'-Thiodibenzaldehyde 6 (612 mg, 2.5 mmol, 1.0 equiv) was added slowly as a dilute solution in THF over 10 minutes. After the addition was complete, the reaction mixture was heated at reflux for an additional period of 4 hours. After the mixture was cooled to room temperature, The resulting mixture was filtered over a silica pad, the filter cake was washed with EtOAc. The combined organic layers were washed with water and brine and dried with Na₂SO₄, Evaporation of the solvents in vacuo, the residue was purified by silica gel flash chromatography (PE) to give title compound **8** (410 mg, 78%) as faint yellow solid. The NMR data were identical with the reported results^[S3].

1,2,3,4-Tetrabromotribenzo[b,d,f]thiepine (10): A mixture of dibenzo[b,f]thiepine **8** (210 mg, 1.0 mmol, 1.0 equiv), tetrabromothiophene-S,S-dioxide $2^{[S1]}$ (647 mg, 1.5 mmol, 1.5 equiv) in toluene (5 mL) in the sealed tube was heated to 110–120 °C until no dibenzo[b,f]thiepine **8** left (around 12 hours, checked by TLC: silica, PE: DCM = 5:1, UV). Then the solvent was removed in vacuo and the residue was dissolved in dichloromethane (15 mL) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (340 mg, 1.5 mmol, 1.5 equiv) was added, the mixture was stirred at room temperature for around 30 minutes. The reaction mixture was concentrated under reduced pressure and purified by silica gel flash chromatography (10-20% DCM in PE) to give the compound **10** (519 mg, 90% for two steps) as a colorless solid: mp: 198–199 °C; ¹H

NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 6.0, 1.5 Hz, 2H), 7.50 (dd, J = 6.0, 1.5 Hz, 2H), 7.26– 7.19 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 141.4, 140.7, 132.9, 132.3, 129.6, 128.9, 127.3, 126.3; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₉Br₄S 572.7153; Found 572.7176.

1,2,3,4-Tetrakis(4-ethyl phenyl)tribenzo[b,d,f]thiepine (12): To a solution of thiepine 10 (460 mg, 0.8 mmol, 1.0 equiv) in toluene (15 mL) was quickly added (4-ethyl phenyl)boronic acid (980 mg, 6.4 mmol, 8.0 equiv), palladium(II) chloride diacetonitrile complex (31 mg, 0.12 mmol, 0.15 equiv), 2-dicyclohexylphosphino-2,6-dimethoxy-1,1-biphenyl (SPhos, 123 mg, 0.24 mmol, 0.3 equiv) and potassium phosphate tribasic (2.71 g, 12.8 mmol, 16.0 equiv) under argon atmosphere. Then the mixture was carefully gas exchanged to keep stirring under argon at 110°C for around 12 hours. The mixture was filtered through a silica pad and washed the filter cake with dichloromethane, the filtrate was concentrated under reduced pressure and purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the compound 12 (422 mg, 78%) as a white solid: mp: 300–301 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.91–6.88 (m, 6H), 6.73 (d, J = 8.0 Hz, 2H), 6.67 (t, J = 8.0 Hz, 2H), 6.60 (d, J = 8.0 Hz, 2H), 6.51 (d, J = 8.0 Hz, 2H), 6.46 $(d, J = 8.0 \text{ Hz}, 2\text{H}), 6.40 (d, J = 8.0 \text{ Hz}, 2\text{H}), 2.42-2.34 (m, 8\text{H}), 1.04-0.98 (m, 12\text{H}); {}^{13}\text{C NMR}$ (101 MHz, CDCl₃) δ 141.9, 141.9, 141.4, 141.0, 140.9, 140.1, 139.1, 138.1, 137.9, 133.8, 132.3, 131.9, 131.2, 130.9, 130.4, 126.5, 126.3, 126.3, 125.7, 125.3, 28.4, 15.6, 15.6; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₅₀H₄₄S 676.3159; Found 676.3140.

1,2,3,4-Tetrakis(4-(tert-butyl)phenyl)tribenzo[b,d,f]thiepine (13): To a solution of thiepine 10 (460mg, 0.8 mmol, 1.0 equiv) in xylene (15 mL) was quickly added (4-(tertbutyl)phenyl)boronic acid (1140 mg, 6.4 mmol, 8.0 equiv), palladium (II) chloride diacetonitrile complex (31 mg, 0.12 mmol, 0.15 equiv), 2-dicyclohexylphosphino-2,6dimethoxy-1,1-biphenyl (SPhos, 99 mg, 0.24 mmol, 0.3 equiv) and potassium phosphate tribasic (2.71 g, 12.8 mmol, 16.0 equiv) under argon atmosphere. Then the mixture was carefully gas exchanged to keep stirring under argon at 140°C for around 24 hours. The mixture was filtered through a silica pad and washed the filter cake with dichloromethane, the filtrate was concentrated under reduced pressure and purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the compound 13 (397 mg, 63%) as a white solid: mp: 276–277 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.02–7.00 (br, 4H), 6.91-6.85 (m, 6H), 6.76 (d, J = 8.0 Hz, 2H), 6.66-6.62 (m, 4H), 6.45 (d, J = 8.0 Hz, 2H), 6.37 (d, J = 8.0 Hz, 2H), 1.10 (s, 18H), 1.07 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.6, 141.9, 141.8, 141.4, 140.1, 139.0, 137.8, 137.6, 133.8, 132.1, 131.6, 131.2, 130.4, 130.2, 126.4, 126.3, 123.4, 123.1, 122.4, 34.1, 34.0, 31.2, 31.1; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₅₈H₆₀S 788.4411; Found 788.4423.

3,6,9,12-Tetraethylbenzo[f]naphtho[1',2',3',4':12,13] phenanthro[1',10',9',8':5,6,7,8] piceno[1,14-bcd]thiepine (16_s): To a solution of compound 12 (68 mg, 0.1 mmol, 1.0 equiv) in anhydrous dichloromethane (15 mL) in an oven-dried flask with a magnetic stirring bar was

added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (227 mg, 1 mmol, 10.0 equiv). The mixture was carefully exchanged into an argon atmosphere and stirred in an ice-water bath. Then trifluoromethanesulfonic acid (0.1 mL, 1.3 mmol, 13 equiv) was added dropwise to the above reaction mixture and the mixture was stirred at 0 °C for around 3 minutes. Triethyl amine (1.0 mL, 7.2 mmol, 72 equiv) was added, followed by methanol (1.0 mL, 24.7 mmol, 247 equiv) to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 10–20 % DCM in PE, UV) to give the title compound 16_8 (48 mg, 70%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 2H), 8.84 (s, 1H), 8.82 (s, 1H), 8.79 (d, J = 6.0 Hz, 1H), 8.78 (s, 1H), 8.65 (s, 1H), 8.57 (s, 1H), 8.16 (d, J = 6.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 6.0 Hz, 1H), 7.68 (t, J = 6.0 Hz, 1H), 7.29 (t, J = 6.0 Hz, 1H), 7.20 (t, J = 6.01H), 7.12 (d, J = 6.0 Hz, 1H), 6.88 (t, J = 6.0 Hz, 1H), 6.27 (d, J = 6.0 Hz, 1H), 3.27–3.14 (m, 6H), 2.87 (q, J = 8.0 Hz, 2H), 1.62 (t, J = 8.0 Hz, 6H), 1.55 (t, J = 8.0 Hz, 3H), 1.40 (t, J = 8.0Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 142.5, 142.3, 142.2, 142.2, 137.9, 137.5, 134.7, 133.4, 133.2, 132.8, 132.3, 131.5, 131.4, 130.7, 130.4, 130.3, 130.2, 130.1, 129.8, 129.8, 129.1, 128.3, 128.1, 127.8, 127.1, 126.7, 126.3, 124.6, 123.3, 123.0, 123.0, 122.9, 122.7, 122.5, 121.9, 121.7, 121.4, 121.2, 121.1, 120.8, 30.0, 29.8, 29.8, 29.1, 16.5, 16.3, 15.6; HRMS (MALDI-TOF) m/z: $[M]^+$ Calcd for C₅₀H₃₆S 668.2533; Found 668.2552.

3,6,9,12-tetra-tert-butylbenzo[f]naphtha [1',2',3',4':12,13]phenanthro [1',10',9',8':5,6,7,8] piceno[1,14-bcd]thiepine (17s): To a solution of compound 13 (80 mg, 0.1 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) in an oven-dried flask with a magnetic stirring bar was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (227 mg, 1.0 mmol, 10.0 equiv). The mixture was carefully exchanged into an argon atmosphere and stirred in an ice-water bath. Then trifluoromethanesulfonic acid (0.1 mL, 1.3 mmol, 13 equiv) was added dropwise to the above reaction mixture and the mixture was stirred at 0 °C for around 2 minutes. Triethyl amine (1.0 mL, 7.2 mmol, 72 equiv) was added, followed by methanol (1.0 mL, 24.7 mmol, 247 equiv) to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the title compound 17_8 (63 mg, 80%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 9.18 (s, 1H), 9.13 (s, 1H), 9.09 (s, 1H), 9.03 (s, 1H), 8.91 (s, 1H), 8.83 (d, J = 6.0 Hz, 1H), 8.78 (s, 1H), 8.19 (d, J =6.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 6.0 Hz, 1H), 7.72 (t, J = 6.0 Hz, 1H), 7.33-7.29 (m, 2H), 6.90 (t, J = 6.0 Hz, 1H), 6.31 (d, J = 6.0 Hz, 1H), 1.79 (s, 9H), 1.77 (s, 9H), 1.71 (s, 9H), 1.50 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 149.2, 149.1, 149.1, 137.8, 135.1, 133.6, 133.5, 132.8, 132.6, 131.3, 131.1, 130.8, 130.5, 130.4, 130.4, 130.2, 130.1, 129.9, 128.9, 128.5, 128.3, 127.9, 127.3, 127.0, 124.8, 124.2, 123.6, 123.2, 123.1, 123.0, 122.7, 121.3, 119.9, 119.1, 119.0, 118.3, 35.7, 35.7, 35.60, 35.0, 32.0, 31.9, 31.9, 31.4; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₅₈H₅₃S 781.3862; Found 781.3881.

(17R)-3,6,9,12-Tetraethylbenzo[f]naphtha[1',2',3',4':12,13]phenanthro[1',10',9',8':5,6,7,8] piceno[1,14-bcd]thiepine 17-oxide (24so): To a solution of compound 16_s (34 mg, 0.05 mmol, 1.0 equiv) in anhydrous dichloromethane (5 mL) in an oven-dried flask

with a magnetic stirring bar was added 2KHSO₅.KHSO₄.K₂SO₄, (Oxone, 307 mg, 0.5 mmol, 10.0 equiv). The mixture was stirred for 2 hours in room temperature. 10% aqueous sodium sulfite solution (1.4 mL, 1.0 mmol, 20 equiv) was added to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 30-50 % PE in DCM, UV) to give the title compound **24**so (33 mg, 97%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 6.0 Hz, 1H), 8.78 (s, 1H), 8.76 (s, 1H), 8.70 (s, 1H), 8.68 (s, 1H), 8.61 (s, 1H), 8.58 (s, 2H), 8.43 (d, J = 6.0 Hz, 1H), 8.04 (d, J = 6.0 Hz, 1H), 8.01 (d, J = 6.0 Hz, 1H), 7.95 (t, J = 6.0 Hz, 1H), 7.52–7.48 (m, 1H), 7.14 (d, J = 6.0 Hz, 1H), 6.93 (t, J = 6.0 Hz, 1H), 6.19 (d, J = 6.0 Hz, 1H), 3.22 (q, J = 8.0 Hz, 2H), 3.15 (q, J = 8.0 Hz, 2H), 2.98 (q, J = 8.0 Hz, 2H), 2.92 (q, J = 8.0 Hz, 6H), 1.62 (t, J = 8.0 Hz, 3H), 1.52 (t, J = 8.0 Hz, 6H), 1.44 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 144.6, 143.1, 143.0, 142.8, 136.3, 133.2, 132.4, 131.6, 131.1, 130.6, 130.4, 130.2, 130.0, 129.5, 129.2, 128.6, 128.4, 127.8, 126.5, 125.0, 124.9, 124.7, 123.2, 122.6, 122.3, 122.2, 122.1, 121.9, 121.5, 121.4, 121.1, 118.9, 118.5, 30.1, 29.9, 29.7, 29.1, 16.4, 16.2, 16.2, 15.6; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₅₀H₃₇OS 685.2560; Found 685.2543.

(17R)-3,6,9,12-Tetra-tert-butylbenzo[f]naphtha [1',2',3',4':12,13]phenanthro [1',10',9',8':5,6,7,8] piceno [1,14-bcd]thiepine 17-oxide (25₅₀): To a solution of compound 17s (38 mg, 0.05 mmol, 1.0 equiv) in anhydrous dichloromethane (5 mL) in an oven-dried flask with a magnetic stirring bar was added 2KHSO₅.KHSO₄.K₂SO₄, (Oxone, 307 mg, 0.5 mmol, 10.0 equiv). The mixture was stirred for 2 hours in room temperature. 10% aqueous sodium sulfite solution (1.4 mL, 1.0 mmol, 20 equiv) was added to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 30-50 % PE in DCM, UV) to give the title compound 25_{so} (38 mg, 96%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 9.21 (s, 1H), 9.17 (s, 1H), 9.15 (s, 1H), 9.07 (s, 1H), 8.99 (s, 1H), 8.98 (d, J = 6.0 Hz, 1H), 8.82 (s, 1H), 8.49 (d, J = 6.0 Hz, 1H), 8.11–8.08 (m, 2H), 8.03 (t, J = 8.0 Hz, 1H), 7.57 (t, J = 6.0 Hz, 1H), 7.35 (d, J = 6.0 Hz, 1H), 7.02 (t, J = 6.0 Hz, 1H),6.38 (d, J = 6.0 Hz, 1H), 1.80 (s, 9H), 1.77 (s, 9H), 1.72 (s, 9H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 149.7, 145.5, 145.0, 136.2, 133.2, 132.9, 131.5, 130.7, 130.7, 130.6, 130.5, 130.4, 130.2, 129.9, 129.6, 129.2, 128.8, 128.6, 128.2, 128.0, 125.3, 125.0, 124.5, 123.5, 123.3, 122.8, 122.4, 122.3, 120.4, 119.4, 119.3, 119.2, 119.2, 119.1, 119.0, 118.7, 118.6, 35.7, 35.7, 35.7, 35.0, 31.9, 31.9, 31.8, 31.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₅₈H₅₃OS 797.3812; found 797.3833.

3,6,9,12-Tetra-*tert***-butylbenzo**[f]naphtha [1',2',3',4':12,13]phenanthro [1',10',9',8':5,6,7,8] piceno[1,14-bcd]thiepine 17,17-dioxide (28₅₀₂): To a solution of compound 25₅₀ (40 mg, 0.05 mmol, 1.0 equiv) in anhydrous dichloromethane (5 mL) in an oven-dried flask with a magnetic stirring bar was added *m*-chloroperbenzoic acid (*m*-CPBA, 34 mg, 0.2 mmol, 4.0 equiv). The mixture was stirred for 24 hours in room temperature. 10% aqueous sodium sulfite solution (0.6 mL, 0.4 mmol, 8.0 equiv) was added to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 30-50 % PE in DCM, UV)

to give the title compound **28**_{S02} (37 mg, 92%) as a yellow solid: ¹H NMR (600 MHz, CDCl₃) δ 9.22 (s, 1H), 9.19 (d, J = 6.0 Hz, 1H), 9.17 (s, 2H), 9.15 (s, 1H), 9.03 (s, 1H), 8.96 (s, 1H), 8.76 (d, J = 6.0 Hz, 1H), 8.74 (s, 1H), 8.37 (d, J = 6.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.95 (t, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 6.0 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 6.63 (d, J = 6.0 Hz, 1H), 1.80 (s, 9H), 1.76 (s, 9H), 1.72 (s, 9H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 149.7, 149.5, 149.5, 141.7, 141.3, 140.2, 135.7, 134.6, 133.6, 132.4, 132.0, 131.5, 131.0, 130.5, 130.4, 130.2, 130.0, 129.3, 128.8, 128.7, 128.6, 128.1, 127.2, 126.9, 126.2, 124.3, 124.3, 124.1, 123.8, 123.3, 123.0, 122.2, 121.8, 120.9, 119.4, 119.2, 119.2, 119.1, 119.0, 118.4, 35.7, 35.7, 35.6, 34.9, 31.9, 31.9, 31.8, 31.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₅₈H₅₃O₂S 813.3761; found 813.3762.

Scheme S3. Synthesis of selenium-doped nanographenes.

2,2'-Selenodibenzaldehyde (7): A mixture of selenium Se (474 mg, 6.0 mmol, 1.0 equiv), (2-2-formyl phenylronic acid (2.25 g, 15.0 mmol, 2.5 equiv), CuI (114 mg, 0.6 mmol, 0.1 equiv), 1,10-phenanthroline monohydrate (120 mg, 0.6 mmol, 0.1 equiv), and NH₄BF₄ (156 mg, 1.5 mmol, 0.25 equiv), in DMSO (0.2 mL) and H₂O (0.1 mL) was stirred at 100 °C for 18 hours. After the residue was dissolved in EtOAc, the solution was washed with H₂O and brine and dried over MgSO₄. The solution was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (10-20% EtOAc in PE) to give the title compound 7 (693 mg, 40%) as colorless solid. The NMR data were identical with the reported results^[S2].

Dibenzo[b,f]selenepine (9): To a mixture of zinc powder (1.30 g, 20 mmol, 8.0 equiv) in anhydrous THF, TiCl₄ (1.1 ml, 10.0 mmol, 4.0 equiv) was added cautiously during 10 min at 0° C under argon atmosphere, The resulting suspension was heated at reflux for 2.5 h. Then the mixture cooled to room temperature and 2,2'-selenodibenzaldehyde 7 (723 mg, 2.5 mmol, 1.0 equiv) was added slowly as a dilute solution in THF over 10 minutes. After the addition was completed, the reaction mixture was heated at reflux for an additional period of 4 h. After the mixture was cooled to room temperature, The resulting mixture was filtered over a silica pad and washed filter cake with EtOAc. The combined organic layers were washed with water and brine and dried over Na₂SO₄. Evaporation of the solvents in vacuo, the residue was purified by

silica gel flash chromatography (PE) to give title compound **9** (385 mg, 60%) as a faint yellow solid. The NMR data were identical with the reported results^[S4].

1,2,3,4-Tetrabromotribenzo[b,d,f]selenepine (11): A mixture of dibenzo[b,f]selenepine **9** (257 mg, 1.0 mmol, 1.0 equiv), tetrabromothiophene-S,S-dioxide **2**^[S1] (647 mg, 1.5 mmol, 1.5 equiv) in xylene (5 mL) in the sealed tube was heated to 140 °C until no dibenzo[b,f]selenepine **9** left (around 12 hours, checked by TLC: silica, PE: DCM = 5:1, UV). Then the mixture was cooled to room temperature and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (340 mg, 1.5 mmol, 1.5 equiv) was added, the mixture was heated to 90 °C and stirred for around 30 minutes. The reaction mixture was concentrated under reduced pressure and purified by silica gel flash chromatography (10-20% DCM in PE) to give the compound **11** (348 mg, 56% for two steps) as a colorless solid: mp: 210–211 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 6.0 Hz, 2H), 7.43 (d, *J* = 6.0 Hz, 2H), 7.24 (t, *J* = 6.0 Hz, 2H), 7.15 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 141.3, 137.3, 134.0, 132.5, 129.4, 128.5, 127.5, 126.4; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₉Br₄Se 620.6597; Found 620.6584.

1,2,3,4-Tetrakis(4-ethylphenyl)tribenzo[b,d,f]selenepine (14): To a solution of selenepine 11 (498mg, 0.8 mmol, 1.0 equiv) in toluene (15 mL) was quickly added (4-ethyl phenyl)boronic acid (980 mg, 6.4 mmol, 8.0 equiv), palladium(II) chloride diacetonitrile complex (31 mg, 0.12 mmol, 0.15 equiv), 2-dicyclohexylphosphino-2,6-dimethoxy-1,1-biphenyl (SPhos, 99 mg, 0.24 mmol, 0.3 equiv) and potassium phosphate tribasic (2.71 g, 12.8 mmol, 16.0 equiv) under argon atmosphere. Then the mixture was carefully gas exchanged to keep stirring under argon at 110°C for around 12 hours. The mixture was filtered through a silica pad and washed the filter cake with dichloromethane, the filtrate was concentrated under reduced pressure and purified by flash chromatography (silica, 10–20 % DCM in PE, UV) to give the compound 14 (434 mg, 75%) as a white solid: ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 8.0 Hz, 2H), 6.72 (t, J= 8.0 Hz, 2H), 6.63 (d, J = 8.0 Hz, 2H), 6.58 (t, J = 8.0 Hz, 2H), 6.49 (d, J = 8.0 Hz, 2H), 6.42 (d, J = 8.0 Hz, 2H), 6.36 (d, J = 8.0 Hz, 2H), 6.32 (d, J = 8.0 Hz, 2H), 2.30–2.25 (m, 8H), 0.93– 0.89 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 141.8, 141.6, 140.8, 140.8, 140.2, 139.9, 138.1, 138.0, 137.9, 133.6, 132.8, 132.2, 131.8, 130.8, 130.4, 126.6, 126.2, 126.2, 126.0, 125.6, 125.3, 28.33, 15.56, 15.51; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₅₀H₄₄Se 724.2603; Found 724.2570.

1,2,3,4-Tetrakis(4-(tert-butyl)phenyl)tribenzo[b,d,f]selenepine (15): To a solution of selenepine **11** (498 mg, 0.8 mmol, 1.0 equiv) in xylene (15 mL) was quickly added (4-(tert-butyl)phenyl)boronic acid (1.14 g, 6.4 mmol, 8.0 equiv), palladium(II) chloride diacetonitrile complex (31 mg, 0.12 mmol, 0.15 equiv), 2-dicyclohexylphosphino-2,6-dimethoxy-1,1-biphenyl (SPhos, 99 mg, 0.24 mmol, 0.3 equiv) and potassium phosphate tribasic (2.71 g, 12.8 mmol, 16.0 equiv) under argon atmosphere. Then the mixture was carefully gas exchanged to keep stirring under argon at 140°C for around 24 hours. The mixture was filtered through a silica pad and washed the filter cake with dichloromethane, the filtrate was concentrated under

reduced pressure and purified by flash chromatography (silica, 10–20 % DCM in PE, UV) to give the compound **15** (361mg, 54%) as a white solid: ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.99 (t, J = 8.0 Hz, 4H), 6.90 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.78 (t, J = 8.0 Hz, 2H), 6.75 (d, J = 8.0 Hz, 2H), 6.67–6.63 (m, 4H), 6.44 (d, J = 8.0 Hz, 2H), 6.38 (d, J = 8.0 Hz, 2H), 1.09 (s, 18H), 1.07 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 147.6, 141.7, 141.6, 140.1, 140.0, 138.0, 137.7, 137.6, 133.7, 132.8, 132.0, 131.6, 130.3, 130.2, 126.5, 126.0, 123.4, 123.3, 123.0, 122.4, 34.0, 34.0, 31.2, 31.1; HRMS (MALDI-TOF) m/z: [M]+ Calcd for C₅₈H₆₀Se 836.3855 Found 836.3827.

3,6,9,12-Tetraethylbenzo[f]naphtha [1',2',3',4':12,13] phenanthro [1',10',9',8':5,6,7,8] piceno [1,14-bcd]selenepine (18_{se}): To a solution of compound 14 (73 mg, 0.1 mmol, 1.0 equiv) in anhydrous dichloromethane (15 mL) in an oven-dried flask with a magnetic stirring bar was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (227 mg, 1.0 mmol, 10.0 equiv).The mixture was carefully exchanged into an argon atmosphere and stirred in an ice-water bath. Then trifluoromethanesulfonic acid (0.1 mL, 1.3 mmol, 13 equiv) was added dropwise to the above reaction mixture and the mixture was stirred at 0 °C for around 3 minutes. Triethyl amine (1.0 mL, 7.2 mmol, 72 equiv) was added, followed by methanol (1.0 mL, 24.7 mmol, 247 equiv) to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the title compound 18se (48 mg, 68%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.75 (s, 1H), 8.73 (s, 1H), 8.66 (d, *J* = 6.0 Hz, 1H), 8.65 (s, 2H), 8.55 (s, 1H), 8.49 (s, 1H), 8.23 (d, *J* = 6.0 Hz, 1H), 8.17 (d, J = 6.0 Hz, 1H), 7.94 (d, J = 6.0 Hz, 1H), 7.51 (t, J = 6.0 Hz, 1H), 7.19 (t, J = 6.0 Hz, 1H), 7.11 (dd, *J* = 6.0, 1.5 Hz, 1H), 6.81 (t, *J* = 6.0 Hz, 1H), 6.12 (d, *J* = 6.0 Hz, 1H), 3.21 (q, J = 8.0 Hz, 2H), 3.11-3.03 (m, 4H), 2.88 (q, J = 8.0 Hz, 2H), 1.60 (t, J = 8.0 Hz, 3H), 1.54 (t, J = 8.0 Hz, 3H), 1.49 (t, J = 8.0 Hz, 3H), 1.41 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 142.5, 142.3, 142.3, 142.2, 135.4, 134.7, 134.6, 134.0, 133.3, 133.2, 132.5, 131.5, 131.4, 131.3, 130.7, 130.5, 130.4, 130.1, 129.9, 129.8, 129.1, 128.1, 128.0, 127.8, 127.7, 127.1, 126.3, 124.6, 123.4, 123.0, 123.0, 122.8, 122.6, 121.9, 121.7, 121.5, 121.4, 121.1, 120.9, 120.8, 30.0, 29.8, 29.8, 29.1, 16.5, 16.3, 15.6; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₅₀H₃₇Se 717.2055 Found 717.2069.

3,6,9,12-tetra-*tert*-**butylbenzo**[f]naphtho[1',2',3',4':12,13] phenanthro[1',10',9',8':5,6,7,8] piceno[1,14-bcd]selenepine (19_{Se}): To a solution of compound 15 (84 mg, 0.1 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) in an oven-dried flask with a magnetic stirring bar was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (227 mg, 1 mmol, 10.0 equiv). The mixture was carefully exchanged into an argon atmosphere and stirred in an ice-water bath. Then trifluoromethanesulfonic acid (0.1 mL, 1.3 mmol, 13.0 equiv) was added dropwise to the above reaction mixture and the mixture was stirred at 0 °C for around 2 minutes. Triethyl amine (1.0 mL, 7.2 mmol, 72 equiv) was added, followed by methanol (1.0 mL, 24.7 mmol, 247 equiv) to quench the reaction and the mixture was concentrated under reduced pressure and purified by flash chromatography (silica, 10-20 % DCM in PE, UV) to give the title compound **16**s (50

mg, 60%) as yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 9.18 (s, 1H), 9.12 (s, 1H), 9.07 (s, 1H), 9.04 (s, 1H), 8.91 (s, 1H), 8.83 (d, *J* = 6.0 Hz, 1H), 8.80 (s, 1H), 8.34 (d, *J* = 6.0 Hz, 1H), 8.19 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 6.0 Hz, 1H), 7.65 (t, *J* = 6.0 Hz, 1H), 7.33 (d, *J* = 6.0 Hz, 1H), 7.26 (t, *J* = 6.0 Hz, 1H), 6.88 (t, *J* = 6.0 Hz, 1H), 6.24 (d, *J* = 6.0 Hz, 1H), 1.80 (s, 9H), 1.77 (s, 9H), 1.71 (s, 9H), 1.50 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 149.2, 149.1, 149.1, 135.7, 134.8, 134.4, 133.7, 133.3, 132.9, 131.6, 131.4, 130.9, 130.8, 130.5, 130.3, 130.1, 129.9, 129.0, 128.3, 128.2, 127.8, 127.3, 124.9, 124.2, 123.6, 123.2, 123.1, 122.8, 121.1, 120.0, 119.1, 119.0, 119.0, 118.9, 118.3, 35.7, 35.7, 35.6, 34.9, 32.0, 31.9, 31.9, 31.4; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₅₈H₅₃Se 829.3307 Found 829.3304.

3,6,9,12-

Tetraethylbenzo[f]naphtho[1',2',3',4':12,13]phenanthro[1',10',9',8':5,6,7,8]piceno[1,14-

bcd]selenepine 17-oxide (26_{seO}): To a solution of compound 18_{se} (36 mg, 0.05 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) in an oven-dried flask with a magnetic stirring bar was added 2KHSO₅.KHSO₄.K₂SO₄, (Oxone, 307 mg, 0.5 mmol, 10.0 equiv).The mixture was stirred for 2 hours in room temperature. 10% aqueous sodium sulfite solution (1.4 mL, 1.0 mmol, 20 equiv) was added to quench the reaction and the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (silica, 30-50 % PE in EA, UV) to give the title compound 26_{se0} (34 mg, 92%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.66 (d, J = 6.0 Hz, 1H), 8.60 (s, 2H), 8.44 (s, 1H), 8.40 (s, 2H), 8.35 (s, 2H), 8.51 (s, 2H), 8. 1H), 8.25 (s, 1H), 7.99 (d, *J* = 6.0 Hz, 1H), 7.84 (d, *J* = 6.0 Hz, 2H), 7.43 (t, *J* = 6.0 Hz, 1H), 7.08 (d, J = 6.0 Hz, 1H), 6.83 (t, J = 6.0 Hz, 1H), 5.93 (d, J = 6.0 Hz, 1H), 3.29–3.23 (m, 2H), 3.13 (br, 2H), 2.95 (q, J = 8.0 Hz, 2H), 2.78 (q, J = 8.0 Hz, 2H), 1.63 (t, J = 8.0 Hz, 3H), 1.51– 1.41 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.9, 142.7, 142.5, 133.3, 131.6, 130.5, 130.3, 130.2, 129.8, 129.8, 129.5, 128.8, 128.1, 127.7, 126.6, 126.2, 125.3, 123.0, 122.9, 122.3, 122.2, 122.1, 122.0, 122.0, 121.9, 121.2, 121.1, 121.0, 120.3, 30.0, 29.8, 29.5, 29.1, 16.4, 16.1, 16.0, 15.6; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₅₀H₃₇OSe 733.2004 Found 733.2020.

3,6,9,12-Tetra-tert-

butylbenzo[f]naphtho[1',2',3',4':12,13]phenanthro[1',10',9',8':5,6,7,8]piceno[1,14-

bcd]selenepine 17-oxide (27_{se0}): To a solution of compound 19_{se} (41 mg, 0.05 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) in an oven-dried flask with a magnetic stirring bar was added 2KHSO₅.KHSO₄.K₂SO₄ (Oxone, 307 mg, 0.5 mmol, 10.0 equiv). The mixture was stirred for 2 hours at room temperature. 10% aqueous sodium sulfite solution (1.4 mL, 1.0 mmol, 20 equiv) was added to quench the reaction and the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (silica, 30-50 % PE in EA, UV) to give the title compound 27_{se0} (40 mg, 95%) as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 9.21 (s, 1H), 9.15 (s, 1H), 9.12 (s, 1H), 9.06 (s, 1H), 8.96 (s, 1H), 8.94 (d, *J* = 6.0 Hz, 1H), 8.83 (s, 1H), 8.56 (d, *J* = 6.0 Hz, 1H), 8.13 (d, *J* = 6.0 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.00 (t, *J* = 6.0 Hz, 1H), 7.58 (t, *J* = 6.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 6.0

Hz, 1H), 6.33 (d, J = 6.0 Hz, 1H), 1.80 (s, 9H), 1.77 (s, 9H), 1.72 (s, 9H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 149.9, 149.9, 149.8, 144.1, 143.4, 139.7, 133.6, 133.5, 131.7, 130.6, 130.6, 130.5, 130.4, 130.2, 130.2, 130.1, 129.7, 129.3, 129.2, 128.8, 128.2, 128.1, 126.9, 125.7, 125.6, 124.6, 123.6, 123.1, 122.8, 122.7, 122.3, 120.6, 120.5, 119.6, 119.4, 119.2, 119.2, 118.7, 35.7, 35.7, 35.7, 35.0, 31.9, 31.9, 31.8, 31.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₅₈H₅₃OSe 845.3256; found 845.3260.

Scheme S4. Attempts to synthesize tellurium-doped nanographene.

(Z)-1,2-bis(2-bromophenyl)ethane (20): To obtain compound 20, we use the synthetic methodology as reported^[S5].

Dibenzo[b,f]tellurepine (21): . A solution of (Z)-1,2-bis(2-bromophenyl)ethene 20 (618 mg, 1.83 mmol, 1.0 equiv) in 9 mL of anhydrous THF was added dropwise to a solution of *n*-BuLi (4.58 mL of 1.6 M solution in pentane, 7.32 mmol, 4.0 equiv) in 9 mL of anhydrous THF at -78 °C, and the mixture was stirred for 1 hour under argon at this temperature. Then tellurium (1.83 mmol, 328 mg, 1.0 equiv) was added as s suspension in THF under argon atmosphere, and the reaction mixture was warmed to room temperature. After the mixture was stirred at room temperature for 3 hour, The reaction mixture was quenched with aqueous NH₄Cl solution, and then extracted with EtOAc, dried over anhydrous Na₂SO₄. The organic phase was concentrated and purified by silica gel column chromatography (silica, PE, UV) to give the title product as a colorless solid (325 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.29–7.23 (m, 4H), 7.14 (t, *J* = 8.0 Hz, 2H), 7.02 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 143.0, 138.6, 136.3, 129.1, 129.1, 128.4, 115.1; HRMS (ESI) m/z: [M=O + H]⁺ Calcd for C₁₄H₁₁OTe 324.9867; found 324.9872.

1,2,3,4-Tetrabromotriphenylene (23): A mixture of dibenzo[b,f]tellurepine 21 (306 mg, 1.0 mmol, 1.0 equiv), tetrabromothiophene-S,S-dioxide $2^{[S1]}$ (647 mg, 1.5 mmol, 1.5 equiv) in *ortho*-dichlorobenzene (5 mL) in the sealed tube was heated to140 or 180 °C around 12 hours. Then the mixture was cooled to room temperature and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (340 mg, 1.5 mmol, 1.5 equiv) was added, the mixture was heated to 90 °C and

stirred for around 30 minutes. The reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE) to give anthracene (99 mg, 56% for two steps) at 180 °C or give the title compound **23** (195 mg, 36% for two steps) as colorless solid: ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, *J* = 8.0 Hz, 2H), 8.41 (d, *J* = 8.0 Hz, 2H), 7.65 (t, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.3, 131.0, 129.1, 129.0, 128.8, 128.0, 126.12, 123.4, 119.9; HRMS (MALDI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₉Br₄ 540.7432 Found 540.7447.

Scheme S5. Synthesis of nanographene 29_{Seco-HBC} and 30_{HBC}.

2,5,8,19-tetra-tert-butyldibenzo[fg,ij]dibenzo[3,4:5,6]phenanthro[2,1,10,9,8,7-

pqrstuv]pentaphene (29_{Seco-HBC}): The powder of 19_{Se} (41 mg, 0.05 mmol, 1.0 equiv) in a tube was heated to 200 °C for 5 minutes. After the mixture was cooled to room temperature, dichloromethane was added to dissolve the product to check by TLC (PE: DCM = 5:1, UV), all the reactant was converted to the product. Remove the solvent under reduced pressure to give the compound 29_{Seco-HBC} (41 mg, 90%) as a yellow powder. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 2H), 9.22 (s, 2H), 9.20 (s, 1H), 9.16 (d, J = 8.0 Hz, 1H), 9.07 (s, 1H), 8.97 (d, J = 8.0 Hz, 1H), 8.74 (s, 1H), 8.73 (d, J = 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 8.17 (t, J = 8.0 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 1.80 (s, 18H), 1.79 (s, 9H), 1.55 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 149.4, 149.2, 131.9, 131.7, 131.4, 130.6, 130.5, 130.5, 130.5, 130.3, 130.2, 130.1, 130.1, 129.9, 129.2, 127.0, 126.6, 125.3, 125.1, 124.0, 123.5, 123.4, 123.1, 123.1, 123.0, 122.7, 122.6, 121.9, 121.2, 120.6, 120.5, 119.7, 119.3, 119.0, 119.0, 118.9, 118.8, 118.4, 35.8, 35.7, 35.7, 35.1, 32.0, 31.4; HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₅₈H₅₂748.4069 Found 748.4090.

2,5,8,11-Tetra-*tert***-butylhexabenzo**[**bc,ef,hi,kl,no,qr**]**coronene** (**30**_{HBC}): To a solution of compound **27**_{SeO} (42 mg, 0.05 mmol, 1.0 equiv) in dichloromethane (10 mL) in an oven-dried flask with a magnetic stirring bar was added CF₃COOH (5 ml). The mixture was roughly stirred in room temperature until no compound **27**_{SeO} left (around 24 hours, checked by TLC, silica, PE: EtOAc = 1:1, UV). The mixture was washed with water, and the organic phase was dried over anhydrous Na₂SO₄. The organic phase was concentrated and purified by silica gel column chromatography (silica, 10-20 % PE in DCM, UV) to give the titled compound **30**_{HBC} (33 mg,

90%) as yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 2H), 9.25 (s, 2H), 9.18 (s, 2H), 9.03 (s, 2H), 8.88 (d, *J* = 8.0 Hz, 2H), 8.73 (d, *J* = 8.0 Hz, 2H), 7.88 (t, *J* = 8.0 Hz, 2H), 1.89 (s, 18H), 1.80 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 148.7, 148.5, 130.4, 130.3, 130.0, 130.0, 129.8, 129.8, 126.0, 124.9, 123.7, 123.3, 121.3, 121.3, 120.2, 120.2, 120.1, 118.8, 118.7, 118.7, 118.6, 35.7, 35.6, 32.1, 32.0. The NMR data were identical with the reported results.^[S7]

Scheme S6. Attempts to Synthesize fully cyclized product 31s.

Figure S1. (a) 2D ROESY spectrum of compound 16_s with structure depiction of representative NOEs by arrows. Compared to 18–20, only protons of methylene 17 shows the NOEs with one singlet peak (proton 7) and one doublet peak (proton 6). (b) 2D H-H COSY spectrum of compound 16_s with different spin systems of protons.

Figure S2. (a) 2D ROESY spectrum of compound 18_{Se} with structure depiction of representative NOEs by arrows. Compared to 18–20, only protons of methylene 17 shows the NOEs with one singlet peak (proton 7) and one doublet peak (proton 6). (b) 2D H-H COSY spectrum of compound 18_{Se} with different spin systems of protons.

Figure S3. (a) 2D ROESY spectrum of compound 24_{so} with structure depiction of representative NOEs by arrows. Compared to 18–20, only protons of methylene 17 shows the NOEs with one singlet peak (proton 7) and one doublet peak (proton 6). (b) 2D H-H COSY spectrum of compound 24_{so} with different spin systems of protons.

	50	17 ₈	18 _{Se}
CCDC No.	2238626	2238630	2238631
empirical formula	$C_{50}H_{34}O$	$C_{58}H_{52}S$	$C_{50}H_{36}Se$
formula wt	650.77	781.05	715.75
crystal description	yellow block	yellow block	yellow block
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	C2	P 1 21/n 1	P 1 21/c 1
T (K)	296(2)	100.00	150.00
<i>a</i> (Å)	30.193(3)	20.8041(6)	13.038(4)
<i>b</i> (Å)	5.0770(4)	7.5111(2)	12.335(3)
c (Å)	22.061(2)	27.2964(7) A	21.069(6)
α (°)	90	90	90
β (°)	109.639(4)	90.9110(10)	102.674(12)
γ (°)	90	90	90
$V(Å^3)$	3185.0(5)	4264.8(2)	3305.7(17)
Ζ	4	4	4
$ ho_{ m calcd}~(mg/m^3)$	1.357	1.216	1.438
$\mu (\mathrm{mm}^{-1})$	0.079	0.958	1.175
θ range (°)	2.699–25.144	2.691-68.401	1.925-25.150
F (000)	1368	1664	1480
collected reflens no.	9766	34271	37341
unique reflens no.	5091	7760	5927
$R \left[I > 2\sigma(I) \right]$	0.0677	0.0414	0.0560
R (ref)	0.1325	0.0480	0.0720
$wR2 [I > 2\sigma(I)]$	0.1465	0.1115	0.1629
wR2 (ref)	0.1921	0.1164	0.1758

Table S1. Details of the Crystal Structure Analyses of Compounds 5_0 , 17_s and 18_{se} .

	21	23	24S ₀	30 _{HBC}
CCDC No.	2238627	2238628	2238629	2238632
empirical formula	$C_{14}H_{10}Te$	$C_{18}H_8Br_4$	$C_{51}H_{38}C_{12}O~S$	$C_{116}H_{100}S_{0.28}$
formula wt	305.82	543.88	769.77	1503.01
crystal description	Colorless	Colorless block	Yellow block	Yellow block
crystal system	Orthorhombic	Triclinic	Monoclinic	Monoclinic
space group	Pca2(1)	P-1	P 1 21 1	P 1 21/c 1
T (K)	298(2)	150.00	150.00	100.00
<i>a</i> (Å)	11.7118(7)	7.7791(14)	9.2713(2)	14.5888(8)
<i>b</i> (Å)	12.2711(6)	9.3866(15)	28.4806(6)	39.4014(19)
c (Å)	7.8403(4)	11.1959(19)	13.7600(3)	15.8848(8)
α (°)	90	105.367(6)	90	90
β (°)	90	93.035(7)	93.2120(10)	96.813(3)
γ (°)	90	99.210(7)	90	90
$V(Å^3)$	1126.78(10)	774.2(2)	3627.65(14)	9066.4(8)
Ζ	4	2	4	4
$ ho_{ m calcd}~(m mg/m^3)$	1.803	2.333	1.409	1.101
μ (mm ⁻¹)	2.601	10.388	0.279	0.525
θ range (°)	2.404-28.341	2.288-28.285	2.060-24.999	3.018-65.366
F (000)	584	512	1608	3202
collected reflens no.	14089	23328	22808	91185
unique reflens no.	2803	3828	12164	15463
$R \left[I > 2\sigma(I) \right]$	0.0295	0.0313	0.0792	0.1343
R (ref)	0.0480	0.0417	0.1323	0.1655
$wR2 [I > 2\sigma(I)]$	0.0636	0.0698	0.1952	0.3653
<i>wR2</i> (ref)	0.0743	0.0742	0.2349	0.3877

Table S2. Details of the Crystal Structure Analyses of Compounds 21, 23, 24S₀ and 30_{HBC} .

Figure S4. Single crystals suitable for X-ray diffraction analysis were obtained from solutions of 5_0 in dichloromethane and hexane at room temperature. (a) Crystal structure of compound 5_0 with atom labels and bond lengths [Å], and (b) molecular packing of compound 5_0 labeled with π - π stacking distance.

Figure S5. Single crystals suitable for X-ray diffraction analysis were obtained from solutions of 17_s in dichloromethane and hexane at room temperature. (a) Crystal structure of compound 17_s with atom labels and bond lengths [Å], and (b) molecular packing of compound 17_s . The *P/M* enantiomers were identified.

Figure S6. Single crystals suitable for X-ray diffraction analysis were obtained from solutions of 18_{Se} in dichloromethane and hexane at room temperature. (a) Crystal structure of compound 18_{Se} with atom labels and bond lengths [Å], and (b) molecular packing of compound 18_{Se} . The *P*/*M* enantiomers were identified.

Figure S7. Single crystals suitable for X-ray diffraction analysis were obtained from solutions of 24_{so} in dichloromethane and hexane at room temperature. (a) Crystal structure of compound 24_{so} with atom labels and bond lengths [Å], and (b) molecular packing of compound 24_{so} . The *P*/*M* enantiomers were identified. The hydrogen bond between the oxide and dichloromethane was shown.

	$\lambda_{max} (nm)^a$	$\mathcal{E}_{max} \left(M^{-1} \operatorname{cm}^{-1} \right)$	$\lambda_{em}(nm)^{b}$	Stokes shift (cm ⁻¹)	$arPhi_{ m F}$ c
50	351	3.3 ×10 ⁵	486/459	7913/6704	0.05
16s	351	1.8 ×10 ⁵	477	7526	0.12
17 _s	351	1.3 ×10 ⁵	475	7437	0.18
18 _{Se}	351	2.3×10 ⁵	477	7526	0.0096
19 _{Se}	351	1.8×10 ⁵	476	7482	0.0097
24 ₈₀	353	2.3×10 ⁵	475	7276	0.20
25 ₈₀	353	1.4×10 ⁵	473	7187	0.30
26 _{SeO}	353	2.4 ×10 ⁵	477	7364	0.05
27 _{SeO}	353	1.0 ×10 ⁵	476	7320	0.12
28 ₈₀₂	360	1.1×10 ⁵	489	7328	0.19
29 _{Seco-HBC}	359	1.1×10 ⁵	497/474	7734/6758	0.20
30 _{нвс}	358	2.4×10 ⁵	494	7690	0.04

 Table S3. Photophysical Properties of different NGs.

^a Measured in dichloromethane (5 μ M). ^b λ ex = 350 nm. ^c Quinine sulfate (Φ _F = 0.54 in 0.1 M H₂SO₄) as a reference.

a)

Figure S8. a) UV-vis spectra of compound 5_0 , 16_s , 17_s , 18_{se} , 19_{se} , 24_{so} , 25_{so} , 26_{se0} , 27_{se0} , and 28_{so2} (5 μ M in DCM); b) UV-vis spectra of compounds $29_{seco-HBC}$ and 30_{HBC} (5 μ M in DCM).

Figure S9. Fluorescent spectrum of compound 16_s, 18_{se}, 24_{so}, 26_{seo}, 29_{seco-HBC}, and 30_{HBC} (5 μ M in DCM).

Figure S10. Fluorescence intensity of compounds 5_0 (a), 17_s (b), 19_{se} (c), 25_{so} (d), 27_{se0} (e), 28_{so2} (f) at 5 μ M concentration in different solvents.

	5 ₀	17 _s	19 _{Se}	25 _{so}	27 _{SeO}	28 502	29 _{seco-HBC}	30 _{нвс}
Epc	1.32 V;	1.36 V;	-0.84 V	1.40 V;	1.38 V;	1.36 V;		1.23 V;
	-0.88 V	-0.78 V		0.92 V;	0.92 V;	0.91 V;		-0.22 V
				-0.82 V	-0.81 V	0.56 V;		
						-0.40 V		
Epa	1.13 V;	1.08 V;	1.059 V;	1.22 V;	1.23 V;	1.24 V;	0.59 V	0.92 V;
	-1.12V	-1.08 V	-0.62 V;	-1.08 V	-1.03 V	-1.04 V		-1.05 V
			-1.05 V					

Figure S11 Cyclic Voltammetry of 5_0 , 17_s , 19_{se} , 25_{s0} , 27_{se0} , 28_{s02} , $29_{sec0-HBC}$ and 30_{HBC} (Scan rate: 250 mV s⁻¹, supporting electrolyte: 0.1 M nBu₄NPF₆ in DCM) with summarized oxidation/reduction waves.

Figure S12. Racemic mixtures of **17**_s were separated by preparative chiral HPLC and the purities were tested by analytic chiral HPLC (analytic IE-3 column, n-hexane/isopropanol = 98:2, v/v; 1.0 mL/min; 254 nm); a) Chromatography of racemic sample; b) Chromatography of enantiopure compound **17**_s-*P*; c) Chromatography of enantiopure compound **17**_s-*M*.

Figure S13. Racemic mixtures of 19_{se} were separated by preparative chiral HPLC and the purities were tested by analytic chiral HPLC (analytic IE-3 column, n-hexane/isopropanol = 98:2, v/v; 1.0 mL/min; 254 nm); a) Chromatography of racemic sample; b) Chromatography of enantiopure compound 19_{se} -*P*; c) Chromatography of enantiopure compound 19_{se} -*M*.

(b)

(c)

Figure S14. Preparation of optical pure enantiomers 25_{so} -*P* and 25_{so} -*M*. (a) Enantiomers 25_{so} -*P* and 25_{so} -*M* were obtained by following the synthetic procedure as racemic 25_{so} in scheme S2 using optical pure compounds 17_{s} -*P* and 17_{s} -*M*. (b) Chiral chromatography of enantiopure compound 25_{so} -*P*; (c) Chromatography of enantiopure compound 25_{so} -*M*. (Unichiral CND-5H column, 95%n-Hexane/5%Ethanol, 1mL/min, 254 nm);

Figure S15. CPL dissymmetry factor g(lum) versus wavelength spectra of 17_{s} -*P*/ 17_{s} -*M*, and 25_{so} -*P*/ 25_{so} -*M* in dichlomethane..

(a)

(b)

S32

Figure S16. Thermal enantiomerization of **17**_S-*P* at 100 °C followed by chiral HPLC analyses. (a) Scheme for thermal enantiomerization of **17**_S-*P*. (b) Chiral HPLC traces with analytic IE-3 column after specific reaction time at 100 °C in 1,2-dichlorobenzene. The solvent was removed under reduced pressure before analyzing with eluent: n-hexane/isopropanol = 98:2, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. (c) The plot of HPLC-based conversion ratio of **17**_S-*P* (α) at time t. It switches between the *P* and *M* enantiomers following a reversible first-order reaction^[S6], with a rate constant (k), which could be obtained by fitting the experimental data using the following equation: ln ($2\alpha - 1$) = -2kt and k was determined as $3.52 \cdot 10^{-5}$ s⁻¹. Then the enantiomerization barrier (ΔG^+) was calculated from the Eyring equation: $k = \kappa kBThK^{\ddagger}$ and $\Delta G^{\ddagger} = -RTlnK^{\ddagger}$. K[‡] is the thermodynamic equilibrium constant. The Gibbs activation energy can be determined as $\Delta G^{\ddagger}(T) = -RTln (kh/\kappa kBT)$. R is the gas constant (R = 8.314 J K^{-1}); h is the Planck constant (h = $6.626 \times 10.34 \text{ J s}$); kB is the Boltzmann constant (kB = $1.38 \times 10^{-23} \text{ J K}^{-1}$); κ is the transmission coefficient ($\kappa = 1$). As a result, the enantiomerization energy was determined as $\Delta G^{\ddagger} = 123845.82 \text{ J/mol} = 29.59 \text{ kcal/mol}$. t_{1/2} = ln2/k= 19691.7 s =5.5 h.

(b)

(a)

Figure S17. Thermal enantiomerization of 19_{se} -*P* at 130 °C followed by chiral HPLC. (a) Scheme for thermal enantiomerization of 19_{se} -*P* and selenium-extrusion of 19_{se} (b) Chiral HPLC trace for conversion, after specific reaction time at 130 °C in 1,2-dichlorobenzene. The solvent was removed under reduced pressure before analyzing with analytic IE-3 column, eluent: *n*-hexane/isopropanol = 98:2, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. Selenium-extrusion of 19_{se} -*P* occurs prior to enantiomerization of it at 130°C according to the HPLC spectra; (c) The plot of HPLC-based conversion ratio of 19_{se} -*P* (α) at time t (remove the data of 3h). It switches between the - (*P*) and - (*M*) form isomers following a reversible first-order reaction^[S6], with a rate constant (k), which could be obtained by fitting the experimental data using the following equation: $\ln (2\alpha - 1) = -2kt$ and k was determined as $1.05 \cdot 10^{-4} \text{ s}^{-1}$. Then use the same calculation as 17_{s} -*P* above, the enantiomerization energy of 19_{se} -*P* was determined as $\Delta G^{\ddagger} = 130451.63 \text{ J/mol} = 31.16 \text{ kcal/mol. } t_{1/2} = \ln 2/k = 6601 \text{ s} = 1.83 \text{ h}$.

Figure S18. Changes in the UV/vis absorption spectra of 5_0 upon heating. Heating was performed in the solid state and monitored by dissolving in DCM at 5 μ M concentration.

Figure S19. Thermal sulfur-extrusion of 25_{so} at 250 °C was analyzed by chiral HPLC. (a) Scheme for thermal sulfur-extrusion of 25_{so} . (b) Chiral HPLC trace for the conversion of 25_{so} powder reacted at 250 °C for 2 hours, dissolve the powder with *n*-hexane and analyze with analytic OD-3 column, eluent: *n*-hexane/isopropanol = 90:10, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. The sulfur-extrusion did not react completely with the unreacted 25_{so} left.

Figure S20. Thermal sulfur-extrusion of 19_{Se} at 200 °C was analyzed by chiral HPLC. (a) Scheme for thermal sulfur-extrusion of 19_{Se} . (b) Chiral HPLC trace for the conversion of 19_{Se} powder reacted at 200 °C for 5 mins, dissolve the powder with *n*-hexane and analyze with analytic IE-3 column, eluent: *n*-hexane/isopropanol = 98:2, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. The 19_{Se} completely and quantitatively convert to $29_{Seco-HBC}$ through sulfur-extrusion reaction according to the HPLC chromatography.

Figure S21. Thermal sulfur-extrusion of 27_{se0} at 200 °C was analyzed by chiral HPLC. (a) Scheme for thermal sulfur-extrusion of 27_{se0} . (b) Chiral HPLC trace for the conversion of 27_{se0} powder reacted at 200 °C for 5mins. Dissolve the powder with *n*-hexane and analyze with analytic OD-3 column, eluent: *n*-hexane/isopropanol = 90:10, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. The sulfur-extrusion reacted completely and quantitatively convert to $29_{Seco-HBC}$ according to the HPLC chromatogram.

Figure S22. Sulfur-extrusion and cyclization reaction of 27_{se0} in acid was analyzed by chiral HPLC. (a) Scheme for thermal sulfur-extrusion of 27_{se0} . (b) Chiral HPLC trace for the conversion of 27_{se0} in CF₃COOH /DCM (1/2, v/v) reacted at room temperature for 20 hours. Solvent was removed under reduced pressure before analyzing with analytic OD-3 column, eluent before analyzing with eluent: *n*-hexane/isopropanol = 90:10, v/v; flow rate: 1.0 mL/min; detected by absorption at 254 nm. 27_{se0} quantitatively converted to 30_{HBC} according to the HPLC spectra.

b)

c)

a)

Figure S23. Changes in the UV/vis absorption spectra of 5_0 (a), 17_s (b), 19_{se} (c), 25_{so} (d), and 28_{so2} (e) upon the addition of trifluoroacetic acid (TFA) in dichloromethane (1:2, v/v).

Figure S24. (c) Changes in the UV-vis absorption spectra of 27_{seO} upon dissolving it in methanesulfonic acid /DCM (1/2, v/v) with 3.3 μ M concentration under ambient conditions.

e)

b)

c)

30нвс

Figure S25 Solubility of 27_{seO} and 30_{HBC} in DCM (a) and EtOH (b) at different concentration
at room temperature. And the results were summarized in a table (c). Based on the measurement,
the solubility of 27_{seO} is more than 100-fold higher than that of 30_{HBC} in both DCM and EtOH.

<5×10⁻⁶M

1.4

5×10⁻⁴M~1×10⁻³M

Computational Details

Geometry calculations of the compounds were carried out by DFT methods using the Gaussian 16 program package.^[S8] Different alkyl chains were replaced by methyl group. The optimizations of structures were carried out at the CAM-B3LYP/6-31+G(d,p) level of theory in gas phase. The nucleus independent chemical shift NICS (0) calculations were performed at the B3LYP-GIAO/6-311++G(d,p) level. Electronic transitions of the *M* and *P* enantiomers for calculated ECD spectra of 16_8 and 18_{se} were calculated by means of TD-DFT methods at B3LYP/6-31G(d,p) theory level and the first 40 excited states were considered in the gas phase. The atomic coordinates of the calculated structures are shown in Tables S4–S9. TD-DFT calculated molecular orbits and transitions in the excited states were performed at PBE0/6-311G(d,p). The major transitions of 9 excited states calculated by TD-DFT are shown in Tables S10-S15

(a)

(b)

Figure S26. Calculated ECD spectra of $17_s - P$ and $17_s - M$ (a); Calculated ECD spectra of $19_{se} - P$ and $19_{se} - M$ (b)

Figure S27. Isosurface of LOL- π of backbones 5₀ (a), 16_s (b), 18_{se} (c), 24_{so} (d), 26_{seo} (e), and 28_{so2} (f) with calculated NICS(0)values..

Figure. S28 Molecular orbitals (HOMO-1–LUMO+1) with major transitions of 5_0 , 17_s , 18_{se} , 24_{so} , 26_{seo} , and 28_{so2} calculated by DFT at the PBE0/6-311G+G(d,p) level of theory.

Table S4. Atomic coordinates for the DFT calculated structure of 5_0 :

Zero-point correction=	0.579055 (Hartree/Particle)
Thermal correction to Energy=	0.610567
Thermal correction to Enthalpy=	0.611511
Thermal correction to Gibbs Free Energy	gy= 0.517870
Sum of electronic and zero-point Energ	ies= -1842.383087
Sum of electronic and thermal Energies	-1842.351576
Sum of electronic and thermal Enthalpi	es= -1842.350632
Sum of electronic and thermal Free Ene	ergies= -1842.444273

Center	Atomic	A	tomic	Coordinates	s (Angstroms)
Number	Numb	ber	Туре	X Y	Z
1	8	0	-0.000051	-3.885666	-1.761040
2	6	0	-6.794474	-0.112972	1.905195
3	1	0	-7.511477	0.375827	1.238599
4	1	0	-7.173150	-1.112534	2.128541
5	6	0	-5.423705	-0.170333	1.285089
6	6	0	-4.775798	-1.378034	1.082398
7	1	0	-5.289289	-2.286674	1.370872
8	6	0	-3.493589	-1.444216	0.530943
9	6	0	-2.808948	-0.251371	0.226566
10	6	0	-1.399561	-0.282423	-0.113202
11	6	0	-0.699342	0.948038	-0.158125
12	6	0	0.699397	0.948005	-0.158130
13	6	0	1.417018	2.200540	-0.196746
14	6	0	2.818005	2.218824	-0.029290
15	6	0	3.490832	0.980857	0.362266
16	6	0	4.776843	0.996732	0.893377
17	1	0	5.280124	1.944152	1.049431
18	6	0	5.423738	-0.170555	1.285016

19	6	0	6.794451	-0.113232	1.905249
20	1	0	7.174001	-1.112904	2.126607
21	1	0	7.511028	0.377564	1.239675
22	6	0	-2.873687	-2.711536	0.154319
23	6	0	-3.620142	-3.901061	0.167417
24	1	0	-4.622809	-3.900629	0.572371
25	6	0	-3.134201	-5.065790	-0.384952
26	1	0	-3.734921	-5.968850	-0.375518
27	6	0	-1.893913	-5.052317	-1.012042
28	1	0	-1.502082	-5.916333	-1.535450
29	6	0	-1.150932	-3.891358	-1.009351
30	6	0	1.150761	-3.891433	-1.009241
31	6	0	1.893638	-5.052458	-1.011800
32	1	0	1.501779	-5.916473	-1.535189
33	6	0	3.133871	-5.066000	-0.384601
34	1	0	3.734504	-5.969116	-0.375045
35	6	0	3.619879	-3.901273	0.167716
36	1	0	4.622508	-3.900913	0.572762
37	6	0	2.873537	-2.711678	0.154468
38	6	0	3.493523	-1.444371	0.531006
39	6	0	4.775761	-1.378232	1.082395
40	1	0	5.289235	-2.286885	1.370854
41	6	0	3.513388	3.410214	-0.210906
42	1	0	4.594848	3.420151	-0.135640
43	6	0	2.857150	4.598363	-0.515059
44	6	0	3.636451	5.863590	-0.757923
45	1	0	4.043463	5.885395	-1.774466
46	1	0	3.007899	6.748693	-0.636833
47	6	0	1.472707	4.586170	-0.594142
48	1	0	0.966872	5.523429	-0.790837
49	6	0	0.731265	3.413518	-0.428316
50	6	0	-0.731095	3.413555	-0.428273
51	6	0	-1.416899	2.200612	-0.196703
52	6	0	-2.817884	2.218966	-0.029195
53	6	0	-3.513209	3.410393	-0.210747
54	1	0	-4.594667	3.420383	-0.135443
55	6	0	-2.856916	4.598525	-0.514877
56	6	0	-3.636188	5.863799	-0.757588
57	1	0	-3.007246	6.748813	-0.637888
58	1	0	-4.044517	5.885030	-1.773613
59	6	0	-1.472484	4.586257	-0.594028
60	1	0	-0.966606	5.523493	-0.790717
61	6	0	-3.490766	0.981017	0.362325

62	6	0	-0.716938	-1.505857	-0.303732
63	6	0	-1.559465	-2.712059	-0.368277
64	6	0	0.716878	-1.505890	-0.303715
65	6	0	1.399557	-0.282488	-0.113187
66	6	0	2.808943	-0.251500	0.226584
67	6	0	1.559343	-2.712138	-0.368194
68	6	0	-4.776754	0.996938	0.893489
69	1	0	-5.279965	1.944381	1.049630
70	1	0	6.781337	0.454122	2.841003
71	1	0	4.480412	5.950987	-0.068704
72	1	0	-4.479240	5.951883	-0.067337
73	1	0	-6.781897	0.456295	2.839785

Table S5. Atomic coordinates for the DFT calculated structure of 16_8 :

Zero-point correction=	0.598352 (Hartree/Particle)
Thermal correction to Energy=	0.633281
Thermal correction to Enthalpy=	0.634225
Thermal correction to Gibbs Free Ene	ergy= 0.531057
Sum of electronic and zero-point Ene	rgies= -2166.515673
Sum of electronic and thermal Energi	ies= -2166.480744
Sum of electronic and thermal Enthal	pies= -2166.479799
Sum of electronic and thermal Free E	nergies= -2166.582968

Center	At	omic	Atomic	(Coordina	ates (Ang	stroms)
Number	Νı	ımber	Туре	Х	Y	Ζ	
1	16	0	0.669339	9 -4	.045513	-1.4211	78
2	6	0	-1.440156	-0.	150681	-0.1658	56
3	6	0	-0.709947	1.	057742	-0.12280)4
4	6	0	0.703436	1.0	030618	-0.14183	5

5	6	0	1.281512	-2.559282	0.748222
6	6	0	-0.681783	3.540380	-0.159285
7	6	0	1.378112	-0.207632	-0.091772
8	6	0	0.630681	-1.400817	0.060669
9	6	0	-0.763163	-1.400719	-0.169305
10	6	0	-1.403855	2.325842	-0.118025
11	6	0	1.450790	2.269615	-0.068563
12	6	0	-2.880865	-0.106654	-0.028421
13	6	0	0.774654	3.510072	-0.030733
14	6	0	-1.560624	-2.622049	-0.402777
15	6	0	-1.376930	4.740082	-0.306602
16	1	0	-0.831080	5.670746	-0.404055
17	6	0	-3.617865	-1.302945	0.104101
18	6	0	2.860872	2.251904	0.046018
19	6	0	3.571786	0.985593	-0.131021
20	6	0	-3.557243	1.127556	0.084969
21	6	0	2.842453	-0.212415	-0.243133
22	6	0	-2.814843	2.370013	-0.099838
23	6	0	-2.763507	4.785268	-0.369222
24	6	0	-4.911844	1.138122	0.422853
25	1	0	-5.419826	2.083270	0.572237
26	6	0	2.881435	4.667002	0.345930
27	6	0	-2.964442	-2.571218	-0.223500
28	6	0	-4.961696	-1.242361	0.467063
29	1	0	-5.516161	-2.155981	0.644455
30	6	0	1.504124	4.680026	0.182513
31	1	0	0.988996	5.629049	0.266622
32	6	0	-3.465559	3.595220	-0.245796
33	1	0	-4.547400	3.627209	-0.298166
34	6	0	1.803731	-2.361094	2.029539
35	1	0	1.726266	-1.379507	2.484288
36	6	0	3.541000	3.448202	0.270465
37	1	0	4.615124	3.441048	0.408775
38	6	0	-5.622110	-0.032217	0.639832
39	6	0	5.661863	-0.199505	-0.584724
40	6	0	4.969424	0.956576	-0.287627
41	1	0	5.533866	1.877750	-0.212776
42	6	0	-1.031227	-3.830497	-0.931008
43	6	0	4.917598	-1.370109	-0.778614
44	1	0	5.419963	-2.285835	-1.076862
45	6	0	3.551457	-1.369057	-0.622018
46	1	0	3.012322	-2.279177	-0.828996
47	6	0	-3.754020	-3.700423	-0.482824

48	1	0	-4.828149	-3.637107	-0.373822
49	6	0	1.378366	-3.831128	0.189726
50	6	0	-3.204238	-4.877679	-0.935158
51	1	0	-3.832677	-5.738700	-1.135876
52	6	0	-1.838154	-4.933098	-1.171668
53	1	0	-1.382955	-5.835656	-1.561840
54	6	0	2.432045	-3.395578	2.709140
55	1	0	2.838038	-3.218109	3.699591
56	6	0	2.005009	-4.873767	0.863855
57	1	0	2.063431	-5.850946	0.397095
58	6	0	2.543596	-4.652352	2.124581
59	1	0	3.037899	-5.460815	2.653004
60	6	0	7.158588	-0.205014	-0.736629
61	1	0	7.458748	-0.642789	-1.693372
62	1	0	7.570017	0.805344	-0.684338
63	1	0	7.632327	-0.799283	0.051554
64	6	0	3.644930	5.943901	0.577468
65	1	0	3.988484	6.374540	-0.369289
66	1	0	3.024699	6.695273	1.071972
67	1	0	4.528596	5.772927	1.197154
68	6	0	-3.484709	6.096592	-0.535115
69	1	0	-4.464445	5.956526	-0.997731
70	1	0	-3.645681	6.583539	0.432790
71	1	0	-2.912784	6.789653	-1.157031
72	6	0	-7.076145	0.001301	1.028971
73	1	0	-7.344084	0.955986	1.487189
74	1	0	-7.721764	-0.136587	0.154981
75	1	0	-7.316427	-0.794163	1.739041

Table S6. Atomic coordinates for the DFT calculated structure of 18_{Se}:

		6				23
Zero-po	oint c	orrection=	=	0.597	789 (Hartree/Particle)	
Therm	al coi	rection to	Energy=	0	.633053	
Therm	al coi	rection to	Enthalpy=	0	0.633997	
Therm	al coi	rection to	Gibbs Free	e Energy=	0.530163	
Sum of	f elec	tronic and	l zero-point	Energies=	-4167.807097	
Sum of	f elec	tronic and	l thermal Ei	nergies=	-4167.771833	
Sum of	f elec	tronic and	l thermal Ei	nthalpies=	-4167.770889	
Sum of	f elec	tronic and	l thermal Fr	ee Energies	-4167.874723	
Center	A	tomic A	Atomic	Coordin	ates (Angstroms)	
Number	Nu	mber	Туре	X Y	Ζ	
1	34	0	3.002881	-2.519553	-1.346554	
2	6	0	3.355969	-1.898885	0.404339	
3	6	0	2.420369	-1.003146	0.912493	
4	6	0	1.204582	-0.543493	0.161826	
5	6	0	1.026271	0.848216	-0.023061	
6	6	0	2.163779	1.767806	-0.167837	
7	6	0	1.973960	3.156829	-0.055739	
8	6	0	0.618747	3.689740	0.090428	
9	6	0	0.383557	5.047385	0.301639	
10	1	0	1.216794	5.722149	0.455544	
11	6	0	-0.900221	5.574459	0.341821	
12	6	0	-1.971299	4.713111	0.155148	
13	1	0	-2.972337	5.123043	0.211032	
14	6	0	-1.791455	3.344098	-0.046065	
15	6	0	-2.934380	2.444391	-0.201199	
16	6	0	-4.227320	2.930913	-0.390718	
17	1	0	-4.391961	3.996259	-0.498499	
18	6	0	-5.325895	2.086087	-0.480887	
19	6	0	-5.120944	0.722361	-0.327423	

20	1	0	-5.978435	0.062618	-0.387779
21	6	0	-3.846686	0.187922	-0.137315
22	6	0	-3.639498	-1.239842	0.086285
23	6	0	-4.704470	-2.081003	0.412629
24	1	0	-5.700728	-1.668745	0.518399
25	6	0	-4.519734	-3.430060	0.672608
26	6	0	-3.236846	-3.950807	0.560716
27	1	0	-3.095857	-5.003639	0.772375
28	6	0	-2.145856	-3.156826	0.212029
29	6	0	-0.824687	-3.732912	-0.048171
30	6	0	0.288246	-2.884869	-0.265253
31	6	0	0.128537	-1.429911	-0.075589
32	6	0	-1.186318	-0.892693	-0.106444
33	6	0	-2.331311	-1.769376	0.026116
34	6	0	-1.388295	0.505389	-0.096321
35	6	0	-2.726827	1.047529	-0.136788
36	6	0	-0.277737	1.378706	-0.104459
37	6	0	-0.482654	2.811565	-0.047922
38	6	0	1.468185	-3.496267	-0.759571
39	6	0	1.573857	-4.871253	-0.891905
40	1	0	2.508760	-5.291587	-1.242745
41	6	0	0.495064	-5.693928	-0.597766
42	1	0	0.576414	-6.769648	-0.711334
43	6	0	-0.693283	-5.119814	-0.207731
44	1	0	-1.553108	-5.759196	-0.061380
45	6	0	3.082267	4.011822	-0.191638
46	1	0	2.943613	5.083052	-0.111822
47	6	0	4.350579	3.545966	-0.475038
48	6	0	4.507320	2.169484	-0.683725
49	1	0	5.474902	1.775935	-0.981684
50	6	0	3.441421	1.311859	-0.544347
51	1	0	3.579365	0.268370	-0.777990
52	6	0	2.612081	-0.527402	2.212311
53	1	0	1.891525	0.164337	2.635275
54	6	0	3.718713	-0.918143	2.955724
55	1	0	3.852550	-0.530719	3.960408
56	6	0	4.650561	-1.800194	2.419877
57	1	0	5.515008	-2.104296	3.000909
58	6	0	4.463636	-2.299265	1.137070
59	1	0	5.163603	-3.003313	0.701041
60	6	0	5.522533	4.480935	-0.601349
61	1	0	5.207183	5.525847	-0.561613
62	1	0	6.243737	4.319662	0.206600

63	1	0	6.055603	4.324487	-1.543872
64	6	0	-1.121256	7.047808	0.559907
65	1	0	-1.081511	7.596570	-0.387249
66	1	0	-2.097831	7.242262	1.009531
67	1	0	-0.356340	7.472740	1.214563
68	6	0	-6.699924	2.635779	-0.758108
69	1	0	-6.876418	2.728202	-1.835155
70	1	0	-7.478984	1.984974	-0.354110
71	1	0	-6.827897	3.629068	-0.320834
72	6	0	-5.679761	-4.315350	1.043372
73	1	0	-6.086058	-4.822962	0.161879
74	1	0	-5.378876	-5.088981	1.754307
75	1	0	-6.492170	-3.740015	1.493214

Table S7. Atomic coordinates for the DFT calculated structure of 24_{SO} :

Zero-point correction=	0.602334 (Hartree/Particle)
Thermal correction to Energy=	0.638225
Thermal correction to Enthalpy=	0.639169
Thermal correction to Gibbs Free Ene	rgy= 0.534100
Sum of electronic and zero-point Ener	gies= -2241.667325
Sum of electronic and thermal Energie	es= -2241.631434
Sum of electronic and thermal Enthal	pies= -2241.630490
Sum of electronic and thermal Free En	nergies= -2241.735559

Center	At	omic	Atomic	C	Coordina	ites (Angstro	ms)
Number	Nu	mber	Туре	Х	Y	Ζ	
1	16	0	2.381576	-3.	127881	-1.358143	
2	8	0	3.207148	-4.3	316460	-1.775142	
3	6	0	0.798723	-3.7	767214	-0.753104	

4	6	0	0.664203	-5.131913	-0.894031
5	1	0	1.510884	-5.692988	-1.275449
6	6	0	-0.548131	-5.733715	-0.578569
7	1	0	-0.671703	-6.806515	-0.680972
8	6	0	-1.611419	-4.944976	-0.198818
9	1	0	-2.573560	-5.415262	-0.047298
10	6	0	-0.236864	-2.934168	-0.272303
11	6	0	-0.102601	-1.477827	-0.095521
12	6	0	-1.285171	-0.693060	-0.117333
13	6	0	-2.579740	-1.329622	0.009127
14	6	0	-2.674606	-2.728988	0.183292
15	6	0	-3.905367	-3.294335	0.510161
16	1	0	-3.979174	-4.357188	0.704843
17	6	0	-5.060461	-2.530351	0.618782
18	6	0	-6.377047	-3.172457	0.966330
19	1	0	-7.070531	-2.449240	1.401335
20	1	0	-6.245603	-3.988164	1.681709
21	6	0	-4.970633	-1.168376	0.377224
22	1	0	-5.866449	-0.568331	0.481367
23	6	0	-3.757122	-0.551909	0.067692
24	6	0	-3.675093	0.890365	-0.143694
25	6	0	-2.407236	1.512218	-0.138358
26	6	0	-1.201666	0.716377	-0.101800
27	6	0	0.062283	1.352130	-0.111256
28	6	0	1.238811	0.575213	-0.043280
29	6	0	1.133696	-0.827524	0.121544
30	6	0	2.245855	-1.551732	0.817611
31	6	0	2.904706	-2.648483	0.280823
32	6	0	-2.334980	2.922564	-0.196456
33	6	0	4.298847	-2.888848	2.197029
34	1	0	5.094544	-3.396507	2.731979
35	6	0	3.651023	-1.800076	2.773381
36	1	0	3.939731	-1.460078	3.762480
37	6	0	2.636034	-1.137743	2.093706
38	1	0	2.139760	-0.286805	2.547616
39	6	0	2.536302	1.255394	-0.187633
40	6	0	3.709945	0.563356	-0.545460
41	1	0	3.667637	-0.496239	-0.738272
42	6	0	4.918293	1.201503	-0.696704
43	1	0	5.794278	0.625110	-0.979468
44	6	0	5.023730	2.586551	-0.516238
45	6	0	2.617352	2.656564	-0.087094
46	6	0	3.866879	3.284975	-0.236700

47	1	0	3.932532	4.363815	-0.170659
48	6	0	6.349192	3.282550	-0.662907
49	1	0	6.238798	4.368065	-0.616556
50	1	0	7.040839	2.982922	0.131108
51	6	0	1.394286	3.443125	0.073466
52	6	0	0.141551	2.797295	-0.050783
53	6	0	-1.036723	3.577348	-0.040397
54	6	0	-0.942904	4.954634	0.161275
55	1	0	-1.843115	5.554161	0.217618
56	6	0	0.277158	5.588147	0.344694
57	6	0	1.432121	4.820435	0.285777
58	1	0	2.382967	5.319715	0.425203
59	6	0	0.347564	7.065037	0.628848
60	1	0	-0.522869	7.590063	0.228731
61	1	0	1.243463	7.512764	0.191690
62	6	0	3.922495	-3.322201	0.932004
63	1	0	4.394977	-4.162045	0.433176
64	6	0	-3.505994	3.656288	-0.381346
65	1	0	-3.457086	4.733597	-0.483406
66	6	0	-4.749780	3.045782	-0.474812
67	6	0	-4.818213	1.667685	-0.329698
68	1	0	-5.789230	1.191381	-0.393672
69	6	0	-5.988026	3.857738	-0.746848
70	1	0	-6.140294	3.992596	-1.823053
71	1	0	-6.880712	3.369465	-0.349058
72	6	0	-1.489957	-3.553456	-0.061086
73	1	0	-6.856878	-3.593607	0.076385
74	1	0	-5.918570	4.852759	-0.300514
75	1	0	0.379725	7.256931	1.706719
76	1	0	6.825364	3.031580	-1.615389

Table S8. Atomic coordinates for the DFT calculated structure of 26_{SeO} :

Zero-point correction=	0.601066 (Hartree/Particle)
Thermal correction to Energy=	0.637415
Thermal correction to Enthalpy=	0.638359
Thermal correction to Gibbs Free E	nergy= 0.532158
Sum of electronic and zero-point En	nergies= -4242.954330
Sum of electronic and thermal Ener	gies= -4242.917982
Sum of electronic and thermal Enth	alpies= -4242.917037
Sum of electronic and thermal Free	Energies= -4243.023238

Center	At	omic	Atomic	Coordina	ates (Angstroms)
Number	Nu	mber	Туре	X Y	Ζ
1	8	0	5.275177	-1.077329	-1.583300
2	6	0	2.893679	-2.265236	-0.603436
3	6	0	3.729063	-3.356948	-0.653016
4	1	0	4.748016	-3.206271	-0.998947
5	6	0	3.228022	-4.603968	-0.293741
6	1	0	3.865594	-5.481311	-0.320989
7	6	0	1.893879	-4.726529	0.032060
8	1	0	1.498853	-5.716572	0.216661
9	6	0	1.560252	-2.325561	-0.153972
10	6	0	0.695280	-1.142902	-0.011358
11	6	0	-0.708334	-1.339506	-0.063918
12	6	0	-1.256898	-2.675079	0.055892
13	6	0	-0.405515	-3.784224	0.271183
14	6	0	-0.964168	-5.023390	0.576014
15	1	0	-0.322609	-5.869277	0.790245
16	6	0	-2.338600	-5.217822	0.632254

17	6	0	-2.910406	-6.572456	0.955544
18	1	0	-3.927252	-6.492738	1.346498
19	1	0	-2.302001	-7.094543	1.698315
20	6	0	-3.165356	-4.138517	0.362360
21	1	0	-4.236703	-4.283642	0.429407
22	6	0	-2.655350	-2.872619	0.068726
23	6	0	-3.543866	-1.738023	-0.170375
24	6	0	-3.008050	-0.431458	-0.149932
25	6	0	-1.579918	-0.228709	-0.076599
26	6	0	-1.054115	1.084507	-0.078641
27	6	0	0.339648	1.281927	0.019840
28	6	0	1.187415	0.165208	0.217027
29	6	0	2.469914	0.369905	0.976219
30	6	0	3.720379	0.033110	0.483011
31	6	0	-3.885739	0.673440	-0.232633
32	6	0	4.826911	0.700893	2.474876
33	1	0	5.730911	0.834392	3.059887
34	6	0	3.589434	1.047730	3.010503
35	1	0	3.531084	1.449614	4.016749
36	6	0	2.420924	0.883564	2.274118
37	1	0	1.463170	1.156661	2.704144
38	6	0	0.864927	2.648807	-0.116495
39	6	0	2.207154	2.901547	-0.460949
40	1	0	2.867912	2.075736	-0.668953
41	6	0	2.697396	4.178994	-0.594305
42	1	0	3.738255	4.325452	-0.867410
43	6	0	1.862318	5.288612	-0.409510
44	6	0	-0.001115	3.753454	-0.023105
45	6	0	0.527282	5.050465	-0.152315
46	1	0	-0.134294	5.905364	-0.087496
47	6	0	2.404192	6.686602	-0.531178
48	1	0	1.604726	7.429985	-0.501350
49	1	0	3.099308	6.911047	0.284353
50	6	0	-1.442490	3.533221	0.103196
51	6	0	-1.951677	2.220361	-0.038231
52	6	0	-3.350837	2.024163	-0.061962
53	6	0	-4.196908	3.118313	0.121122
54	1	0	-5.269628	2.971645	0.150873
55	6	0	-3.706179	4.400442	0.319088
56	6	0	-2.331048	4.589963	0.295301
57	1	0	-1.952727	5.593648	0.445204
58	6	0	-4.637936	5.553600	0.581810
59	1	0	-5.626575	5.373048	0.153573

I	0	-4.250377	6.483581	0.158595
6	0	4.897644	0.185933	1.186016
1	0	5.828981	-0.105084	0.710363
6	0	-5.243312	0.446981	-0.454888
1	0	-5.917654	1.286196	-0.575291
6	0	-5.766874	-0.834768	-0.563247
6	0	-4.909392	-1.912667	-0.394757
1	0	-5.319833	-2.912499	-0.470116
6	0	-7.224167	-1.047473	-0.875706
1	0	-7.396952	-1.051934	-1.957242
1	0	-7.581002	-2.002774	-0.483784
6	0	1.037278	-3.615246	0.087468
1	0	-2.950080	-7.206195	0.063142
1	0	-7.843295	-0.253968	-0.450168
1	0	-4.770512	5.714811	1.657025
1	0	2.954103	6.818664	-1.467652
34	0	3.699432	-0.642537	-1.294276
	$ \begin{bmatrix} 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 34 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S9. Atomic coordinates for the DFT calculated structure of $\mathbf{28}_{SO2}$:

Zero-point correction=	0.607990 (Hartree/Particle)
Thermal correction to Energy=	0.644501
Thermal correction to Enthalpy=	0.645446
Thermal correction to Gibbs Free Ener	-gy= 0.539032
Sum of electronic and zero-point Energy	gies= -2316.847042
Sum of electronic and thermal Energie	-2316.810530
Sum of electronic and thermal Enthalp	ies= -2316.809586
Sum of electronic and thermal Free En	ergies= -2316.916000

Center Atomic Atomic Coordinates (Angstroms)

Number	Nui	nber	Туре	X Y	Ζ
1	8	0	4.416850	-3.220870	-1.333528
2	6	0	1.875010	-3.363520	-0.629587
3	6	0	2.127170	-4.714517	-0.780846
4	1	0	3.112899	-5.024514	-1.104047
5	6	0	1.118096	-5.637611	-0.545959
6	1	0	1.301536	-6.698580	-0.673157
7	6	0	-0.130257	-5.178207	-0.201610
8	1	0	-0.931805	-5.896232	-0.097479
9	6	0	0.619794	-2.849211	-0.201941
10	6	0	0.295171	-1.416649	-0.035130
11	6	0	-1.074100	-1.032898	-0.089783
12	6	0	-2.118009	-2.029451	0.024589
13	6	0	-1.785184	-3.388182	0.203565
14	6	0	-2.784728	-4.302081	0.536237
15	1	0	-2.530544	-5.332803	0.749753
16	6	0	-4.117841	-3.928678	0.633927
17	6	0	-5.178526	-4.937117	0.986378
18	1	0	-6.022555	-4.465969	1.495500
19	1	0	-4.783423	-5.719517	1.638812
20	6	0	-4.446993	-2.606470	0.376175
21	1	0	-5.484115	-2.307991	0.469745
22	6	0	-3.479187	-1.650464	0.067808
23	6	0	-3.843997	-0.254953	-0.152938
24	6	0	-2.827334	0.723418	-0.138630
25	6	0	-1.436277	0.334434	-0.088857
26	6	0	-0.435446	1.330089	-0.101060
27	6	0	0.921213	0.954761	-0.029735
28	6	0	1.256694	-0.401613	0.180784
29	6	0	2.534685	-0.684547	0.906439
30	6	0	3.542113	-1.538157	0.469598
31	6	0	-3.190841	2.088521	-0.198913
32	6	0	4.877574	-1.142317	2.410462
33	1	0	5.778329	-1.311709	2.990129
34	6	0	3.883306	-0.291669	2.884939
35	1	0	4.005634	0.202286	3.843263
36	6	0	2.730507	-0.066329	2.146429
37	1	0	1.965238	0.601467	2.525230
38	6	0	1.944404	1.996236	-0.204575
39	6	0	3.253283	1.686254	-0.620693
40	1	0	3.500758	0.668782	-0.880483
41	6	0	4.209952	2.661357	-0.781865
42	1	0	5.205418	2.381973	-1.114456

43	6	0	3.904926	4.010259	-0.557368
44	6	0	1.600329	3.353867	-0.080617
45	6	0	2.600166	4.329750	-0.237565
46	1	0	2.342938	5.378138	-0.148521
47	6	0	4.959700	5.071947	-0.710895
48	1	0	4.532161	6.074617	-0.642365
49	1	0	5.725183	4.981669	0.066741
50	6	0	0.196009	3.727480	0.095383
51	6	0	-0.800340	2.730358	-0.039567
52	6	0	-2.159502	3.110709	-0.030036
53	6	0	-2.493514	4.449367	0.183814
54	1	0	-3.534369	4.743255	0.241096
55	6	0	-1.526428	5.423148	0.379093
56	6	0	-0.190143	5.046801	0.319725
57	1	0	0.562692	5.812090	0.464961
58	6	0	-1.908310	6.850163	0.670337
59	1	0	-2.945256	7.050365	0.391930
60	1	0	-1.270688	7.551721	0.125943
61	6	0	4.703814	-1.778210	1.190900
62	1	0	5.444382	-2.455490	0.781536
63	6	0	-4.528520	2.427895	-0.397977
64	1	0	-4.809849	3.468783	-0.502703
65	6	0	-5.524273	1.465934	-0.503893
66	6	0	-5.168344	0.133198	-0.354216
67	1	0	-5.945516	-0.618237	-0.427114
68	6	0	-6.948405	1.858754	-0.793694
69	1	0	-7.125212	1.925536	-1.872516
70	1	0	-7.653767	1.127659	-0.391664
71	6	0	-0.405537	-3.811311	-0.034443
72	1	0	-5.569962	-5.426920	0.088304
73	1	0	-7.188693	2.833906	-0.363162
74	1	0	-1.803157	7.076058	1.736763
75	1	0	5.469747	4.986924	-1.674977
76	16	0	3.273412	-2.344533	-1.072048
77	8	0	2.878917	-1.361375	-2.080150

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	2.8601	433.49	0.0018	H-1 -> L -0.54035 H -> L+1 -0.47395 H -> L+2 0.11288	50.8738 44.9257 2.5484
2	2.9920	414.39	0.0206	H -> L -0.55660 H-1 -> L+1 0.41803	61.9607 34.9498
3	3.3572	369.31	0.3023	H-2 -> L -0.13759 H-1 -> L 0.33626 H -> L+1 -0.45290 H -> L+2 -0.38485	3.7862 22.6142 41.0237 29.6219
4	3.3732	367.56	0.3737	H-2 -> L+1 0.13238 H-> L+1 -0.49786 H-1 -> L+2 -0.34070 H -> L -0.32072	3.5049 49.5729 23.2153 20.5723
5	3.5160	352.63	0.3485	$\begin{array}{ll} H-2 \rightarrow L & -0.30762 \\ H-1 \rightarrow L & -0.34011 \\ H \rightarrow L+1 & 0.23953 \\ H \rightarrow L+2 & -0.45993 \end{array}$	18.9260 23.1350 11.4749 42.3071
6	3.5239	351.83	0.4839	$\begin{array}{l} H\text{-}3 \ \ \ > \ L \\ H\text{-}2 \ \ \ \ > \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	3.0539 12.1969 12.7664 53.4578 14.5854
7	3.7588	329.85	0.0966	H-2 -> L 0.59328 H -> L+2 -0.32259	70.3962 20.8129
8	3.8022	326.08	0.1012	H-2 -> L+1 0.59372 H-2 -> L+2 -0.12800 H-1 -> L+2 0.28700 H -> L+3 0.11469	70.5007 3.2768 16.4738 2.6308
9	3.8777	319.73	0.0035	$\begin{array}{ll} H\text{-}3 & -> L & 0.54709 \\ H\text{-}2 & -> L\text{+}1 & -0.14570 \\ H\text{-}1 & -> L\text{+}4 & 0.11823 \\ H & -> L\text{+}3 & 0.36976 \end{array}$	59.8615 4.2457 2.7957 27.3445

Table S10. Major transitions of 5_0 calculated by TD-DFT.

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	2.8297	438.16	0.0106	$\begin{array}{ll} H \rightarrow L & 0.43418 \\ H \rightarrow L + 1 & 0.34076 \\ H - 1 \rightarrow L & -0.31238 \\ H - 1 \rightarrow L + 1 & 0.28615 \end{array}$	37.7025 23.2235 19.5163 16.3764
2	2.9836	415.55	0.0376	H -> L -0.41951 H -> L+1 0.37731 H-1 -> L -0.35677 H-1 -> L+1 -0.20895	35.1977 28.4726 25.4570 8.7320
3	3.3493	370.18	0.5659	$\begin{array}{ll} H\text{-}1 & > L & 0.46494 \\ H & -> L\text{+}1 & 0.46410 \\ H & -> L\text{+}2 & -0.20888 \end{array}$	43.2338 43.0778 8.7262
4	3.4011	364.54	0.5460	H-1 -> L+1 -0.58555 H -> L 0.33869	68.5738 22.9422
5	3.5333	350.90	0.1367	H -> L+2 -0.57740 H-2 -> L -0.22717 H -1-> L -0.20237 H-2 -> L+1 0.16078	66.6782 10.3212 8.1907 5.1700
6	3.6053	343.90	0.0264	H-1 -> L+2 0.44861 H-2 -> L 0.34755 H-3 -> L 0.27993 H-2 -> L+1 0.24642	40.2502 24.1582 15.6722 12.1446
7	3.6992	335.17	0.0410	H-3 -> L 0.47551 H-1 -> L+2 -0.38637 H-2->L 0.23354 H-2->L+1 -0.14617	45.2220 29.8564 10.9082 4.2731
8	3.7862	327.46	0.0573	$\begin{array}{llllllllllllllllllllllllllllllllllll$	43.1521 26.4177 11.7235 8.6362 2.8532 2.6681
9	3.8823	319.36	0.0103	$\begin{array}{llllllllllllllllllllllllllllllllllll$	36.0808 25.7174 9.2786 8.6495 5.3700 5.1302

Table S11. Major transitions of 17_{S} calculated by TD-DFT.

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	2.8322	437.77	0.0101	H -> L 0.43764 H -> L+1 0.34064 H-1 -> L -0.30468 H-1 -> L+1 0.28841	38.3058 23.2071 18.5660 16.6361
2	2.9864	415.16	0.0368	$\begin{array}{ll} H \rightarrow L & 0.41533 \\ H \rightarrow L + 1 & -0.38914 \\ H - 1 \rightarrow L & 0.35080 \\ H - 1 \rightarrow L + 1 & 0.20597 \end{array}$	34.4998 30.2860 24.6121 8.4847
3	3.3510	369.99	0.5585	$\begin{array}{ll} H\text{-}1 & > L & 0.47176 \\ H & -> L\text{+}1 & 0.45741 \\ H & -> L\text{+}2 & -0.21970 \end{array}$	44.5115 41.8448 9.6536
4	3.3980	364.88	0.5108	H-1 -> L+1 0.57424 H -> L -0.32838 H-2->L -0.14321	65.9503 21.5667 4.1018
5	3.5061	353.62	0.0847	H-2 -> L 0.54240 H -> L+2 0.36796 H-1 -> L 0.14660	58.8396 27.0789 4.2983
6	3.5478	349.47	0.0986	$\begin{array}{lll} H & -> L + 2 & 0.46202 \\ H - 2 & -> L & -0.31776 \\ H - 3 & -> L & -0.26933 \\ H - 1 & -> L & 0.15122 \\ H - 3 - > L + 1 & 0.13545 \\ H - 1 - > L + 1 & -0.13478 \\ H - 2 - > L + 1 & -0.12501 \end{array}$	42.6925 20.1943 14.5077 4.5735 3.6693 3.6331 3.1255
7	3.6361	340.98	0.0385	H-1 -> L+2 0.56351 H-2 -> L+1 0.25518 H-3->L -0.22946 H-3->L+1 -0.14411	63.5087 13.0234 10.5304 4.1535
8	3.7745	328.48	0.0204	H-2 -> L+1 0.50610 H-3 -> L 0.31648 H -> L+2 0.17963 H-3 -> L+1 0.16233 H-2->L -0.15193 H-2->L+2 0.14041	51.2274 20.0319 6.4534 5.2702 4.6165 3.9430

Table S12. Major transitions of 18_{Se} calculated by TD-DFT.

				H -> L+3 0.13666	3.7352
9	3.7964	326.58	0.0619	$\begin{array}{llllllllllllllllllllllllllllllllllll$	38.2375 16.5923 15.0174 9.2304 6.1875 4.7740 4.1104

Table S13. Major transitions of 24_{SO} calculated by TD-DFT.

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	2.8313	437.91	0.0227	$\begin{array}{l} H \rightarrow L & 0.46731 \\ H \rightarrow L + 1 & -0.30437 \\ H - 1 \rightarrow L & 0.30282 \\ H - 1 \rightarrow L + 1 & 0.28743 \end{array}$	43.6757 18.5282 18.3400 16.5232
2	2.9830	415.63	0.0412	$\begin{array}{ll} H\text{-}1\text{-}>L & 0.40234 \\ H \text{-}>L & \text{-}0.39600 \\ H \text{-}>L\text{+}1 & \text{-}0.37105 \\ H\text{-}1\text{-}>L\text{+}1 & \text{-}0.18040 \end{array}$	32.3755 31.3632 27.5356 6.5088
3	3.3705	367.85	0.5913	H -> L+1 0.48892 H-1-> L 0.44924 H -> L+2 -0.16407	47.8086 40.3633 5.3838
4	3.4179	362.75	0.5908	H-1 -> L+1 0.59154 H -> L -0.32355 H->L+1 0.10803	69.9839 20.9369 2.3341
5	3.5452	349.72	0.0634	H -> L+2 0.53428 H-2 -> L 0.34485 H-2-> L+1 0.16929 H-1 -> L 0.15720	57.0910 23.7843 5.7318 4.9424
6	3.6360	340.99	0.0199	H-2 -> L+2 0.48352 H-2 -> L -0.31204 H-2 -> L+1 0.28773 H-3 ->L -0.16867 H-1 ->L+2 0.15240	46.7583 19.4738 16.5577 5.6899 4.6452
7	3.7389	331.60	0.0307	H-3 -> L 0.63994 H-2 -> L -0.18368 H->L+2 0.15599	81.9046 6.7477 4.8666

8	3.7667	329.15	0.0790	H-2 -> L 0.46068 H-1 -> L+2 0.36643 H -> L+2 -0.26065 H-3 -> L 0.18400 H-2->L+1 0.11019	42.4452 26.8542 13.5877 6.7712 2.4284
9	3.8859	319.06	0.0135	$\begin{array}{llllllllllllllllllllllllllllllllllll$	34.7978 34.7945 10.6916 4.6592 3.7057 2.2800

Table S14. Major transitions of 26_{SeO} calculated by TD-DFT.

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	3.0872	401.60	0.0174	H -> L 0.40827 H-1 -> L 0.35754 H -> L+1 0.34431 H-1 -> L+1 -0.26164	33.3369 25.5670 23.7099 13.6911
2	3.2257	384.36	0.0392	H-> L 0.44343 H-1 -> L -0.36473 H -> L+1 -0.31913 H-1 -> L+1 -0.23452	39.3260 26.6056 20.3688 10.9999
3	3.5945	344.93	0.4666	H -> L+1 0.48325 H-1-> L -0.40153 H -> L+2 -0.25713	46.7061 32.2453 13.2232
4	3.6372	340.88	0.5908	H-1 -> L+1 0.57746 H -> L 0.32958 H->L+2 -0.12567	66.6920 21.7246 3.1586
5	3.6986	335.22	0.1385	$\begin{array}{llllllllllllllllllllllllllllllllllll$	46.1837 25.5670 10.9372 4.4342 3.0777 2.3915 2.0333

6	3.7754	328.40	0.0675	H-1 -> L+2 0.50997 H-2 -> L+1 0.31345 H-2 -> L 0.24881 H ->L+2 0.14260	52.0139 19.6502 12.3813 4.0670
7	3.8968	318.17	0.0859	H-2 -> L 0.50890 H -> L+2 0.30815 H-1->L+2 -0.30295 H-3->L -0.13373	51.7958 18.9913 18.3557 3.5767
8	3.9601	313.09	0.0155	H-3 -> L 0.66651 H-1 -> L+2 -0.10569 H-2 -> L 0.10284	88.8471 2.2341 2.1152
9	4.0232	308.18	0.0164	$\begin{array}{llllllllllllllllllllllllllllllllllll$	40.7795 28.9211 10.6288 4.6953 2.0641

Table S15. Major transitions of 28_{SO2} calculated by TD-DFT.

Excited state	Energy (eV)	Wavelength (nm)	oscillator strength (f)	Description	Absolute contributions (%)
1	3.0411	407.70	0.0060	H -> L 0.46858 H-1 -> L+1 -0.32377 H -> L+1 0.31246 H-1 -> L 0.24932	43.9134 20.9654 19.5263 12.4321
2	3.1739	390.63	0.0256	H-> L+1 0.44572 H-1 -> L 0.35724 H -> L -0.35364 H-1 -> L+1 0.19947	39.7333 25.5241 25.0122 7.9577
3	3.4998	354.26	0.3356	$\begin{array}{lll} H & -> L + 2 & 0.42619 \\ H & -1 & -> L & 0.35168 \\ H & -1 & -> L + 1 & 0.25548 \\ H & -> L & +1 & -0.24947 \\ H & -> L & 0.16998 \\ H & -1 & -> L + 2 & -0.10759 \end{array}$	36.3276 24.7358 13.0540 12.4471 5.7786 2.3151
4	3.5478	349.47	0.3965	$\begin{array}{llllllllllllllllllllllllllllllllllll$	42.6943 17.4274 13.6044 10.9222 7.3214

5	3.5636	347.92	0.3792	$\begin{array}{ll} H-1 & -> L+2 & 0.51983 \\ H-1 & -> L & -0.30288 \\ H & -> L+1 & 0.26901 \\ H-1 & -> L+1 & -0.13227 \end{array}$	54.0446 18.3473 14.4733 3.4991
6	3.6649	338.30	0.0846	$\begin{array}{llllllllllllllllllllllllllllllllllll$	71.8777 6.8724 5.1720 4.6318 3.7675
7	3.8100	325.42	0.0134	H-2 -> L 0.57288 H-2 -> L+1 -0.25548 H->L+3 -0.23035 H->L+2 -0.12609	65.6383 13.0540 10.6122 3.1797
8	3.8644	320.84	0.0046	$\begin{array}{ll} H-2 & -> & L+1 & 0.51163 \\ H-2 & -> & L & 0.30149 \\ H-1 & -> & L+2 & 0.23052 \\ H & -> & L+3 & 0.22085 \\ H-1 & -> & L+3 & 0.11247 \end{array}$	52.3531 18.1792 10.6279 9.7549 2.5299
9	4.0916	303.02	0.1773	$\begin{array}{lll} H & -> L + 3 & 0.50956 \\ H & -> L + 4 & -0.24641 \\ H & -2 & -> L + 1 & -0.23504 \\ H & -1 & -> L + 3 & -0.20455 \\ H & -3 & -> L & 0.11872 \\ H & -2 & -> L & 0.10940 \\ H & -1 & -> L + 4 & 0.10241 \end{array}$	51.9303 12.1436 11.0488 8.3681 2.8189 2.3937 2.0976

Reference:

[S1] Jia, X. et al, Design and Applications of a SO₂ Surrogate in Palladium-Catalyzed Direct Aminosulfonylation between Aryl Iodides and Amines. *Angew. Chem. Int. Ed.* **2021**, *60*, 7353.

[S2] Taniguchi, N., Diarylation of Chalcogen Elements using Arylboronic acids via Copper- or Palladium-catalyzed Oxidative Coupling. *Tetrahedron* **2016**, *72*, 5818.

[S3] Janosik, T. et al, A New Concise Strategy for Synthesis of Dibenzo[b,f]thiepins and Related Fused Symmetrical Thiepin Derivatives. *J. Org. Chem.* **2007**, *72*, 8984.

[S4] Bertozzi, C. R. et al, Synthesis and Reactivity of Dibenzoselenacycloheptynes. *Org. Lett.* **2013**, *15*, 3038.

[S5] Gilheany, D. G. et al, Co-operative ortho-effects on the Wittig reaction. Interpretation of Stereoselectivity in the Reaction of Ortho-halo-substituted Benzaldehydes and Benzylidenetriphenylphosphoranes. *Tetrahedron Lett.* **2002**, *43*, 2449.

[S6] R. H. Martin et al, Thermal Racemisation of Hepta-, Octa-, and Nonahelicene: Kinetic Results, Reaction Path and Experimental Proofs that the Racemisation of Hexa- and Heptahelicene Does not Involve an Intramolecular Double Diels-Alder Reaction. *Tetrahedron* **1974**, *30*, 347.

[S7] T. B. J. Hall, B. R. Hoggard, C. B. Larsen, N. T. Lucas, Chem.-Asian J. 2019, 14, 1106

[S8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci , G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Gaussian, Inc., Wallingford CT, **2016**

Spectra (¹H NMR and ¹³C NMR)

Figure S29. ¹H NMR (up) and ¹³C NMR (down) of 3 in CDCl₃.

Figure S30. ¹H NMR (up) and ¹³C NMR (down) of 4 in CDCl₃.

 $\begin{array}{c} 3.14\\ 3.12\\ 3.12\\ 3.12\\ 3.08\\ 3.08\\ 3.08\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 3.02\\ 1.57\\ 1.57\\ 1.57\\ 1.57\\ 1.57\\ 1.57\\ 1.51\\ 1.47\\$

$\begin{array}{c} -157.43 \\ -157.43 \\ 142.29 \\ 142.29 \\ 142.29 \\ 128.15 \\ 128.15 \\ 128.15 \\ 128.15 \\ 128.15 \\ 128.15 \\ 122.25 \\ 122.26 \\ 122.26 \\ 122.28 \\ 122.26 \\ 122.28 \\ 12$

Figure S31. ¹H NMR (up) and ¹³C NMR (down) of 5₀ in CDCl₃.

Figure S32. ¹H NMR (up) and ¹³C NMR (down) of 10 in CDCl₃.

Figure S33. 1 H NMR (up) and 13 C NMR (down) of 11 in CDCl₃.

Figure S34. ¹H NMR (up) and ¹³C NMR (down) of 12 in CDCl₃.

Figure S35. ¹H NMR (up) and ¹³C NMR (down) of 13 in CDCl₃.

Figure S36. ¹H NMR (up) and ¹³C NMR (down) of 14 in CDCl₃.

Figure S37. ¹H NMR (up) and ¹³C NMR (down) of 15 in CDCl₃.

Figure S38. ¹H NMR (up) and ¹³C NMR (down) of 16₈ in CDCl₃.

Figure S39. ¹H NMR (up) and ¹³C NMR (down) of 17₈ in CDCl₃.

7 3.23 7 3.23 7 3.27 7 3.16 7 3.17 7 3.05 7

Figure S40. ¹H NMR (up) and ¹³C NMR (down) of 18_{Se} in CDCl₃.

Figure S41. 1 H NMR (up) and 13 C NMR (down) of 19_{Se} in CDCl₃.

Figure S42. ¹H NMR (up) and ¹³C NMR (down) of 21 in CDCl₃.

Figure S43. ¹H NMR (up) and ¹³C NMR (down) of 23 in CDCl₃.

Figure S44. 1 H NMR (up) and 13 C NMR (down) of 24₈₀ in CDCl₃.

Figure S45. 1 H NMR (up) and 13 C NMR (down) of 25₈₀ in CDCl₃.

3.29 3.29 3.21 3.25 3.26 3.275 2.275

Figure S46. ¹H NMR (up) and ¹³C NMR (down) of 26_{seo} in CDCl₃.

Figure S47. ¹H NMR (up) and ¹³C NMR (down) of 27_{SeO} in CDCl₃.

Figure S48. ¹H NMR (up) and ¹³C NMR (down) of 28_{SO2} in CDCl₃.

Figure S49. ¹H NMR (up) and ¹³C NMR (down) of 29_{Seco-HBC} in CDCl₃.

Figure S50. ¹H NMR (up) and ¹³C NMR (down) of 30_{HBC} in CDCl₃.