SUPPORTING INFORMATION for

Controlling Product Selectivity During Dioxygen Reduction with Mn Complexes Using Pendent Proton Donor Relays and Added Base

Emma N. Cook, Ian M. Courter, Diane A. Dickie, and Charles W. Machan*

* - machan@virginia.edu; ORCID 0000-0002-5182-1138

E.N.C. ORCID 0000-0002-0568-3600; D.A.D. ORCID 0000-0003-0939-3309

Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319

Table of Contents 8 Materials and Methods 8
Synthesis and Characterization
Synthesis of Mn(^{p-tbu} dhbpy)Cl8
Figure S1. (A) UV-vis serial dilution absorbance data from Mn(^{p-tbu} dhbpy)Cl 1 in MeCN 8
Table S1. Summary of Evans' Method Data from Mn(^{p-tbu} dhbpy)Cl 1 in <i>N,N</i> '-DMF (chosen for solubility reasons) supporting a high-spin <i>d</i> ⁴ complex9
Synthesis of Mn(^{nPr} dhbpy)Cl9
Figure S2. UV-vis serial dilution of Mn(^{nPr} dhbpy)Cl 2 in MeCN solution
Table S2. Table of Evans' Method data from Mn(^{nPr} dhbpy)Cl 2 in <i>N,N</i> '-DMF (chosen for solubility reasons) supporting a high spin d ⁴ complex10
Synthesis of DIPEAHPF ₆ 10
Figure S3. Molecular structure of DIPEAHPF ₆ from single crystal X-ray diffraction studies10
Figure S4. ¹ H-NMR spectrum of DIPEAHPF ₆ in MeCN- <i>d</i> ₃
Figure S5. ¹³ C{ ¹ H}-NMR spectrum of DIPEAHPF ₆ in MeCN- <i>d</i> ₃
Estimation of DIPEAHPF ₆ p <i>K</i> _a in MeCN13
Table S3. Summary of the chemical shifts for the estimation of DIPEAHPF ₆ pK_a 13
Figure S6. ¹ H-NMR spectra of DIPEAHPF ₆ (purple), DIPEA (blue), TEAHPF ₆ (green), and TEA (red) used to estimate the pK_a of DIPEAHPF ₆ in MeCN
Figure S7. ¹ H NMR of titration of TEA into a 0.02 M solution of DIPEAHPF ₆ for estimation of pK_a of DIPEAHPF ₆ in MeCN. MeCN- d_3 ; Varian 600 MHz.
Electrochemical Analysis 16 Electrochemistry with 1 16
Figure S8. (A) CVs of Mn(^{p-tbu} dhbpy)Cl 1 at variable scan rates ranging from 0.05 V/s (black) to 2 V/s (red) under Ar saturation conditions
Figure S9. (A) CVs of Mn($^{p-tbu}$ dhbpy)Cl 1 under Ar (black), O ₂ (red) and with 10 mM DIPEAHPF ₆ under Ar saturation (green). (B) CVs from A and catalytic trace shown (blue) with Mn($^{p-tbu}$ dhbpy)Cl 1 and 10 mM DIPEAHPF ₆ under O ₂ saturation
Figure S10. (A) CVs of Mn(^{p-tbu} dhbpy)Cl 1 under Ar (black), O ₂ (red) and with 10 mM buffer (DIPEAHPF ₆ /DIPEA) under Ar saturation (green). (B) CVs from A with catalytic trace shown (blue) with Mn(^{p-tbu} dhbpy)Cl and 10 mM DIPEAHPF ₆ /DIPEA under O ₂ saturation
Determination of Effective Overpotential of 1 18
Figure S11. CVs of Mn(^{p-tbu} dhbpy)Cl 1 with increasing DIPEAHPF ₆ concentrations under Ar saturation conditions with 10 mM DIPEA
Figure S12. Control CVs of Mn(^{p-tbu} dhbpy)Cl 1 with and without the presence of 10 mM DIPEA
Figure S13. CVs of Mn(^{p-tbu} dhbpy)Cl 1 (black trace) in the presence of 0.1 M TBACI (red trace) with increasing concentrations of DIPEA added

Figure S14. CVs of Mn(^{p-tbu} dhbpy)Cl 1 (black trace) in the presence of 0.1 M TBACI (red trace) and 10 mM DIPEA with increasing concentrations of DIPEAHPF ₆ under Ar saturation.
Electrochemistry with 220
Figure S15. A) CVs of Mn(^{nPr} dhbpy)Cl 2 at variable scan rates ranging from 0.05 V/s (black) to 2 V/s (red) under Ar saturation conditions20
Figure S16. CVs of Mn(^{nPr} dhbpy)Cl 2 under Ar (black), O ₂ (red) and with 10 mM DIPEAHPF ₆ under Ar saturation (green)
Figure S17. (A) CVs of Mn(^{nPr} dhbpy)Cl 2 under Ar with increasing amounts of DIPEAHPF ₆ added
Figure S18. (A) CVs of Mn(^{nPr} dhbpy)Cl 2 under Ar (black), O ₂ (red) and with 10 mM DIPEAHPF ₆ /DIPEA under Ar saturation (green). (B) CVs from A with catalytic trace shown (blue) with Mn(^{nPr} dhbpy)Cl and 10 mM DIPEAHPF ₆ /DIPEA under O ₂ saturation22
Determination of Effective Overpotential of 222
Figure S19. Comparison of electrocatalytic ORR by Mn(^{nPr} dhbpy)Cl 2 with 10 mM DIPEAHPF ₆ with (red) and without (black) the presence of 10 mM DIPEA23
Figure S20. CVs of Mn(^{nPr} dhbpy)Cl 2 with increasing DIPEAHPF ₆ concentrations under Ar saturation conditions with 10 mM DIPEA
Figure S21. Control CVs of Mn(^{nPr} dhbpy)Cl 2 with and without the presence of 10 mM DIPEA.
Figure S22. CVs of Mn(^{nPr} dhbpy)Cl 2 (black trace) in the presence of 0.1 M TBACI (red trace) and DIPEA (green trace)
Figure S23. CVs of Mn(^{nPr} dhbpy)Cl 2 (black trace) in the presence of 0.1 M TBACI (red trace) and increasing amounts of DIPEAHPF ₆ 25
Figure S24. (A) Control CVs of 24 mM DIPEAHPF ₆ under Ar (black) and O_2 (red trace). (B) Control CVs of 24 mM DIPEAHPF ₆ and 25 mM DIPEA under O_2 25
Description of Spectrochemical ORR Product Quantification
Unbuffered Conditions27
Figure S26. H_2O_2 product quantification of ORR by Mn(^{p-tbu} dhbpy)Cl 1 with DIPEAHPF ₆ 27
Table S4. Summary of H_2O_2 selectivity of ORR by $Mn(^{p-tbu}dhbpy)Cl 1$ with 10 mM DIPEAHPF6
Figure S27. H_2O_2 product quantification of ORR by $Mn(^{nPr}dhbpy)Cl 2$ with DIPEAHPF ₆ 27
Table S5. Summary of H2O2 selectivity of ORR by Mn(^{nPr} dhbpy)Cl 2 with 10 mM DIPEAHPF6
Figure S28. Stability test of urea•H ₂ O ₂ in the presence of Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , and O ₂
Table S6. Summary of H2O2 disproportionation by Mn(^{p-tbu} dhbpy)Cl 1 with 10 mM DIPEAHPF6 28

Figure S29. Stability test of urea• H_2O_2 in the presence of Mn(^{nPr} dhbpy)Cl 1 , DIPEAHPF ₆ , and O_2
Table S7. Summary of H_2O_2 disproportionation by $Mn(^{nPr}dhbpy)Cl 2$ with 10 mM DIPEAHPF6
Buffered Conditions
Figure S30. H ₂ O ₂ product quantification of ORR by Mn(^{p-tbu} dhbpy)Cl 1 with DIPEAHPF ₆ and DIPEA
Table S8. Summary of H2O2 selectivity over the course of catalytic ORR by Mn(P-tbudhbpy)CI 1 with 10 mM DIPEAHPF6/DIPEA29
Figure S31. H ₂ O ₂ product quantification of ORR by Mn(^{nPr} dhbpy)Cl 2 with DIPEAHPF ₆ and DIPEA.
Table S9. Summary of H2O2 selectivity over the course of catalytic ORR by Mn(2 with 10 mM DIPEAHPF6/DIPEA30
H ₂ O ₂ Stability Testing under Buffered Conditions30
Figure S32. Stability test of urea•H ₂ O ₂ in the presence of Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , DIPEA, and O ₂
Table S10.Summary of H2O2 disproportionation by Mn(p-tbudhbpy)Cl 1 with 10 mMDIPEAHPF6/DIPEA
Figure S33. Stability test of urea•H ₂ O ₂ in the presence of Mn(^{nPr} dhbpy)Cl 2 , DIPEAHPF ₆ , DIPEA, and O ₂ 31
Table S11.Summary of H2O2 disproportionation by Mn(^{nPr} dhbpy)Cl 2 with 10 mMDIPEAHPF6/DIPEA
Figure S34. Stability test of urea•H ₂ O ₂ in the presence of Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , DIPEA, and FeCp* ₂ 32
Table S12. Summary of H2O2RR by Mn(p-tbudhbpy)Cl 1 with 10 mM DIPEAHPF6/DIPEA and1 mM FeCp*232
Figure S35. Stability test of urea•H ₂ O ₂ in the presence of Mn(^{nPr} dhbpy)Cl 2 , DIPEAHPF ₆ , DIPEA, and FeCp* ₂
Table S13. Summary of H2O2RR by Mn(^{nPr} dhbpy)Cl 2 with 10 mM DIPEAHPF6/DIPEA and 1 mM FeCp*2 33
Stopped-Flow Spectrochemical Methods. 33 Determination of the Rate Law for ORR by 1 under Unbuffered Conditions. 33
Figure S36. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF ₆ , O ₂ , and Cp* ₂ Fe with varying Mn(^{p-tbu} dhbpy)Cl 1 concentration33
Figure S37. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , and Cp* ₂ Fe with varying O ₂ concentration
Figure S38. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , O ₂ , and Cp* ₂ Fe with varying DIPEAHPF6 concentration
Figure S39. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , O ₂ , and DIPEAHPF ₆ with varying Cp* ₂ Fe concentration35

Determination of the Rate Law of ORR by 1 under Buffered Conditions
Figure S40. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF ₆ , DIPEA, O ₂ , and Cp* ₂ Fe with varying Mn(^{p-tbu} dhbpy)Cl 1 concentration36
Figure S41. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , DIPEA, and Cp* ₂ Fe with varying O ₂ concentration36
Figure S42. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , O ₂ , DIPEA, and Cp* ₂ Fe with varying DIPEAHPF ₆ :DIPEA ratio 37
Figure S43. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{p-tbu}dhbpy)Cl 1$, O_2 , and $Cp^*{}_2Fe$ with varying buffer (DIPEAHPF ₆ and DIPEA, 1:1 ratio) concentration
Figure S44. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu} dhbpy)Cl 1 , DIPEAHPF ₆ , DIPEA, and O ₂ with varying Cp* ₂ Fe concentration38
Determination of Rate Law of ORR by 2 under Unbuffered Conditions
Figure S45. The calculated initial ORR rate from stopped-flow spectrochemical experiments with DIPEAHPF ₆ , O ₂ , Cp* ₂ Fe with varying Mn(^{nPr} dhbpy)Cl 2 concentration38
Figure S46. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, Mn(^{nPr} dhbpy)Cl 2 , O ₂ , Cp* ₂ Fe with varying DIPEAHPF ₆ concentration
Figure S47. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, Mn(^{nPr} dhbpy)Cl 2 , DIPEAHPF ₆ , O ₂ , with varying Cp* ₂ Fe concentration
Figure S48. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, $Mn(^{nPr}dhbpy)Cl 2$, DIPEAHPF ₆ , Cp_2^*Fe with varying O ₂ , concentration40
Determination of Rate Law for ORR by 2 under Buffered Conditions
Figure S49. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF ₆ , DIPEA, O ₂ , and Cp* ₂ Fe with varying Mn(^{nPr} dhbpy)Cl 2 concentration41
Figure S50. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr} dhbpy)Cl 2 , DIPEAHPF ₆ , DIPEA, and O ₂ with varying Cp* ₂ Fe concentration41
Figure S51. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr} dhbpy)Cl 2 , O ₂ , and Cp* ₂ Fe with varying buffer (DIPEAHPF ₆ and DIPEA, 1:1 ratio) concentration. 42
Figure S52. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr} dhbpy)Cl 2 , O ₂ , and Cp* ₂ Fe with varying DIPEAHPF ₆ :DIPEA ratio
Figure S53. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr} dhbpy)Cl 2 , DIPEAHPF ₆ , DIPEA, and Cp* ₂ Fe with varying O ₂ concentration43
Description of Stopped-Flow Data Fitting44
1Exp+Mx+C Fits
Figure S54. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{p-tbu} dhbpy)Cl 1 with DIPEAHPF ₆ /DIPEA and (B) the 1Exp+Mx+C fit (red) and residual (blue) used for data analysis using the Kinetic Studio 4.0 software

Figure S55. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{nPr}dhbpy)Cl **2** with DIPEAHPF₆/DIPEA and (B) the 1Exp+Mx+C fit (red) and Figure S56. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{p-tbu}dhbpy)Cl **1** with DIPEAHPF₆ and (B) the 1Exp+Mx+C fit (red) and Figure S57. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{nPr}dhbpy)Cl **2** with DIPEAHPF₆ and (B) the initial Linear fit (red) and residual UV-vis Spectroscopic Analysis......46 Figure S58. (A) UV-vis of spectra of 23 µM Mn(^{p-tbu}dhbpy)Cl 1 with increasing amounts of Figure S59. (A) UV-vis of spectra of 26.8 µM Mn(^{nPr}dhbpy)Cl 2 with increasing amounts of Figure S60. UV-vis of spectra of 80 µM Mn(^{p-tbu}dhbpy)Cl 1 with increasing amounts of DIPEAHPF₆......47 Figure S61. (A) UV-vis spectra of 80 µM Mn(^{nPr}dhbpy)Cl 2 with increasing amounts of Figure S62. (A) UV-vis spectra of an 80 µM solution of Mn(^{p-tbu}dhbpy)Cl 1 with increasing Figure S63. (A) UV-vis spectra of 80 µM solution of Mn(^{p-tbu}dhbpy)Cl 1 in MeCN (black) under Figure S64. (A) UV-vis spectra of 80 µM solution of Mn(^{p-tbu}dhbpy)Cl 1 in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 19.7 mM DIPEAHPF6/DIPEA (red) and after being exposed Figure S65. (A) UV-vis spectra of 80 µM solution of Mn(^{p-tbu}dhbpy)Cl 1 in MeCN (black) under N_2 with 1.1 equiv of CoCp₂ and 19.7 mM DIPEAHPF₆ (red) and after being exposed to air for Figure S66. (A) UV-vis spectra of 80 µM solution of Mn(^{p-tbu}dhbpv)Cl 1 in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 19 mM DIPEA (red) and after being exposed to air for 15 min Figure S67. Overlay of data involving Mn(^{p-tbu}dhbpy)Cl 1 from Figs S63-S66 after samples Figure S68. UV-vis spectra of 80 µM Mn(^{p-tbu}dhbpy)Cl 1 with (red) and without (black) 1 equiv TBAOH•30H₂O and with of 10 mM buffer (1:1 DIPEAHPF₆:DIPEA) in the presence of 1 equiv Figure S69. (A) UV-vis spectra of an 80 µM solution of Mn(^{nPr}dhbpy) 2 with increasing amounts of CoCp₂ in MeCN under N₂.....51

Figure S70. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr} dhbpy)Cl 2 in MeCN (black) under N ₂ with 1.1 equiv of CoCp ₂ (red) and after being exposed to air for 70 min (blue)52
Figure S71. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr} dhbpy)Cl 2 in MeCN (black) under N ₂ with 1.1 equiv of CoCp ₂ and 10 mM DIPEAHPF ₆ /DIPEA (red) and after being exposed to air for 60 min (blue)
Figure S72. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr} dhbpy)Cl 2 in MeCN (black) under N ₂ with 1.1 equiv of CoCp ₂ and 10 mM DIPEAHPF ₆ (red) and after being exposed to air for 110 min (blue)
Figure S73. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr} dhbpy)Cl 2 in MeCN (black) under N ₂ with 1.1 equiv of CoCp ₂ and 10 mM DIPEA (red) and after being exposed to air for 60 min (blue)
Figure S74. Overlay of data involving Mn(^{nPr} dhbpy)Cl 2 from Figs S70-S73 after samples were allowed to react with air completely
Figure S75. UV-vis spectra of 80 μ M Mn(^{nPr} dhbpy)Cl 2 with (red) and without (black) 1 equiv TBAOH•30H ₂ O and with of 10 mM buffer (1:1 DIPEAHPF ₆ :DIPEA) in the presence of 1 equiv TBAOH•30H ₂ O (blue)
Figure S76. (A) UV-vis titration of [CoCp ₂][PF ₆] in MeCN
Computational Methods
Single Crystal Diffraction Studies
DIPEAHPF ₆
References

Materials and Methods

General Considerations

All chemicals and solvents (ACS or HPLC grade) were commercially available and used as received unless otherwise indicated. For all air-sensitive reactions and electrochemical experiments, HPLC-grade solvents were obtained as anhydrous and air-free from a PPT Glass Contour Solvent Purification System. Gas cylinders were obtained from Praxair (Ar as 5.0; O2 as 4.0) and passed through activated molecular sieves prior to use. Gas mixing for variable concentration experiments was accomplished using a gas proportioning rotameter from Omega Engineering. UV-vis absorbance spectra were obtained on a Cary 60 from Agilent. An Anton-Parr Multiwave Pro SOLV, NXF-8 microwave reactor was used for microwave syntheses. The concentration of O2 saturation in MeCN is reported to be 8.1 mM and the saturation concentration in MeCN with added electrolyte to be 6.3 mM.¹

Synthesis and Characterization

Synthesis of Mn(^{p-tbu}dhbpy)Cl

^{p-tbu}dhbpy[H]₂ was synthesized according to our previously reported procedure.² Mn(^{p-tbu}dhbpy)Cl was synthesized according to previously reported procedures.³ To a 2-neck, 100 mL round bottom flask, ^{p-tbu}dhbpy[H]₂ (0.200 g, 0.442 mmol) was added with 50 mL of methanol and allowed to reflux for 1 h. Then, manganese(II) acetate tetrahydrate (0.108 g, 0.442 mmol) was added with dichloromethane (10 mL) and sparged with compressed air for 2 minutes. The dark green solution was allowed to reflux for 3 hours. After this time, saturated NaCl solution (50 mL) was added to the flask resulting in a dark reddish-brown suspension. The suspension was filtered, dissolved in DCM, and extracted with saturated NaCl solution (3 x 100 mL). The organic layer was separated, dried over MgSO₄ and the solvent was removed under reduced pressure to yield a reddish-brown solid. The solid was then dissolved in 1:1 DCM:MeCN, passed through a syringe filter and the solvent was removed under pressure to yield a reddish-brown solid. Finally, the solid was recrystallized in DCM and hexanes to yield a spectroscopically pure product in 46% yield (0.203 mmol, 0.11 g). Elemental analysis for C₃₀H₃₀ClMnN₂O₂ calc'd: C 66.61; H 5.59; N 5.18, found: C 66.31, H 5.98, N 5.15. ESI-MS (*m*/*z*) [M – CI]⁺: calc'd: 505.1688; found 505.1675.

Figure S1. (A) UV-vis serial dilution absorbance data from Mn(^{p-tbu}dhbpy)Cl **1** in MeCN solution. Conditions: varying concentration; quartz cell with 1 cm pathlength. (B) Plot of absorbance concentration (M) for Mn(^{p-tbu}dhbpy)Cl 1 in MeCN solution at 339 nm (17915 M⁻¹ cm⁻¹); R²=0.999. All: λ_{max} = 236 nm (44786 M⁻¹cm⁻¹), 422 nm (5320 M⁻¹cm⁻¹), 525 nm (1269 M⁻¹cm⁻¹), 777 nm (410 M⁻¹cm⁻¹).

Trial	Chemical	Chemical	Total Magnetic	Paramagnetic	µ _{eff} (Bohr
	Shift (ppm)	Shift (Hz)	Moment (emu mol ⁻¹)	Moment (emu mol ⁻¹)	Magnetons)
1	0.12	72	8.94 x 10 ⁻³	9.33 x 10⁻³	4.72
2	0.12	72	8.94 x 10 ⁻³	9.33 x 10⁻³	4.72
3	0.13	78	9.69 x 10 ⁻³	1.01 x 10 ⁻²	4.90

Table S1. Summary of Evans' Method Data from $Mn(^{p-tbu}dhbpy)Cl 1$ in *N*,*N*'-DMF (chosen for solubility reasons) supporting a high-spin d^4 complex.

Synthesis of Mn(^{nPr}dhbpy)Cl

^{nPr}dhbpy[H]₂ was synthesized according to our previously reported procedure. Mn(^{nPr}dhbpy)Cl was synthesized according to previously reported procedures. To a 2-neck, 100 mL round bottom flask, ^{nPr}dbhpy[H]₂ (0.195 g, 0.4 mmol) was brought to reflux in 75 mL methanol for 1 h. After this time, manganese(II) acetate tetrahydrate (0.104 g, 0.4 mmol) and DCM (10 mL) were added to the reaction mixture and the solution was sparged with compressed air for 2 minutes, which then turned dark green. After refluxing for 5 hours, saturated NaCl was added (75 mL). The suspension was filtered, dissolved in DCM, and extracted with saturated NaCl (3 x 100 mL). The organic layer was separated and dried over MgSO₄, passed through a syringe filter and the solvent was reduced under pressure to yield a dark brown solid. The solid was recrystallized in minimal THF and excess hexanes to yield pure product in 24% yield (55 mg). Elemental analysis for C₃₀H₃₀ClMnN₂O₂•1/3CH₂Cl₂ calc'd: C 60.59; H 5.14; N 4.66, found: C 60.45, H 5.02, N 5.07. ESI-MS (*m/z*) [M – Cl]⁺: calc'd: 537.1586; found 537.1564.

Figure S2. UV-vis serial dilution of $Mn(^{nPr}dhbpy)Cl 2$ in MeCN solution. Conditions: varying concentration; 1 cm pathlength (B) plot of concentration of $Mn(^{nPr}dhbpy)Cl (M)$ versus absorbance at 356 nm (20223 M⁻¹ cm⁻¹), R² = 0.998. All: 288 nm (25576 M⁻¹cm⁻¹), 440 nm (7626 M⁻¹cm⁻¹), 540 nm (1447 M⁻¹cm⁻¹), 802 nm (496 M⁻¹cm⁻¹).

Trial	Chemical	Chemical	Total Magnetic	Paramagnetic	µ _{eff} (Bohr
	Shift (ppm)	Shift (Hz)	Moment (emu mol ⁻¹)	Moment (emu mol ⁻¹)	Magnetons)
1	0.12	72	8.21 x 10⁻³	8.61 x 10⁻³	4.53
2	0.13	78	8.89 x 10⁻³	9.29 x 10⁻³	4.71
3	0.12	72	8.21 x 10⁻³	8.61 x 10 ⁻³	4.53

Table S2. Table of Evans' Method data from $Mn(^{nPr}dhbpy)Cl 2$ in *N*,*N*'-DMF (chosen for solubility reasons) supporting a high spin d⁴ complex.

Synthesis of DIPEAHPF₆

N,N-diisopropylethylammonium hexafluorophosphate (DIPEAHPF₆) was synthesized according to previously reported procedures.⁴ A solution of ammonium hexafluorophosphate (2.81 g, 17.2 mmol) and N,N-diisopropylethylamine (3.30 mL, 19.0 mmol) was allowed to reflux in toluene (20 mL) for 48 hours to obtain a white solid. The solution was filtered and the solid was rinsed toluene (with 2 x 10 mL). The solid was dissolved in DCM, filtered, and the solvent was removed under reduced pressure to yield a white crystalline solid in 25.5% yield (1.2 g). White x-ray suitable single crystals were grown by slow evaporation from DCM. Elemental analysis for C₈H₂₀F₆NP: calc'd: C 34.91, H 7.33, N 5.09; found: C 35.00, H 7.46, N 5.09. ¹H NMR (MeCN-d₃, 600 MHz) δ (ppm): 6.18 (t, 1H), 3.67 (sept, 2H), 3.16 (q, 2H), 1.32 (m, 15H). ¹³C{¹H} (MeCN-d₃, 150 MHz) δ (ppm): 56.19, 44.13, 18.79, 17.42, 13.00.

Figure S3. Molecular structure of DIPEAHPF₆ from single crystal X-ray diffraction studies. Blue = N, gray = C, white = H, green = F, orange; thermal ellipsoids at 50%, H atoms (except N–H) and disordered F atoms omitted for clarity. CCDC 2255850.

Figure S5. ¹³C{¹H}-NMR spectrum of DIPEAHPF₆ in MeCN- d_3 ; Varian 150 MHz.

Estimation of DIPEAHPF₆ pK_a in MeCN

¹H-NMR spectroscopy was used to estimate the pK_a of DIPEAHPF₆ in acetonitrile relative to triethylamine (pK_a (MeCN) = 18.81), as previously reported.⁵ Triethylamine (TEA) was titrated into a solution of 0.02 M DIPEAHPF₆ in MeCN- d_3 and a ¹H-NMR spectrum was taken (**Figure S7**). The difference in chemical shift was used to determine the relative change in pK_a units according to **Eqs S1-S3**. Triethylammonium hexfluorophosphate (TEAHPF₆) was synthesized according to a literature procedure.⁴

$$DIPEAH^{+}(B - H_{j}^{+}) + TEA(B_{i}) \rightleftharpoons TEAH^{+}(B - H_{i}^{+}) + DIPEA(B_{j})$$
 Eq S1

$$\frac{K_{a_i}}{K_{a_j}} = \frac{(\delta_j^{obs} - \delta_j^B)(\delta_i^{B-H^+} - \delta_i^{obs})}{(\delta_i^{obs} - \delta_i^B)(\delta_j^{B-H^+} - \delta_j^{obs})}$$
 Eq S2

$$\Delta p K_{a_{ij}} = \log \left| \frac{\kappa_{a_i}}{\kappa_{a_j}} \right| = 0.142 \pm 0.083$$
 Eq S3

Table S3. Summar	y of the chemical	I shifts for the	estimation of	of DIPEAHPF ₆	p <i>K</i> a
------------------	-------------------	------------------	---------------	--------------------------	--------------

TEA:DIPEAHPF ₆	δ ^B j	δ ^{obs} j	δ ^{Β-Η+} j	δ ^B i	δ ^{obs} i	δ ^{Β-Η+} i	K _{ai} /K _{aj}	log K _{ai} /K _{aj}						
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)								
0.10		3.63			3.07		-1.42	0.153						
0.20		3.58			3.03		-1.10	0.0414						
0.35		3.53			2.96		-1.25	0.0962						
0.49		3.48			2.91		-1.20	0.0800						
0.64		3.45			2.87		-1.26	0.100						
0.79		3.42			2.84		-1.24	0.0951						
0.94	2.01	3.39	2 60	2 46	2.81	2 1 /	-1.24	0.0918						
1.1	3.01	3.31	5.00	2.40	2.71	5.14	-1.39	0.144						
5.7		3.12			2.55		-1.29	0.110						
11		3.06			2.5		-1.29	0.111						
18		3.05			2.49		-1.38	0.139						
20		3.05			2.48		-2.10	0.321						
23		3.04									2.48		-1.55	0.190
25		3.03			2.47		-2.06	0.314						
Average						0.142								
Standard Deviation 0.083							0.083							

Figure S6. ¹H-NMR spectra of DIPEAHPF₆ (purple), DIPEA (blue), TEAHPF₆ (green), and TEA (red) used to estimate the pK_a of DIPEAHPF₆ in MeCN. MeCN- d_3 ; Varian 600 MHz.

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 Chemical Shift (ppm)

Figure S7. ¹H NMR of titration of TEA into a 0.02 M solution of DIPEAHPF₆ for estimation of pK_a of DIPEAHPF₆ in MeCN. MeCN- d_3 ; Varian 600 MHz.

Electrochemical Analysis

All electroanalytical experiments were performed using a Metrohm Autolab PGSTAT302N potentiostat. Glassy carbon working ($\emptyset = 3 \text{ mm}$) and non-aqueous silver/silver chloride pseudoreference electrodes behind PTFE tips were obtained from CH Instruments. The pseudoreference electrodes were obtained by depositing chloride on bare silver wire in 10% HCl at oxidizing potentials and stored in a 0.1 M tetrabutylammonium hexafluorophosphate solution in acetonitrile in the dark prior to use. The counter electrode was a glassy carbon rod ($\emptyset = 3 \text{ mm}$). All CV experiments were performed in a modified scintillation vial (20 mL volume) as a single-chamber cell with a cap modified with ports for all electrodes and a sparging needle. Tetrabutylammonium hexafluorophosphate (TBAPF₆) was purified by recrystallization from ethanol and dried in a vacuum oven before being stored in a desiccator. All data were referenced to an internal ferrocene standard (ferrocenium/ferrocene reduction potential under stated conditions) unless otherwise specified. All voltammograms were corrected for internal resistance. Ferrocene was purified by sublimation prior to use. In the event that the presence of electrochemical features precluded ferrocene addition, ferrocene was added to the electrochemical cell at the end of analysis for reference.

Electrochemistry with 1

Figure S8. (A) CVs of Mn(^{p-tbu}dhbpy)Cl **1** at variable scan rates ranging from 0.05 V/s (black) to 2 V/s (red) under Ar saturation conditions. (B) Linear fit data from A showing that Mn(^{p-tbu}dhbpy)Cl is a diffusion-limited current response. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S9. (A) CVs of $Mn(^{p-tbu}dhbpy)Cl 1$ under Ar (black), O₂ (red) and with 10 mM DIPEAHPF₆ under Ar saturation (green). (B) CVs from A and catalytic trace shown (blue) with $Mn(^{p-tbu}dhbpy)Cl$ 1 and 10 mM DIPEAHPF₆ under O₂ saturation. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S10. (A) CVs of Mn(^{p-tbu}dhbpy)Cl **1** under Ar (black), O₂ (red) and with 10 mM buffer (DIPEAHPF₆/DIPEA) under Ar saturation (green). (B) CVs from A with catalytic trace shown (blue) with Mn(^{p-tbu}dhbpy)Cl and 10 mM DIPEAHPF₆/DIPEA under O₂ saturation. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc^+/Fc internal standard; 100 mV/s scan rate.

Determination of Effective Overpotential of 1

Utilizing the estimated pK_a of DIPEAHPF₆ (18.7) in MeCN, we can determine the effective overpotential according to **Eqs S4-S5**. Where E_{app} is the $E_{1/2}$ of Mn(^{p-tbu}dhbpy)CI with 10 mM DIPEAHPF₆ buffer determined by taking the first derivative of the irreversible feature in **Figure S10**.⁶

$$E_{O2/H2O}^{0} = 1.21 - 0.0592 p K_{a}$$

$$E_{O2/H2O}^{0}(MeCN, DIPEAHPF_{6}) = 0.10 V vs. Fc^{+}/Fc \qquad \text{Eq S4}$$

$$\eta = \left| E_{app} - E_{O2/H2O}^{0} \right| = \left| -0.48 - 0.10 \right| = 0.58 \, V$$
 Eq S5

Figure S11. CVs of Mn(^{p-tbu}dhbpy)Cl **1** with increasing DIPEAHPF₆ concentrations under Ar saturation conditions with 10 mM DIPEA. Conditions: 0.5 mM Mn, 10 mM DIPEA, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc^+/Fc internal standard; 100 mV/s scan rate.

Figure S12. Control CVs of Mn(^{p-tbu}dhbpy)Cl **1** with and without the presence of 10 mM DIPEA. Conditions: 0.5 mM Mn, 10 mM DIPEA, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S13. CVs of Mn($^{p-tbu}$ dhbpy)Cl **1** (black trace) in the presence of 0.1 M TBACI (red trace) with increasing concentrations of DIPEA added. Conditions: 0.3 mM Mn, 0.1 M TBACI (if present), [DIPEA]: 10 mM (green trace), 20 mM, 30 mM, 50 mM, 100 mM, 150 mM (blue trace), 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCI pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S14. CVs of Mn(^{p-tbu}dhbpy)Cl **1** (black trace) in the presence of 0.1 M TBACI (red trace) and 10 mM DIPEA with increasing concentrations of DIPEAHPF₆ under Ar saturation. Conditions: 0.3 mM Mn, 0.1 M TBACI (if present), 10 mM DIPEA (if present), 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCI pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate. Concentration of DIPEAHPF₆: 9.5 (green trace), 18.9, 29.2, 38.5, 47.8, 57.8, 97 mM (blue trace).

Electrochemistry with 2

Figure S15. A) CVs of Mn(^{nPr}dhbpy)Cl **2** at variable scan rates ranging from 0.05 V/s (black) to 2 V/s (red) under Ar saturation conditions. (B) Linear fit data from A showing that Mn(^{nPr}dhbpy)Cl is a diffusion-limited current response. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S16. CVs of $Mn(^{nPr}dhbpy)Cl 2$ under Ar (black), O₂ (red) and with 10 mM DIPEAHPF₆ under Ar saturation (green). Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S17. (A) CVs of Mn(^{nPr}dhbpy)Cl **2** under Ar with increasing amounts of DIPEAHPF₆ added. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc^+/Fc internal standard; 100 mV/s scan rate-

Figure S18. (A) CVs of $Mn(^{nPr}dhbpy)Cl 2$ under Ar (black), O₂ (red) and with 10 mM DIPEAHPF₆/DIPEA under Ar saturation (green). (B) CVs from A with catalytic trace shown (blue) with $Mn(^{nPr}dhbpy)Cl$ and 10 mM DIPEAHPF₆/DIPEA under O₂ saturation. Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Determination of Effective Overpotential of 2

Utilizing the estimated pK_a of DIPEAHPF₆ (18.7) in MeCN, we can determine the effective overpotential according to **Eqs S6-S7**. Where E_{app} is the $E_{1/2}$ of Mn(^{nPr}dhbpy)Cl **2** with 10 mM DIPEAHPF₆ buffer determined by taking the first derivative of the irreversible feature in **Figure S18**.⁶

$$E_{O2/H2O}^{0} = 1.21 - 0.0592 p K_{a}$$

$$E_{O2/H2O}^{0}(MeCN, DIPEAHPF_{6}) = 0.10 V vs. Fc^{+}/Fc \qquad Eq S6$$

$$\eta = \left| E_{app} - E_{O2/H2O}^{0} \right| = \left| -0.46 - 0.10 \right| = 0.56 V$$
 Eq S7

Figure S19. Comparison of electrocatalytic ORR by $Mn(^{nPr}dhbpy)Cl 2$ with 10 mM DIPEAHPF₆ with (red) and without (black) the presence of 10 mM DIPEA (traces from **Figure S16** and **S18** for black and red traces, respectively). Conditions: 0.5 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S20. CVs of $Mn(^{nPr}dhbpy)Cl 2$ with increasing DIPEAHPF₆ concentrations under Ar saturation conditions with 10 mM DIPEA. Conditions: 0.5 mM Mn, 10 mM DIPEA, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S21. Control CVs of Mn(^{nPr}dhbpy)Cl **2** with and without the presence of 10 mM DIPEA. Conditions: 0.5 mM Mn, 10 mM DIPEA, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc^+/Fc internal standard; 100 mV/s scan rate.

Figure S22. CVs of Mn(^{nPr}dhbpy)Cl **2** (black trace) in the presence of 0.1 M TBACI (red trace) and DIPEA (green trace). Conditions: 0.3 mM Mn, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCI pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate.

Figure S23. CVs of Mn(^{nPr}dhbpy)Cl **2** (black trace) in the presence of 0.1 M TBACI (red trace) and increasing amounts of DIPEAHPF₆. Conditions: 0.3 mM Mn, 10 mM DIPEA (if present), 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCI pseudoreference electrode; referenced to Fc⁺/Fc internal standard; 100 mV/s scan rate. Concentrations of DIPEAHPF₆: 9.44 (green trace), 19.1, 29.3, 39.2, 51.7, 61.9 mM (blue trace).

Figure S24. (A) Control CVs of 24 mM DIPEAHPF₆ under Ar (black) and O₂ (red trace). (B) Control CVs of 24 mM DIPEAHPF₆ and 25 mM DIPEA under O₂. Conditions: 24 mM DIPEAHPF₆, 0.1 M TBAPF₆/MeCN; glassy carbon working electrode, glassy carbon rod counter electrode, Ag/AgCl pseudoreference electrode; referenced to Fc^+/Fc internal standard; 100 mV/s scan rate.

Description of Spectrochemical ORR Product Quantification

The concentration of catalytically produced H_2O_2 was determined by Ti(O)SO₄ as previously reported.⁷ A calibration curve (**Figure S25**) was obtained through a serial dilution of a stock solution of urea• H_2O_2 in MeCN. H_2O_2 was extracted by adding 2 mL of a standard solution to 10 mL DCM and 5 mL of DI H_2O , inverted and allowed to separate. Then, 3 mL of the aqueous layer was removed and put into the cuvette where a UV-vis spectrum was taken before and after the addition of 0.1 mL of Ti(O)SO₄ solution. The difference in absorbance at 408 nm was used to construct the calibration curve (**Figure S25**).

Figure S25. Calibration curve of H_2O_2 quantification using a Ti(O)SO₄ colorimetric assay. (A) Serial dilution of urea• H_2O_2 using the method described above. (B) Calibration curve made from data in A.

Generally, to determine the ORR selectivity of $Mn(^{nPr}dhbpy)Cl 1$ and $Mn(^{p-tbu}dhbpy)Cl 2$, solutions containing 80 µM [Mn] and 20 mM DIPEAHPF₆ and DIPEA (if present) were sparged with O₂ gas and rapidly mixed in a 1:1 ratio with a N₂ saturated 2 mM Cp*₂Fe solution with a final volume of 8 mL (final concentrations: 40 µM Mn, 1 mM Cp*₂Fe, 10 mM DIPEAHPF₆ and 10 mM DIPEA). Over the course of the reaction, 2 mL aliquots of the catalytic solution were removed and extracted with 10 mL of DCM and 5 mL of DI H₂O. The aqueous layer (3 mL) was removed and put into the cuvette and a UV-vis spectrum was taken before and after the addition of 0.1 mL of Ti(O)SO₄. Aliquots were taken at the indicated time points and experiments were done in triplicate. **Eqs S8-S9** were used to calculate the % selectivity of H₂O₂.

$$O_2 + 2Cp_2^*Fe(1 mM) + 2DIPEAHPF_6 \xrightarrow{cat.[Mn]} H_2O_2(0.5 mM) + 2[Cp_2^*Fe]^+ + 2DIPEA$$
 Eq S8

Abs@408 nm (red trace) - Abs@408 nm (black trace) = 201.2[H₂O₂]_{exp} + 0.003

$$\frac{[H_2O_2]_{exp}}{0.5 \text{ mM } H_2O_2} \times 100 = \% \text{ H}_2O_2 \text{ selectivity}$$
 Eq S9

Unbuffered Conditions

Figure S26. H_2O_2 product quantification of ORR by Mn(^{p-tbu}dhbpy)Cl **1** with DIPEAHPF₆. (A) UVvis spectrum of extracted solution after 3 min of reaction time before (black) and after (red) 0.1 mL of 0.1 M Ti(O)SO₄ solution was added. (B) Corrected spectra (red – black trace from A). Conditions: 40 μ M Mn(^{p-tbu}dhbpy)Cl, 10 mM DIPEAHPF₆, 1 mM Cp*₂Fe, 4.05 mM O₂ in MeCN.

Table S4. Summary of H_2O_2 selectivity of ORR by $Mn(^{p-tbu}dhbpy)Cl 1$ with 10 mM DIPEAHPF₆ (Figure S26).

Figure S27. H₂O₂ product quantification of ORR by Mn(^{nPr}dhbpy)Cl **2** with DIPEAHPF₆. (A) UVvis spectrum of extracted solution before (black) and after (red) 0.1 mL of 0.1 M Ti(O)SO₄ solution was added, 20 min. (B) Corrected spectra (red – black trace from A). Conditions: 40 μ M Mn(^{nPr}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 1 mM Cp*₂Fe, 4.05 mM O₂ in MeCN.

Table S5. Summary of H_2O_2 selectivity of ORR by $Mn(^{nPr}dhbpy)Cl 2$ with 10 mM DIPEAHPF₆ (Figure S27).

Time (min)	% H ₂ O ₂	% H₂O
20	96.2 ± 4.1	3.8 ± 4.1

Figure S28. Stability test of urea•H₂O₂ in the presence of Mn(^{p-tbu}dhbpy)Cl **1**, DIPEAHPF₆, and O₂. (A) UV-vis spectra of an extracted sample after 12 minutes of reaction time before (black) and after (red) the addition of 0.1 mL of 0.1 M Ti(O)SO₄. (B) Corrected UV-vis spectra (red – black trace from A) of H₂O₂ only (black) and after 12 min (red). Conditions: 40 μ M Mn(^{p-tbu}dhbpy)Cl, 10 mM DIPEAHPF₆, 0.87 mM urea•H₂O₂, 4.05 mM O₂ in MeCN.

Table S6. Summary of H_2O_2 disproportionation by Mn(^{p-tbu}dhbpy)Cl **1** with 10 mM DIPEAHPF₆ (**Figure S28**) relative to 0.87 mM H_2O_2 stock solution.

Figure S29. Stability test of urea•H₂O₂ in the presence of Mn(^{nPr}dhbpy)Cl **1**, DIPEAHPF₆, and O₂. (A) UV-vis spectra of an extracted sample after 20 minutes of reaction time before (black) and after (red) the addition of 0.1 mL of 0.1 M Ti(O)SO₄. (B) Corrected UV-vis spectra (red – black traces from A) at 0 min (black trace) and after 20 min (red). Conditions: 40 μ M Mn(^{nPr}dhbpy)Cl, 10 mM DIPEAHPF₆, 0.80 mM urea•H₂O₂, 4.05 mM O₂ in MeCN.

Table S7. Summary of H_2O_2 disproportionation by $Mn(^{nPr}dhbpy)Cl 2$ with 10 mM DIPEAHPF₆ (Figure S29) relative to 0 min with 0.80 mM H_2O_2 .

Time (min)	% H ₂ O ₂ Recovered
20	93.6 ± 4.6

Buffered Conditions

Figure S30. H₂O₂ product quantification of ORR by Mn(^{p-tbu}dhbpy)Cl **1** with DIPEAHPF₆ and DIPEA. (A) UV-vis spectrum of extracted solution before (black) and after (red) 0.1 mL of 0.1 M Ti(O)SO₄ solution was added, 15 s. (B) Corrected spectra (red – black trace from A) for 15, 90, and 720 s aliquots. Conditions: 40 μ M Mn(^{p-tbu}dhpby)Cl, 10 mM DIPEAHPF₆/DIPEA, 1 mM Cp*₂Fe, 4.05 mM O₂ in MeCN.

Table S8. Summary of H₂O₂ selectivity over the course of catalytic ORR by Mn(^{p-tbu}dhbpy)Cl **1** with 10 mM DIPEAHPF₆/DIPEA (**Figure S30**).

Time (s)	% H ₂ O ₂	% H₂O
15	18.1 ± 4.1	81.9 ± 4.1
90	-1.32 ± 2.4	101 ± 2.4
720	-2.08 ± 1.1	102 ± 1.1

Figure S31. H₂O₂ product quantification of ORR by Mn(^{nPr}dhbpy)Cl **2** with DIPEAHPF₆ and DIPEA. (A) UV-vis spectra of extracted solution before (black) and after (red) 0.1 mL of 0.1 M Ti(O)SO₄ solution was added, 15 s. (B) Corrected spectra (red – black trace from A) for 15, 120, and 720 s aliquots. Conditions: 40 μ M Mn(^{nPr}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 1 mM Cp*₂Fe, 4.05 mM O₂ in MeCN.

Time (s)	% H ₂ O ₂	% H₂O
15	37.9 ± 6.7	62.1 ± 6.7
120	6.42 ± 1.8	93.6 ± 1.8
720	-3.79 ± 1.2	103 ± 1.2

Table S9. Summary of H_2O_2 selectivity over the course of catalytic ORR by $Mn(^{nPr}dhbpy)Cl 2$ with 10 mM DIPEAHPF₆/DIPEA (**Figure S31**).

H₂O₂ Stability Testing under Buffered Conditions

To determine the stability of H_2O_2 under catalytic conditions, control studies were conducted in the presence of Mn catalyst, DIPEAHPF₆, DIPEA, and O₂. Generally, solutions containing 80 µM Mn catalyst and 20 mM DIPEAHPF₆ and DIPEA (if present) were sparged with O₂ gas and rapidly mixed in a 1:1 ratio with a N₂ saturated urea•H₂O₂ solution (final concentrations: 40 µM Mn, 10 mM DIPEAHPF₆ and 10 mM DIPEA). As the solution was allowed to react 2 mL aliquots were removed, extracted with 10 mL DCM and 5 mL DI H₂O. Then, 3 mL of the aqueous layer was removed and added to the cuvette. A UV-vis spectrum was taken before and after the addition of 0.1 mL of 0.1 M Ti(O)SO₄ solution and the difference at 408 nm was used to determine the amount of H₂O₂ present ([H₂O₂]_{detected}). The % recovery was determined according to **Eq S10** from measured [H₂O₂]_{expected} of the H₂O₂ stock solution or time point 0 min using the described extraction method.

Figure S32. Stability test of urea•H₂O₂ in the presence of Mn(^{p-tbu}dhbpy)Cl **1**, DIPEAHPF₆, DIPEA, and O₂. (A) UV-vis spectra before (black) and after (red) the addition of 0.1 mL of 0.1 M Ti(O)SO₄ to an extracted aliquot after 30 s. (B) Corrected UV-vis spectra (red – black traces) of H₂O₂ only (black) and after 30 (red) and 105 s (blue). Conditions: 40 μ M Mn(^{p-tbu}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 1.49 mM urea•H₂O₂, 4.05 mM O₂ in MeCN.

Table S10. Summary of H_2O_2 disproportionation by $Mn(^{p-tbu}dhbpy)Cl$ **1** with 10 mM DIPEAHPF₆/DIPEA (**Figure S32**) relative to 1.49 mM H_2O_2 stock solution.

Time (s)	% H ₂ O ₂ Recovered	
30	31.3 ± 5.2	
105	10.8 ± 6.6	

Figure S33. Stability test of urea•H₂O₂ in the presence of Mn(^{nPr}dhbpy)Cl **2**, DIPEAHPF₆, DIPEA, and O₂. (A) UV-vis spectra before (black) and after (red) the addition of 0.1 mL of 0.1 M Ti(O)SO₄ to an extracted aliquot after 15 s. (B) Corrected UV-vis spectra (red – black trace from A) of H₂O₂ only (black) and after 15 (red), 150 (green), and 540 s (blue). Conditions: 40 μ M Mn(^{nPr}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 0.89 mM urea•H₂O₂, 4.05 mM O₂ in MeCN.

Table S11. Summary of H_2O_2 disproportionation by $Mn(^{nPr}dhbpy)Cl$ **2** with 10 mM DIPEAHPF₆/DIPEA (**Figure S33**) relative to 0.89 mM H_2O_2 stock solution.

Time (s)	% H ₂ O ₂ Recovered
15	43.9 ± 4.9
150	3.81 ± 0.83
540	-3.14 ± 1.0

To determine the stability of H_2O_2 in the presence of Mn(II), control studies were conducted in the presence of Mn, DIPEAHPF₆, DIPEA, Cp*₂Fe, under an N₂ atmosphere. In a N₂ filled glovebox, urea•H₂O₂ was added to a solution containing Mn, DIPEAHPF₆/DIPEA, and Cp*₂Fe (final concentrations: 40 μ M Mn, 10 mM DIPEAHPF₆/DIPEA, 1 mM Cp*₂Fe, 2.3 mM urea•H₂O₂). After 30 s, 2 min and 9 min, 2 mL aliquots were removed from the 'catalytic' solution and extracted with 10 mL of dry, degassed DCM and 5 mL of degassed water. Then, 3 mL of the aqueous layer was removed and a UV-vis spectrum was taken before and after the addition of 0.1 mL of Ti(O)SO₄ solution. The difference in absorbance at 408 nm was used to quantify the amount of H₂O₂ present according to **Eq S9** and **Eq S10** was used to determine the amount of H₂O₂ recovered.

Figure S34. Stability test of urea•H₂O₂ in the presence of Mn(^{p-tbu}dhbpy)Cl **1**, DIPEAHPF₆, DIPEA, and FeCp*₂ (A) before (black trace) and after (red trace) the addition of 0.1 mL of 0.1 M Ti(O)SO₄ to an extracted aliquot after 30 s. (B) Corrected UV-vis spectra (red – black from A) after 30 s (black), 120 s (red), 600 s (green), and H₂O₂ only (blue). Conditions: 40 μ M Mn(^{p-tbu}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 2.3 mM urea•H₂O₂, 1 mM FeCp*₂ in MeCN.

Table S12. Summary of H_2O_2RR by $Mn(^{p-tbu}dhbpy)Cl 1$ with 10 mM DIPEAHPF₆/DIPEA and 1 mM FeCp*₂ (**Figure S34**) relative to 2.3 mM H_2O_2 stock solution.

Figure S35. Stability test of urea•H₂O₂ in the presence of Mn(^{nPr}dhbpy)Cl **2**, DIPEAHPF₆, DIPEA, and FeCp*₂ (A) before (black trace) and after (red trace) the addition of 0.1 mL of 0.1 M Ti(O)SO₄ to an extracted aliquot after 30 s. (B) Corrected UV-vis spectra (red – black from A) after 30 s (black), 120 s (red), 600 s (green), and H₂O₂ only (blue). Conditions: 40 μ M Mn(^{nPr}dhbpy)Cl, 10 mM DIPEAHPF₆/DIPEA, 2.3 mM urea•H₂O₂, 1 mM FeCp*₂ in MeCN.

Time (s)	% H ₂ O ₂ Recovered
30	88.5 ± 1.2
120	91.1 ± 3.6
540	86.5 ± 4.5

Table S13. Summary of H_2O_2RR by $Mn(^{nPr}dhbpy)Cl$ **2** with 10 mM DIPEAHPF₆/DIPEA and 1 mM FeCp*₂ (Figure S35) relative to 2.3 mM H_2O_2 stock solution.

Stopped-Flow Spectrochemical Methods. Stopped-flow spectrochemical kinetics studies were performed with a CSF-61DX2 Stopped-Flow System from Hi-Tech Scientific. Kinetic Studio Software was used to monitor a single wavelength and Integrated CCD Software was used to monitor the entire visible spectrum. All data fits were performed within the Kinetic Studio 4.0 Software Suite. Prior to experiments, dried and degassed MeCN was passed through syringes and the cell block before reagents were loaded. In a typical experiment, syringes would be charged with known concentrations of reagent. All reagent solutions were prepared immediately before use.

In general, a vial containing Mn catalyst and proton source (and conjugate base, if present) was sparged with O_2 , drawn into a syringe and loaded into the stopped-flow. A second syringe containing N₂-saturated Cp*₂Fe solution loaded into the stopped-flow. All reported concentrations are the mixed concentrations in the spectroscopic cell.

Determination of the Rate Law for ORR by 1 under Unbuffered Conditions rate = $k_{cat}[Mn^{p-tbu}]^{1}[0_{2}]^{1}$ Eq S11

Figure S36. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF₆, O₂, and Cp*₂Fe with varying Mn(^{p-tbu}dhbpy)Cl **1** concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), n_{cat} = 2.72. Concentrations: DIPEAHPF₆ = 10 mM, O₂ = 4.05 mM, Cp*₂Fe = 1 mM.

Figure S37. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{p-tbu}dhbpy)Cl 1$, DIPEAHPF₆, and $Cp^*{}_2Fe$ with varying O₂ concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), $n_{cat} = 2.72$. Concentrations: $Mn(^{p-tbu}dhbpy)Cl = 40 \ \mu M$, DIPEAHPF₆ = 10 mM, $Cp^*{}_2Fe = 1 \ mM$.

Figure S38. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{p-tbu}dhbpy)Cl 1$, O_2 , and Cp^*_2Fe with varying DIPEAHPF6 concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), $n_{cat} = 2.72$. The red line represents the global average over all points. Concentrations: $Mn(^{p-tbu}dhbpy)Cl = 40 \ \mu M$, $O_2 = 4.05 \ m M$, $Cp^*_2Fe = 1 \ m M$.

Figure S39. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{p-tbu}dhbpy)Cl 1$, O_2 , and DIPEAHPF₆ with varying $Cp^*{}_2Fe$ concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), $n_{cat} = 2.72$. The red line represents the global average over all points. Concentrations: $Mn(^{p-tbu}dhbpy)Cl = 40 \ \mu M$, $O_2 = 4.05 \ m M$, DIPEAHPF₆ = 10 mM.

Determination of the Rate Law of ORR by 1 under Buffered Conditions

$$rate = k_{cat} [Mn^{p-tbu}]^{1} [O_{2}]^{1}$$
 Eq S12

Comparable k_{obs} values can be obtained from the average of R_{fit}/n_{cat} values across independent experimental data points at identical conditions: 40 µM [Mn], 10 mM [DIPEAHPF₆/DIPEA], 4.05 mM [O₂], and 1 mM [Cp*₂Fe] (**Figures S40–S44**).

$$k_{\rm obs} = 1.23 \pm 0.17 \text{ x } 10^{-1} \text{ s}^{-1}$$

Figure S40. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF₆, DIPEA, O₂, and Cp*₂Fe with varying Mn(^{p-tbu}dhbpy)Cl **1** concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), n_{cat} = 3.64. Concentrations: DIPEAHPF₆/DIPEA = 10 mM, O₂ = 4.05 mM, Cp*₂Fe = 1 mM.

Figure S41. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu}dhbpy)Cl **1**, DIPEAHPF₆, DIPEA, and Cp*₂Fe with varying O₂ concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), n_{cat} = 3.64. Concentrations: Mn(^{p-tbu}dhbpy)Cl = 40 μ M, DIPEAHPF₆/DIPEA = 10 mM, Cp*₂Fe = 1 mM.

Figure S42. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu}dhbpy)Cl **1**, O₂, DIPEA, and Cp*₂Fe with varying DIPEAHPF₆:DIPEA ratio. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C). The red line represents the global average over all points, n_{cat} = 3.64. Concentrations: Mn(^{p-tbu}dhbpy)Cl = 40 μ M, DIPEA = 10 mM, O₂ = 4.05 mM, Cp*₂Fe = 1 mM; 1:1 DIPEAHPF₆:DIPEA = 10 mM of each and all concentrations are relative to this point.

Figure S43. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu}dhbpy)Cl **1**, O₂, and Cp*₂Fe with varying buffer (DIPEAHPF₆ and DIPEA, 1:1 ratio) concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C). The red line represents the global average over all points, n_{cat} = 3.64. Concentrations: Mn(^{p-tbu}dhbpy)Cl = 40 μ M, O₂ = 4.05 mM, Cp*₂Fe = 1 mM.

Figure S44. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{p-tbu}dhbpy)Cl **1**, DIPEAHPF₆, DIPEA, and O₂ with varying Cp*₂Fe concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C). The red line represents the global average over all points, $n_{cat} = 3.64$. Concentrations: Mn(^{p-tbu}dhbpy)Cl = 40 µM, O₂ = 4.05 mM, DIPEAHPF₆/DIPEA = 10 mM.

Determination of Rate Law of ORR by 2 under Unbuffered Conditions

Figure S45. The calculated initial ORR rate from stopped-flow spectrochemical experiments with DIPEAHPF₆, O₂, Cp*₂Fe with varying Mn(^{nPr}dhbpy)Cl **2** concentration. Data were fit using Kinetic Studio 4.0 (Linear) correcting for the concentration of Cp*₂Fe and n_{cat} = 2.08 Concentrations: DIPEAHPF₆ = 10 mM, O₂ = 4.05 mM, and Cp*₂Fe = 1 mM.

Figure S46. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, $Mn(^{nPr}dhbpy)Cl 2, O_2, Cp_2^*Fe$ with varying DIPEAHPF₆ concentration. Data were fit using Kinetic Studio 4.0 (Linear) correcting for the concentration of Cp₂Fe and n_{cat} = 2.08. Concentrations: $Mn(^{nPr}dhbpy)Cl = 40 \ \mu M, O_2 = 4.05 \ m M$, and Cp₂Fe = 1 mM.

Figure S47. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, $Mn(^{nPr}dhbpy)Cl 2$, DIPEAHPF₆, O₂, with varying Cp*₂Fe concentration. Data were fit using Kinetic Studio 4.0 (Linear) and correcting for the concentration of Cp*₂Fe and n_{cat} = 2.08. Concentrations: $Mn(^{nPr}dhbpy)Cl = 40 \ \mu M$, O₂ = 4.05 mM, and DIPEAHPF₆ = 10 mM.

Figure S48. The calculated initial ORR rate from stopped-flow spectrochemical experiments with, $Mn(^{nPr}dhbpy)Cl 2$, DIPEAHPF₆, $Cp^*{}_2Fe$ with varying O₂, concentration. Data were fit using Kinetic Studio 4.0 (Linear) and correcting for the concentration of $Cp^*{}_2Fe$ and $n_{cat} = 2.08$. Concentrations: $Mn(^{nPr}dhbpy)Cl = 40 \ \mu M$, O₂ = 4.05 mM, and DIPEAHPF₆ = 10 mM.

Determination of Rate Law for ORR by 2 under Buffered Conditions

$$rate = k_{cat}[Mn^{nPr}]^2[DIPEA]^1[Cp^*_2Fe]^{-1}$$
 Eq S13

Comparable k_{obs} values can be obtained from the average of R_{fit}/n_{cat} values across independent experimental data points at identical conditions: 40 µM [Mn], 10 mM [DIPEAHPF₆/DIPEA], 4.05 mM [O₂], and 1 mM [Cp*₂Fe] (**Figures S49-S53**).

$$k_{\rm obs} = 0.706 \pm 0.25 \times 10^{-1} \, {\rm s}^{-1}$$

Figure S49. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with DIPEAHPF₆, DIPEA, O₂, and Cp*₂Fe with varying Mn(^{nPr}dhbpy)Cl **2** concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C), n_{cat} = 3.24. Concentrations: DIPEAHPF₆/DIPEA = 10 mM, O₂ = 4.05 mM, Cp*₂Fe = 1 mM.

Figure S50. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr}dhbpy)Cl **2**, DIPEAHPF₆, DIPEA, and O₂ with varying Cp*₂Fe concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C); n_{cat} = 3.24. Concentrations: Mn(^{nPr}dhbpy)Cl = 40 μ M, O₂ = 4.05 mM, DIPEAHPF₆/DIPEA = 10 mM.

Figure S51. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{nPr}dhbpy)Cl 2$, O_2 , and $Cp^*{}_2Fe$ with varying buffer (DIPEAHPF₆ and DIPEA, 1:1 ratio) concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C); n_{cat} = 3.24. Concentrations: $Mn(^{nPr}dhbpy)Cl = 40 \ \mu M$, $O_2 = 4.05 \ m M$, $Cp^*{}_2Fe = 1 \ m M$.

Figure S52. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with $Mn(^{nPr}dhbpy)Cl 2$, O_2 , and Cp_2^*Fe with varying DIPEAHPF₆:DIPEA ratio. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C); $n_{cat} = 3.24$. Concentrations: $Mn(^{p-tbu}dhbpy)Cl = 40 \ \mu M$, $O_2 = 4.05 \ mM$, 1:1 DIPEAHPF₆:DIPEA = 10 mM, $Cp_2^*Fe = 1 \ mM$; 1:1 DIPEAHPF₆:DIPEA = 10 mM and all concentrations are relative to this point.

Figure S53. The calculated R_{fit}/n_{cat} values from stopped-flow spectrochemical experiments with Mn(^{nPr}dhbpy)Cl **2**, DIPEAHPF₆, DIPEA, and Cp*₂Fe with varying O₂ concentration. Data were fit using Kinetic Studio 4.0 (1Exp+Mx+C); $n_{cat} = 3.24$. Concentrations: Mn(^{nPr}dhbpy)Cl = 40 μ M, DIPEAHPF₆ = 10 mM, DIPEA = 10 mM, Cp*₂Fe = 1 mM.

Description of Stopped-Flow Data Fitting

1Exp+Mx+C Fits

For the rate law determination of ORR by $Mn(^{p-tbu}dhbpy)Cl 1$ with and without the presence of DIPEA and by $Mn(^{nPr}dhbpy)Cl 2$ with the presence of DIPEA, Kinetic Studio 4.0 was used to fit data sets with 1Exp+Mx+C. R_{fit} values were obtained by fitting the increase in absorbance at 780 nm versus time to a single exponential (1Exp+Mx+C) to achieve an R² value of 0.99 (See Figures S54-S56). Where the fit equation contains an exponent (1Exp), a linear portion (Mx) and a non-zero intercept (C). The R_{fit} values were corrected for the number of electrons passed during catalysis and plotted against variable concentrations to obtain the experimental rate law.

Figure S54. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{p-tbu}dhbpy)Cl **1** with DIPEAHPF₆/DIPEA and (B) the 1Exp+Mx+C fit (red) and residual (blue) used for data analysis using the Kinetic Studio 4.0 software. Conditions: Mn(^{p-tbu}dhbpy)Cl = 40 μ M, Cp*₂Fe = 1 mM, O₂ = 4.05 mM, and DIPEAHPF₆/DIPEA = 10 mM.

Figure S55. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by Mn(^{nPr}dhbpy)Cl **2** with DIPEAHPF₆/DIPEA and (B) the 1Exp+Mx+C fit (red) and residual (blue) used for data analysis using the Kinetic Studio 4.0 software. Conditions: Mn(^{nPr}dhbpy)Cl = 40μ M, Cp*₂Fe = 1 mM, O₂ = 4.05 mM, and DIPEAHPF₆/DIPEA = 10 mM.

Figure S56. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by $Mn(^{p-tbu}dhbpy)Cl 1$ with DIPEAHPF₆ and (B) the 1Exp+Mx+C fit (red) and residual (blue) used for data analysis using the Kinetic Studio 4.0 software. Conditions: $Mn(^{p-tbu}dhbpy)Cl = 40 \ \mu\text{M}$, $Cp^*_2Fe = 1 \ \text{mM}$, $O_2 = 4.05 \ \text{mM}$, and DIPEAHPF₆ = 10 \ mM.

Initial Rates Method

For the rate law determination of ORR by $Mn(^{nPr}dhbpy)Cl 2$ without the presence of DIPEA, the initial rates method was used due to the linearity of the observed curve. In this case, Initial ORR Rate values were obtained by taking slope of the linear fit of the initial region (~1.5 to ~50 s) in the Kinetic Studio 4.0 software of $[Cp^*{}_2Fe]^+$ growth at 780 nm (units = relative absorbance/second). The results of the linear fit were processed to reflect the rate of ORR by converting the relative absorbance units to concentration using the molar extinction coefficient of $[Cp^*{}_2Fe]^+$ ($\epsilon = 461 M^{-1}cm^{-1}$ as determined by serial dilution of a chemical prepared sample of $[Cp^*{}_2Fe][BF_4]$) and correcting for the number of electrons passed during catalysis ($n_{cat} = 2.08$). See **Figure S57** for description of the linear fits.

Figure S57. (A) Representative trace of time versus absorbance at 780 nm for ORR catalyzed by $Mn(^{nPr}dhbpy)Cl 2$ with DIPEAHPF₆ and (B) the initial Linear fit (red) and residual (blue) used for data analysis using the Kinetic Studio 4.0 software. Conditions: $Mn(^{nPr}dhbpy)Cl = 40 \ \mu M$, $Cp^*_2Fe = 1 \ mM$, $O_2 = 4.05 \ mM$, and DIPEAHPF₆ = 10 mM.

UV-vis Spectroscopic Analysis

Figure S58. (A) UV-vis of spectra of 23 μ M Mn(^{p-tbu}dhbpy)Cl **1** with increasing amounts of DIPEA in MeCN (B) difference spectrum of the final titration point (blue – green traces). Conditions: quartz cuvette with 1 cm pathlength; [DIPEA] = 3.8, 7.7, 12, 15.3, 19, 29, 38, 48, 57, 67, 77, 86, 96 mM.

Figure S59. (A) UV-vis of spectra of 26.8 μ M Mn(^{nPr}dhbpy)Cl **2** with increasing amounts of DIPEA in MeCN (B) difference spectrum of the final titration point (blue – green traces). Conditions: quartz cuvette with 1 cm pathlength; [DIPEA] = 3.8, 7.7, 12, 15.3, 19, 29, 38, 48, 57, 67, 77, 86, 96 mM.

Figure S60. UV-vis of spectra of 80 μ M Mn(^{p-tbu}dhbpy)Cl **1** with increasing amounts of DIPEAHPF₆. Conditions: quartz cuvette with 1 cm pathlength.

Figure S61. (A) UV-vis spectra of 80 μ M Mn(^{nPr}dhbpy)Cl **2** with increasing amounts of DIPEAHPF₆ in MeCN. Conditions: quartz cuvette with 1 cm pathlength.

UV-vis Spectroscopic Studies of Mn(^{p-tbu}dhbpy)Cl 1 and Cobaltocene

In order to better understand the reactivity of reduced $Mn(^{p-tbu}dhbpy)Cl 1$ and $Mn(^{nPr}dhbpy)Cl 2$, we used cobaltocene (CoCp₂) as a chemical reductant in solution. Solutions were prepared in a N₂ filled glovebox. To expose solutions to O₂, the cuvette was opened and inverted.

Figure S62. (A) UV-vis spectra of an 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl **1** with increasing amounts of CoCp₂ in MeCN under N₂. (B) Absorbance at 515 nm versus equivalents of CoCp₂ relative to [**1**]. Conditions: quartz cuvette with 1 cm pathlength.

Figure S63. (A) UV-vis spectra of 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl **1** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ (red) and after being exposed to air for 30 min (blue). (B) Time versus absorbance at 515 nm upon exposure of a 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl with 1.1 equiv CoCp₂ to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S64. (A) UV-vis spectra of 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl **1** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 19.7 mM DIPEAHPF6/DIPEA (red) and after being exposed to air for 8 min (blue). (B) Time versus absorbance at 515 nm upon exposure of a 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl with 1.1 equiv CoCp₂ and 19 mM DIPEAHPF₆/DIPEA to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S65. (A) UV-vis spectra of 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl **1** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 19.7 mM DIPEAHPF₆ (red) and after being exposed to air for 25 min (blue). (B) Time versus absorbance at 515 nm upon exposure of a 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl with 1.1 equiv CoCp₂ and 19.7 mM DIPEAHPF₆ to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S66. (A) UV-vis spectra of 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl **1** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 19 mM DIPEA (red) and after being exposed to air for 15 min (blue). (B) Time versus absorbance at 515 nm upon exposure of a 80 μ M solution of Mn(^{p-tbu}dhbpy)Cl with 1.1 equiv CoCp₂ and 19 mM DIPEA to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S67. Overlay of data involving Mn(^{p-tbu}dhbpy)Cl **1** from **Figs S63-S66** after samples were allowed to react with air completely.

Figure S68. UV-vis spectra of 80 μ M Mn(^{p-tbu}dhbpy)Cl **1** with (red) and without (black) 1 equiv TBAOH•30H₂O and with of 10 mM buffer (1:1 DIPEAHPF₆:DIPEA) in the presence of 1 equiv TBAOH•30H₂O (blue). Conditions: quartz cuvette with 1 cm pathlength.

UV-vis Spectroscopic Studies of Mn(^{nPr}dhbpy)Cl 2 and Cobaltocene

Figure S69. (A) UV-vis spectra of an 80 μ M solution of Mn(^{nPr}dhbpy) **2** with increasing amounts of CoCp₂ in MeCN under N₂. (B) Absorbance at 515 nm versus equivalents of CoCp₂ relative to [**2**]. Conditions: quartz cuvette with 1 cm pathlength.

Figure S70. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr}dhbpy)Cl **2** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ (red) and after being exposed to air for 70 min (blue). (B) Time versus absorbance at 515 nm upon exposure of an 80 μ M solution of Mn(^{nPr}dhbpy)Cl with 1.1 equiv CoCp₂ to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S71. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr}dhbpy)Cl **2** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 10 mM DIPEAHPF₆/DIPEA (red) and after being exposed to air for 60 min (blue). (B) Time versus absorbance at 515 nm upon exposure of an 80 μ M solution of Mn(^{nPr}dhbpy)Cl with 1.1 equiv CoCp₂ and 10 mM DIPEAHPF₆/DIPEA to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S72. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr}dhbpy)Cl **2** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 10 mM DIPEAHPF₆ (red) and after being exposed to air for 110 min (blue). (B) Time versus absorbance at 515 nm upon exposure of an 80 μ M solution of Mn(^{nPr}dhbpy)Cl with 1.1 equiv CoCp₂ and 10 mM DIPEAHPF₆ to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S73. (A) UV-vis spectra of 80 μ M solution of Mn(^{nPr}dhbpy)Cl **2** in MeCN (black) under N₂ with 1.1 equiv of CoCp₂ and 10 mM DIPEA (red) and after being exposed to air for 60 min (blue). (B) Time versus absorbance at 515 nm upon exposure of an 80 μ M solution of Mn(^{nPr}dhbpy)Cl with 1.1 equiv CoCp₂ and 10 mM DIPEA to air. Conditions: quartz cuvette with 1 cm pathlength.

Figure S74. Overlay of data involving Mn(^{nPr}dhbpy)Cl **2** from **Figs S70-S73** after samples were allowed to react with air completely.

Figure S75. UV-vis spectra of 80 μ M Mn(^{nPr}dhbpy)Cl **2** with (red) and without (black) 1 equiv TBAOH•30H₂O and with of 10 mM buffer (1:1 DIPEAHPF₆:DIPEA) in the presence of 1 equiv TBAOH•30H₂O (blue). Conditions: quartz cuvette with 1 cm pathlength.

Figure S76. (A) UV-vis titration of $[CoCp_2][PF_6]$ in MeCN. Conditions: $[CoCp_2][PF_6] = 1.97 \times 10^{-4}$, 1.64 x 10⁻⁴, 1.37 x 10⁻⁴, 1.14 x 10⁻⁴, 9.50 x 10⁻⁵, 7.91 x 10⁻⁵, 6.59 x 10⁻⁵, 5.50 x 10⁻⁵ M; 1 cm pathlength cuvette.

Computational Methods

Geometry optimizations were performed without geometry constraints at the DFT level with the Gaussian 16 program, Rev B.01,8 employing the hybrid functional B3LYP9 and the def2-SVP basis set was used for all atoms.¹⁰ Dispersion and bulk solvent effects (acetonitrile = MeCN) were accounted for at the optimization stage, by using Grimme's D3 parameter set with Becke-Johnson (BJ) damping¹¹ and the SMD continuum model,¹² respectively. The stationary points and their nature as minima (no imaginary frequencies) were characterized by vibrational analysis using the IGRRHO approach as implemented by default in the software package, which also produced enthalpy (H), entropy (S) and Gibbs energy (G) data at 298.15 K. The minima connected by a given transition state were determined by perturbing the transition states along the TS coordinate and optimizing to the nearest minimum. Free energies were corrected (ΔG_{ch}) to account for concentration effects and for errors associated with the harmonic oscillator approximation. Thus, according to Truhlars's quasi-harmonic approximation for vibrational entropy and enthalpy, all vibrational frequencies below 100 cm⁻¹ were set to this value.¹³ These anharmonic and concentration corrections were calculated with the Goodvibes code.¹⁴ Concentrations were set at 0.001 M for metal complexes, 0.05 M for DIPEAH and DIPEA, 0.004 M for O₂ and 18.9 M for MeCN. Energies were refined by means of single point calculations with the ORCA 5.0 program.¹⁵ employing the range-separated hybrid functional ω B97M-V¹⁶ and the def2-TZVPP basis set.¹⁷ Dispersion effects were treated with Grimme's D4 parameter set¹⁸ according to the method of Najibi and Goerigk¹⁹ and solvation again by the SMD model. The stability of the wavefunction and spin contamination were studied at the double- and triple-zeta levels of theory.

The labelling scheme for minima is $\frac{\text{multiplicity}}{\text{charge}}$ **Mn**(*axial ligands*) for metal complexes; the dianionic tetradentate ligand framework is a common feature of all Mn species and does not change its coordination mode during the reaction, so it is omitted in the notation where possible for clarity.

Figure S77. Free energy diagram of ORR by $Mn(^{nPr}dhbpy)Cl 2$ to H_2O .

Single Crystal Diffraction Studies

A single crystal of **2** Mn(^{nPr}dhbpy)Cl or DIPEAPF₆ was coated with Paratone oil and mounted on a MiTeGen MicroLoop. The X-ray intensity data were measured on a Bruker D8 Venture Photon III Kappa four-circle diffractometer system equipped with Incoatec IµS 3.0 micro-focus sealed Xray tubes (Cu K α , λ = 1.54178 Å; Mo K α , λ = 0.71073 Å) and HELIOS double bounce multilayer mirror monochromators. The frames were integrated with the Bruker SAINT software package package²⁰ a narrow-frame algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS).²¹ Each structure was solved and refined using the Bruker SHELXTL Software Package²² within APEX4²⁰ and OLEX2.²³ Non-hydrogen atoms were refined anisotropically. The N-H hydrogen atom in DIPEAHPF₆ was located in the electron density map and refined isotropically. All other hydrogen atoms in both structures were placed in geometrically calculated positions with U_{iso} = 1.2 U_{equiv} of the parent atom (1.5 U_{equiv} for methyl). The relative occupancy of the disordered atoms in each structure was freely refined, with constraints and restraints used on the anisotropic displacement parameters and bond lengths of the disordered F atoms only.

· · · · · · · · · · · · · · · · · · ·		5	
	2 Mn(^{nPr} dhbpy)Cl	DIPEAHPF ₆	
CCDC number	2255849	2255850	
Formula	$C_{64}H_{66}CI_2Mn_2N_6O_8$	$C_8H_{20}F_6NP$	
FW (g/mol)	1228.00	275.22	
Temp (K)	100(2)	100(2)	
λ (Å)	1.54178	0.71073	
Size (mm)	0.030 x 0.047 x 0.505	0.085 x 0.088 x 0.122	
Crystal habit	brown-yellow rod	colourless needle	
Crystal system	monoclinic	monoclinic	
Space group	P 2 ₁ /c	P 2 ₁ /n	
a (Å)	15.3780(4)	8.2349(2)	
b(Å)	9.8097(2)	17.2894(6)	
c (Å)	20.2954(5)	8.9716(3)	
α (°)	90	90	
β (°)	109.0756(18)	97.3780(10)	
γ (°)	90	90	
Volume (Å ³)	2893.51(12)	1266.77(7)	
Z	2	4	
Density (g/cm ³)	1.409	1.443	
μ (mm ⁻¹)	4.904	0.266	
F(000)	1280	576	
θ range (°)	3.04 to 68.36	2.36 to 28.29	
Index ranges	-18 ≤ h ≤ 18	-10 ≤ h ≤ 10	
	-11 ≤ k ≤ 10	-23 ≤ k ≤ 22	
	-24 ≤ I ≤ 24	-10 ≤ I ≤ 11	
Reflns collected	34823	30006	
Independent refins	5293 [R _{int} = 0.0881]	3123 [R _{int} = 0.0428]	
Data / restraints /parameters	5293 / 0 / 404	3123 / 28 / 173	
GOF on F ²	1.027	1.059	
R ₁ (I>2σ(I))	0.0505	0.0401	
wR ₂ (all data)	0.1376	0.1041	

	Table S14.	Crystallographic	details for Mn	(^{nPr} dhbpv)Cl 2	and DIPEAHPF6
--	------------	------------------	----------------	-----------------------------	---------------

References

- (1) Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-n-butylammonium perchlorate supporting electrolyte; the solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures. *Journal of Electroanalytical Chemistry* **2013**, *688*, 328-335. DOI: <u>https://doi.org/10.1016/j.jelechem.2012.07.039</u>.
- (2) Nichols, A. W.; Cook, E. N.; Gan, Y. J.; Miedaner, P. R.; Dressel, J. M.; Dickie, D. A.; Shafaat, H. S.; Machan, C. W. Pendent Relay Enhances H2O2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co–N2O2 Complexes. *Journal of the American Chemical Society* **2021**, *143* (33), 13065-13073. DOI: 10.1021/jacs.1c03381.
- (3) Hooe, S. L.; Rheingold, A. L.; Machan, C. W. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand. *Journal of the American Chemical Society* **2018**, *140* (9), 3232-3241. DOI: 10.1021/jacs.7b09027.
- (4) Saba, S.; Hernandez, R.; Choy, C. C.; Carta, K.; Bennett, Y.; Bondi, S.; Kolaj, S.; Bennett, C. A simple and efficient one-step protocol for the preparation of alkyl-substituted ammonium

tetrafluoroborate and hexafluorophosphate salts. *Journal of Fluorine Chemistry* **2013**, *153*, 168-171. DOI: <u>https://doi.org/10.1016/j.jfluchem.2013.05.007</u>.

- (5) Shivapurkar, R.; Jeannerat, D. Determination of the relative pKa's of mixtures of organic acids using NMR titration experiments based on aliased 1H–13C HSQC spectra. *Analytical Methods* **2011**, 3 (6), 1316-1322, 10.1039/C0AY00771D. DOI: 10.1039/C0AY00771D.
- (6) Espinoza, E. M.; Clark, J. A.; Soliman, J.; Derr, J. B.; Morales, M.; Vullev, V. I. Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. *Journal of The Electrochemical Society* **2019**, *166* (5), H3175. DOI: 10.1149/2.0241905jes.
- (7) Hooe, S. L.; Machan, C. W. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence between Homogeneous and Heterogeneous Reductants. *Journal of the American Chemical Society* 2019, 141 (10), 4379-4387. DOI: 10.1021/jacs.8b13373. Anson, C. W.; Stahl, S. S. Cooperative Electrocatalytic O2 Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator. *Journal of the American Chemical Society* 2017, 139 (51), 18472-18475. DOI: 10.1021/jacs.7b11362.
- (8) Gaussian 16 Rev. B.01; Wallingford, CT, 2016.
- (9) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. DOI: doi:http://dx.doi.org/10.1063/1.464913. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37 (2), 785-789. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58 (8), 1200-1211. DOI: 10.1139/p80-159 (acccessed 2016/05/20). Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98 (45), 11623-11627. DOI: 10.1021/j100096a001.
- (10) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297-3305, 10.1039/B508541A. DOI: 10.1039/B508541A. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, 8 (9), 1057-1065, 10.1039/B515623H. DOI: 10.1039/B515623H.
- (11) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104. DOI: doi:<u>http://dx.doi.org/10.1063/1.3382344</u>. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465. DOI: 10.1002/jcc.21759.
- (12) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *Journal of Physical Chemistry B* **2009**, *113* (18), 6378-6396. DOI: 10.1021/jp810292n.
- (13) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. *J. Phys. Chem. B* **2011**, *115* (49), 14556-14562. DOI: 10.1021/jp205508z.
- (14) Goodvibes v3.0.1; 2019. https://doi.org/10.5281/zenodo.3346166.
- (15) Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Computational Molecular Science 2022, n/a (n/a), e1606, <u>https://doi.org/10.1002/wcms.1606</u>. DOI: <u>https://doi.org/10.1002/wcms.1606</u>.

- (16) Mardirossian, N.; Head-Gordon, M. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. *The Journal of Chemical Physics* **2016**, *144* (21), 214110. DOI: 10.1063/1.4952647.
- (17) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical Chemistry Chemical Physics* 2005, 7 (18), 3297-3305. DOI: 10.1039/b508541a. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Physical Chemistry Chemical Physics* 2006, 8 (9), 1057-1065. DOI: 10.1039/b515623h. Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. *Theoretical Chemistry Accounts* 2007, *117* (4), 587-597. DOI: 10.1007/s00214-007-0250-5.
- (18) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. *The Journal of Chemical Physics* 2017, *147* (3), 034112. DOI: 10.1063/1.4993215 (acccessed 5/15/2023). Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. *The Journal of Chemical Physics* 2019, *150* (15), 154122. DOI: 10.1063/1.5090222 (acccessed 5/15/2023).
- (19) Najibi, A.; Goerigk, L. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. *Journal of Computational Chemistry* **2020**, *41* (30), 2562-2572, <u>https://doi.org/10.1002/jcc.26411</u>. DOI: <u>https://doi.org/10.1002/jcc.26411</u>.
- (20) Saint; APEX4; Bruker AXS Inc.: Madison, Wisconsin, USA, 2019.
- (21) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *Journal of Applied Crystallography* **2015**, *48* (1), 3-10. DOI: 10.1107/S1600576714022985.
- (22) Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallographica* **2015**, *71* (1), 3-8. DOI: 10.1107/S2053273314026370.
- (23) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *Journal of Applied Crystallography* **2009**, *42*, 339-341. DOI: 10.1107/S0021889808042726.