Supplementary information

Targeted regulation and optimization of multifunctional phase transition materials by novel void occupancy engineering

Zhi-Jie Wang,^a Hao-Fei Ni,^b Tie Zhang,^a Jie Li,^a Meng-Meng Lun,^a Da-Wei Fu,^{*a} Zhi-Xu Zhang,^{*b} and Yi Zhang^{*b}

^a Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China. Email: dawei@seu.edu.cn

^b Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China. E-mail: zhangzhixu@zjnu.edu.cn, yizhang1980@seu.edu.cn

Experimental Section

Synthesis

For the synthesis of [TMEA][Cd(SCN)₃], ethyltrimethylammonium chloride was prepared from iodide using Ag₂CO₃ and hydrochloric acid in a stoichiometric ratio. Then, ethyl trimethyl ammonium chloride (5 mmol), cadmium nitrate tetrahydrate (5 mmol) and potassium thiocyanate (15 mmol) were added to the solution mixture including water, methanol and acetonitrile in the ratio of 1:1:1 under stirring at room temperature, and the clarified solution was filtered through filter paper and left to evaporate slowly at room temperature for several days to obtain colorless and transparent rod-shaped crystals. As for the synthesis of [DEDMA][Cd(SCN)₃], requires the preparation of diethyl dimethylammonium chloride by using hydrochloric acid and diethyl dimethyl ammonium hydroxide in a stoichiometric manner, the other synthesis steps are similar to that of [TMEA][Cd(SCN)₃]. A few days later, colorless transparent rod-shaped single crystals of [DEDMA][Cd(SCN)₃], [TEMA][Cd(SCN)₃], and [TEA][Cd(SCN)₃], and [TEA][Cd(SCN)₃], and [TEA][Cd(SCN)₃].

Detailed methods of measurements

Single-crystal X-ray diffraction. Single crystal X-ray diffraction data for [TMEA][Cd(SCN)₃], [DEDMA][Cd(SCN)₃], [TEMA][Cd(SCN)₃], and [TEA][Cd(SCN)₃] were obtained using a Rigaku Saturn 724 diffractometer using Mo-K α Radiation (λ = 0.71073 Å). Data collection, cell refinement, and data restoration are performed using Rigaku Crystal Clear 1.3.5. The crystal structure is solved using a direct method, and then refined by full-matrix least-squares methods based on F^2 with the SHELXLTL software package. All non-hydrogen atoms are refined in an anisotropic manner, and the positions of all hydrogen atoms are generated geometrically. Import the generated CIF file into DIAMOND to draw the corresponding asymmetric cell diagram and stack diagram, and calculate the selected bond distances and angles through Mercury. Table S1-S4 and S8-S11 summarize the data collection and bond length and bond angle of these crystals. These X-ray crystal structures have been stored at the Cambridge Crystallography Data Center (storage number CCDC 2265083-2265089) and are available free of charge from CCDC at www.ccdc.cam.ac.uk/getstructures.

Differential Scanning Calorimetry (DSC). DSC measurement was performed on powder sample of [TMEA][Cd(SCN)₃], [DEDMA][Cd(SCN)₃], [TEMA][Cd(SCN)₃], and [TEA][Cd(SCN)₃] by a

NETZSCH DSC 214 Polyma instrument. The sample was placed in aluminum crucible under nitrogen at atmospheric pressure. The experiment was conducted under nitrogen and atmospheric pressure, with heating and cooling rates of 20 K·min⁻¹.

Dielectric Measurements. The powder is pressed into thin sheets, and the copper wire and sample are made into electrodes using silver glue. Dielectric measurements were performed at different temperatures on the Tonghui TH2828A instrument.

Second Harmonic Generation (SHG). Temperature-varying SHG of [TEA][Cd(SCN)₃] were performed using a low-divergence, unexpanded laser beam (pulsed Nd: YAG with a wavelength of 1064 nm) with a pulse duration of 10 ns at a temperature range of 330-390 K.

Powder X-ray diffraction. Powder X-ray diffraction (PXRD) measurements were performed at room temperature on a Rigaku D/MAX 2000 PC X-ray diffractometer. The diffraction pattern is recorded at 20 between 5-50° within the range, the step size is 0.02° .

Density Functional Theory (DFT) Calculations. The Density functional theory were carried out with the Vienna Ab Initio Simulation Package (VASP)¹. The projector-augmented wave method $(PAW)^2$ and Perdew-Burke-Ernzerhof (PBE)³ functional were used to describe the electron-ion and the exchange-correlation interactions respectively. The energy barrier for the rotation of cations were calculated based on crystal structures of the [DEDMA][Cd(SCN)₃], [TEMA][Cd(SCN)₃] and [TEA][Cd(SCN)₃]. The optimization by structural relaxation is required for [TEMA][Cd(SCN)₃] and [TEA][Cd(SCN)₃]. In this study, the Brillouin area was divided by the sampled grids of 2*2*1 Monkhorst-Pack mesh of k-points for [DEDMA][Cd(SCN)₃] and [TEA][Cd(SCN)₃]. A k-point grid with 2*1*2 Monkhorst-Pack mesh was chosen for the 4ethy. A cutoff energy of 500 eV was adopted for all simulations. In the self-consistent calculation, the energy convergence criteria was set to 10^{-5} eV, and the geometric configuration was completely relaxed until the force on each atom reached 0.02eV/Å. A cutoff energy of 500 eV was adopted for all simulations.

Fig. S1 Obtained crystal photos of four compounds.

Fig. S2 Infrared (IR) spectrums of four compounds.

Fig. S3 The measured and simulated PXRD patterns of four compounds match well, verifying the

phase purity of the compounds $[TMEA][Cd(SCN)_3]$ (a), $[DEDMA][Cd(SCN)_3]$ (b), $[TEMA][Cd(SCN)_3]$ (c) and $[TEA][Cd(SCN)_3]$ (d).

Fig. S4 (a), (b) DSC and dielectric measurements of $[TMEA][Cd(SCN)_3]$ under two consecutive cycles (c) DSC curve of polycrystalline sample of $[TMEA][Cd(SCN)_3]$ during heating-cooling cycle (150-408 K). $[TMEA][Cd(SCN)_3]$ has a melting point of 408 K and exhibits a melting-solidification peak. (b) The temperature dependent dielectric constant (ε ') of $[TMEA][Cd(SCN)_3]$ was measured during a heating-cooling cycle (120-403 K). An irreversible dielectric switching occurs at about 354 K.

Fig. S5 (a) Molecular structure of $[TMEA][Cd(SCN)_3]$ at 298 K (containing $[Cd(SCN)_3]^-$ chains and $[DEDMA]^+$ cations). (b) crystal packing structures of $[TMEA][Cd(SCN)_3]$ at 298 K.

Fig. S6 (a) Molecular structure of $[DEDMA][Cd(SCN)_3]$ at 298 K (containing $[Cd(SCN)_3]^-$ chains and $[DEDMA]^+$ cations). (b) Molecular structure of $[TEMA][Cd(SCN)_3]$ at 286 K (containing $[Cd(SCN)_3]^-$ chains and $[TEMA]^+$ cations). (c) Molecular structure of $[TEA][Cd(SCN)_3]$ at 293 K (containing $[Cd(SCN)_3]^-$ chains and $[TEA]^+$ cations).

Structure occupies (A^3) 565.23 (37.93%)

Structure occupies (A^3) 564.41 (36.23%)

Structure occupies (A^3) 565.54 (34.43%)

Structure occupies (A^3) 563.22 (31.76%)

Fig. S7 (a) Void diagram between anionic frameworks in unit cell of $[TMEA][Cd(SCN)_3]$. (b) Void diagram between anionic frameworks in unit cell of $[DEDMA][Cd(SCN)_3]$. (c) Void diagram between anionic frameworks in unit cell of $[TEMA][Cd(SCN)_3]$. (d) Void diagram between anionic frameworks in unit cell of $[TEA][Cd(SCN)_3]$.

Fig. S8 Cd-Cd-Cd anion chains arrangement in compounds $[TMEA][Cd(SCN)_3]$ (a) and $[DEDMA][Cd(SCN)_3]$ (b).

Fig. S9 Temperature-dependent dielectric constant (ε ') in a heating-cooling cycle of (a) [DEDMA][Cd(SCN)₃], (b) [TEMA][Cd(SCN)₃], and (c) [TEA][Cd(SCN)₃].

Fig. S10 Temperature dependence of the real part (ε') of (a) [DEDMA][Cd(SCN)₃], (b) [TEMA][Cd(SCN)₃] and (c) [TEA][Cd(SCN)₃] during the heating process at different frequencies.

Fig. S11 Symmetry transformations of space group from $P6_3/mmc$ to $Cmc2_1$ for [TEA][Cd(SCN)_3].

Fig. S12 The Computational models of the energy barrier for the rotation of [DEDMA][Cd(SCN)₃].

Fig. S13 The Computational models of the energy barrier for the rotation of [TEMA][Cd(SCN)₃].

Fig. S14 The Computational models of the energy barrier for the rotation of $[TEA][Cd(SCN)_3]$.

Compound	[TMEA][Cd(SCN) ₃]
Temperature	293 K
Empirical formula	$C_8H_{14}CdN_4S_3$
Formula weight	374.837
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	9.3109(7)
b/Å	10.7164(6)
$c/ m \AA$	14.9364(11)
$\alpha^{\prime\circ}$	90
$eta /^{\circ}$	90.634(7)
$\gamma^{/\circ}$	90
$V/\text{\AA}^3$	1490.25(18)
Ζ	4
F(000)	742.4
Radiation	Mo Kα (λ = 0.71073)
GOF	1.065
$R_1[I \ge 2\sigma(I)]$	0.0784
$wR_{2}[I \ge 2\sigma(I)]$	0.2333

Table S1 Crystal data and structure refinement for [TMEA][Cd(SCN)₃] at 293 K.

 $\label{eq:table_source} \textbf{Table S2} \ Crystal \ data \ and \ structure \ refinement \ for \ [DEDMA][Cd(SCN)_3] \ at \ 298 \ K \ and \ 343K.$

Compound	[DEDMA][Cd(SCN) ₃]
Temperature	298.45(10) K	343.0 K
Empirical formula	$C_9H_{16}CdN_4S_3$	$C_9CdN_4S_3$
Formula weight	388.84	372.71
Crystal system	orthorhombic	hexagonal
Space group	Pnma	$P6_3/mmc$
a/Å	10.7498(7)	9.448(2)
$b/\text{\AA}$	9.0463(8)	9.448(2)
c/Å	16.0214(13)	10.894(2)
α'°	90	90.00(3)
$eta /^{\circ}$	90	90.00(3)
γ/°	90	120.00(3)
$V/Å^3$	1558.0(2)	842.1(4)
Ζ	4	2
F(000)	776.0	356.0
Radiation	Mo Ka ($\lambda = 0.71073$)	Mo Ka ($\lambda = 0.71073$)
GOF	1.072	1.023
$R_1[I \ge 2\sigma(I)]$	0.0854	0.1070
$wR_2[I \ge 2\sigma(I)]$	0.2717	0.2122

Compound	[TEMA][Cd(SCN) ₃]			
Temperature	286.00 K	353.00 K		
Empirical formula	$C_{10}H_{18}CdN_4S_3$	$C_{10}CdN_4S_3$		
Formula weight	402.86	384.72		
Crystal system	monoclinic	hexagonal		
Space group	$P2_{1}/c$	<i>P</i> 6 ₃ / <i>mmc</i>		
a/Å	8.984(2)	9.703(2)		
b/Å	10.779(2)	9.703(2)		
c/Å	17.325(5)	10.837(2)		
$\alpha/^{\circ}$	90	90.00(3)		
$\beta/^{\circ}$	101.771(7)	90.00(3)		
$\gamma^{\prime \circ}$	90	120.00(3)		
$V/Å^3$	1642.4(7)	883.5(4)		
Ζ	4	2		
F(000)	808.0	368.0		
Radiation	Mo Ka ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)		
GOF	1.028	1.086		
$R_{1}[I \ge 2\sigma(I)]$	0.0716	0.1329		
$wR_2[I \ge 2\sigma(I)]$	0.2233	0.2879		

Table S3 Crystal data and structure refinement for $[TEMA][Cd(SCN)_3]$ at 286 K and 353 K.

Table S4 Crystal data and structure refinement for	• [TEA][Cd(SCN) ₃] at 293 K and 393 K.
--	--

Compound	[TEA][Cd(SCN) ₃]
Temperature	293(2) K	393.01(10) K
Empirical formula	$C_{11}CdN_4S_3$	$C_{11}CdN_4S_3$
Formula weight	396.73	396.73
Crystal system	orthorhombic	hexagonal
Space group	$Cmc2_1$	$P6_3/mmc$
a/Å	9.8887(5)	9.989(2)
b/Å	16.6064(6)	9.989(2)
c/Å	10.7989(4)	10.798(2)
$\alpha/^{\circ}$	90	90
$eta/^{\circ}$	90	90
γ/°	90	120
V/Å ³	1773.35(13)	933.1(4)
Ζ	2	2
F(000)	760.0	380.0
Radiation	Mo K α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)
GOF	1.094	1.193
$R_1[I \ge 2\sigma(I)]$	0.0314	0.1401
$wR_2[I \ge 2\sigma(I)]$	0.0866	0.2672

Table S5 The Void volume and Void occupancy of four compounds. Delete cations in each crystal cell and calculate the remaining void volume through OLEX2 software (Resolution 0.2 Å).

	[TMEA][Cd(SCN) ₃]	[DEDMA][Cd(SCN) ₃]	[TEMA][Cd(SCN) ₃]	[TEA][Cd(SCN) ₃]
Cell volume(Å ³)	1490.25(18)	1558.0(2)	1640.8(3)	1773.35(13)
void volume(Å ³)	565.66	564.3	565.13	563.17
Void occupancy	37.96%	36.22%	34.44%	31.76%

Table S6 The energy barrier for the different rotation angles of compounds [DEDMA][Cd(SCN)₃], [TEMA][Cd(SCN)₃], and [TEA][Cd(SCN)₃].

Rotation angle (Degree)	Energy for [DEDMA][Cd(SCN) ₃] (eV)	Energy for [TEMA][Cd(SCN) ₃] (eV)	Energy for [TEA][Cd(SCN) ₃] (eV)
-60	1.72	7.05	9.71
-40	0.96	3.09	6.24
-20	-0.04	0.41	2.3
0	0	0	0
20	-0.07	0.53	2.3
40	0.66	2.4	6.09
60	1.43	5.1	9.7

Table S	7 Datas related	to cadmium	thiocyanate	one-dimensional	hybrid materials.
			2		2

Compound	Void	Cd-Cd	<i>T</i> _p (K)	Ref
	occupancy	distances		
		(Å)		
[CPtmp][Cd(SCN) ₃]	31.37%	9.209	247/335/349 K	4
[(CH ₃) ₃ PCH ₂ F][Cd(SCN) ₃]	38.66%	7.511	318 K	5
$[(CH_3)_4P][Cd(SCN)_3]$	38.51%	7.636	308 K	5
[(CH ₃) ₃ PCH ₂ OH][Cd(SCN) ₃]	38.66%	7.641	248.5 K	6
[R-(HASD)][Cd(SCN) ₃]	32.96%	8.873	365 K	7
[S-(HASD)][Cd(SCN) ₃]	32.95%	8.881	365 K	7
[(i-PrNHMe ₂)][Cd(SCN) ₃]	38.38%	8.708	328 K	8
[(MeNHEt ₂)][Cd(SCN) ₃]	39.48%	8.849	345 K	8
[FMPD][Cd(SCN) ₃]	34.58%	7.995	302.5/352.5 K	9
[DMIE][Cd(SCN) ₃]	41.67%	9.360	248.6 K	10
[DMIFE][Cd(SCN) ₃]	34.25%	9.156	295.9 K	10
[DMICE][Cd(SCN) ₃]	33.05%	9.262	335.1 K	10
[DMIBE][Cd(SCN) ₃]	32.75%	9.333	367.8 K	10
$[C_2H_{10}N_2]Cd(SCN)_4]$	53.87%	7.908	/	11
[(CH ₃) ₄ N][Cd(SCN) ₃]	41.14%	7.616	/	12
$[(CH_3)_4N]_2[Cd(SCN)_4]]$	34.35%	7.300	/	12
[H ₂ (tmen)][Cd(SCN) ₄]	40.70%	8.131	/	13
[H ₂ (tmba)][Cd ₂ (SCN) ₆]	44.14%	7.444	/	13

$[H_2(L_2)][Cd(SCN)_4]$	32.83%	9.361	/	14
$[(C_{3}H_{7})_{4}N][Cd(SCN)_{3}]$	25.54%	9.371	/	15
[TMEA][Cd(SCN) ₃]	37.96%	8.181	/	This work
[DEDMA][Cd(SCN) ₃]	36.22%	8.565	333 K	This work
[TEMA][Cd(SCN) ₃]	34.44%	8.416	342 K	This work
[TEA][Cd(SCN) ₃]	31.76%	9.664	375 K	This work

Table S8 The bond lengths (Å) and angles (°) of $[TMEA][Cd(SCN)_3]$ in the RTP.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
Cd1–S1 ¹	2.737(2)	S1-Cd1-S2	85.67(9)
Cd1-S2 ²	2.740(3)	S1-Cd1-S3	85.53(9)
Cd1-S3 ²	2.751(3)	S2-Cd1-S3	97.32(10)
Cd1–N2	2.309(8)	N2Cd1S1	176.89(19)
Cd1–N3	2.364(8)	N2-Cd1-S2	92.4(2)
Cd1–N4	2.389(10)	N2Cd1S3	92.3(2)
S1–C6	1.644(8)	N2Cd1N3	91.0(3)
S2-C7	1.600(9)	N2-Cd1-N4	90.2(3)
S3–C8	1.594(9)	N3Cd1S1	91.2(2)
N2-C6	1.143(10)	N3Cd1S2	172.6(2)
N3C7	1.176(10)	N3Cd1S3	89.1(2)
N4C8	1.190(11)	N3Cd1N4	85.3(3)
N1-C5	1.473(9)	N4Cd1S1	92.2(2)
N1C4	1.468(9)	N4Cd1S2	88.2(2)
N1C2	1.463(9)	N4Cd1S3	173.9(3)
N1-C3	1.483(7)	C6-S1-Cd1	95.9(3)
C5–H5A	0.9600	C7–S2–Cd1	98.2(3)
C5–H5B	0.9600	C8-S3-Cd1	98.8(3)
С5–Н5С	0.9600	C6-N2-Cd1	153.6(7)
C4–H4A	0.9600	N2-C6-S1	179.5(8)
C4–H4B	0.9600	C7-N3-Cd1	143.0(8)
C4–H4C	0.9600	N3C7S2	175.1(9)
C2–H2A	0.9700	C8-N4-Cd1	139.3(9)
C2–H2B	0.9700	C5-N1-C3	112.5(19)
C2C1	1.5400(10)	C4-N1-C5	104.7(19)
C1–H1A	0.9601	C4-N1-C3	106.5(17)
C1–H1B	0.9603	C2-N1-C5	115.3(19)
C1–H1C	0.9600	C2-N1-C4	117.6(19)
С3–НЗА	0.9599	C2-N1-C3	100.1(16)
С3–Н3В	0.9598	N4C8S3	173.2(9)
С3–НЗС	0.9601	N1C5H5A	109.5
		N1C5H5B	109.5
		N1C5H5C	109.5
		H5AC5H5B	109.5

H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
N1-C4-H4A	109.5
N1-C4-H4B	109.5
N1-C4-H4C	109.5
H4A-C4-H4B	109.5
H4A–C4–H4C	109.5
H4B-C4-H4C	109.5
N1-C2-H2A	112.1
N1C2H2B	112.1
N1-C2-C1	98.4(17)
H2A-C2-H2B	109.7
C1C2H2A	112.1
C1C2H2B	112.1
C2C1H1A	117.7
C2C1H1B	107.4
C2C1H1C	103.0
H1A-C1-H1B	109.5
H1A-C1-H1C	109.5
H1B-C1-H1C	109.5
N1-C3-H3A	114.9
N1-C3-H3B	109.9
N1-C3-H3C	103.4
НЗА-СЗ-НЗВ	109.5
НЗА-СЗ-НЗС	109.5
НЗВ-СЗ-НЗС	109.5

Symmetry codes: ¹-x+1/2, y-1/2, -z+3/2; ²-x+1/2, y+1/2, -z+3/2.

Table S9 The bond lengths (Å) and angles (°) of [DEDMA][Cd(SCN)₃] in the RTP.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
C1–H1A	0.9600	H1A-C1-H1B	109.5
C1–H1B	0.9600	H1A-C1-H1C	109.5
C1–H1C	0.9600	H1B-C1-H1C	109.5
C1-N1	1.510(6)	N1-C1-H1A	109.5
C2–H2A	0.9600	N1-C1-H1B	109.5
C2–H2B	0.9600	N1-C1-H1C	109.5
C2–H2C	0.9600	H2A-C2-H2B	109.5
C2–C3	1.313(16)	H2A-C2-H2C	109.5
С3–НЗА	0.9700	H2B-C2-H2C	109.5
С3–Н3В	0.9700	C3–C2–H2A	109.5
C3-N1	1.425(12)	C3–C2–H2B	109.5
C4–H4A	0.9600	C3–C2–H2C	109.5
C4–H4B	0.9601	С2С3НЗА	105.2

C4–H4C	0.9598	С2С3Н3В	105.2
C4–C5	1.420(18)	C2C3N1	128.5(12)
C5–H5A	0.9700	НЗА-СЗ-НЗВ	105.9
C5–H5B	0.9700	N1-C3-H3A	105.2
C5–N1	1.362(13)	N1-C3-H3B	105.2
N1-C1A1	1.491(13)	H4A-C4-H4B	109.5
N1-C1A	1.491(13)	Н4А-С4-Н4С	109.5
C6-N2	1.131(7)	H4B-C4-H4C	109.5
C6–S1	1.632(5)	C5–C4–H4A	109.6
C7–N3	1.174(11)	C5–C4–H4B	109.4
C7–S2	1.603(8)	С5–С4–Н4С	109.4
Cd1–N2	2.376(7)	С4С5Н5А	103.9
$Cd1-N2^2$	2.376(7)	C4C5H5B	103.9
Cd1–N3	2.271(8)	H5A-C5-H5B	105.4
Cd1-S1 ³	2.756(2)	N1-C5-C4	133.5(14)
Cd1-S1 ⁴	2.756(2)	N1-C5-H5A	103.9
Cd1-S2 ⁵	2.704(3)	N1-C5-H5B	103.9
C1A-H1AA	0.9600	C1-N1-C1	167.6(11)
C1A-H1AB	0.9600	C3-N1-C1	96.2(5)
C1A-H1AC	0.9600	C3-N1-C1	96.2(5)
		C3-N1-C1A	115.0(10)
		C3-N1-C1A	115.0(10)
		C5-N1-C1	86.8(6)
		C5-N1-C1	86.8(6)
		C5-N1-C3	124.0(10)
		C5-N1-C1A	116.8(11)
		C5-N1-C1A	116.8(11)
		N2-C6-S1	175.9(7)
		N3-C7-S2	178.6(8)
		N2-Cd1-N2	83.4(4)
		N2-Cd1-S1	90.92(19)
		N2-Cd1-S1	173.58(17)
		N2-Cd1-S1	90.92(18)
		N2-Cd1-S1	173.58(17)
		N2-Cd1-S2	91.59(13)
		N2-Cd1-S2	91.59(13)
		N3-Cd1-N2	92.1(2)
		N3-Cd1-N2	92.1(2)
		N3-Cd1-S1	91.13(14)
		N3-Cd1-S1	91.13(14)
		N3-Cd1-S2	175.1(2)
		S1Cd1S1	94.58(9)

S2--Cd1--S1

S2--Cd1--S1

85.55(5) 85.55(5)

C6-N2-Cd1	143.0(7)
C7–N3–Cd1	158.5(7)
C6–S1–Cd1	99.1(2)
C7-S2-Cd1	95.9(3)
N1-C1A-H1AA	109.5
N1-C1A-H1AB	109.5
N1-C1A-H1AC	109.5
H1AA-C1A-H1AB	109.5
H1AA-C1A-H1AC	109.5
H1AB-C1A-H1AC	109.5

Symmetry codes: ¹ x, -y+3/2, z; ² x, -y+1/2, z; ³ x-1/2, y, -z+3/2; ⁴ x-1/2, -y+1/2, -z+3/2; ⁵ x+1/2, y, -z+3/2.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
Cd1–S11	2.736(2)	S1-Cd1-S2	96.21(6)
$Cd1-S2^1$	2.741(2)	S1-Cd1-S3	85.66(7)
Cd1-S3 ²	2.766(2)	S2-Cd1-S3	84.02(7)
Cd1–N2	2.342(6)	N2Cd1S1	171.98(17)
Cd1–N3	2.275(6)	N2Cd1S2	90.56(18)
Cd1–N4	2.340(6)	N2Cd1S3	90.80(19)
S1–C8	1.644(7)	N3-Cd1-S1	92.52(17)
S2–C9	1.638(7)	N3Cd1S2	92.36(17)
S3-C10	1.654(7)	N3Cd1S3	175.75(16)
N2-C8	1.165(9)	N3-Cd1-N2	91.5(2)
N3-C10	1.159(9)	N3Cd1N4	93.8(2)
N4C9	1.156(8)	N4-Cd1-S1	89.71(17)
N1C2	1.505(11)	N4Cd1S2	171.22(17)
N1-C5	1.502(9)	N4Cd1S3	89.99(17)
N1-C6	1.504(10)	N4Cd1N2	83.1(3)
N1C11	1.560(11)	C8–S1–Cd1	98.0(2)
C2–H2A	0.9700	C9-S2-Cd1	100.1(2)
C2–H2B	0.9700	C10-S3-Cd1	95.4(2)
C2–C3	1.493(17)	C8-N2-Cd1	148.2(6)
С3–НЗА	0.9600	C10-N3-Cd1	154.9(6)
C3–H3B	0.9600	C9–N4–Cd1	143.5(6)
С3–НЗС	0.9600	N2-C8-S1	178.8(7)
C4–H4A	0.9600	N4C9S2	178.1(7)
C4–H4B	0.9600	N3-C10-S3	179.4(7)
C4–H4C	0.9600	C2-N1-C11	106.4(7)
C4–C5	1.532(13)	C5-N1-C2	114.2(7)
С5–Н5А	0.9700	C5-N1-C6	107.4(6)
C5–H5B	0.9700	C5-N1-C11	110.9(7)

Table S10 The bond lengths (Å) and angles (°) of $[TEMA][Cd(SCN)_3]$ in the RTP.

С6–Н6А	0.9600	C6-N1-C2	109.6(7)
C6–H6B	0.9600	C6-N1-C11	108.2(7)
С6–Н6С	0.9600	N1C2H2A	108.9
С7–Н7А	0.9600	N1-C2-H2B	108.9
C7–H7B	0.9600	H2A-C2-H2B	107.7
С7–Н7С	0.9600	C3-C2-N1	113.5(10)
C7–C11	1.480(15)	C3–C2–H2A	108.9
C11–H11A	0.9700	С3-С2-Н2В	108.9
C11–H11B	0.9700	С2-С3-НЗА	109.5
		С2-С3-Н3В	109.5
		С2–С3–Н3С	109.5
		НЗА-СЗ-НЗВ	109.5
		НЗА-СЗ-НЗС	109.5
		НЗВ-СЗ-НЗС	109.5
		H4A-C4-H4B	109.5
		H4A–C4–H4C	109.5
		H4B-C4-H4C	109.5
		С5-С4-Н4А	109.5
		C5–C4–H4B	109.5
		С5-С4-Н4С	109.5
		N1-C5-C4	114.4(7)
		N1C5H5A	108.7
		N1-C5-H5B	108.7
		C4C5H5A	108.7
		C4C5H5B	108.7
		H5A-C5-H5B	107.6
		N1-C6-H6A	109.5
		N1-C6-H6B	109.5
		N1-C6-H6C	109.5
		H6A-C6-H6B	109.5
		H6A-C6-H6C	109.5
		H6B-C6-H6C	109.5
		H7A-C7-H7B	109.5
		H7A-C7-H7C	109.5
		H7B-C7-H7C	109.5

С11-С7-Н7А

С11-С7-Н7В

С11-С7-Н7С

N1-C11-H11A

N1-C11-H11B

C7-C11-H11B

H11A-C11-H11B

C7–C11–N1 C7–C11–H11A 109.5

109.5

109.5

108.1

108.1 116.7(8)

108.1

108.1

107.3

Symmetry codes: ¹ 1/2-X, 1/2+Y, 3/2-Z; ² 1/2-X, -1/2+Y, 3/2-Z.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
Cd1-S11	2.7460(17)	S1-Cd1-S1	97.44(8)
Cd1-S1 ²	2.7460(17)	S2-Cd1-S1	85.31(4)
Cd1-S2 ³	2.733(2)	S2-Cd1-S1	85.31(4)
Cd1–N1 ⁴	2.335(6)	N1-Cd1-S1	170.87(15)
Cd1–N1	2.335(6)	N1-Cd1-S1	90.34(16)
Cd1–N2	2.263(6)	N1-Cd1-S1	90.33(16)
S1C1	1.630(5)	N1-Cd1-S1	170.87(15)
S2-C2	1.636(7)	N1-Cd1-S2	90.57(14)
N1C1	1.145(7)	N1-Cd1-S2	90.57(14)
N2-C2	1.158(10)	N1-Cd1-N1	81.5(3)
C3–N3	1.517(10)	N2Cd1S1	90.35(11)
C3–C4	1.492(18)	N2Cd1S1	90.35(11)
N3C5	1.486(9)	N2Cd1S2	173.42(16)
N3C5 ⁵	1.486(9)	N2Cd1N1	94.41(18)
N3C9	1.500(9)	N2Cd1N1	94.41(18)
N3C9 ⁵	1.500(9)	C1-S1-Cd1	99.70(18)
N3C7 ⁵	1.513(9)	C2-S2-Cd1	95.2(2)
N3C7	1.513(9)	C1-N1-Cd1	148.0(5)
C5–C6	1.570(16)	C2-N2-Cd1	158.3(5)
C8–C9 ⁵	1.512(16)	N1C1S1	179.1(6)
C8–C7	1.539(14)	N2-C2-S2	179.3(6)
		C4-C3-N3	116.9(9)
		C3-N3-C3	62.2(12)
		C5-N3-C3	112.2(9)
		C5-N3-C3	79.1(8)
		C5-N3-C3	79.1(8)
		C5-N3-C3	112.2(9)
		C5-N3-C5	66.6(11)
		C5-N3-C9	172.0(10)
		C5–N3–C9	110.5(8)
		C5-N3-C9	172.0(10)
		C5-N3-C9	110.5(8)
		C5-N3-C7	62.2(7)
		C5-N3-C7	107.8(8)
		C5-N3-C7	107.8(8)
		C5-N3-C7	62.2(7)
		C9-N3-C3	108.8(8)
		C9-N3-C3	108.8(8)
		C9–N3–C3	73.8(8)
		C9–N3–C3	73.8(8)

Table S11 The bond lengths (Å) and angles $(^{\circ})$ of $[\text{TEA}][Cd(SCN)_3]$ in the RTP.

C9–N3–C9	71.4(11)
C9-N3-C7	64.8(7)
C9-N3-C7	113.3(8)
C9-N3-C7	64.8(7)
C9-N3-C7	113.3(8)
C7–N3–C3	166.4(9)
C7–N3–C3	104.2(8)
C7–N3–C3	166.4(9)
C7–N3–C3	104.2(8)
C7-N3-C7	89.4(12)
N3-C5-C3	51.2(5)
N3-C5-C6	114.3(8)
C6-C5-C3	118.8(10)
C5-C6-C5	62.6(9)
C3-C4-C3	63.4(10)
C9–C8–C7	63.9(6)
N3-C9-C8	115.6(9)
N3-C7-C8	113.3(8)
N3-C7-C9	57.2(5)
C8-C7-C9	57.2(7)

Symmetry codes: ¹-x+2, -y+1, z+1/2; ² x, -y+1, z+1/2; ³-x+2, -y+1, z-1/2; ⁴-x+2, y, z; ⁵-x+1, y, z.

Reference

- 1. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 2. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 3. J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982-9985.
- 4. L. Zhou, R.-X. Li, P.-P. Shi, Q. Ye and D.-W. Fu, *Inorg. Chem.*, 2020, **59**, 18174-18180.
- 5. Y.-J. Cao, L. Zhou, P.-P. Shi, Q. Ye and D.-W. Fu, Chem. Commun., 2019, 55, 8418-8421.
- X. Zheng, P.-P. Shi, Y. Lu, L. Zhou, J.-X. Gao, F.-J. Geng, D.-H. Wu, D.-W. Fu and Q. Ye, Inorg. Chem. Front., 2017, 4, 1445-1450.
- H. Gao, Y.-D. Chen, T. Zhang, J.-Z. Ge, D.-W. Fu and Y. Zhang, *Inorg. Chem.*, 2022, 61, 10872-10879.
- S.-Y. Zhang, X. Shu, Y. Zeng, Q.-Y. Liu, Z.-Y. Du, C.-T. He, W.-X. Zhang and X.-M. Chen, *Nat. Commun.*, 2020, 11, 2752.
- Y.-Z. Wang, Z.-X. Zhang, C.-Y. Su, T. Zhang, D.-W. Fu and Y. Zhang, *Dalton Trans.*, 2021, 50, 3841-3847.
- 10. L. He, L. Zhou, P.-P. Shi, Q. Ye and D.-W. Fu, Chem. Mater., 2019, 31, 10236-10242.
- 11. H. Souidi, H. Triki and S. Kamoun, J. Mol. Struct., 2021, 1232, 129994.
- 12. Y. Kuniyasu, Y. Suzuki, M. Taniguchi and A. Ouchi, Bul. Chem. Soc. Jpn., 1987, 60, 179-183.
- 13. B. Guo, X. Zhang, J.-H. Yu and J.-Q. Xu, *Dalton Trans.*, 2015, 44, 11470-11481.
- 14. R.-Y. Wang, J.-H. Yu and J.-Q. Xu, *Dalton Trans.*, 2019, 48, 5674-5682.
- 15. M. Taniguchi and A. Ouchi, Bul. Chem. Soc. Jpn., 1989, 62, 424-428.