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Mathematical Results and Derivations

Derivations of reactant concentration vs time and ¢/,

Solution for m =1
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Let T' = t/t; /5, and substitute ¢ = t; 5T into (7):
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The last form with the absolute value may avoid difficulties with complex values in fitting routines.
In the case of m < 0, the above formula only holds up to the time tq,q, after which the concentration

is zero. ) .
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Solve for ¢y /5:
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Similar to the above, t = t; 5T is substituted into (24):
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Again, taking the limit as m — 1 gives the first-order result (16).
Combined equations
As functions of the parameters:
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In terms of t/t; /5:
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Derivation of relationship between ¢, /,, t and ¢,

Case of m =1

In a conventional experiment at catalyst concentration Clet
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where k' = kCJl; is the pseudo-first-order rate constant. The half-life is well known to be t;, =
In(2)/k’ and we define the characteristic pumping time ¢, as the time to add catalyst to concentra-
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n In(2) [ Cret "
Wby =gen \ 7

)
_ e

But the half-life in the CAKE experiment is
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Case of m # 1
The half life for the general mth order reaction is known to be (Laidler)
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and combining with ¢ gives

om=1_1 Chre "
bt = e (22) (48)
(m—1)R{? EC™, P
om-1_1
= (49)

(m— DRy "kp"

Compare with

m—1 _ —m+1 n n;-l—l
thye = <(2 k;g(ff 1)( H)) (50)

n+1 __ (2m—1 — 1) (’fl + 1)

= 51
1/2 kan(r)n—l(mil) ( )
and we again find
th = (n+ Dty (52)
To show t; /5 > min(ty,t,) and ¢,/ < 1.4447 max(ty, t,)
It is simplest to work with the logs of these quantities:
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Now g > 1, n > 0so g(n+1) > 1. Raising any number > 1 to a positive power gives a number > 1,
so [q(n+ DY > 1 In[g(n + 1] > 0 and so
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(using the monotonicity of the In function).



For this case ty > t,, we also want to know what the largest ¢, /o value can be:
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For fixed n, (n 4 1)Y/(+1) /gn/(+1) decreases as ¢ increases from 1 (its derivative is explicitly
negative) and so its largest value occurs for ¢ = 1, when it equals (n + 1)/+1), The value of
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and therefore the largest value of ¢, 5 is 1.445t), which occurs when ¢ = ¢, and n = 1.718.
For the case where ¢, > t) or t,/tx = q with ¢ > 1. We want to show that ¢, /5 > t.. We proceed
similarly to the above.
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For this case t, > tx we also want to know what the largest ¢, /o value can be:
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For fixed n, [(n+1)/q]"/ (1*1) decreases as ¢ increases from 1 (its derivative is explicitly negative)
and so its largest value occurs for ¢ = 1, when it equals (n + 1)1/ (n+1) " which as above has a
maximum value of 1.4447. Therefore in this case, the largest value of ¢, /o is 1.4447%,.



