Supporting Information for P.J.H Williams et al,
"Continuous Addition Kinetic Elucidation: Catalyst and Reactant Order, Rate
Constant, and Poisoning from a Single Experiment"

## Mathematical Results and Derivations

Derivations of reactant concentration vs time and $t_{1 / 2}$
Solution for $m=1$

$$
\begin{align*}
-\frac{\mathrm{d} R(t)}{\mathrm{d} t} & =k R(t) C(t)^{n}  \tag{1}\\
C(t) & =p t \tag{2}
\end{align*}
$$

Substitute (2) into (1) and separate variables:

$$
\begin{align*}
\frac{\mathrm{d} R(t)}{\mathrm{d} t} & =-k R(t)(p t)^{n}  \tag{3}\\
\int_{R_{0}}^{R(t)} \frac{1}{R} \mathrm{~d} R & =-k p^{n} \int_{0}^{t} t^{n} \mathrm{~d} t  \tag{4}\\
{[\ln R]_{R_{0}}^{R(t)} } & =-k p^{n}\left[\frac{t^{n+1}}{n+1}\right]_{0}^{t}  \tag{5}\\
\ln \frac{R(t)}{R_{0}} & =-k p^{n} \frac{t^{n+1}}{n+1}  \tag{6}\\
\frac{R(t)}{R_{0}} & =\exp \left(-\frac{k p^{n} t^{n+1}}{n+1}\right) \tag{7}
\end{align*}
$$

To find $t_{1 / 2}$ :

$$
\begin{align*}
\frac{1}{2} & =\exp \left(-\frac{k p^{n} t_{1 / 2}^{n+1}}{n+1}\right)  \tag{8}\\
-\ln 2 & =-\frac{k p^{n} t_{1 / 2}^{n+1}}{n+1}  \tag{9}\\
t_{1 / 2}^{n+1} & =\frac{(n+1) \ln 2}{k p^{n}}  \tag{10}\\
t_{1 / 2} & =p^{-\frac{n}{n+1}}\left(\frac{(n+1) \ln 2}{k}\right)^{\frac{1}{n+1}} \tag{11}
\end{align*}
$$

Estimate $k$ from $t_{1 / 2}$ :

$$
\begin{equation*}
k=\frac{(n+1) \ln 2}{t_{1 / 2}^{n+1} p^{n}} \tag{12}
\end{equation*}
$$

Let $T=t / t_{1 / 2}$, and substitute $t=t_{1 / 2} T$ into (7):

$$
\begin{align*}
\frac{R(t)}{R_{0}} & =\exp \left(-\frac{k p^{n}\left(t_{1 / 2} T\right)^{n+1}}{(n+1)}\right)  \tag{13}\\
& =\exp \left(-\frac{k p^{n}\left(\left[p^{-\frac{n}{n+1}}\left(\frac{(n+1) \ln 2}{k}\right)^{\frac{1}{n+1}}\right] T\right)^{n+1}}{(n+1)}\right)  \tag{14}\\
& =\exp \left(-\frac{k p^{n} p^{-n}\left(\frac{(n+1) \ln 2}{k}\right) T^{n+1}}{(n+1)}\right)  \tag{15}\\
& =\exp \left(-T^{n+1} \ln 2\right)=2^{-T^{n+1}}  \tag{16}\\
& =\exp \left(-\left(t / t_{1 / 2}\right)^{n+1} \ln 2\right)=2^{-\left(t / t_{1 / 2}\right)^{n+1}} \tag{17}
\end{align*}
$$

Solution for $m \neq 1$

$$
\begin{align*}
\frac{\mathrm{d} R(t)}{\mathrm{d} t} & =-k R(t)^{m} C(t)^{n}=-k R(t)^{m}(p t)^{n}  \tag{18}\\
\int_{R_{0}}^{R(t)} R^{-m} \mathrm{~d} R & =-k p^{n} \int_{0}^{t} t^{n} \mathrm{~d} t  \tag{19}\\
{\left[\frac{R^{-m+1}}{1-m}\right]_{R_{0}}^{R(t)} } & =-k p^{n}\left[\frac{t^{n+1}}{n+1}\right]_{0}^{t}  \tag{20}\\
\frac{R(t)^{-m+1}}{1-m}-\frac{R_{0}^{-m+1}}{1-m} & =-k p^{n} \frac{t^{n+1}}{n+1}  \tag{21}\\
R(t)^{-m+1}-R_{0}^{-m+1} & =(m-1) k \frac{p^{n} t^{n+1}}{n+1}  \tag{22}\\
R_{0}^{-m+1}\left(\left(\frac{R(t)}{R_{0}}\right)^{-m+1}-1\right) & =(m-1) k \frac{p^{n} t^{n+1}}{n+1}  \tag{23}\\
\frac{R(t)}{R_{0}} & =\left(1+\frac{(m-1) k p^{n} t^{n+1}}{R_{0}^{-m+1}(n+1)}\right)^{-\frac{1}{m-1}}  \tag{24}\\
& =\left|1+\frac{(m-1) k p^{n} t^{n+1}}{R_{0}^{-m+1}(n+1)}\right|^{-\frac{1}{m-1}} \tag{25}
\end{align*}
$$

The last form with the absolute value may avoid difficulties with complex values in fitting routines. In the case of $m \leq 0$, the above formula only holds up to the time $t_{\text {end }}$, after which the concentration is zero.

$$
\begin{equation*}
t_{\mathrm{end}}=\left(\frac{R_{0}^{1-m}(n+1)}{(1-m) k p^{n}}\right)^{1 /(n+1)} \tag{26}
\end{equation*}
$$

Using $\lim _{i \rightarrow 0}(1+a i)^{-1 / i}=\exp (-a)$, the limit of (24) as $m \rightarrow 1$ is seen to be the $m=1$ formula (7).

Solve for $t_{1 / 2}$ :

$$
\begin{align*}
\frac{1}{2} & =\left(\frac{(m-1) k p^{n} t_{1 / 2}^{n+1}}{R_{0}^{-m+1}(n+1)}+1\right)^{-\frac{1}{m-1}}  \tag{27}\\
\frac{1}{2^{m-1}} & =\left(\frac{(m-1) k p^{n} t_{1 / 2}^{n+1}}{R_{0}^{-m+1}(n+1)}+1\right)^{-1}  \tag{28}\\
2^{m-1} & =\frac{(m-1) k p^{n} t_{1 / 2}^{n+1}}{R_{0}^{-m+1}(n+1)}+1  \tag{29}\\
t_{1 / 2} & =\left(\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{k p^{n}(m-1)}\right)^{\frac{1}{n+1}} \tag{30}
\end{align*}
$$

Estimate $k$ from $t_{1 / 2}$ :

$$
\begin{equation*}
k=\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{t_{1 / 2}^{n+1} p^{n}(m-1)} \tag{31}
\end{equation*}
$$

Similar to the above, $t=t_{1 / 2} T$ is substituted into (24):

$$
\begin{align*}
\frac{R(t)}{R_{0}} & =\left(\frac{(m-1) k p^{n}\left(t_{1 / 2} T\right)^{n+1}}{R_{0}^{-m+1}(n+1)}+1\right)^{-\frac{1}{m-1}}  \tag{32}\\
& =\left(\frac{(m-1) k p^{n}\left(\left[\left(\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{k p^{n}(m-1)}\right)^{\frac{1}{n+1}}\right] T\right)^{n+1}}{R_{0}^{-m+1}(n+1)}+1\right)^{-\frac{1}{m-1}}  \tag{33}\\
& \left.=\left(\frac{(m-1) k p^{n}\left(\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{k p^{n}(m-1)} T^{n+1}\right)}{R_{0}^{-m+1}(n+1)}+1\right)^{-\frac{1}{m-1}}\right)  \tag{34}\\
& =\left(1+\left(2^{m-1}-1\right) T^{n+1}\right)^{-\frac{1}{m-1}}  \tag{35}\\
& =\left(1+\left(2^{m-1}-1\right)\left(t / t_{1 / 2}\right)^{n+1}\right)^{-\frac{1}{m-1}} \tag{36}
\end{align*}
$$

Again, taking the limit as $m \rightarrow 1$ gives the first-order result (16).

## Combined equations

As functions of the parameters:

$$
R(t)=\left\{\begin{array}{cc}
R_{0} \exp \left(-\frac{p^{n} k t^{n+1}}{n+1}\right), & m=1  \tag{37}\\
R_{0}\left(1+\frac{(m-1) k p^{n} t^{n+1}}{R_{0}^{-m+1}(n+1)}\right)^{-\frac{1}{m-1}}, & m \neq 1
\end{array}\right.
$$

In terms of $t / t_{1 / 2}$ :

$$
\frac{R(t)}{R_{0}}=\left\{\begin{array}{cl}
2^{-\left(t / t_{1 / 2}\right)^{n+1}}, & m=1  \tag{38}\\
\left(1+\left(2^{m-1}-1\right)\left(t / t_{1 / 2}\right)^{n+1}\right)^{-\frac{1}{m-1}} & m \neq 1
\end{array}\right.
$$

$t_{1 / 2}$

$$
t_{1 / 2}=\left\{\begin{array}{cc}
p^{-\frac{n}{n+1}}\left(\frac{(n+1) \ln 2}{k}\right)^{\frac{1}{n+1}}, & m=1  \tag{39}\\
\left(\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{k p^{n}(m-1)}\right)^{\frac{1}{n+1}}, & m \neq 1
\end{array}\right.
$$

$k$ from $t_{1 / 2}$

$$
k=\left\{\begin{array}{cl}
\frac{(n+1) \ln 2}{t_{1 / 2}^{n+1} p^{n}}, & m=1  \tag{40}\\
\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{t_{1 / 2}^{n+1} p^{n}(m-1)}, & m \neq 1
\end{array}\right.
$$

Derivation of relationship between $t_{1 / 2}, t_{\mathrm{k}}$ and $t_{\mathrm{p}}$ Case of $m=1$
In a conventional experiment at catalyst concentration $C_{\text {ref }}$

$$
\begin{equation*}
-\frac{\mathrm{d} R(t)}{\mathrm{d} t}=k R_{0} C_{\mathrm{ref}}^{n}=k^{\prime} R_{0} \tag{41}
\end{equation*}
$$

where $k^{\prime}=k C_{\mathrm{ref}}^{n}$ is the pseudo-first-order rate constant. The half-life is well known to be $t_{k}=$ $\ln (2) / k^{\prime}$ and we define the characteristic pumping time $t_{\mathrm{p}}$ as the time to add catalyst to concentration $C_{\text {ref }}$, i.e., $t_{\mathrm{p}}=C_{\text {ref }} / p$. Therefore

$$
\begin{align*}
t_{\mathrm{k}} t_{\mathrm{p}}^{n} & =\frac{\ln (2)}{k C_{\mathrm{ref}}^{n}}\left(\frac{C_{\mathrm{ref}}}{p}\right)^{n}  \tag{42}\\
& =\frac{\ln (2)}{k p^{n}} \tag{43}
\end{align*}
$$

But the half-life in the CAKE experiment is

$$
\begin{align*}
t_{1 / 2} & =\frac{1}{p}\left(\frac{p(n+1) \ln 2}{k}\right)^{\frac{1}{n+1}}  \tag{44}\\
t_{1 / 2}^{n+1} & =\frac{(n+1) \ln 2}{k p^{n}} \tag{45}
\end{align*}
$$

and comparing with the above, we see

$$
\begin{equation*}
t_{1 / 2}^{n+1}=(n+1) t_{\mathrm{k}} t_{\mathrm{p}}^{n} \tag{46}
\end{equation*}
$$

Case of $m \neq 1$
The half life for the general $m$ th order reaction is known to be (Laidler)

$$
\begin{equation*}
t_{\mathrm{k}}=\frac{2^{m-1}-1}{(m-1) R_{0}^{m-1} k^{\prime}} \tag{47}
\end{equation*}
$$

and combining with $t_{\mathrm{p}}^{n}$ gives

$$
\begin{align*}
t_{\mathrm{k}} t_{\mathrm{p}}^{n} & =\frac{2^{m-1}-1}{(m-1) R_{0}^{m-1} k C_{\mathrm{ref}}^{n}}\left(\frac{C_{\mathrm{ref}}}{p}\right)^{n}  \tag{48}\\
& =\frac{2^{m-1}-1}{(m-1) R_{0}^{m-1} k p^{n}} \tag{49}
\end{align*}
$$

Compare with

$$
\begin{align*}
t_{1 / 2} & =\left(\frac{\left(2^{m-1}-1\right) R_{0}^{-m+1}(n+1)}{k p^{n}(m-1)}\right)^{\frac{1}{n+1}}  \tag{50}\\
t_{1 / 2}^{n+1} & =\frac{\left(2^{m-1}-1\right)(n+1)}{k p^{n} R_{0}^{m-1}(m-1)} \tag{51}
\end{align*}
$$

and we again find

$$
\begin{equation*}
t_{1 / 2}^{n+1}=(n+1) t_{\mathrm{k}} t_{\mathrm{p}}^{n} \tag{52}
\end{equation*}
$$

To show $t_{1 / 2} \geq \min \left(t_{\mathrm{k}}, t_{\mathrm{p}}\right)$ and $t_{1 / 2} \leq 1.4447 \max \left(t_{\mathrm{k}}, t_{\mathrm{p}}\right)$
It is simplest to work with the logs of these quantities:

$$
\begin{align*}
(n+1) \ln t_{1 / 2} & =\ln (n+1)+\ln t_{\mathrm{k}}+n \ln t_{\mathrm{p}}  \tag{53}\\
\ln t_{1 / 2} & =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln t_{\mathrm{p}} \tag{54}
\end{align*}
$$

Consider first the case where $t_{\mathrm{k}} \geq t_{\mathrm{p}}$ or $t_{\mathrm{k}} / t_{\mathrm{p}}=q$ with $q \geq 1$. We want to show that $t_{1 / 2} \geq t_{\mathrm{p}}$

$$
\begin{align*}
\ln t_{1 / 2} & =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln q t_{\mathrm{p}}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{55}\\
& =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln q+\frac{1}{n+1} \ln t_{\mathrm{p}}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{56}\\
& =\ln [q(n+1)]^{1 /(n+1)}+\frac{1}{n+1} \ln t_{\mathrm{p}}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{57}\\
& =\ln [q(n+1)]^{1 /(n+1)}+\ln t_{\mathrm{p}} \tag{58}
\end{align*}
$$

Now $q \geq 1, n \geq 0$ so $q(n+1) \geq 1$. Raising any number $\geq 1$ to a positive power gives a number $\geq 1$, so $[q(n+1)]^{1 /(n+1)} \geq 1, \ln [q(n+1)]^{1 /(n+1)} \geq 0$ and so

$$
\begin{align*}
\ln t_{1 / 2} & \geq \ln t_{\mathrm{p}}  \tag{59}\\
t_{1 / 2} & \geq t_{\mathrm{p}} \tag{60}
\end{align*}
$$

(using the monotonicity of the $\ln$ function).

For this case $t_{\mathrm{k}} \geq t_{\mathrm{p}}$ we also want to know what the largest $t_{1 / 2}$ value can be:

$$
\begin{align*}
\ln t_{1 / 2} & =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln \frac{t_{\mathrm{k}}}{q}  \tag{61}\\
& =\ln (n+1)^{1 /(n+1)}+\frac{n}{n+1} \ln \frac{1}{q}+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln t_{\mathrm{k}}  \tag{62}\\
& =\ln \frac{(n+1)^{1 /(n+1)}}{q^{n /(n+1)}}+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln t_{\mathrm{k}}  \tag{63}\\
& =\ln \frac{(n+1)^{1 /(n+1)}}{q^{n /(n+1)}}+\ln t_{\mathrm{k}} \tag{64}
\end{align*}
$$

For fixed $n,(n+1)^{1 /(n+1)} / q^{n /(n+1)}$ decreases as $q$ increases from 1 (its derivative is explicitly negative) and so its largest value occurs for $q=1$, when it equals $(n+1)^{1 /(n+1)}$. The value of $(n+1)^{1 /(n+1)}$ is always larger than or equal to one, and has its maximum when

$$
\begin{align*}
0 & =\frac{\mathrm{d}(n+1)^{1 /(n+1)}}{\mathrm{d} n}=(n+1)^{1 /(n+1)} \frac{(1-\ln (n+1))}{(n+1)^{2}}  \tag{65}\\
0 & =1-\ln (n+1)  \tag{66}\\
n+1 & =\exp (1)  \tag{67}\\
n & =\exp (1)-1=1.718 \tag{68}
\end{align*}
$$

The maximum value is therefore

$$
\begin{equation*}
(n+1)^{1 /(n+1)}=\exp (1)^{1 / \exp (1)}=1.4447 \tag{69}
\end{equation*}
$$

and therefore the largest value of $t_{1 / 2}$ is $1.445 t_{\mathrm{k}}$, which occurs when $t_{\mathrm{k}}=t_{\mathrm{p}}$ and $n=1.718$.
For the case where $t_{\mathrm{p}} \geq t_{\mathrm{k}}$ or $t_{\mathrm{p}} / t_{\mathrm{k}}=q$ with $q \geq 1$. We want to show that $t_{1 / 2} \geq t_{\mathrm{k}}$. We proceed similarly to the above.

$$
\begin{align*}
\ln t_{1 / 2} & =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln q t_{\mathrm{k}}  \tag{70}\\
& =\ln (n+1)^{1 /(n+1)}+\frac{n}{n+1} \ln q+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln t_{\mathrm{k}}  \tag{71}\\
& =\ln \left[q^{n /(n+1)}(n+1)^{1 /(n+1)}\right]+\frac{1}{n+1} \ln t_{\mathrm{k}}+\frac{n}{n+1} \ln t_{\mathrm{k}}  \tag{72}\\
& =\ln \left[q^{n /(n+1)}(n+1)^{1 /(n+1)}\right]+\ln t_{\mathrm{k}} \tag{73}
\end{align*}
$$

Now $q \geq 1, n \geq 0$ so $q^{n /(n+1)} \geq 1,(n+1)^{1 /(n+1)} \geq 1$ and therefore $q^{n /(n+1)}(n+1)^{1 /(n+1)} \geq 1$ leading to

$$
\begin{align*}
\ln t_{1 / 2} & \geq \ln t_{\mathrm{k}}  \tag{74}\\
t_{1 / 2} & \geq t_{\mathrm{k}} \tag{75}
\end{align*}
$$

For this case $t_{\mathrm{p}} \geq t_{\mathrm{k}}$ we also want to know what the largest $t_{1 / 2}$ value can be:

$$
\begin{align*}
\ln t_{1 / 2} & =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln \frac{t_{\mathrm{p}}}{q}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{76}\\
& =\ln (n+1)^{1 /(n+1)}+\frac{1}{n+1} \ln \frac{1}{q}+\frac{1}{n+1} \ln t_{\mathrm{p}}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{77}\\
& =\ln [(n+1) / q]^{1 /(n+1)}+\frac{1}{n+1} \ln t_{\mathrm{p}}+\frac{n}{n+1} \ln t_{\mathrm{p}}  \tag{78}\\
& =\ln [(n+1) / q]^{1 /(n+1)}+\ln t_{\mathrm{p}} \tag{79}
\end{align*}
$$

For fixed $n,[(n+1) / q]^{1 /(n+1)}$ decreases as $q$ increases from 1 (its derivative is explicitly negative) and so its largest value occurs for $q=1$, when it equals $(n+1)^{1 /(n+1)}$, which as above has a maximum value of 1.4447 . Therefore in this case, the largest value of $t_{1 / 2}$ is $1.4447 t_{\mathrm{p}}$.

