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Mathematical Results and Derivations

Derivations of reactant concentration vs time and 12
Solution for  = 1
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Let  = 12 and substitute  = 12 into (7):
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Solution for  6= 1
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The last form with the absolute value may avoid difficulties with complex values in fitting routines.

In the case of ≤ 0 the above formula only holds up to the time end, after which the concentration
is zero.
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Using lim→0(1+)−1 = exp(−) the limit of (24) as → 1 is seen to be the  = 1 formula

(7).
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Solve for 12:
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Similar to the above,  = 12 is substituted into (24):
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Again, taking the limit as → 1 gives the first-order result (16).

Combined equations

As functions of the parameters:
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In terms of 12:
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Derivation of relationship between 12, k and p
Case of  = 1

In a conventional experiment at catalyst concentration ref
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Case of  6= 1
The half life for the general th order reaction is known to be (Laidler)
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and combining with p gives
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To show 12 ≥ min(k p) and 12 ≤ 14447max(k p)
It is simplest to work with the logs of these quantities:
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For this case k ≥ p we also want to know what the largest 12 value can be:
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For this case p ≥ k we also want to know what the largest 12 value can be:
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