Supplementary Information

for

Calculation-Assisted Regioselective Functionalization of the Imidazo[1,2-*a*]pyrazine Scaffold *via* Zinc and Magnesium Organometallic Intermediates

Agonist Kastrati[†], Alexander Kremsmair[†], Alisa S. Sunagatullina, Vasilii Korotenko, Yusuf C. Guersoy, Saroj K. Rout, Fabio Lima, Cara E. Brocklehurst, Konstantin Karaghiosoff, Hendrik Zipse and Paul Knochel^{*}

Department Chemie Ludwig-Maximilians-Universität Butenandtstraße 5-13 81377 München, Germany

Table of Contents

General information	3
Typical procedures	7
Mechanistic Investigations	. 11
Products	. 14
NMR Spectra	. 45
Details for X-ray data collection and structure refinement	. 85
Theoretical Studies	. 98

General information

All reactions were carried out under an argon atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with argon prior to use. Yields refer to isolated yields of compounds estimated to be >95% pure as determined by ¹H-NMR (25 °C) and capillary GC. All reagents were obtained from commercial sources and used without further purification unless otherwise stated. Reaction mixtures were cooled using an acetone / dry ice bath. The suspension formed during the work-up of reactions containing CuCN·2LiCI was dissolved by adding appropriate amounts of concentrated aqueous ammonia solution.

Solvents

 CH_2Cl_2 was predried over P_2O_5 and distilled under nitrogen atmosphere.

THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen and stored over molecular sieves.

All other solvents were purchased from chemical suppliers (*Merck, Acros Organics*) and used without further purification. Solvents for reaction workups and column chromatography were distilled prior to use.

Reagents

*n*BuLi solutions in hexane were purchased from Albemarle or Sigma Aldrich and the concentration was determined by titration against *N*-benzylbenzamide in THF at -40 °C.¹

TMPH was purchased from Albemarle (Frankfurt, Germany), freshly distilled over CaH₂ and stored under argon.

CuCN-2LiCI solution (1.00 M in THF) was prepared by drying CuCN (8.96 g, 100 mmol, 1.00 equiv) and LiCI (8.48 g, 200 mmol, 2.00 equiv) in a *Schlenk*-flask under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (100 mL) was added and the resulting mixture was stirred until the salts were dissolved.

¹ A. F. Burchat, J. M. Chong, N. Nielsen, *J. Organomet. Chem.* **1997**, *542*, 281-283.

ZnCl₂ solution (1.00 M in THF) was prepared by drying ZnCl₂ (27.3 g, 200 mmol) in a *Schlenk*flask under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (200 mL) was added and the resulting mixture was stirred until the salts were dissolved.

*i*PrMgCl·LiCl² in THF was purchased from Albemarle and used after titration against iodine (0.5 M solution in THF at 25 °C).³ The reagent can also be prepared by flame drying magnesium turnings (24 g, 1.0 mol, 2.0 equiv) and anhydrous LiCl (25 g, 0.60 mol, 1.2 equiv) in a *Schlenk*-flask under vacuum at 450 °C. After the addition of anhydrous THF (500 mL), *i*PrCl (39 g, 0.50 mol, 1.0 equiv) was added dropwise at 25 °C using a dropping funnel until the reaction started. Then the reaction mixture was cooled to 0 °C and the addition was continued overnight while allowing the flask to warm up to 25 °C. The remaining solids were filtered off and the *i*PrMgCl·LiCl solution was titrated with iodine.

Chromatography

Flash column chromatographical purifications were performed using SiO₂ 60 (0.040–0.063 mm, 230–400 mesh ASTM) or Florisil[®] PR grade (149-250 μ m, 60-100 mesh) from Merck. Thin layer chromatography (TLC) was performed using aluminium plates covered with SiO₂ (Merck 60, F–254). Spots were visualized by UV light irradiation and/or by staining of the TLC plate with one of the reagents below, followed by heating with a heat gun if necessary.

- KMnO₄ (0.3 g), K₂CO₃ (20 g) and KOH (0.3 g) in water (300 mL).
- Neat iodine absorbed on silica gel (no heating required).

Preparative HPLC

For purification, an *Agilent Technologies* 1260 Infinity HPLC-System was used, consisting of two prep-pumps (acetonitrile/water, no additives), a MWD-detector (210 nm wavelength, 40 nm bandwidth, ref-wavelength 400 nm, ref-bandwidth 100 nm) and a fraction collector. Three different columns were used: 1) *Kinetix* EVO C18 5 µm column (length: 150 mm, diameter: 10 mm), 2) *Kinetix* EVO C18 5 µm column (length: 150 mm, diameter: 21.2 mm) and 3) *Waters* XBridge Prep C8 5 µm column (length: 150 mm, diameter: 30 mm).

Analytical data

NMR spectra were recorded on *Bruker* ARX 200, AC 300, WH 400 or AMX 600 instruments. Chemical shifts are reported as δ -values in ppm relative to the deuterated solvent peak: CDCl₃ (δ_{H} : 7.26; δ_{C} : 77.16). For the observation of the observed signal multiplicities, the following

² A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333-3336.

³ A. Krasovskiy, P. Knochel, *Synthesis* **2006**, 890-891.

abbreviations and combinations thereof were used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), sept (septet), m (multiplet) and br (broad). If not otherwise noted, the coupling constants given are either H-H or H-F coupling constants for proton signals and C-F coupling constants for carbon signals.

Melting points are uncorrected and were measured on a Büchi B.540 apparatus.

Infrared spectra were recorded from 4000-400 cm⁻¹ on a *Perkin Elmer* Spectrum BX-59343 instrument. For detection a Smiths Detection DuraSampl IR II Diamond ATR sensor was used. The main absorption peaks are reported in cm⁻¹.

Gas chromatographical analysis (GC) was performed with instruments of the type Hewlett-Packard 6890 or 5890 Series II, using a column of the type HP 5 (Hewlett-Packard, 5% phenylmethylpolysiloxane; length: 10 m, diameter: 0.25 mm, film thickness 0.25 µm). The detection was accomplished using a flame ionization detector. Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded on a *Finnigan* MAT 95Q or *Finnigan* MAT 90 instrument for electron impact ionization (EI). For the combination of gas chromatography with mass spectroscopic detection, a GC–MS of the type *Hewlett-Packard* 6890/MSD 5793 networking was used (column: HP 5–MS, Hewlett–Packard; 5% phenylmethylpolysiloxane; length: 15 m, diameter: 0.25 mm, film thickness: 0.25 µm).

TMPMgCl·LiCl (11)⁴

TMPH (14.8 g, 105 mmol, 1.05 equiv) was slowly added to a solution of *I*PrMgCl·LiCl in dry THF (1.05 M, 95 mL, 1.0 equiv). The resulting mixture was stirred under argon at 25 °C for 24 h before titrating the base against benzoic acid using 4-(phenylazo)-diphenylamine as an indicator.

TMP₂Zn·2MgCl₂·2LiCl (12)⁵

 $ZnCl_2$ (1.0 M, 2.5 mL, 0.5 equiv) was slowly added to a solution of TMPMgCl·LiCl in dry THF (0.91 M, 5.49 mL, 1.0 equiv). The resulting mixture was stirred under argon at 25 °C for 30 min before titrating the base against benzoic acid using 4-(phenylazo)-diphenylamine as an indicator.

⁴ A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958-2961

⁵ S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. **2007**, 46, 7685-7688.

TMPLi (19)

A dry and argon flushed Schenk-flask, equipped with a magnetic stirring bar, was charged with TMPH (1.3 mL, 10.0 mmol, 1.0 equiv) and dry THF (10 mL). The reaction mixture was cooled to -40 °C and *n*-BuLi (1.6 M, 6.3 mL, 10 mmol, 1.0 equiv) was added dropwise. The reaction mixture was stirred at -40 °C for 30 min until a milky white solution was formed. The concentration was determined by titration of an aliquot with benzoic acid.

Typical procedures

TP1: Typical procedure for the metalation of 6-chloroimidazo[1,2-*a*]pyrazine in position 3 using TMPMgCI·LiCI

Freshly prepared TMPMgCl·LiCl (**11**, 1.2 equiv.) was added dropwise to a cooled ($-60 \, ^{\circ}$ C) solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 30.7 mg, 0.2 mmol,1.0 equiv) in dry THF (1 mL) and stirred for 30 min. Subsequently, the electrophile (1.5 equiv) was added, the cooling bath removed, and the temperature was allowed to rise to room temperature. The reaction mixture was continued stirring at room temperature, was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP2: Typical procedure for the metalation of 6-chloroimidazo[1,2-*a*]pyrazine in position 5 using (TMP)₂Zn·2MgCl₂·2LiCl

Freshly prepared TMP₂Zn·2MgCl₂·2LiCl (**12**, 0.6 equiv, 0.12 mmol) was added dropwise to a cooled (-20 °C) solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 1.0 equiv, 0.2 mmol) in dry THF (1 mL) and stirred for 15 min. Subsequently, the electrophile (1.5 equiv) was added, the cooling bath was removed, and the temperature was allowed to rise to room temperature. The reaction mixture was continued stirring at room temperature, was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP3: Typical procedure for the second metalation in position 2 using $TMP_2Zn \cdot 2MgCl_2 \cdot 2LiCl$

Freshly prepared TMP₂Zn·2MgCl₂·2LiCl (**12**, 0.6 equiv, 0.12 mmol) was added dropwise to a cooled (-20 °C) solution of 6-chloroimidazo[1,2-*a*]pyrazine-3-carbonitrile (**7e**, 35.7 mg, 0.2 mmol, 1.0 equiv) in dry THF (1 mL) and stirred for 15 min. Subsequently, the electrophile (1.5 equiv) was added, the cooling bath was removed, and the temperature was allowed to rise to room temperature. The reaction mixture was continued stirring at room temperature, was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP4: Typical procedure for the third metalation in position 8 using TMPMgCl·LiCl

Freshly prepared TMPMgCl·LiCl (**11**, 0.24 mmol, 1.2 equiv) was added dropwise to a cooled (-40 °C) solution of 6-chloro-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile (**16e**, 56.9 mg, 0.2 mmol, 1.0 equiv) in dry THF (2 mL) and stirred for 30 min. Subsequently the electrophile (1.5 equiv) was added, the cooling bath was removed, and the temperature was allowed to rise to room temperature. The reaction mixture was continued stirring at room temperature. In case, ZnCl₂ solution (1 M, 1.3 equiv) was added and the reaction mixture was stirred for additional 15 min at the same temperature (-40 °C) for transmetalation. The obtained zinc reagent was subsequently added dropwise into a separate reaction flask containing the catalyst (5 mol%) and electrophile (0.8 equiv) and stirred for 2 h at 50 °C. The reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP5: Typical procedure for the fourth metalation in position 5 using TMPLi

Freshly prepared TMPLi (**19**, 1.2 equiv, 0.12 mmol) was added dropwise to a cooled (-40 °C) solution of 8-(4-(*tert*-butyl)phenyl)-6-chloro-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile **18e** (41.6 mg, 0.1 mmol, 1 equiv) in dry THF (1 mL) and stirred for 10 min. Subsequently, iodine (127 mg, 0.5 mmol, 5.0 equiv) was added, and stirring continued for 5 min at the same temperature followed by additional 10 min at room temperature. Then, the mixture was quenched with saturated aqueous $Na_2S_2O_3$ solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP6: Typical procedure for the Pd-catalyzed cross-coupling of 6 with organozinc reagents

X = CI·MgICI·LiCI, CI·MgBrCI·LiCI or CI·MgCI₂·LiCI; R = Alk, Ar, Bz; R' = *i*Pr or *i*Pent

A solution of a zinc reagent of type **21**⁶ (in THF, 0.75 mmol, 1.5 equiv) was added dropwise to a solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 76.8 mg, 0.5 mmol,1.0 equiv) and Pd-PEPPSI-iPr (5 mol%, 17.0 mg) or Pd-PEPPSI-iPent (5 mol%, 19.8 mg) in THF (1.0 mL). The resulting reaction mixture was stirred at 25 °C for 5 h (in the case of Pd-PEPPSI-iPr) or at 25 °C for 16 h (in the case of Pd-PEPPSI-iPent) under argon. Then, the mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude

⁶ a) A. Krasovskiy, P. Knochel, *Angew. Chem. Int. Ed.* **2004**, *43*, 3333-3336; *Angew. Chem.* **2004**, *116*, 3396-3399; b) A. Metzger, F. M. Piller, P. Knochel, *Chem. Commun.* **2008**, 5824-5826; c) V. Dhayalan, P. Knochel, *Synthesis* **2015**, 3246-3256; d) F. H. Lutter, L. Grokenberger, P. Spieß, J. M. Hammann, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* **2020**, *59*, 5546-5550; *Angew. Chem.* **2020**, *132*, 5591-5595.

product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP7: Typical procedure for the Suzuki–Miyaura cross coupling

A solution of 6-chloroimidazo[1,2-*a*]pyrazine-3-carbonitrile (**7e**, 71.4 mg, 0.4 mmol, 1.0 equiv), arylboronic acid pinacol ester (0.48 mmol, 1.2 equiv), Pd(PPh₃)₄ (46 mg, 0.04 mmol, 10 mol%) and K₂CO₃ (110 mg, 0.8 mmol, 2.0 equiv) in (1,4-dioxane/water (9/1), 1.3 mL) was purged with argon for 5 min. The resulting reaction mixture was stirred at 100 °C for 5 h in a closed system. Then, the mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 30 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel (stationary phase) and the appropriate solvent mixture *i*-hexane/EtOAc.

TP8: Typical procedure for the nucleophilic addition of Grignard reagents to 6

To a solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 76.8 mg, 0.5 mmol, 1.0 equiv) in THF (0.5 M) the corresponding organomagnesium reagent RMgX·LiCl (**23**, 1.2 equiv) was added at 40 °C. The mixture was stirred at 40 °C for 10 min. Then, the mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL; or the mixture was added to the solution of corresponding electrophile in THF and stirred at 25 °C for 2 h, then worked-up as usual, see **27f**). The collected organic layers were washed with brine, dried over MgSO₄ and concentrated *in vacuo*.

The resulting reaction mixture was dissolved in THF (1 mL, 0.5 M). Then, DDQ (36.0 mg, 0.6 mmol, 1.2 equiv) was added, and the reaction mixture was stirred at 25 °C for 16 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 30 mL), dried over MgSO₄, concentrated *in vacuo* and purified *via* silica gel column chromatography to yield the desired 8-substituted 6-chloroimidazo[1,2-*a*]pyrazine of type **27**.

Mechanistic Investigations

Metalation of Imidazo[1,2-a]pyrazine (3)

Freshly prepared TMPMgCI-LiCI (**11**, 1.2 equiv.) was added dropwise to a cooled (-60 °C) solution of imidazo[1,2-*a*]pyrazine (59.5 mg, 0.5 mmol,1.0 equiv) in dry THF (2.5 mL) and stirred for 30 min. Subsequently, D₂O (100 μ L, 100 mg, 10 equiv) was added, the cooling bath was removed, and the temperature was allowed to rise to room temperature in 1 h. The reaction mixture then was diluted with Et₂O (10 mL), dried over MgSO₄, concentrated under reduced pressure and submitted for ¹H NMR to determine the regioselectivity of metalation.

Kinetic Isotope Effect Study (Intermolecular Competition Experiment)

Freshly prepared TMPMgCI·LiCI (**11**, 1.2 equiv.) was added dropwise to a cooled (-60 °C) solution of h_3/d_3 -6-chloroimidazo[1,2-*a*]pyrazine (ratio h_3/d_3 55:45; 31.2 mg, 0.2 mmol,1.0 equiv) in dry THF (1 mL) and stirred for 15 min. Subsequently, I₂ (254 mg, 5 equiv) was added, the cooling bath removed, and the temperature was allowed to rise to room temperature in 10 min. The reaction mixture then was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 4 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The conversion was determined by ¹H NMR and a sample was submitted to EI-MS analysis to determine the isotopic distribution.

Products

6-Chloro-3-iodoimidazo[1,2-a]pyrazine (7a)

6-Chloro-3-iodoimidazo[1,2-*a*]pyrazine (**7a**) was prepared according to **TP1** on a 0.2 mmol scale using iodine (5 equiv, 1.0 mmol, 253 mg) as electrophile (10 min, 25 °C). Purified by flash chromatography using *i*-hexane/EtOAc (3/2, v/v) to afford desired compound **7a** as a white solid (0.15 mmol, 43.4 mg, 78%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.83 (d, *J* = 1.2, 1H), 8.15 (d, *J* = 1.2, 1H), 7.91 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.6, 142.9, 142.3, 136.3, 117.0, 65.2.

HRMS (EI): calculated for C₆H₃ClIN₃^{•+}: 278.9055, found 278.9055 [M] ^{•+}.

MS (70 eV, El) m/z (%): 281 (32), 279 (100), 253 (10), 127 (96), 42 (17).

IR (ATR) *v* (cm⁻¹): 3109, 3014, 1602, 1483, 1433, 1399, 1316, 1284, 1260, 1219, 1144, 1074, 971, 954, 910, 880, 868, 824, 812, 805, 738.

Mp: 174.6–175.7 °C.

3-Allyl-6-chloroimidazo[1,2-a]pyrazine (7b)

3-Allyl-6-chloroimidazo[1,2-*a*]pyrazine (**7b**) was prepared according to **TP1** on a 0.2 mmol scale using allyl bromide (1.2 equiv, 0.24 mmol, 0.02 mL) as electrophile and CuCN·2LiCl (50 mol%, 0.1 mmol, 0.1 mL) as catalyst (25 °C, 1.5 h). Purified by flash chromatography using *i*-hexane/EtOAc (1/1 then 1/4 v/v) to afford desired compound **7b** as a white solid (0.11 mmol, 22 mg, 56%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.88 (d, *J* = .4, 1H), 7.94 (d, *J* = 1.3, 1H), 7.68 (s, 1H), 5.99– 5.85 (m, 1H), 5.26 (dq, *J* = 10.0, 1.4, 1H), 5.13 (dq, *J* = 17.0, 1.6, 1H), 3.66 (dt, *J* = 6.1, 1.7, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 142.4, 140.3, 136.2, 134.7, 131.3, 124.4, 118.8, 114.4, 28.1.

HRMS (EI): calculated for C₉H₈ClN₃⁺⁺: 193.0401, found 193.0401 [M]⁺⁺.

MS (70 eV, El) m/z (%): 194 (16), 193 (20), 192 (51), 168 (19), 166 (62), 158 (100), 157 (24), 156 (24), 113 (12), 86 (11), 44 (11), 42 (16).

IR (ATR) *v* (cm⁻¹): 3036, 1644, 1608, 1516, 1485, 1466, 1432, 1349, 1329, 1306, 1233, 1148, 1110, 1099, 1024, 995, 934, 912, 901, 871, 858, 828, 760, 718.

Mp: 69.9–70.8 °C.

1-(6-Chloroimidazo[1,2-a]pyrazin-3-yl)-2,2-dimethylpropan-1-one (7c)

1-(6-Chloroimidazo[1,2-*a*]pyrazin-3-yl)-2,2-dimethylpropan-1-on (**7c**) was prepared according to **TP1** on a 0.2 mmol scale using PivCl (1.5 equiv, 0.3 mmol, 0.037 mL) as electrophile and CuCN-2LiCl (50 mol%, 0.1 mmol, 0.1 mL) as catalyst (25 °C, 2 h). Purified by flash chromatography using *i*-*h*exane/EtOAc (3/2 v/v) to afford desired compound **7c** as a white solid (0.08 mmol, 19 mg, 40%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.73–9.69 (m, 1H), 9.09–9.04 (m, 1H), 8.55 (s, 1H), 1.45 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 197.8, 143.2, 142.3, 140.9, 138.0, 122.6, 119.7, 44.6, 28.3.

HRMS (EI): calculated for C₁₁H₁₂CIN₃O⁺⁺: 237.0663, found 237.0662 [M]⁺⁺.

MS (70 eV, El) m/z (%): 237 (9), 182 (33), 181 (25), 180 (100), 153 (28), 44 (12), 42 (15).

IR (ATR) *v* (cm⁻¹): 3141, 3123, 2977, 2360, 1858, 1702, 1632, 1598, 1495, 1475, 1448, 1396, 1367, 1314, 1278, 1241, 1182, 1144, 1119, 1050, 1020, 932, 918, 908, 853, 810, 735.

Mp: 149.8–151.8 °C.

(6-Chloroimidazo[1,2-a]pyrazin-3-yl)(3-chlorophenyl)methanone (7d)

Compound **7d** was prepared according to **TP1** on a 0.4 mmol scale using *m*-chlorobenzoyl chloride (1.5 equiv, 0.6 mmol, 0.076 mL) as electrophile (25 °C, 2 h) and CuCN-2LiCl (20 mol%, 0.08 mmol, 0.08 mL) as catalyst. Purified by flash chromatography using *i*-hexane/EtOAc (7/3 v/v) to afford desired compound **7d** as a light-yellow solid (0.29 mmol, 64 mg, 56%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.62 (d, *J* = 1.4, 1H), 9.14 (d, *J* = 1.4, 1H), 8.34 (s, 1H), 7.86 (t, *J* = 1.9, 1H), 7.76 (dt, *J* = 7.6, 1.4, 1H), 7.63 (ddd, *J* = 8.1, 2.1, 1.1, 1H), 7.52 (t, *J* = 7.9, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 183.7, 145.7, 142.7, 139.6, 138.3, 135.4, 133.2, 130.4, 129.0, 127.1, 119.3.

HRMS (EI): calculated for C₁₃H₇Cl₂N₃O⁺⁺: 290.9961, found 290.9961 [M]⁺⁺.

MS (70 eV, El) m/z (%): 293 (29), 291 (47), 290 (18), 256 (34), 207 (23), 182 (30), 180 (100), 139 (33), 111 (20), 73 (16).

IR (ATR) *v* (cm⁻¹): 1619, 1603, 1563, 1494, 1448, 1416, 1341, 1315, 1215, 1180, 1126, 1047, 913, 898, 857, 809, 768, 743, 722, 691, 660.

Mp: 191.3–192.2 °C.

6-Chloroimidazo[1,2-a]pyrazine-3-carbonitrile (7e)

Compound **7e** was prepared according to **TP1** on a 0.2 mmol scale using TsCN (1.5 equiv, 0.3 mmol, 54.36 mg) as electrophile (25 °C, 2 h). Purified by flash chromatography using *i*-

hexane/EtOAc (3/2, v/v) to afford desired compound **7e** as a white solid (0.14 mmol, 25 mg, 70%).

Note: The reaction was also performed on gram scale. According to TP1 compound **6** (5 g, 32.6 mmol, 1.0 equiv) was treated with TMPMgCI·LiCI (39.1 mmol, 1.2 equiv) and TsCN (8.8 g, 48.9 mmol, 1.5 equiv). Compound **7e** was isolated in 52% yield.

¹H NMR (400 MHz, CDCl₃) δ = 9.09 (d, *J*=1.4, 1H), 8.42 (d, *J*=1.3, 1H), 8.30 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.8, 143.2, 140.7, 137.8, 116.8, 109.2, 100.2.

HRMS (EI): calculated for C₇H₃ClN₄^{•+}: 178.0041, found 178.0041 [M] ^{•+}.

MS (70 eV, EI) m/z (%): 180 (32), 178 (100), 143 (11), 42 (12).

IR (ATR) *v* (cm⁻¹): 3124, 3102, 3078, 3038, 2228, 1794, 1694, 1604, 1490, 1460, 1413, 1327, 1315, 1304, 1282, 1234, 1168, 1137, 1115, 1032, 914, 900, 849, 816, 753.

Mp: 169.9–171.6 °C.

Ethyl 6-chloroimidazo[1,2-a]pyrazine-3-carboxylate (7f)

Compound **7f** was prepared according to **TP1** on a 0.2 mmol scale using ethyl cyanoformate (1.5 equiv, 0.3 mmol, 0.03 mL) as electrophile (25 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (3/2, v/v) to afford desired compound **7f** as a white solid (0.097 mmol, 22 mg, 48%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.25 (d, *J* = 1.4, 1H), 9.03 (d, *J* = 1.4 Hz, 1H), 8.38 (s, 1H), 4.46 (q, *J* = 7.1, 2H), 1.44 (t, *J* = 7.1, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 159.9, 142.7, 142.5, 141.8, 137.2, 118.5, 117.7, 61.6, 14.5.

HRMS (EI): calculated for C₉H₈CIN₃O₂^{•+}: 225.0300, found 225.0299 [M] ⁺⁺.

MS (70 eV, EI) m/z (%): 253 (16), 251 (10), 225 (30), 199 (19), 197 (59), 190 (17), 182 (32), 180 (100), 155 (12), 153 (39), 42 (29).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3093, 3039, 3012, 2979, 2360, 1882, 1700, 1602, 1504, 1454, 1419, 1388, 1368, 1341, 1302, 1286, 1248, 1206, 1150, 1126, 1095, 1031, 944, 914, 894, 876, 859, 767, 752, 737.

Mp: 124.6–126.5 °C.

6-Chloro-3-(phenylthio)imidazo[1,2-a]pyrazine (7g)

Compound **7g** was prepared according to **TP1** on a 0.4 mmol scale using PhSO₂SPh (1.2 equiv, 0.48 mmol, 120 mg) as electrophile (25 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3, v/v) to afford desired compound **7g** as a white solid (0.26 mmol, 68 mg, 65%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.03 (d, J = 1.4 Hz, 1H), 8.26 (d, J = 1.4 Hz, 1H), 8.18 (s, 1H), 7.37–7.22 (m, 4H), 7.15–7.06 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 144.7, 142.6, 142.1, 136.1, 133.1, 129.8, 127.3, 127.3, 115.4, 115.1.

HRMS (EI): calculated for C₁₂H₁₈CIN₃S⁺⁺: 261.0122, found 261.0121 [M]⁺⁺.

MS (70 eV, EI) m/z (%): 261 (8), 226 (99, 140 (13), 122 (9), 121 (100), 112 (20), 85 (11).

IR (ATR) *v* (cm⁻¹): 3057, 3103, 3015, 1597, 1577, 1479, 1461, 1438, 1402, 1313, 1285, 1221, 1150, 1128, 1088, 1079, 1021, 998, 948, 908, 889, 821, 806, 742, 730, 684.

Mp: 78.1–78.9 °C.

6-Chloro-5-iodoimidazo[1,2-a]pyrazine (8a)

Compound **8a** was prepared according to **TP2** on a 0.2 mmol scale using iodine (5 equiv, 1.0 mmol, 253 mg) as electrophile. Purified by flash chromatography using *i*-hexane/EtOAc (3/2, v/v) to afford desired compound **8a** as a white solid (0.11 mmol, 30.6 mg, 55%).

¹**H NMR** (400 MHz, DMSO-d₆) δ = 8.91 (s, 1H), 8.26 (s, 1H), 7.98 (d, *J* = 1.2, 1H).

¹³**C NMR** (101 MHz, DMSO-d_{6z}) δ = 140.1, 139.8, 138.4, 136.5, 121.0, 89.5.

HRMS (EI): calculated for C₆H₃ClIN₃^{•+}: 278.9055, found 278.9049 [M] ^{•+}.

MS (70 eV, EI) m/z (%): 278 (100), 281 (30), 152 (28), 125 (11).

IR (ATR) *v* (cm⁻¹): 3147, 3110, 1741, 1578, 1469, 1437, 1313, 1294, 1217, 1148, 1134, 1110, 1076, 940, 919, 899, 872, 850.

Mp: 228.5–230.2 °C.

5-Allyl-6-chloroimidazo[1,2-*a*]pyrazine (8b)

Compound **8b** was prepared according to **TP2** on a 0.2 mmol scale using allyl bromide (1.2 equiv, 0.24 mmol, 0.02 mL) as electrophile and CuCN·2LiCl (20 mol%, 0.1 mmol, 0.04 mL) as catalyst. Purified by flash chromatography using *i*-hexane/EtOAc (7/3) to afford desired compound **8b** as an off-white solid (0.17 mmol, 33 mg, 85%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.86 (s, 1H), 7.86 (s, 1H), 7.70 (s, 1H), 5.88 (ddt, *J* = 16.4, 10.2, 6.0, 1H), 5.33–5.11 (m, 2H), 3.90 (dt, *J* = 6.0, 1.8, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 140.6, 140.4, 137.3, 133.7, 128.8, 126.5, 119.3, 112.8, 33.8.

HRMS (EI): calculated for C₉H₈CIN₃⁺: 193.0328, found 192.0327 [M-H]⁺⁺.

MS (70 eV, EI) m/z (%): 192 (12), 61 (14), 44 (14), 43 (100).

IR (ATR) *v* (cm⁻¹): 3146, 3090, 3044, 3017, 2917, 1863, 1809, 1642, 1605, 1502, 1473, 1446, 1428, 1310, 1244, 1204, 1131, 1032, 994, 963, 937, 909, 851, 764, 750, 723.

Mp: 124.1–125.4 °C.

1-(6-Chloroimidazo[1,2-a]pyrazin-5-yl)-2,2-dimethylpropan-1-one (8c)

Compound **8c** was prepared according to **TP2** on a 0.3 mmol scale using pivaloyl chloride (1.5 equiv, 0.45 mmol, 54 mg) as electrophile and CuCN·2LiCl (20 mol%, 0.06 mmol, 0.06 mL) as catalyst (25 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3) to afford desired compound **8c** as an off-white solid (0.18 mmol, 43 mg, 60%).

¹**H NMR** (600 MHz, CDCl₃) δ = 8.92 (d, J = 1.0 Hz, 1H), 7.88 (d, J = 1.3 Hz, 1H), 7.44–7.39 (m, 1H), 1.38 (d, J = 1.8 Hz, 9H).

¹³**C NMR** (151 MHz, CDCl₃) δ = 205.3, 142.3, 140.0, 137.8, 129.7, 126.4, 113.6, 46.1, 27.5.

HRMS (EI): calculated for C₁₁H₁₂CIN₃O⁺⁺: 237.0663, found 237.0660 [M]⁺⁺.

MS (70 eV, El) m/z (%): 237 (10), 152 (33), 61 (13), 57 (51), 44 (13), 42 (100), 40 (19).

IR (ATR) *v* (cm⁻¹): 3110, 2970, 2908, 1690, 1598, 1471, 1444, 1310, 1126, 1108, 1069, 937, 929, 912, 870, 757, 745, 706.

Mp: 103.7–104.5 °C.

(6-Chloroimidazo[1,2-a]pyrazin-5-yl)(3-chlorophenyl)methanone (8d)

Compound **8d** was prepared according to **TP2** on a 0.4 mmol scale using *m*-chlorobenzoyl chloride (1.5 equiv, 0.6 mmol, 0.076 mL) as electrophile and CuCN·2LiCl (20 mol%, 0.08 mmol, 0.08 mL) as catalyst (25 °C, 2 h). Purified by flash chromatography using DCM/EtOAc (4/1 v/v) to afford desired compound **8d** as a yellow solid (0.20 mmol, 61 mg, 52%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.04 (s, 1H), 7.90 (t, *J* = 1.9, 2H), 7.78–7.70 (m, 2H), 7.67 (ddd, *J* = 8.0, 2.2, 1.1, 1H), 7.48 (t, *J* = 7.9, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 187.1, 143.8, 140.2, 138.2, 136.5, 136.0, 135.4, 133.6, 130.8, 129.5, 128.0, 123.4, 114.8.

HRMS (EI): calculated for C₁₃H₇Cl₂N₃O⁺⁺: 290.9961, found 290.9957 [M]⁺⁺.

MS (70 eV, El) m/z (%): 291 (17), 264 (17), 262 (26), 141 (32), 139 (17), 139 (100), 111 (30).

IR (ATR) *v* (cm⁻¹): 3181, 3066, 1649, 1589, 1567, 1464, 1442, 1419, 1351, 1317, 1277, 1262, 1207, 1160, 1120, 1049, 946, 905, 886, 851, 799, 772, 758, 714, 678.

Mp: 156.2–157.8 °C.

Ethyl 4-(6-chloroimidazo[1,2-*a*]pyrazin-5-yl)benzoate (8e)

Compound **8e** was prepared according to **TP2** on a 0.3 mmol scale using 4-iodobenzoate (66 mg, 0.24 mmol, 0.8 equiv) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 0.12 mmol, 14 mg) as catalyst (40 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (3/2) to afford desired compound **8e** as an off-white solid (0.16 mmol, 48 mg, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.95 (d, *J* = 0.8 Hz, 1H), 8.31–8.26 (m, 2H), 7.80 (d, *J* = 1.1 Hz, 1H), 7.68–7.62 (m, 2H), 7.38 (t, *J* = 0.9 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 165.7, 141.7, 140.6, 137.3, 134.2, 133.3, 132.7, 130.9, 127.4, 113.6, 61.7, 14.5.

HRMS (EI): calculated for C₁₅H₁₂CIN₃O₂^{•+}: 301.0613, found 301.0615 [M] ^{•+}.

MS (70 eV, El) m/z (%): 303 (31), 302 (18), 301 (100), 273 (27), 258 (17), 257 (10), 256 (50), 228 (11), 193 (15), 165 (10).

IR (ATR) *v* (cm⁻¹): 3148, 3095, 2992, 1707, 1610, 1468, 1443, 1365, 1296, 1281, 1254, 1178, 1129, 1113, 1021, 950, 920, 864, 849, 774, 740, 701.

Mp: 127.8–128.6 °C.

6-Chloro-5-(4-methoxyphenyl)imidazo[1,2-a]pyrazine (8f)

Compound **8f** was prepared according to **TP2** on a 0.3 mmol scale using 4-iodoanisole (56 mg, 0.24 mmol, 0.8 equiv) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 0.12 mmol, 14 mg) as catalyst (40 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (1/1 v/v) to afford desired compound **8f** as an off-white solid (0.19 mmol, 50 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.90 (s, 1H), 7.77 (d, J = 1.2 Hz, 1H), 7.53–7.40 (m, 3H), 7.17–7.07 (m, 2H), 3.91 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 161.2, 140.9, 140.8, 137.0, 133.3, 130.9, 128.3, 122.1, 115.0, 113.8, 55.6.

HRMS (EI): calculated for C₁₃H₁₀ClN₃O⁺⁺: 259.0507, found 259.0544[M]⁺⁺.

MS (70 eV, EI) m/z (%): 259 (45), 216 (8), 61 (15), 43 (100).

IR (ATR) *v* (cm⁻¹): 3043, 2969, 2937, 1610, 1483, 1463, 1441, 1305, 1296, 1251, 1176, 1145, 1117, 1108, 1027, 952, 926, 874, 830, 812, 761, 749, 719, 673.

Mp: 199.4–200.2 °C.

6-Chloro-5-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]pyrazine (8g)

Compound **8g** was prepared according to **TP2** on a 0.3 mmol scale using 5-iodo-1,2,3trimethoxybenzene (71 mg, 0.24 mmol, 0.8 equiv) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 0.12 mmol, 14 mg) as catalyst (40 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (1/4 v/v) to afford desired compound **8g** as an off-white solid (0.13 mmol, 42 mg, 54%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.91 (s, 1H), 7.79 (d, *J* = 1.1 Hz, 1H), 7.49 (s, 1H), 6.73 (s, 2H), 3.96 (s, 3H), 3.88 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 154.3, 141.2, 140.7, 139.7, 137.1, 133.1, 128.3, 125.2, 114.0, 106.3, 61.2, 56.5.

HRMS (EI): calculated for C₁₅H₁₄ClN₃O₃⁺: 319.0718, found 319.0717 [M]⁺⁺.

MS (70 eV, EI) m/z (%): 321(32), 320 (17), 319 (100), 306 (10), 304 (28), 261 (13), 218 (22), 190 (11), 144 (12).

IR (ATR) *v* (cm⁻¹): 3146, 3128, 2940, 2840, 1548, 1489, 1467, 1449, 1415, 1374, 1325, 1314, 1301, 1234, 1123, 1094, 1012, 993, 930, 910, 891, 850, 837, 812, 771, 746, 727, 691.

Mp: 194.4–195.2 °C.

6-Chloro-2-iodoimidazo[1,2-a]pyrazine-3-carbonitrile (16a)

Compound **16a** was prepared according to **TP3** on a 0.2 mmol scale using iodine (3 equiv, 0.6 mmol, 152.26 mg) as electrophile (25 °C, 10 min). Purified by flash chromatography using *i*-hexane/EtOAc (7/3 v/v) to afford desired compound **16a** as a white solid (0.10 mmol, 32 mg, 52%).

¹**H NMR** (400 MHz, DMSO-d₆) δ = 9.15 (d, *J*=1.3, 1H), 9.12 (d, *J*=1.3, 1H).

¹³**C NMR** (101 MHz, DMSO-d₆) δ = 142.2, 141.2, 135.9, 118.9, 110.4, 107.6, 106.4.

HRMS (EI): calculated for C7H2CIIN4**: 303,9007, found 303.9008 [M]**.

MS (70 eV, El) m/z (%): 306 (29), 303 (100), 113 (28), 86 (12), 43 (10).

IR (ATR) *v* (cm⁻¹): 3087, 3025, 2227, 1703, 1604, 1454, 1410, 1318, 1308, 1278, 1217, 1184, 1135, 1046, 940, 855, 758.

Mp: 244.6–246.3 °C.

2-Allyl-6-chloroimidazo[1,2-a]pyrazine-3-carbonitrile (16b)

Compound **16b** was prepared according to **TP3** on a 0.2 mmol scale using allyl bromide (1.5 equiv, 0.3 mmol, 0.026 mL) as electrophile and CuCN·2LiCl (20 mol%, 0.04 mmol, 0.04 mL) as catalyst (25 °C, 1 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3 v/v) to afford desired compound **16b** as an off-white solid (0.1 mmol, 22 mg, 50%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.97 (s, 1H), 8.34–8.29 (m, 1H), 6.12–5.97 (m, 1H), 5.35–5.23 (m, 2H), 3.74 (d, *J* = 6.7 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 157.5, 142.1, 140.1, 137.3, 132.1, 119.2, 116.6, 109.6, 98.2, 33.5.

HRMS (EI): calculated for C₁₀H₇ClN₄⁺⁺: 218.0354, found 218.0349 [M]⁺⁺.

MS (70 eV, El) m/z (%): 219 (32), 218 (26), 217 (100), 194 (11), 192 (33).

IR (ATR) *v* (cm⁻¹): 3093, 3035, 3007, 2223, 1642, 1603, 1491, 1482, 1466, 1425, 1414, 1389, 1293, 1271, 1248, 1195, 1161, 1063, 995, 979, 956, 931, 857, 759, 964.

Mp: 117.5–118.7 °C.

6-Chloro-2-pivaloylimidazo[1,2-a]pyrazine-3-carbonitrile (16c)

Compound **16c** was prepared according to **TP3** on a 1.7 mmol scale using PivCl (1.5 equiv, 2.65 mmol, 0.324 mL) as electrophile and CuCN·2LiCl (50 mol%, 0.88 mmol, 0.88 mL) as catalyst (25 °C, 1 h). Purified by flash chromatography using *i*-hexane/EtOAc (4/1 v/v) to afford desired compound **16c** as an off-white solid (0.28 mmol, 74 mg, 33%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.14 (s, 1H), 8.43 (s, 1H), 1.47 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 199.9, 150.3, 144.7, 138.9, 138.6, 116.7, 109.2, 102.0, 44.6, 26.6.

HRMS (EI): calculated for C₁₂H₁₁ClN₄O⁺⁺: 262.0616, found 262.0616 [M]⁺⁺.

MS (70 eV, EI) m/z (%): 262 (8), 205 (15), 177 (26), 57 (100), 42 (18), 40 (35).

IR (ATR) *v* (cm⁻¹): 3112, 2957, 2932, 2872, 2226, 1680, 1600, 1494, 1472, 1458, 1420, 1390, 1377, 1299, 1278, 1246, 1173, 1077, 999, 937, 922, 828, 760, 701.

Mp: 169.3–171.7 °C.

Ethyl 4-(6-chloro-3-cyanoimidazo[1,2-a]pyrazin-2-yl)benzoate (16d)

Compound **16d** was prepared according to **TP3** on a 0.2 mmol scale using ethyl-4iodobenzoate (1.5 equiv, 0.3 mmol, 82.8 mg) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 11.5 mg) as catalyst (50 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (4/1 v/v) to afford desired compound **16d** as a white solid (0.11 mmol, 36 mg, 55%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.08 (d, *J* = 1.4, 1H), 8.41 (d, *J* = 1.4, 1H), 8.28 (d, *J* = 8.7 Hz, 2H), 8.22 (d, *J* = 8.7 Hz, 2H), 4.43 (q, *J* = 7.1, 2H), 1.43 (t, *J* = 7.1, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 165.9, 153.6, 142.8, 140.4, 137.8, 134.0, 132.8, 130.6, 127.6, 116.7, 110.6, 61.6, 14.5.

HRMS (EI): calculated for C₁₆H₁₁ClN₄O₂^{•+}: 326.0565, found 326.0562 [M] ^{•+}.

MS (70 eV, El) m/z (%): 326 (27), 300 (22), 298 (73), 283 (32), 281 (100), 255 (16), 253 (52), 207 (52), 191 (16), 114 (22).

IR (ATR) *v* (cm⁻¹): 3049, 2218, 1701, 1598, 1569, 1467, 1409, 1372, 1306, 1277, 1247, 1225, 1178, 1132, 1110, 1035, 1015, 942, 926, 866, 850, 782, 758, 714.

Mp: 280.9–282.3 °C.

6-Chloro-2-(4-methoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (16e)

Compound **16e** was prepared according to **TP3** on a 0.2 mmol scale using 4-iodoanisole (1.5 equiv, 0.3 mmol, 70.2 mg) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 11.5 mg) as catalyst (50 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (4/1 to 1/1, v/v) to afford desired compound **16e** as a white solid (0.14 mmol, 40.9 mg, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.99 (d, *J* = 1.4, 1H), 8.35 (d, *J* = 1.3, 1H), 8.15 (d, *J* = 8.9, 2H), 7.05 (d, *J* = 8.9, 2H), 3.90 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 162.1, 154.9, 142.0, 140.4, 137.1, 129.3, 122.7, 116.6, 114.8, 111.3, 94.8, 55.6.

HRMS (EI): calculated for C₁₄H₉ClN₄O⁺⁺: 284.0459, found 284.0457 [M]⁺⁺.

MS (70 eV, EI) m/z (%): 286 (32), 284 (100), 269 (37), 243 (15), 241 (51), 207 (15).

IR (ATR) *v* (cm⁻¹): 3114, 3011, 2848, 2216, 1611, 1576, 1537, 1474, 1460, 1449, 142, 1389, 1315, 1295, 1259, 1222, 1184, 1123, 1104, 1095, 1040, 1022, 946, 850, 826, 818, 798, 758, 740, 698, 686, 664.

Mp: 228.0–229.3 °C.

6-Chloro-8-iodo-2-(4-methoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (18a)

Compound **18a** was prepared according to **TP4** on a 0.2 mmol scale using iodine (5 equiv, 1.0 mmol, 253 mg) as electrophile (25 °C, 10 min). Purified by flash chromatography using *i*-hexane/EtOAc (4/1, v/v) to afford desired compound **18a** as a white solid (0.13 mmol, 55.7 mg, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.24 (s, 1H), 8.17 (d, *J* = 8.9, 2H), 7.03 (d, *J* = 8.9, 2H), 3.89 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 162.2, 154.4, 141.0, 135.4, 129.5, 122.3, 116.0, 114.7, 111.2, 110.9, 96.7, 55.6.

HRMS (EI): calculated for C₁₄H₈CIIN₄O⁺⁺: 409.9426, found 409.9420 [M]⁺⁺.

MS (70 eV, EI) m/z (%): 412 (36), 411 (17), 409 (100), 284 (16), 57 (11).

IR (ATR) *v* (cm⁻¹): 3085, 2229, 1608, 1573, 1536, 1476, 1452, 1423, 1383, 1312, 1292, 1259, 1181, 1120, 1107, 1066, 1023, 958, 843, 812, 784, 739, 697, 686.

6-Chloro-2-(4-methoxyphenyl)-8-(methylthio)imidazo[1,2-*a*]pyrazine-3-carbonitrile (18b)

Compound **18b** was prepared according to **TP4** on a 0.2 mmol scale using $PhSO_2SCH_3$ (1.5 equiv, 0.3 mmol, 56.5 mg) as electrophile (25 °C, 3 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3, v/v) to afford desired compound **18b** as a white solid (0.078 mmol, 25.8 mg, 39%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.18–8.10 (m, 2H), 7.99 (s, 1H), 7.05–6.97 (m, 2H), 3.88 (s, 3H), 2.71 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 161.8, 154.9, 153.3, 138.1, 136.2, 129.2, 122.9, 114.6, 111.5, 95.2, 55.6, 21.0, 12.8.

HRMS (EI): calculated for C₁₅H₁₁ClN₄OS⁺⁺: 330.0337, found 303.0334 [M]⁺⁺.

MS (70 eV, El) m/z (%): 332 (34), 331 (15), 330 (100), 329 (19), 297 (38), 284 (28), 269 (19), 224 (29), 209 (15).

IR (ATR) *v* (cm⁻¹): 2213, 1604, 1574, 1535, 1475, 1451, 1422, 1382, 1329, 1306, 1290, 1257, 1242, 1178, 1118, 1082, 1023, 964, 889, 844, 805, 785.

Mp: 230.1–231.9 °C.

Ethyl 4-(6-chloro-3-cyano-2-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-8-yl)benzoate (18c)

Compound **18c** was prepared according to **TP4** on a 0.1 mmol scale using 4-iodobenzoate (1.5 equiv, 0.15 mmol, 41.4 mg) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 5.7 mg) as catalyst (50 °C, 2 h). Purified by flash chromatography using *i*-hexane/CH₂Cl₂ (1/4, v/v) to afford desired compound **18c** as a yellow solid (0.045 mmol, 19.9 mg, 46%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.96–8.89 (m, 2H), 8.28 (s, 1H), 8.25–8.15 (m, 4H), 7.09–7.00 (m, 2H), 4.44 (q, J = 7.1, 2H), 3.90 (s, 3H), 1.45 (t, J = 7.1, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 166.2, 162.0, 154.1, 147.1, 139.0, 137.7, 136.3, 133.0, 130.1, 129.8, 129.3, 122.7, 115.4, 114.7, 111.5, 94.8, 61.5, 55.6, 14.5.

HRMS (EI): calculated for C₂₃H₁₇CIN₄O₃^{•+}: 432.0984, found 432.0984 [M] ⁺⁺.

MS (70 eV, El) m/z (%): 434 (32), 433 (25), 432 (100), 404 (24), 387 (37), 316 (29), 315 (19), 247 (15), 114 (27).

IR (ATR) *v* (cm⁻¹): 2956, 2902, 2220, 1714, 1611, 1576, 1483, 1446, 1418, 1391, 1341, 1309, 1274, 1253, 1184, 1125, 1109, 1097, 1018, 964, 888, 868, 841, 802, 795, 784, 754, 740, 695.

Mp: 211.0–212.5 °C.

6-Chloro-2,8-bis(4-methoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (18d)

Compound **18d** was prepared according to **TP4** on a 0.1 mmol scale using 4-iodoanisole (1.5 equiv, 0.15 mmol, 35.1 mg) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 5.7 mg) as catalyst SI–29

(50 °C, 2 h). Purified by flash chromatography using *i*-hexane/EtOAc (4/1, v/v) to afford desired compound **18d** as a white solid (0.06 mmol, 24.2 mg, 62%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.94–8.87 (m, 2H), 8.26–8.18 (m, 3H), 7.12–7.02 (m, 4H), 3.93 (s, 3H), 3.91 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 162.8, 161.8, 153.6, 148.1, 138.8, 136.4, 132.2, 129.3, 126.7, 123.1, 114.7, 114.2, 113.8, 111.8, 94.6, 55.6.

HRMS (EI): calculated for C₂₁H₁₅ClN₄O₂^{•+}: 390.0878, found 390.0876 [M] ^{•+}.

MS (70 eV, El) m/z (%): 392 (37), 391 (23), 390 (100), 233 (16), 221 (24).

IR (ATR) *v* (cm⁻¹): 3088, 2960, 2835, 2213, 1601, 1575, 1515, 1477, 1460, 1420, 1388, 1346, 1307, 1256, 1174, 1163, 1098, 1021, 964, 848, 842, 796, 738, 694.

Mp: 192.7–194.2 °C.

8-(4-(*tert*-Butyl)phenyl)-6-chloro-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile (18e)

Compound **18e** was prepared according to **TP4** on a 0.1 mmol scale using 4-*tert*butyliodobenzene (1.5 equiv, 0.15 mmol, 0.026 mL) as electrophile and $Pd(PPh_3)_4$ (5 mol%, 5.7 mg) as catalyst (50 °C, 1 h). Purified by flash chromatography using *i*-hexane/EtOAc (9/1, v/v) to afford desired compound **18e** as a white solid (0.069 mmol, 28.8 mg, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.80–8.72 (m, 2H), 8.26–8.17 (m, 3H), 7.64–7.56 (m, 2H), 7.04 (d, *J* = 8.9, 2H), 3.90 (s, 3H), 1.40 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ = 161.8, 155.5, 153.7, 148.6, 138.9, 136.4, 131.2, 130.0, 129.2, 125.8, 123.1, 114.6, 114.3, 111.8, 94.6, 55.6, 35.2, 31.3.

HRMS (EI): calculated for C₂₄H₂₁CIN₄O⁺⁺: 416.1398, found 416.1403 [M]⁺⁺.

MS (70 eV, El) m/z (%): 416 (46), 403 (30), 402 (23), 401 (100), 186 (27), 114 (17).

IR (ATR) *v* (cm⁻¹): 2952, 2904, 2835, 2213, 1614, 1576, 1478, 1462, 1419, 13891341, 1306, 1248, 1177, 1123, 1093, 1035, 1014, 966, 890, 849, 831, 790, 738, 708, 690.

Mp: 197.1–198.4 °C.

8-(4-(*tert*-Butyl)phenyl)-6-chloro-5-iodo-2-(4-methoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (20)

Compound **20** was prepared according to **TP5** on a 0.1 mmol scale using iodine (5 equiv, 0.5 mmol, 127 mg) as electrophile (25 °C, 10 min). Purified by flash chromatography using *i*Hexane/EtOAc (10/0 to 9/1, v/v) to afford desired compound **20** as a yellow solid (0.04 mmol, 21.7 mg, 40%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.68 (d, *J*=8.6, 2H), 8.23 (d, *J*=8.9, 2H), 7.59 (d, *J*=8.6, 2H), 7.06 (d, *J*=8.9, 2H), 3.90 (s, 3H), 1.39 (s, 9H).

¹³**C NMR** (201 MHz, CDCl₃) δ = 161.8, 156.0, 155.5, 147.4, 144.3, 139.4, 130.7, 130.2, 130.1, 129.9, 129.9, 125.8, 123.0, 114.5, 113.2, 82.0, 55.6, 35.2, 31.3.

HRMS (EI): calculated for C₂₄H₂₀CIIN₄O⁺⁺: 542.0365, found 542.0370 [M]⁺⁺.

MS (70 eV, El) m/z (%): 544 (29), 543 (22), 542 (87), 529 (32), 528 (23), 527 (100), 403 (20), 402 (16), 401 (57).

IR (ATR) *v* (cm⁻¹): 2963, 2361, 2208, 1739, 1608, 1471, 1410, 1348, 1310, 1257, 1175, 1111, 1031, 954, 846, 836, 798, 740, 710, 696.

Mp: 270.3–272.0 °C.

Ethyl 4-(imidazo[1,2-a]pyrazin-6-yl)benzoate (22a)

Ethyl 4-iodobenzoate (0.8 mL, 5 mmol, 1.0 equiv) was dissolved in THF (5 mL) and cooled to -20 °C. Then, a solution of *i*PrMgCl·LiCl (1.2M in THF, 5.25 mmol, 1.05 equiv) was added dropwise at this temperature and the mixture was stirred at -20 °C for 30 min. The organometallic species was then let warm to room temperature and titrated against iodine.

Next, according to **TP6**, **6** (76.8 mg, 0.5 mmol, 1 equiv) and Pd-PEPPSI-iPr (5 mol%, 17.0 mg) were dissolved in THF (1.0 mL). Then, the freshly prepared zinc reagent (1.5 equiv, 0.75 mmol) was added dropwise. The resulting reaction mixture was stirred at 25 °C for 5 h. The reaction mixture was quenched with saturated aqueous NH_4CI solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel and *i*-hexane/EtOAc (4/1, v/v) affording compound **22a** as an off-white solid (124.3 mg, 0.465 mmol, 93%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.30 – 9.24 (m, 1H), 8.57 (d, *J* = 1.5 Hz, 1H), 8.19 – 8.15 (m, 2H), 8.06 – 8.01 (m, 2H), 7.88 (d, *J* = 1.2 Hz, 1H), 7.81 – 7.79 (m, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 166.4, 143.5, 140.5, 140.2, 138.8, 136.4, 130.8, 130.4, 126.2, 116.0, 114.3, 61.3, 14.5.

HRMS (EI): calculated for C₁₅H₁₃N₃O₂⁺⁺: 267.1008, found: 267.1003 [M] ⁺⁺.

MS (70 eV, El) m/z (%): 267 (74), 239 (30), 222 (100), 194 (44), 140 (22).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3137 (w), 3105 (w), 3082 (w), 2992 (w), 2957 (w), 2924 (m), 2854 (m), 1694 (s), 1609 (m), 1574 (w), 1528 (w), 1491 (w), 1476 (m), 1450 (m), 1438 (m), 1409 (w), 1369 (m), 1347 (m), 1335 (m), 1315 (m), 1303 (m), 1274 (s), 1264 (s), 1180 (m), 1160 (w), 1145 (m), 1125 (m), 1107 (s), 1028 (w), 1016 (m), 934 (w), 913 (s), 876 (w), 864 (w), 853 (w), 839 (s), 806 (w), 774 (vs), 760 (vs), 733 (w), 697 (s), 675 (w), 653 (m).

Mp: 182 °C.

3-(Imidazo[1,2-a]pyrazin-6-yl)benzonitrile (22b)

3-lodobenzonitrile (1.15 g, 5 mmol, 1.0 equiv) was dissolved in THF (5 mL) and cooled to -20 °C. Then, a solution of *i*PrMgCl·LiCl (1.2M in THF, 5.25 mmol, 1.05 equiv) was added dropwise at this temperature and the mixture was stirred at -20 °C for 30 min. The organometallic species was then let warm to room temperature and titrated against iodine.

Next, according to **TP6**, **6** (76.8 mg, 0.5 mmol, 1 equiv) and Pd-PEPPSI-iPr (5 mol%, 17.0 mg) were dissolved in THF (1.0 mL). Then, the freshly prepared zinc reagent (1.5 equiv, 0.75 mmol) was added dropwise. The resulting reaction mixture was stirred at 25 °C for 5 h. The reaction mixture was quenched with saturated aqueous NH_4CI solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel and *i*-hexane/EtOAc (4/1, v/v) affording compound **22b** as an off-white solid (99.1 mg, 0.45 mmol, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.24–9.18 (m, 1H), 8.54 (d, *J* = 1.6 Hz, 1H), 8.27 (t, *J* = 1.8 Hz, 1H), 8.23–8.17 (m, 1H), 7.88 (d, *J* = 1.1 Hz, 1H), 7.80 (t, *J* = 0.9 Hz, 1H), 7.70 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.7, 140.2, 137.8, 137.7, 136.6, 132.2, 130.5, 130.0, 130.0, 118.7, 115.8, 114.5, 113.4.

HRMS (EI): calculated for C₁₃H₈N₄⁺⁺: 220.0749, found: 220.0744 [M]⁺⁺.

MS (70 eV, El) m/z: 220 (100), 139 (10), 71 (13), 57 (20).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3156 (w), 3076 (w), 3035 (w), 2956 (m), 2922 (m), 2853 (m), 2227 (m), 2176 (w), 2140 (w), 1968 (w), 1906 (w), 1712 (w), 1682 (w), 1646 (w), 1613 (w), 1596 (w), 1580 (w), 1513 (m), 1479 (m), 1468 (m), 1448 (m), 1410 (m), 1347 (m), 1330 (m), 1323 (m), 1310 (m), 1300 (s), 1280 (m), 1261 (m), 1206 (m), 1173 (w), 1154 (w), 1135 (s), 1064 (m), 1044 (m), 928 (s), 914 (m), 885 (w), 858 (m), 848 (m), 806 (s), 794 (m), 760 (vs), 715 (m), 686 (s), 666 (w).

Mp: 248 °C.

6-(2-(1,3-Dioxan-2-yl)ethyl)imidazo[1,2-a]pyrazine (22c)

LiCl (318 mg, 7.5 mmol, 1.5 equiv) was dried in a sealed flask under high vacuum at 430 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (300 mg, 12.5 mmol, 2.5 equiv) were added as well as a solution of ZnCl₂ (1.0M in THF, 5 mL, 5 mmol, 1.0 equiv). Then, 2-(2-Bromoethyl)-1,3-dioxane (0.7 mL, 5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 2 h before titration against iodine to determine the concentration.

Next, according to **TP6**, **6** (76.8 mg, 0.5 mmol, 1 equiv) and Pd-PEPPSI-iPent (5 mol%, 19.8 mg) were dissolved in THF (1.0 mL). Then, the freshly prepared zinc reagent (1.5 equiv, 0.75 mmol) was added dropwise. The resulting reaction mixture was stirred at 25 °C for 16 h. The reaction mixture was quenched with saturated aqueous NH_4CI solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel and *i*-hexane/EtOAc (4/1, v/v) affording compound **22c** as a yellow oil (79.3 mg, 0.34 mmol, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.04 (d, *J* = 1.4 Hz, 1H), 7.90 (d, *J* = 1.5 Hz, 1H), 7.75 (d, *J* = 1.1 Hz, 1H), 7.61 (d, *J* = 0.9 Hz, 1H), 4.57 (t, *J* = 5.1 Hz, 1H), 4.15–4.06 (m, 2H), 3.82–3.69 (m, 2H), 2.85 (dd, *J* = 8.7, 6.8 Hz, 2H), 2.17–1.98 (m, 3H), 1.39–1.29 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.3, 141.8, 135.5, 116.0, 113.3, 101.4, 67.1, 53.6, 34.5, 29.1, 25.9.

HRMS (EI): calculated for C₁₂H₁₅N₃O₂⁺⁺: 233.1164, found: 233.1158 [M]⁺⁺.

MS (70 eV, EI) m/z: 233 (16), 174 (26), 146 (100), 133 (41), 87 (45), 59 (17).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2960 (m), 2928 (m), 2853 (m), 1622 (w), 1512 (m), 1491 (w), 1447 (m), 1431 (m), 1406 (m), 1379 (m), 1341 (m), 1303 (m), 1265 (w), 1243 (w), 1144 (s), 1130 (vs), 1082 (m), 1044 (m), 1000 (m), 972 (w), 932 (m), 885 (m), 851 (m), 832 (w), 784 (w), 748 (m), 739 (w).

4-(Imidazo[1,2-a]pyrazin-6-yl)butanenitrile (22d)

LiCl (318 mg, 7.5 mmol, 1.5 equiv) was dried in a sealed flask under high vacuum at 430 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (300 mg, 12.5 mmol, 2.5 equiv) were added as well as a solution of ZnCl₂ (1.0M in THF, 5 mL, 5 mmol, 1.0 equiv). Then, 4-bromobutanenitrile (0.5 mL, 5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 2 h before titration against iodine to determine the concentration.

Next, according to **TP6**, **6** (76.8 mg, 0.5 mmol, 1 equiv) and Pd-PEPPSI-iPent (5 mol%, 19.8 mg) were dissolved in THF (1.0 mL). Then, the freshly prepared zinc reagent (1.5 equiv, 0.75 mmol) was added dropwise. The resulting reaction mixture was stirred at 25 °C for 16 h. The reaction mixture was quenched with saturated aqueous NH_4CI solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel and *i*-hexane/EtOAc (4/1, v/v) affording compound **22d** as a yellow oil (91.3 mg, 0.49 mmol, 98%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.11–9.08 (m, 1H), 8.01 (dt, *J* = 1.5, 0.8 Hz, 1H), 7.81 (d, *J* = 1.1 Hz, 1H), 7.67 (t, *J* = 0.9 Hz, 1H), 2.96–2.91 (m, 2H), 2.42 (t, *J* = 6.9 Hz, 2H), 2.18 (p, *J* = 7.2 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.5, 139.9, 139.8, 135.6, 119.4, 116.8, 113.6, 32.9, 24.5, 16.6.

HRMS (EI): calculated for C₁₀H₁₀N₄⁺⁺: 186.0905, found: 186.0900 [M]⁺⁺.

MS (70 eV, El) m/z: 186 (15), 146 (21), 133 (100), 79 (12), 52 (13).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3150 (w), 3049 (w), 3019 (w), 2949 (m), 2921 (m), 2868 (w), 2239 (w), 1713 (w), 1627 (w), 1516 (m), 1489 (m), 1454 (m), 1449 (m), 1430 (m), 1368 (m), 1345 (m), 1321 (m), 1304 (m), 1260 (m), 1160 (m), 1140 (s), 1085 (w), 1074 (w), 1055 (w), 1024 (w), 941 (m), 928 (m), 920 (m), 886 (m), 873 (m), 838 (w), 782 (w), 760 (w), 738 (vs), 670 (m).

6-(4-Fluorobenzyl)imidazo[1,2-a]pyrazine (22e)

LiCl (318 mg, 7.5 mmol, 1.5 equiv) was dried in a sealed flask under high vacuum at 430 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (300 mg, 12.5 mmol, 2.5 equiv) were added as well as a solution of ZnCl₂ (1.0 M in THF, 5 mL, 5 mmol, 1.0 equiv). Then, 1-(chloromethyl)-4-fluorobenzene (0.6 mL, 5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 2 h before titration against iodine to determine the concentration.

Next, according to **TP6**, **6** (76.8 mg, 0.5 mmol, 1 equiv) and Pd-PEPPSI-iPent (5 mol%, 19.8 mg) were dissolved in THF (1.0 mL). Then, the freshly prepared zinc reagent (1.5 equiv, 0.75 mmol) was added dropwise. The resulting reaction mixture was stirred at 25 °C for 16 h. The reaction mixture was quenched with saturated aqueous NH_4CI solution and extracted with EtOAc (3 x 15 mL). The collected organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography using silica gel and *i*-hexane/EtOAc (4/1, v/v) affording compound **22e** as a white solid (107.8 mg, 0.475 mmol, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.09–9.04 (m, 1H), 7.80–7.74 (m, 2H), 7.60 (d, *J* = 0.9 Hz, 1H), 7.29–7.23 (m, 2H), 7.07–6.98 (m, 2H), 4.10 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 161.9 (d, *J* = 245.1 Hz), 143.5, 141.6, 139.9, 135.8, 134.1 (d, *J* = 3.4 Hz), 130.7 (d, *J* = 8.0 Hz), 116.7, 115.7 (d, *J* = 21.4 Hz), 113.6, 40.3.

HRMS (EI): calculated for C₁₀H₁₀N₄⁺⁺: 226.0781, found: 226.0774 [M-H]⁺⁺.

MS (70 eV, EI) m/z: 226 (100), 133 (11), 109 (9), 57 (13).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3144 (w), 3114 (w), 3079 (w), 3054 (w), 3036 (w), 3002 (w), 2955 (w), 2922 (m), 2853 (m), 2578 (w), 1713 (w), 1619 (m), 1601 (m), 1508 (vs), 1486 (m), 1460 (m), 1438 (m), 1417 (w), 1381 (w), 1353 (m), 1337 (m), 1313 (s), 1302 (m), 1287 (m), 1260 (w), 1248 (m), 1238 (m), 1222 (vs), 1158 (m), 1148 (m), 1140 (s), 1093 (m), 1073 (w), 1016 (m), 980 (w), 959 (w), 952 (m), 939 (w), 916 (m), 886 (m), 864 (m), 849 (m), 836 (m), 826 (m), 813 (s), 782 (m), 775 (s), 751 (m), 730 (vs), 710 (m), 662 (w).

Mp: 110 °C.

6-(4-Chlorophenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (S1)

6-(4-Chlorophenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile was prepared according to **TP7** on a 0.4 mmol scale using 6-chloroimidazo[1,2-*a*]pyrazine-3-carbonitrile (**7e**, 71.4 mg, 0.4 mmol, 1.0 equiv), 4-chlorophenylboronic acid, pinacol ester (1.2 equiv, 0.48 mmol), Pd(PPh₃)₄ (46 mg, 0.04 mmol, 10 mol%) and K₂CO₃ (110 mg, 0.8 mmol, 2.0 equiv) in 1.3 mL 1,4-dioxane/water 9/1 (100 °C, 5 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3, v/v) to afford desired 6-(4-chlorophenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile as a white solid (0.19 mmol, 50 mg, 49%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.32 (d, *J*=1.6, 1H), 8.62 (d, *J*=1.6, 1H), 8.28 (s, 1H), 7.98–7.90 (m, 2H), 7.51 (d, *J*=8.6, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.7, 143.3, 143.2, 141.8, 140.9, 136.2, 133.5, 129.6, 127.9, 114.4, 109.9, 100.2.

HRMS (EI): calculated for C₁₃H₇ClN₄^{•+}: 254.0354, found 254.0355 [M] ^{•+}.

MS (70 eV, El) m/z (%): 256 (30), 254 (100), 219 (20), 123 (25), 114 (27).

IR (ATR) *v* (cm⁻¹): 3052, 2222, 1725, 1612, 1599, 1492, 1483, 1465, 1428, 1346, 1318, 1291, 1270, 1238, 1169, 1108, 1087, 1011, 910, 886, 861, 823, 808, 775, 654.

Mp: 220.5–222.6 °C.

6-Phenylimidazo[1,2-a]pyrazine-3-carbonitrile (S2)

6-Phenylimidazo[1,2-a]pyrazine-3-carbonitrile was prepared according to **TP7** on a 0.4 mmol scale using 6-chloroimidazo[1,2-a]pyrazine-3-carbonitrile (**7e**, 71.4 mg, 0.4 mmol, 1.0 equiv), phenylboronic acid, pinacol ester (1.2 equiv, 0.48 mmol), Pd(PPh₃)₄ (46 mg, 0.04 mmol, 10 mol%) and K₂CO₃ (110 mg, 0.8 mmol, 2.0 equiv) in 1.3 mL 1,4-dioxane/water 9/1 (100 °C,

5 h). Purified by flash chromatography using *i*-hexane/EtOAc (7/3, v/v) to afford desired 6-phenylimidazo[1,2-*a*]pyrazine-3-carbonitrile as a white solid (0.20 mmol, 42 mg, 48%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.32 (d, *J*=1.6, 1H), 8.61 (d, *J*=1.6, 1H), 8.27 (s, 1H), 8.01–7.93 (m, 2H), 7.57–7.43 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 143.6, 143.1, 142.9, 140.9, 135.0, 130.0, 129.4, 126.7, 114.4, 110.0, 100.0.

HRMS (EI): calculated for C13H8N4**: 220.0743, found 220.0744 [M]**.

MS (70 eV, El) m/z (%): 219 (17), 165 (38), 116 (27), 114 (33), 103 (29), 89 (68), 77 (100), 76 (32), 74 (33), 66 (28), 63 (53).

IR (ATR) *v* (cm⁻¹): 3062, 2218, 1728, 1615, 1579, 1518, 1485, 1467, 1418, 1348, 1316, 1304, 1266, 1237, 1164, 1117, 1070, 1019, 913, 872, 820, 768, 749, 689, 665.

Mp: 157.0-159.5 °C

6-(3,4-Dimethoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (S3)

6-(3,4-Dimethoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile was prepared according to **TP7** on a 0.4 mmol scale using 6-chloroimidazo[1,2-*a*]pyrazine-3-carbonitrile (**7e**, 71.4 mg, 0.4 mmol, 1.0 equiv), 3,4-dimethoxyphenyboronic acid pinacol ester (1.2 equiv, 0.48 mmol), Pd(PPh₃)₄ (46 mg, 0.04 mmol, 10 mol%) and K₂CO₃ (110 mg, 0.8 mmol, 2.0 equiv) in 1.3 mL 1,4-dioxane/water 9/1 (100 °C, 5 h). Purified by flash chromatography using *i*hexane/EtOAc (3/7, v/v) to afford desired compound 6-(3,4-dimethoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile as a yellow solid (0.21 mmol, 59.5 mg, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.31 (d, *J*=1.5, 1H), 8.56 (d, *J*=1.6, 1H), 8.27 (s, 1H), 7.59 (d, *J*=2.2, 1H), 7.52 (dd, *J*=8.4, 2.2, 1H), 7.01 (d, *J*=8.4, 1H), 4.02 (s, 3H), 3.97 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 150.8, 149.8, 143.4, 143.1, 142.8, 140.9, 127.8, 119.2, 113.6, 111.6, 110.2, 109.8, 99.8, 56.3, 56.2.

HRMS (EI): calculated for C₁₅H₁₂N₄O₂⁺⁺: 280.0955, found 280.0960 [M]⁺⁺.

MS (70 eV, El) m/z (%): 281 (19), 280 (100), 237 (28), 97 (17), 83 (21), 73 (18), 69 (21), 57 (22), 55 (20).

IR (ATR) *v* (cm⁻¹): 3412, 2979, 2941, 2220, 1613, 1598, 1585, 1522, 1499, 1469, 1432, 1370, 1333, 1318, 1293, 1261, 1236, 1214, 165, 1142, 1072, 1016, 950, 930, 882, 874, 862, 801, 769, 732, 666.

Mp: 245.7–248.1 °C

6-Chloro-8-(4-methoxyphenyl)-5,8-dihydroimidazo[1,2-a]pyrazine (26a)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 1-bromo-4-methoxybenzene (467.5 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

To a solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 76.8 mg, 0.5 mmol, 1.0 equiv) in THF (0.5 M) (4-methoxyphenyl)magnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) was added at 40 °C. The reaction mixture was stirred at 40 °C for 10 min. Then, the mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc (3 x 20 mL). The collected organic layers were dried over MgSO₄ and concentrated *in vacuo*. The product was purified by flash chromatography using *i*Hexane/EtOAc (1/9, v/v) to afford desired compound **26a** as a colorless oil (0.31 mmol, 82 mg, 63%).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.23 – 7.17 (m, 2H), 7.13 (d, *J* = 1.4 Hz, 1H), 6.91 – 6.83 (m, 3H), 6.13 (t, *J* = 3.9 Hz, 1H), 4.93 (dd, *J* = 4.0, 0.9 Hz, 2H), 3.77 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 159.6, 148.5, 141.7, 130.8, 130.0, 130.0, 128.7, 116.4, 114.4, 62.2, 55.4, 50.2.

HRMS (EI): calculated for C₁₃H₁₀CION₃: 259.0512, found: 259.0508 [M-2H]⁺.

MS (70 eV, El) m/z: 261 (32), 260 (14), 259 (100), 246 (16), 244 (50), 216 (30), 181 (16).

6-Chloro-8-(4-methoxyphenyl)imidazo[1,2-a]pyrazine (27a)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 1-bromo-4-methoxybenzene (467.5 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

Compound **27a** was prepared according to **TP8** on a 0.5 mmol scale using (4methoxyphenyl)magnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) as a nucleophile. Purified by flash chromatography using *i*Hexane/EtOAc (6/4, v/v) to afford desired compound **27a** as a colorless solid (0.34 mmol, 88 mg, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.82 – 8.71 (m, 2H), 8.04 (s, 1H), 7.83 (d, *J* = 1.1 Hz, 1H), 7.67 (d, *J* = 1.1 Hz, 1H), 7.10 – 6.98 (m, 2H), 3.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 162.1, 148.5, 138.4, 136.0, 134.2, 131.8, 127.5, 114.6, 114.2, 113.9, 55.5.

HRMS (EI): calculated for C₁₃H₉CION₃: 259.0512, found: 259.0506 [M]⁺.

MS (70 eV, El) m/z: 259 (99), 244 (65), 218 (32), 216 (100), 209 (25), 181 (40).

4-(6-Chloroimidazo[1,2-a]pyrazin-8-yl)-*N*,*N*-dimethylaniline (27b)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 4-bromo-*N*,*N*-dimethylaniline (500.2 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

Compound **27b** was prepared according to **TP8** on a 0.5 mmol scale using (4-(dimethylamino)phenyl)magnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) as a nucleophile. Purified by recrystallization with acetone to afford desired compound **27b** as a colorless solid (0.39 mmol, 106 mg, 78%).

¹**H NMR** (400 MHz, DMSO) δ = 8.79 – 8.72 (m, 2H), 8.68 (s, 1H), 8.11 (d, *J* = 1.1 Hz, 1H), 7.87 (d, *J* = 1.1 Hz, 1H), 6.87 – 6.82 (m, 2H), 3.04 (s, 6H).

¹³**C NMR** (101 MHz, DMSO) δ = 152.0, 150.9, 130.9, 129.2, 115.5, 114.7, 113.8, 111.2, 101.7, 53.5, 18.1, 16.7.

HRMS (EI): calculated for C₁₄H₁₃ClN₄: 272.0829, found: 272.0824 [M]⁺.

MS (70 eV, EI) m/z: 274 (32), 273 (14), 273 (22), 272 (100), 271 (69), 256 (14).

6-Chloro-8-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (27c)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 2-bromonaphthalene (517.5 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

Compound **27c** was prepared according to **TP8** on a 0.5 mmol scale using naphthalen-2ylmagnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) as a nucleophile. Purified by flash chromatography using *i*Hexane/EtOAc (6/4, v/v) to afford desired compound **27c** as a yellowish solid (0.18 mmol, 51 mg, 37%). ¹**H NMR** (400 MHz, CDCl₃) δ = 9.52 – 9.45 (m, 1H), 8.73 (dd, *J* = 8.7, 1.8 Hz, 1H), 8.10 (s, 1H), 8.09 – 8.01 (m, 1H), 7.97 (d, *J* = 8.7 Hz, 1H), 7.91 (d, *J* = 1.1 Hz, 1H), 7.88 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.70 (d, *J* = 1.1 Hz, 1H), 7.61 – 7.48 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 148.7, 138.7, 136.3, 134.7, 134.3, 133.1, 132.2, 131.3, 129.7, 128.2, 127.7, 127.7, 126.4, 126.0, 115.3, 114.4.

HRMS (EI): calculated for C₁₆H₁₀ClN₃: 279.0563, found: 279.0555 [M]⁺.

MS (70 eV, EI) m/z: 279 (100), 278 (65), 242 (15).

6-Chloro-8-(4-fluorophenethyl)imidazo[1,2-a]pyrazine (27d)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 1-(2-bromoethyl)-4-fluorobenzene (507.5 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

Compound **27d** was prepared according to **TP8** on a 0.5 mmol scale using (4-fluorophenethyl)magnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) as a nucleophile. Purified by preparative HPLC to afford desired compound **27d** as a colorless liquid (0.34 mmol, 92.1 mg, 67%).

¹**H NMR** (400 MHz, DMSO) δ = 8.76 (s, 1H), 8.10 (s, 1H), 7.83 (s, 1H), 7.33 – 7.25 (m, 2H), 7.14 – 7.03 (m, 2H), 3.42 (dd, *J* = 9.3, 6.6 Hz, 2H), 3.14 (dd, *J* = 9.3, 6.6 Hz, 2H).

¹³**C NMR** (101 MHz, DMSO) δ = 160.7 (d, *J* = 241.4 Hz), 153.3, 138.6, 137.1 (d, *J* = 3.1 Hz), 135.7, 132.1, 130.1 (d, *J* = 7.9 Hz), 116.5, 116.0, 115.0 (d, *J* = 21.0 Hz), 34.5, 31.6.

HRMS (EI): calculated for C₁₄H₁₁CIFN₃: 275.0626, found: 275.0620 [M] +.

MS (70 eV, EI) m/z: 275 (100), 274 (51), 260 (16), 180 (17), 153 (42), 109 (61).

8-(*tert*-Butyl)-6-chloroimidazo[1,2-*a*]pyrazine (27e)

Compound **27e** was prepared according to **TP8** on a 0.5 mmol scale using *tert*butyImagnesium bromide (1.2 equiv, 0.6 mmol) as a nucleophile. Purified by flash chromatography using EtOAc to afford desired compound **27e** as a yellowish solid (0.48 mmol, 100.0 mg, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.05 (s, 1H), 7.76 (d, *J* = 1.1 Hz, 1H), 7.60 (d, *J* = 1.1 Hz, 1H), 1.61 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 161.9, 138.4, 134.7, 133.4, 115.2, 113.5, 39.4, 29.8, 28.8.

HRMS (EI): calculated for C₁₀H₁₂CIN₃: 209.0720, found: 209.0712 [M]⁺.

MS (70 eV, EI) m/z: 209 (30), 196 (32), 194 (100), 167 (22), 153 (13).

6-Chloro-8-(4-methoxyphenyl)-5-(phenylthio)imidazo[1,2-a]pyrazine (27f)

LiCl (129 mg, 3.0 mmol, 1.2 equiv) was flame-dried in a sealed flask under high vacuum at 550 °C for 5 min with a heat gun. After cooling to room temperature and flushing the flask with Ar, Mg turnings (72 mg, 3.0 mmol, 1.2 equiv) were added. Then, 1-bromo-4-methoxybenzene (467.5 mg, 2.5 mmol, 1.0 equiv) was added dropwise and the solution was stirred at 25 °C for 16 h before titration against iodine to determine the concentration.³

To a solution of 6-chloroimidazo[1,2-*a*]pyrazine (**6**, 76.8 mg, 0.5 mmol, 1.0 equiv) in THF (0.5 M) (4-methoxyphenyl)magnesium bromide-lithium chloride (1.2 equiv, 0.6 mmol) was added at 40 °C. The reaction mixture was stirred at 40 °C for 10 min. Then, the resulting mixture was added dropwise to S-phenyl benzenethiosulfonate (150.2 mg, 0.6 mmol, 1.2 equiv) and stirred at 25 °C for 2 h. Then, the mixture was quenched with saturated aqueous

NH₄Cl solution and extracted with EtOAc ($3 \times 20 \text{ mL}$). The collected organic layers were dried over MgSO₄ and concentrated *in vacuo*. The product was purified by flash chromatography using *i*Hexane/EtOAc (9/1, v/v) to afford desired compound **27f** as a colorless oil (0.16 mmol, 60 mg, 33%).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.85 – 8.78 (m, 2H), 7.88 (d, J = 1.1 Hz, 1H), 7.78 (d, J = 1.1 Hz, 1H), 7.31 – 7.18 (m, 5H), 7.08 – 6.98 (m, 2H), 3.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 162.5, 148.3, 141.4, 138.7, 136.3, 132.2, 131.1, 129.9, 128.6, 127.9, 127.2, 118.6, 115.9, 114.1, 55.6.

HRMS (EI): calculated for C₁₉H₁₄CIOSN₃: 367.0546, found: 367.0543 [M]⁺.

MS (70 eV, El) m/z: 367 (100), 366 (19), 332 (26), 290 (15), 185 (24).

NMR Spectra

6-Chloro-8-iodoimidazo[1,2-a]pyrazine (7a)

110 100 90 f1 (ppm)

3-Allyl-6-chloroimidazo[1,2-*a*]pyrazine (7b)

1-(6-Chloroimidazo[1,2-a]pyrazin-8-yl)-2,2-dimethylpropan-1-one (7c)

(6-Chloroimidazo[1,2-a]pyrazin-3-yl)(3-chlorophenyl)methanone (7d)

6-Chloroimidazo[1,2-a]pyrazine-8-carbonitrile (7e)

Ethyl 6-chloroimidazo[1,2-a]pyrazine-8-carboxylate (7f)

6-Chloro-5-iodoimidazo[1,2-a]pyrazine (8a)

5-Allyl-6-chloroimidazo[1,2-*a*]pyrazine (8b)

(6-Chloroimidazo[1,2-a]pyrazin-5-yl)(3-chlorophenyl)methanone (8d)

6-Chloro-5-(4-methoxyphenyl)imidazo[1,2-a]pyrazine (8f)

6-Chloro-2-pivaloylimidazo[1,2-a]pyrazine-3-carbonitrile (16c)

6-Chloro-2-(4-methoxyphenyl)-8-(methylthio)imidazo[1,2-*a*]pyrazine-3-carbonitrile (18b)

Ethyl 4-(6-chloro-3-cyano-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyrazin-8-yl)benzoate (18c)

6-Chloro-2,8-bis(4-methoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (18d)

8-(4-(tert-Butyl)phenyl)-6-chloro-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile (18e)

8-(4-(*tert*-Butyl)phenyl)-6-chloro-5-iodo-2-(4-methoxyphenyl)imidazo[1,2*a*]pyrazine-3-carbonitrile (20)

SI-70

3-(Imidazo[1,2-a]pyrazin-6-yl)benzonitrile (22b)

6-(2-(1,3-Dioxan-2-yl)ethyl)imidazo[1,2-a]pyrazine (22c)
4-(Imidazo[1,2-a]pyrazin-6-yl)butanenitrile (22d)

6-(4-Chlorophenyl)imidazo[1,2-*a*]pyrazine-3-carbonitrile (S1)

6-Phenylimidazo[1,2-a]pyrazine-3-carbonitrile (S2)

6-(3,4-Dimethoxyphenyl)imidazo[1,2-a]pyrazine-3-carbonitrile (S3)

6-Chloro-8-(4-methoxyphenyl)imidazo[1,2-a]pyrazine (27a)

4-(6-Chloroimidazo[1,2-a]pyrazin-8-yl)-N,N-dimethylaniline (27b)

6-Chloro-8-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (27c)

6-Chloro-8-(4-fluorophenethyl)imidazo[1,2-a]pyrazine (27d)

8-(tert-Butyl)-6-chloroimidazo[1,2-a]pyrazine (27e)

Details for X-ray data collection and structure refinement

Single Crystal X-Ray Diffraction Studies

Single crystals of compound **7a**, suitable for X-ray diffraction, were obtained by slow evaporation of CDCl₃ solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71071$ Å).

Data collection and data reduction were performed with the CrysAlisPro software.⁷ Absorption correction using the multiscan method⁷ was applied. The structures were solved with SHELXS-97,⁸ refined with SHELXL-97⁹ and finally checked using PLATON.¹⁰ Details for data collection and structure refinement are summarized in Table 1.

CCDC-2258909 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	7a
Empirical formula	C ₆ H ₃ CIIN ₃
Formula mass	279.46
Т[К]	123(2)
Crystal size [mm]	0.20 × 0.20 × 0.10
Crystal description	pale yellow block
Crystal system	triclinic
Space group	<i>P</i> -1
a [Á]	6.0804(3)

 Table 1. Details for X-ray data collection and structure refinement for compound 1.

⁷ CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005

CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34); CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34).

⁸ G. M. Sheldrick (1997) SHELXS-97: *Program for Crystal Structure Solution*, University of Göttingen, Germany.

⁹ G. M. Sheldrick (1997) SHELXS-97: *Program for the Refinement of Crystal Structures*, University of Göttingen, Germany.

¹⁰ A. L. Spek (1999) PLATON: *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, the Netherlands.

b [Á]	9.9981(5)
c [Á]	13.2176(7)
α [°]	78.932(4)
β [°]	86.169(4)
γ [°]	79.771(4)
V [Á³]	775.61(7)
Z	4
ρ _{calcd.} [g cm⁻³]	2.393
μ [mm ⁻¹]	4.403
<i>F</i> (000)	520
Θ range [°]	2.11 – 25.24
Index ranges	-8 ≤ <i>h</i> ≤ 8
	-13 ≤ <i>k</i> ≤ 13
	-17 ≤ <i>I</i> ≤ 17
Reflns. collected	13809
Reflns. obsd.	2961
Reflns. unique	3820
	$(R_{int} = 0.0464)$
R_1 , wR_2 (2 σ data)	0.0357, 0.0784
R_1 , wR_2 (all data)	0.0550, 0.0880
GOOF on F ²	1.040
Peak/hole [e Á ⁻³]	2.044 / -0.858

Figure 1. Molecular structure of compound **7a** in the crystal. DIAMOND^{e)} representation; thermal ellipsoids are drawn at 50 % probability level.

Figure 2. Halogen bonding in the crystal structure of compound **7a**. DIAMOND^{e)} representation; thermal ellipsoids are drawn at 50 % probability level.

4					
	l1 – C2	2.076(5)	N5 – C10	1.360(7)	
	l2 – C8	2.074(5)	N4 – C12	1.335(7)	
	Cl1 – C4	1.732(5)	N4 – C7	1.367(7)	
	Cl2 – C10	1.728(5)	C3 – C4	1.360(7)	
	N2 – C2	1.364(6)	C6 – C5	1.427(7)	
	N2 – C3	1.372(7)	C2 – C1	1.370(7)	

Table 2. Selected bond lengths (Å) of compound 7a.

N2 – C6	1.392(6)	C9 – C10	1.349(7)
N6 – C8	1.354(7)	C11 – C12	1.410(8)
N6 – C9	1.373(7)	C8 – C7	1.375(7)
N6 – C12	1.397(6)	N1 – C1	1.342(7)
N3 – C5	1.311(7)	N1 – C6	1.356(7)
N3 – C4	1.364(7)	N5 – C11	1.316(7)

 Table 3. Selected bond angles (°) of compound 7a.

C2 – N2 – C3	132.3(5)	C9 – C10 – N5	124.9(5)
C2 – N2 – C6	105.8(4)	C9 – C10 – Cl2	118.7(4)
C3 – N2 – C6	121.8(4)	N5 – C10 – Cl2	116.3(4)
C8 – N6 – C9	132.5(4)	N1 – C1 – C2	113.4(5)
C8 – N6 – C12	106.8(4)	N5 – C11 – C12	122.8(5)
C9 – N6 – C12	120.6(5)	N6 – C8 – C7	105.9(4)
C5 – N3 – C4	117.5(5)	N6 – C8 – I2	122.3(4)
C1 – N1 – C6	103.3(4)	C7 – C8 – I2	131.7(4)
C11 – N5 – C10	117.3(5)	N3 – C5 – C6	122.5(5)
C12 – N4 – C7	104.4(4)	N4 – C12 – N6	111.1(5)
C4 – C3 – N2	116.3(5)	N4 – C12 – C11	131.9(5)
N1 – C6 – N2	111.7(5)	N6 – C12 – C11	117.0(5)
N1 – C6 – C5	131.7(5)	N4 – C7 – C8	111.8(5)
N2 – C6 – C5	116.5(5)	C3 – C4 – N3	125.3(5)
N2 – C2 – C1	105.7(4)	C3 – C4 – Cl1	118.0(4)
N2 – C2 – I1	121.6(4)	N3 – C4 – Cl1	116.7(4)
C1 – C2 – I1	132.5(4)	C10 – C9 – N6	117.4(5)

 Table 4. Selected torsion angles (°) of compound 7a.

,	Selected torsion angles () of compot	inu <i>ra</i> .	
	C2 - N2 - C3 - C4	-177.5(5)	C6 – N1 – C1 – C2	-1.0(6)
	C6 - N2 - C3 - C4	0.5(7)	N2 – C2 – C1 – N1	0.5(6)
	C1 – N1 – C6 – N2	1.1(6)	l1 – C2 – C1 – N1	176.0(4)
	C1 – N1 – C6 – C5	-177.8(6)	C10 – N5 – C11 – C12	2.2(8)
	C2 - N2 - C6 - N1	-0.9(6)	C9 – N6 – C8 – C7	176.8(5)
	C3 – N2 – C6 – N1	-179.3(4)	C12 – N6 – C8 – C7	-0.9(6)
	C2 - N2 - C6 - C5	178.2(5)	C9 – N6 – C8 – I2	0.7(8)
	C3 – N2 – C6 – C5	-0.2(7)	C12 – N6 – C8 – I2	-177.0(4)
	C3 - N2 - C2 - C1	178.4(5)	C4 – N3 – C5 – C6	0.7(8)
	C6 - N2 - C2 - C1	0.2(6)	N1 – C6 – C5 – N3	178.4(5)
	C3 – N2 – C2 – I1	2.3(8)	N2 – C6 – C5 – N3	-0.4(8)
	C6 – N2 – C2 – I1	-175.9(3)	C7 – N4 – C12 – N6	1.7(6)
	N2 - C3 - C4 - N3	-0.2(8)	C7 – N4 – C12 – C11	-178.8(6)
	N2 - C3 - C4 - C11	178.3(4)	C8 – N6 – C12 – N4	-0.5(6)

C5 - N3 - C4 - C3	-0.4(8)	C9 – N6 – C12 – N4	-178.6(5)
C5 – N3 – C4 – Cl1	-178.9(4)	C8 – N6 – C12 – C11	179.9(5)
C8 - N6 - C9 - C10	-177.9(5)	C9 – N6 – C12 – C11	1.8(7)
C12 - N6 - C9 - C10	-0.4(7)	N5 – C11 – C12 – N4	177.7(6)
N6 – C9 – C10 – N5	-0.3(8)	N5 – C11 – C12 – N6	-2.8(8)
N6 – C9 – C10 – Cl2	177.5(4)	C12 – N4 – C7 – C8	-2.3(6)
C11 – N5 – C10 – C9	-0.6(8)	N6 – C8 – C7 – N4	2.1(6)
C11 – N5 – C10 – Cl2	-178.4(4)	l2 – C8 – C7 – N4	177.6(4)

Single crystals of compound **8b**, suitable for X-ray diffraction, were obtained by slow evaporation of CHCl₃ solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71071$ Å).

CCDC-2258910 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Table 1. Details for X-ray data collection and structure refinement for compound 8	3b
--	----

	8b
Empirical formula	C ₉ H ₈ CIN ₃
Formula mass	193.63
Т[К]	123(2)
Crystal size [mm]	$0.40 \times 0.20 \times 0.05$
Crystal description	colorless block
Crystal system	monoclinic
Space group	P21/c
a [Á]	13.2253(10)
b [Á]	7.3421(4)
c [Á]	9.4392(6)
α [°]	90.0
β [°]	106.538(7)
γ [°]	90.0

V [Á³]	878.64(10)
Z	4
ρ _{calcd.} [g cm ⁻³]	1.464
μ [mm ⁻¹]	0.385
<i>F</i> (000)	400
Θ range [°]	3.21 – 25.24
Index ranges	-17 ≤ <i>h</i> ≤ 17
	$-9 \le k \le 9$
	-12 ≤ <i>I</i> ≤ 12
RefIns. collected	14527
Reflns. obsd.	1735
Reflns. unique	2173
	$(R_{int} = 0.0629)$
R_1 , wR_2 (2 σ data)	0.0432, 0.1053
R_1 , wR_2 (all data)	0.0573, 0.1163
GOOF on F ²	1.060
Peak/hole [e Á ⁻³]	0.416 / -0.222

Figure 1. Molecular structure of compound **8b** in the crystal. DIAMOND¹¹ representation; thermal ellipsoids are drawn at 50 % probability level.

Table 2. Selected bond lengths (Å) of compound $\mathbf{8b}$.

¹¹ DIAMOND, Crystal Impact GbR., Version 3.2i.

Cl1 – C5	1.746(2)	N3 – C5	1.363(2)
N1 – C1	1.372(2)	C6 – C5	1.360(3)
N1 – C6	1.386(2)	C6 – C7	1.502(2)
N1 – C3	1.400(2)	C7 – C8	1.500(3)
C1 – C2	1.373(3)	C8 – C9	1.309(3)
C2 – N2	1.362(2)	C3 – C4	1.410(3)
N2 – C3	1.329(2)	N3 – C4	1.314(2)

Table 3. Selected bond angles (°) of compound 8b.

C1 - N1 - C6	131.6(2)	C6 - C5 - N3	127.0(2)
C1 - N1 - C3	106.6(1)	C6 – C5 – Cl1	119.5(1)
C6 - N1 - C3	121.8(2)	N3 – C5 – Cl1	113.4(1)
N1 - C1 - C2	105.1(2)	C8 - C7 - C6	114.8(2)
N2 - C2 - C1	112.4(2)	C9 - C8 - C7	126.7(2)
C3 - N2 - C2	104.7(2)	C5 – C6 – N1	114.6(2)
N2 - C3 - N1	111.2(2)	C5 - C6 - C7	127.6(2)
N2 - C3 - C4	131.7(2)	N1 – C6 – C7	117.7(2)
N1 - C3 - C4	117.1(2)	N3 – C4 – C3	122.8(2)
C4 - N3 - C5	116.6(2)		

 Table 4. Selected torsion angles (°) of compound 8b.

) 01 00111000		
C6 - N1 - C1 - C2	-179.3(2)	C3 – N1 – C6 – C7	179.7(1)
C3 - N1 - C1 - C2	0.3(2)	C5 – N3 – C4 – C3	-0.3(3)
N1 – C1 – C2 – N2	-0.4(2)	N2 – C3 – C4 – N3	-179.0(2)
C1 - C2 - N2 - C3	0.3(2)	N1 – C3 – C4 – N3	0.7(3)
C2 - N2 - C3 - N1	-0.1(2)	N1 – C6 – C5 – N3	1.1(3)
C2 - N2 - C3 - C4	179.6(2)	C7 – C6 – C5 – N3	-179.2(2)
C1 – N1 – C3 – N2	-0.1(2)	N1 – C6 – C5 – Cl1	-178.8(1)
C6 – N1 – C3 – N2	179.5(1)	C7 – C6 – C5 – Cl1	1.0(3)
C1 - N1 - C3 - C4	-179.9(1)	C4 – N3 – C5 – C6	-0.6(3)
C6 - N1 - C3 - C4	-0.2(2)	C4 – N3 – C5 – Cl1	179.2(1)
C1 - N1 - C6 - C5	179.0(2)	C5 - C6 - C7 - C8	-101.0(2)
C3 - N1 - C6 - C5	-0.6(2)	N1 – C6 – C7 – C8	78.7(2)
C1 - N1 - C6 - C7	-0.8(3)	C6 – C7 – C8 – C9	3.7(3)

Single crystals of compound **16a**, suitable for X-ray diffraction, were obtained by slow evaporation of CHCl₃ solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an D8 Venture diffractometer equipped with a Bruker D8 Venture TXS rotating anode X-ray tube operating with Mo-K_a radiation (λ = 0.71073 Å) and a multilayer mirror optics monochromator.

CCDC-2258912 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	16a
Empirical formula	C ₇ H ₂ CIIN ₄
Formula mass	304.48
Т[К]	173(2)
Crystal size [mm]	0.10 × 0.08 × 0.02
Crystal description	colorless platelet
Crystal system	monoclinic
Space group	P21/n
a [Á]	8.2171(2)
b [Á]	5.69960(10)
c [Á]	18.6448(5)
α [°]	90.0
β [°]	99.8020(10)
γ [°]	90.0
V [Á³]	860.47(3)
Z	4
ρ _{calcd.} [g cm ⁻³]	2.350
µ [mm⁻¹]	3.983
<i>F</i> (000)	568
Θ range [°]	3.74 – 25.24
Index ranges	-11 ≤ <i>h</i> ≤ 11
	$-8 \le k \le 8$
	-26 ≤ <i>I</i> ≤ 26
Reflns. collected	18326
Reflns. obsd.	2296
Reflns. unique	2609
	$(R_{int} = 0.0344)$
R_1 , wR_2 (2 σ data)	0.0184, 0.0369
R_1 , wR_2 (all data)	0.0230, 0.0386

Table 5. Details for X-ray data collection and structure refinement for compound 16a.

GOOF on F ²	1.053
Peak/hole [e Á ⁻³]	0.457 / -0.397

Figure 2. Molecular structure of compound **16a** in the crystal. DIAMOND¹³ representation; thermal ellipsoids are drawn at 50 % probability level.

Table 6. Selected bond lengths (Å) of compound 16a.

<u> </u>			
l1 – C1	2.070(2)	N2 – C6	1.385(2)
N1 – C6	1.347(2)	C4 – N3	1.355(2)
N1 – C1	1.348(2)	C4 – C3	1.361(2)
C1 – C2	1.392(2)	N4 – C7	1.149(2)
Cl1 – C4	1.719(2)	C6 – C5	1.411(2)
C2 – N2	1.377(2)	N3 – C5	1.316(2)
C2 – C7	1.418(2)	N2 – C3	1.366(2)

Table 7. Selected bond angles (°) of compound 16a.

C6 –	N1 – C1	104.9(1)	C3 - C4 - CI1	118.3(1)
N1 –	C1 – C2	111.7(2)	N1 – C6 – N2	111.7(2)
N1 –	C1 – I1	122.7(1)	N1 – C6 – C5	131.0(2)
C2 –	C1 – I1	125.6(1)	N2 – C6 – C5	117.3(2)
N2 –	C2 – C1	105.6(1)	C4 – C3 – N2	116.2(2)
N2 –	C2 – C7	122.4(2)	C5 – N3 – C4	117.6(2)

C1 - C2 - C7	131.8(2)	N3 – C5 – C6	122.1(2)
C3 - N2 - C2	132.1(2)	N4 – C7 – C2	177.4(2)
C3 - N2 - C6	121.7(2)	N3 – C4 – C3	125.2(2)
C2 - N2 - C6	106.2(1)	N3 – C4 – Cl1	116.5(1)

 Table 8. Selected torsion angles (°) of compound 16a.

C6 - N1 - C1 - C2	-0.5(2)	C2 – N2 – C6 – N1	-0.6(2)
C6 – N1 – C1 – I1	178.3(1)	C3 – N2 – C6 – C5	-0.5(2)
N1 – C1 – C2 – N2	0.2(2)	C2 – N2 – C6 – C5	177.3(2)
l1 – C1 – C2 – N2	-178.6(1)	N3 – C4 – C3 – N2	0.3(3)
N1 – C1 – C2 – C7	175.3(2)	Cl1 – C4 – C3 – N2	-179.4(1)
l1 – C1 – C2 – C7	-3.5(3)	C2 – N2 – C3 – C4	-176.8(2)
C1 - C2 - N2 - C3	177.7(2)	C6 – N2 – C3 – C4	0.4(2)
C7 - C2 - N2 - C3	2.1(3)	C3 – C4 – N3 – C5	-0.8(3)
C1 - C2 - N2 - C6	0.2(2)	Cl1 – C4 – N3 – C5	178.9(1)
C7 - C2 - N2 - C6	-175.5(2)	C4 – N3 – C5 – C6	0.7(3)
C1 - N1 - C6 - N2	0.6(2)	N1 – C6 – C5 – N3	177.3(2)
C1 - N1 - C6 - C5	-176.9(2)	N2 – C6 – C5 – N3	0.0(3)
C3 – N2 – C6 – N1	-178.4(2)		

Single crystals of compound **18a**, suitable for X-ray diffraction, were obtained by slow evaporation of CHCl₃ solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an D8 Venture diffractometer equipped with a Bruker D8 Venture TXS rotating anode X-ray tube operating with Mo-K_a radiation (λ = 0.71073 Å) and a multilayer mirror optics monochromator.

CCDC-2258911 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

 Table 1. Details for X-ray data collection and structure refinement for compound 18a.

	18a
Empirical formula	C ₁₄ H ₈ CIIN ₄ O
Formula mass	410.59
T[K]	173(2)
Crystal size [mm]	0.40 × 0.20 × 0.15
Crystal description	colorless block

Crystal system	triclinic
Space group	<i>P</i> -1
a [Á]	8.9084(3)
b [Á]	8.9556(3)
c [Á]	9.5787(3)
α [°]	75.6990(10)
β [°]	74.5870(10)
γ [°]	80.1380(10)
V [Á³]	709.30(4)
Z	2
ρ _{calcd.} [g cm⁻³]	1.922
μ [mm ⁻¹]	2.449
<i>F</i> (000)	396
Θ range [°]	3.16 – 25.24
Index ranges	-11 ≤ <i>h</i> ≤ 11
	-11 ≤ <i>k</i> ≤ 11
	-11 ≤ <i>I</i> ≤ 11
RefIns. collected	10790
Reflns. obsd.	2610
Reflns. unique	2820
	$(R_{int} = 0.0320)$
R_1 , wR_2 (2 σ data)	0.0220, 0.0535
R_1 , wR_2 (all data)	0.0246, 0.0551
GOOF on F ²	1.048
Peak/hole [e Á ⁻³]	1.195 / -0.377

Figure 1. Molecular structure of compound **18a** in the crystal. DIAMOND¹³ representation; thermal ellipsoids are drawn at 50 % probability level.

Table 2. Selected bond lengths (A	Å)) of	compound	18a.
-----------------------------------	----	------	----------	------

l1 – C1	2.079(2)	C5 – N4	1.140(3)
Cl1 – C7	1.727(2)	C5 – C4	1.424(3)
O1 – C11	1.356(3)	C6 – C7	1.360(3)
O1 – C14	1.430(3)	C8 – C13	1.396(3)
N1 – C1	1.304(3)	C10 – C11	1.398(3)
N1 – C7	1.357(3)	C11 – C12	1.391(3)
C1 – C2	1.418(3)	C13 – C12	1.390(3)
N2 – C2	1.323(3)	N3 – C6	1.371(3)
N2 – C3	1.356(3)	N3 – C4	1.379(3)
C2 – N3	1.384(3)	C9 – C10	1.376(3)
C3 – C4	1.402(3)	C9 – C8	1.401(3)
C3 – C8	1.464(3)		

Table 3. Selected bond angles (°) of compound 18a.

C11 – O1 – C14	118.2(2)	N1 – C7 – C6	125.1(2)
C1 – N1 – C7	117.4(2)	N1 – C7 – Cl1	116.0(2)
N1 – C1 – C2	123.1(2)	C6 – C7 – Cl1	118.9(2)
N1 – C1 – I1	120.4(2)	C13 – C8 – C9	118.4(2)
C2 – C1 – I1	116.5(2)	C13 – C8 – C3	122.8(2)
C2 – N2 – C3	106.4(2)	C9 – C8 – C3	118.8(2)
N2 – C2 – N3	111.7(2)	C9 – C10 – C11	120.3(2)
N2 – C2 – C1	132.0(2)	O1 – C11 – C12	124.5(2)

N3 – C2 – C1	116.3(2)	O1 – C11 – C10	115.7(2)
N2 - C3 - C4	109.9(2)	C12 – C11 – C10	119.8(2)
N2 - C3 - C8	120.9(2)	C12 – C13 – C8	121.3(2)
C4 - C3 - C8	129.2(2)	C13 – C12 – C11	119.5(2)
C6 - N3 - C4	131.9(2)	N3 – C4 – C3	105.8(2)
C6 – N3 – C2	121.9(2)	N3 – C4 – C5	120.9(2)
C4 – N3 – C2	106.2(2)	C3 – C4 – C5	133.2(2)
C10 - C9 - C8	120.8(2)	C7 – C6 – N3	116.2(2)
N4 – C5 – C4	178.7(3)		

 Table 4. Selected torsion angles (°) of compound 18a.

C7 – N1 – C1 – C2	-1.2(3)	C4 – N3 – C6 – C7	178.5(2)
C7 – N1 – C1 – I1	179.2(2)	C2 – N3 – C6 – C7	0.3(3)
C3 - N2 - C2 - N3	-0.3(3)	C1 – N1 – C7 – C6	-0.8(4)
C3 - N2 - C2 - C1	179.9(2)	C1 – N1 – C7 – Cl1	179.3(2)
N1 - C1 - C2 - N2	-177.6(2)	N3 – C6 – C7 – N1	1.2(4)
l1 – C1 – C2 – N2	2.0(3)	N3 – C6 – C7 – Cl1	-178.9(2)
N1 - C1 - C2 - N3	2.5(3)	C10 – C9 – C8 – C13	0.8(4)
l1 – C1 – C2 – N3	-177.8(2)	C10 – C9 – C8 – C3	-179.8(2)
C2 - N2 - C3 - C4	0.9(3)	N2 – C3 – C8 – C13	178.6(2)
C2 - N2 - C3 - C8	-179.8(2)	C4 - C3 - C8 - C13	-2.2(4)
N2 - C2 - N3 - C6	178.1(2)	N2 – C3 – C8 – C9	-0.7(3)
C1 - C2 - N3 - C6	-2.1(3)	C4 - C3 - C8 - C9	178.4(2)
N2 - C2 - N3 - C4	-0.5(3)	C8 – C9 – C10 – C11	-0.1(4)
C1 - C2 - N3 - C4	179.4(2)	C14 – O1 – C11 – C12	-0.9(3)
C6 - N3 - C4 - C3	-177.4(2)	C14 – O1 – C11 – C10	-179.9(2)
C2 - N3 - C4 - C3	1.0(2)	C9 – C10 – C11 – O1	178.4(2)
C6 - N3 - C4 - C5	5.6(4)	C9 – C10 – C11 – C12	-0.6(4)
C2 - N3 - C4 - C5	-176.0(2)	C9 – C8 – C13 – C12	-0.9(4)
N2 - C3 - C4 - N3	-1.2(3)	C3 – C8 – C13 – C12	179.7(2)
C8 - C3 - C4 - N3	179.6(2)	C8 – C13 – C12 – C11	0.3(4)
N2 - C3 - C4 - C5	175.3(3)	O1 – C11 – C12 – C13	-178.4(2)
C8 - C3 - C4 - C5	-3.9(4)	C10 – C11 – C12 – C13	0.5(4)

Theoretical Studies

Computational details

As in earlier related studies,¹² we employ calculations at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory for the prediction of p K_a values of heterocyclic systems. Frequency calculations have been carried out to verify that the optimized structures are true minima. Thermochemical corrections to H^{gas} and G^{gas} at 298.15 K were calculated with GoodVibes using the quasi-harmonic approximation.¹³ The furan/furan-2-ide reference system was used, whose p K_a value amounts to +35.0 in DMSO.¹⁴ Pyrimidine was chosen as the protonated reference compound (positively charged) with a p K_a value of +0.55±0.15 in DMSO.¹⁵

Relative pK_a calculations

The thermodynamic cycles, illustrated in **Figure TF0.1** and in **Figure TF0.2**, utilize an isodesmic (proton exchange) reaction that involves the transfer of a proton between an acid and a reference compound. In line with this strategy, we use equations 1 and 2 to calculate the relative pK_a values. This method offers several advantages, including the anticipated elimination of errors arising from differences in solvation free energies of the charged species on the reactant and product sides. Additionally, this approach assumes that the investigated structure and its reference are structurally similar and have comparable pK_a values. ¹⁶

Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2014, 53, 7928-7932.

¹² M. Balkenhohl, H. Jangra, I. S. Makarov, S. M. Yang, H. Zipse, P. Knochel, *Angew. Chem. Int. Ed.* **2020**, *59*, 14992-14999.

¹³ GoodVibes, rev. 3.0.1., as described in: G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton, *F1000Research* **2020**, *9*, 291.

¹⁴ A. Frischmuth, M. Fernandez, N. M. Barl, F. Achrainer, H. Zipse, G. Berionni, H. Mayr, K.

¹⁵ R. L. Benoit, M. Frechette, *Thermochim. Acta* **1988**, *1*27, 125-127.

¹⁶ R. Casasnovas, J. Ortega-Castro, J. Frau, J. Donoso, F. Muñoz, Int. J. Quantum Chem. **2014**, 114, 1350-1363.

Figure TF0.1. Thermodynamic cycle used in the relative calculation of pK_a values for protonated (p_) molecules. Reference compound: protonated pyrimidine (p_pyrimidine) with a pKa value of 0.55±0.15 in DMSO.

Figure TF0.2. Thermodynamic cycle used in the relative calculation of pK_a values for neutral molecules. Reference compound: furan with a pKa value of 35.0 in DMSO. ("d_" - deprotonated)

$$\Delta p K_a = \frac{\Delta G^{sol}}{2.303 RT}$$
 (eq. 1)

$$pK_a(studied \ molcule) = pK_a(Ref) + \Delta pK_a$$
 (eq. 2)

Computational methods

Geometry optimizations have been performed using the B3LYP hybrid functional, complemented by the D3 dispersion correction. Geometry optimizations have been performed with the 6-31++G(2d,p) basis set. Thermal corrections at 298.15 K have been calculated at the same level as the geometry optimizations with quasi-harmonic treatment in GoodVibes v3.0.1 using Grimme's entropy treatment together with Head-Gordon's enthalpy treatment (**Table TT0.1**). Single-point calculations were then performed at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//(U)B3LYP-D3/6-31++G(2d,p) level of theory. The solution phase free energies G^{sol} are computed by combining the solution phase single-point energy with thermal corrections calculated in the gas phase:

$$G^{sol} = E_{tot}^{single-point\,in\,solution} + \, ZPE^{gas} + \Delta G_{0K \rightarrow 298K}^{gas} + \Delta G_{0K \rightarrow 298K}^{1atm \rightarrow 1M}$$

 $\Delta G_{0K \rightarrow 298K}^{1atm \rightarrow 1M}$ = +7.91 kJ mol⁻¹ is the free energy difference for converting from the standard state concentration of 1 atm to the standard state concentration of 1 mol l⁻¹.

The initial structures of molecular complexes were generated randomly using the «kick» algorithm. ¹⁷ The individuality of the found conformers was confirmed using an energy criterion $\Delta E_{tot} > 10^{-7}$ Hartree ¹⁸ and comparing geometries by distances between each atom and the centroid point. ¹⁹ All calculations have been performed with *Gaussian 09, rev. D.01*.

Table TT0.1. GoodVibes usage example

Input
python3 -m goodvibes –qh mol3.log
Output
GoodVibes v3.0.1 2023/06/29 00:08:23
REF: Luchini, G.; Alegre-Requena J. V.; Guan, Y.; Funes-Ardoiz, I.; Paton, R. S. (2019).
GoodVibes: GoodVibes 3.0.1 http://doi.org/10.5281/zenodo.595246
Requested:qh
Tomporatura – 209 15 Kalvin, Prossura – 1 atm
Telliperature = 230.15 Netvin - Tessule = 1 ann All appratic values balow shown in Hartrae unlags otherwise specified
An energie values values below shown in rathere an easily appendix.
Entropic quasi-harmonic treatment: frequency cut-off value of 100.0 wavenumbers will be applied.
QS = Grimme: Using a mixture of RRHO and Free-rotor vibrational entropies.
REF: Grimme, S. Chem. Eur. J. 2012, 18, 9955-9964
Enthalpy quasi-harmonic treatment: frequency cut-off value of 100.0 wavenumbers will be applied.
QH = Head-Gordon: Using an RRHO treatement with an approximation term for vibrational energy.
REF: LI, Y.; Gomes, J.; Sharada, S. M.; Bell, A. I.; Head-Gordon, M. J. Phys. Chem. C 2015, 119, 1840-1850
o. mol3 -395 9217110_0 1059700395 8089849395 8090418_0 0368243_0 0368315395 8458092395 8458733

¹⁷ a) D. Šakić, M. Hanževački, D. M. Smith, V. Vrček, Org. Biomol. Chem. 2015, 13, 11740-11752; b) D. Šakić, https://kick.science/KICK.html.

¹⁸ V. Korotenko, https://github.com/vnkorotenko/ess.

¹⁹ V. Korotenko, https://github.com/vnkorotenko/ccs.

Computational Results

Calculated pK_a values

Figure TF1. Calculated pK_a values for system **3** (CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory).

Figure TF2. Calculated pK_a values for system **6** (CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory).

Figure TF3. Calculated pK_a values for system **7e** (CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory).

Figure TF4. Calculated pK_a values for system 16e (CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory).

As shown in Figure TF1, the C-H bond acidity of compound **3** is largest at C5 position with $pK_a(C5) = +29.8$, closely followed by $pK_a(C3) = +30.7$. The basicity of the three nitrogen atoms is largest at N1 with $pK_a(N1) = +4.7$, closely followed by $pK_a(N7) = +3.4$. Introduction of an electron-withdrawing chlorine substituent at C6 as in compound **6** causes a general increase in C-H bond acidity and a decrease in basicity (Figure TF2). The most acidic position in compound **6** is C5 with $pK_a(C5) = +24.9$, all other positions being significantly less acidic. The most basic position is N1 with $pK_a(N1) = +3.1$, followed by $pK_a(N7) = -1.8$. The calculated pKa values for molecules **7e** and **16e** are presented in Figures **TF3** and **TF4**, respectively.

Figure TF5. Definitions of C-H bond pK_a values of Lewis acid complexes of 6.

Table TT1. pK_a values of Lewis acid complexes of **6** calculated at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)// B3LYP-D3/6-31++G(2d,p) level of theory.

Lewis acid	C-H bond pK _a values of 6				
	р <i>К_{а2}</i>	р <i>К</i> _{а3}	р <i>К_{а5}</i>	р <i>К_{а8}</i>	
charge = 0					
-	37.0	29.1	24.9	33.4	
LiCl	31.0	26.4	22.7	27.5	
MgCl ₂	26.0	24.4	21.3	23.0	
Me ₂ NMgCl	30.8	25.1	21.8	30.6	
TMPMgCl	30.9	25.0	21.8	31.5	
ZnCl ₂	28.8	24.1	21.0	Zn-C	
Me ₂ NZnCl	29.8	24.4	21.2	30.0	
TMPZnCl	31.5	24.9	21.0	35.0	
charge = +1					
MgCl⁺	21.6	22.7	20.2	Mg-C	
ZnCl⁺	Zn-C	21.0	18.7	Zn-C	
charge = +2					
Mg ⁺²	24.3	21.3	18.8	Mg-C	
Zn ⁺²	Zn-C	25.4	21.2	Zn-C	
"Mg-C" – Mg atom translation and formation of					
a Mg-C bond occurs during the geometry					
optimization;					
"Zn-C" – Zn atom translation and formation of					
a 2n-C bond occurs during the geometry					
optimization.					

The C-H bond acidity profile of compound **6** was subsequently explored in the absence and the presence of Lewis acids coordinated to N1 (Figure TF5). Lewis acid coordination to N1 in compound **6** leads to an increase in acidity of all C-H bonds (**Table TT1**). The C5-H is the most acidic position in **6** irrespective of the choice of Lewis acid. In the class of neutral Lewis acids, the lowest pK_a values (+21.0) have been calculated for the zinc salts $ZnCl_2$ and TMPZnCl, closely followed by those for the magnesiums(II) salts (+21.2 - +21.8). The C-H bond pK_a values are lower for cationic and dicationic Lewis acids, but this may not reflect the true bonding situation in solution experiments.

Thermodynamic stability of the intermediate

The stability of the organometallic intermediate with a carbon-metal bond in either position 3 or 5 depends on the charge of the Lewis acid (LA) attached to the deprotonated molecule 1: position 5 is favourable at charge = 0, while position 3 at charge > 0 (**Table TT2**). If the LA has a neutral charge, the stability of the resulting deprotonated anion plays a greater role in determining the stability of the intermediate. The pKa values suggest that the 5-carboanion of molecule 1 is the most stable in this case. However, if the LA has a positive charge, electrostatic interactions become more important and it is more favourable to form a carbon-metal bond with the most negatively charged carbon. Analysis of NBO charges reveals that the C3 atom is the most negatively charged among all carbon atoms in molecule **6** and in the corresponding organometallic intermediate. Therefore, when a positively charged LA is used, position 3 becomes more stable.

Table TT2. The calculated relative ΔG^{sol} values in kJ mol⁻¹ for possible CH-deprotonation products with the attached Lewis acid (forming metal-carbon bond) at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory for compound **6**, **7e** and **16e**.

Attached	CH-deprotonation product of compound 6			
Lewis acid		+ attached	Lewis acid	
	Position 2	Position 3	Position 5	Position 8
charge=0	charge=-1			
nothing	68.7	23.9	0.0	48.3
MgCl ₂	42.9	7.3	0.0	32.1
Me ₂ NMgCl	46.7	8.2	0.0	33.5
TMPMgCl	48.9	3.6	0.0	37.3
ZnCl ₂	31.6	1.0	0.0	23.2
Me ₂ NZnCl	34.7	2.6	0.0	27.2
TMPZnCI	40.9	9.4	0.0	32.9
charge=+1	charge=0			
MgCl⁺	51.0	0.0	18.3	30.8
TMPMg⁺	31.8	0.0	10.5	34.8
ZnCl ⁺	20.2	0.0	2.6	16.2
TMPZn⁺	28.0	3.8	0.0	22.5
charge=+2	charge=+1			
Mg ⁺²	61.7	0.0	42.6	38.8
Zn ⁺²	20.1	0.0	44.1	63.8
Attached	CH-deprotonation product of compound 7e			
Lewis acid	+ attached Lewis acid			
	Position 2	Position 3	Position 5	Position 8
charge=0	charge=-1			
nothing	54.6	NO	0.0	53.9
charge=+1	charge=0			
TMPZn ⁺	11.4	NO	0.0	13.7
Attached	CH-deprotonation product of compound 16e			
Lewis acid	+ attached Lewis acid			
	Position 2	Position 3	Position 5	Position 8
charge=0	charge=-1			
nothing	NO	NO	0.0	54.0
charge=+1	charge=0			
MgCl ⁺	NO	NO	0.0	28.0

SI-107

Figure TF6. The calculated reactions of proton/Mg⁺² and proton/Zn⁺² transfer. The most stable conformers/ intermediates by ΔG^{sol} (**DMSO**) are shown at the CPCM(**DMSO**)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory. Green color indicates the most thermodynamically stable (calculated) intermediate coinciding with the experimental intermediate.

Table TT3. The calculated ΔG^{sol} values for reactions 1-8, 11-18, 21-28, 32-34 and 37 with different intermediate (in positions 2,3,5,8). Thermal corrections for **scheme 2, scheme 3, scheme 5** and **scheme 6 in manuscript** at 298.15 K.

		CPCN			D3/6-		CPC			13/6-
		0101	311++G	//////////////////////////////////////	D3/0-		010	, vi(111)/ 311++G(/2df 2n)//	5/0-
Schome in		B3I	VP_D3/6.	(201,2P)// .31_+_G(2	d n)		B3L	VP_D3/6.	201,20 <i>)//</i> .31C(2	(a b
manuscript	Reaction	DUL	ΛC	lonno(2 ≥sol	.u,p)		DOL		lonno(2 ≥sol	u,p)
manuscript		Interme	ediate (29) 28 15 K I	OMSO)	ŀ	Interm	nediate (2	2 298 15 K	THF)
		2	3	5	8		2	3	5	8
Scheme 2	1	39.6	-11.4*	6.9	19.4	ľ	39.4	-2.0*	9.8	19.7
	2	-2.2	-22.4	-19.8*	-6.2	Ī	1.8	-16.2	-14.0*	-2.9
Scheme 3	3	10.7	-13.5	-17.4*	5.2	ľ	12.2	-10.3	-14.1*	6.0
	4	8.8	-33.7	-35.7*	0.2	ľ	14.0	-23.8	-27.3*	4.6
	5	-13.0*	-	-17.9	-10.9	ľ	-7.7*	-	-14.1	-6.2
Scheme 5	6	-3.6*	-	-15.0	-1.3	Ī	-1.4*	-	-13.7	0.3
	7	-16.7*	-	-31.6	-11.5	ľ	-8.6*	-	-29.2	-5.1
Scheme 6	8	-	-	-9.3	18.7*	ľ	-	-	-9.1	19.8*
		Interme	ediate + L	LiCI in po	sition 1	ľ	Interme	ediate + L	iCl in po	sition 1
Scheme in	Reaction		(298.15 k	(, DMSO))			(298.15	K, THF)	
manuscript		2	3	5	8	Ī	2	3	5	8
Scheme 2	11	7.9	-17.6*	4.9	-40.8	ſ	16.7	-7.5*	7.7	-45.2
	12	-27.7	-25.3	-1.9*	-28.3	ſ	-31.2	-18.4	1.3*	-30.4
Scheme 3	13	-2.2	-14.3	-17.3*	6.4	Ī	-6.7	-11.5	-14.4*	2.2
	14	-33.7	-39.3	-34.6*	-30.1	ſ	-47.2	-27.1	-26.2*	-45.6
	15	-43.7*	-	-19.4	-33.7		-44.8*	-	-15.2	-35.1
Scheme 5	16	-12.3*	-	-17.1	6.1	ſ	-15.6*	-	-15.9	2.5
	17	-64.9*	-	-33.7	-62.9	ſ	-68.1*	-	-31.0	-76.7
Scheme 6	18	-	-	-14.2	-54.4*	Ī	-	-	-12.9	-57.3*
		Interm	ediate +	LiCI in th	e best	ſ	Interm	ediate +	LiCl in th	e best
Scheme in	Pontion		pos	ition				pos	ition	
manuscript	Reaction		(298.15 k	(, DMSO))			(298.15	K, THF)	
		2	3	5	8		2	3	5	8
Scheme 2	21	7.3	-40.6*	-45.1	-41.4	[4.3	-42.0*	-46.9	-45.7
	22	-28.3	-28.2	-29.3*	-30.5	[-31.8	-29.8	-30.2*	-32.6
Scheme 3	23	-2.8	-20.9	-20.7*	3.4	[-7.2	-24.3	-23.6*	-1.1
	24	-34.9	-40.5	-35.8*	-51.6		-48.3	-28.1	-27.2*	-62.8
	25	-43.7*	-	-22.4	-33.7		-44.8*	-	-31.8	-35.1
Scheme 5	26	-12.3*	-	-17.1	6.1		-15.6*	-	-15.9	2.5
	27	-64.9*	-	-33.7	-62.9		-68.1*	-	-31.0	-76.7
Schomo 6						- F			-61 5	-57 3*
Scheme 0	28	-	-	-51.5	-54.4*		-	-	-01.5	-57.5
Scheme o	28	- Interme	- ediate + N	51.5 ∕IgCl₂ in t	-54.4* he best		- Interme	- ediate + N	/IgCl ₂ in t	he best
Scheme in	28 Reaction	- Interme	- ediate + N pos	51.5 ∕IgCl₂ in t ition	-54.4* he best		- Interme	- ediate + N posi	/IgCl ₂ in t	he best
Scheme in manuscript	28 Reaction	- Interme	- ediate + N pos (298.15 k	51.5 ⁄lgCl₂ in t ition ⟨, DMSO)	- 54.4 * he best	-	- Interme	- ediate + N posi (298.15	<i>I</i> gCl₂ in t ition K, THF)	he best
Scheme in manuscript	28 Reaction	- Interme	- ediate + N pos (298.15 k 3	-51.5 ⁄IgCl₂ in t ition (, DMSO) 5	- 54.4 * he best		- Interme	- ediate + N posi (298.15 3	IgCl₂ in t ition K, THF) 5	he best
Scheme in manuscript	28 Reaction 32	- Interme 2 -14.6	- ediate + N pos (298.15 k 3 - 26.5	-51.5 /IgCl ₂ in t ition (, DMSO) 5 -20.9*	-54.4* he best) -10.7		- Interme 2 -15.5	- ediate + N pos (298.15 3 - 19.6	AgCl ₂ in t ition K, THF) 5 -14.7*	8 -10.4
Scheme in manuscript Scheme 3	28 Reaction 32 33	- Interme 2 -14.6 -0.2	- ediate + N pos (298.15 k 3 - 26.5 -18.2	-51.5 AgCl ₂ in t ition (, DMSO 5 -20.9* - 19.6 *	-54.4* he best 8 -10.7 13.3		- Interme 2 -15.5 -2.1	- ediate + N posi (298.15 3 - 19.6 -15.2	AgCl₂ in t ition K, THF) 5 -14.7* -16.6*	8 -10.4 11.2
Scheme in manuscript	28 Reaction 32 33 34	- Interme 2 -14.6 -0.2 -42.1	- ediate + N pos (298.15 k 3 -26.5 -18.2 -45.0	-51.5 AgCl ₂ in t ition (, DMSO) 5 -20.9* -19.6* -38.9*	-54.4* he best -10.7 13.3 11.0		- Interme 2 -15.5 -2.1 - 49.9	- ediate + N posi (298.15 3 - 19.6 -15.2 -32.3	AgCl ₂ in t ition K, THF) 5 -14.7* -16.6* -28.9*	8 -10.4 -1.2 -2.7
Scheme in manuscript Scheme 3 Scheme 5	28 Reaction 32 33 34 37	- Interme 2 -14.6 -0.2 -42.1 -69.3*	- ediate + N pos (298.15 k 3 -26.5 -18.2 -45.0 -	-51.5 AgCl ₂ in t ition (, DMSO) 5 -20.9* -20.9* -38.9* -38.9* -34.6	-54.4* he best -10.7 13.3 11.0 4.5		- Interme 2 -15.5 -2.1 -49.9 -76.5*	- ediate + M posi (298.15 3 - 19.6 -15.2 -32.3 -	AgCl ₂ in t ition K, THF) 5 -14.7* -16.6* -28.9* -32.0	8 -10.4 -1.2 -2.7 -8.8
Scheme in manuscript Scheme 3 Scheme 5 * - the asteris	28 Reaction 32 33 34 37 sk indicates	- Interme 2 -14.6 -0.2 -42.1 -69.3* the pos	- pos (298.15 k 3 -26.5 -18.2 -45.0 - sition obs	-51.5 AgCl ₂ in t ition 5 -20.9* -19.6* -38.9* -34.6 served ir	-54.4* he best -10.7 13.3 11.0 4.5 n the exp	per	- Interme 2 -15.5 -2.1 -49.9 -76.5* iment.	- ediate + M posi (298.15 3 - 19.6 -15.2 -32.3 - 301d ind	AgCl ₂ in t ition K, THF) 5 -14.7* -16.6* -28.9* -32.0 icates th	8 -10.4 11.2 -2.7 -8.8 e most
Scheme in manuscript Scheme 3 Scheme 5 * - the asteria thermodynamic	28 Reaction 32 33 34 37 sk indicates cally stable (- Interme -14.6 -0.2 -42.1 -69.3* the pos calculate	- ediate + N pos (298.15 k 3 - 26.5 -18.2 -45.0 - sition obs d) interm	-51.5 AgCl ₂ in t ition 5 -20.9* -19.6* -38.9* -34.6 served ir ediate. G	-54.4* he best -10.7 13.3 11.0 4.5 n the exp reen colo	per per	- Interme 2 -15.5 -2.1 -49.9 -76.5* iment. Enarks the	- ediate + M pos (298.15 3 -19.6 -15.2 -32.3 - 301d ind most the	AgCl ₂ in t ition K, THF) 5 -14.7* -16.6* -28.9* -32.0 icates th ermodyna	8 -10.4 11.2 -2.7 -8.8 e most amically

Table TT4. The calculated ΔG^{sol} values for reactions 1-8, 11-18, 21-28, 32-34 and 37 with different intermediate (in positions 2,3,5,8). Thermal corrections for scheme 2 are at 213.15 K, for scheme 3 and scheme 5 at 253.15 K, scheme 6 at 233.15 K.

		CPC)/B3LYP-	D3/6-	 CPC	M(THE)		13/6-
		01 01	311++G	(2df 2n)//	00/0	010	311++G	(2df 2n)//	0,0
Scheme in		B3L	YP-D3/6-	31++G(2	(a b	B3L	YP-D3/6	31 + + G(2)	d n)
manuscrint	Reaction	DOL	ΛC	Sol Sol	(a,p)	DOL	Λ(Sol	.u,p)
manaoonpt		Inter	mediate	- (Texp., DN	ISO)	Inte	ermediate	- (Texp. T I	HF)
		2	3	5	8	2	3	5	8
Scheme 2	1	39.6	-10.9*	7.1	19.3	39.4	-1.5*	10.0	19.6
	2	-2.2	-22.4	-19.7*	-6.1	1.8	-16.2	-14.0*	-2.8
Scheme 3	3	11.0	-13.4	-17.0*	5.5	12.5	-10.2	-13.3*	6.3
	4	9.7	-33.0	-35.0*	1.0	14.9	-23.1	-26.7*	5.5
	5	-13.1*	-	-18.0	-10.9	-7.7*	-	-14.3	-6.2
Scheme 5	6	-3.5*	-	-15.1	-1.1	-1.3*	-	-13.8	0.5
	7	-16.2*	-	-31.7	-10.9	-8.1*	-	-29.2	-4.4
Scheme 6	8	-	-	-10.3	18.2*	-	-	-10.0	19.3*
0.1		Interme	ediate + L	iCl in po	sition 1	Interme	ediate + l	iCl in po	sition 1
Scheme in	Reaction		(T _{exp.} , I	DMSO)			(T _{exp.} ,	THF)	
manuscript		2	3	5	8	2	3	5	8
Scheme 2	11	8.4	-17.3*	4.8	-41.5	17.2	-7.2*	7.6	-45.8
	12	-28.1	-25.4	-2.0*	-28.6	-31.7	-18.4	1.2*	-30.8
Scheme 3	13	-2.5	-14.3	-17.4*	5.9	-7.0	-11.5	-14.5*	1.7
	14	-34.7	-39.1	-34.4*	-31.2	-48.2	-26.8	-26.0*	-46.7
	15	-44.2*	-	-19.6	-34.2	-45.3*	-	-15.4	-35.6
Scheme 5	16	-12.5*	-	-17.4	5.8	-15.8*	-	-16.2	2.3
	17	-65.5*	-	-34.0	-64.1	-69.3*	-	-31.3	-77.9
Scheme 6	18	-	-	-14.8	-55.1*	-	-	-13.5	-58.1*
		Interm	ediate +	LiCI in th	e best	Interm	ediate +	LiCI in th	e best
Scheme in	Ponction		pos	ition			pos	ition	
manuscript	Reaction		(T _{exp.} , I	DMSO)	-		(T _{exp.} ,	THF)	
		2	3	5	8	2	3	5	8
Scheme 2	21	7.8	-41.0*	-45.2	-42.1	3.7	-42.4*	-47.0	-46.3
	22	-28.8	-28.5	-29.2*	-30.9	-32.2	-30.1	-30.1*	-33.0
Scheme 3	23	-3.1	-21.4	-21.3*	3.1	-7.5	-24.8	-24.2*	-1.4
	24	-35.9	-40.3	-35.6*	-52.9	-49.3	-27.9	-27.1*	-64.6
	25	-44.2*	-	-23.5	-34.2	-45.3*	-	-32.9	-35.6
Scheme 5	26	-12.5*	-	-17.4	5.8	-15.8*	-	-16.2	2.3
	27	-65.5*	-	-34.0	-64.1	-69.3*	-	-31.3	-77.9
Scheme 6	28	-	-	-52.9	-62.3*	-	-	-63.0	-65.1*
Seheme in		Interme	ediate + N	/IgCl₂ in t	he best	Interme	ediate + N	/IgCl₂ in t	he best
manuscript	Reaction	рс	sition (Te	exp., DMS	O)	р	osition (Cexp., THF)
manuscript		2	3	5	8	2	3	5	8
	32	-15.0	-26.7	-21.0*	-11.0	-15.9	-19.7	-14.8*	-10.7
			40.4	40.5*	13.1	-25	-15.4	-16 5*	11.0
Scheme 3	33	-0.6	-18.4	-19.5	13.1	2.0	10.4	-10.5	11.0
Scheme 3	33 34	-0.6 -43.3	-18.4 -45.0	- 19.5 -39.0*	9.6	-51.1	-32.3	-28.9*	-4.2
Scheme 3 Scheme 5	33 34 37	-0.6 -43.3 -70.7 *	-18.4 -45.0 -	-39.0* -35.1	9.6 2.9	-51.1 -77.8*	-32.3	-28.9* -32.4	-4.2 -10.4

* - the asterisk indicates the position observed in the experiment. **Bold** indicates the most thermodynamically stable (calculated) intermediate. **Green color** marks the most thermodynamically stable (calculated) intermediate coinciding with the experimental intermediate.

Table TT5. The estimated error values for the calculated ΔG^{sol} values in **Table TT3** and **Table TT4**. The expected free energy difference between the experimental observed intermediate relative to the second by stability intermediate based on concentration relation 95/5: -5.2 kJ/mol at 213.15 K, -5.7 kJ/mol at 233.15 K, -6.2 kJ/mol at 253.15 K, -7.3 kJ/mol at 298.15 K, 8.31446 J·K⁻¹·mol⁻¹.

		CPC	M/B3LYP-D3/6-31	1++G(2df,2p)//	
Cohomo in			B3LYP-D3/6-31+	+G(2a,p)	
Scheme in	Reaction		<u>D</u> G ^{ool}	to	
manuscript		(209 15 K			(T
		DMSO)	(290.13 R, THF)	DMSO)	THF)
Scheme 2	1				
	2	8.8	8.4	8.9	8.4
Scheme 3	3				
	4				
	5	11.1	12.6	11.1	12.8
Scheme 5	6	17.6	18.5	17.8	18.7
	7	21.1	26.8	21.7	27.3
Scheme 6	8	33.7	34.6	34.2	35.0
	AVERAGE	18.5	20.2	18.7	20.4
Scheme in		In	termediate + LiCl	in position 1	
manuscript	Reaction	(298.15 K,	(298.15 K,	(T _{exp.} ,	(Texp.,
		DMSO)	THF)	DMSO)	THF)
Scheme 2	11	28.4	42.9	29.4	43.8
0.1	12	32.6	38.7	32.8	39.1
Scheme 3	13	10.0	07.0	40.0	00.4
	14	10.9	21.2	10.9	28.4
Cabama E	15	11.0	0.5	44.4	0.0
Scheme 5	16	11.0	0.0	11.1	0.0
Sahama 6	17		14.8		14.8
Scheme 6		20.7	26.0	21.1	26.5
	AVERAGE	lotorr	20.0	ZI.I	20.5
Scheme in	Reaction	(208 15 K			(Т
manuscript	Reaction	DMSO)	(298.13 K, THF)	DMSO)	THF)
Scheme 2	21	9.7	10.1	9.4	9.8
	22	7.4	8.6	7.9	9.1
Scheme 3	23	6.4	6.9	6.3	6.8
	24	22.0	41.8	23.5	43.7
	25				
Scheme 5	26	11.0	6.5	11.1	6.6
	27		14.8		14.8
Scheme 6	28		9.9		5.7
	AVERAGE	11.3	14.1	11.6	13.8
Scheme in		Interm	ediate + MgCl ₂ in	the best positio	n L (–
manuscript	Reaction	(298.15 K, DMSO)	(298.15 K, THF)	(T _{exp.} , DMSO)	(T _{exp.} , THF)
	32	11.8	11.1	11.9	11.1
Scheme 3	33				
	34	12.3	27.2	12.2	28.4
Scheme 5	37				
	AVERAGE	12.0	19.1	12.0	19.7

In order to describe the thermodynamics of the processes depicted in the manuscript in schemes 2, 3, 5 and 6, the ΔG^{sol} values were computed for reactions 1-8 (as well as 11-18, 21-28, 32-34, and 37), in both **DMSO** and **THF**. Individual (unique) reactions in this list are reactions 1-8, the rest of the reactions are just modifications of reactions 1-8. For example, reactions 11-18 are reactions 1-8, but with the addition of LiCl fixed on the N1 atom. In a series of reactions 21-28 LiCl is no longer fixed, i.e. LiCl has isomeric freedom and can occupy another most favorable by free energy position (if any) in the substrate molecule. Reactions 32-34 and 37 are modifications of reactions 4 and 7, but with the addition of MgCl₂.

Reaction 1 (Figure TF6, Table TT 3) shows well that the product of the reaction between the TMPMgCl molecule and compound 6 is most thermodynamically stable in position 3 (only here the free energy is negative), which agrees with the experiment with the reagent TMPMgCl·LiCl (11). In reactions 2 and 5, we simulate a zincation reaction by mixture 12 (TMP₂Zn·2MgCl₂·2LiCl) in scheme 3 and 5 in manuscript, but as a reactant we consider a TMPZnCl particle that can be formed by this process: $2 \text{ TMP}_2\text{Zn} + \text{LiCl} \rightarrow \text{TMPZn}^+\text{Cl}^+ + \text{Li}^+\text{TMP}_3\text{Zn}^-$. Comparing reactions 1 and 2, we see the effect of the metal change: position 3 is still the most favourable in terms of free energy, although other positions also began to show negative free energies, especially position 5. Compared to reaction 3, the TMP₂Zn substrate in reactions 3 and 4 more reflects the experimental mixture 12 (TMP₂Zn·2MgCl₂·2LiCl). We can see that position 5 is preferred in reactions 3 and 4, although it is slightly more pronounced in reaction 3.

Reactions 6 and 7 describe the thermodynamics of the reaction between **7e** and TMP₂Zn, while the most negative free energy is observed for the 5-intermediate, however, in the experiment, only the 2-intermediate is observed. We assume that the transition state for abstract hydrogen in position 5 (TS5, **Figure TF7** for compound **6**) is sterically hindered by the presence cyano group in position 3 and chlorine in position 6, which does not allow the N atoms from a wide TMP2Zn molecule to reach the CH5 bond (to form the proton transfer in position 5 - **TS5**), so the reaction is kinetically more favourable in position 2.

The free energy of reaction 7 indicates that when molecules **16e** and TMPMgCl react, the 5intermediate is thermodynamically preferable. We remember that the CH bond in position 5 is more acidic than in position 8. However, only the product in position 8 is observed in the experiment. Here, we note that the free energy for **TS8** is indeed more negative than for TS5 (**Figure TF7** for compound **16e**).

Effect of LiCl in position 1

Comparing reaction 1 with 11, and 2 with 12, it can be seen that the addition of LiCl in position 1 greatly reduces the free energy of intermediate_in positions 2 and 8, due to the additional stabilizing Li-Cl...M⁺² interaction (where the metal M⁺² is it Mg⁺² or Zn⁺²). It is because of this stabilizing interaction, comparing reaction 4 with 14 by the values of ΔG^{sol} (**THF**), it can be seen that when LiCl is added at position 1 instead of 5-intermediate (experiment), 2-intermediate will be the most stable. Also, comparing reaction 7 with 17, it can be seen that when LiCl is added in position 1 instead of 5-intermediate will be the most stable. Comparing reaction 8 with reaction 18, it can be seen that when LiCl is added in position 1 instead of 5-intermediate. Comparing reaction 8 with reaction 18, it can be seen that when LiCl is added in position 1 instead of 5-intermediate.

Effect of the isomeric freedom of LiCI

A sufficient difference can be seen only in reactions 21-24 comparing to reaction 11-14 (**Table TT 3**).

Effect of MgCl₂ in position 1

To describe regioselective zincation in **Scheme 3** and **Scheme 5**, given the composition of the reacting mixture **12** (TMP₂Zn·2MgCl₂·2LiCl), we think that instead of LiCl in position 1 (in reactions 14, 17), it would be more correct to consider MgCl₂ in position 1 (reactions 34, 37), because the Mg atom is more electronegative on the Pauling scale (1.31) than the Li atom (0.98). However, adding MgCl₂ in position 1 in reaction 34 does not change the order of product stability compared to reaction 14. Reaction 37 agrees well with the result of reaction 27, making the 2-intermediate molecule **15**·2MgCl₂ almost by -10 kJ/mol more stable in **THF** than the 2-intermediate molecule **15**·2LiCl.

Effect of temperature on reaction thermodynamics

The results in **Table TT3** are presented for room temperature (298.15 K), however, when recalculating thermal corrections taking into account experimental temperatures in **Table TT4** (**in manuscript scheme 2** at 213.15 K, **scheme 3** and **scheme 5** at 253.15 K, **scheme 6** at 233.15 K), the described trends do not change.

Error estimation

We conclude that the model describing "product + LiCl in the best position" shows the smallest error independent of the applied temperature (**Table TT5**).

Simulation of the transition state for the magnesiation reaction

For the molecule **6**, After a detailed conformational analysis (**Figure TF7**), we were able to find only one structure of four-center cyclic ²⁰ transition states at position 3. TS3 is very compact (four-center cyclic) involves both proton transfer and a short C...Mg⁺² distance, both required for the formation of the intermediate. On the other hand, five-center cyclic proton transfer TS were observed in positions 2, 8, and six-center cyclic proton transfer TS in position 5. It is logical that after the proton transfer TS2, TS5 and TS8, the next Mg⁺²-transfer TS should occur to form the expected intermediate in positions 2, 5 and 8 (not observed in the experiment), but we did not do further calculations in this direction.

For the molecule **16e**, **TS8** for proton transfer is more favourable comparing to **TS5**. At the same time, the possibility of LiCl coordination on the N1 atom (the N1 atom is free in **TS8**) is retained to stabilize the resulting 8-intermediate. A similar picture is observed for molecule **6** (**Figure TF7**).

3D				
	TS2	TS3	TS5	TS8
$\Delta\Delta G^{sol}$	+9.7	+57.9	+22.5	0.0
Туре	five-center cyclic	four-center cyclic	six-center cyclic	five-center cyclic
	proton transfer	proton transfer	proton transfer	proton transfer
3D	-	-		
	-	-	TS5	TS8
$\Delta\Delta G^{sol}$	-	-	+36.0	0.0
Туре	-	-	six-center cyclic proton transfer	five-center cyclic proton transfer

Figure TF7. The optimized structures of transitional states of proton/Mg⁺² transfer between the molecule **6** and TMPMgCl·LiCl. The relative TS free energies ΔG^{sol} are in kJ mol⁻¹ at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2df,2p)//B3LYP-D3/6-31G(d) level of theory for molecule **6** and at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31G(d) level of theory for molecule **16e**.

²⁰ A. A. Vitale, J. San Filippo, J. Am. Chem. Soc. 1982, 104, 7341-7343.

Conclusions

The presence of a chlorine atom at position 6 makes molecule **6** more acidic and less basic than molecule **3**. Compound **6** is the most N-basic in position 1. Compound **6** is the most CH-acidic in position 5. Coordination of a cationic particles on the N1 atom makes molecule **6** more acidic.

Scheme 2 in manuscript shows that the product of the regioselective magnesiation of molecule **6** at position 3 is observed in the experiment. According to our calculations, the most stable product is indeed obtained at position 3 in Reaction 1. Analysis of NBO charges reveals that the C3 atom is the most negatively charged among all carbon atoms in molecule 6 and in the corresponding organometallic product. Therefore, position 3 becomes more stable.

In **Scheme 3 in manuscript**, regioselective zincation of molecule **6** gives the 5-intermediate. The most stable calculated product is indeed the 5-intermediate in reaction 3 and reaction 4. In reaction 3, the 5-intermediate is stabilized by the TMP group, while in reaction 4 the 5-intermediate (molecule **14**) is stabilized due to a more favourable conformation with two intramolecular non-covalent CH...Cl interactions.

In **Scheme 5 in manuscript**, regioselective zincation of molecule **7e** gives the 2-intermediate. To explain this result, we consider the reaction 25 with the most stable 2-intermediate in both **DMSO** and **THF**. Here, the 2-intermediate is stabilized by the neighbouring LiCl molecule (in the best position: at the N1 atom), which causes the additional stabilizing intramolecular non-covalent Li-Cl...Zn⁺² interaction. The same type of stabilization is observed for the 8-intermediate in reaction 25, despite this, the 2-intermediate is about -10 kJ/mol more stable than the 8-intermediate.

In **Scheme 6 in manuscript**, regioselective magnesiation of molecule **16e** gives the 8-intermediate. Here we propose to consider reaction 18 to explain the result, in which the 8-intermediate is stabilized by intramolecular non-covalent Li-Cl...Mg⁺² interaction. Although we do not know the exact reaction mechanism, we carefully assume that the Li-Cl...Mg⁺² interaction provides the most favourable transition state for the reaction to Scheme 6.

Thermodynamic analysis of pKa

	cha	rge			file	name			A 17	ΔG^{sol}		G	sol			ΔG	sol	
E1	E2	P1	P2	E1	E2	P1	P2	рка	$\Delta p \kappa_a$	kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
1	0	0	1	p4_mol6	pyrimidine	mol6	p_pyrimidine	-46.9	-47.5	-271.2	-855.9115716	-264.3717510	-855.5920739	-264.7945278	286.0	0.0	0.0	0.0
1	0	0	1	p1_mol7e	pyrimidine	mol7e	p_pyrimidine	-2.4	-3.0	-17.0	-948.2858086	-264.3717510	-947.8694988	-264.7945278	0.0	0.0	0.0	0.0
1	0	0	1	p7_mol7e	pyrimidine	mol7e	p_pyrimidine	-5.9	-6.4	-36.6	-948.2783236	-264.3717510	-947.8694988	-264.7945278	19.7	0.0	0.0	0.0
1	0	0	1	p4_mol7e	pyrimidine	mol7e	p_pyrimidine	-53.7	-54.2	-309.7	-948.1743124	-264.3717510	-947.8694988	-264.7945278	292.7	0.0	0.0	0.0
1	0	0	1	p1_mol16e_2	pyrimidine	mol16e_2	p_pyrimidine	-1.2	-1.8	-10.2	-1293.9000730	-264.3717510	-1293.4811947	-264.7945278	0.0	0.0	0.0	0.0
1	0	0	1	p7_mol16e_1	pyrimidine	mol16e_2	p_pyrimidine	-4.9	-5.5	-31.4	-1293.8920181	-264.3717510	-1293.4811947	-264.7945278	21.1	0.0	0.0	0.0
1	0	0	1	p7_mol16e_2	pyrimidine	mol16e_2	p_pyrimidine	-4.9	-5.5	-31.3	-1293.8920541	-264.3717510	-1293.4811947	-264.7945278	21.1	0.0	0.0	0.0
1	0	0	1	p4_mol16e_2	pyrimidine	mol16e_2	p_pyrimidine	-49.5	-50.0	-285.6	-1293.7951849	-264.3717510	-1293.4811947	-264.7945278	275.4	0.0	0.0	0.0
0	-1	-1	0	mol3	d2_furan	d5_mol3	furan	29.8	-5.2	-29.8	-395.9537295	-229.5392932	-395.4383573	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	mol3	d2_furan	d3_mol3	furan	30.7	-4.3	-24.7	-395.9537295	-229.5392932	-395.4364176	-230.0660281	0.0	0.0	5.1	0.0
0	-1	-1	0	mol3	d2_furan	d8_mol3	furan	36.6	1.6	9.0	-395.9537295	-229.5392932	-395.4235533	-230.0660281	0.0	0.0	38.9	0.0
0	-1	-1	0	mol3	d2_furan	d2_mol3	furan	38.2	3.2	18.5	-395.9537295	-229.5392932	-395.4199480	-230.0660281	0.0	0.0	48.3	0.0
0	-1	-1	0	mol3	d2_furan	d6_mol3	furan	39.0	4.0	23.1	-395.9537295	-229.5392932	-395.4182068	-230.0660281	0.0	0.0	52.9	0.0
0	-1	-1	0	mol6	d2_furan	d5_mol6	furan	24.9	-10.1	-57.5	-855.5920739	-229.5392932	-855.0872382	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	mol6	d2_furan	d3_mol6	furan	29.1	-5.9	-33.6	-855.5920739	-229.5392932	-855.0781373	-230.0660281	0.0	0.0	23.9	0.0
0	-1	-1	0	mol6	d2_furan	d8_mol6	furan	33.4	-1.6	-9.2	-855.5920739	-229.5392932	-855.0688453	-230.0660281	0.0	0.0	48.3	0.0
0	-1	-1	0	mol6	d2_furan	d2_mol6	furan	37.0	2.0	11.2	-855.5920739	-229.5392932	-855.0610782	-230.0660281	0.0	0.0	68.7	0.0
0	-1	-1	0	mol7e	d2_furan	d5_mol7e	furan	20.6	-14.4	-82.3	-947.8694988	-229.5392932	-947.3741029	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	mol7e	d2_furan	d2_mol7e	furan	30.2	-4.8	-27.7	-947.8694988	-229.5392932	-947.3533042	-230.0660281	0.0	0.0	54.6	0.0
0	-1	-1	0	mol7e	d2_furan	d8_mol7e	furan	30.0	-5.0	-28.4	-947.8694988	-229.5392932	-947.3535848	-230.0660281	0.0	0.0	53.9	0.0
0	-1	-1	0	mol16e_2	d2_furan	d5_mol16e_2	furan	21.4	-13.6	-77.7	-1293.4811947	-229.5392932	-1292.9840515	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	mol16e_2	d2_furan	d5_mol16e_1	furan	21.5	-13.5	-77.3	-1293.4811947	-229.5392932	-1292.9839067	-230.0660281	0.0	0.0	0.4	0.0
0	-1	-1	0	mol16e_2	d2_furan	d8_mol16e_2	furan	30.8	-4.2	-23.7	-1293.4811947	-229.5392932	-1292.9634841	-230.0660281	0.0	0.0	54.0	0.0
0	-1	-1	0	mol16e_2	d2_furan	d8_mol16e_1	furan	30.8	-4.2	-23.7	-1293.4811947	-229.5392932	-1292.9634841	-230.0660281	0.0	0.0	54.0	0.0

Table TT6. The calculated for pKa values at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory(T = 298.15 K). "E1 and E2" – educt 1 and educt 2, "P1 and P2" – product 1 and product 2.

 Table TT7. The calculated for pKa values at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = 298.15 K).

 "E1 and E2" – educt 1 and educt 2, "P1 and P2" – product 1 and product 2. Lewis acid locally applied to nitrogen atom 1.

	cha	rge			filen	ame		mV	AmV	ΔG^{sol}		G	sol			Δ	G ^{sol}	
E1	E2	P1	P2	E1	E2	P1	P2	$p\kappa_a$	$\Delta \rho \kappa_a$	kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
0	-1	-1	0	mol3	d2_furan	d5_mol3	furan	29.8	-5.2	-29.8	-395.9537295	-229.5392932	-395.4383573	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	mol6	d2_furan	d5_mol6	furan	24.9	-10.1	-57.5	-855.5920739	-229.5392932	-855.0872382	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LiCl_d5_mol6_1	furan	22.7	-12.3	-70.1	-1323.5065405	-229.5392932	-1323.0065105	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Mg_mol6	d2_furan	1_Mg_d8_mol6	furan	15.5	-19.5	-111.2	-1055.4895181	-229.5392932	-1055.0051525	-230.0660281	0.0	0.0	0.0	0.0
1	-1	0	0	1_MgCl_mol6_1	d2_furan	1_MgCl_d8_mol6	furan	17.9	-17.1	-97.4	-1515.9510196	-229.5392932	-1515.4613857	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_MgCl2_mol6	d2_furan	1_MgCl2_d5_mol6	furan	21.3	-13.7	-78.3	-1976.4042333	-229.5392932	-1975.9073272	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_C2H6NMgCl_mol6_aab	d2_furan	1_C2H6NMgCl_d5_mol6_aab	furan	21.9	-13.1	-74.8	-1650.6399503	-229.5392932	-1650.1416971	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_TMPMgCl_mol6_2	d2_furan	1_TMPMgCl_d5_mol6_2	furan	22.0	-13.0	-73.9	-1924.5750199	-229.5392932	-1924.0764462	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Zn_mol6	d2_furan	1_Zn_d8_mol6	furan	6.4	-28.6	-163.2	-2634.6553014	-229.5392932	-2634.1907114	-230.0660281	0.0	0.0	0.0	0.0
1	-1	0	0	1_ZnCl_mol6_2	d2_furan	1_ZnCl_d8_mol6	furan	4.8	-30.2	-172.2	-3095.1365133	-229.5392932	-3094.6753687	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_ZnCl2_mol6	d2_furan	1_ZnCl2_d8_mol6	furan	12.6	-22.4	-128.1	-3555.5867828	-229.5392932	-3555.1088479	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_C2H6NZnCI_mol6_aab	d2_furan	1_C2H6NZnCl_d5_mol6_aab	furan	21.3	-13.7	-78.3	-3229.8319033	-229.5392932	-3229.3350082	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_TMPZnCI_mol6_2	d2_furan	1_TMPZnCl_d5_mol6_2	furan	21.1	-13.9	-79.1	-3503.7704027	-229.5392932	-3503.2738089	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Mg_mol6	d2_furan	1_Mg_d8_mol6	furan	15.5	-19.5	-111.2	-1055.4895181	-229.5392914	-1055.0051525	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Mg_mol6	d2_furan	1_Mg_d5_mol6	furan	18.8	-16.2	-92.7	-1055.4895181	-229.5392914	-1054.9980792	-230.0660281	0.0	0.0	18.6	0.0
2	-1	1	0	1 Mg mol6	d2 furan	1 Mg d3 mol6	furan	21.3	-13.7	-78.5	-1055.4895181	-229.5392914	-1054.9926645	-230.0660281	0.0	0.0	32.8	0.0

2	-1	1	0	1 Ma mol6	d2 furan	1 Ma d2 mol6	furan	24.3	-10.7	-61.1	-1055.4895181	-229.5392914	-1054.9860424	-230.0660281	0.0	0.0	50.2	0.0
1	-1	0	0	1 MaCl mol6 1	d2 furan	1 MaCL d8 mol6	furan	17.9	-17 1	-97 4	-1515 9510196	-229 5392914	-1515 4613857	-230 0660281	0.0	0.0	0.0	0.0
1	-1	0	0	1 MgCl_mol6_1	d2_furan	1 MgCL d5 mol6	furan	20.2	-1/ 9	-94.7	-1515.0510106	-220.5202014	-1515 4565346	-230.0660281	0.0	0.0	12.7	0.0
4	-1	0	0		d2_furan		furan	20.2	-14.0	-04.7	1515.9510190	-229.5592914	4545 4525202	-230.0000201	0.0	0.0	20.7	0.0
	-1	0	0				furan	21.0	-13.4	-70.0	-1315.9310190	-229.5592914	-1515.4555203	-230.0000281	0.0	0.0	20.7	0.0
1	-1	0	0	1_MgCl_mol6_1	d2_furan	1_MgCl_d3_mol6	furan	22.7	-12.3	-70.2	-1515.9510196	-229.5392914	-1515.4510069	-230.0660281	0.0	0.0	27.2	0.0
0	-1	-1	0	1_MgCl2_mol6	d2_furan	1_MgCl2_d5_mol6	furan	21.3	-13.7	-78.3	-1976.4042333	-229.5392914	-1975.9073272	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_MgCl2_mol6	d2_furan	1_MgCl2_d8_mol6	furan	23.0	-12.0	-68.6	-1976.4042333	-229.5392914	-1975.9036264	-230.0660281	0.0	0.0	9.7	0.0
0	-1	-1	0	1_MgCl2_mol6	d2_furan	1_MgCl2_d3_mol6	furan	24.4	-10.6	-60.4	-1976.4042333	-229.5392914	-1975.9004856	-230.0660281	0.0	0.0	18.0	0.0
0	-1	-1	0	1_MgCl2_mol6	d2_furan	1_MgCl2_d2_mol6	furan	26.0	-9.0	-51.3	-1976.4042333	-229.5392914	-1975.8970287	-230.0660281	0.0	0.0	27.0	0.0
0	-1	-1	0	1_C2H6NMgCl_mol6_aab	d2_furan	1_C2H6NMgCl_d5_mol6_aab	furan	21.8	-13.2	-75.4	-1650.6397130	-229.5392914	-1650.1416971	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1 C2H6NMgCl mol6 aab	d2 furan	1 C2H6NMgCl d5 mol6 aap	furan	22.0	-13.0	-74.1	-1650.6397130	-229.5392914	-1650.1412151	-230.0660281	0.0	0.0	1.3	0.0
0	-1	-1	0	1 C2H6NMgCl mol6 aab	d2 furan	1 C2H6NMgCl d3 mol6 aab	furan	25.1	-9.9	-56.7	-1650 6397130	-229 5392914	-1650 1345547	-230.0660281	0.0	0.0	18.8	0.0
0	-1	-1	0	1 C2H6NMgCL mol6 aab	d2 furan	1 C2H6NMgCL d3 mol6 aan	furan	25.2	-9.8	-56.1	-1650 6397130	-229 5392914	-1650 1343510	-230.0660281	0.0	0.0	19.3	0.0
1	0	0	1	1_C2H6NMgCL_mol6_aab	d2_furan	1_C2H6NMgCL d8_mol6_aab	furan	20.2	-4.4	-24.0	-1650 6307130	-220.5202014	-1650 1224516	-230.0660281	0.0	0.0	50.5	0.0
-	1	1	2		d2_furan		furan	20.0	-4.4	-24.5	1050.0397130	-229.5592914	1050.1224510	-230.0000201	0.0	0.0	51.0	0.0
2		1	2		dz_luran		iuran	30.8	-4.Z	-24.1	-1650.6397130	-229.5392914	-1650.1221568	-230.0660281	0.0	0.0	51.3	0.0
0	-1	-1	0	1_TMPMgCI_mol6_2	d2_furan	1_TMPMgCI_d5_mol6_2	furan	21.8	-13.2	-75.2	-1924.5745358	-229.5392914	-1924.0764462	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_IMPMgCl_mol6_2	d2_furan	1_IMPMgCl_d5_mol6_3	turan	22.4	-12.6	-71.8	-1924.5745358	-229.5392914	-1924.0751352	-230.0660281	0.0	0.0	3.4	0.0
0	-1	-1	0	1_TMPMgCl_mol6_2	d2_furan	1_TMPMgCl_d5_mol6_1	furan	22.7	-12.3	-70.5	-1924.5745358	-229.5392914	-1924.0746413	-230.0660281	0.0	0.0	4.7	0.0
0	-1	-1	0	1_TMPMgCl_mol6_2	d2_furan	1_TMPMgCl_d3_mol6_2	furan	25.0	-10.0	-57.0	-1924.5745358	-229.5392914	-1924.0695126	-230.0660281	0.0	0.0	18.2	0.0
0	-1	-1	0	1_TMPMgCl_mol6_2	d2_furan	1_TMPMgCl_d3_mol6_3	furan	25.7	-9.3	-53.0	-1924.5745358	-229.5392914	-1924.0680006	-230.0660281	0.0	0.0	22.2	0.0
0	-1	-1	0	1 TMPMgCl mol6 2	d2 furan	1 TMPMqCl d3 mol6 1	furan	25.9	-9.1	-51.9	-1924.5745358	-229.5392914	-1924.0675492	-230.0660281	0.0	0.0	23.4	0.0
0	-1	-1	0	1 TMPMgCl mol6 2	d2 furan	1 TMPMaCl d2 mol6 2	furan	30.9	-4.1	-23.6	-1924.5745358	-229.5392914	-1924.0568046	-230.0660281	0.0	0.0	51.6	0.0
0	-1	-1	0	1 TMPMgCL mol6 2	d2 furan	1 TMPMaCL d8 mol6 1	furan	31.5	-3.5	-197	-1924 5745358	-229 5392914	-1924 0553035	-230 0660281	0.0	0.0	55.5	0.0
0	-1	-1	0	1 TMPMgCL mol6_2	d2_furan	1 TMPMaCL d2 mol6 3	furan	31.7	-3.3	-18.6	-1024.5745358	-220.5302014	-1924.0549000	-230.0660281	0.0	0.0	56.6	0.0
0	-1	-1	0		d2_furan		furan	22.6	12.4	70.9	1222 5062702	220.5002014	1222.0065105	220.0000201	0.0	0.0	0.0	0.0
0	-1	-1	0		d2_furan		furan	22.0	-12.4	-70.8	-1323.3002793	-229.5592914	-1323.0003103	-230.0000281	0.0	0.0	0.0	0.0
0	-1	-1	0		dz_luran		iuran	20.3	-0.7	-49.8	-1323.5062793	-229.5392914	-1322.9985279	-230.0660281	0.0	0.0	21.0	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LICI_d8_mol6_2	furan	27.4	-7.6	-43.3	-1323.5062793	-229.5392914	-1322.9960403	-230.0660281	0.0	0.0	27.5	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LiCl_d8_mol6_1	turan	27.4	-7.6	-43.2	-1323.5062793	-229.5392914	-1322.9960086	-230.0660281	0.0	0.0	27.6	0.0
2	-1	1	0	1_Zn_mol6	d2_furan	1_Zn_d8_mol6	furan	6.4	-28.6	-163.2	-2634.6553014	-229.5392914	-2634.1907114	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Zn_mol6	d2_furan	1_Zn_d3_mol6	furan	21.6	-13.4	-76.4	-2634.6553014	-229.5392914	-2634.1576630	-230.0660281	0.0	0.0	86.8	0.0
2	-1	1	0	1_Zn_mol6	d2_furan	1_Zn_d5_mol6	furan	21.2	-13.8	-78.9	-2634.6553014	-229.5392914	-2634.1586308	-230.0660281	0.0	0.0	84.2	0.0
2	-1	1	0	1 Zn mol6	d2 furan	1 Zn d2 mol6	furan	25.4	-9.6	-54.6	-2634.6553014	-229.5392914	-2634.1493792	-230.0660281	0.0	0.0	108.5	0.0
1	-1	0	0	1 ZnCl mol6 2	d2 furan	1 ZnCl d8 mol6	furan	4.8	-30.2	-172.2	-3095,1365133	-229.5392914	-3094.6753687	-230.0660281	0.0	0.0	0.0	0.0
1	-1	0	0	1 ZnCl mol6 2	d2 furan	1 ZnCl d2 mol6	furan	5.6	-29.4	-167.6	-3095 1365133	-229 5392914	-3094 6736158	-230 0660281	0.0	0.0	4.6	0.0
1	-1	0	0	1 ZnCl mol6 2	d2 furan	1 ZnCl d5 mol6	furan	18.7	-16.3	-93.2	-3095 1365133	-229 5392914	-3094 6452846	-230.0660281	0.0	0.0	79.0	0.0
1	-1	0	0	1 ZnCl_mol6_2	d2_furan	1 ZnCL d3 mol6	furan	21.0	-14.0	-80.1	-3095 1365133	-220.5302014	-3094 6402771	-230.0660281	0.0	0.0	92.1	0.0
0	-1	1	0	1_211C1_11010_2	d2_furan	1 ZnCl2 d9 mol6	furan	12.6	-14.0	120.1	2555.1303133	229.5592914	2555 1099470	220.0000201	0.0	0.0	92.1	0.0
0	-1	-1	0				furan	12.0	-22.4	-120.1	-3000.0007020	-229.5592914	-3000.1066479	-230.0000281	0.0	0.0	0.0	0.0
0	-1	-1	0		d2_furan	1_ZnCl2_d5_mol6	furan	21.0	-14.0	-79.8	-3555.5867828	-229.5392914	-3555.0904382	-230.0660281	0.0	0.0	48.3	0.0
0	-1	-1	0	1_ZnCl2_mol6	d2_furan	1_ZnCl2_d3_mol6	furan	24.1	-10.9	-62.3	-3555.5867828	-229.5392914	-3555.0837715	-230.0660281	0.0	0.0	65.8	0.0
0	-1	-1	0	1_ZnCl2_mol6	d2_turan	1_ZnCl2_d2_mol6	turan	28.8	-6.2	-35.2	-3555.5867828	-229.5392914	-3555.0734512	-230.0660281	0.0	0.0	92.9	0.0
0	-1	-1	0	1_C2H6NZnCl_mol6_aab	d2_furan	1_C2H6NZnCl_d5_mol6_aab	furan	21.2	-13.8	-78.7	-3229.8317585	-229.5392914	-3229.3350082	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_C2H6NZnCl_mol6_aab	d2_furan	1_C2H6NZnCl_d5_mol6_aap	furan	21.3	-13.7	-78.4	-3229.8317585	-229.5392914	-3229.3348997	-230.0660281	0.0	0.0	0.3	0.0
0	-1	-1	0	1_C2H6NZnCl_mol6_aab	d2_furan	1_C2H6NZnCl_d3_mol6_aap	furan	24.4	-10.6	-60.8	-3229.8317585	-229.5392914	-3229.3281790	-230.0660281	0.0	0.0	17.9	0.0
0	-1	-1	0	1_C2H6NZnCl_mol6_aab	d2_furan	1_C2H6NZnCl_d3_mol6_aab	furan	24.4	-10.6	-60.5	-3229.8317585	-229.5392914	-3229.3280625	-230.0660281	0.0	0.0	18.2	0.0
1	0	0	1	1 C2H6NZnCl mol6 aab	d2 furan	1 C2H6NZnCl d2 mol6 aab	furan	29.8	-5.2	-29.7	-3229.8317585	-229.5392914	-3229.3163249	-230.0660281	0.0	0.0	49.1	0.0
2	1	1	2	1 C2H6NZnCl mol6 aab	d2 furan	1 C2H6NZnCl d8 mol6 aab	furan	30.0	-5.0	-28.6	-3229.8317585	-229.5392914	-3229.3159086	-230.0660281	0.0	0.0	50.1	0.0
3	2	2	3	1 C2H6NZnCl mol6 aab	d2 furan	1 C2H6NZnCL d2 mol6 aan	furan	30.0	-5.0	-28.7	-3229 8317585	-229 539201/	-3229 3159466	-230.0660281	0.0	0.0	50.0	0.0
ŏ	-1	-1	ŏ	1 TMPZnCl mol6 2	d2 furan	1 TMPZnCl d5 mol6 2	furan	21.0	-14.0	-79.8	-3503 7701417	-229 5392014	-3503 2738080	-230.0660281	0.0	0.0	0.0	0.0
	-1	-1	0	1 TMPZnCl mole 2	d2 furan		furan	22.0	-12.2	-10.0	-3503.7701417	-220 5202014	-3503.2730009	230.0000201	0.0	0.0	0.0	0.0
	-1	-1	0				furan	22.0	-12.2	-09.9	-3003.7701417	-229.5392914	-3003.2700383	-230.0000281	0.0	0.0	9.9	0.0
0	-1	-1	U		uz_turan		ruran	24.9	-10.1	-57.4	-3503.7701417	-229.5392914	-3503.2652695	-230.0660281	0.0	0.0	22.4	0.0
0	-1	-1	0	1_IMPZnCI_mol6_2	d2_turan	1_IMPZnCl_d2_mol6_2	turan	31.5	-3.5	-19.8	-3503.7701417	-229.5392914	-3503.2509606	-230.0660281	0.0	0.0	60.0	0.0
0	-1	-1	0	1_TMPZnCl_mol6_2	d2_furan	1_IMPZnCl_d8_mol6_4	furan	35.0	0.0	-0.2	-3503.7701417	-229.5392914	-3503.2434872	-230.0660281	0.0	0.0	79.6	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LiCl_d5_mol6_1	furan	22.6	-12.4	-70.8	-1323.5062793	-229.5392914	-1323.0065105	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LiCl_d3_mol6_2	furan	26.3	-8.7	-49.8	-1323.5062793	-229.5392914	-1322.9985279	-230.0660281	0.0	0.0	21.0	0.0
0	-1	-1	0	1_LiCl_mol6_1	d2_furan	1_LiCl_d8_mol6_2	furan	27.4	-7.6	-43.3	-1323.5062793	-229.5392914	-1322.9960403	-230.0660281	0.0	0.0	27.5	0.0
0	-1	-1	0	1 LiCl mol6 1	d2 furan	1 LiCl d8 mol6 1	furan	27.4	-7.6	-43.2	-1323.5062793	-229.5392914	-1322.9960086	-230.0660281	0.0	0.0	27.6	0.0

r	cha	rae			filer	ame				AGsol		G	sol			۸6	sol	
E1	E2	P1	P2	E1	E2	P1	P2	pK_a	ΔpK_a	kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
2	-1	1	0	1_Mg_mol6	d2_furan	3_Mg_d3_mol6	furan	8.7	-26.3	-150.1	-1055.4895181	-229.5392932	-1055.0199463	-230.0660281	0.0	0.0	0.0	0.0
1	-1	0	0	MgCl_mol6_aal	d2_furan	Cl_Mg3_d3_mol6_aad	furan	13.0	-22.0	-125.8	-1515.9516214	-229.5392932	-1515.4727936	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	MgCl2_mol6_aac	d2_furan	MgCl2_d5_mol6_aaa	furan	15.1	-19.9	-113.4	-1976.4042295	-229.5392932	-1975.9207015	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	C2H6NMgCl_mol6_aab	d2_furan	C2H6NMgCI_d5_mol6_aaa	furan	16.0	-19.0	-108.5	-1650.6399503	-229.5392932	-1650.1545379	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	TMPMgCI_mol6_aal	d2_furan	TMPMgCl_d5_mol6_aac	furan	16.9	-18.1	-103.5	-1924.5750194	-229.5392932	-1924.0876957	-230.0660281	0.0	0.0	0.0	0.0
2	-1	1	0	1_Zn_mol6	d2_furan	Zn3_d3_mol6	furan	-4.8	-39.8	-227.0	-2634.6553014	-229.5392932	-2634.2150263	-230.0660281	0.0	0.0	0.0	0.0
1	-1	0	0	ZnCl_mol6_aag	d2_furan	Cl_Zn3_d3_mol6_aap	furan	2.1	-32.9	-187.9	-3095.1365131	-229.5392932	-3094.6813378	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	ZnCl2_mol6_aai	d2_furan	ZnCl2_d5_mol6_aaa	furan	8.5	-26.5	-151.3	-3555.5867828	-229.5392932	-3555.1176838	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	C2H6NZnCl_mol6_aak	d2_furan	C2H6NZnCl_d5_mol6_aad	furan	9.5	-25.5	-145.6	-3229.8319034	-229.5392932	-3229.3606175	-230.0660281	0.0	0.0	0.0	0.0
0	-1	-1	0	TMPZnCl_mol6_aax	d2_furan	TMPZnCl_d5_mol6_aao	furan	10.8	-24.2	-138.0	-3503.7695942	-229.5392932	-3503.2954256	-230.0660281	0.0	0.0	0.0	0.0

Table TT8. The calculated for pK_a values at the CPCM(DMSO)/B3LYP-D3/6-311++G(2d,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = 298.15 K). "E1 and E2" – educt 1 and educt 2 "P1 and P2" – product 1 and product 2. Structures in which the Lewis acid occupies the best by (C^{sol} position

Thermodynamic analysis of the intermediate

	cha	rge				filename	oudot i and o		ΔG^{sol}		G	ol			Δ	G ^{sol}	
E1	E2	P1	P2	E1	E2	P1	P2		kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
0	0	0	0	mol6	TMPMgCI	Cl_Mg3_d3_mol6_aad	TMPH_1	reaction1	-11.4	-855.5920739	-1068.9731777	-1515.4727936	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPZnCl	Cl_Zn3_d3_mol6_aap	TMPH_1	reaction2	-22.4	-855.5920739	-2648.1775221	-3094.6813378	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn_1	5_TMPZn_d5_mol6_b	TMPH_1	reaction3	-17.4	-855.5920739	-2596.3659178	-3042.8678070	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos5	TMPH_1	reaction4	-35.7	-855.5920739	-2596.3659178	-3489.3700527	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMPZnCl	5_ZnCl_d5_mol7e	TMPH_1	reaction5	-17.9	-947.8694988	-2648.1775221	-3186.9570329	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e	TMPH_1	reaction6	-15.0	-947.8694988	-2596.3659178	-3135.1443211	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn_1	mol15_pos5	TMPH_1	reaction7	-31.6	-947.8694988	-2596.3659178	-3673.9233642	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol16e_2	TMPMgCI	mol17_pos5_2	TMPH_1	reaction8	-9.3	-1293.4811947	-1068.9731777	-1953.3611227	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPMgCI	Cl_Mg3_d3_mol6_aad	TMPH_1		-11.4	-855.5920739	-1068.9731777	-1515.4727936	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPMgCI	Cl_Mg3_d3_mol6_aaq	TMPH_1		-11.4	-855.5920739	-1068.9731777	-1515.4727883	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPMgCI	Cl_Mg5_d5_mol6_aaa	TMPH_1		6.9	-855.5920739	-1068.9731777	-1515.4658247	-409.0967962	0.0	0.0	18.3	0.0
0	0	0	0	mol6	TMPMgCI	CI_Mg8_d8_mol6_aar	TMPH_1		19.4	-855.5920739	-1068.9731777	-1515.4610636	-409.0967962	0.0	0.0	30.8	0.0
0	0	0	0	mol6	TMPMgCI	Cl_Mg2_d2_mol6_aaa	TMPH_1		39.6	-855.5920739	-1068.9731777	-1515.4533543	-409.0967962	0.0	0.0	51.0	0.0
0	0	0	0	mol6	TMPZnCl	CI_Zn3_d3_mol6_aap	TMPH_1		-22.4	-855.5920739	-2648.1775221	-3094.6813378	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPZnCl	CI_Zn5_d5_mol6_aae	TMPH_1		-19.8	-855.5920739	-2648.1775221	-3094.6803399	-409.0967962	0.0	0.0	2.6	0.0
0	0	0	0	mol6	TMPZnCl	CI_Zn8_d8_mol6_aac	TMPH_1		-6.2	-855.5920739	-2648.1775221	-3094.6751758	-409.0967962	0.0	0.0	16.2	0.0
0	0	0	0	mol6	TMPZnCl	CI_Zn2_d2_mol6_aaq	TMPH_1		-2.2	-855.5920739	-2648.1775221	-3094.6736351	-409.0967962	0.0	0.0	20.2	0.0
0	0	0	0	mol6	TMP2Zn_1	5_TMPZn_d5_mol6_b	TMPH_1		-17.4	-855.5920739	-2596.3659178	-3042.8678070	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn_1	5_TMPZn_d5_mol6_a	TMPH_1		-16.5	-855.5920739	-2596.3659178	-3042.8674641	-409.0967962	0.0	0.0	0.9	0.0
0	0	0	0	mol6	TMP2Zn_1	3_TMPZn_d3_mol6_a	TMPH_1		-13.5	-855.5920739	-2596.3659178	-3042.8663447	-409.0967962	0.0	0.0	3.8	0.0
0	0	0	0	mol6	TMP2Zn_1	3_TMPZn_d3_mol6_b	TMPH_1		-13.5	-855.5920739	-2596.3659178	-3042.8663443	-409.0967962	0.0	0.0	3.8	0.0
0	0	0	0	mol6	TMP2Zn_1	8_TMPZn_d8_mol6_a	TMPH_1		5.2	-855.5920739	-2596.3659178	-3042.8592231	-409.0967962	0.0	0.0	22.5	0.0
0	0	0	0	mol6	TMP2Zn_1	2_TMPZn_d2_mol6_a	TMPH_1		10.7	-855.5920739	-2596.3659178	-3042.8571388	-409.0967962	0.0	0.0	28.0	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos5	TMPH_1		-35.7	-855.5920739	-2596.3659178	-3489.3700527	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos3	TMPH_1		-33.7	-855.5920739	-2596.3659178	-3489.3692920	-409.0967962	0.0	0.0	2.0	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos8	TMPH_1		0.2	-855.5920739	-2596.3659178	-3489.3564080	-409.0967962	0.0	0.0	35.8	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos2	TMPH_1		8.8	-855.5920739	-2596.3659178	-3489.3531155	-409.0967962	0.0	0.0	44.5	0.0
0	0	0	0	mol7e	TMPZnCl	5_ZnCl_d5_mol7e	TMPH_1		-17.9	-947.8694988	-2648.1775221	-3186.9570329	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMPZnCl	2_ZnCl_d2_mol7e	TMPH_1		-13.0	-947.8694988	-2648.1775221	-3186.9551800	-409.0967962	0.0	0.0	4.9	0.0

Table TT9. The calculated for reaction free energy values at the CPCM(DMS0)/B3LYP-D3/6-311++G(2d,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = 298.15 K). "E1 and E2" – educt 1 and educt 2, "P1 and P2" – product 1 and product 2.

0	0	0	0	mol7e	TMP7nCl	8 ZnCl d8 molZe	TMPH 1			-10.9	-947 8694988	-2648 1775221	-3186 9543791	-409 0967962	0.0	0.0	7.0	0.0
0	0 0	0	0	mol7e	TMP27n 1	5 TMPZn d5 molZe	TMPH 1			-15.0	-947 8694988	-2596 3659178	-3135 1443211	-409 0967962	0.0	0.0	0.0	0.0
0	0	0	0	molZo	TMP27n_1	5 TMP7n d5 mol7o 36	TMDH 1	-		-14.9	-047 9604099	-2506 3650178	-3135 1442608	-400.0067062	0.0	0.0	0.0	0.0
0	0	0	0	molZo	TMP27n 1	5_TMPZn_d5_mol7e_30				-14.0	047 0604000	2590.3059170	2125 1402071	409.0907902	0.0	0.0	10.0	0.0
0	0	0	0	mol7e		2 TMPZn d2 molZo				-4.2	-947.0094900	-2090.3009178	-3135.1402071	-409.0907902	0.0	0.0	10.0	0.0
0	0	0	0	mol7e	TMP2Zn_1					-3.0	-947.8094988	-2590.3059178	-3135.1399888	-409.0967962	0.0	0.0	11.4	0.0
0	0	0	0	mol7e						-1.3	-947.0094900	-2090.3009178	-3133.1391033	-409.0907902	0.0	0.0	15.7	0.0
0	0	0	0	morre	TMP2Zn_1	5_TMPZn_d5_mol7e_38	TMPH_1			0.9	-947.8694988	-2596.3659178	-3135.1382799	-409.0967962	0.0	0.0	15.9	0.0
0	0	0	0	moi/e	TMP2Zh_1	5_1MPZn_d5_mol/e_1	TMPH_1			3.4	-947.8694988	-2596.3659178	-3135.1373441	-409.0967962	0.0	0.0	18.3	0.0
0	0	0	0	moi/e	TMP2Zh_1	mol15_poss	TMPH_1			-31.6	-947.8694988	-2596.3659178	-3673.9233642	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	moi/e	TMP2Zh_1	mol15_pos2	TMPH_1			-16.7	-947.8694988	-2596.3659178	-3673.9176694	-409.0967962	0.0	0.0	15.0	0.0
0	0	0	0	mol/e	IMP2Zn_1	mol15_pos8	IMPH_1			-11.5	-947.8694988	-2596.3659178	-36/3.915/181	-409.0967962	0.0	0.0	20.1	0.0
0	0	0	0	mol16e_2	IMPMgCI	mol17_pos5_2	IMPH_1			-9.3	-1293.4811947	-1068.9731777	-1953.3611227	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol16e_2	IMPMgCI	mol17_pos5_1	IMPH_1			-9.3	-1293.4811947	-1068.9731777	-1953.3611142	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	mol16e_2	IMPMgCI	mol17_pos8_2	IMPH_1			18.7	-1293.4811947	-1068.9731777	-1953.3504641	-409.0967962	0.0	0.0	28.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMPMgCI	1_LiCI_8MgCI_d8_mol6	TMPH_1		reaction11	-40.8	-1323.5065405	-1068.9731777	-1983.3984783	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMPZnCl	1_LiCI_8ZnCI_d8_mol6_aac	TMPH_1		reaction12	-28.3	-1323.5065405	-2648.1775221	-3562.5980593	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol6_a	TMPH_1		reaction13	-17.3	-1323.5065405	-2596.3659178	-3510.7822417	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1		reaction14	-39.3	-1323.5065405	-2596.3659178	-4425.2003870	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMPZnCl	1_LiCl_2_ZnCl_d2_mol7e	TMPH_1		reaction15	-43.7	-1415.7817642	-2648.1775221	-3654.8791290	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_36	TMPH_1		reaction16	-17.1	-1415.7817642	-2596.3659178	-3603.0573859	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_15	TMPH_1		reaction17	-64.9	-1415.7817642	-2596.3659178	-4609.7605802	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1		reaction18	-54.4	-1761.3908362	-1068.9731777	-2421.2879207	-409.0967962	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCI_8MgCI_d8_mol6	TMPH_1			-40.8	-1323.5065405	-1068.9731777	-1983.3984783	-409.0967962	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCI_3MgCI_d3_mol6	TMPH_1			-17.6	-1323.5065405	-1068.9731777	-1983.3896387	-409.0967962	0.0	0.0	23.2	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCI_5MgCI_d5_mol6	TMPH_1			4.9	-1323.5065405	-1068.9731777	-1983.3810596	-409.0967962	0.0	0.0	45.7	0.0
				1 LiCl mol6 1	TMPMqCI	1 LiCl 2MgCl d2 mol6	TMPH 1			7.9	-1323.5065405	-1068.9731777	-1983.3799045	-409.0967962	0.0	0.0	48.8	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 8ZnCl d8 mol6 aac	TMPH 1			-28.3	-1323,5065405	-2648.1775221	-3562,5980593	-409.0967962	0.0	0.0	0.0	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 2ZnCl d2 mol6 aag	TMPH 1			-27.7	-1323.5065405	-2648.1775221	-3562.5978134	-409.0967962	0.0	0.0	0.6	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 3ZnCl d3 mol6 aap	TMPH 1			-25.3	-1323,5065405	-2648.1775221	-3562,5969118	-409.0967962	0.0	0.0	3.0	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 5ZnCl d5 mol6 aae	TMPH 1			-1.9	-1323.5065405	-2648,1775221	-3562,5879810	-409.0967962	0.0	0.0	26.5	0.0
				1 LiCl mol6 1	TMP2Zn 1	1 LiCl 5TMPZn d5 mol6 a	TMPH 1			-17.3	-1323.5065405	-2596.3659178	-3510,7822417	-409.0967962	0.0	0.0	0.0	0.0
				1 LiCL mol6 1	TMP27n 1	1 LiCl 5TMPZn d5 mol6 b	TMPH 1			-15.6	-1323 5065405	-2596 3659178	-3510 7816221	-409 0967962	0.0	0.0	1.6	0.0
				1 LiCL mol6 1	TMP27n 1	1 LiCL 3TMPZn d3 mol6 a	TMPH 1			-14.3	-1323 5065405	-2596 3659178	-3510 7811169	-409 0967962	0.0	0.0	3.0	0.0
-				1 LiCL mol6 1	TMP27n_1	1 LiCL 3TMPZn d3 mol6 b	TMPH 1			-13.7	-1323 5065405	-2596 3659178	-3510 7808722	-409 0967962	0.0	0.0	3.6	0.0
				1 LiCL mol6 1	TMP27n_1	1 LiCL 2TMPZn d2 mol6 c	TMPH 1			-2.2	-1323 5065405	-2596 3659178	-3510 776/818	-400.0007002	0.0	0.0	15.1	0.0
				1 LiCL mol6 1	TMP27n 1	1 LiCl 8TMPZn d8 mol6 c	TMPH 1			6.4	-1323 5065405	-2596 3659178	-3510 7732410	-409.0907902	0.0	0.0	23.6	0.0
					TMP27n 1	1 LiCL mol14 pos3	TMPH 1			-30.3	-1323 5065405	-2596 3659178	-4425 2003870	-409.0907902	0.0	0.0	20.0	0.0
				1_LiCl_mol6_1	TMP27n 1	1 LiCL mol14 pos5	TMDH 1			-34.6	-1323 5065405	-2506 3650178	-4425 1085875	-409.0907902	0.0	0.0	4.7	0.0
-					TMP27n 1	1 LiCL mol14 pos2 5				-34.0	1222 5065405	2590.3059170	4425.1905075	409.0907902	0.0	0.0	4.7	0.0
					TMP2Zn_1	1_LICI_III0I14_p052_5				-33.7	-1323.5005405	-2596.3059178	-4423.1962302	-409.0907902	0.0	0.0	0.0	0.0
	-			1_LICI_III0I0_1						-30.1	-1323.3003403	-2090.3009176	-4423.1906034	-409.0907902	0.0	0.0	9.3	0.0
				1_LICI_mol/e	TMPZnCi		TMPH_1			-43.7	-1415./81/642	-2048.1775221	-3054.8791290	-409.0967962	0.0	0.0	0.0	0.0
										-33.1	-1410./01/042	-2040.1775221	-3034.8/3341/	-409.0967962	0.0	0.0	9.9	0.0
										-19.4	-1415./81/642	-2040.1//5221	-3034.0098/8/	-409.0967962	0.0	0.0	24.3	0.0
					TMD27= 4					-17.1	-1410./01/042	-2090.3009178	-3003.0573659	-409.0967962	0.0	0.0	0.0	0.0
<u> </u>					TMP2Zn_1		TMPH_1			-10.8	-1415./81/642	-2090.3009178	-3003.0572809	-409.0967962	0.0	0.0	0.3	0.0
				1_LICI_mol/e	IMP2Zn_1	1_LICI_21MPZn_d2_mol7e	IMPH_1			-12.3	-1415./81/642	-2596.3659178	-3603.0555597	-409.0967962	0.0	0.0	4.8	0.0
				1_LICI_mol/e	IMP2Zn_1	1_LICI_51MPZn_d5_mol7e_40	IMPH_1			-4.9	-1415./81/642	-2596.3659178	-3603.0527634	-409.0967962	0.0	0.0	12.1	0.0
				1_LICI_mol/e	IMP2Zn_1	1_LICI_21MPZn_d2_mol7e_26	IMPH_1			-4.6	-1415./81/642	-2596.3659178	-3603.0526470	-409.0967962	0.0	0.0	12.4	0.0
				1_LICI_mol7e	IMP2Zn_1	1_LICI_21MPZn_d2_mol7e_31	IMPH_1			-4.6	-1415.7817642	-2596.3659178	-3603.0526439	-409.0967962	0.0	0.0	12.5	0.0
				1_LICI_mol7e	IMP2Zn_1	1_LICI_21MPZn_d2_mol7e_28	IMPH_1			-1.1	-1415.7817642	-2596.3659178	-3603.0513227	-409.0967962	0.0	0.0	15.9	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_38	TMPH_1			-0.1	-1415.7817642	-2596.3659178	-3603.0509327	-409.0967962	0.0	0.0	16.9	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol7e_1	TMPH_1			0.4	-1415.7817642	-2596.3659178	-3603.0507159	-409.0967962	0.0	0.0	17.5	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_8TMPZn_d8_mol7e_20	TMPH_1			6.1	-1415.7817642	-2596.3659178	-3603.0485780	-409.0967962	0.0	0.0	23.1	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_15	TMPH_1			-64.9	-1415.7817642	-2596.3659178	-4609.7605802	-409.0967962	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos8_19	TMPH_1			-62.9	-1415.7817642	-2596.3659178	-4609.7598132	-409.0967962	0.0	0.0	2.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_17	TMPH_1			-54.7	-1415.7817642	-2596.3659178	-4609.7566797	-409.0967962	0.0	0.0	10.2	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_13	TMPH_1			-45.8	-1415.7817642	-2596.3659178	-4609.7532802	-409.0967962	0.0	0.0	19.2	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos8	TMPH_1			-45.0	-1415.7817642	-2596.3659178	-4609.7529765	-409.0967962	0.0	0.0	20.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_12	TMPH_1			-41.0	-1415.7817642	-2596.3659178	-4609.7514862	-409.0967962	0.0	0.0	23.9	0.0
				1 LiCl mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_1	TMPH_1			-41.0	-1415.7817642	-2596.3659178	-4609.7514846	-409.0967962	0.0	0.0	23.9	0.0

				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2	TMPH_1		-41.0	-1415.7817642	-2596.3659178	-4609.7514845	-409.0967962	0.0	0.0	23.9	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl mol15 pos5	TMPH 1		-33.7	-1415.7817642	-2596.3659178	-4609.7486857	-409.0967962	0.0	0.0	31.2	0.0
				1 LiCl mol16e 2	TMPMqCI	1 LiCl mol17 pos8 2	TMPH 1		-54.4	-1761.3908362	-1068.9731777	-2421.2879207	-409.0967962	0.0	0.0	0.0	0.0
				1 LiCl mol16e 2	TMPMqCI	1 LiCl mol17 pos8 1	TMPH 1		-54.0	-1761.3908362	-1068.9731777	-2421.2877997	-409.0967962	0.0	0.0	0.3	0.0
				1 LiCl mol16e 2	TMPMaCl	1 LiCl mol17 pos5 1	TMPH 1		-14.2	-1761.3908362	-1068.9731777	-2421.2726326	-409.0967962	0.0	0.0	40.1	0.0
0	0	0	0	LiCl mol6 aan	TMPMaCl	MaCILiCI d5 mol6	TMPH 1	reaction21	-45.1	-1323.5063098	-1068.9731777	-1983.3998594	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	LiCI mol6 aan	TMPZnCI	LiCl 8ZnCl d8 mol6 aac2	TMPH 1	reaction22	-30.5	-1323.5063098	-2648.1775221	-3562.5986478	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	LiCI mol6 aan	TMP2Zn 1	LiCI 3TMPZn d3 mol6 a	TMPH 1	reaction23	-20.9	-1323.5063098	-2596.3659178	-3510.7833962	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	LiCl mol6 aan	TMP2Zn 1	LiCl mol14 pos8 38	TMPH 1	reaction24	-51.6	-1323.5063098	-2596.3659178	-4425.2045904	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCl mol7e	TMPZnCl	1 LiCl 2 ZnCl d2 mol7e	TMPH 1	reaction25	-43.7	-1415.7817642	-2648.1775221	-3654.8791290	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 36	TMPH 1	reaction26	-17.1	-1415.7817642	-2596.3659178	-3603.0573859	-409.0967962	0.0	0.0	0.0	0.0
0	0	Õ	0	1 LiCl mol7e	TMP2Zn 1	1 LiCl mol15 pos2 15	TMPH 1	reaction27	-64.9	-1415.7817642	-2596.3659178	-4609.7605802	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCl mol16e 2	TMPMaCI	1 LiCl mol17 pos8 2	TMPH 1	reaction28	-54.4	-1761.3908362	-1068.9731777	-2421.2879207	-409.0967962	0.0	0.0	0.0	0.0
				LiCl mol6 aan	TMPMaCl	MaCILiCI d5 mol6	TMPH 1		-45.1	-1323.5063098	-1068.9731777	-1983.3998594	-409.0967962	0.0	0.0	0.0	0.0
				LiCl mol6 aan	TMPMaCl	1 LiCl 8MgCl d8 mol6	TMPH 1		-41.4	-1323.5063098	-1068.9731777	-1983.3984783	-409.0967962	0.0	0.0	3.6	0.0
				LiCl mol6 aan	TMPMaCl	MaCILiCI d3 mol6	TMPH 1		-40.6	-1323.5063098	-1068.9731777	-1983.3981676	-409.0967962	0.0	0.0	4.4	0.0
				LiCl mol6 aan	TMPMaCl	MaCILiCI d5 mol6 1	TMPH 1		-26.0	-1323.5063098	-1068.9731777	-1983.3925752	-409.0967962	0.0	0.0	19.1	0.0
				LiCl mol6 aan	TMPMaCl	1 LiCl 3MgCl d3 mol6	TMPH 1		-18.2	-1323.5063098	-1068.9731777	-1983.3896387	-409.0967962	0.0	0.0	26.8	0.0
				LiCl mol6 aan	TMPMaCI	MaCILiCI d8 mol6 1	TMPH 1		-16.6	-1323,5063098	-1068,9731777	-1983,3890274	-409.0967962	0.0	0.0	28.4	0.0
				LiCl mol6 aan	TMPMaCI	MaCILiCI d8 mol6	TMPH 1		-4.6	-1323,5063098	-1068.9731777	-1983.3844474	-409.0967962	0.0	0.0	40.5	0.0
				LiCl mol6 aan	TMPMqCI	1 LiCl 5MgCl d5 mol6	TMPH 1		4.3	-1323.5063098	-1068.9731777	-1983.3810596	-409.0967962	0.0	0.0	49.4	0.0
				LiCl mol6 aan	TMPMqCI	1 LiCl 2MgCl d2 mol6	TMPH 1		7.3	-1323.5063098	-1068.9731777	-1983.3799045	-409.0967962	0.0	0.0	52.4	0.0
				LiCI mol6 aan	TMPZnCl	LiCl 8ZnCl d8 mol6 aac2	TMPH 1		-30.5	-1323.5063098	-2648.1775221	-3562.5986478	-409.0967962	0.0	0.0	0.0	0.0
				LiCI_mol6_aan	TMPZnCI	LiCI_5ZnCI_d5_mol6_aae	TMPH_1		-29.3	-1323.5063098	-2648.1775221	-3562.5981844	-409.0967962	0.0	0.0	1.2	0.0
				LiCI_mol6_aan	TMPZnCI	1_LiCI_8ZnCl_d8_mol6_aac	TMPH_1		-28.9	-1323.5063098	-2648.1775221	-3562.5980593	-409.0967962	0.0	0.0	1.5	0.0
				LiCI_mol6_aan	TMPZnCI	1_LiCl_2ZnCl_d2_mol6_aaq	TMPH_1		-28.3	-1323.5063098	-2648.1775221	-3562.5978134	-409.0967962	0.0	0.0	2.2	0.0
				LiCI_mol6_aan	TMPZnCI	LiCl_3ZnCl_d3_mol6_aap	TMPH_1		-28.2	-1323.5063098	-2648.1775221	-3562.5977624	-409.0967962	0.0	0.0	2.3	0.0
				LiCl_mol6_aan	TMPZnCI	1_LiCl_3ZnCl_d3_mol6_aap	TMPH_1		-25.9	-1323.5063098	-2648.1775221	-3562.5969118	-409.0967962	0.0	0.0	4.6	0.0
				LiCI_mol6_aan	TMP2Zn_1	LiCl_3TMPZn_d3_mol6_a	TMPH_1		-20.9	-1323.5063098	-2596.3659178	-3510.7833962	-409.0967962	0.0	0.0	0.0	0.0
				LiCI_mol6_aan	TMP2Zn_1	LiCl_3TMPZn_d3_mol6_b	TMPH_1		-16.2	-1323.5063098	-2596.3659178	-3510.7816201	-409.0967962	0.0	0.0	4.7	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCI_5TMPZn_d5_mol6_aa	TMPH_1		-20.7	-1323.5063098	-2596.3659178	-3510.7833030	-409.0967962	0.0	0.0	0.2	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol6_a	TMPH_1		-17.9	-1323.5063098	-2596.3659178	-3510.7822417	-409.0967962	0.0	0.0	3.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol6_b	TMPH_1		-16.3	-1323.5063098	-2596.3659178	-3510.7816221	-409.0967962	0.0	0.0	4.7	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCI_3TMPZn_d3_mol6_a	TMPH_1		-14.9	-1323.5063098	-2596.3659178	-3510.7811169	-409.0967962	0.0	0.0	6.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCI_3TMPZn_d3_mol6_b	TMPH_1		-14.3	-1323.5063098	-2596.3659178	-3510.7808722	-409.0967962	0.0	0.0	6.6	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCI_2TMPZn_d2_mol6_c	TMPH_1		-2.8	-1323.5063098	-2596.3659178	-3510.7764818	-409.0967962	0.0	0.0	18.2	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCI_8TMPZn_d8_mol6_a	TMPH_1		3.4	-1323.5063098	-2596.3659178	-3510.7741347	-409.0967962	0.0	0.0	24.3	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCI_mol14_pos8_38	TMPH_1		-51.6	-1323.5063098	-2596.3659178	-4425.2045904	-409.0967962	0.0	0.0	0.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2_5	TMPH_1		-34.9	-1323.5063098	-2596.3659178	-4425.1982362	-409.0967962	0.0	0.0	16.7	0.0
				LiCI_mol6_aan	IMP2Zn_1	1_LiCl_mol14_pos3	IMPH_1		-40.5	-1323.5063098	-2596.3659178	-4425.2003870	-409.0967962	0.0	0.0	11.0	0.0
				LiCI_mol6_aan	IMP2Zn_1	1_LiCl_mol14_pos8	IMPH_1		-31.3	-1323.5063098	-2596.3659178	-4425.1968634	-409.0967962	0.0	0.0	20.3	0.0
				LICI_mol6_aan	IMP2Zn_1	1_LICI_mol14_pos5	IMPH_1		-35.8	-1323.5063098	-2596.3659178	-4425.1985875	-409.0967962	0.0	0.0	15.8	0.0
				LICI_mol6_aan	IMP2Zn_1	1_LICI_mol14_pos2	IMPH_1		-28.4	-1323.5063098	-2596.3659178	-4425.1957500	-409.0967962	0.0	0.0	23.2	0.0
				LICI_MOI6_aan	TMP2Zn_1	1_LIU_MOI14_POS2_8	TMPH_1		-22.3	-1323.5063098	-2596.36591/8	-4425.1934524	-409.0967962	0.0	0.0	29.2	0.0
<u> </u>					TMDZ=0				-22.3	-1323.3063098	-2390.30591/8	-4425.1934528	-409.0967962	0.0	0.0	29.2	0.0
				I_LICI_MOI/e			TMPH_1		-43.7	-1415./81/642	-2048.1775221	-3054.8791290	-409.0967962	0.0	0.0	0.0	0.0
				1_LICI_MOI7e	TMPZnCi				-33.7	-1415./81/042	-2048.1775221	-3034.8733417	-409.0967962	0.0	0.0	9.9	0.0
					TMPZnCl				-22.4	-1410./01/042	-2040.1775221	-3034.07 10311	-409.0907902	0.0	0.0	21.3	0.0
					TMPZnCl				-23.0	-1415.7017042	-2649 1775221	-3654 9609797	-409.0907902	0.0	0.0	20.1	0.0
					TMPZnCl	LiCL 8 ZnCL d8 molZo	TMPH 1		-19.4	-1/15 78176/2	-2040.1775221	-365/ 8703629	-409.0907902	0.0	0.0	24.0	0.0
					TMP27n 1	1 LiCL 5TMPZn d5 molZe 36	TMPH 1		-17 1	-1415 7817642	-2596 3659178	-3603 0573850	-409 0967962	0.0	0.0	0.0	0.0
				1 LiCL mol7e	TMP27n 1	1 LiCL 5TMPZn d5 molZe	TMPH 1		-16.8	-1415 7817642	-2596 3659178	-3603 0572809	-409 0967962	0.0	0.0	0.3	0.0
				1 LiCL mol7e	TMP27n 1	1 LiCl 2TMPZn d2 molZe	TMPH 1		-12.3	-1415 7817642	-2596 3659178	-3603 0555597	-409 0967962	0.0	0.0	4.8	0.0
				1 LiCL mol7e	TMP27n 1	LiCL 2TMPZn d2 molZe	TMPH 1		-10.2	-1415 7817642	-2596 3659178	-3603 0547612	-409 0967962	0.0	0.0	6.9	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 40	TMPH 1		-4.9	-1415,7817642	-2596.3659178	-3603.0527634	-409.0967962	0.0	0.0	12.1	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e 26	TMPH 1		-4.6	-1415.7817642	-2596.3659178	-3603.0526470	-409.0967962	0.0	0.0	12.4	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e 31	TMPH 1		-4.6	-1415.7817642	-2596.3659178	-3603.0526439	-409.0967962	0.0	0.0	12.5	0.0
				1 LiCl mol7e	TMP2Zn 1	LiCI 5TMPZn d5 mol7e 40	TMPH 1		-3.1	-1415.7817642	-2596.3659178	-3603.0520753	-409.0967962	0.0	0.0	13.9	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_28	TMPH_1		-1.1	-1415.7817642	-2596.3659178	-3603.0513227	-409.0967962	0.0	0.0	15.9	0.0

				1 LiCl mol7e	TMP27n 1	1 LiCl 5TMPZn d5 mol7e 38	TMPH 1	1		-0.1	-1415 7817642	-2596 3659178	-3603 0509327	-409 0967962	0.0	0.0	16.9	0.0
				1 LiCL mol7e	TMP27n 1	1 LiCL STMPZn d5 molZe 1	TMPH 1			0.4	-1415 7817642	-2596 3659178	-3603 0507159	-409.0967962	0.0	0.0	17.5	0.0
				1 LiCL mol7e	TMP27n_1	LiCL 2TMPZn d2 molZe 28	TMPH 1			2.9	-1/15 78176/2	-2596 3659178	-3603 0/070/5	-400.0007002	0.0	0.0	10.0	0.0
				1_LiCl_mol7o	TMP27n 1	LiCL 5TMPZn d5 molZo 38	TMPH 1			4.3	-1415 7917642	-2506 3650178	-3603.0497570	-409.0907902	0.0	0.0	21.2	0.0
					TMP27n 1	1 LiCL STMPZn_d8_molZo_20		-		4.5	-1415.7817642	-2506 3650178	-3603.0492370	-409.0907902	0.0	0.0	21.3	0.0
				1_LICI_mol7o	TMP27n 1	LiCL 5TMPZn d5 molZo 36				6.5	-1415.7817642	-2506 3650178	-3603.0483007	-409.0907902	0.0	0.0	23.1	0.0
		-								0.5	-1413.7017042	-2090.3009178	-3003.0463997	-409.0907902	0.0	0.0	23.0	0.0
		-				1_LICI_III0I15_p052_15				-04.9	-1413.7017042	-2090.3009178	-4009.7003602	-409.0907902	0.0	0.0	0.0	0.0
				1_LICI_mol7e	TMP2Zn_1			_		-62.9	-1415./81/042	-2596.3659178	-4609.7598132	-409.0967962	0.0	0.0	2.0	0.0
					TMP2Zn_1			_		-50.8	-1415.7817042	-2596.3659178	-4609.7575029	-409.0967962	0.0	0.0	0.1	0.0
				1_LICI_moi/e	TMP2Zh_1	1_LICI_mol15_pos2_17	TMPH_1	-		-54.7	-1415.7817642	-2596.3659178	-4609.7566797	-409.0967962	0.0	0.0	10.2	0.0
		-	-	1_LICI_moi/e	TMP2Zh_1	1_LICI_mol15_pos2_13	TMPH_1			-45.8	-1415.7817642	-2596.3659178	-4609.7532802	-409.0967962	0.0	0.0	19.2	0.0
		-	-		TMP2Zn_1					-45.0	-1415.7817642	-2596.3659178	-4609.7529765	-409.0967962	0.0	0.0	20.0	0.0
		-	-	1_LICI_moi/e	TMP2Zh_1	1_LICI_M0I15_pos2_12	TMPH_1			-41.0	-1415.7817642	-2596.3659178	-4609.7514862	-409.0967962	0.0	0.0	23.9	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_moI15_pos5	IMPH_1	_		-33.7	-1415.7817642	-2596.3659178	-4609.7486857	-409.0967962	0.0	0.0	31.2	0.0
				1_LiCl_mol7e	IMP2Zn_1	LiCI_mol15_pos2_15	IMPH_1			-22.6	-1415.7817642	-2596.3659178	-4609.7444432	-409.0967962	0.0	0.0	42.4	0.0
				1_LiCl_mol16e_2	TMPMgCl	1_LiCl_mol17_pos8_2	TMPH_1			-54.4	-1761.3908362	-1068.9731777	-2421.2879207	-409.0967962	0.0	0.0	0.0	0.0
				1_LiCl_mol16e_2	IMPMgCI	1_LiCl_mol17_pos8_1	IMPH_1			-54.0	-1761.3908362	-1068.9731777	-2421.2877997	-409.0967962	0.0	0.0	0.3	0.0
				1_LiCl_mol16e_2	TMPMgCl	LiCI_mol17_pos5_22	TMPH_1			-51.5	-1761.3908362	-1068.9731777	-2421.2868189	-409.0967962	0.0	0.0	2.9	0.0
0	0	0	0	MgCl2_mol6_aac	TMPZnCl	1_MgCl2_3ZnCl_d3_mol6_aap	TMPH_1		reaction32	-26.5	-1976.4042295	-2648.1775221	-4215.4950591	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_b	TMPH_1		reaction33	-19.6	-1976.4042295	-2596.3659178	-4163.6808048	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos3	TMPH_1		reaction34	-45.0	-1976.4042295	-2596.3659178	-5730.9979115	-409.0967962	0.0	0.0	0.0	0.0
0	0	0	0	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_7	TMPH_1		reaction37	-69.3	-2068.6769938	-2596.3659178	-5915.5527261	-409.0967962	0.0	0.0	0.0	0.0
				MgCl2_mol6_aac	TMPZnCl	1_MgCl2_3ZnCl_d3_mol6_aap	TMPH_1			-26.5	-1976.4042295	-2648.1775221	-4215.4950591	-409.0967962	0.0	0.0	0.0	0.0
				MgCl2_mol6_aac	TMPZnCl	1_MgCl2_5ZnCl_d5_mol6_aae	TMPH_1			-20.9	-1976.4042295	-2648.1775221	-4215.4929096	-409.0967962	0.0	0.0	5.6	0.0
				MgCl2_mol6_aac	TMPZnCl	1_MgCl2_2ZnCl_d2_mol6_aaq	TMPH_1			-14.6	-1976.4042295	-2648.1775221	-4215.4905129	-409.0967962	0.0	0.0	11.9	0.0
				MgCl2_mol6_aac	TMPZnCl	1_MgCl2_8ZnCl_d8_mol6_aac2	TMPH_1			-10.7	-1976.4042295	-2648.1775221	-4215.4890386	-409.0967962	0.0	0.0	15.8	0.0
				MgCl2_mol6_aac	TMPZnCl	MgCl2_8ZnCl_d8_mol6_aac23	TMPH_1			4.4	-1976.4042295	-2648.1775221	-4215.4832755	-409.0967962	0.0	0.0	30.9	0.0
				MgCl2_mol6_aac	TMPZnCl	1_MgCl2_3ZnCl_d3_mol6_aap2	TMPH_1			13.2	-1976.4042295	-2648.1775221	-4215.4799259	-409.0967962	0.0	0.0	39.7	0.0
				MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_b	TMPH_1			-19.6	-1976.4042295	-2596.3659178	-4163.6808048	-409.0967962	0.0	0.0	0.0	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MgCl2 5TMPZn d5 mol6 a	TMPH 1			-18.6	-1976.4042295	-2596.3659178	-4163.6804378	-409.0967962	0.0	0.0	1.0	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MgCl2 3TMPZn d3 mol6 a	TMPH 1			-18.2	-1976.4042295	-2596.3659178	-4163.6803011	-409.0967962	0.0	0.0	1.3	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 3TMPZn d3 mol6 b	TMPH 1			-17.7	-1976.4042295	-2596.3659178	-4163.6800971	-409.0967962	0.0	0.0	1.9	0.0
				MgCl2 mol6 aac	TMP2Zn 1	MgCl2 3TMPZn d3 mol6 a	TMPH 1			-4.6	-1976.4042295	-2596.3659178	-4163.6751080	-409.0967962	0.0	0.0	15.0	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 2TMPZn d2 mol6 c	TMPH 1			-0.2	-1976.4042295	-2596.3659178	-4163.6734198	-409.0967962	0.0	0.0	19.4	0.0
				MgCl2 mol6 aac	TMP2Zn_1	MgCl2 5TMPZn d5 mol6 aa	TMPH 1			0.3	-1976.4042295	-2596.3659178	-4163.6732525	-409.0967962	0.0	0.0	19.8	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 2TMPZn d2 mol6 b	TMPH 1			9.0	-1976.4042295	-2596.3659178	-4163.6699406	-409.0967962	0.0	0.0	28.5	0.0
				MgCl2 mol6 aac	TMP2Zn_1	1 MgCl2 8TMPZn d8 mol6 a2	TMPH 1			13.3	-1976.4042295	-2596.3659178	-4163.6682776	-409.0967962	0.0	0.0	32.9	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MgCl2 mol14 pos3	TMPH 1			-45.0	-1976.4042295	-2596.3659178	-5730.9979115	-409.0967962	0.0	0.0	0.0	0.0
				MgCl2 mol6 aac	TMP27n 1	1 MaCl2 mol14 pos2 27	TMPH 1			-42.1	-1976 4042295	-2596 3659178	-5730 9968147	-409 0967962	0.0	0.0	2.9	0.0
				MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 mol14 pos5	TMPH 1	1		-38.9	-1976.4042295	-2596.3659178	-5730,9956150	-409.0967962	0.0	0.0	6.0	0.0
				MgCl2 mol6 aac	TMP27n 1	1 MgCl2 mol14 pos2	TMPH 1			-16.3	-1976 4042295	-2596 3659178	-5730 9869901	-409 0967962	0.0	0.0	28.7	0.0
				MgCl2_mol6_aac	TMP27n 1	1 MgCl2 mol14 pos5 29	TMPH 1	1		-6.4	-1976 4042295	-2596 3659178	-5730 9832072	-409 0967962	0.0	0.0	38.6	0.0
				MgCl2_mol6_aac	TMP27n_1	1 MgCl2_mol14_pos5_31	TMPH 1			8.7	-1976 4042295	-2596 3659178	-5730 9774583	-409.0967962	0.0	0.0	53.7	0.0
				MgCl2_mol6_aac	TMP27n 1	1 MgCl2_mol14_pos8	TMPH 1			11.0	-1976 4042295	-2596 3659178	-5730 9765892	-409.0967962	0.0	0.0	56.0	0.0
				MaCl2 mol6 aac	TMP27n 1	1 MgCl2 mol14 pos8 1	TMPH 1	1		17.6	-1976 4042295	-2596 3659178	-5730 9740868	-409 0967962	0.0	0.0	62.6	0.0
				1 MaCl2 molZo	TMP27n 1	1 MgCl2 mol15 pos2 7	TMPH 1	+		-60.3	-2068 6760029	-2506 3650179	-5015 5527261	-409.0907902	0.0	0.0	02.0	0.0
				1 MgCl2_mol7o	TMP27n 1	1 MaCl2 mol15 pos2_7	TMPH 1	+		-55.2	-2068 6760039	-2506 3650179	-5015 5/73257	-409.0907902	0.0	0.0	14.2	0.0
					TMP27n 1	1 MaCl2 mol15 pos5	TMPH 1	+		-34.6	-2000.0703330	-2506 3650179	-5015 5305000	-409.0907902	0.0	0.0	34.7	0.0
				1 MgCl2_mol7c	TMP27n 4	1 MgCl2_mol15_pos2_0		+		-10	-2000.0703330	-2506 3650170	-5015 5291729	-400.0007062	0.0	0.0	64.5	0.0
				1 MgCl2_mol7c	TMP27n 4	1 MgCl2_mol15_pos2_9		+		-4.3	-2000.0703330	-2506 3650170	-5015 52/5912	-400.0007062	0.0	0.0	72.0	0.0
					TMD275 4			+		4.0	-2000.0709930	-2390.3039170	-0310.0240010	-409.0907962	0.0	0.0	13.9	0.0
				1_WgCl2_Mol7c	TMP27n 4	1 MgCl2 mol15 pos2 9		+		19.Z	-2000.0709930	-2506 3650170	-5915.5169952	-409.0907962	0.0	0.0	00.0	0.0
				1_WgCl2_Mol7e		1 MaCl2 mol15 pos5 40		+		04.6	-2000.0703930	2506 2660170	-0310.0071080 E01E 4041070	400.0067002	0.0	0.0	152.0	0.0
				i_ivigCiz_mol/e	INVIPZZII_1	i_ivig⊂i∠_morio_poso_10		1		04.0	-2000.0709938	-2090.3009178	-5915.4941073	-409.0907962	0.0	0.0	103.9	0.0

	cha	rae				filename			AGsol		Gs	ol			Δ	G ^{sol}	
E1	E2	P1	P2	E1	E2	P1	P2		kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
0	0	0	0	mol6	TMPMaCl	3MgCl d3 mol6 aad	TMPH 1	reaction1	-2.0	-855 5906667	-1068 9684886	-1515 4634893	-409 0964418	0.0	0.0	0.0	0.0
0	0	Õ	0	mol6	TMPZnCl	3ZnCl d3 mol6 aap	TMPH 1	reaction2	-16.2	-855,5906667	-2648.1741618	-3094.6745648	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn 1	5 TMPZn d5 mol6 b	TMPH 1	reaction3	-14.1	-855,5906667	-2596.3642905	-3042,8638942	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn 1	mol14 pos5	TMPH 1	reaction4	-27.3	-855.5906667	-2596.3642905	-3489.3631361	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMPZnCI	5 ZnCl d5 mol7e	TMPH 1	reaction5	-14.1	-947.8679064	-2648.1741618	-3186.9510014	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	Ő	mol7e	TMP2Zn 1	5TMPZn d5 mol7e	TMPH 1	reaction6	-13.7	-947.8679064	-2596.3642905	-3135.1409695	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn 1	mol15 pos5	TMPH 1	reaction7	-29.2	-947.8679064	-2596.3642905	-3673.9183275	-409.0964418	0.0	0.0	0.0	0.0
0	0	0	0	mol16e 1	TMPMaCl	mol17 pos5 2	TMPH 1	reaction8	-9.1	-1293.4795050	-1068.9684886	-1953.3550029	-409.0964418	0.6	0.0	0.0	0.0
-	-	-	-	mol6	TMPMaCI	3MgCl d3 mol6 aad	TMPH 1		-2.0	-855,5906667	-1068.9684886	-1515.4634893	-409.0964418	0.0	0.0	0.0	0.0
				mol6	TMPMaCI	5MgCl d5 mol6 aaa	TMPH 1		9.8	-855,5906667	-1068.9684886	-1515.4589754	-409.0964418	0.0	0.0	11.9	0.0
				mol6	TMPMaCI	8MgCl d8 mol6 aar	TMPH 1		19.7	-855,5906667	-1068,9684886	-1515.4552258	-409.0964418	0.0	0.0	21.7	0.0
				mol6	TMPMaCI	2MgCl d2 mol6 aaa	TMPH 1		39.4	-855,5906667	-1068,9684886	-1515.4477007	-409.0964418	0.0	0.0	41.5	0.0
				mol6	TMPZnCI	3ZnCl d3 mol6 aap	TMPH 1		-16.2	-855.5906667	-2648.1741618	-3094.6745648	-409.0964418	0.0	0.0	0.0	0.0
				mol6	TMPZnCI	5ZnCl d5 mol6 aae	TMPH 1		-14.0	-855,5906667	-2648.1741618	-3094.6737292	-409.0964418	0.0	0.0	2.2	0.0
				mol6	TMPZnCI	8ZnCl d8 mol6 aac	TMPH 1		-2.9	-855,5906667	-2648.1741618	-3094.6694819	-409.0964418	0.0	0.0	13.3	0.0
				mol6	TMPZnCl	2ZnCl d2 mol6 aag	TMPH 1		1.8	-855,5906667	-2648,1741618	-3094.6676967	-409.0964418	0.0	0.0	18.0	0.0
				mol6	TMP2Zn 1	5 TMPZn d5 mol6 b	TMPH 1		-14.1	-855.5906667	-2596.3642905	-3042.8638942	-409.0964418	0.0	0.0	0.0	0.0
				mol6	TMP2Zn 1	5 TMPZn d5 mol6 a	TMPH 1		-13.4	-855,5906667	-2596.3642905	-3042.8636103	-409.0964418	0.0	0.0	0.7	0.0
				mol6	TMP2Zn 1	3 TMPZn d3 mol6 b	TMPH 1		-10.3	-855,5906667	-2596.3642905	-3042.8624404	-409.0964418	0.0	0.0	3.8	0.0
				mol6	TMP2Zn 1	8 TMPZn d8 mol6 a	TMPH 1		6.0	-855,5906667	-2596.3642905	-3042.8562211	-409.0964418	0.0	0.0	20.1	0.0
				mol6	TMP2Zn 1	2 TMPZn d2 mol6 a	TMPH 1		12.2	-855,5906667	-2596.3642905	-3042.8538611	-409.0964418	0.0	0.0	26.3	0.0
				mol6	TMP2Zn 1	mol14 pos5	TMPH 1		-27.3	-855,5906667	-2596.3642905	-3489.3631361	-409.0964418	0.0	0.0	0.0	0.0
				mol6	TMP2Zn 1	mol14 pos3	TMPH 1		-23.8	-855,5906667	-2596.3642905	-3489.3618075	-409.0964418	0.0	0.0	3.5	0.0
				mol6	TMP2Zn 1	mol14 pos8	TMPH 1		4.6	-855,5906667	-2596.3642905	-3489.3509768	-409.0964418	0.0	0.0	31.9	0.0
				mol6	TMP2Zn 1	mol14 pos2	TMPH 1		14.0	-855.5906667	-2596.3642905	-3489.3474106	-409.0964418	0.0	0.0	41.3	0.0
				mol7e	TMPZnCI	5 ZnCl d5 mol7e	TMPH 1		-14.1	-947.8679064	-2648.1741618	-3186.9510014	-409.0964418	0.0	0.0	0.0	0.0
				mol7e	TMPZnCI	2 ZnCl d2 mol7e	TMPH 1		-7.7	-947.8679064	-2648.1741618	-3186.9485502	-409.0964418	0.0	0.0	6.4	0.0
				mol7e	TMPZnCI	8 ZnCl d8 mol7e	TMPH 1		-6.2	-947.8679064	-2648.1741618	-3186.9479997	-409.0964418	0.0	0.0	7.9	0.0
				mol7e	TMP2Zn 1	5TMPZn d5 mol7e	TMPH 1		-13.7	-947.8679064	-2596.3642905	-3135,1409695	-409.0964418	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn 1	2TMPZn d2 mol7e	TMPH 1		-1.4	-947.8679064	-2596.3642905	-3135.1362946	-409.0964418	0.0	0.0	12.3	0.0
				mol7e	TMP2Zn 1	8TMPZn d8 mol7e	TMPH 1		0.3	-947.8679064	-2596.3642905	-3135.1356305	-409.0964418	0.0	0.0	14.0	0.0
				mol7e	TMP2Zn 1	mol15 pos5	TMPH 1		-29.2	-947.8679064	-2596.3642905	-3673.9183275	-409.0964418	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn_1	mol15_pos2	TMPH_1		-8.6	-947.8679064	-2596.3642905	-3673.9104896	-409.0964418	0.0	0.0	20.6	0.0
				mol7e	TMP2Zn_1	mol15_pos8	TMPH_1		-5.1	-947.8679064	-2596.3642905	-3673.9091470	-409.0964418	0.0	0.0	24.1	0.0
				mol16e_1	TMPMgCI	mol17_pos5_2	TMPH_1		-9.1	-1293.4795050	-1068.9684886	-1953.3550029	-409.0964418	0.6	0.0	0.0	0.0
				mol16e_1	TMPMgCl	mol17_pos5_1	TMPH_1		-9.0	-1293.4795050	-1068.9684886	-1953.3549885	-409.0964418	0.6	0.0	0.0	0.0
				mol16e_1	TMPMgCI	mol17_pos8_2	TMPH_1		19.8	-1293.4795050	-1068.9684886	-1953.3439967	-409.0964418	0.6	0.0	28.9	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCI_8MgCI_d8_mol6	TMPH_1	reaction11	-45.2	-1323.5004968	-1068.9684886	-1983.3897488	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPZnCI	1_LiCI_2ZnCI_d2_mol6_aaq	TMPH_1	reaction12	-31.2	-1323.5004968	-2648.1741618	-3562.5901175	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol6_a	TMPH_1	reaction13	-14.4	-1323.5004968	-2596.3642905	-3510.7738375	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos2_5	TMPH_1	reaction14	-47.2	-1323.5004968	-2596.3642905	-4425.1903919	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMPZnCI	1_LiCl_2_ZnCl_d2_mol7e	TMPH_1	reaction15	-44.8	-1415.7751950	-2648.1741618	-3654.8699943	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_36	TMPH_1	reaction16	-15.9	-1415.7751950	-2596.3642905	-3603.0490896	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos8_19	TMPH_1	reaction17	-76.7	-1415.7751950	-2596.3642905	-4609.7510243	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1	reaction18	-57.3	-1761.3845877	-1068.9684886	-2421.2784609	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCl	1_LiCl_8MgCl_d8_mol6	TMPH_1		-45.2	-1323.5004968	-1068.9684886	-1983.3897488	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCl	1_LiCl_3MgCl_d3_mol6	TMPH_1		-7.5	-1323.5004968	-1068.9684886	-1983.3754055	-409.0964418	0.0	0.0	37.7	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCl_5MgCl_d5_mol6	TMPH_1		7.7	-1323.5004968	-1068.9684886	-1983.3696212	-409.0964418	0.0	0.0	52.8	0.0
				1_LiCl_mol6_1	TMPMgCl	1_LiCl_2MgCl_d2_mol6	TMPH_1		16.7	-1323.5004968	-1068.9684886	-1983.3661794	-409.0964418	0.0	0.0	61.9	0.0
				1_LiCl_mol6_1	TMPZnCI	1_LiCl_2ZnCl_d2_mol6_aaq	TMPH_1		-31.2	-1323.5004968	-2648.1741618	-3562.5901175	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPZnCI	1_LiCl_8ZnCl_d8_mol6_aac	TMPH_1		-30.4	-1323.5004968	-2648.1741618	-3562.5898125	-409.0964418	0.0	0.0	0.8	0.0
				1_LiCl_mol6_1	TMPZnCI	1_LiCl_3ZnCl_d3_mol6_aap	TMPH_1		-18.4	-1323.5004968	-2648.1741618	-3562.5852067	-409.0964418	0.0	0.0	12.9	0.0
				1_LiCl_mol6_1	TMPZnCI	1_LiCl_5ZnCl_d5_mol6_aae	TMPH_1		1.3	-1323.5004968	-2648.1741618	-3562.5777405	-409.0964418	0.0	0.0	32.5	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol6_a	TMPH_1		-14.4	-1323.5004968	-2596.3642905	-3510.7738375	-409.0964418	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol6_b	TMPH_1		-12.8	-1323.5004968	-2596.3642905	-3510.7732099	-409.0964418	0.0	0.0	1.6	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCI_3TMPZn_d3_mol6_a	TMPH_1		-11.5	-1323.5004968	-2596.3642905	-3510.7727102	-409.0964418	0.0	0.0	3.0	0.0

 Table TT10. The calculated for reaction free energy values at the CPCM(THF)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = 298.15 K).

 "E1 and E2" - educt 1 and educt 2, "P1 and P2" - product 1 and product 2.

			1 LiCl mol6 1	TMP2Zn 1	1 LiCl 3TMPZn d3 mol6 b	TMPH 1			-10.7	-1323.5004968	-2596.3642905	-3510.7724379	-409.0964418	0.0	0.0	3.7	0.0
			1 LiCL mol6 1	TMP27n 1	1 LiCL 2TMPZn d2 mol6 c	TMPH 1			-6.7	-1323 5004968	-2596 3642905	-3510 7708810	-409 0964418	0.0	0.0	7.8	0.0
			1_LiCl_mol6_1	TMP27n_1	1 LiCL 8TMPZn d8 mol6 c	TMDH 1			2.2	-1323 5004068	-2506 3642005	-3510 7675073	-400.0064418	0.0	0.0	16.6	0.0
			1_LICI_III0I0_1				-		47.0	1020.5004900	-2390.3042903	-3310.7073073	409.0904410	0.0	0.0	10.0	0.0
				TMP2Zn_1	I_LICI_IN0I14_pos2_5	TMPH_1	_		-47.2	-1323.5004968	-2596.3642905	-4425.1903919	-409.0964418	0.0	0.0	0.0	0.0
			1_LICI_mol6_1	IMP2Zn_1	1_LICI_mol14_pos8	IMPH_1	_		-45.6	-1323.5004968	-2596.3642905	-4425.1897700	-409.0964418	0.0	0.0	1.6	0.0
			1_LICI_mol6_1	IMP2Zn_1	1_LiCl_mol14_pos2_8	IMPH_1			-35.8	-1323.5004968	-2596.3642905	-4425.1860302	-409.0964418	0.0	0.0	11.5	0.0
			1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos2	TMPH_1			-34.0	-1323.5004968	-2596.3642905	-4425.1853692	-409.0964418	0.0	0.0	13.2	0.0
			1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1			-27.1	-1323.5004968	-2596.3642905	-4425.1827081	-409.0964418	0.0	0.0	20.2	0.0
			1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos5	TMPH_1			-26.2	-1323.5004968	-2596.3642905	-4425.1823754	-409.0964418	0.0	0.0	21.0	0.0
			1 LiCl mol7e	TMPZnCl	1 LiCl 2 ZnCl d2 mol7e	TMPH 1			-44.8	-1415.7751950	-2648.1741618	-3654.8699943	-409.0964418	0.0	0.0	0.0	0.0
			1 LiCl mol7e	TMPZnCl	1 LiCl 8 ZnCl d8 mol7e	TMPH 1			-35.1	-1415.7751950	-2648.1741618	-3654.8662951	-409.0964418	0.0	0.0	9.7	0.0
			1 LiCL mol7e	TMPZnCl	1 LiCl 5 ZnCl d5 mol7e	TMPH 1			-15.2	-1415 7751950	-2648 1741618	-3654 8587040	-409 0964418	0.0	0.0	29.6	0.0
			1 LiCL mol7e	TMP27n 1	1 LiCl 5TMPZn d5 molZe 36	TMPH 1			-15.9	-1415 7751950	-2596 3642905	-3603 0490896	-409 0964418	0.0	0.0	0.0	0.0
			1_LiCL_mol7o	TMP27n_1	1 LiCl 5TMPZp d5 molZo	TMDH 1			-15.6	-1415 7751050	-2506 3642005	-3603.0400022	-400.0064418	0.0	0.0	0.0	0.0
			1_LICI_III0I7e						-15.0	-1415.7751950	-2090.3042900	-3003.0490022	-409.0904418	0.0	0.0	0.2	0.0
			1_LICI_moi/e	TMP2Zh_1	1_LICI_21MPZn_d2_moi/e	TMPH_1	_		-15.6	-1415.7751950	-2596.3642905	-3603.0489825	-409.0964418	0.0	0.0	0.3	0.0
			1_LiCl_mol7e	IMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_31	IMPH_1			-7.7	-1415.7751950	-2596.3642905	-3603.0459792	-409.0964418	0.0	0.0	8.2	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_26	TMPH_1			-7.5	-1415.7751950	-2596.3642905	-3603.0459107	-409.0964418	0.0	0.0	8.3	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_28	TMPH_1			-4.5	-1415.7751950	-2596.3642905	-3603.0447451	-409.0964418	0.0	0.0	11.4	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol7e_40	TMPH_1			-3.3	-1415.7751950	-2596.3642905	-3603.0442951	-409.0964418	0.0	0.0	12.6	0.0
			1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 38	TMPH 1			1.0	-1415.7751950	-2596.3642905	-3603.0426579	-409.0964418	0.0	0.0	16.9	0.0
		1	1_LiCl_mol7e	TMP2Zn 1	1_LiCl_5TMPZn d5 mol7e 1	TMPH 1	1		1.5	-1415.7751950	-2596.3642905	-3603.0424747	-409.0964418	0.0	0.0	17.4	0.0
			1 LiCL mol7e	TMP27n 1	1 LiCL 8TMPZn d8 mol7e 20	TMPH 1			2.5	-1415 7751950	-2596 3642905	-3603 0420812	-409 0964418	0.0	0.0	18.4	0.0
		- 1 -	1 LiCl mol7e	TMP27n 1	1 LiCl mol15 pos8 19	TMPH 1			-76.7	-1415 7751950	-2596 3642905	-4609 7510243	-409 0964418	0.0	0.0	0.0	0.0
			1 LiCL mol7e	TMP27n_1	1 LiCL mol15 pos2 17	TMPH 1			-68.1	-1/15 7751950	-2596 36/2905	-4609 7477204	-400.0004410	0.0	0.0	8.7	0.0
			1_LiCL_mol7e	TMD27n 1	1_LiCL_mol15_pos2_17				-00.1	1415 7751050	2506 2642005	4600 7471262	400.0064419	0.0	0.0	10.2	0.0
							-		-00.5	-1415.7751950	-2090.3042900	-4009.7471303	-409.0904416	0.0	0.0	10.2	0.0
			1_LICI_moi/e	TMP2Zh_1	1_LICI_moi15_pos8	TMPH_1	_		-60.8	-1415.7751950	-2596.3642905	-4609.7449611	-409.0964418	0.0	0.0	15.9	0.0
			1_LiCl_mol7e	IMP2Zn_1	1_LICI_moI15_pos2_12	IMPH_1			-54.4	-1415.7751950	-2596.3642905	-4609.7425105	-409.0964418	0.0	0.0	22.4	0.0
			1_LiCl_mol7e	IMP2Zn_1	1_LiCl_mol15_pos2_13	IMPH_1			-49.5	-1415.7751950	-2596.3642905	-4609.7406484	-409.0964418	0.0	0.0	27.2	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos5	TMPH_1			-31.0	-1415.7751950	-2596.3642905	-4609.7336094	-409.0964418	0.0	0.0	45.7	0.0
			1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1			-57.3	-1761.3845877	-1068.9684886	-2421.2784609	-409.0964418	0.0	0.0	0.0	0.0
			1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_1	TMPH_1			-56.8	-1761.3845877	-1068.9684886	-2421.2782597	-409.0964418	0.0	0.0	0.5	0.0
			1 LiCl mol16e 2	TMPMqCI	1 LiCl mol17 pos5 2	TMPH 1			-12.7	-1761.3845877	-1068.9684886	-2421.2614859	-409.0964418	0.0	0.0	44.6	0.0
			LiCI mol6 aan	TMPMaCI	MaCILiCI d5 mol6	TMPH 1		reaction21	-46.9	-1323.5002978	-1068.9684886	-1983.3901949	-409.0964418	0.0	0.0	0.0	0.0
			LiCL mol6_aan	TMPZnCl	LiCL 87nCL d8 mol6 aac2	TMPH 1		reaction22	-32.6	-1323 5002978	-2648 1741618	-3562 5904335	-409 0964418	0.0	0.0	0.0	0.0
			LiCL mol6_aan	TMP27n 1	LiCL 3TMPZn d3 mol6 a	TMPH 1		reaction23	-24.3	-1323 5002078	-2596 36/2905	-3510 7773083	-409.0964418	0.0	0.0	0.0	0.0
			LiCI_mol6_aan	TMP27n_1	LiCL mol14 pos8 38	TMPH 1		reaction24	-62.8	-1323.5002370	-2596 36/2905	-4425 1050111	-409.0904410	0.0	0.0	0.0	0.0
					1 LiCL 2 ZnCL d2 molZo		-	reaction24	-02.0	1415 7751050	2530.3042303	2654 9600042	400.0064419	0.0	0.0	0.0	0.0
								reaction20	-44.0	-1413.7751950	-2040.1741010	-3034.00999943	409.0904410	0.0	0.0	0.0	0.0
			I_LICI_MOI/e	TMP2Zn_1		TMPH_1	_	reaction26	-15.9	-1415.7751950	-2596.3642905	-3603.0490896	-409.0964418	0.0	0.0	0.0	0.0
			1_LiCI_mol/e	IMP2Zn_1	1_LICI_moI15_pos8_19	IMPH_1		reaction27	-76.7	-1415.7751950	-2596.3642905	-4609.7510243	-409.0964418	0.0	0.0	0.0	0.0
			1_LICI_mol16e_2	IMPMgCI	LiCI_mol17_pos5_1	IMPH_1		reaction28	-61.5	-1761.3845877	-1068.9684886	-2421.2800516	-409.0964418	0.0	0.0	0.0	0.0
			LiCl_mol6_aan	TMPMgCI	MgClLiCl_d5_mol6	TMPH_1			-46.9	-1323.5002978	-1068.9684886	-1983.3901949	-409.0964418	0.0	0.0	0.0	0.0
			LiCl_mol6_aan	TMPMgCI	1_LiCI_8MgCI_d8_mol6	TMPH_1			-45.7	-1323.5002978	-1068.9684886	-1983.3897488	-409.0964418	0.0	0.0	1.2	0.0
			LiCl_mol6_aan	TMPMgCl	MgClLiCl_d3_mol6	TMPH_1			-42.0	-1323.5002978	-1068.9684886	-1983.3883337	-409.0964418	0.0	0.0	4.9	0.0
T	T		LiCl_mol6_aan	TMPMgCI	MgClLiCl_d5_mol6_1	TMPH_1			-31.6	-1323.5002978	-1068.9684886	-1983.3843941	-409.0964418	0.0	0.0	15.2	0.0
			LiCl_mol6_aan	TMPMgCI	MgClLiCl_d8_mol6_1	TMPH_1			-22.3	-1323.5002978	-1068.9684886	-1983.3808215	-409.0964418	0.0	0.0	24.6	0.0
			LiCl mol6 aan	TMPMaCI	MaCILiCI d8 mol6	TMPH 1	1		-12.3	-1323,5002978	-1068,9684886	-1983.3770464	-409.0964418	0.0	0.0	34.5	0.0
		1	LiCl mol6 aan	TMPMaCI	1 LiCl 3MaCl d3 mol6	TMPH 1	1	i İ	-8.0	-1323,5002978	-1068,9684886	-1983.3754055	-409.0964418	0.0	0.0	38.8	0.0
			LiCl mol6 aan	TMPMaCl	MgCII iCL d2 mol6	TMPH 1			4.3	-1323 5002978	-1068 9684886	-1983 3706922	-409 0964418	0.0	0.0	51.2	0.0
			LiCI_mol6_aan	TMP7nCl	LiCL 87pCL d8 mol6 apo2	TMDH 1			-32.6	1323 5002078	-2649 1741619	-3562 5004335	-400.0064418	0.0	0.0	0.0	0.0
							+		-32.0	1222.0002870	2040.1741010	2562 5001175	400.0064440	0.0	0.0	0.0	0.0
							+		-31.0	-1323.3002978	-2040.1/41018	-3002.3901175	-409.0904418	0.0	0.0	0.0	0.0
			LICI_mol6_aan		1_LICI_8ZnCI_d8_mol6_aac	IMPH_1			-31.0	-1323.5002978	-2048.1/41618	-3562.5898125	-409.0964418	0.0	0.0	1.6	0.0
			LICI_mol6_aan	IMPZnCl	LICI_52nCI_d5_mol6_aae	IMPH_1	1		-30.2	-1323.5002978	-2648.1741618	-3562.5895098	-409.0964418	0.0	0.0	2.4	0.0
			LiCl_mol6_aan	TMPZnCl	LiCl_3ZnCl_d3_mol6_aap	TMPH_1	1		-29.8	-1323.5002978	-2648.1741618	-3562.5893509	-409.0964418	0.0	0.0	2.8	0.0
			LiCl_mol6_aan	TMP2Zn_1	LiCl_3TMPZn_d3_mol6_a	TMPH_1			-24.3	-1323.5002978	-2596.3642905	-3510.7773983	-409.0964418	0.0	0.0	0.0	0.0
			LiCl_mol6_aan	TMP2Zn_1	LiCl_3TMPZn_d3_mol6_b	TMPH_1			-19.1	-1323.5002978	-2596.3642905	-3510.7754181	-409.0964418	0.0	0.0	5.2	0.0
			LiCl_mol6_aan	TMP2Zn_1	LiCI_5TMPZn_d5_mol6_aa	TMPH_1			-23.6	-1323.5002978	-2596.3642905	-3510.7771199	-409.0964418	0.0	0.0	0.7	0.0
			LiCl_mol6_aan	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol6 a	TMPH_1			-14.9	-1323.5002978	-2596.3642905	-3510.7738375	-409.0964418	0.0	0.0	9.3	0.0
		1	LiCl mol6 aan	TMP2Zn 1	1 LiCl 5TMPZn d5 mol6 b	TMPH 1			-13.3	-1323.5002978	-2596.3642905	-3510.7732099	-409.0964418	0.0	0.0	11.0	0.0
			LiCl mol6 aan	TMP2Zn 1	1 LiCl 3TMPZn d3 mol6 a	TMPH 1			-12.0	-1323,5002978	-2596.3642905	-3510.7727102	-409.0964418	0.0	0.0	12.3	0.0
			LiCl mol6 aan	TMP2Zn 1	1 LiCl 3TMPZn d3 mol6 h	TMPH 1			-11.3	-1323,5002978	-2596,3642905	-3510,7724379	-409.0964418	0.0	0.0	13.0	0.0
		1				· · · · · · · · · · · · · · · · · · ·											

	[] [LiCL mol6 aan	TMP27n 1	1 LiCl 2TMPZn d2 mol6 c	TMPH 1			-72	-1323 5002978	-2596 3642905	-3510 7708810	-409 0964418	0.0	0.0	17 1	0.0
			LiCL mol6_aan	TMP27n_1	LiCL STMP7p d8 mol6 p	TMPH 1			-1.1	1323 5002078	-2506 3642005	-3510 7685526	-400.0004418	0.0	0.0	22.2	0.0
			LiCI_mol6_aan				_		-1.1	1020.5002970	-2390.3042903	4405 4050444	409.0904410	0.0	0.0	23.2	0.0
			LICI_MOI6_aan	TMP2Zn_1	LICI_HI0114_p0s8_38	TMPH_1			-62.8	-1323.5002978	-2596.3642905	-4425.1959111	-409.0964418	0.0	0.0	0.0	0.0
			LICI_mol6_aan	TMP2Zn_1	1_LICI_moI14_pos2_5	IMPH_1			-48.3	-1323.5002978	-2596.3642905	-4425.1903919	-409.0964418	0.0	0.0	14.5	0.0
			LiCI_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos8	TMPH_1			-46.6	-1323.5002978	-2596.3642905	-4425.1897700	-409.0964418	0.0	0.0	16.1	0.0
			LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2_8	TMPH_1			-36.8	-1323.5002978	-2596.3642905	-4425.1860302	-409.0964418	0.0	0.0	25.9	0.0
			LiCl_mol6_aan	TMP2Zn_1	LiCl_mol14_pos2_15	TMPH_1			-36.8	-1323.5002978	-2596.3642905	-4425.1860306	-409.0964418	0.0	0.0	25.9	0.0
			LiCI_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2	TMPH_1			-35.1	-1323.5002978	-2596.3642905	-4425.1853692	-409.0964418	0.0	0.0	27.7	0.0
			LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1			-28.1	-1323.5002978	-2596.3642905	-4425.1827081	-409.0964418	0.0	0.0	34.7	0.0
			LiCl mol6 aan	TMP2Zn 1	1 LiCl mol14 pos5	TMPH 1			-27.2	-1323.5002978	-2596.3642905	-4425.1823754	-409.0964418	0.0	0.0	35.5	0.0
			1 LiCl mol7e	TMPZnCl	1 LiCl 2 ZnCl d2 mol7e	TMPH 1			-44.8	-1415,7751950	-2648,1741618	-3654.8699943	-409.0964418	0.0	0.0	0.0	0.0
			1 LiCL mol7e	TMPZnCl	LiCL 5 ZnCL d5 molZe	TMPH 1			-31.8	-1415 7751950	-2648 1741618	-3654 8650194	-409 0964418	0.0	0.0	13.1	0.0
			1 LiCL molZe	TMPZnCI		TMPH 1			-35.1	-1/15 7751950	-26/8 17/1618	-3654 8662951	-409.0964418	0.0	0.0	9.7	0.0
			1_LICL_mol7e	TMDZnCl					-35.1 25.5	1415 7751050	2040.1741010	2654.0602331	400.0064419	0.0	0.0	10.2	0.0
							_		-20.0	-1415.7751950	-2040.1741010	-3034.0020347	-409.0904418	0.0	0.0	19.3	0.0
 			1_LICI_moi/e	TMPZhCi		TMPH_1	_		-23.7	-1415.7751950	-2648.1741618	-3654.8619538	-409.0964418	0.0	0.0	21.1	0.0
			1_LiCl_mol7e	IMPZnCl	1_LiCl_5_ZnCl_d5_mol7e	IMPH_1			-15.2	-1415.7751950	-2648.1741618	-3654.8587040	-409.0964418	0.0	0.0	29.6	0.0
			1_LiCl_mol7e	IMP2Zn_1	1_LiCl_51MPZn_d5_mol7e_36	IMPH_1			-15.9	-1415.7751950	-2596.3642905	-3603.0490896	-409.0964418	0.0	0.0	0.0	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol7e	TMPH_1			-15.6	-1415.7751950	-2596.3642905	-3603.0490022	-409.0964418	0.0	0.0	0.2	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e	TMPH_1			-15.6	-1415.7751950	-2596.3642905	-3603.0489825	-409.0964418	0.0	0.0	0.3	0.0
			1_LiCl_mol7e	TMP2Zn_1	LiCI_2TMPZn_d2_mol7e	TMPH_1			-14.0	-1415.7751950	-2596.3642905	-3603.0483883	-409.0964418	0.0	0.0	1.8	0.0
			1 LiCl mol7e	TMP2Zn 1	LiCI 5TMPZn d5 mol7e 40	TMPH 1			-11.8	-1415.7751950	-2596.3642905	-3603.0475310	-409.0964418	0.0	0.0	4.1	0.0
			1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e 31	TMPH 1			-7.7	-1415.7751950	-2596.3642905	-3603.0459792	-409.0964418	0.0	0.0	8.2	0.0
			1 LiCL molZe	TMP27n 1	1 LiCl 2TMPZn d2 molZe 26	TMPH 1			-7.5	-1415 7751950	-2596 3642905	-3603 0459107	-409 0964418	0.0	0.0	83	0.0
			1_LiCL_mol7e	TMP27n_1	1 LiCl 2TMPZn d2 mol7e 28	TMPH 1			-4.5	-1/15 7751950	-2596 36/2005	-3603 04/7/51	-400.0004418	0.0	0.0	11 /	0.0
			1_LiCL_mol7o	TMP27n_1	1 LiCL STMPZn d5 molZo 40	TMDH 1	_		-4.0	-1415.7751050	-2506 3642005	-3603.0447451	-409.0964418	0.0	0.0	12.6	0.0
			1_LICI_III0I7e	TMP2ZII_1	I_LICI_STIMFZII_US_III0176_40				-3.3	-1415.7751950	-2090.3042900	-3003.0442951	-409.0904418	0.0	0.0	12.0	0.0
			I_LICI_MOI/e	TMP2Zh_1		TMPH_1			-3.0	-1415.7751950	-2596.3642905	-3603.0442050	-409.0964418	0.0	0.0	12.0	0.0
			1_LICI_mol/e	TMP2Zn_1	LICI_51MPZn_d5_mol/e_1	IMPH_1			-2.0	-1415.7751950	-2596.3642905	-3603.0438011	-409.0964418	0.0	0.0	13.9	0.0
			1_LiCl_mol7e	IMP2Zn_1	LICI_51MPZn_d5_mol7e_38	IMPH_1			-0.3	-1415.7751950	-2596.3642905	-3603.0431519	-409.0964418	0.0	0.0	15.6	0.0
			1_LiCl_mol7e	TMP2Zn_1	LiCI_2TMPZn_d2_mol7e_28	TMPH_1			-0.1	-1415.7751950	-2596.3642905	-3603.0430779	-409.0964418	0.0	0.0	15.8	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_38	TMPH_1			1.0	-1415.7751950	-2596.3642905	-3603.0426579	-409.0964418	0.0	0.0	16.9	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_1	TMPH_1			1.5	-1415.7751950	-2596.3642905	-3603.0424747	-409.0964418	0.0	0.0	17.4	0.0
			1 LiCl mol7e	TMP2Zn 1	1 LiCl 8TMPZn d8 mol7e 20	TMPH 1			2.5	-1415.7751950	-2596.3642905	-3603.0420812	-409.0964418	0.0	0.0	18.4	0.0
			1 LiCl mol7e	TMP2Zn 1	1 LiCl mol15 pos8 19	TMPH 1			-76.7	-1415.7751950	-2596.3642905	-4609.7510243	-409.0964418	0.0	0.0	0.0	0.0
			1 LiCl mol7e	TMP2Zn 1	LiCl mol15 pos8	TMPH 1			-71.1	-1415.7751950	-2596.3642905	-4609.7488851	-409.0964418	0.0	0.0	5.6	0.0
			1 LiCL molZe	TMP27n 1	1 LiCl mol15 pos2 17	TMPH 1			-68.1	-1415 7751950	-2596 3642905	-4609 7477204	-409 0964418	0.0	0.0	87	0.0
			1 LiCL mol7e	TMP27n_1	1 LiCL mol15 pos2_15	TMPH 1			-66.5	-1415 7751950	-2596 3642905	-4609 7471363	-409.0964418	0.0	0.0	10.2	0.0
			1_LiCL_mol7o	TMP27n_1	1 LiCL mol15 pos8	TMPH 1			-60.8	-1415 7751050	-2506 3642005	-4600 7440611	-400.0004418	0.0	0.0	15.0	0.0
			1_LICL_mol7e	TMD27n_1	1 LiCl mol15 post				-00.0	1415 7751050	2506.3642005	4600 7425105	400.0064419	0.0	0.0	22.4	0.0
							_		-34.4	-1415.7751950	-2090.3042900	-4009.7425105	-409.0904418	0.0	0.0	22.4	0.0
			1_LICI_mol/e	TMP2Zh_1					-49.5	-1415.7751950	-2596.3642905	-4609.7406484	-409.0964418	0.0	0.0	21.2	0.0
 			1_LICI_moi/e	TMP2Zh_1	LICI_moi15_pos2_15	TMPH_1	_		-35.7	-1415.7751950	-2596.3642905	-4609.7354119	-409.0964418	0.0	0.0	41.0	0.0
			1_LiCl_mol7e	IMP2Zn_1	LiCI_mol15_pos2_17	IMPH_1			-36.8	-1415.7751950	-2596.3642905	-4609.7358001	-409.0964418	0.0	0.0	40.0	0.0
			1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos5	TMPH_1			-31.0	-1415.7751950	-2596.3642905	-4609.7336094	-409.0964418	0.0	0.0	45.7	0.0
			1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos5_1	TMPH_1			-61.5	-1761.3845877	-1068.9684886	-2421.2800516	-409.0964418	0.0	0.0	0.0	0.0
			1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos5_22	TMPH_1			-60.1	-1761.3845877	-1068.9684886	-2421.2795323	-409.0964418	0.0	0.0	1.4	0.0
			1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1			-57.3	-1761.3845877	-1068.9684886	-2421.2784609	-409.0964418	0.0	0.0	4.2	0.0
			MgCl2_mol6_aac	TMPZnCl	1_MgCl2_3ZnCl_d3_mol6 aap	TMPH 1		reaction31	-19.6	-1976.3982356	-2648.1741618	-4215.4834023	-409.0964418	0.0	0.0	0.0	0.0
			MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 5TMPZn d5 mol6 b	TMPH 1		reaction32	-16.6	-1976.3982356	-2596.3642905	-4163.6724235	-409.0964418	0.0	0.0	0.0	0.0
			MgCl2 mol6 aac	TMP2Zn 1	1 MgCl2 mol14 pos2 27	TMPH 1		reaction33	-49.9	-1976.3982356	-2596.3642905	-5730,9868896	-409.0964418	0.0	0.0	0.0	0.0
			1 MaCl2 mol7e	TMP27n 1	1 MgCl2 mol15 pos2 7	TMPH 1		reaction36	-76.5	-2068 6704954	-2596 3642905	-5915 5415206	-409 0964418	0.0	0.0	0.0	0.0
					1 MaCl2 37nCl d3 mal6 app	TMPH 1	-	100000100	-19.6	-1076 3082256	-26/8 17/1619	-1215 /83/022	-100.0004119	0.0	0.0	0.0	0.0
			MaCl2 mol6 coo				+		15.0	1076 2002200	-2040.1/41010	-+21J.+034023	400.0064440	0.0	0.0	0.0	0.0
							_		-10.0	-19/0.3902350	-2040.1/41018	-4213.4010431	-409.0904418	0.0	0.0	4.1	0.0
 			IVIGCIZ_MOI6_aac			TMPH_1	_		-14.7	-19/6.3982356	-2048.1741618	-4215.4815550	-409.0964418	0.0	0.0	4.9	0.0
			IVIGCI2_MOI6_aac	IMPZnCl	1_IVIGUI2_8ZNUI_08_mol6_aac2	IMPH_1	_		-10.4	-1976.3982356	-2048.1/41618	-4215.4799206	-409.0964418	0.0	0.0	9.1	0.0
			MgCl2_mol6_aac	IMPZnCl	MgCl2_8ZnCl_d8_mol6_aac23		_		5.2	-1976.3982356	-2648.1741618	-4215.4739591	-409.0964418	0.0	0.0	24.8	0.0
			MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_b	TMPH_1			-16.6	-1976.3982356	-2596.3642905	-4163.6724235	-409.0964418	0.0	0.0	0.0	0.0
			MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_a	TMPH_1			-15.9	-1976.3982356	-2596.3642905	-4163.6721373	-409.0964418	0.0	0.0	0.8	0.0
 T		T	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6_a	TMPH_1			-15.2	-1976.3982356	-2596.3642905	-4163.6718866	-409.0964418	0.0	0.0	1.4	0.0
			MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6 b	TMPH_1			-14.7	-1976.3982356	-2596.3642905	-4163.6716942	-409.0964418	0.0	0.0	1.9	0.0
			MgCl2 mol6 aac	TMP2Zn 1	MgCl2 3TMPZn d3 mol6 a	TMPH 1			-9.0	-1976.3982356	-2596.3642905	-4163.6695112	-409.0964418	0.0	0.0	7.6	0.0
			MgCl2_mol6_aac	TMP2Zn_1	MgCl2_5TMPZn_d5_mol6 aa	TMPH_1			-4.5	-1976.3982356	-2596.3642905	-4163.6677856	-409.0964418	0.0	0.0	12.2	0.0

MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_c	TMPH_1	-2.1	-1976.3982356	-2596.3642905	-4163.6668922	-409.0964418	0.0	0.0	14.5	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_b	TMPH_1	6.4	-1976.3982356	-2596.3642905	-4163.6636290	-409.0964418	0.0	0.0	23.1	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_8TMPZn_d8_mol6_a2	TMPH_1	11.2	-1976.3982356	-2596.3642905	-4163.6618276	-409.0964418	0.0	0.0	27.8	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2_27	TMPH_1	-49.9	-1976.3982356	-2596.3642905	-5730.9868896	-409.0964418	0.0	0.0	0.0	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos3	TMPH_1	-32.3	-1976.3982356	-2596.3642905	-5730.9801944	-409.0964418	0.0	0.0	17.6	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5	TMPH_1	-28.9	-1976.3982356	-2596.3642905	-5730.9788903	-409.0964418	0.0	0.0	21.0	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2	TMPH_1	-21.7	-1976.3982356	-2596.3642905	-5730.9761433	-409.0964418	0.0	0.0	28.2	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8	TMPH_1	-2.7	-1976.3982356	-2596.3642905	-5730.9689178	-409.0964418	0.0	0.0	47.2	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_29	TMPH_1	-0.1	-1976.3982356	-2596.3642905	-5730.9678990	-409.0964418	0.0	0.0	49.9	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8_1	TMPH_1	10.4	-1976.3982356	-2596.3642905	-5730.9639295	-409.0964418	0.0	0.0	60.3	0.0
MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_31	TMPH_1	20.3	-1976.3982356	-2596.3642905	-5730.9601513	-409.0964418	0.0	0.0	70.2	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_7	TMPH_1	-76.5	-2068.6704954	-2596.3642905	-5915.5415206	-409.0964418	0.0	0.0	0.0	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2	TMPH_1	-59.3	-2068.6704954	-2596.3642905	-5915.5349671	-409.0964418	0.0	0.0	17.2	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5	TMPH_1	-32.0	-2068.6704954	-2596.3642905	-5915.5245678	-409.0964418	0.0	0.0	44.5	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_9	TMPH_1	-19.2	-2068.6704954	-2596.3642905	-5915.5197118	-409.0964418	0.0	0.0	57.3	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos8	TMPH_1	-8.8	-2068.6704954	-2596.3642905	-5915.5157604	-409.0964418	0.0	0.0	67.6	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_5	TMPH_1	7.3	-2068.6704954	-2596.3642905	-5915.5096277	-409.0964418	0.0	0.0	83.7	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_8	TMPH_1	41.1	-2068.6704954	-2596.3642905	-5915.4967287	-409.0964418	0.0	0.0	117.6	0.0
1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5_10	TMPH_1	85.6	-2068.6704954	-2596.3642905	-5915.4797824	-409.0964418	0.0	0.0	162.1	0.0

	cha	rge				filename			ΔG ^{sol}	•	G ^s	ol			Δ	G ^{sol}	
E1	E2	P1	P2	E1	E2	P1	P2		kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
0	0	0	0	mol6	TMPMaCl	3 MgCl d3 mol6 aad	TMPH 1	reaction1	-10.9	-855.5811928	-1068.9586982	-1515.4595266	-409.0844975	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPZnCl	3 ZnCl d3 mol6 aac	TMPH 1	reaction2	-22.4	-855,5861724	-2648,1694763	-3094.6741201	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn 1	5 TMPZn d5 mol6 b	TMPH 1	reaction3	-17.0	-855.5861724	-2596.3552027	-3042.8577834	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn 1	mol14 pos5	TMPH 1	reaction4	-35.0	-855.5861724	-2596.3552027	-3489.3607760	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMPZnCl	5 ZnCl d5 mol7e	TMPH 1	reaction5	-18.0	-947.8629812	-2648,1694763	-3186.9492594	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn 1	5 TMPZn d5 mol7e 36	TMPH 1	reaction6	-15.1	-947.8629812	-2596.3552027	-3135.1338599	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn 1	mol15 pos5	TMPH 1	reaction7	-31.7	-947.8629812	-2596.3552027	-3673.9131114	-409.0900593	0.0	0.0	0.0	0.0
0	Õ	0	0	mol16e 2	TMPMaCI	mol17 pos5 2	TMPH 1	reaction8	-10.3	-1293.4686930	-1068.9619145	-1953.3472864	-409.0872280	0.0	0.0	0.0	0.0
	-			mol6	TMPMaCI	3 MgCl d3 mol6 aad	TMPH 1		-10.9	-855.5811928	-1068.9586982	-1515.4595266	-409.0844975	0.0	0.0	0.0	0.0
				mol6	TMPMaCI	3 MgCl d3 mol6 aag	TMPH 1		-10.8	-855,5811928	-1068.9586982	-1515.4595194	-409.0844975	0.0	0.0	0.0	0.0
				mol6	TMPMaCI	5 MgCl d5 mol6 aaa	TMPH 1		7.1	-855.5811928	-1068.9586982	-1515.4526963	-409.0844975	0.0	0.0	17.9	0.0
				mol6	TMPMaCI	8 MgCl d8 mol6 aar	TMPH 1		19.3	-855,5811928	-1068.9586982	-1515.4480387	-409.0844975	0.0	0.0	30.2	0.0
				mol6	TMPMaCI	2 MgCl d2 mol6 aaa	TMPH 1		39.6	-855.5811928	-1068.9586982	-1515.4402968	-409.0844975	0.0	0.0	50.5	0.0
				mol6	TMPZnCl	3 ZnCl d3 mol6 aac	TMPH 1		-22.4	-855.5861724	-2648.1694763	-3094.6741201	-409.0900593	0.0	0.0	0.0	0.0
				mol6	TMPZnCl	3 ZnCl d3 mol6 aax	TMPH 1		-22.4	-855,5861724	-2648,1694763	-3094.6741150	-409.0900593	0.0	0.0	0.0	0.0
				mol6	TMPZnCl	3 ZnCl d3 mol6 aap	TMPH 1		-22.4	-855.5861724	-2648.1694763	-3094.6741137	-409.0900593	0.0	0.0	0.0	0.0
				mol6	TMPZnCl	5 ZnCl d5 mol6 aae	TMPH 1		-19.7	-855.5861724	-2648.1694763	-3094.6731069	-409.0900593	0.0	0.0	2.7	0.0
				mol6	TMPZnCl	8 ZnCl d8 mol6 aac	TMPH 1		-6.1	-855.5861724	-2648.1694763	-3094.6679257	-409.0900593	0.0	0.0	16.3	0.0
				mol6	TMPZnCl	2 ZnCl d2 mol6 aag	TMPH 1		-2.2	-855.5861724	-2648.1694763	-3094.6664208	-409.0900593	0.0	0.0	20.2	0.0
				mol6	TMP2Zn 1	5 TMPZn d5 mol6 b	TMPH 1		-17.0	-855.5861724	-2596.3552027	-3042.8577834	-409.0900593	0.0	0.0	0.0	0.0
				mol6	TMP2Zn 1	5 TMPZn d5 mol6 a	TMPH 1		-16.4	-855.5861724	-2596.3552027	-3042.8575458	-409.0900593	0.0	0.0	0.6	0.0
				mol6	TMP2Zn 1	3 TMPZn d3 mol6 b	TMPH 1		-13.4	-855.5861724	-2596.3552027	-3042.8564139	-409.0900593	0.0	0.0	3.6	0.0
				mol6	TMP2Zn 1	8 TMPZn d8 mol6 a	TMPH 1		5.5	-855.5861724	-2596.3552027	-3042.8492399	-409.0900593	0.0	0.0	22.4	0.0
				mol6	TMP2Zn 1	2 TMPZn d2 mol6 a	TMPH 1		11.0	-855.5861724	-2596.3552027	-3042.8471394	-409.0900593	0.0	0.0	27.9	0.0
				mol6	TMP2Zn 1	mol14 pos5	TMPH 1		-35.0	-855.5861724	-2596.3552027	-3489.3607760	-409.0900593	0.0	0.0	0.0	0.0
				mol6	TMP2Zn 1	mol14 pos3	TMPH 1		-33.0	-855.5861724	-2596.3552027	-3489.3599842	-409.0900593	0.0	0.0	2.1	0.0
				mol6	TMP2Zn 1	mol14 pos8	TMPH 1		1.0	-855.5861724	-2596.3552027	-3489.3470408	-409.0900593	0.0	0.0	36.1	0.0
				mol6	TMP2Zn 1	mol14 pos2	TMPH 1		9.7	-855.5861724	-2596.3552027	-3489.3437163	-409.0900593	0.0	0.0	44.8	0.0
				mol7e	TMPZnCl	5 ZnCl d5 mol7e	TMPH 1		-18.0	-947.8629812	-2648.1694763	-3186.9492594	-409.0900593	0.0	0.0	0.0	0.0
				mol7e	TMPZnCl	2 ZnCl d2 mol7e	TMPH 1		-13.1	-947.8629812	-2648.1694763	-3186.9473775	-409.0900593	0.0	0.0	4.9	0.0
				mol7e	TMPZnCI	8_ZnCl_d8_mol7e	TMPH_1		-10.9	-947.8629812	-2648.1694763	-3186.9465540	-409.0900593	0.0	0.0	7.1	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_36	TMPH_1		-15.1	-947.8629812	-2596.3552027	-3135.1338599	-409.0900593	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e	TMPH_1		-15.1	-947.8629812	-2596.3552027	-3135.1338594	-409.0900593	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_40	TMPH_1		-4.1	-947.8629812	-2596.3552027	-3135.1296812	-409.0900593	0.0	0.0	11.0	0.0
				mol7e	TMP2Zn_1	2_TMPZn_d2_mol7e	TMPH_1		-3.5	-947.8629812	-2596.3552027	-3135.1294474	-409.0900593	0.0	0.0	11.6	0.0
				mol7e	TMP2Zn_1	8_TMPZn_d8_mol7e	TMPH_1		-1.1	-947.8629812	-2596.3552027	-3135.1285383	-409.0900593	0.0	0.0	14.0	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_38	TMPH_1		0.8	-947.8629812	-2596.3552027	-3135.1278052	-409.0900593	0.0	0.0	15.9	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_1	TMPH_1		3.3	-947.8629812	-2596.3552027	-3135.1268724	-409.0900593	0.0	0.0	18.3	0.0
				mol7e	TMP2Zn_1	mol15_pos5	TMPH_1		-31.7	-947.8629812	-2596.3552027	-3673.9131114	-409.0900593	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn_1	mol15_pos2	TMPH_1		-16.2	-947.8629812	-2596.3552027	-3673.9072223	-409.0900593	0.0	0.0	15.5	0.0
				mol7e	TMP2Zn_1	mol15_pos8	TMPH_1		-10.9	-947.8629812	-2596.3552027	-3673.9051836	-409.0900593	0.0	0.0	20.8	0.0
				mol16e_2	TMPMgCl	mol17_pos5_2	TMPH_1		-10.3	-1293.4686930	-1068.9619145	-1953.3472864	-409.0872280	0.0	0.0	0.0	0.0
				mol16e_2	TMPMgCI	mol17_pos5_1	TMPH_1		-10.2	-1293.4686930	-1068.9619145	-1953.3472537	-409.0872280	0.0	0.0	0.1	0.0
				mol16e_2	TMPMgCI	mol17_pos8_2	TMPH_1		18.2	-1293.4686930	-1068.9619145	-1953.3364555	-409.0872280	0.0	0.0	28.4	0.0
0	0	0	0	1_LiCl_mol6_1	TMPMgCI	1_LiCI_8MgCI_d8_mol6	TMPH_1	reaction11	-41.5	-1323.4935028	-1068.9586982	-1983.3835061	-409.0844975	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMPZnCI	1_LiCl_8ZnCl_d8_mol6_aac	TMPH_1	reaction12	-28.6	-1323.4994551	-2648.1694763	-3562.5897820	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol6_a	TMPH_1	reaction13	-17.4	-1323.4994551	-2596.3552027	-3510.7712236	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1	reaction14	-39.1	-1323.4994551	-2596.3552027	-4425.1888853	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMPZnCI	1_LiCl_2_ZnCl_d2_mol7e	TMPH_1	reaction15	-44.2	-1415.7740903	-2648.1694763	-3654.8703328	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_36	TMPH_1	reaction16	-17.4	-1415.7740903	-2596.3552027	-3603.0458426	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_15	TMPH_1	reaction17	-65.5	-1415.7740903	-2596.3552027	-4609.7481992	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1	reaction18	-55.1	-1761.3767786	-1068.9619145	-2421.2724629	-409.0872280	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCl	1_LiCl_8MgCl_d8_mol6	TMPH_1		-41.5	-1323.4935028	-1068.9586982	-1983.3835061	-409.0844975	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMPMgCl	1_LiCl_3MgCl_d3_mol6	TMPH_1		-17.3	-1323.4935028	-1068.9586982	-1983.3742927	-409.0844975	0.0	0.0	24.2	0.0
				1_LiCl_mol6_1	TMPMgCI	1_LiCI_5MgCI_d5_mol6	TMPH_1		4.8	-1323.4935028	-1068.9586982	-1983.3658756	-409.0844975	0.0	0.0	46.3	0.0

 Table TT11. The calculated for reaction free energy values at the CPCM(DMSO)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = T_{experimental}).

 "E1 and E2" - educt 1 and educt 2, "P1 and P2" - product 1 and product 2.

				1_LiCl_mol6_1	TMPMgCI	1_LiCl_2MgCl_d2_mol6	TMPH_1			8.4	-1323.4935028	-1068.9586982	-1983.3645050	-409.0844975	0.0	0.0	49.9	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 8ZnCl d8 mol6 aac	TMPH 1			-28.6	-1323.4994551	-2648.1694763	-3562.5897820	-409.0900593	0.0	0.0	0.0	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 2ZnCl d2 mol6 aag	TMPH 1			-28.1	-1323.4994551	-2648.1694763	-3562.5895922	-409.0900593	0.0	0.0	0.5	0.0
				1 LiCL mol6 1	TMPZnCl	1 LiCL 3ZnCL d3 mol6 aan	TMPH 1			-25.4	-1323 4994551	-2648 1694763	-3562 5885429	-409 0900593	0.0	0.0	3.3	0.0
				1 LiCL mol6 1	TMPZnCI	1 LiCl 5ZnCl d5 mol6 aae	TMPH 1			-2.0	-1323 4994551	-2648 1694763	-3562 5796205	-409 0900593	0.0	0.0	26.7	0.0
				1_LiCL_mol6_1	TMP27n 1	1 LiCl_5TMPZn_d5_mol6_a	TMPH 1			-17.4	-1323 4994551	-2596 3552027	-3510 7712236	-409.0900593	0.0	0.0	0.0	0.0
				1_LiCL_mol6_1	TMP27n_1	1 LiCl 5TMPZn d5 mol6 b	TMPH 1			-15.6	-1323 /00/551	-2506 3552027	-3510 7705445	-400.0000000	0.0	0.0	1.8	0.0
				1_LiCl_mol6_1	TMP27n_1	1_LICL_3TMP7n_d3_mol6_p	TMDH 1			-14.3	-1323.4004551	-2506 3552027	-3510.7700601	-409.0900593	0.0	0.0	2.1	0.0
				1_LICI_III0I0_1	TMD27n 1	1_LICI_3TMPZn_d2_mol6_b		-		-14.3	1222.4994001	-2090.0002027	2510.7700001	-409.0900593	0.0	0.0	3.1	0.0
				1_LICI_III0I0_1	TIVIF2ZII_1			+		-13.0	-1323.4994331	-2090.0002027	-3310.7096440	-409.0900593	0.0	0.0	3.0	0.0
				1_LICI_M0I6_1	TMP2Zh_1	1_LICI_21MPZn_d2_mol6_c	TMPH_1	-		-2.5	-1323.4994551	-2596.3552027	-3510.7655469	-409.0900593	0.0	0.0	14.9	0.0
				1_LiCI_mol6_1	TMP2Zn_1	1_LICI_8TMPZn_d8_mol6_c	IMPH_1			5.9	-1323.4994551	-2596.3552027	-3510.7623611	-409.0900593	0.0	0.0	23.3	0.0
				1_LiCI_mol6_1	TMP2Zn_1	1_LICI_moI14_pos3	IMPH_1			-39.1	-1323.4994551	-2596.3552027	-4425.1888853	-409.0900593	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos2_5	IMPH_1			-34.7	-1323.4994551	-2596.3552027	-4425.1872003	-409.0900593	0.0	0.0	4.4	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos5	TMPH_1			-34.4	-1323.4994551	-2596.3552027	-4425.1871093	-409.0900593	0.0	0.0	4.7	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos8	TMPH_1			-31.2	-1323.4994551	-2596.3552027	-4425.1858786	-409.0900593	0.0	0.0	7.9	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_2_ZnCl_d2_mol7e	TMPH_1			-44.2	-1415.7740903	-2648.1694763	-3654.8703328	-409.0900593	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_8_ZnCl_d8_mol7e	TMPH_1			-34.2	-1415.7740903	-2648.1694763	-3654.8665198	-409.0900593	0.0	0.0	10.0	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_5_ZnCl_d5_mol7e	TMPH_1			-19.6	-1415.7740903	-2648.1694763	-3654.8609807	-409.0900593	0.0	0.0	24.6	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 36	TMPH 1			-17.4	-1415.7740903	-2596.3552027	-3603.0458426	-409.0900593	0.0	0.0	0.0	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e	TMPH 1			-16.9	-1415.7740903	-2596.3552027	-3603.0456760	-409.0900593	0.0	0.0	0.4	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e	TMPH 1			-12.5	-1415.7740903	-2596.3552027	-3603.0439831	-409.0900593	0.0	0.0	4.9	0.0
				1 LiCL mol7e	TMP27n 1	1 LiCl 5TMPZn d5 molZe 40	TMPH 1			-5.0	-1415 7740903	-2596 3552027	-3603 0411553	-409 0900593	0.0	0.0	12.3	0.0
				1_LiCL_mol7e	TMP27n_1	1 LiCL 2TMPZn d2 molZe 31	TMPH 1			-5.0	-1415 7740903	-2506 3552027	-3603 0411461	-400.0000000	0.0	0.0	12.0	0.0
				1_LiCl_mol7e	TMP27n_1	1 LiCl 2TMPZn d2 mol7e 26	TMPH 1			-4.9	-1415 7740903	-2596 3552027	-3603.0411401	-409.0900593	0.0	0.0	12.5	0.0
				1_LICI_mol7e	TMP27n 1	1_LICL_2TMPZn_d2_mol7e_20		-		-4.5	1415 7740903	2590.3552027	2602.0208050	400.0000503	0.0	0.0	12.0	0.0
				1_LICI_III0I7e	TMD27n 1	1_LICI_ZTIMPZII_UZ_III0I70_20		-		-1.5	-1415.7740903	-2090.0002027	-3003.0396030	-409.0900593	0.0	0.0	13.9	0.0
				I_LICI_moi/e	TMP2Zn_1		TMPH_1	_		-0.3	-1415.7740903	-2596.3552027	-3603.0393374	-409.0900593	0.0	0.0	17.1	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_5TMPZn_d5_mol/e_1	IMPH_1			0.4	-1415.7740903	-2596.3552027	-3603.0390970	-409.0900593	0.0	0.0	17.7	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_81MPZn_d8_mol/e_20	IMPH_1			5.8	-1415.7740903	-2596.3552027	-3603.0370168	-409.0900593	0.0	0.0	23.2	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_15	TMPH_1			-65.5	-1415.7740903	-2596.3552027	-4609.7481992	-409.0900593	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos8_19	TMPH_1			-64.1	-1415.7740903	-2596.3552027	-4609.7476731	-409.0900593	0.0	0.0	1.4	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_17	TMPH_1			-55.9	-1415.7740903	-2596.3552027	-4609.7445580	-409.0900593	0.0	0.0	9.6	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_13	TMPH_1			-46.5	-1415.7740903	-2596.3552027	-4609.7409713	-409.0900593	0.0	0.0	19.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos8	TMPH_1			-46.3	-1415.7740903	-2596.3552027	-4609.7408805	-409.0900593	0.0	0.0	19.2	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_12	TMPH_1			-42.3	-1415.7740903	-2596.3552027	-4609.7393718	-409.0900593	0.0	0.0	23.2	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl mol15 pos5	TMPH 1			-34.0	-1415.7740903	-2596.3552027	-4609.7361996	-409.0900593	0.0	0.0	31.5	0.0
				1 LiCl mol16e 2	TMPMqCI	1 LiCl mol17 pos8 2	TMPH 1			-55.1	-1761.3767786	-1068.9619145	-2421.2724629	-409.0872280	0.0	0.0	0.0	0.0
				1 LiCl mol16e 2	TMPMaCl	1 LiCl mol17 pos8 1	TMPH 1			-54.8	-1761.3767786	-1068.9619145	-2421.2723452	-409.0872280	0.0	0.0	0.3	0.0
				1 LiCL mol16e 2	TMPMaCI	1 LiCL mol17 pos5 1	TMPH 1			-14 8	-1761 3767786	-1068 9619145	-2421 2570899	-409 0872280	0.0	0.0	40.4	0.0
0	0	0	0	LiCL mol6_aan	TMPMaCl	MaCILICL d5 mol6	TMPH 1		reaction21	-45.2	-1323 4932725	-1068 9586982	-1983 3846802	-409 0844975	0.0	0.0	0.0	0.0
0	0	0	Ő	LiCL mol6_aan	TMPZnCl	LiCL 8ZnCL d8 mol6 aac2	TMPH 1		reaction22	-30.9	-1323 4992246	-2648 1694763	-3562 5904045	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	LiCL mol6_aan	TMP27n_1	LiCL 3TMPZn d3 mol6 a	TMPH 1		reaction23	-21 /	-1323 /0022/6	-2596 3552027	-3510 7725271	-400.0000000	0.0	0.0	0.0	0.0
0	0	0	0	LiCI_mol6_oon	TMP27n 1				reaction24	-21.4	1222.4992240	2590.3552027	4425 1026667	400.0000502	0.0	0.0	0.0	0.0
0	0	0	0			1 LiCL 2 ZnCL d2 mclZa		+	reaction25	-52.9	1415 7740000	-2050.0002027	26E4 0702200	400.0000500	0.0	0.0	0.0	0.0
0	0	0	0			1 LICL 5TMP7p d5 mol7o 20		-	reaction 26	-44.2	-1415 7740903	-2040.1094/03	-3602 0450400	-409.0900093	0.0	0.0	0.0	0.0
0	U	0	0		TMP2ZII_1	1_LIGI_DTWPZI1_UD_IIIUT/0_30			reaction26	-17.4	-1415.7740903	-2090.3002027	-3003.0438426	-409.0900593	0.0	0.0	0.0	0.0
U	U	0	0		TMP220_1		TMPH_1		reaction27	-00.0	-1415.//40903	-2090.3552027	-4009.7481992	-409.0900593	0.0	0.0	0.0	0.0
0	U	U	U	1_LICI_mol16e_2	IMPMgCI		IMPH_1	1	reaction28	-62.3	-1/61.3/6//86	-1068.9619145	-2421.2751881	-409.0872280	0.0	0.0	0.0	0.0
				LiCl_mol6_aan	IMPMgCl	MgClLiCl_d5_mol6	IMPH_1			-45.2	-1323.4932725	-1068.9586982	-1983.3846802	-409.0844975	0.0	0.0	0.0	0.0
				LICI_mol6_aan	IMPMgCI	1_LICI_8MgCI_d8_mol6	IMPH_1			-42.1	-1323.4932725	-1068.9586982	-1983.3835061	-409.0844975	0.0	0.0	3.1	0.0
				LiCl_mol6_aan	TMPMgCI	MgClLiCl_d3_mol6	TMPH_1	_		-41.0	-1323.4932725	-1068.9586982	-1983.3830947	-409.0844975	0.0	0.0	4.2	0.0
				LiCI_mol6_aan	TMPMgCI	MgCILiCl_d5_mol6_1	TMPH_1			-26.4	-1323.4932725	-1068.9586982	-1983.3775462	-409.0844975	0.0	0.0	18.7	0.0
				LiCI_mol6_aan	TMPMgCI	MgClLiCl_d8_mol6_1	TMPH_1			-18.3	-1323.4932725	-1068.9586982	-1983.3744618	-409.0844975	0.0	0.0	26.8	0.0
				LiCl_mol6_aan	TMPMgCl	1_LiCl_3MgCl_d3_mol6	TMPH_1			-17.9	-1323.4932725	-1068.9586982	-1983.3742927	-409.0844975	0.0	0.0	27.3	0.0
T				LiCI_mol6_aan	TMPMgCI	MgClLiCl_d8_mol6	TMPH_1			-5.3	-1323.4932725	-1068.9586982	-1983.3695024	-409.0844975	0.0	0.0	39.8	0.0
				LiCI_mol6_aan	TMPMgCI	1_LiCI_5MgCI_d5_mol6	TMPH_1			4.2	-1323.4932725	-1068.9586982	-1983.3658756	-409.0844975	0.0	0.0	49.4	0.0
				LiCI mol6 aan	TMPMqCI	1 LiCl 2MgCl d2 mol6	TMPH 1	1		7.8	-1323.4932725	-1068.9586982	-1983.3645050	-409.0844975	0.0	0.0	53.0	0.0
				LiCl mol6 aan	TMPZnCI	LiCI 8ZnCl d8 mol6 aac2	TMPH 1	1		-30.9	-1323.4992246	-2648.1694763	-3562.5904045	-409.0900593	0.0	0.0	0.0	0.0
				LiCI mol6 aan	TMPZnCI	1 LiCl 8ZnCl d8 mol6 aac	TMPH 1	1		-29.2	-1323,4992246	-2648,1694763	-3562,5897820	-409.0900593	0.0	0.0	1.6	0.0
				LiCl mol6 aan	TMPZnCI	LiCl 5ZnCl d5 mol6 age	TMPH 1	1	1	-29.2	-1323,4992246	-2648,1694763	-3562.5897455	-409.0900593	0.0	0.0	1.7	0.0
				LiCl_mol6_aan	TMPZnCl	1 LiCl 27nCl d2 mol6 and	TMPH 1	1	1	-28.8	-1323 4992246	-2648 1694763	-3562 5895922	-409 0900593	0.0	0.0	21	0.0
				LiCl_mol6_aan	TMPZnCI	LiCL 3ZnCL d3 mol6 aan	TMPH 1	1		-28.5	-1323 4992246	-2648 1694763	-3562 5894870	-409 0900593	0.0	0.0	2.1	0.0
								1		20.0			3302.000-010		0.0	0.0	<u> </u>	0.0

				LiCl mol6 aan	TMPZnCl	1 LiCl 3ZnCl d3 mol6 aap	TMPH 1			-26.0	-1323,4992246	-2648,1694763	-3562.5885429	-409.0900593	0.0	0.0	4.9	0.0
				LiCL mol6_aan	TMP27n 1	LiCL 3TMPZn d3 mol6 a	TMPH 1			-21.4	-1323 4992246	-2596 3552027	-3510 7725271	-409 0900593	0.0	0.0	0.0	0.0
				LiCL mol6_aan	TMP27n_1	LiCL 5TMPZn d5 mol6 aa	TMPH 1			-21.3	-1323 /0022/6	-2596 3552027	-3510 772/655	-409.0900593	0.0	0.0	0.0	0.0
				LiCI_mol6_aan	TMD27n 1	1 LiCL STMPZn d5 mol6 o		-		19.0	1222.4002246	2530.3552027	2510.771000	400.0000503	0.0	0.0	2.4	0.0
				LiCI_malC_aan	TMD27= 1	LiCL 2TMD7n d2 male h		_		-10.0	1020.4992240	-2390.3332027	-3310.7712230	400.0000503	0.0	0.0	3.4	0.0
		-		LICI_mol6_aan	TMP2Zn_1	LICI_STMPZN_dS_MOID_D		_		-17.2	-1323.4992240	-2090.3002027	-3510.7709194	-409.0900593	0.0	0.0	4.2	0.0
		-		LICI_mol6_aan	TMP2Zh_1		TMPH_1	_		-16.2	-1323.4992246	-2596.3552027	-3510.7705445	-409.0900593	0.0	0.0	5.2	0.0
				LICI_mol6_aan	TMP2Zn_1	1_LICI_31MPZn_d3_mol6_a	IMPH_1	_		-14.9	-1323.4992246	-2596.3552027	-3510.7700601	-409.0900593	0.0	0.0	6.5	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCI_3TMPZn_d3_mol6_b	TMPH_1	_		-14.4	-1323.4992246	-2596.3552027	-3510.7698440	-409.0900593	0.0	0.0	7.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol6_c	TMPH_1			-3.1	-1323.4992246	-2596.3552027	-3510.7655469	-409.0900593	0.0	0.0	18.3	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCl_8TMPZn_d8_mol6_a	TMPH_1			3.1	-1323.4992246	-2596.3552027	-3510.7632015	-409.0900593	0.0	0.0	24.5	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCl_mol14_pos8_38	TMPH_1			-52.9	-1323.4992246	-2596.3552027	-4425.1936667	-409.0900593	0.0	0.0	0.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCl_mol14_pos8	TMPH_1			-51.9	-1323.4992246	-2596.3552027	-4425.1932889	-409.0900593	0.0	0.0	1.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1			-40.3	-1323.4992246	-2596.3552027	-4425.1888853	-409.0900593	0.0	0.0	12.6	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2_5	TMPH_1			-35.9	-1323.4992246	-2596.3552027	-4425.1872003	-409.0900593	0.0	0.0	17.0	0.0
				LiCl mol6 aan	TMP2Zn 1	1 LiCl mol14 pos5	TMPH 1			-35.6	-1323.4992246	-2596.3552027	-4425.1871093	-409.0900593	0.0	0.0	17.2	0.0
				1 LiCl mol7e	TMPZnCl	1 LiCl 2 ZnCl d2 mol7e	TMPH 1			-44.2	-1415,7740903	-2648,1694763	-3654.8703328	-409.0900593	0.0	0.0	0.0	0.0
				1 LiCL mol7e	TMPZnCl	1 LiCl 8 ZnCl d8 mol7e	TMPH 1			-34.2	-1415 7740903	-2648 1694763	-3654 8665198	-409 0900593	0.0	0.0	10.0	0.0
				1 LiCL mol7e	TMPZnCI	LiCL 2 ZnCL d2 molZe	TMPH 1			-23.7	-1/15 77/0903	-26/18 169/1763	-3654 8625463	-409.0900593	0.0	0.0	20.4	0.0
				1_LiCL_mol7o	TMPZnCl		TMPH 1	_		-23.5	-1415 7740003	-2649 1604763	-3654 8624606	-409.0900593	0.0	0.0	20.4	0.0
				1_LICI_mol7e	TMPZnCl			-		-23.3	1415 7740903	2040.1094703	-3034.0024000	400.0000503	0.0	0.0	20.7	0.0
		-		1_LICI_III0I7e	TMPZnCi			_		-20.7	-1415.7740903	-2040.1094703	-3034.0013002	-409.0900593	0.0	0.0	23.0	0.0
								+		-19.0	1415 7740000	2040.1094/03	-3034.0009007	400.0000500	0.0	0.0	24.0	0.0
					TMP2ZD_1		TMPH_1	+		-17.4	-1415.//40903	-2090.3552027	-3003.0458426	-409.0900593	0.0	0.0	0.0	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_5TMPZn_d5_mol/e	IMPH_1	_		-16.9	-1415.7740903	-2596.3552027	-3603.0456760	-409.0900593	0.0	0.0	0.4	0.0
				1_LICI_mol/e	IMP2Zn_1	1_LICI_21MPZn_d2_mol7e	IMPH_1	_		-12.5	-1415.7740903	-2596.3552027	-3603.0439831	-409.0900593	0.0	0.0	4.9	0.0
				1_LiCl_mol7e	TMP2Zn_1	LiCI_2TMPZn_d2_mol7e	TMPH_1	_		-11.0	-1415.7740903	-2596.3552027	-3603.0434058	-409.0900593	0.0	0.0	6.4	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_40	TMPH_1			-5.0	-1415.7740903	-2596.3552027	-3603.0411553	-409.0900593	0.0	0.0	12.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_31	TMPH_1			-5.0	-1415.7740903	-2596.3552027	-3603.0411461	-409.0900593	0.0	0.0	12.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_26	TMPH_1			-4.9	-1415.7740903	-2596.3552027	-3603.0410879	-409.0900593	0.0	0.0	12.5	0.0
				1_LiCl_mol7e	TMP2Zn_1	LiCI_5TMPZn_d5_mol7e_40	TMPH_1			-4.7	-1415.7740903	-2596.3552027	-3603.0410337	-409.0900593	0.0	0.0	12.6	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_28	TMPH_1			-1.5	-1415.7740903	-2596.3552027	-3603.0398050	-409.0900593	0.0	0.0	15.9	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 38	TMPH 1			-0.3	-1415.7740903	-2596.3552027	-3603.0393374	-409.0900593	0.0	0.0	17.1	0.0
				1 LiCl_mol7e	TMP2Zn 1	1 LiCl 5TMPZn d5 mol7e 1	TMPH 1			0.4	-1415.7740903	-2596.3552027	-3603.0390970	-409.0900593	0.0	0.0	17.7	0.0
				1 LiCl mol7e	TMP2Zn 1	LiCI 2TMPZn d2 mol7e 28	TMPH 1			2.4	-1415.7740903	-2596.3552027	-3603.0383193	-409.0900593	0.0	0.0	19.8	0.0
				1 LiCL molZe	TMP27n 1	LiCl_5TMPZn_d5_mol7e_38	TMPH 1			3.3	-1415 7740903	-2596 3552027	-3603 0379899	-409 0900593	0.0	0.0	20.6	0.0
				1 LiCL molZe	TMP27n 1	LiCL 5TMPZn d5 molZe 36	TMPH 1			49	-1415 7740903	-2596 3552027	-3603 0373659	-409 0900593	0.0	0.0	22.3	0.0
				1_LiCL_mol7e	TMP27n_1	1 LiCL 8TMPZn d8 molZe 20	TMPH 1	-		5.8	-1/15 77/0903	-2506 3552027	-3603 0370168	-400.0000000	0.0	0.0	23.2	0.0
				1_LiCL_mol7o	TMP27n_1	1 LiCl mol15 pos2 15	TMPH 1	_		65.5	-1415 7740003	-2506 3552027	-4600 7481002	-409.0900593	0.0	0.0	0.0	0.0
				1_LICI_III0I7e	TMD27= 1	1_LICI_III0I15_p082_15		_		-03.3	-1413.7740903	-2390.3332027	4009.7401992	400.0000503	0.0	0.0	0.0	0.0
				1_LICI_mol/e	TMP2Zn_1		TMPH_1	_		-64.1	-1415.7740903	-2596.3552027	-4609.7476731	-409.0900593	0.0	0.0	1.4	0.0
		-		1_LICI_moi/e	TMP2Zh_1		TMPH_1	_		-58.1	-1415.7740903	-2596.3552027	-4609.7453761	-409.0900593	0.0	0.0	7.4	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_mol15_pos2_17	IMPH_1	_		-55.9	-1415.7740903	-2596.3552027	-4609.7445580	-409.0900593	0.0	0.0	9.6	0.0
				1_LiCl_mol7e	IMP2Zn_1	1_LiCl_mol15_pos2_13	IMPH_1	_		-46.5	-1415.7740903	-2596.3552027	-4609.7409713	-409.0900593	0.0	0.0	19.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCI_mol15_pos8	TMPH_1	_		-46.3	-1415.7740903	-2596.3552027	-4609.7408805	-409.0900593	0.0	0.0	19.2	0.0
			I	1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_12	TMPH_1			-42.3	-1415.7740903	-2596.3552027	-4609.7393718	-409.0900593	0.0	0.0	23.2	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos5	TMPH_1			-34.0	-1415.7740903	-2596.3552027	-4609.7361996	-409.0900593	0.0	0.0	31.5	0.0
				1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos8_2	TMPH_1			-62.3	-1761.3767786	-1068.9619145	-2421.2751881	-409.0872280	0.0	0.0	0.0	0.0
				1_LiCl_mol16e_2	TMPMgCl	LiCl_mol17_pos8_1	TMPH_1			-61.2	-1761.3767786	-1068.9619145	-2421.2747739	-409.0872280	0.0	0.0	1.1	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1			-55.1	-1761.3767786	-1068.9619145	-2421.2724629	-409.0872280	0.0	0.0	7.2	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_1	TMPH_1			-54.8	-1761.3767786	-1068.9619145	-2421.2723452	-409.0872280	0.0	0.0	7.5	0.0
				1_LiCl_mol16e 2	TMPMqCI	LiCI_mol17 pos5 1	TMPH 1			-52.9	-1761.3767786	-1068.9619145	-2421.2716234	-409.0872280	0.0	0.0	9.4	0.0
0	0	0	0	MgCl2 mol6 aac	TMPZnCl	1 MgCl2 3ZnCl d3 mol6 aap	TMPH 1	1	reaction32	-26.7	-1976.3964261	-2648.1694763	-4215.4859972	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2 mol6 aac	TMP2Zn 1	1 MaCl2 5TMPZn d5 mol6 b	TMPH 1		reaction33	-19.5	-1976.3964261	-2596.3552027	-4163.6689845	-409.0900593	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2 mol6 aac	TMP2Zn 1	1 MgCl2 mol14 pos3	TMPH 1	1	reaction34	-45.0	-1976.3964261	-2596,3552027	-5730,9850649	-409,0900593	0.0	0.0	0,0	0.0
õ	0	0	Ő	1 MaCl2 mol7e	TMP27n 1	1 MgCl2 mol15 pos2 7	TMPH 1		reaction37	-70.7	-2068 6686058	-2596 3552027	-5915 5392259	-409 0900593	0.0	0.0	0.0	0.0
ÿ	v	v	Ŭ	MaCl2 mol6 ago	TMP7nCl	1 MaCl2 3ZnCl d3 mol6 app	TMPH 1	+		-26.7	-1976 306/261	-2648 160/762	-4215 4850072	-409 0000503	0.0	0.0	0.0	0.0
				MgCl2_mol6_aac	TMPZnCl	1 MgCl2 57nCl d5 mol6 app	TMPH 1	+		-20.7	-1076 306/261	-26/8 160/762	-1215 1838282	-400.0000593	0.0	0.0	5.7	0.0
				MgCl2_mol6_aac	TMPZnCl	1 MaCl2 27nCl d2 mol6 and	TMPH 1	+		-15.0	-1976 396/261	-2648 1694763	-4215.4030202	-409.0900393	0.0	0.0	11.6	0.0
			<u> </u>	MaCl2 mal6 acc	TMDZaCI	1 MaCl2 97pCL d9 male care		+		-11.0	-1076 2064264	-2040.1034/03	-4215.4013713	-400.0000503	0.0	0.0	16.6	0.0
								+		-11.0	-19/0.3904201	-2040.1094/03	-4210.4000477	-409.0900593	0.0	0.0	10.0	0.0
				IVIGCIZ_INDI6_aac			TMPH_1	+		4.3	-19/0.3904201	-2040.1094703	-4210.4/42085	-409.0900593	0.0	0.0	31.0	0.0
				NigCl2_mol6_aac		1_IVIGUI2_3ZhUI_d3_mol6_aap2	IMPH_1	_		13.5	-19/6.3964261	-2648.1694763	-4215.4707095	-409.0900593	0.0	0.0	40.1	0.0
			1	IVIGCI2_mol6_aac	TMP2Zn_1	1_IVIGUI2_51 MIPZn_d5_mol6_b	IMPH_1		1	-19.5	-1976.3964261	-2596.3552027	-4163.6689845	-409.0900593	0.0	0.0	0.0	0.0

MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_a	TMPH_1		-18.8	-1976.3964261	-2596.3552027	-4163.6687193	-409.0900593	0.0	0.0	0.7	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6_a	TMPH_1		-18.4	-1976.3964261	-2596.3552027	-4163.6685758	-409.0900593	0.0	0.0	1.1	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6_b	TMPH_1		-17.9	-1976.3964261	-2596.3552027	-4163.6683746	-409.0900593	0.0	0.0	1.6	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	MgCl2_3TMPZn_d3_mol6_a	TMPH_1		-5.1	-1976.3964261	-2596.3552027	-4163.6634983	-409.0900593	0.0	0.0	14.4	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_c	TMPH_1		-0.6	-1976.3964261	-2596.3552027	-4163.6617870	-409.0900593	0.0	0.0	18.9	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	MgCl2_5TMPZn_d5_mol6_aa	TMPH_1		-0.4	-1976.3964261	-2596.3552027	-4163.6617381	-409.0900593	0.0	0.0	19.0	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_b	TMPH_1		8.5	-1976.3964261	-2596.3552027	-4163.6583396	-409.0900593	0.0	0.0	27.9	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_8TMPZn_d8_mol6_a2	TMPH_1		13.1	-1976.3964261	-2596.3552027	-4163.6565679	-409.0900593	0.0	0.0	32.6	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos3	TMPH_1		-45.0	-1976.3964261	-2596.3552027	-5730.9850649	-409.0900593	0.0	0.0	0.0	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2_27	TMPH_1		-43.3	-1976.3964261	-2596.3552027	-5730.9844212	-409.0900593	0.0	0.0	1.7	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5	TMPH_1		-39.0	-1976.3964261	-2596.3552027	-5730.9827748	-409.0900593	0.0	0.0	6.0	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2	TMPH_1		-16.7	-1976.3964261	-2596.3552027	-5730.9743038	-409.0900593	0.0	0.0	28.3	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_29	TMPH_1		-7.7	-1976.3964261	-2596.3552027	-5730.9708620	-409.0900593	0.0	0.0	37.3	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_31	TMPH_1		7.6	-1976.3964261	-2596.3552027	-5730.9650305	-409.0900593	0.0	0.0	52.6	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8	TMPH_1		9.6	-1976.3964261	-2596.3552027	-5730.9642970	-409.0900593	0.0	0.0	54.5	0.0
MgCl2_m	ol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8_1	TMPH_1		15.9	-1976.3964261	-2596.3552027	-5730.9618713	-409.0900593	0.0	0.0	60.9	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_7	TMPH_1		-70.7	-2068.6686058	-2596.3552027	-5915.5392259	-409.0900593	0.0	0.0	0.0	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2	TMPH_1		-55.9	-2068.6686058	-2596.3552027	-5915.5335796	-409.0900593	0.0	0.0	14.8	0.0
1_MgCl2	_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5	TMPH_1		-35.1	-2068.6686058	-2596.3552027	-5915.5256702	-409.0900593	0.0	0.0	35.6	0.0
1_MgCl2	_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_9	TMPH_1		-7.2	-2068.6686058	-2596.3552027	-5915.5150536	-409.0900593	0.0	0.0	63.5	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos8	TMPH_1		2.9	-2068.6686058	-2596.3552027	-5915.5111726	-409.0900593	0.0	0.0	73.7	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_5	TMPH_1		17.4	-2068.6686058	-2596.3552027	-5915.5056715	-409.0900593	0.0	0.0	88.1	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_8	TMPH_1		48.1	-2068.6686058	-2596.3552027	-5915.4939915	-409.0900593	0.0	0.0	118.8	0.0
1_MgCl2	mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5_10	TMPH_1		82.6	-2068.6686058	-2596.3552027	-5915.4808502	-409.0900593	0.0	0.0	153.3	0.0

	cha	arge				filename			ΔG^{sol}		G ^s	ol			Δ	G ^{sol}	
E1	E2	P1	P2	E1	E2	P1	P2		kJ/mol	E1	E2	P1	P2	E1	E2	P1	P2
0	0	0	0	mol6	TMPMgCl	3_MgCl_d3_mol6_aad	TMPH_1	reaction1	-1.5	-855.5797856	-1068.9540091	-1515.4502223	-409.0841431	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMPZnCl	3_ZnCl_d3_mol6_aac	TMPH_1	reaction2	-16.2	-855.5847652	-2648.1661160	-3094.6673461	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	mol6	TMP2Zn_1	5_TMPZn_d5_mol6_a	TMPH_1	reaction3	-13.7	-855.5847652	-2596.3535754	-3042.8538706	-409.0897049	0.0	0.0	0.5	0.0
0	0	0	0	mol6	TMP2Zn_1	mol14_pos5	TMPH_1	reaction4	-26.7	-855.5847652	-2596.3535754	-3489.3538594	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMPZnCl	5_ZnCl_d5_mol7e	TMPH_1	reaction5	-14.3	-947.8613888	-2648.1661160	-3186.9432279	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_36	TMPH_1	reaction6	-13.8	-947.8613888	-2596.3535754	-3135.1305286	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	mol7e	TMP2Zn_1	mol15_pos5	TMPH_1	reaction7	-29.2	-947.8613888	-2596.3535754	-3673.9080747	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	mol16e_1	TMPMgCl	mol17_pos5_2	TMPH_1	reaction8	-10.0	-1293.4670033	-1068.9572254	-1953.3411666	-409.0868736	0.5	0.0	0.0	0.0
				mol6	IMPMgCl	3_MgCl_d3_mol6_aad	IMPH_1		-1.5	-855.5797856	-1068.9540091	-1515.4502223	-409.0841431	0.0	0.0	0.0	0.0
				mol6	IMPMgCl	3_MgCl_d3_mol6_aaq	IMPH_1		-1.5	-855.5797856	-1068.9540091	-1515.4502170	-409.0841431	0.0	0.0	0.0	0.0
				mol6	IMPMgCI	5_MgCl_d5_mol6_aaa	IMPH_1		10.0	-855.5797856	-1068.9540091	-1515.4458470	-409.0841431	0.0	0.0	11.5	0.0
				mol6	TMPMgCI	8_MgCl_d8_mol6_aar	IMPH_1		19.6	-855.5797856	-1068.9540091	-1515.4422009	-409.0841431	0.0	0.0	21.1	0.0
				mol6	TMPMgCi		TMPH_1		39.4	-855.5797856	-1068.9540091	-1515.4346432	-409.0841431	0.0	0.0	40.9	0.0
				mol6	TMPZhCi		TMPH_1		-16.2	-855.5847652	-2648.1661160	-3094.6673461	-409.0897049	0.0	0.0	0.0	0.0
				molo	TMPZnCI	3_ZhCl_d3_mol6_aax	TMPH_1		-16.2	-855.5847652	-2648.1661160	-3094.6673417	-409.0897049	0.0	0.0	0.0	0.0
				mole	TMPZnCi	5 ZnCL d5 mole aap			-10.2	-000.004/002	-2048.1001100	-3094.0073407	-409.0897049	0.0	0.0	0.0	0.0
				mole	TMPZnCl				-14.0	-000.0047002	-2040.1001100	-3094.0004902	-409.0697049	0.0	0.0	12.4	0.0
				mol6	TMPZnCl	2 ZnCL d2 mol6 aac			-2.0 1.9	-000.0047002	-2648 1661160	-3094.0022318	-409.0697049	0.0	0.0	19.4	0.0
				mol6	TMP27n 1	5 TMPZn d5 mol6 a	TMPH 1		-13.3	-855 5847652	-2596 3535754	-30/2 8536020	-409.0897049	0.0	0.0	0.5	0.0
				mol6	TMP27n 1	5 TMPZn d5 mol6 b	TMPH 1		-13.7	-855 5847652	-2596 3535754	-3042.0530320	-409.0037049	0.0	0.0	0.0	0.0
				mol6	TMP27n 1	3 TMPZn d3 mol6 h	TMPH 1		-10.2	-855 5847652	-2596 3535754	-3042.0530700	-409.0097049	0.0	0.0	3.6	0.0
				mol6	TMP27n 1	8 TMPZn d8 mol6 a	TMPH 1		63	-855 5847652	-2596 3535754	-3042.8462379	-409.0037049	0.0	0.0	20.0	0.0
				mol6	TMP27n 1	2 TMPZn d2 mol6 a	TMPH 1		12.5	-855 5847652	-2596 3535754	-3042 8438617	-409.0897049	0.0	0.0	26.3	0.0
				mol6	TMP27n 1	mol14 pos5	TMPH 1		-26.7	-855 5847652	-2596 3535754	-3489 3538594	-409 0897049	0.0	0.0	0.0	0.0
				mol6	TMP2Zn 1	mol14 pos3	TMPH 1		-23.1	-855.5847652	-2596.3535754	-3489.3524997	-409.0897049	0.0	0.0	3.6	0.0
				mol6	TMP2Zn 1	mol14 pos8	TMPH 1		5.5	-855.5847652	-2596.3535754	-3489.3416096	-409.0897049	0.0	0.0	32.2	0.0
				mol6	TMP2Zn 1	mol14 pos2	TMPH 1		14.9	-855.5847652	-2596.3535754	-3489.3380114	-409.0897049	0.0	0.0	41.6	0.0
				mol7e	TMPZnCl	5_ZnCl_d5_mol7e	TMPH_1		-14.3	-947.8613888	-2648.1661160	-3186.9432279	-409.0897049	0.0	0.0	0.0	0.0
				mol7e	TMPZnCl	2_ZnCl_d2_mol7e	TMPH_1		-7.7	-947.8613888	-2648.1661160	-3186.9407477	-409.0897049	0.0	0.0	6.5	0.0
				mol7e	TMPZnCI	8_ZnCl_d8_mol7e	TMPH_1		-6.2	-947.8613888	-2648.1661160	-3186.9401746	-409.0897049	0.0	0.0	8.0	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_36	TMPH_1		-13.8	-947.8613888	-2596.3535754	-3135.1305286	-409.0897049	0.0	0.0	0.0	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e	TMPH_1		-13.8	-947.8613888	-2596.3535754	-3135.1305078	-409.0897049	0.0	0.0	0.1	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_40	TMPH_1		-2.4	-947.8613888	-2596.3535754	-3135.1261629	-409.0897049	0.0	0.0	11.5	0.0
				mol7e	TMP2Zn_1	2_TMPZn_d2_mol7e	TMPH_1		-1.3	-947.8613888	-2596.3535754	-3135.125753	-409.0897049	0.0	0.0	12.5	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_38	TMPH_1		2.1	-947.8613888	-2596.3535754	-3135.124442	-409.0897049	0.0	0.0	16.0	0.0
				mol7e	TMP2Zn_1	8_TMPZn_d8_mol7e	TMPH_1		0.5	-947.8613888	-2596.3535754	-3135.125066	-409.0897049	0.0	0.0	14.3	0.0
				mol7e	TMP2Zn_1	5_TMPZn_d5_mol7e_1	TMPH_1		4.3	-947.8613888	-2596.3535754	-3135.123615	-409.0897049	0.0	0.0	18.2	0.0
				mol7e	TMP2Zn_1	mol15_pos5	TMPH_1		-29.2	-947.8613888	-2596.3535754	-3673.9080747	-409.0897049	0.0	0.0	0.0	0.0
L			ļ	mol7e	TMP2Zn_1	mol15_pos2	TMPH_1		-8.1	-947.8613888	-2596.3535754	-3673.9000425	-409.0897049	0.0	0.0	21.1	0.0
				mol7e	TMP2Zn_1	mol15_pos8	TMPH_1		-4.4	-947.8613888	-2596.3535754	-3673.8986125	-409.0897049	0.0	0.0	24.8	0.0
				mol16e_1	TMPMgCl	mol17_pos5_2	TMPH_1		-10.0	-1293.4670033	-1068.9572254	-1953.3411666	-409.0868736	0.5	0.0	0.0	0.0
				mol16e_1	IMPMgCI	mol17_pos5_1	IMPH_1		-9.9	-1293.4670033	-1068.9572254	-1953.3411280	-409.0868736	0.5	0.0	0.1	0.0
	<u> </u>	_		mol16e_1	TMPMgCI	mol17_pos8_2	TMPH_1		19.3	-1293.4670033	-1068.9572254	-1953.3299881	-409.0868736	0.5	0.0	29.3	0.0
0	0	0	0	1_LiCl_mol6_1	IMPMgCI	1_LiCl_8MgCl_d8_mol6	IMPH_1	reaction11	-45.8	-1323.4874591	-1068.9540091	-1983.3747766	-409.0841431	0.0	0.0	0.0	0.0
0	0	0	0	1_LICI_mol6_1		1_LICI_2ZnCI_d2_mol6_aaq	TMPH_1	reaction12	-31.7	-1323.4934114	-2648.1661160	-3562.5818963	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0		TMP2Zn_1			reaction13	-14.5	-1323.4934114	-2390.3535/54	-3510.7628194	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0					reaction14	-40.Z	1415 7675044	-2090.3030/54	-4420.1/93060	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0					reaction15	-40.3	1415./0/5211	-2040.1001160	-3034.0011981	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0		TMP27n 4	1 LiCl_mol15_poc9_10		reaction17	-10.2	-1410./0/0211	-2090.0000/04	-3003.03/3403	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0			1 LiCL mol17 pos8 2		reaction19	-77.5	-1761 3705201	-2050.000704	-7003.7300042	-409.0037049	0.0	0.0	0.0	0.0
0					TMPMaC			reaction10	-45.8	-1323 /87/501	-1068 95/0001	-1083 37/7766	-409.0000730	0.0	0.0	0.0	0.0
					TMPMaC	1 LiCL 3MaCL d3 mole		1	-43.0	-1323.4074591	-1068.9540091	-1983 3600505	-409 08/1/31	0.0	0.0	38.6	0.0
	-	-			TMPMaCI	1 LiCL 5MgCL d5 mole	TMPH 1	1	7.6	-1323 4874591	-1068 9540091	-1983 3544372	-409 0841431	0.0	0.0	53.4	0.0
	1	1	1		. in ingot			1	1.0				00.0041401	0.0	0.0	- UU	0.0

 Table TT12. The calculated for reaction free energy values at the CPCM(THF)/B3LYP-D3/6-311++G(2df,2p)//B3LYP-D3/6-31++G(2d,p) level of theory (T = T_{experimental}).

 "E1 and E2" – educt 1 and educt 2, "P1 and P2" – product 1 and product 2.

				1 LiCl mol6 1	TMPMqCI	1 LiCl 2MgCl d2 mol6	TMPH 1			17.2	-1323.4874591	-1068.9540091	-1983.3507799	-409.0841431	0.0	0.0	63.0	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 2ZnCl d2 mol6 aag	TMPH 1			-31.7	-1323.4934114	-2648.1661160	-3562.5818963	-409.0897049	0.0	0.0	0.0	0.0
				1 LiCl mol6 1	TMPZnCl	1 LiCl 8ZnCl d8 mol6 aac	TMPH 1			-30.8	-1323.4934114	-2648.1661160	-3562.5815352	-409.0897049	0.0	0.0	0.9	0.0
				1 LiCL mol6 1	TMPZnCl	1 LiCL 3ZnCL d3 mol6 aan	TMPH 1			-18.4	-1323 4934114	-2648 1661160	-3562 5768378	-409 0897049	0.0	0.0	13.3	0.0
				1 LiCL mol6 1	TMPZnCl	1 LiCl 5ZnCl d5 mol6 aae	TMPH 1			12	-1323 4934114	-2648 1661160	-3562 5693800	-409 0897049	0.0	0.0	32.9	0.0
				1_LiCL_mol6_1	TMP27n 1	1 LiCl_STMPZn_d5_mol6_a	TMPH 1			-14.5	-1323 4934114	-2596 3535754	-3510 7628194	-409.0007049	0.0	0.0	0.0	0.0
				1_LiCL_mol6_1	TMP27n_1	1 LiCl 5TMPZn d5 mol6 b	TMPH 1			-12.7	-1323 /03/11/	-2506 3535754	-3510 7621323	-409.0007049	0.0	0.0	1.8	0.0
				1_LiCl_mol6_1	TMP27n 1	1_LICL_3TMP7n_d3_mol6_p				-11.5	-1323.4334114	-2506 3535754	-3510.7616534	-403.0037043	0.0	0.0	2.1	0.0
				1_LICI_III0I0_1	TMP2Zn_1	1_LICI_3TMPZn_d2_mol6_b		-		-11.5	1222.4934114	-2090.3030704	-3510.7010334	-409.0697049	0.0	0.0	3.1	0.0
				1_LICI_III0I0_1		1_LICI_STMPZII_d3_III010_D		-		-10.6	-1323.4934114	-2090.0000704	-3510.7614097	-409.0697049	0.0	0.0	3.7	0.0
					TMP2Zn_1		TMPH_1	-		-7.0	-1323.4934114	-2596.3535754	-3510.7599461	-409.0897049	0.0	0.0	1.5	0.0
				1_LICI_M0I6_1	TMP2Zh_1	1_LICI_81MPZn_d8_mol6_c	TMPH_1	_		1.7	-1323.4934114	-2596.3535754	-3510.7566274	-409.0897049	0.0	0.0	16.3	0.0
				1_LiCI_mol6_1	TMP2Zn_1	1_LICI_moI14_pos2_5	IMPH_1			-48.2	-1323.4934114	-2596.3535754	-4425.1793560	-409.0897049	0.0	0.0	0.0	0.0
				1_LiCl_mol6_1	IMP2Zn_1	1_LiCl_mol14_pos8	IMPH_1			-46.7	-1323.4934114	-2596.3535754	-4425.1787852	-409.0897049	0.0	0.0	1.5	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos2_8	TMPH_1			-36.8	-1323.4934114	-2596.3535754	-4425.1750000	-409.0897049	0.0	0.0	11.4	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos2	TMPH_1			-34.5	-1323.4934114	-2596.3535754	-4425.1741428	-409.0897049	0.0	0.0	13.7	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1			-26.8	-1323.4934114	-2596.3535754	-4425.1712064	-409.0897049	0.0	0.0	21.4	0.0
				1_LiCl_mol6_1	TMP2Zn_1	1_LiCl_mol14_pos5	TMPH_1			-26.0	-1323.4934114	-2596.3535754	-4425.1708972	-409.0897049	0.0	0.0	22.2	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_2_ZnCl_d2_mol7e	TMPH_1			-45.3	-1415.7675211	-2648.1661160	-3654.8611981	-409.0897049	0.0	0.0	0.0	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_8_ZnCl_d8_mol7e	TMPH_1			-35.6	-1415.7675211	-2648.1661160	-3654.8574732	-409.0897049	0.0	0.0	9.8	0.0
				1_LiCl_mol7e	TMPZnCl	1_LiCl_5_ZnCl_d5_mol7e	TMPH_1			-15.4	-1415.7675211	-2648.1661160	-3654.8498060	-409.0897049	0.0	0.0	29.9	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_5TMPZn_d5_mol7e_36	TMPH_1			-16.2	-1415.7675211	-2596.3535754	-3603.0375463	-409.0897049	0.0	0.0	0.0	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e	TMPH 1			-15.8	-1415.7675211	-2596.3535754	-3603.0374059	-409.0897049	0.0	0.0	0.4	0.0
				1 LiCl mol7e	TMP2Zn_1	1 LiCl 5TMPZn d5 mol7e	TMPH 1			-15.8	-1415.7675211	-2596.3535754	-3603.0373973	-409.0897049	0.0	0.0	0.4	0.0
				1 LiCl mol7e	TMP2Zn 1	1 LiCl 2TMPZn d2 mol7e 31	TMPH 1			-8.1	-1415.7675211	-2596.3535754	-3603.0344814	-409.0897049	0.0	0.0	8.0	0.0
				1 LiCL mol7e	TMP27n 1	1 LiCl 2TMPZn d2 mol7e 26	TMPH 1			-7.8	-1415 7675211	-2596 3535754	-3603 0343516	-409 0897049	0.0	0.0	8.4	0.0
				1_LiCL_mol7e	TMP27n_1	1 LiCl 2TMPZn d2 molZe 28	TMPH 1			-4.8	-1415 7675211	-2506 3535754	-3603 0332274	-409.0007049	0.0	0.0	11.3	0.0
				1_LiCL_mol7o	TMP27n 1	1 LiCl 5TMPZp d5 mol7o 40				-4.0	-1415 7675211	-2506 3535754	-3603.0332274	-403.0037043	0.0	0.0	12.9	0.0
					TMP27n 1	1 LiCl_5TMPZn_d5_mol7e_40		-		-3.4	-1415.7075211	-2506 3535754	-3603.0320070	-409.0097049	0.0	0.0	17.0	0.0
				1_LICI_mol7e	TMP27n 1	1 LiCL STMPZIL_US_IN0176_50		-		0.9	1415.707.5211	2590.3535754	2602.0200550	409.0097049	0.0	0.0	17.0	0.0
				1_LICI_III0I7e				-		1.4	-1413.7073211	-2090.0000704	-3003.0306336	-409.0697049	0.0	0.0	17.0	0.0
				1_LICI_III0I7e				-		2.3	-1413.7073211	-2090.0000704	-3003.0303200	-409.0697049	0.0	0.0	10.4	0.0
				1_LICI_mol/e	TMP2Zn_1		TMPH_1	-		-77.9	-1415.7675211	-2596.3535754	-4609.7388842	-409.0897049	0.0	0.0	0.0	0.0
				1_LICI_mol/e	TMP2Zh_1	1_LICI_mol15_pos2_17	TMPH_1	_		-69.3	-1415.7675211	-2596.3535754	-4609.7355987	-409.0897049	0.0	0.0	8.6	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_moI15_pos2_15	IMPH_1	_		-67.1	-1415.7675211	-2596.3535754	-4609.7347553	-409.0897049	0.0	0.0	10.8	0.0
				1_LiCl_mol7e	IMP2Zn_1	1_LiCl_mol15_pos8	IMPH_1			-62.1	-1415.7675211	-2596.3535754	-4609.7328651	-409.0897049	0.0	0.0	15.8	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_12	TMPH_1			-55.6	-1415.7675211	-2596.3535754	-4609.7303961	-409.0897049	0.0	0.0	22.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos2_13	TMPH_1			-50.2	-1415.7675211	-2596.3535754	-4609.7283395	-409.0897049	0.0	0.0	27.7	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos5	TMPH_1			-31.3	-1415.7675211	-2596.3535754	-4609.7211233	-409.0897049	0.0	0.0	46.6	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_2	TMPH_1			-58.1	-1761.3705301	-1068.9572254	-2421.2630031	-409.0868736	0.0	0.0	0.0	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos8_1	TMPH_1			-57.6	-1761.3705301	-1068.9572254	-2421.2628052	-409.0868736	0.0	0.0	0.5	0.0
				1_LiCl_mol16e_2	TMPMgCI	1_LiCl_mol17_pos5_1	TMPH_1			-13.5	-1761.3705301	-1068.9572254	-2421.2460049	-409.0868736	0.0	0.0	44.6	0.0
0	0	0	0	LiCl_mol6_aan	TMPMgCI	MgClLiCl_d5_mol6	TMPH_1		reaction21	-47.0	-1323.4872605	-1068.9540091	-1983.3750157	-409.0841431	0.0	0.0	0.0	0.0
0	0	0	0	LiCl mol6 aan	TMPZnCl	LiCI 8ZnCI d8 mol6 aac2	TMPH 1		reaction22	-33.0	-1323.4932126	-2648.1661160	-3562.5821902	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	LiCl mol6 aan	TMP2Zn 1	LiCl 3TMPZn d3 mol6 a	TMPH 1		reaction23	-24.8	-1323.4932126	-2596.3535754	-3510.7665292	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	LiCl mol6 aan	TMP2Zn 1	LiCl mol14 pos8	TMPH 1		reaction24	-64.6	-1323.4932126	-2596.3535754	-4425.1851790	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCl mol7e	TMPZnCl	1 LiCl 2 ZnCl d2 mol7e	TMPH 1		reaction25	-45.3	-1415.7675211	-2648,1661160	-3654.8611981	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCL mol7e	TMP27n 1	1 LiCl 5TMPZn d5 molZe 36	TMPH 1		reaction26	-16.2	-1415 7675211	-2596 3535754	-3603 0375463	-409 0897049	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCL mol7e	TMP27n_1	1 LiCl mol15 pos8 19	TMPH 1		reaction27	-77.9	-1415 7675211	-2596 3535754	-4609 7388842	-409 0897049	0.0	0.0	0.0	0.0
0	0	0	0	1 LiCL mol16e 2	TMPMaCI	LiCl mol17 pos8 2	TMPH 1		reaction28	-65.1	-1761 3705301	-1068 9572254	-2421 2656716	-409.0868736	0.0	0.0	0.0	0.0
0	0	0	0		TMPMaCl	MaCILICL d5 mol6			reactionzo	-47.0	-1222 4972605	-1068 0540001	-1082 3750157	-409.0000730	0.0	0.0	0.0	0.0
					TMPMaC			-		-47.0	-1323.4072605	-1068 0540091	-1003.3730137	-400.0841431	0.0	0.0	0.0	0.0
					TMDM-CL			+		-40.3	1223.4072005	1069 05 10001	1002 2722000	400.0041431	0.0	0.0	0.0	0.0
					TMDM~CI			_		-42.4	1222.4072005	1068.9540091	1092 2002054	-409.0041431	0.0	0.0	4.0	0.0
					TMPN/gCl			_		-32.1	-1323.4072005	-1008.9540091	-1903.3093051	-409.0641431	0.0	0.0	14.0	0.0
				LIUI_MOI6_aan	TMPMgCI		IMPH_1	_	+	-24.0	-1323.4872605	-1068.9540091	-1983.3662559	-409.0841431	0.0	0.0	23.0	0.0
				LICI_mol6_aan	IMPMgCl	MgCILiCI_d8_mol6	IMPH_1	_		-13.1	-1323.4872605	-1068.9540091	-1983.3621014	-409.0841431	0.0	0.0	33.9	0.0
				LICI_mol6_aan	IMPMgCl	1_LiCl_3MgCl_d3_mol6	1	_		-7.7	-1323.4872605	-1068.9540091	-1983.3600595	-409.0841431	0.0	0.0	39.3	0.0
				LICI_mol6_aan	IMPMgCl	MgCILiCI_d2_mol6	[MPH_1	_		3.7	-1323.4872605	-1068.9540091	-1983.3557106	-409.0841431	0.0	0.0	50.7	0.0
				LiCl_mol6_aan	TMPZnCI	LiCI_8ZnCI_d8_mol6_aac2	TMPH_1	_		-33.0	-1323.4932126	-2648.1661160	-3562.5821902	-409.0897049	0.0	0.0	0.0	0.0
				LiCI_mol6_aan	TMPZnCI	1_LiCl_2ZnCl_d2_mol6_aaq	TMPH_1			-32.2	-1323.4932126	-2648.1661160	-3562.5818963	-409.0897049	0.0	0.0	0.8	0.0
				LiCI_mol6_aan	TMPZnCI	1_LiCl_8ZnCl_d8_mol6_aac	TMPH_1			-31.3	-1323.4932126	-2648.1661160	-3562.5815352	-409.0897049	0.0	0.0	1.7	0.0
T				LiCl_mol6_aan	TMPZnCl	LiCI_3ZnCI_d3_mol6_aap	TMPH_1			-30.1	-1323.4932126	-2648.1661160	-3562.5810755	-409.0897049	0.0	0.0	2.9	0.0

				LiCl mol6 aan	TMPZnCI	LiCl 5ZnCl d5 mol6 aae	TMPH 1			-30.1	-1323.4932126	-2648.1661160	-3562.5810709	-409.0897049	0.0	0.0	2.9	0.0
				LiCL mol6_aan	TMP27n 1	LiCL 3TMPZn d3 mol6 a	TMPH 1			-24.8	-1323 4932126	-2596 3535754	-3510 7665292	-409 0897049	0.0	0.0	0.0	0.0
				LiCL mol6_aan	TMP27n_1	LiCL 5TMPZn d5 mol6 aa	TMPH 1			-24.2	-1323 /032126	-2596 3535754	-3510 7662824	-400.0007040	0.0	0.0	0.0	0.0
				LiCI_mol6_aan	TMD27p_1	LiCL 2TMDZp d2 mol6 b				24.2	1222 4022120	2506 2525754	2510.7647174	400.0807040	0.0	0.0	4.0	0.0
				LiCI_mol6_oon	TMP27p_1					-20.0	1222 4022120	2506 2525754	2510.7629104	409.0097049	0.0	0.0	4.0	0.0
					TMD27p 1	1 LICL STMPZILUS_INDIO_a				-13.1	1222 4022120	2590.3535754	2510.7020194	400.0807049	0.0	0.0	9.7	0.0
				LICI_III0I0_ddii	TMD27p 1					-13.3	-1323.4932120	-2090.0000704	-3310.7021323	-409.0697049	0.0	0.0	11.0	0.0
				LICI_MOI6_aan	TMP2Zn_1	1_LICI_3TMPZh_d3_mole_a	TMPH_1			-12.0	-1323.4932120	-2596.3535754	-3510.7616534	-409.0897049	0.0	0.0	12.8	0.0
				LiCI_mol6_aan	TMP2Zn_1	1_LICI_3TMPZn_d3_mol6_b	IMPH_1			-11.4	-1323.4932126	-2596.3535754	-3510.7614097	-409.0897049	0.0	0.0	13.4	0.0
				LICI_mol6_aan	TMP2Zn_1	1_LICI_21MPZn_d2_mol6_c	IMPH_1			-7.5	-1323.4932126	-2596.3535754	-3510.7599461	-409.0897049	0.0	0.0	17.3	0.0
				LiCI_mol6_aan	TMP2Zn_1	LiCI_81MPZn_d8_mol6_a	IMPH_1			-1.4	-1323.4932126	-2596.3535754	-3510.7576194	-409.0897049	0.0	0.0	23.4	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCl_mol14_pos8	TMPH_1			-64.6	-1323.4932126	-2596.3535754	-4425.1851790	-409.0897049	0.0	0.0	0.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	LiCI_mol14_pos8_38	TMPH_1			-64.1	-1323.4932126	-2596.3535754	-4425.1849874	-409.0897049	0.0	0.0	0.5	0.0
				LiCI_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2_5	TMPH_1			-49.3	-1323.4932126	-2596.3535754	-4425.1793560	-409.0897049	0.0	0.0	15.3	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos8	TMPH_1			-47.8	-1323.4932126	-2596.3535754	-4425.1787852	-409.0897049	0.0	0.0	16.8	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2_8	TMPH_1			-37.8	-1323.4932126	-2596.3535754	-4425.1750000	-409.0897049	0.0	0.0	26.7	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos2	TMPH_1			-35.6	-1323.4932126	-2596.3535754	-4425.1741428	-409.0897049	0.0	0.0	29.0	0.0
				LiCl_mol6_aan	TMP2Zn_1	1_LiCl_mol14_pos3	TMPH_1			-27.9	-1323.4932126	-2596.3535754	-4425.1712064	-409.0897049	0.0	0.0	36.7	0.0
				LiCI mol6 aan	TMP2Zn 1	1 LiCl mol14 pos5	TMPH 1			-27.1	-1323.4932126	-2596.3535754	-4425.1708972	-409.0897049	0.0	0.0	37.5	0.0
				1 LiCl mol7e	TMPZnCI	1 LiCl 2 ZnCl d2 mol7e	TMPH 1			-45.3	-1415.7675211	-2648.1661160	-3654.8611981	-409.0897049	0.0	0.0	0.0	0.0
				1 LiCl_mol7e	TMPZnCI	1 LiCl 8 ZnCl d8 mol7e	TMPH 1			-35.6	-1415.7675211	-2648,1661160	-3654.8574732	-409.0897049	0.0	0.0	9.8	0.0
				1 LiCL mol7e	TMPZnCI	LiCl 5 ZnCl d5 molZe	TMPH 1			-32.9	-1415 7675211	-2648 1661160	-3654 8564489	-409 0897049	0.0	0.0	12.5	0.0
				1 LiCL molZe	TMPZnCI	LiCL 2 ZnCL d2 molZe	TMPH 1			-25.7	-1415 7675211	-2648 1661160	-3654 8537045	-409 0897049	0.0	0.0	19.7	0.0
				1_LiCl_mol7e	TMPZnCI		TMPH 1			-23.7	-1/15 7675211	-2648 1661160	-365/ 8520712	-400.0007040	0.0	0.0	21.6	0.0
				1_LICI_mol7e	TMPZnCl		TMPH 1			-15.7	-1415.7675211	-2648 1661160	-3654 9409060	-409.0097049	0.0	0.0	21.0	0.0
				1_LICI_mol7e	TMP27p 1	1 LiCL ETMDZp dE molZo 26				-13.4	1415.7073211	2506 2525754	2602 0275462	409.0097049	0.0	0.0	29.9	0.0
				1_LICI_III0I7e						-10.2	-1415.7075211	-2090.0000704	-3003.0373403	-409.0697049	0.0	0.0	0.0	0.0
			-	1_LICI_moi/e	TMP2Zn_1		TMPH_1			-15.8	-1415.7675211	-2596.3535754	-3603.0374059	-409.0897049	0.0	0.0	0.4	0.0
				1_LiCl_mol/e	TMP2Zn_1	1_LICI_51MPZn_d5_mol/e	IMPH_1			-15.8	-1415.7675211	-2596.3535754	-3603.0373973	-409.0897049	0.0	0.0	0.4	0.0
				1_LiCl_mol7e	TMP2Zn_1	LICI_21MPZn_d2_mol7e	IMPH_1			-14.8	-1415.7675211	-2596.3535754	-3603.0370329	-409.0897049	0.0	0.0	1.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	LiCl_5TMPZn_d5_mol7e_40	TMPH_1			-13.4	-1415.7675211	-2596.3535754	-3603.0364894	-409.0897049	0.0	0.0	2.8	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_31	TMPH_1			-8.1	-1415.7675211	-2596.3535754	-3603.0344814	-409.0897049	0.0	0.0	8.0	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_26	TMPH_1			-7.8	-1415.7675211	-2596.3535754	-3603.0343516	-409.0897049	0.0	0.0	8.4	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_2TMPZn_d2_mol7e_28	TMPH_1			-4.8	-1415.7675211	-2596.3535754	-3603.0332274	-409.0897049	0.0	0.0	11.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	LiCI_5TMPZn_d5_mol7e_36	TMPH_1			-4.7	-1415.7675211	-2596.3535754	-3603.0331712	-409.0897049	0.0	0.0	11.5	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCI_5TMPZn_d5_mol7e_40	TMPH_1			-3.4	-1415.7675211	-2596.3535754	-3603.0326870	-409.0897049	0.0	0.0	12.8	0.0
				1 LiCl mol7e	TMP2Zn 1	LiCI 5TMPZn d5 mol7e 1	TMPH 1			-3.3	-1415.7675211	-2596.3535754	-3603.0326468	-409.0897049	0.0	0.0	12.9	0.0
				1 LiCl mol7e	TMP2Zn 1	LiCl 5TMPZn d5 mol7e 38	TMPH 1			-1.3	-1415.7675211	-2596.3535754	-3603.0318848	-409.0897049	0.0	0.0	14.9	0.0
				1 LiCl mol7e	TMP2Zn 1	LiCI 2TMPZn d2 mol7e 28	TMPH 1			-0.6	-1415.7675211	-2596.3535754	-3603.0316027	-409.0897049	0.0	0.0	15.6	0.0
				1 LiCL molZe	TMP27n 1	1 LiCL 5TMPZn d5 molZe 38	TMPH 1			0.9	-1415 7675211	-2596 3535754	-3603 0310626	-409 0897049	0.0	0.0	17.0	0.0
				1 LiCL molZe	TMP27n_1	1 LiCl 5TMPZn d5 molZe 1	TMPH 1			1.4	-1415 7675211	-2596 3535754	-3603 0308558	-409 0897049	0.0	0.0	17.6	0.0
				1_LiCL_mol7e	TMP27n_1	1 LiCl 8TMPZn d8 molZe 20	TMPH 1			2.3	-1415 7675211	-2596 3535754	-3603 0305200	-409.0897049	0.0	0.0	18.4	0.0
				1_LiCl_mol7e	TMP27n_1	1 LiCL mol15 pos8 19	TMPH 1			-77.9	-1/15 7675211	-2596 3535754	-4609 7388842	-400.0007040	0.0	0.0	0.0	0.0
				1_LiCL_mol7o	TMP27n_1		TMPH 1			-72.3	-1415.7675211	-2506 2535754	-4600 7367583	-409.0097049	0.0	0.0	5.6	0.0
\vdash					TMD276 1	1 LiCL mol15 poo2 17				-12.3	-1415.7070211	-2050.0000104	-4003.1301303	-403.0037043	0.0	0.0	9.0	0.0
					TMD27p 4	1_LICI_III0I15_P0S2_17				-09.3	1415./0/5211	-2090.3030/54	4009./30098/	400.0897049	0.0	0.0	0.0	0.0
		I			TMD07+ 4	1_LIGI_III0115_P052_15				-07.1	-1410./0/0211	-2090.0000104	-+009./34/333	-409.009/049	0.0	0.0	10.0	0.0
					TMP2ZD_1		TMPH_1			-02.1	-1415./6/5211	-2090.3535/54	-4009./328051	-409.0697049	0.0	0.0	10.0	0.0
				1_LICI_mol/e	TMP2Zn_1	1_LICI_moI15_pos2_12	IMPH_1			-55.6	-1415./6/5211	-2596.3535754	-4609.7303961	-409.0897049	0.0	0.0	22.3	0.0
				1_LICI_mol7e	IMP2Zn_1	1_LiCl_mol15_pos2_13	IMPH_1			-50.2	-1415.7675211	-2596.3535754	-4609.7283395	-409.0897049	0.0	0.0	27.7	0.0
		l	L	1_LICI_mol7e	IMP2Zn_1	LICI_mol15_pos2_17	IMPH_1			-37.6	-1415.7675211	-2596.3535754	-4609.7235174	-409.0897049	0.0	0.0	40.3	0.0
				1_LiCl_mol7e	TMP2Zn_1	LiCl_mol15_pos2_15	TMPH_1			-37.1	-1415.7675211	-2596.3535754	-4609.7233302	-409.0897049	0.0	0.0	40.8	0.0
				1_LiCl_mol7e	TMP2Zn_1	1_LiCl_mol15_pos5	TMPH_1			-31.3	-1415.7675211	-2596.3535754	-4609.7211233	-409.0897049	0.0	0.0	46.6	0.0
				1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos8_2	TMPH_1			-65.1	-1761.3705301	-1068.9572254	-2421.2656716	-409.0868736	0.0	0.0	0.0	0.0
				1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos8_1	TMPH_1			-64.4	-1761.3705301	-1068.9572254	-2421.2653928	-409.0868736	0.0	0.0	0.7	0.0
				1_LiCl_mol16e_2	TMPMgCI	LiCl_mol17_pos5_1	TMPH_1			-63.0	-1761.3705301	-1068.9572254	-2421.2648661	-409.0868736	0.0	0.0	2.1	0.0
0	0	0	0	MgCl2_mol6_aac	TMPZnCl	1_MgCl2_3ZnCl_d3_mol6_aap	TMPH_1		reaction32	-19.7	-1976.3904322	-2648.1661160	-4215.4743404	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6 b	TMPH_1		reaction33	-16.5	-1976.3904322	-2596.3535754	-4163.6606032	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2_27	TMPH_1		reaction34	-51.1	-1976.3904322	-2596.3535754	-5730.9744961	-409.0897049	0.0	0.0	0.0	0.0
0	0	0	0	1 MgCl2 mol7e	TMP2Zn 1	1 MgCl2 mol15 pos2 7	TMPH 1		reaction37	-77.8	-2068.6621074	-2596.3535754	-5915.5280204	-409.0897049	0.0	0.0	0.0	0.0
				MgCl2 mol6 aac	TMPZnCl	1 MgCl2 3ZnCl d3 mol6 aap	TMPH 1			-19.7	-1976.3904322	-2648,1661160	-4215.4743404	-409.0897049	0.0	0.0	0.0	0.0
				MgCl2 mol6 aac	TMPZnCl	1 MgCl2 2ZnCl d2 mol6 aag	TMPH 1			-15.9	-1976.3904322	-2648,1661160	-4215,4729017	-409.0897049	0.0	0,0	3.8	0.0
				MgCl2 mol6 aac	TMPZnCI	1 MgCl2 5ZnCl d5 mol6 aae	TMPH 1			-14.8	-1976.3904322	-2648.1661160	-4215.4724736	-409.0897049	0.0	0.0	4.9	0.0
				a														

	MgCl2_mol6_aac	TMPZnCI	1_MgCl2_8ZnCl_d8_mol6_aac2	TMPH_1		-10.7	-1976.3904322	-2648.1661160	-4215.4709297	-409.0897049	0.0	0.0	9.0	0.0
	MgCl2_mol6_aac	TMPZnCI	MgCl2_8ZnCl_d8_mol6_aac23	TMPH_1		5.1	-1976.3904322	-2648.1661160	-4215.4648921	-409.0897049	0.0	0.0	24.8	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_b	TMPH_1		-16.5	-1976.3904322	-2596.3535754	-4163.6606032	-409.0897049	0.0	0.0	0.0	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_5TMPZn_d5_mol6_a	TMPH_1		-16.1	-1976.3904322	-2596.3535754	-4163.6604188	-409.0897049	0.0	0.0	0.5	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6_a	TMPH_1		-15.4	-1976.3904322	-2596.3535754	-4163.6601613	-409.0897049	0.0	0.0	1.2	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_3TMPZn_d3_mol6_b	TMPH_1		-14.9	-1976.3904322	-2596.3535754	-4163.6599717	-409.0897049	0.0	0.0	1.7	0.0
	MgCl2_mol6_aac	TMP2Zn_1	MgCl2_3TMPZn_d3_mol6_a	TMPH_1		-9.4	-1976.3904322	-2596.3535754	-4163.6579015	-409.0897049	0.0	0.0	7.1	0.0
	MgCl2_mol6_aac	TMP2Zn_1	MgCl2_5TMPZn_d5_mol6_aa	TMPH_1		-5.2	-1976.3904322	-2596.3535754	-4163.6562712	-409.0897049	0.0	0.0	11.4	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_c	TMPH_1		-2.5	-1976.3904322	-2596.3535754	-4163.6552594	-409.0897049	0.0	0.0	14.0	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_2TMPZn_d2_mol6_b	TMPH_1		6.0	-1976.3904322	-2596.3535754	-4163.6520280	-409.0897049	0.0	0.0	22.5	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_8TMPZn_d8_mol6_a2	TMPH_1		11.0	-1976.3904322	-2596.3535754	-4163.6501179	-409.0897049	0.0	0.0	27.5	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2_27	TMPH_1		-51.1	-1976.3904322	-2596.3535754	-5730.9744961	-409.0897049	0.0	0.0	0.0	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos3	TMPH_1		-32.3	-1976.3904322	-2596.3535754	-5730.9673478	-409.0897049	0.0	0.0	18.8	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5	TMPH_1		-28.9	-1976.3904322	-2596.3535754	-5730.9660501	-409.0897049	0.0	0.0	22.2	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos2	TMPH_1		-22.1	-1976.3904322	-2596.3535754	-5730.9634570	-409.0897049	0.0	0.0	29.0	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8	TMPH_1		-4.2	-1976.3904322	-2596.3535754	-5730.9566256	-409.0897049	0.0	0.0	46.9	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_29	TMPH_1		-1.4	-1976.3904322	-2596.3535754	-5730.9555538	-409.0897049	0.0	0.0	49.7	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos8_1	TMPH_1		8.7	-1976.3904322	-2596.3535754	-5730.9517140	-409.0897049	0.0	0.0	59.8	0.0
	MgCl2_mol6_aac	TMP2Zn_1	1_MgCl2_mol14_pos5_31	TMPH_1		19.2	-1976.3904322	-2596.3535754	-5730.9477235	-409.0897049	0.0	0.0	70.3	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_7	TMPH_1		-77.8	-2068.6621074	-2596.3535754	-5915.5280204	-409.0897049	0.0	0.0	0.0	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2	TMPH_1		-60.0	-2068.6621074	-2596.3535754	-5915.5212210	-409.0897049	0.0	0.0	17.9	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5	TMPH_1		-32.4	-2068.6621074	-2596.3535754	-5915.5107372	-409.0897049	0.0	0.0	45.4	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_9	TMPH_1		-21.6	-2068.6621074	-2596.3535754	-5915.5065916	-409.0897049	0.0	0.0	56.3	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos8	TMPH_1		-10.4	-2068.6621074	-2596.3535754	-5915.5023517	-409.0897049	0.0	0.0	67.4	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_5	TMPH_1		5.5	-2068.6621074	-2596.3535754	-5915.4963040	-409.0897049	0.0	0.0	83.3	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos2_8	TMPH_1		38.9	-2068.6621074	-2596.3535754	-5915.4835522	-409.0897049	0.0	0.0	116.8	0.0
	1_MgCl2_mol7e	TMP2Zn_1	1_MgCl2_mol15_pos5_10	TMPH_1		83.6	-2068.6621074	-2596.3535754	-5915.4665253	-409.0897049	0.0	0.0	161.5	0.0

Raw data Table TT13. The calculated DFT energies. qh-δH.1 and qh-δG.1 values are obtained with GoodVibes using the quasi-harmonic approximation "p" – protonated, "d" – deprotonated (Standard for 1 atm and 298 K)

				4.0		(O (0 - 1)		CPCM(DMSO)/(U)B3LYP-D3/6-311++G(2dt,2p)// (U)B3LYP-D3/6-31++G(2dt,2p)//				
Charge	Nº conf.	Filename		(U)	B3L1P-D3/6-3	1++G(20,p)	040.45 K	200 451/		(U)B3L1P-D3/	6-31++G(20,p)	200.451/
-				296.15 K	200.10 K	233.15 K	213.15 K	298.15N	E DMSO		298.15K	298.15K
			Ltot gas	q11-0G. 1	q11-0G.1	q11-0G. 1	q11-0G.1	i iieq.		Ltot sol	G _{sol} DWIGO	G _{sol} IIIF
-1	1	1 C2H6NMaCL d5 mol6 aab	-16/0 0738583	0 1108525	0 1286464	0 1323603	0 13507//	20.76	-1650 2615/06	-1650 25169/8	-1650 1/16971	-1650 1318/23
-1	2	1_C2H6NMgCL d5_mol6_aap	-16/0 0730001	0.1200605	0.1288183	0.1325252	0.13611/3	20.70	-1650 2612757	-1650 2513078	-1650 1/12151	-1650 1312473
-1	3	1 C2H6NMgCL d3 mol6 aap	-1649.9730331	0.1200003	0.1200103	0.1328378	0.136/200	19.80	-1650.2012137	-1650 2451466	-1650 13/3510	-1650 12/7828
-1	4	1_C2H6NMgCL d3_mol6_aab	-1649.9678647	0.1203800	0.1201/137	0.1328532	0.1364449	22.28	-1650 25/03/7	-1650 2452149	-1650 1345547	-1650 1248348
-1	5	1_C2H6NMgCL_d2_mol6_aap	-1649.9070047	0.1203000	0.1291437	0.1320332	0.1353645	0.58	-1650 2413560	-1650 2313020	-1650.1343347	-1650 1121018
-1	5	1_C2H6NMgCl_d2_mol6_aab	-1649.9324900	0.1192001	0.1270102	0.1317300	0.13533045	12.57	-1650 2415644	-1650 2306076	-1650.1221500	-1650 1115949
-1	1	1 C2H6NZpCL d5 mol6 aab	-1049.947.3411	0.1191127	0.1279117	0.1318/01	0.135/025	21.28	-1030.2413044	-3220 ///0/1/	-3220 3350082	-3229 3257770
-1	2	1 C2H6NZnCL d5 mol6 aap	-3220.0100020	0.1100353	0.1270324	0.1317001	0.1353/00	19.56	-3220 /530351	-3220 4444670	-3220 33/8007	-3220 325/316
-1	3	1 C2H6NZnCL d3 mol6 aap	-3229.0143430	0.1196205	0.128/001	0.1322584	0.1358989	10.30	-3229.40393001	-3220 /387/62	-3229.3340337	-3229.3204310
-1	4	1 C2H6NZnCL d3 mol6 aab	-3229.0107337	0.1195232	0.1284069	0.1321601	0.1358126	23.64	-3220.44775858	-3220 /383037	-3229.3280625	-3229.3188705
-1	5	1 C2H6NZnCL d2 mol6 aap	-3228.0030133	0.1188123	0.1277210	0.131/017	0.1351/22	10.02	-3229.4347500	-3229.4303337	-3229.3159/66	-3229 30633/3
-1	6	1_C2H6NZnCL_d2_mol6_aap	-3220.3341234	0.1195295	0.1277210	0.1314917	0.13/192/2	22.49	-3223.4347530	-3220 4245607	-3223.3153400	-3220 2060321
-1	7	1 C2H6NZnCL d8 mol6 aab	-3228.0805406	0.1180227	0.1277845	0.1311007	0.1340342	23.40	-3229.4340334	-3229.4245007	-3229.3103249	-3229.3000321
-1	1		1222 0.3030450	0.1109227	0.12/7043	0.1515520	0.1331390	22.57	1222 0527221	1222 0/22522	1222 0065105	1222 0051207
-1	2	1_LICI_d3_III0I0_1	1222.0029332	0.0472223	0.0543703	0.0574249	0.0603903	20.01	1222.0007.001	1222.0423323	1222.0005105	1222.9951297
-1	2	1_LICI_U3_11010_2	1222.7972024	0.0475050	0.0547193	0.0577077	0.0607331	29.27	-1323.0400933	1222.0301103	1222.9905279	1222.907.0440
-1	3		-1322.7903940	0.0401353	0.0533713	0.0504454	0.0594350	21.11	-1323.0421937	1323.0309942	-1322.9900403	-1322.9040300
-1	4		-1322.7882927 1075.6506002	0.0472418	0.0543628	0.0573947	0.0603426	30.84	-1323.0357907	1075 0414052	-1322.9663469 1075.0072272	-1322.9779899 1075 9062200
-1	1		-1975.0590992 4075.0590992	0.0430763	0.0529073	0.0562410	0.0594614	24.94	-1975.9524030	-1975.9414055	-1975.9073272	-1975.6903290
-1	2		-1975.0530951	0.0444269	0.0522958	0.0556438	0.0588968	30.63	-1975.9460534	-1975.9370190	-1975.9036264	-1975.8925920
-1	3		-1975.6541230	0.0453609	0.0531948	0.0565299	0.0597718	21.96	-1975.9458466	-1975.9350687	-1975.9004856	-1975.8897078
-1	4		-1975.6509939	0.0445533	0.0524280	0.0557802	0.0590385	24.65	-1975.9415821	-1975.9312007	-1975.8970287	-19/5.88664/3
-1	1		-1924.0252424	0.2912098	0.3017122	0.3060941	0.3102982	22.93	-1924.3676560	-1924.3585624	-1924.0764462	-1924.0673526
-1	2		-1924.0238530	0.2902117	0.3008220	0.3052514	0.3095028	10.92	-1924.3653469	-1924.3563873	-1924.0751352	-1924.0661755
-1	3		-1924.0225920	0.2913817	0.3018525	0.3062209	0.3104119	21.52	-1924.3660231	-1924.3567214	-1924.0746413	-1924.0653397
-1	4	1_TMPN/gCI_d3_mol6_3	-1924.0173461	0.2902481	0.3008760	0.3053138	0.3095739	8.79	-1924.3582487	-1924.3493669	-1924.0680006	-1924.0591187
-1	5		-1924.0185853	0.2916434	0.3021300	0.3065050	0.3107019	20.63	-1924.3011301	-1924.3520459	-1924.0695126	-1924.0604025
-1	6		-1924.0177938	0.2915303	0.3020230	0.3064014	0.3106023	19.94	-1924.3590795	-1924.3501788	-1924.0675492	-1924.0586484
-1	/		-1923.9967890	0.2899977	0.3006060	0.3050326	0.3092796	4.04	-1924.3468023	-1924.3365822	-1924.0568046	-1924.0465844
-1	8	1_TMPN/gCI_d2_mol6_3	-1923.9957535	0.2892568	0.2998933	0.3043329	0.3085932	8.95	-1924.3441568	-1924.3341319	-1924.0549000	-1924.0448750
-1	9		-1923.9953113	0.2891463	0.2997562	0.3041836	0.3084317	16.07	-1924.3425013	-1924.3326081	-1924.0533550	-1924.0434617
-1	10		-1923.9876490	0.2894329	0.3000257	0.3044454	0.3086857	8.57	-1924.3447364	-1924.3332484	-1924.0553035	-1924.0438154
-1	1		-3503.0659774	0.2886229	0.2994989	0.3040442	0.3084095	0.82	-3503.5624319	-3503.5534829	-3503.2738089	-3503.2648600
-1	2		-3503.0630924	0.2897933	0.3004592	0.3049112	0.3091834	13.37	-3503.5598317	-3503.5507932	-3503.2700383	-3503.2609999
-1	3	1_1MPZnCi_d5_mol6_3	-3503.0630178	0.2899490	0.3006382	0.3051014	0.3093853	9.38	-3503.5576783	-3503.5489626	-3503.2677293	-3503.2590136
-1	4	1_1MPZnCi_d5_mol6_4	-3503.0606902	0.2901124	0.3007626	0.3052092	0.3094770	18.75	-3503.5558704	-3503.5470159	-3503.2657579	-3503.2569035
-1	5	1_1MPZnCi_d3_mol6_2	-3503.0595245	0.2898375	0.3005896	0.3050801	0.3093907	2.73	-3503.5551070	-3503.5462535	-3503.2652695	-3503.2564160
-1	6		-3503.0559162	0.2904298	0.3010888	0.3055388	0.3098095	10.31	-3503.5500637	-3503.5414345	-3503.2596338	-3503.2510047
-1	/	1_1MPZnCi_d2_mol6_2	-3503.0364887	0.2898167	0.3004599	0.3048987	0.3091555	9.19	-3503.5407773	-3503.5305460	-3503.2509606	-3503.2407293
-1	8	1_1MPZhCi_d8_mol6_4	-3503.0234617	0.2880486	0.2987948	0.3032803	0.3075843	11.74	-3503.5315358	-3503.5204778	-3503.2434872	-3503.2324291
-1	1	1_2nCl2_d8_mol6	-3554.7003065	0.0430979	0.0511465	0.0545740	0.0579061	19.42	-3555.1519458	-3555.1406332	-3555.1088479	-3555.0975353
-1	2	1_2nCl2_d5_mol6	-3554.6936369	0.0439290	0.0518823	0.0552687	0.0585604	25.38	-3555.1343673	-3555.1243453	-3555.0904382	-3555.0804163
-1	3		-3054.0001011	0.0442709	0.0522248	0.0556116	0.0589036	22.08	-3000.1280425	-3555.1181907	-3000.0837715	-3555.0739198
-1	4		-3554.66/1/66	0.0432127	0.0512166	0.0546235	0.0579344	16.63	-3555.1166640	-3555.1054523	-3555.0734512	-3555.0622395
-1	1	C2H6NMgCI_d3_mol6_aal	-1649.9916236	0.1202396	0.1290498	0.1327809	0.1363948	9.81	-1650.2/16570	-1650.2630465	-1650.1514174	-1650.1428068
-1	2		-1049.9914136	0.1205710	0.1292959	0.1329886	0.1365638	21.98	-1050.2747821	-1050.2657916	-1050.1542110	-1050.1452205
-1	3		-1049.9911433	0.1206152	0.1293209	0.1330055	0.1365/28	25.93	-1050.2751531	-1050.2660126	-1050.1545379	-1050.14539/3
-1	4	C2H6NMgCI_d3_mol6_aan	-1649.9899601	0.1211946	0.1298923	0.1335732	0.13/1368	21.29	-1650.2715437	-1650.2627221	-1650.1503491	-1650.1415274
-1	5	C2H6NMgCI_d5_mol6_aar	-1649.9738583	0.1198524	0.1286463	0.1323692	0.1359743	20.75	-1650.2615493	-1650.2516945	-1650.1416969	-1650.1318421
-1	6		-1049.9730991	0.1200564	0.1288147	0.1325218	0.1361112	22.71	-1050.2012/5/	-1050.2513078	-1050.1412193	-1050.1312514
-1	1	CZHONNIGCI_0Z_MOI6_aai	-1049.9712548	0.1193205	0.1281443	0.1318807	0.1354994	22.23	-1050.2500886	-1050.2408156	-1050.1367681	-1050.1274951

1	0	COLIENIMACI de malé ana	1640.0692924	0 1101/72	0 1070447	0.1200120	0.1244621	15 15	1650 2500220	1650 2406960	1650 1417040	1650 1215206
-1	0		-1049.9002031	0.11014/2	0.1270447	0.1306130	0.1344031	15.15	-1000.2099320	-1030.2490009	-1030.1417646	-1030.1313390
-1	9	C2H6NMgCl_d5_mol6_aac	-1649.9689269	0.1189702	0.1277969	0.1315352	0.1351563	19.59	-1650.2526128	-1650.2434494	-1650.1336425	-1650.1244792
-1	10	C2H6NMgCl_d2_mol6_aae	-1649.9688145	0.1192025	0.1280258	0.1317610	0.1353781	18.01	-1650.2557487	-1650.2461508	-1650.1365461	-1650.1269482
-1	11	C2H6NMgCl d3 mol6 aad	-1649.9686966	0.1203635	0.1291277	0.1328376	0.1364298	19.79	-1650.2547147	-1650.2451466	-1650.1343512	-1650.1247830
-1	12	C2H6NMaCL d3 mol6 abs	-1649 9678647	0 1203796	0 1291433	0 1328528	0 1364445	22.27	-1650 2549346	-1650 2452147	-1650 1345549	-1650 1248351
_1	12	C2H6NMgCL d3 mol6 aab	-1640.0556276	0.11200/00	0.1279202	0.1316066	0.1352560	10.24	1650 2435526	-1650 2337039	-1650 1246030	-1650 1147552
-1	13		1040.0504000	0.1103400	0.1270333	0.1010000	0.1352505	0.59	1050.2400520	1050.2007000	1050.1240033	1050.1147.002
-1	14		-1649.9524908	0.1192005	0.1280186	0.1317510	0.1353649	9.58	-1650.2413570	-1650.2313921	-1050.1221505	-1650.1121915
-1	15	C2H6NMgCI_d2_mol6_aaa	-1649.9247808	0.1177517	0.1266810	0.1304631	0.1341269	9.84	-1650.2243438	-1650.2125892	-1650.1065920	-1650.0948374
-1	16	C2H6NMgCl_d8_mol6_aaf	-1649.9084229	0.1174165	0.1262996	0.1300597	0.1337006	21.10	-1650.2100419	-1650.1977496	-1650.0926254	-1650.0803331
-1	17	C2H6NMgCl_d8_mol6_aay	-1649.9041615	0.1166755	0.1256014	0.1293790	0.1330361	26.85	-1650.1998500	-1650.1885563	-1650.0831744	-1650.0718808
-1	18	C2H6NMgCl d8 mol6 abm	-1649.9042808	0.1168966	0.1258058	0.1295776	0.1332301	18.78	-1650.2080977	-1650.1953851	-1650.0912010	-1650.0784884
-1	19	C2H6NMgCl d8 mol6 abc	-1649.8987805	0.1162813	0.1252229	0.1290088	0.1326753	21.50	-1650.2020775	-1650,1895539	-1650.0857962	-1650.0732726
-1	20	C2H6NMgCL d2 mol6 abu	-1649 8927152	0 1170689	0 1260096	0 1297954	0 1334618	23 32	-1650 1907938	-1650 1792213	-1650 0737248	-1650 0621523
1	20	C2HENIMaCL d8 mole poi	1640.9700620	0.1154409	0.1246402	0.1207004	0.1004010	15.02	1650 2002126	1660 1019667	1650.0029607	1650.0021020
-1	21		-1049.0709030	0.1134426	0.1240492	0.1260049	0.1323423	10.30	-1030.2093120	-1030.1916007	-1030.0936097	-1030.0704239
-1	1	C2H6NZhCI_d3_mol6_aao	-3229.0470494	0.1199614	0.1288495	0.1326136	0.1362591	9.25	-3229.4795759	-3229.4/126/8	-3229.3596144	-3229.3513063
-1	2	C2H6NZnCI_d5_mol6_aad	-3229.0457124	0.1206364	0.1294154	0.1331300	0.1367254	26.21	-3229.4812539	-3229.4725963	-3229.3606175	-3229.3519598
-1	3	C2H6NZnCI_d3_mol6_abq	-3229.0440168	0.1202193	0.1290687	0.1328158	0.1364446	18.83	-3229.4780834	-3229.4695571	-3229.3578640	-3229.3493378
-1	4	C2H6NZnCl_d5_mol6_aau	-3229.0435647	0.1202116	0.1290058	0.1327283	0.1363324	26.65	-3229.4800719	-3229.4712407	-3229.3598602	-3229.3510290
-1	5	C2H6NZnCI_d2_mol6_aai	-3229.0281080	0.1189898	0.1279052	0.1316803	0.1353363	23.98	-3229.4664077	-3229.4572502	-3229.3474179	-3229.3382603
-1	6	C2H6NZnCI d8 mol6 aaa	-3229.0211722	0.1179210	0.1268997	0.1307024	0.1343856	13.76	-3229.4681689	-3229.4577130	-3229.3502479	-3229.3397920
-1	7	C2H6NZnCl d5 mol6 aab	-3229.0160320	0.1191643	0.1280691	0.1318402	0.1354926	21.28	-3229.4541725	-3229,4449413	-3229,3350081	-3229.3257769
-1	8	C2H6NZnCL d5 mol6 aal	-3229 0145430	0 1190351	0 1279323	0.1317000	0 1353489	19.56	-3229 4539351	-3229 4444670	-3229 3349000	-3229 3254319
1	0	C2HENZpCL d2 male and	2220.0107207	0.1106206	0.1294002	0.100000	0.1259000	10.00	2220.4477005	2220.4297462	2220.0040000	2220.0201010
-1			-3229.0107397	0.1190200	0.1204992	0.1322303	0.1350390	19.39	-3229.4477993	-3229.4307402	-3229.3201709	-3229.3191230
-1	10		-3229.0096139	0.1195235	0.1284073	0.1321694	0.1358130	23.64	-3229.4475857	-3229.4383937	-3229.3280622	-3229.3188701
-1	11	C2H6NZnCI_d5_mol6_aac	-3229.0078980	0.1181918	0.1271712	0.1309766	0.1346642	11.65	-3229.4471552	-3229.4378729	-3229.3289633	-3229.3196811
-1	12	C2H6NZnCI_d3_mol6_aah	-3228.9970571	0.1191129	0.1280312	0.1318086	0.1354673	16.59	-3229.4372840	-3229.4277767	-3229.3181710	-3229.3086638
-1	13	C2H6NZnCI_d2_mol6_aaq	-3228.9941234	0.1188122	0.1277210	0.1314917	0.1351421	10.02	-3229.4347591	-3229.4251467	-3229.3159468	-3229.3063345
-1	14	C2H6NZnCI_d5_mol6_aba	-3228.9893824	0.1180160	0.1269541	0.1307418	0.1344119	28.57	-3229.4282999	-3229.4189480	-3229.3102839	-3229.3009320
-1	15	C2H6NZnCl_d5_mol6_aax	-3228.9849854	0.1174407	0.1264210	0.1302275	0.1339166	19.50	-3229.4276382	-3229.4176707	-3229.3101975	-3229.3002300
-1	16	C2H6NZnCl d2 mol6 abk	-3228,9659402	0.1166616	0.1257669	0.1296261	0.1333657	4.07	-3229.4171050	-3229.4058146	-3229,3004433	-3229.2891529
-1	17	C2H6NZnCl d2 mol6 aag	-3228,9661718	0.1171972	0.1262170	0.1300378	0.1337390	12.97	-3229.4178178	-3229.4064261	-3229.3006206	-3229.2892289
-1	18	C2H6NZnCL d8 mol6 aaf	-3228 9570073	0 1166447	0 1256412	0 1294521	0 1331439	24.65	-3229 4069156	-3229 3955426	-3229 2902709	-3229 2788978
-1	10	C2H6NZnCL d8 mol6 aat	-3228 95/195/15	0.1160713	0.1251535	0.1200025	0.1327322	7 28	-3220.4000100	-3220 3033876	-3220 2886027	-3220 2773162
-1	20	C2H6NZnCL d8 mole agi	2220.3543545	0.1162924	0.1251555	0.1200020	0.1327322	21.70	2220.4011601	2220.200070	2220.2000321	2220.2727125
-1	20		-3220.9516599	0.1102034	0.1252975	0.1291100	0.1326146	21.70	-3229.4011001	-3229.3699970	-3229.2040700	-3229.2737133
-1	21		-3228.9398386	0.1164031	0.1254819	0.1293297	0.1330583	17.74	-3229.3931267	-3229.3814639	-3229.2767236	-3229.2650608
-1	22	C2H6NZnCI_d8_mol6_abl	-3228.9338819	0.1162338	0.1253929	0.1292761	0.1330400	13.88	-3229.4093295	-3229.3941275	-3229.2930956	-3229.2778936
-1	23	C2H6NZnCl_d8_mol6_abm	-3228.9333158	0.1157355	0.1249484	0.1288561	0.1326450	14.89	-3229.4105990	-3229.3951569	-3229.2948634	-3229.2794213
-1	1	d2_furan	-229.4113591	0.0285971	0.0331904	0.0351779	0.0371319	596.23	-229.5678904	-229.5559555	-229.5392932	-229.5273584
-1	2	d3_furan	-229.4041312	0.0289875	0.0335748	0.0355602	0.0375127	604.61	-229.5603396	-229.5485201	-229.5313520	-229.5195326
-1	1	d5_mol16e_1	-1292.8198803	0.1487949	0.1575413	0.1612222	0.1647746	18.57	-1293.1327016	-1293.1231519	-1292.9839067	-1292.9743570
-1	2	d5 mol16e 2	-1292.8194434	0.1485446	0.1573193	0.1610128	0.1645777	13.66	-1293.1325962	-1293,1229805	-1292.9840515	-1292.9744359
-1	3	d8_mol16e_2	-1292 7918306	0 1472018	0 1560313	0 1597472	0 1633334	17 43	-1293 1106860	-1293 1001149	-1292 9634841	-1292 9529131
_1	4	d8 mol16e 1	-1292 7010128	0 1473855	0 1561926	0 1598985	0 1634746	21 51	-1293 1107477	-1293 1001471	-1292 9633622	-1292 9527615
_1	1	d5 mol3	-305 31078/2	0.0620118	0.067/11/0	0.0607288	0.0710010	218.96	-395 5003601	-305 4003087	-395 4383572	-395 4282068
-1		d2 mol2	-305 3164404	0.0020110	0.0676626	0.0600760	0.0722206	210.30	-305 4096906	-305 4993470	-205 /26/176	-305 4260920
-1	2		-393.3104491	0.0022030	0.0070020	0.0099708	0.0722300	214.40	-393.4900000	-393.4003470	-393.4304170	-393.4200039
-1	3	ab_moi3	-395.2893070	0.0604974	0.0659749	0.0683206	0.0706117	1/2.11	-395.4787043	-395.4671605	-395.4182068	-395.4066631
-1	4	d2_mol3	-395.2886744	0.0609953	0.0664366	0.0687670	0.0710433	199.08	-395.4809433	-395.4688921	-395.4199480	-395.4078967
-1	5	d8_mol3	-395.2866041	0.0601239	0.0655949	0.0679369	0.0702241	192.29	-395.4836772	-395.4707570	-395.4235533	-395.4106330
-1	1	d5_mol6	-854.9290523	0.0498208	0.0557166	0.0582362	0.0606932	112.23	-855.1370591	-855.1274071	-855.0872382	-855.0775862
-1	2	d3_mol6	-854.9210037	0.0501914	0.0560859	0.0586053	0.0610622	119.51	-855.1283288	-855.1187605	-855.0781373	-855.0685690
-1	3	d8_mol6	-854.8965647	0.0480828	0.0540483	0.0565955	0.0590779	103.76	-855.1169281	-855.1050583	-855.0688453	-855.0569754
-1	4	d2_mol6	-854.8930351	0.0489122	0.0548490	0.0573848	0.0598566	114.59	-855.1099904	-855.0988011	-855.0610782	-855.0498889
-1	1	d5 mol7e	-947.1926829	0.0458465	0.0523502	0.0551208	0.0578162	97.49	-947.4199494	-947.4108663	-947.3741029	-947.3650197
-1	2	d2 mol7e	-947,1653648	0.0450445	0.0515803	0.0543638	0.0570712	98 40	-947,3983487	-947.3883000	-947.3533042	-947.3432554
_1	- 3		-947 16/2000	0.0443048	0.0509630	0.0537604	0.056/812	87 37	-947 3070707	-947 3877586	-947 35358/19	-947 3/33637
_1	1		-1975 6780280	0.0450807	0.0537956	0.0571220	0.0603571	23.64	-1075 0630001	-1075 05/11/60	-1075 0170102	-1075 0081362
-1	2	MaCl2 dE male and	1075 6751650	0.0441722	0.0537530	0.0571229	0.0003371	20.04 E 42	1075 0649707	1075 0546000	1075 0207045	1075 0104200
-1	2		-19/0.0/01000	0.0441722	0.0521527	0.0000045	0.0505039	5.43	-19/0.9040/3/	-19/0.9040023	-19/0.920/015	-19/5.9104300
-1	3	ivigCl2_d5_mol6_aab	-19/5.6/55912	0.0453626	0.0531959	0.0565315	0.0597740	20.73	-1975.9655396	-1975.9552617	-1975.9201769	-1975.9098990
-1	4	MgCl2_d5_mol6_abb	-1975.6596992	0.0450764	0.0529074	0.0562411	0.0594814	24.94	-1975.9524032	-1975.9414050	-1975.9073267	-1975.8963286
-1	5	MgCl2 d2 mol6 aaa	-1975.6569272	0.0445354	0.0524421	0.0558088	0.0590817	22.50	-1975.9489036	-1975.9383189	-1975.9043682	-1975.8937835

-1	6	MgCl2 d8 mol6 aar	-1975 6548981	0.0439106	0.0518462	0.0552253	0.0585102	23.68	-1975 9523973	-1975 9410508	-1975 9084866	-1975 8971401
-1	7	MaCl2 d5 mol6 aam	-1975 65/0108	0.0447315	0.0525627	0.0558958	0.0591351	28.85	-1075 0/153/5	-1075 031/1810	-1975 8968029	-1975 8867504
-1	0	MgCl2_d9_mol6_pai	1075 6526051	0.044/313	0.0523021	0.0550350	0.0591001	20.00	1075 0490525	1075 0270101	1075.0000025	1075 0025021
-1	0		-1975.0530931	0.0444209	0.0522958	0.0536436	0.0505900	30.03	-1975.9460535	-1975.9370191	-1975.9030203	-1975.6925921
-1	9	MgCl2_d3_mol6_aag	-1975.6541230	0.0453609	0.0531947	0.0565299	0.0597717	21.96	-1975.9458465	-1975.9350687	-1975.9004855	-1975.8897077
-1	10	MgCl2_d8_mol6_aao	-1975.6515034	0.0443553	0.0522213	0.0555691	0.0588227	33.83	-1975.9474087	-1975.9362145	-1975.9030533	-1975.8918591
-1	11	MgCl2_d2_mol6_aap	-1975.6509939	0.0445533	0.0524280	0.0557803	0.0590385	24.65	-1975.9415821	-1975.9312007	-1975.8970288	-1975.8866474
-1	12	MgCl2_d3_mol6_aac	-1975.6391033	0.0442778	0.0521904	0.0555609	0.0588385	21.84	-1975.9306146	-1975.9198716	-1975.8863368	-1975.8755937
-1	13	MgCl2_d3_mol6_aan	-1975.6383295	0.0444511	0.0523708	0.0557444	0.0590248	11.00	-1975.9333839	-1975.9221434	-1975.8889328	-1975.8776922
-1	14	MgCl2_d5_mol6_abj	-1975.6226196	0.0431486	0.0510983	0.0544856	0.0577801	21.65	-1975.9178234	-1975.9064690	-1975.8746748	-1975.8633204
-1	15	MgCl2_d2_mol6_aak	-1975.6080190	0.0429131	0.0508735	0.0542632	0.0575585	22.21	-1975.9112037	-1975.8985340	-1975.8682906	-1975.8556208
-1	16	MgCl2 d3 mol6 aae	-1975.6027169	0.0420007	0.0500783	0.0535224	0.0568736	5.75	-1975.8961839	-1975.8852031	-1975.8541832	-1975.8432024
-1	17	MgCl2 d8 mol6 aae	-1975.5884628	0.0416449	0.0496558	0.0530674	0.0563844	17.19	-1975.8963714	-1975.8826813	-1975.8547265	-1975.8410363
-1	18	MgCl2 d8 mol6 aag	-1975.5850928	0.0414426	0.0494315	0.0528300	0.0561316	31.44	-1975.8844112	-1975.8721479	-1975.8429685	-1975.8307052
-1	19	MgCl2 d8 mol6 aas	-1975 5829890	0.0408232	0.0488852	0.0523194	0.0556586	17.63	-1975 8899607	-1975 8765383	-1975 8491374	-1975 8357151
-1	20	MgCl2_d8_mol6_aab	-1975 5817278	0.0403489	0.0485034	0.0510752	0.0553498	9.57	-1075 8031/85	-1075 8702261	-1075 8527005	-1075 8388772
-1	20		1075 5724555	0.0403409	0.0403034	0.0519752	0.0555490	3.37	1075 0756025	1075 0620252	1075 0006604	1075 0010012
-1	21	TMDMacL d2 mal6 abo	-1975.5734555	0.0419340	0.0499131	0.0533096	0.0566106	30.33	-1975.8750025	-1975.8030253	-1975.8330084	-1975.8210913
-1	1		-1924.0413017	0.2925927	0.3030112	0.3073566	0.3115246	16.11	-1924.3789061	-1924.3705943	-1924.0803133	-1924.0780015
-1	2	IMPMgCI_d5_mol6_abo	-1924.0388158	0.2909162	0.3014573	0.3058573	0.3100800	11.33	-1924.3783138	-1924.3698343	-1924.0873976	-1924.0789181
-1	3	I MPMgCI_d5_mol6_aaj	-1924.0390628	0.2915272	0.3020109	0.3063843	0.3105798	14.69	-1924.3784538	-1924.3699971	-1924.0869266	-1924.0784698
-1	4	TMPMgCl_d3_mol6_abh	-1924.0383002	0.2914113	0.3019303	0.3063208	0.3105342	18.40	-1924.3738235	-1924.3657980	-1924.0824122	-1924.0743866
-1	5	TMPMgCl_d5_mol6_aas	-1924.0379509	0.2920233	0.3024556	0.3068060	0.3109782	16.22	-1924.3795395	-1924.3706692	-1924.0875162	-1924.0786458
-1	6	TMPMgCl_d5_mol6_aac	-1924.0365165	0.2912192	0.3017333	0.3061209	0.3103309	13.87	-1924.3789149	-1924.3700117	-1924.0876957	-1924.0787925
-1	7	TMPMgCl_d5_mol6_aag	-1924.0252424	0.2912074	0.3017104	0.3060925	0.3102967	22.84	-1924.3676557	-1924.3585622	-1924.0764483	-1924.0673547
-1	8	TMPMgCl_d5_mol6_aav	-1924.0225920	0.2913800	0.3018509	0.3062194	0.3104105	21.55	-1924.3660229	-1924.3567213	-1924.0746429	-1924.0653412
-1	9	TMPMgCl_d2_mol6_aah	-1924.0178307	0.2901663	0.3007781	0.3052078	0.3094590	13.58	-1924.3592214	-1924.3503584	-1924.0690550	-1924.0601920
-1	10	TMPMgCI d8 mol6 aae	-1924.0163693	0.2891162	0.2997731	0.3042224	0.3084931	14.72	-1924.3624820	-1924.3529328	-1924.0733658	-1924.0638165
-1	11	TMPMgCl d8 mol6 aaf	-1924.0155223	0.2891466	0.2998188	0.3042749	0.3085522	9.55	-1924.3626410	-1924.3529313	-1924.0734943	-1924.0637847
-1	12	TMPMgCI d3 mol6 aak	-1924.0177938	0.2915302	0.3020229	0.3064013	0.3106022	19.95	-1924.3590794	-1924.3501787	-1924.0675491	-1924.0586484
-1	13	TMPMgCl d8 mol6 aao	-1924.0154662	0.2892421	0.2999001	0.3043498	0.3086209	7.46	-1924.3623905	-1924.3527097	-1924.0731484	-1924.0634676
-1	14	TMPMgCL d2 mol6 aar	-1924 0153328	0 2895393	0.3001820	0.3046254	0.3088903	13 59	-1924 3570134	-1924 3480322	-1924 0674740	-1924 0584928
-1	15	TMPMgCl d2 mol6 aab	-1924 0153121	0 2901270	0.3007046	0.3051189	0.3093549	21.35	-1924 3573880	-1924 3483460	-1924 0672610	-1924 0582189
-1	16	TMPMgCL d5 mol6 aaw	-1924 0142400	0.2892289	0 2999673	0 3044542	0.3087634	1 72	-1924 3592169	-1924 3499442	-1924 0699879	-1924.0607152
-1	17	TMPMgCL d5 mol6 aaa	-1924 0143972	0.2903516	0.3009109	0 3053171	0 3095448	17 12	-1924 3579698	-1924 3488483	-1924.0676181	-1924.0584966
-1	18	TMPMgCL d5 mol6 aav	-1924.0146734	0.2000010	0.3012896	0.3056847	0.3099015	15.71	-1024.3568136	-1024.3478810	-1924.0660575	-1924.0571249
-1	10	TMPMgCL d3 mol6 com	-1024.0028025	0.2011000	0.3012030	0.30600047	0.3102097	14.20	-1024.3403596	-1024.3308838	-1024.0581686	-1024.0496029
-1	20	TMPMaCL d3 mol6 abw	-1024.0025880	0.2911900	0.3017038	0.3060060	0.3102307	10.21	-1024.3493300	-1024.3390030	-1024.0571015	-1024.0477272
-1	20	TMPMgCL d2 mol6 obg	1022 00020002	0.2910030	0.3010124	0.3000003	0.3102230	12.31	1024.3402740	1024.3300202	1024.0571915	1024.04/7372
-1	21		-1923.9992093	0.2690340	0.3002722	0.3047042	0.3069575	13.27	-1924.3439073	-1924.3344277	-1924.0342326	-1924.0447730
-1	22	TMPMgCI_d5_mol6_aau	-1923.9958457	0.2908469	0.3013328	0.3057062	0.3099009	14.01	-1924.3380913	-1924.3290396	-1924.0472444	-1924.0381926
-1	23	TMPMgCI_d3_mol6_abv	-1923.9764367	0.2901038	0.3007064	0.3051311	0.3093767	14.53	-1924.3275433	-1924.3173053	-1924.0374395	-1924.0272014
-1	24	IMPMgCI_d2_mol6_aav	-1923.9726318	0.2896555	0.3002349	0.3046483	0.3088820	12.59	-1924.3300101	-1924.3185511	-1924.0403546	-1924.0288956
-1	25	TMPMgCI_d2_mol6_aac	-1923.9720536	0.2898631	0.3004541	0.3048727	0.3091117	11.91	-1924.3300284	-1924.3185319	-1924.0401652	-1924.0286687
-1	26	IMPMgCl_d5_mol6_abp	-1923.9684713	0.2882939	0.2990306	0.3035189	0.3078307	12.33	-1924.3309015	-1924.3190953	-1924.0426075	-1924.0308014
-1	27	TMPMgCl_d5_mol6_abj	-1923.9685358	0.2884125	0.2991407	0.3036256	0.3079344	12.97	-1924.3318573	-1924.3198266	-1924.0434448	-1924.0314140
-1	28	TMPMgCl_d5_mol6_aah	-1923.9663716	0.2878154	0.2986525	0.3031851	0.3075411	7.79	-1924.3332013	-1924.3207013	-1924.0453858	-1924.0328858
-1	29	TMPMgCl_d5_mol6_abu	-1923.9652601	0.2875141	0.2983788	0.3029240	0.3072926	8.16	-1924.3340696	-1924.3212362	-1924.0465554	-1924.0337221
-1	30	TMPMgCl_d5_mol6_abm	-1923.9624591	0.2870536	0.2979843	0.3025597	0.3069592	10.10	-1924.3283436	-1924.3160057	-1924.0412899	-1924.0289520
-1	31	TMPMgCl_d8_mol6_abm	-1923.9617982	0.2887896	0.2993728	0.3037874	0.3080221	14.03	-1924.3158373	-1924.3046376	-1924.0270477	-1924.0158480
-1	32	TMPMgCl_d3_mol6_aau	-1923.9598903	0.2885021	0.2992644	0.3037645	0.3080883	11.86	-1924.3240627	-1924.3119409	-1924.0355605	-1924.0234387
-1	33	TMPMgCl_d3_mol6_aar	-1923.9581495	0.2883548	0.2991691	0.3036922	0.3080388	11.41	-1924.3250511	-1924.3125612	-1924.0366963	-1924.0242064
-1	34	TMPMgCl_d2 mol6 abe	-1923.9470953	0.2892267	0.2998151	0.3042314	0.3084670	19.62	-1924.3091563	-1924.2970447	-1924.0199295	-1924.0078179
-1	35	TMPMgCl d8 mol6 aas	-1923,93888883	0.2859016	0.2967700	0.3013155	0.3056837	10.62	-1924.3004568	-1924,2884199	-1924.0145551	-1924.0025182
-1	36	TMPMgCl d8 mol6 abi	-1923.9371256	0.2851521	0.2961589	0.3007656	0.3051947	6.24	-1924.3028788	-1924,2901942	-1924.0177267	-1924.0050421
-1	37	TMPMaCl d2 mol6 aaa	-1923.9382888	0.2872476	0.2980824	0.3026091	0.3069559	10.09	-1924.3035993	-1924,2911391	-1924.0163516	-1924.0038914
-1	38	TMPMgCl d2 mol6 abb	-1923 9351481	0.2859014	0.2968268	0.3013981	0.3057925	10.44	-1924 2937654	-1924 2822415	-1924 0078639	-1923 9963401
_1	30	TMPMgCl_d8_mol6_abr	-1923 93/3789	0.2855///2	0.296/082	0.3010800	0.305/857	12 13	-1924 3035752	-1924 2002700	-1924 0180300	-1924 00/7256
-1	40		-1023 0338/05	0.2862705	0.2004902	0.3017/02	0.3061379	10.88	-1924 3060856	-1024 2023377	-1024.0100309	-1924 0060672
-1	41	TMPMaCL d2 mol6 obi	-1022 0222251	0.2865251	0.207/199	0.3010759	0.3063550	12.00	-1024 2042202	-1024 282/32/7	-1024 0078142	-1023 0050005
-1	41		-1323.3332231	0.2003231	0.2374100	0.3013130	0.31063339	14 40	-1324.2343333	-1324.2024347	-1324.0070142	-1323.3333090
-1	1		-3303.0920403	0.2913447	0.3019362	0.3063642	0.3100324	14.40	-3003.0031744	-3003.5/50664	-3003.2918297	-3003.2837217
-1	2		-3503.0910889	0.2913101	0.3018823	0.3062924	0.3105223	13.73	-3503.5861807	-3503.5776001	-3503.2948706	-3503.2862899
-1	3	IMPZNUI as mole aao	-3503.0895417	0.2907434	0.3013495	0.305/743	0.3100186	16.22	-3503.5861691	-3503.5774012	-3503.2954256	-3503.2866577

-1	4	TMPZnCl d3 mol6 aav	-3503 0894657	0 2911316	0.3017548	0.3061889	0.3104437	17 22	-3503 5779241	-3503 5701115	-3503 2867925	-3503 2789798
-1	5	TMPZnCl_d5_mol6_abn	-3503 0805888	0.2016070	0.2022271	0.3066325	0.2109470	19.24	3503 5964433	-3503 5775971	-3503 2047454	-3503 2959901
-1	5		-5505.0095000	0.2910979	0.3022371	0.3000323	0.3100479	10.34	-3303.3004433	-3303.3773071	-5505.2947454	-5505.2050091
-1	6		-3503.0897523	0.2922107	0.3026925	0.3070626	0.3112529	14.65	-3503.5856049	-3503.5768378	-3503.2933941	-3503.2846271
-1	7	IMPZnCl_d2_mol6_aah	-3503.0740975	0.2905152	0.3011634	0.3056058	0.3098670	19.09	-3503.5703510	-3503.5614588	-3503.2798358	-3503.2709435
-1	8	TMPZnCl_d8_mol6_abe	-3503.0680926	0.2898545	0.3005155	0.3049636	0.3092307	17.00	-3503.5727391	-3503.5626079	-3503.2828846	-3503.2727533
-1	9	TMPZnCl_d8_mol6_aax	-3503.0682245	0.2903363	0.3009627	0.3053944	0.3096444	16.81	-3503.5730422	-3503.5628764	-3503.2827058	-3503.2725400
-1	10	TMPZnCl_d8_mol6_abn	-3503.0663253	0.2885451	0.2993126	0.3038085	0.3081236	10.26	-3503.5706585	-3503.5605891	-3503.2821134	-3503.2720439
-1	11	TMPZnCI d8 mol6 aaf	-3503.0671139	0.2895391	0.3002926	0.3047800	0.3090850	4.50	-3503.5723097	-3503.5620990	-3503.2827705	-3503.2725598
-1	12	TMPZnCl d5 mol6 aav	-3503.0659774	0.2886421	0.2995152	0.3040592	0.3084232	0.86	-3503.5624319	-3503.5534830	-3503.2737897	-3503.2648408
-1	13	TMPZnCl d8 mol6 aag	-3503 0638139	0 2891985	0 2999086	0.3043789	0.3086685	11 77	-3503 5668012	-3503 5568388	-3503 2776027	-3503 2676402
-1	14	TMPZnCL d5 mol6 aby	-3503.0630924	0.2807032	0.300/591	0.30/0112	0.3001833	13 37	-3503 5598317	-3503 5507932	-3503 2700384	-3503 2600000
-1	14	TMPZnCL d5_mol6_app	2502.0547004	0.2097952	0.3004391	0.3049112	0.3091033	10.07	2502 5540741	2502 5455100	2502 2649402	2502 2554772
-1	10		-3503.0547994	0.2900337	0.3007051	0.3051593	0.3094333	12.71	-3303.3346741	-3503.5455109	-3503.2046403	-3003.2004772
-1	16	IMPZnCI_d5_mol6_aab	-3503.0546943	0.2905199	0.3011359	0.3055650	0.3098138	12.62	-3503.5543000	-3503.5449697	-3503.2637800	-3503.2544497
-1	17	IMPZnCI_d5_mol6_aam	-3503.0519973	0.2905573	0.3011729	0.3056017	0.3098501	16.77	-3503.5539576	-3503.5443300	-3503.2634002	-3503.2537727
-1	18	TMPZnCl_d3_mol6_aag	-3503.0435550	0.2904917	0.3011309	0.3055712	0.3098317	16.16	-3503.5451974	-3503.5355594	-3503.2547057	-3503.2450676
-1	19	TMPZnCl_d5_mol6_aaq	-3503.0413784	0.2901049	0.3007150	0.3051431	0.3093921	15.93	-3503.5371208	-3503.5282722	-3503.2470159	-3503.2381673
-1	20	TMPZnCl_d2_mol6_aam	-3503.0385526	0.2898263	0.3004827	0.3049283	0.3091926	9.37	-3503.5402330	-3503.5304484	-3503.2504066	-3503.2406221
-1	21	TMPZnCl d5 mol6 aac	-3503.0251972	0.2878726	0.2987816	0.3033469	0.3077359	8.48	-3503.5410445	-3503.5292128	-3503.2531719	-3503.2413402
-1	22	TMPZnCl d5 mol6 aaz	-3503.0239591	0.2873452	0.2983253	0.3029227	0.3073443	8.75	-3503.5343621	-3503.5233315	-3503.2470169	-3503.2359863
-1	23	TMPZnCL d3 mol6 abx	-3503 0178059	0.2892198	0.3000261	0 3045454	0.3088880	12 73	-3503 5337716	-3503 5218969	-3503 2445518	-3503 2326770
-1	24	TMPZnCL d3 mol6 aar	-3503 0178586	0.289/33/	0.3002249	0.3047379	0.3090744	11.50	-3503 5338005	-3503 5220187	-3503 2444660	-3503 2325852
-1	24	TMDZpCL d2 mol6 obf	-3503.0170300	0.2004334	0.3002243	0.3047373	0.3030744	15.67	2502.5350335	2502 5145575	2502.2360406	2502.22523032
-1	25		-3503.0132004	0.2890711	0.2997669	0.3042302	0.3085124	15.67	-3503.5260208	-3503.5145575	-3503.2369496	-3503.2254664
-1	26	IMPZnCI_d8_mol6_aah	-3502.9935673	0.2843810	0.2955595	0.3002426	0.3047479	7.60	-3503.5086383	-3503.4965939	-3503.2242573	-3503.2122129
-1	27	I MPZnCI_d8_mol6_abi	-3502.9941044	0.2854545	0.2965186	0.3011508	0.3056054	10.14	-3503.5126608	-3503.5000824	-3503.2272063	-3503.2146279
-1	28	TMPZnCl_d8_mol6_aaq	-3502.9933802	0.2848754	0.2959849	0.3006375	0.3051125	7.52	-3503.5096781	-3503.4974618	-3503.2248026	-3503.2125864
-1	29	TMPZnCl_d8_mol6_aad	-3502.9934862	0.2849963	0.2961006	0.3007508	0.3052233	7.24	-3503.5087410	-3503.4966824	-3503.2237446	-3503.2116860
-1	30	TMPZnCl_d8_mol6_aam	-3502.9938142	0.2861166	0.2971385	0.3017514	0.3061863	8.62	-3503.5138821	-3503.5010732	-3503.2277654	-3503.2149565
-1	31	TMPZnCl_d2_mol6_abm	-3502.9908379	0.2860081	0.2970674	0.3016991	0.3061541	8.82	-3503.5024898	-3503.4910473	-3503.2164816	-3503.2050392
-1	32	TMPZnCl d2 mol6 abe	-3502.9932218	0.2887079	0.2994251	0.3039006	0.3081968	17.74	-3503.5111007	-3503.4988024	-3503.2223928	-3503.2100945
-1	33	TMPZnCL d2 mol6 aaf	-3502 9900802	0 2855905	0 2967005	0.3013542	0.3058308	9 59	-3503 5034340	-3503 4917334	-3503 2178435	-3503 2061428
-1	34	TMPZnCI d2 mol6 aaw	-3502 9872800	0.2872250	0.2981603	0 3027346	0 3071307	13 30	-3503 5132283	-3503 4997034	-3503 2260033	-3503 2124784
-1	1	ZnCl2 d3 mol6 aaa	-3554 7257535	0.0451535	0.0530758	0.0564492	0.0597281	24.90	-3555 1624/10	-3555 1532315	-3555 1172874	-3555 1080780
-1	2	ZnCl2_d5_mol6_aaa	-3554 7212165	0.0447360	0.0526624	0.0560370	0.05031201	21.33	-3555 1624207	-3555 1526/10	-3555 1176939	-3555 1070050
-1	2		-3334.7212103	0.0447309	0.0520024	0.0500370	0.0595172	21.33	-3333.1024207	-3333.1320419	-3333.1170030	-3333.1079030
-1	3		-3554.7055633	0.0437891	0.0517974	0.0552077	0.0585227	23.45	-3555.1494277	-3555.1392308	-3555.1056386	-3555.0954417
-1	4	ZnCl2_d8_mol6_aad	-3554.7003065	0.0430965	0.0511452	0.0545728	0.0579049	19.42	-3555.1519458	-3555.1406332	-3555.1088492	-3555.0975366
-1	5	ZnCl2_d5_mol6_aat	-3554.6936369	0.0439289	0.0518823	0.0552687	0.0585604	25.38	-3555.1343672	-3555.1243452	-3555.0904382	-3555.0804163
-1	6	ZnCl2_d3_mol6_aag	-3554.6881611	0.0442709	0.0522248	0.0556116	0.0589036	22.07	-3555.1280423	-3555.1181906	-3555.0837713	-3555.0739196
-1	7	ZnCl2_d5_mol6_aam	-3554.6829590	0.0431076	0.0511197	0.0545334	0.0578532	22.75	-3555.1231857	-3555.1133857	-3555.0800780	-3555.0702780
-1	8	ZnCl2_d3_mol6_aan	-3554.6712828	0.0438582	0.0518473	0.0552492	0.0585560	15.93	-3555.1151083	-3555.1046857	-3555.0712501	-3555.0608274
-1	9	ZnCl2_d2_mol6_aaj	-3554.6671766	0.0432127	0.0512166	0.0546235	0.0579344	16.63	-3555.1166641	-3555.1054524	-3555.0734514	-3555.0622397
-1	10	ZnCl2 d5 mol6 aae	-3554.6618883	0.0421825	0.0502287	0.0536582	0.0569942	21.31	-3555.1054643	-3555.0950116	-3555.0632818	-3555.0528291
-1	11	ZnCl2 d3 mol6 aae	-3554.6413194	0.0419520	0.0500001	0.0534304	0.0567671	27.43	-3555.0882926	-3555.0775169	-3555.0463405	-3555.0355648
-1	12	ZnCl2 d2 mol6 aao	-3554,6398723	0.0411298	0.0493166	0.0528056	0.0561991	4.37	-3555.0948314	-3555.0826035	-3555.0537015	-3555.0414736
-1	13	ZnCl2 d2 mol6 aal	-3554,6401024	0.0423553	0.0503998	0.0538244	0.0571528	15,60	-3555.0956514	-3555.0832892	-3555.0532961	-3555.0409338
-1	14	ZnCl2_d8_mol6_aai	-3554 6294497	0.0407632	0.0488682	0.0523214	0.0556795	13.02	-3555 0822882	-3555 0700271	-3555 04152/0	-3555 0292639
-1	15	ZnCl2_d8_mol6_aal	-3554 6226324	0.0402042	0.0484100	0.0518813	0.0552470	18.90	-3555 0755862	-3555 063/369	-3555 0352021	-3555 0231/26
-1	10		-3334.0220324	0.0402942	0.0404199	0.0510013	0.0532470	10.90	-3333.0733003	-3333.0034300	-3333.0332321	-3333.0231420
- 1	10		-3034.0147.159	0.0390201	0.0473196	0.0506527	0.0542879	F 05	-3000.0730401	-3033.0003803	-3033.0343199	-3033.0213341
-1	17		-3034.0143066	0.0391394	0.0474240	0.0509538	0.0043003	5.25	-3000.0720078	-3033.0390468	-3033.0333083	-3033.02030/3
-1	18	ZnCi2_d2_mol6_aag	-3554.6112621	0.0405923	0.0487087	0.05216/1	0.0555303	17.50	-3555.0673082	-3555.0548301	-3555.0267158	-3555.0142377
-1	19	ZnCl2_d2_mol6_aax	-3554.6038303	0.0400238	0.0482566	0.0517652	0.0551776	14.00	-3555.0677089	-3555.0540440	-3555.0276851	-3555.0140201
0	1	1_C2H6NMgCl_mol6_aab	-1650.5308139	0.1343963	0.1431438	0.1468438	0.1504248	22.36	-1650.7743467	-1650.7696146	-1650.6399503	-1650.6352183
0	2	1_C2H6NMgCl_mol6_aap	-1650.5301588	0.1340425	0.1428305	0.1465489	0.1501484	17.73	-1650.7732140	-1650.7685447	-1650.6391714	-1650.6345022
0	1	1_C2H6NZnCl_mol6_aab	-3229.5740728	0.1337500	0.1425970	0.1463398	0.1499623	26.24	-3229.9656533	-3229.9618343	-3229.8319033	-3229.8280842
0	2	1 C2H6NZnCl mol6 aap	-3229,5729056	0.1330528	0.1419920	0.1457766	0.1494416	18.71	-3229,9646002	-3229,9607620	-3229.8315473	-3229.8277092
0	1	1 LiCl 8MaCl d8 mol6	-1983,1747973	0.0469032	0.0550588	0.0585194	0.0618754	15,88	-1983,4453815	-1983,4366521	-1983,3984783	-1983,3897488
0	2	1 LiCL 5MgCL d5 mol6	-1983 1393957	0.0462923	0.0545561	0.0580677	0.0614763	23.62	-1983 4273520	-1983 4159135	-1983 3810596	-1983 3696212
0	2	1 LiCL 3MaCL d3 mol6	-1083 1200715	0.0450350	0.05/2910	0.0579322	0.0612910	25.02	-1083 /255729	-1083 /213/0F	-1083 3906397	-1083 375405F
0	3		1002 12227 13	0.0453330	0.0542019	0.0570623	0.0012010	20.02	1002 4252202	1002 4115403	1002.2700045	1002 2661704
0	4		-1983.1229/50	0.0403217	0.0536974	0.0072003	0.0007212	20.03	-1903.4202203	-1903.4115011	-1903.3/99045	-1903.3001/94
U	1	1_LICI_III0I14_P0S8	-4424.1114922	0.1222825	0.13326/3	0.13/868/	0.1422926	14.44	-4423.3191459	-4423.3120525	-4420.1968634	-4423.1897700

0	2	1 LiCl mol14 pos2 5	-4424 7720523	0 1221620	0 1221088	0 1279225	0 1/22710	12 21	-4425 3202002	4425 3125549	-4425 1082262	-4425 1003010
0	2	1_LICI_III0I14_p0S2_5	-4424.7720333	0.1221029	0.1331966	0.1378233	0.1422710	12.31	-4423.3203992	-4423.3123346	-4423.1962302	-4425.1903919
0	3	1_LiCl_mol14_pos2_8	-4424.7707914	0.1221084	0.1331386	0.1377614	0.1422073	12.98	-4425.3155608	-4425.3081386	-4425.1934524	-4425.1860302
0	4	1_LiCl_mol14_pos2	-4424.7505128	0.1212545	0.1324809	0.1371944	0.1417330	12.12	-4425.3170046	-4425.3066238	-4425.1957500	-4425.1853692
0	5	1 LiCl mol14 pos8 38	-4424 7412481	0 1226101	0 1335639	0 1381521	0 1425634	15 77	-4425 3116322	-4425 3003109	-4425 1890220	-4425 1777007
0	6	1 LiCl mol14 pos5	-4424 7144152	0.1102201	0.1206092	0.1355208	0 1401005	6.46	-4425 3179077	-1125 2015056	-1125 1095975	-1125 1922754
0	7	1_EIOI_mol14_p033	4424.7000244	0.1102201	0.1300303	0.1000200	0.1400000	7.00	4425.3170077	4425.3013330	4425.1303073	4425.1023734
0	1		-4424.7090211	0.1190002	0.1311079	0.1300107	0.1400033	7.06	-4423.3200332	-4425.5025744	-4425.2003670	-4423.1627061
0	8	1_LiCl_mol14_pos2_15	-4424.6986273	0.1185304	0.1300884	0.1349555	0.1396521	6.98	-4425.3055439	-4425.2885819	-4425.1870135	-4425.1700515
0	1	1_LiCl_mol15_pos8_19	-4609.2711139	0.1143985	0.1265386	0.1316167	0.1364932	11.40	-4609.8742118	-4609.8654228	-4609.7598132	-4609.7510243
0	2	1 LiCl mol15 pos8	-4609.2704970	0.1145509	0.1266469	0.1317048	0.1365608	13.99	-4609.8675274	-4609.8595120	-4609.7529765	-4609.7449611
0	3	1 LiCL mol15 pos2 17	-4609 2671624	0 1144862	0 1266079	0 1316787	0 1365482	12 98	-4609 8711659	-4609 8622066	-4609 7566797	-4609 7477204
0	4	1_LiCL_mol15_poc2_12	-4600 2506282	0.11/2115	0.1263250	0.1212002	0.1362514	0.79	-4600 9656079	4600 8567221	-4600 7514962	-4600 7425105
0		1_EICI_III0I15_p032_12	4000.2000202	0.1142113	0.1203233	0.1010000	0.1302314	3.70	4000.00000070	4000.0507221	4000.7005002	4000.7420100
0	5	1_LICI_M0115_p082_15	-4609.2370913	0.1128543	0.1252353	0.1304244	0.1354141	7.05	-4609.8734345	-4609.8599906	-4609.7605802	-4609.7471363
0	6	1_LiCl_mol15_pos2_13	-4609.2357797	0.1132283	0.1255372	0.1306922	0.1356465	7.84	-4609.8665085	-4609.8538768	-4609.7532802	-4609.7406484
0	7	1_LiCl_mol15_pos5	-4609.2143152	0.1118888	0.1243749	0.1296166	0.1346625	11.04	-4609.8605745	-4609.8454982	-4609.7486857	-4609.7336094
0	1	1 LiCl mol16e 2	-1761.2355286	0.1605612	0.1704578	0.1746188	0.1786309	24.40	-1761.5513975	-1761.5451490	-1761.3908362	-1761.3845877
0	1	1 LiCL mol17 pos8 2	-2421 0509760	0 1463525	0 1572402	0 1618103	0 1662104	13 64	-2421 4342733	-2421 4248135	-2421 2879207	-2421 2784609
0	2	1 LiCL mol17 pos8 1	-2421 0505803	0 1463566	0 1572420	0 1618111	0 1662102	14 21	-2421 4341564	-2421 4246163	-2421 2877997	-2421 2782597
0	2	1_EICI_MOI17_p030_1	-2421.00000000	0.1403300	0.1572420	0.1010111	0.1002102	17.21	2421.404044	2421.4240103	2421.2011331	-2421.2102331
0	3		-2421.0230279	0.1401224	0.1570556	0.1010434	0.1000004	17.00	-2421.4104011	-2421.4070004	-2421.2722700	-2421.2014039
0	4	1_LICI_mol17_pos5_1	-2421.0240263	0.1459517	0.1568965	0.1614944	0.1659239	17.08	-2421.4185844	-2421.4074994	-2421.2726326	-2421.2615476
0	1	1_LiCl_mol6_1	-1323.3623715	0.0615453	0.0686307	0.0716483	0.0745830	45.98	-1323.5680858	-1323.5620421	-1323.5065405	-1323.5004968
0	2	1_LiCl_mol6_2	-1323.3595388	0.0612710	0.0683815	0.0714114	0.0743593	30.62	-1323.5667180	-1323.5606639	-1323.5054469	-1323.4993928
0	1	1 LiCl mol7e	-1415.6054956	0.0574424	0.0651163	0.0683761	0.0715404	36.54	-1415.8392067	-1415.8326374	-1415.7817642	-1415.7751950
0	1	1 LiCL 2TMP7n d2 mol6 c	-3510 6027020	0.2032070	0.3042328	0.3087880	0 3131525	18.3/	-3511 0607707	-3511.06/1790	-3510 776/818	-3510 7708810
0	2	1 LiCL 2TMDZp d2 mol6 b	2510,6001540	0.20222010	0.3042520	0.3007000	0.3130800	10.34	2511.0652490	2511.0041730	2510.7720150	2510.7666094
0	2		-3510.0001549	0.2932321	0.3041032	0.3067210	0.3130690	19.72	-3311.0032460	-3311.0396406	-3310.7720136	-3310.7000064
0	3	1_LICI_81MPZn_d8_mol6_c	-3510.5995859	0.2936837	0.3045636	0.3090945	0.3134349	13.81	-3511.0669248	-3511.0611911	-3510.7732410	-3510.7675073
0	4	1_LiCl_8TMPZn_d8_mol6_d	-3510.5970011	0.2929190	0.3038809	0.3084494	0.3128282	12.44	-3511.0638835	-3511.0581553	-3510.7709645	-3510.7652362
0	5	1_LiCI_5TMPZn_d5_mol6_a	-3510.5911352	0.2932323	0.3042504	0.3088488	0.3132606	19.46	-3511.0754740	-3511.0670699	-3510.7822417	-3510.7738375
0	6	1 LiCl 5TMPZn d5 mol6 b	-3510.5904705	0.2928478	0.3039254	0.3085507	0.3129899	11.04	-3511.0744699	-3511.0660578	-3510.7816221	-3510.7732099
0	7	1 LiCL 3TMPZn d3 mol6 a	-3510 5908277	0.2932983	0 3043551	0 3089707	0 3133999	14.82	-3511 0744153	-3511.0660086	-3510 7811169	-3510 7727102
0	0	1 LiCL 2TMDZp d2 mole b	2510 5006094	0.2025002	0.0046075	0.2001406	0.0100000	19.64	2511 0742915	2511.0650472	2510 7909722	2510 7724270
0	0		-3310.3900064	0.2933093	0.3045375	0.3091400	0.3130573	16.04	-3311.0743613	-3311.0039473	-3310.7606722	-3310.7724379
0	y	1_LICI_81MPZn_d8_mol6_a	-3510.5868861	0.2935432	0.3045064	0.3090793	0.3134652	23.25	-3511.0623863	-3511.0554408	-3510.7688430	-3510.7618976
0	1	1_LiCl_2TMPZn_d2_mol7e	-3602.8470458	0.2886215	0.3001981	0.3050214	0.3096428	12.87	-3603.3441813	-3603.3376041	-3603.0555597	-3603.0489825
0	2	1_LiCI_2TMPZn_d2_mol7e_31	-3602.8440673	0.2897008	0.3011986	0.3059832	0.3105634	14.65	-3603.3423447	-3603.3356801	-3603.0526439	-3603.0459792
0	3	1 LiCI 2TMPZn d2 mol7e 26	-3602.8428318	0.2885540	0.3001131	0.3049288	0.3095428	9.19	-3603.3412011	-3603.3344647	-3603.0526470	-3603.0459107
0	4	1 LiCl 2TMPZn d2 molZe 28	-3602 8430678	0 2891321	0.3006498	0.3054462	0.3100402	12 22	-3603 3404548	-3603 3338772	-3603 0513227	-3603 0447451
0	5	1 LiCl 8TMPZn d8 molZo 20	-3602.9404569	0.2899509	0.3004120	0.3052251	0.2008338	0.07	-3603 3374299	-3603 3300321	-3603.0495790	-3603 0420812
0	5		-3002.0404300	0.2000300	0.3004120	0.0052201	0.3030330	10.04	-3003.3374200	-3003.3303321	-3003.0403700	-3003.0420012
0	6		-3002.8382089	0.2889394	0.3005443	0.3053842	0.3100249	10.84	-3003.3402203	-3603.3379416	-3603.0572809	-3603.0490022
0	1	1_LICI_51MPZn_d5_mol/e_36	-3602.8385804	0.2894290	0.3009723	0.3057842	0.3103965	13.49	-3603.3468150	-3603.3385186	-3603.0573859	-3603.0490896
0	8	1_LiCI_5TMPZn_d5_mol7e_40	-3602.8320578	0.2886510	0.3002591	0.3051006	0.3097430	13.84	-3603.3414144	-3603.3329461	-3603.0527634	-3603.0442951
0	9	1_LiCI_5TMPZn_d5_mol7e_38	-3602.8321042	0.2890331	0.3006284	0.3054653	0.3101040	8.08	-3603.3399659	-3603.3316910	-3603.0509327	-3603.0426579
0	10	1 LiCl 5TMPZn d5 mol7e 1	-3602.8316640	0.2886736	0.3002925	0.3051393	0.3097873	13.12	-3603.3393895	-3603.3311483	-3603.0507159	-3603.0424747
0	11	1 LiCL 8TMPZn d8 molZe	-3602 8311192	0 2898419	0 3013427	0 3061359	0 3107297	21 75	-3603 3354380	-3603 3276701	-3603 0455961	-3603 0378281
0	12	1 LiCL 9TMDZp d9 molZo 16	2602.0011102	0.2000410	0.2002062	0.2050425	0.2006792	10.00	2602.2262062	2602 2100602	2602.0277005	2602.0202626
0	12	1_LICI_0TMPZn_d0_mol7e_10	-3002.0240030	0.20000007	0.3002002	0.3050425	0.3090703	10.00	-3003.3203003	-3003.3100003	-3003.0377003	-3003.0302020
U	13		-3002.8238016	0.2000100	0.3003711	0.3051880	0.3098057	22.20	-3003.3202088	-3003.3187298	-3003.03/390/	-3003.0299117
0	14	1_LiCl_81MPZn_d8_mol7e_14	-3602.8244446	0.2895573	0.3010757	0.3058776	0.3104808	22.49	-3603.3294144	-3603.3215513	-3603.0398570	-3603.0319939
0	1	1_LiCl_2ZnCl_d2_mol6_aaq	-3562.2257812	0.0465520	0.0547732	0.0582627	0.0616471	39.70	-3562.6443655	-3562.6366695	-3562.5978134	-3562.5901175
0	2	1 LiCl 8ZnCl d8 mol6 aac	-3562.2227686	0.0460934	0.0543707	0.0578843	0.0612923	11.67	-3562.6441527	-3562.6359059	-3562.5980593	-3562.5898125
0	3	1 LiCl 5ZnCl d5 mol6 aae	-3562.2000810	-0.0054872	0.0028733	0.0064293	0.0098830	24.82	-3562.5824938	-3562.5722534	-3562.5879810	-3562.5777405
0	4	1 LiCL 37nCL d3 mol6 aan	-3562 1998995	0.0459186	0.0542875	0.0578473	0.0613051	27.63	-3562 6428305	-3562 6311254	-3562 5969118	-3562 5852067
0		1 LiCL 2 ZnCL d2 molZo	-3654 4607471	0.0424624	0.0512586	0.05/09/9	0.0595037	26.62	-3654 0215014	-3654 0124567	-3654 9701200	-3654 8600042
0	1		-3034.4097471	0.0424024	0.0012000	0.0049040	0.0000937	20.02	-3034.9213914	-3034.9124307	-3034.0750447	-3034.0099943
U	2	1_LICI_8_ZnCI_d8_mol7e	-3654.4667983	0.0422594	0.0510813	0.0548183	0.0584376	16.09	-3654.91/6011	-3654.9085546	-3654.8753417	-3654.8662951
0	3	1_LICI_5_ZnCI_d5_mol7e	-3654.4468649	0.0417390	0.0506370	0.0544129	0.0580740	23.90	-3654.9116178	-3654.9004430	-3654.8698787	-3654.8587040
0	1	1_MgCl2_mol14_pos2_27	-5730.4681535	0.1179634	0.1303569	0.1355536	0.1405514	10.54	-5731.1147782	-5731.1048531	-5730.9968147	-5730.9868896
0	2	1_MgCl2_mol14_pos8	-5730.4585676	0.1180407	0.1303329	0.1354816	0.1404296	18.59	-5731.0946299	-5731.0869586	-5730.9765892	-5730.9689178
0	3	1 MaCl2 mol14 pos2	-5730.4457247	0.1157329	0.1284192	0.1337477	0.1388786	5.02	-5731,1027230	-5731.0918762	-5730,9869901	-5730.9761433
Ő	4	1 MgCl2 mol14 pos8 1	-5730 4427227	0 1189078	0 1311233	0 1362379	0 1411518	14.01	-5731 0929946	-5731 0828374	-5730 9740868	-5730 9639295
0	F	1 MaCl2 mol14 post	-5720 /156114	0.11/0020	0.1277420	0.1321450	0.1292540	1 10	-5731 1105170	5721 0027024	5730 0056150	5720 0700000
U	5		-5730.4150114	0.1149028	0.12/7430	0.1331438	0.1303548	4.19	-5/31.11051/9	-0101.0901931	-0730.9900150	-5/30.9/88903
0	6	1_MgCl2_mol14_pos5_29	-5/30.4177152	0.1176530	0.1299982	0.1351751	0.1401546	17.88	-5731.1008603	-5731.0855520	-5/30.9832072	-5/30.9678990
0	7	1_MgCl2_mol14_pos3	-5730.4126850	0.1155548	0.1284014	0.1338075	0.1390200	4.87	-5731.1134664	-5731.0957492	-5730.9979115	-5730.9801944
0	8	1 MgCl2 mol14 pos5 31	-5730.3970797	0.1170921	0.1295199	0.1347353	0.1397545	13.54	-5731.0945504	-5731.0772434	-5730.9774583	-5730.9601513

0	1	1_MgCl2_mol15_pos2_7	-5914.9584400	0.1101110	0.1236112	0.1292630	0.1346919	9.34	-5915.6628371	-5915.6516317	-5915.5527261	-5915.5415206
0	2	1_MgCl2_mol15_pos8_s1	-5914.9505290	0.1095588	0.1230943	0.1287606	0.1342032	12.37	-5915.6480092	-5915.6381560	-5915.5384503	-5915.5285972
0	3	1 MaCl2 mol15 pos2 9	-5914.9517796	0.1125547	0.1256749	0.1311491	0.1363948	13.91	-5915.6407285	-5915.6322666	-5915.5281738	-5915.5197118
0	4	1 MaCl2 mol15 pos8	-5914 9429935	0 1101366	0 1235453	0 1291529	0 1345354	16.63	-5915 6347179	-5915 6258970	-5915 5245813	-5915 5157604
0	5	1 MgCl2 mol15 pos2	-5914 9391962	0 1080734	0 1218195	0.1275818	0 1331219	7 37	-5915 6553992	-5915 6430406	-5915 5473257	-5915 5349671
0	6	1 MaCl2 mol15 pos2 5	-5914.9353069	0.11000734	0.12/0135	0.1208101	0.1351533	14 74	-5915.6200127	-5915 6205/51	-5015 5180052	-5915.5043071
0	7	1_MgCl2_mol15_pos2_5	-5314.33535003	0.1076205	0.1242411	0.1230101	0.1331555	0.54	-0015 6471010	-0015 6221002	-0015 E205009	-0310.0030277 E01E E04E679
0	/		-0914.9140620	0.1070303	0.1214011	0.1272038	0.1326514	9.04	-3913.0471313	-3913.0321963	-5915.5595006	-0910.0240070
0	8		-5914.9172144	0.1122226	0.1253991	0.1309003	0.1361743	14.85	-5915.6193906	-5915.6089514	-5915.5071660	-5915.4967287
0	9		-5914.8806003	0.1114155	0.1246726	0.1302135	0.1355298	16.23	-5915.6055228	-5915.5911979	-5915.4941073	-5915.4/9/824
0	1		-1976.2137842	0.0591785	0.0669821	0.0703016	0.0735264	27.39	-1976.4634119	-1976.4574179	-1976.4042333	-1976.3982394
0	1	1_MgCl2_mol/e	-2068.4547913	0.0550332	0.0634212	0.0669812	0.0704339	24.83	-2068.7320271	-2068.7255286	-2068.6769938	-2068.6704954
0	1	1_MgCl2_21MPZn_d2_mol6_c	-4163.4486505	0.2911934	0.3028262	0.3076772	0.3123279	13.57	-4163.9646133	-4163.9580857	-4163.6734198	-4163.6668922
0	2	1_MgCl2_21MPZn_d2_mol6_b	-4163.4473741	0.2914352	0.3030362	0.3078745	0.3125136	19.67	-4163.9613758	-4163.9550642	-4163.6699406	-4163.6636290
0	3	1_MgCl2_51MPZn_d5_mol6_b	-4163.4428568	0.2900926	0.3019129	0.3068506	0.3115901	7.51	-4163.9708974	-4163.9625162	-4163.6808048	-4163.6724235
0	4	1_MgCl2_5TMPZn_d5_mol6_a	-4163.4435833	0.2909140	0.3026325	0.3075251	0.3122195	16.24	-4163.9713519	-4163.9630514	-4163.6804378	-4163.6721373
0	5	1_MgCl2_3TMPZn_d3_mol6_a	-4163.4435198	0.2912756	0.3030009	0.3078966	0.3125941	15.48	-4163.9715768	-4163.9631623	-4163.6803011	-4163.6718866
0	6	1_MgCl2_3TMPZn_d3_mol6_b	-4163.4434840	0.2913128	0.3030353	0.3079298	0.3126263	12.74	-4163.9714100	-4163.9630071	-4163.6800971	-4163.6716942
0	7	1_MgCl2_8TMPZn_d8_mol6_a2	-4163.4422437	0.2903950	0.3021047	0.3069891	0.3116725	8.26	-4163.9586726	-4163.9522227	-4163.6682776	-4163.6618276
0	8	1_MgCl2_8TMPZn_d8_mol6_a	-4163.4417638	0.2901382	0.3018307	0.3067083	0.3113855	17.00	-4163.9575308	-4163.9511367	-4163.6673926	-4163.6609984
0	1	1_MgCl2_2ZnCl_d2_mol6_aaq	-4215.0671446	0.0441579	0.0530993	0.0568932	0.0605714	31.55	-4215.5346709	-4215.5260011	-4215.4905129	-4215.4818431
0	2	1_MgCl2_8ZnCl_d8_mol6_aac2	-4215.0614704	0.0436533	0.0526442	0.0564592	0.0601579	17.81	-4215.5326920	-4215.5235740	-4215.4890386	-4215.4799206
0	3	1_MgCl2_5ZnCl_d5_mol6_aae	-4215.0511562	0.0431647	0.0522461	0.0561055	0.0598511	23.38	-4215.5360744	-4215.5247198	-4215.4929096	-4215.4815550
0	4	1_MgCl2_3ZnCl_d3_mol6_aap	-4215.0515669	0.0437319	0.0527938	0.0566446	0.0603817	22.99	-4215.5387910	-4215.5271343	-4215.4950591	-4215.4834023
0	5	1_MgCl2_3ZnCl_d3_mol6_aap2	-4215.0053003	0.0416414	0.0508578	0.0547774	0.0585834	22.95	-4215.5215674	-4215.5057765	-4215.4799259	-4215.4641350
0	6	1 MgCl2 5ZnCl d5 mol6 aae2	-4214.9963445	0.0412604	0.0504779	0.0543973	0.0582026	17.99	-4215.5205855	-4215.5034697	-4215.4793251	-4215.4622092
0	1	1 MaCl d8 mol6	-1515.2931991	0.0485445	0.0556263	0.0586417	0.0615737	49.54	-1515.5099302	-1515.5040435	-1515.4613857	-1515.4554990
0	2	1 MgCl d2 mol6	-1515.2865180	0.0484745	0.0555674	0.0585889	0.0615277	38.22	-1515.5019948	-1515.4963128	-1515.4535203	-1515.4478383
0	3	1 MgCl d3 mol6	-1515.2419576	0.0468104	0.0540380	0.0571201	0.0601198	32.56	-1515.4978174	-1515.4856631	-1515.4510069	-1515.4388526
0	4	1 MgCl d5 mol6	-1515.2405572	0.0463612	0.0535975	0.0566831	0.0596863	32.70	-1515.5028959	-1515.4894888	-1515.4565346	-1515.4431276
0	1	1 TMPZnCl mol6 2	-3503 6265224	0.3041260	0.3147845	0.3192311	0.3234965	20.84	-3504 0745287	-3504 0713617	-3503 7704027	-3503 7672357
0	2	1 TMPZnCl mol6 1	-3503 6239367	0.3027034	0.3135511	0.3180831	0.3224347	2.22	-3504 0722978	-3504 0690305	-3503 7695943	-3503 7663270
0	3	1 TMPZnCl mol6 3	-3503 6239530	0.3037178	0 3144136	0.3188780	0.3231620	10.11	-3504 0693436	-3504 0665218	-3503 7656258	-3503 7628040
0	4	1 TMPZnCl mol6 4	-3503 6222189	0.3044409	0.3150535	0.3194817	0.3237300	23.28	-3504 0667328	-3504 0639554	-3503 7622919	-3503 7595144
0	1	1 ZnCl2 mol6	-3555 2471047	0.0576751	0.0656348	0.0690223	0.0723141	24.18	-3555 6444579	-3555 6394311	-3555 5867828	-3555 5817559
0	1	1 ZnCL d8 mol6	-3094 3520404	0.0473786	0.0546256	0.05771/0	0.0607209	45.59	-300/ 7227/73	-309/ 71702//	-3094 6753687	-3094 6696457
0	2	1 ZnCL d2 mol6	-3094.3503609	0.0476/10	0.0548553	0.0579304	0.0609225	40.83	-3094.7212569	-3004 7153213	-3094.6736158	-3094.6676803
0	2	1 ZnCL d3 mol6	-3004 2040200	0.0468302	0.0540355	0.0571616	0.0601640	43.22	-3004 6971164	-3004 6774275	-3004 6402771	-3004 6305882
0	3		-3094.2949200	0.0400392	0.0540702	0.0571010	0.0001040	43.22	2004 6016610	2004 6907520	2004 6452946	2004 6242757
0	4		-3094.2920339	0.0403772	0.0530205	0.0307170	0.0397244	42.30	125 2245902	125 2241570	125 1570672	125 1574250
0	1		704.062240	0.0007220	0.0712777	0.0732431	0.0751754	234.27	705 0001111	705 0010015	-133.1376073	-135.1574359
0	1		-794.9022400	0.0491002	0.0551540	0.0577024	0.0602129	03.39	-795.0661111	-793.0010213	-795.0369509	-795.0520012
0	1		-1262.8400630	0.0472496	0.0542997	0.0573115	0.0602433	45.15	-1263.0113035	-1263.0037579	-1262.9640538	-1262.9565063
0	1		-1050.5308139	0.1343963	0.1431438	0.1468438	0.1504248	22.30	-1050.7743467	-1050.7696146	-1050.0399503	-1050.0352183
0	2		-1650.5301588	0.1340425	0.1428305	0.1465489	0.1501484	17.73	-1650.7732140	-1650.7685447	-1650.6391/14	-1650.6345022
0	3		-1050.5193603	0.1340556	0.1428230	0.1465331	0.1501250	22.58	-1050./055538	-1050.7605626	-1050.0314982	-1050.0205070
0	4		-1650.5191397	0.1338548	0.1426518	0.1463/43	0.1499780	19.82	-1650.7653370	-1650.7603822	-1650.6314821	-1050.02052/4
0	5		-1650.4994221	0.1314294	0.1405234	0.1443780	0.1481138	4.86	-1650.7447632	-1650.7399048	-1650.6133338	-1650.6084754
0	6	C2H6NMgCl_mol6_aai	-1650.5002758	0.1324452	0.1413618	0.1451382	0.1487961	12.67	-1650.7487119	-1650.7432725	-1650.6162667	-1650.6108272
0	7	C2H6NMgCI_mol6_aam	-1650.4994169	0.1316742	0.1407296	0.1445672	0.1482859	8.46	-1650.7447960	-1650.7399241	-1650.6131217	-1650.6082499
0	8	C2H6NMgCl_mol6_acr	-1650.5006709	0.1333181	0.1421316	0.1458613	0.1494721	22.22	-1650.7443137	-1650.7394442	-1650.6109956	-1650.6061260
0	9	C2H6NMgCI_mol6_adt	-1650.4971156	0.1320394	0.1410463	0.1448625	0.1485600	5.03	-1650.7431293	-1650.7378871	-1650.6110898	-1650.6058476
0	10	C2H6NMgCI_mol6_abp	-1650.4963537	0.1320284	0.1409651	0.1447520	0.1484215	20.97	-1650.7475801	-1650.7417234	-1650.6155517	-1650.6096949
0	11	C2H6NMgCl_mol6_aba	-1650.4942206	0.1317566	0.1407181	0.1445166	0.1481981	16.23	-1650.7440081	-1650.7382947	-1650.6122515	-1650.6065380
0	12	C2H6NMgCI_mol6_ach	-1650.4887206	0.1318029	0.1408349	0.1446651	0.1483784	13.87	-1650.7541584	-1650.7460856	-1650.6223555	-1650.6142826
0	13	C2H6NMgCl_mol6_aae	-1650.4865079	0.1307942	0.1399320	0.1438107	0.1475737	10.51	-1650.7536553	-1650.7453429	-1650.6228610	-1650.6145486
0	14	C2H6NMgCl_mol6_aac	-1650.4863455	0.1307470	0.1398810	0.1437577	0.1475185	17.69	-1650.7504989	-1650.7429449	-1650.6197519	-1650.6121979
0	15	C2H6NMgCl_mol6_acs	-1650.4863213	0.1308569	0.1399987	0.1438788	0.1476430	11.82	-1650.7503947	-1650.7428545	-1650.6195377	-1650.6119976
0	16	C2H6NMgCl_mol6_aak	-1650.4858584	0.1306761	0.1398347	0.1437225	0.1474945	13.15	-1650.7497420	-1650.7421974	-1650.6190659	-1650.6115212
0	17	C2H6NMgCI_mol6_adm	-1650.4822462	0.1280880	0.1375972	0.1416417	0.1455711	1.11	-1650.7467375	-1650.7391020	-1650.6186495	-1650.6110140
0	18	C2H6NMgCl_mol6_adn	-1650.4823915	0.1289947	0.1383920	0.1423864	0.1462654	2.55	-1650.7453591	-1650.7379380	-1650.6163643	-1650.6089433
0	1	C2H6NZnCl 1	-2374.0216873	0.0479619	0.0541238	0.0567766	0.0593731	21.91	-2374.2880001	-2374.2836837	-2374.2400382	-2374.2357217

0	1	C2H6NZnCl_mol6_aak	-3229 5740728	0 1337499	0 1425969	0 1463397	0 1499622	26.24	-3229 9656533	-3229 9618343	-3229 8319034	-3229 8280844
0	2	C2H6NZnCl_mol6_aan	-3220 5720056	0.1330527	0.1/10010	0.1457766	0.1404415	19.70	3220.0646002	3220.0607621	-3220 8315474	-3220 8277003
0	2		2220.5723030	0.1330327	0.1416710	0.1451700	0.1401202	22.46	2220.0502555	2220.0542649	2220.0256201	2220.0217033
0	3		-3229.5646439	0.1327253	0.1416712	0.1454598	0.1491293	23.46	-3229.9583555	-3229.9543648	-3229.8256301	-3229.8216394
0	4	C2H6INZINCI_MOI6_aDK	-3229.5643916	0.1329558	0.1418808	0.1456600	0.1493202	20.24	-3229.9578765	-3229.9538638	-3229.8249206	-3229.8209079
0	5	C2H6NZnCI_mol6_acl	-3229.5593601	0.1324002	0.1413771	0.1451790	0.1488615	11.48	-3229.9547438	-3229.9504525	-3229.8223435	-3229.8180523
0	6	C2H6NZnCl_mol6_abo	-3229.5557611	0.1316802	0.1407046	0.1445307	0.1482394	25.29	-3229.9536557	-3229.9488337	-3229.8219755	-3229.8171534
0	7	C2H6NZnCl_mol6_aab	-3229.5552478	0.1317900	0.1408215	0.1446498	0.1483602	8.29	-3229.9514057	-3229.9468042	-3229.8196157	-3229.8150142
0	8	C2H6NZnCl_mol6_acn	-3229.5552473	0.1322050	0.1411948	0.1450038	0.1486946	11.38	-3229.9523219	-3229.9476152	-3229.8201168	-3229.8154102
0	9	C2H6NZnCl_mol6_aad	-3229.5541093	0.1321447	0.1411535	0.1449721	0.1486731	19.58	-3229.9520876	-3229.9472010	-3229.8199429	-3229.8150563
0	10	C2H6NZnCI_mol6_aai	-3229.5525055	0.1310377	0.1401361	0.1439963	0.1477399	14.92	-3229.9520175	-3229.9468481	-3229.8209797	-3229.8158104
0	11	C2H6NZnCI mol6 aat	-3229.5528945	0.1318024	0.1408536	0.1446920	0.1484133	16.24	-3229.9521672	-3229.9472052	-3229.8203647	-3229.8154027
0	12	C2H6NZnCI mol6 abl	-3229.5518762	0.1318377	0.1408742	0.1447059	0.1484206	14.71	-3229.9504378	-3229.9454794	-3229.8186000	-3229.8136417
0	13	C2H6NZnCl mol6 abd	-3229.5496797	0.1297042	0.1390076	0.1429598	0.1467960	9.46	-3229,9470223	-3229.9424525	-3229.8173181	-3229.8127483
0	14	C2H6NZnCL mol6 abf	-3229 5510259	0 1313690	0 1404476	0 1442977	0 1480305	17 49	-3229 9499527	-3229 9449899	-3229 8185837	-3229 8136209
0	15	C2H6NZnCL mol6 ach	-3229 5498454	0 1315405	0 1406459	0 1445093	0 1482562	15.02	-3229 9561785	-3229 9499799	-3229 8246379	-3229 8184393
0	16	C2H6NZnCl_mol6_aaa	-3220 5460512	0.1208023	0.1301160	0.1430737	0.1460161	6.56	-3220.0543781	-3220.0480400	-3220 8245757	-3220 8182386
0	10		-3229.5469512	0.1200220	0.1391100	0.1430737	0.1409101	7.51	-3229.9543701	-3229.9400409	-3229.0243737	-3229.0102300
0	10		-3229.3434709	0.1292303	0.1300121	0.1423903	0.1404031	1.51	-3229.9503020	-3229.9447293	-3229.0211443	-3229.0134909
0	10		-3229.0473230	0.1312034	0.1404239	0.1443137	0.1400044	10.23	-3229.9507979	-3229.9451910	-3229.6195345	-3229.0139201
0	19		-3229.5454240	0.1296962	0.1390097	0.1429665	0.1468074	10.87	-3229.9505458	-3229.9448535	-3229.8208495	-3229.8151572
0	20	C2H6NZnCI_mol6_acv	-3229.5456436	0.1301196	0.1393990	0.1433404	0.1471659	8.01	-3229.9508888	-3229.9451839	-3229.8207691	-3229.8150643
U	21	C2H6NZnCl_mol6_aac	-3229.5457762	0.1303974	0.1396296	0.1435495	0.14/3531	14.29	-3229.9511461	-3229.9454225	-3229.8207487	-3229.8150250
U	22	C2H6NZnCl_mol6_aaf	-3229.5455687	0.1306597	0.1398640	0.1437716	0.1475628	13.69	-3229.9504495	-3229.9447634	-3229.8197897	-3229.8141036
0	23	C2H6NZnCl_mol6_adn	-3229.5421588	0.1285718	0.1380580	0.1420920	0.1460105	3.52	-3229.9459769	-3229.9404333	-3229.8174051	-3229.8118614
0	1	C2H6NZn_d3_mol6	-2768.6903500	0.1237589	0.1319807	0.1354664	0.1388454	20.93	-2769.0541512	-2769.0493586	-2768.9303922	-2768.9255996
0	2	C2H6NZn_d5_mol6	-2768.6891562	0.1226197	0.1309273	0.1344514	0.1378692	7.44	-2769.0539838	-2769.0490691	-2768.9313640	-2768.9264494
0	3	C2H6NZn_d8_mol6	-2768.6857421	0.1228162	0.1310694	0.1345679	0.1379591	27.88	-2769.0465740	-2769.0426991	-2768.9237577	-2768.9198829
0	4	C2H6NZn_d2_mol6	-2768.6827127	0.1221939	0.1305391	0.1340788	0.1375115	6.39	-2769.0448312	-2769.0406147	-2768.9226373	-2768.9184208
0	1	C4H12N2Zn_7	-2048.3555050	0.1246238	0.1316548	0.1346548	0.1375740	53.91	-2048.6125180	-2048.6099609	-2048.4878942	-2048.4853370
0	1	furan	-230.0467664	0.0434762	0.0480625	0.0500480	0.0520011	614.68	-230.1095043	-230.1091082	-230.0660281	-230.0656320
0	1	1 LiCl 8MgCl d8 mol6	-1983.1747973	0.0469032	0.0550588	0.0585194	0.0618754	15.88	-1983.4453815	-1983.4366521	-1983.3984783	-1983.3897488
0	2	MgCILiCI d5 mol6 1	-1983.1711911	0.0462170	0.0544034	0.0578772	0.0612460	26.05	-1983.4387922	-1983.4306112	-1983.3925752	-1983.3843941
0	3	MaCILiCI d5 mol6	-1983.1674954	0.0458170	0.0540808	0.0575905	0.0609962	6.63	-1983.4456765	-1983.4360120	-1983.3998594	-1983.3901949
0	4	MaCILiCI d8 mol6	-1983,1680338	0.0465299	0.0546737	0.0581272	0.0614749	31.03	-1983.4309774	-1983.4235764	-1983.3844474	-1983.3770464
0	5	MaCILiCI d8 mol6 1	-1983,1687664	0.0483840	0.0563297	0.0596932	0.0629496	43.44	-1983.4374114	-1983.4292056	-1983.3890274	-1983.3808215
0	6	MaCILiCI d3 mol6	-1983,1656061	0.0466117	0.0548198	0.0583044	0.0616846	21.93	-1983.4447794	-1983,4349455	-1983.3981676	-1983.3883337
0	7	MaCILiCI d2 mol6	-1983.1613397	0.0464337	0.0545947	0.0580574	0.0614153	27.20	-1983.4244557	-1983.4171260	-1983.3780219	-1983.3706922
0	8		-1983 1393957	0.0462923	0.0545561	0.0580677	0.0614763	23.62	-1983 4273520	-1983 4159135	-1983 3810596	-1983 3696212
0	9 9	1 LiCL 3MgCL d3 mol6	-1083 1200715	0.0459350	0.05/2819	0.0578323	0.0612810	25.02	-1083 /355738	-1983 /213/05	-1083 3806387	-1983 375/055
0	10	1 LiCL 2MgCL d2 mol6	-1983 1220710	0.0453217	0.0536974	0.0572603	0.0607212	26.63	-1983 /252263	-1983 /115011	-1983 3799045	-1983 3661794
0	10	1 LiCL mol14 pos8	-1303.1223730	0.1222825	0.1332673	0.1378687	0.1/22026	14.44	-1305.4252205	-1305.4115011	-1005.57 55045	-1/25 1897700
0	2		-4424.7730504	0.1219777	0.1320059	0.1375267	0.1410704	15.27	-4425.3131433	-4425.3120323	-4425.1300034	-4425.1057700
0	2	1 LiCl_mol14_p030	4424.7739394	0.1210777	0.1323030	0.1373207	0.1419704	10.27	4425.3201940	4425.5100040	4425.2043170	4425.1902071
0	3	1 LiCL mol14 pos2 0	4424 7707044	0.1221029	0.1331300	0.1370233	0.1422/10	12.01	-4423.320388Z	4425.0120040	-++2J.1902302	4425.1903919
0	4		-4424.1101914	0.1221084	0.1331300	0.13//014	0.1422073	12.90	-4423.3133008	-4420.0001000	1425 1057500	-4420.1000302
0	5	1_LICI_IIIUI14_PUSZ	4424.7000120	0.1212040	0.1324009	0.13/1944	0.1417330	12.12	-4420.0170040	4425.3000238	-4420.1907000	4425.1000092
0	0		-4424.7412481	0.1226101	0.1335639	0.1381521	0.1425034	15.77	-4425.3116322	-4425.3003109	-4425.1890220	-4425.1777007
0	/	1_LICI_mol14_pos5	-4424.7144152	0.1192201	0.1306983	0.1355298	0.1401905	6.46	-4425.3178077	-4425.3015956	-4425.1985875	-4425.1823754
U	8	1_LICI_mol14_pos3	-4424.7090211	0.1196662	0.1311679	0.1360107	0.1406833	7.06	-4425.3200532	-4425.3023744	-4425.2003870	-4425.1827081
0	9	1_LICI_mol14_pos2_15	-4424.6986273	0.1185304	0.1300884	0.1349555	0.1396521	6.98	-4425.3055439	-4425.2885819	-4425.1870135	-4425.1700515
U	1	1_LICI_moi15_pos8_19	-4609.2711139	0.1143985	0.1265386	0.1316167	0.1364932	11.40	-4609.8742118	-4609.8654228	-4609.7598132	-4609.7510243
U	2	1_LICI_mol15_pos8	-4609.2704970	0.1145509	0.1266469	0.1317048	0.1365608	13.99	-4609.8675274	-4609.8595120	-4609.7529765	-4609.7449611
0	3	1_LICI_mol15_pos2_15_s1	-4609.2679758	0.1143257	0.1264736	0.1315561	0.1364374	12.04	-4609.8760087	-4609.8665538	-4609.7616830	-4609.7522281
0	4	1_LiCl_mol15_pos2_17	-4609.2671624	0.1144862	0.1266079	0.1316787	0.1365482	12.98	-4609.8711659	-4609.8622066	-4609.7566797	-4609.7477204
0	5	1_LiCl_mol15_pos2_12	-4609.2596282	0.1142115	0.1263259	0.1313903	0.1362514	9.78	-4609.8656978	-4609.8567221	-4609.7514862	-4609.7425105
0	6	1_LiCl_mol15_pos2_15	-4609.2370913	0.1128543	0.1252353	0.1304244	0.1354141	7.65	-4609.8734345	-4609.8599906	-4609.7605802	-4609.7471363
0	7	1_LiCl_mol15_pos2_13	-4609.2357797	0.1132283	0.1255372	0.1306922	0.1356465	7.84	-4609.8665085	-4609.8538768	-4609.7532802	-4609.7406484
0	8	1_LiCl_mol15_pos5	-4609.2143152	0.1118888	0.1243749	0.1296166	0.1346625	11.04	-4609.8605745	-4609.8454982	-4609.7486857	-4609.7336094
0	1	LiCI_mol16e_6	-1761.2370222	0.1600723	0.1700172	0.1742004	0.1782350	6.28	-1761.5498154	-1761.5440809	-1761.3897430	-1761.3840085
0	2	1_LiCl_mol16e_2	-1761.2355286	0.1605612	0.1704578	0.1746188	0.1786309	24.40	-1761.5513975	-1761.5451490	-1761.3908362	-1761.3845877
0	3	LiCl_mol16e_7	-1761.2340810	0.1601603	0.1700737	0.1742431	0.1782642	9.20	-1761.5496110	-1761.5434436	-1761.3894507	-1761.3832832
0	4	LiCl mol16e 3	-1761.2334526	0.1606038	0.1705001	0.1746616	0.1786745	18.82	-1761.5531069	-1761.5464179	-1761.3925031	-1761.3858141

0	5	LiCl_mol16e_4	-1761.2334492	0.1607576	0.1706354	0.1747887	0.1787936	20.98	-1761.5529037	-1761.5462325	-1761.3921460	-1761.3854748
0	1	LiCl_mol17_pos5_1	-2421.0688513	0.1478440	0.1585448	0.1630295	0.1673428	14.92	-2421.4346530	-2421.4278957	-2421.2868089	-2421.2800516
0	2	LiCl mol17 pos5 22	-2421.0626489	0.1465135	0.1573334	0.1618727	0.1662416	20.23	-2421.4333324	-2421.4260459	-2421.2868189	-2421.2795323
0	3	1 LiCl mol17 pos8 2	-2421.0509760	0.1463525	0.1572402	0.1618103	0.1662104	13.64	-2421,4342733	-2421,4248135	-2421,2879207	-2421.2784609
0	4	1 LiCL mol17 pos8 1	-2421 0505803	0 1463566	0 1572420	0 1618111	0 1662102	14 21	-2421 4341564	-2421 4246163	-2421 2877997	-2421 2782597
0	5	1 LiCL mol17 pos5 2	-2421 0256279	0 1461224	0 1570538	0 1616454	0 1660684	17.88	-2421 4184011	-2421 4076084	-2421 2722786	-2421 2614859
0	6	1 LiCl mol17 pos5 1	-2421 0240263	0 1459517	0 1568965	0 1614944	0 1659239	17.08	-2421 4185844	-2421 4074994	-2421 2726326	-2421 2615476
0	1		-1323 3623761	0.0615389	0.0686241	0.0716/16	0.0745762	46.30	-1323 5678/87	-1323 5618367	-1323 5063098	-1323 5002978
0	2		-1323 3505278	0.0612460	0.0683588	0.0713896	0.0743384	29.67	-1323.566/308	-1323.560/11/5	-1323.5051847	-1323.0002070
0	2		-1323.3535270	0.0611830	0.0682051	0.0713250	0.0743737	44.00	-1323.5004300	-1323.5509135	-1323.5031047	-1323.4096205
0	3		1222.3370333	0.0011039	0.0002931	0.0713230	0.0742727	27.26	1222 554005	1222 5470642	1222 1046902	1222.4900293
0	4		-1323.3440400	0.0560018	0.0637414	0.0701044	0.0730304	12.67	-1323.5576206	-1323.547.9045	-1323.4940003	-1323.4001332
0	1		1415 6056257	0.0500918	0.0037414	0.0070102	0.0702121	20.77	1/15 02/0607	1415 0200055	1415 7774174	1415 7716402
0	1		-1415.0050557	0.0572455	0.0646965	0.0001477	0.0715045	29.77	-1415.6540027	-1413.0200033	-1413.7774174	-1415.7710402
0	2		-1415.6054956	0.0574424	0.0651163	0.0683761	0.0715404	30.54	-1415.8392067	-1415.8326374	-1415.7817642	-1415.7751950
0	3		-1415.6020549	0.0573253	0.0650042	0.0682669	0.0714345	31.59	-1415.8379698	-1415.8312254	-1415.7806445	-1415.7739001
0	4		-1415.5989282	0.0567713	0.0644751	0.0677490	0.0709281	23.67	-1415.8301264	-1415.8240961	-1415.7733550	-1415.7673247
0	1	LICI_31MPZn_d3_mol6_a	-3510.6093795	0.2940297	0.3048988	0.3094255	0.3137620	13.22	-3511.0774260	-3511.0714280	-3510.7833962	-3510.7773983
0	2	LICI_5TMPZn_d5_mol6_aa	-3510.6078231	0.2937387	0.3045762	0.3090883	0.3134100	21.33	-3511.0770417	-3511.0708586	-3510.7833030	-3510.7771199
0	3	1_LiCl_21MPZn_d2_mol6_c	-3510.6027920	0.2932979	0.3042328	0.3087880	0.3131525	18.34	-3511.0697797	-3511.0641790	-3510.7764818	-3510.7708810
0	4	1_LiCI_2TMPZn_d2_mol6_b	-3510.6001549	0.2932321	0.3041652	0.3087216	0.3130890	19.72	-3511.0652480	-3511.0598406	-3510.7720158	-3510.7666084
0	5	1_LiCI_8TMPZn_d8_mol6_c	-3510.5995859	0.2936837	0.3045636	0.3090945	0.3134349	13.81	-3511.0669248	-3511.0611911	-3510.7732410	-3510.7675073
0	6	1_LiCI_8TMPZn_d8_mol6_d	-3510.5970011	0.2929190	0.3038809	0.3084494	0.3128282	12.44	-3511.0638835	-3511.0581553	-3510.7709645	-3510.7652362
0	7	1_LiCI_5TMPZn_d5_mol6_a	-3510.5911352	0.2932323	0.3042504	0.3088488	0.3132606	19.46	-3511.0754740	-3511.0670699	-3510.7822417	-3510.7738375
0	8	1_LiCI_5TMPZn_d5_mol6_b	-3510.5904705	0.2928478	0.3039254	0.3085507	0.3129899	11.04	-3511.0744699	-3511.0660578	-3510.7816221	-3510.7732099
0	9	1_LiCl_3TMPZn_d3_mol6_a	-3510.5908277	0.2932983	0.3043551	0.3089707	0.3133999	14.82	-3511.0744153	-3511.0660086	-3510.7811169	-3510.7727102
0	10	1_LiCI_3TMPZn_d3_mol6_b	-3510.5906084	0.2935093	0.3045375	0.3091406	0.3135573	18.64	-3511.0743815	-3511.0659473	-3510.7808722	-3510.7724379
0	11	1_LiCl_8TMPZn_d8_mol6_a	-3510.5868861	0.2935432	0.3045064	0.3090793	0.3134652	23.25	-3511.0623863	-3511.0554408	-3510.7688430	-3510.7618976
0	1	LiCI_5TMPZn_d5_mol7e_40	-3602.8630218	0.2934035	0.3044451	0.3090250	0.3133996	27.72	-3603.3454789	-3603.3409345	-3603.0520753	-3603.0475310
0	2	1_LiCl_2TMPZn_d2_mol7e	-3602.8470458	0.2886215	0.3001981	0.3050214	0.3096428	12.87	-3603.3441813	-3603.3376041	-3603.0555597	-3603.0489825
0	3	1_LiCI_2TMPZn_d2_mol7e_31	-3602.8440673	0.2897008	0.3011986	0.3059832	0.3105634	14.65	-3603.3423447	-3603.3356801	-3603.0526439	-3603.0459792
0	4	1_LiCI_2TMPZn_d2_mol7e_26	-3602.8428318	0.2885540	0.3001131	0.3049288	0.3095428	9.19	-3603.3412011	-3603.3344647	-3603.0526470	-3603.0459107
0	5	1_LiCI_2TMPZn_d2_mol7e_28	-3602.8430678	0.2891321	0.3006498	0.3054462	0.3100402	12.22	-3603.3404548	-3603.3338772	-3603.0513227	-3603.0447451
0	6	1_LiCI_8TMPZn_d8_mol7e_20	-3602.8404568	0.2888508	0.3004120	0.3052251	0.3098338	9.97	-3603.3374288	-3603.3309321	-3603.0485780	-3603.0420812
0	7	1 LiCI 5TMPZn d5 mol7e	-3602.8382089	0.2889394	0.3005443	0.3053842	0.3100249	10.84	-3603.3462203	-3603.3379416	-3603.0572809	-3603.0490022
0	8	1 LiCl 5TMPZn d5 mol7e 36	-3602.8385804	0.2894290	0.3009723	0.3057842	0.3103965	13.49	-3603.3468150	-3603.3385186	-3603.0573859	-3603.0490896
0	9	1 LiCl 5TMPZn d5 mol7e 40	-3602.8320578	0.2886510	0.3002591	0.3051006	0.3097430	13.84	-3603.3414144	-3603.3329461	-3603.0527634	-3603.0442951
0	10	1 LiCl 5TMPZn d5 mol7e 38	-3602.8321042	0.2890331	0.3006284	0.3054653	0.3101040	8.08	-3603.3399659	-3603.3316910	-3603.0509327	-3603.0426579
0	11	1 LiCl 5TMPZn d5 mol7e 1	-3602.8316640	0.2886736	0.3002925	0.3051393	0.3097873	13.12	-3603.3393895	-3603.3311483	-3603.0507159	-3603.0424747
0	12	1 LiCl 8TMPZn d8 mol7e	-3602.8311192	0.2898419	0.3013427	0.3061359	0.3107297	21.75	-3603.3354380	-3603.3276701	-3603.0455961	-3603.0378281
0	13	1 LiCl 8TMPZn d8 mol7e 16	-3602.8240856	0.2886057	0.3002062	0.3050425	0.3096783	18.08	-3603.3263063	-3603.3188683	-3603.0377005	-3603.0302626
0	14	1 LiCl 8TMPZn d8 mol7e 11	-3602.8238016	0.2888180	0.3003711	0.3051880	0.3098057	22.28	-3603.3262088	-3603.3187298	-3603.0373907	-3603.0299117
0	15	1 LiCl 8TMPZn d8 mol7e 14	-3602.8244446	0.2895573	0.3010757	0.3058776	0.3104808	22.49	-3603.3294144	-3603.3215513	-3603.0398570	-3603.0319939
0	1	1 LiCl 2ZnCl d2 mol6 aag	-3562,2257812	0.0465520	0.0547732	0.0582627	0.0616471	39 70	-3562.6443655	-3562.6366695	-3562.5978134	-3562,5901175
Ő	2	1 LiCl 8ZnCl d8 mol6 aac	-3562,2227686	0.0460934	0.0543707	0.0578843	0.0612923	11.67	-3562,6441527	-3562,6359059	-3562,5980593	-3562,5898125
0	3	LiCl 8ZnCl d8 mol6 aac2	-3562,2228587	0.0462228	0.0544661	0.0579646	0.0613574	22.24	-3562.6448707	-3562,6366563	-3562,5986478	-3562.5904335
0	4	LiCl 27nCl d2 mol6 aag	-3562 2106358	0.0451878	0.0535375	0.0570828	0.0605221	21.36	-3562 6340519	-3562 6258361	-3562 5888641	-3562 5806482
0	5	1 LiCL 5ZnCL d5 mol6 age	-3562 2000810	-0.0054872	0.0028733	0.0064293	0.0098830	24.82	-3562 5824938	-3562 5722534	-3562 5879810	-3562 5777405
0	6	1 LiCL 3ZnCL d3 mol6 aan	-3562 1998995	0.0459186	0.0542875	0.0578473	0.0613051	27.63	-3562 6428305	-3562 6311254	-3562 5969118	-3562 5852067
0	1	LiCL 5 ZnCL d5 molZe	-3654 4840198	0.0441576	0.0527281	0.0563500	0.0598520	32 37	-3654 9151888	-3654 9091771	-3654 8710311	-3654 8650194
0	2	1 LiCl 2 ZnCl d2 molZe	-3654 4697471	0.0424624	0.0512586	0.0549848	0.0585937	26.62	-3654 921501/	-3654 9124567	-3654 8791290	-3654 8699943
0	2	1 LiCL 8 ZnCL d8 molZo	-365/ /667093	0.0422504	0.0510813	0.05/8183	0.058/376	16.02	-3654 9176011	-365/ 00855/6	-365/ 8753/17	-365/ 8662051
0	4	1 LiCl 5 ZnCl d5 molZe	-3654 4468640	0.0417300	0.0506370	0.0544129	0.0580740	23.90	-3654 9116178	-3654 9004430	-3654 8698787	-3654 8587040
0	1	MaCl2 mol14 pos8 4	-5730 /81/800	0.121/30/	0.1333826	0.1383755	0.1/316/9	25.50	-5731 1132605	-5731 1060845	-5730 0018300	-5730 08/65/0
0	1 0	1 MaCl2 mol14 poo2 27	-5730 4604625	0.1214304	0.1333020	0.1303/33	0.1431040	20.07	-5731 11 47700	-5731 10/0694	-5730 00601/7	-5730 0060000
0	2	1_WIGUZ_MULT4_POSZ_Z/	-3/ 30.4001335	0.11/9034	0.1303309	0.1303030	0.1400014	10.54	-3/31.114//8Z	-3731.1040331 E731.1076063	5720 0001702	-3/30.9000090
0	3	MaCl2 mol14 pose 5	-5730.4000072	0.1109920	0.1312338	0.1303908	0.1413243	13.40	-5731.11/1/12	-5731.10/0003	-5730.0030504	-5730 00000143
0	4	1 MgCl2 mol14 pose	-3/30.4033005	0.1109339	0.1311972	0.1303320	0.1412000	19.50	5731.0046300	-3731.1023195	-3130.9929394	-3130.9033030
0	5		-0/30.40000/0	0.1180407	0.1303329	0.1354616	0.1404296	10.59	-5731.0946299	-3/31.0009380	-3/30.9/03092	-3730.9089178
U	0		-5/30.45//621	0.11/3/8/	0.1298024	0.1350106	0.1400187	13.75	-5/31.1039451	-3/31.094/550	-3/30.9865664	-3/30.9//3/62
U	/	1_MgCl2_mol14_pos2	-5/30.445/247	0.115/329	0.1284192	0.133/4/7	0.1388786	5.02	-5/31.102/230	-5/31.0918/62	-5/30.9869901	-5/30.9/61433
U	ŏ	I MIQUIZ MOITA POSO 1	-5/30.442/22/	0.1189078	0.1311233	0.1362379	0.1411518	14.01	-5731.0929946	-5/31.08283/4	-5/30.9/40868	-5/30.9639295

0	0	1 MaCl2 mol11 page	E720 41E6114	0 11 100 20	0 1077/00	0 1221/60	0 12025/0	4.10	5721 1105170	E721 0027021	E720 00E61E0	E720 0700002
0	9	I_WIGCIZ_INDIT4_POS5	-5750.4150114	0.1149020	0.1277430	0.1331430	0.1303340	4.19	-5731.1105179	-5731.0937931	-5730.9950150	-57 50.97 66905
0	10	1_MgCl2_mol14_pos5_29	-5730.4177152	0.1176530	0.1299982	0.1351751	0.1401546	17.88	-5731.1008603	-5731.0855520	-5730.9832072	-5730.9678990
0	11	1 MaCl2 mol14 pos3	-5730.4126850	0.1155548	0.1284014	0.1338075	0.1390200	4.87	-5731.1134664	-5731.0957492	-5730.9979115	-5730.9801944
0	12	MaCl2 mol14 pos5 29 2	-5730 /088280	0 11562/3	0 12810/7	0 1333305	0 1383752	10 70	-5731 0677712	-5731 0558765	-5730 0521/60	-5730 9402522
0	12	4 MarQio marti 4 marz 5 04	-5750.4000200	0.1130243	0.1201047	0.1000000	0.1003732	10.75	5704.0045504	-5751.0550705	5700.0321400	-5750.3402522
0	13	1_MgCl2_moi14_pos5_31	-5/30.39/0/9/	0.1170921	0.1295199	0.1347353	0.1397545	13.54	-5731.0945504	-5/31.0//2434	-5/30.9//4583	-5730.9601513
0	14	MgCl2_mol14_pos5_2	-5730.3863418	0.1131408	0.1261521	0.1316308	0.1369157	7.96	-5731.0890948	-5731.0714552	-5730.9759539	-5730.9583144
0	15	MaCl2 mol14 pos3 2	-5730.3818028	0.1142757	0.1272452	0.1327060	0.1379734	6.43	-5731.0907272	-5731.0721379	-5730.9764515	-5730.9578622
0	16	MgCl2 mol14 pos5 s1	5720 2707/21	0 1159547	0.1291750	0.1222254	0.1392047	29.15	-5731 0177196	5731 0002652	5730.0019630	5730 803/10/
0	10		-3730.3797431	0.1130347	0.1201730	0.1333334	0.1302947	20.13	-5731.0177180	-5731.0092052	-5730.9018039	-57 50.8954 104
0	17	MgCl2_mol14_pos5_3	-5730.3725625	0.1137164	0.1264065	0.1317368	0.1368695	15.30	-5731.0398556	-5731.0269379	-5730.9261392	-5730.9132215
0	18	MgCl2_mol14_pos5_s2	-5730.3263058	0.1134302	0.1262555	0.1316460	0.1368388	6.09	-5731.0413128	-5731.0215250	-5730.9278825	-5730.9080948
0	1	1 MaCl2 mol15 pos2 7	-5914.9584400	0.1101110	0.1236112	0.1292630	0.1346919	9.34	-5915.6628371	-5915.6516317	-5915.5527261	-5915.5415206
0	2	1 MgCl2 mol15 pos2 9	-501/ 0517706	0 11255/7	0.12567/9	0.1311/01	0 13639/8	13.01	-5015 6/07285	-5015 6322666	-5015 5281738	-5015 5107118
0	2		-5314.3511130	0.1123347	0.1230143	0.1011401	0.1000040	10.01	-0010.0407200	-5315.0522000	-5315.5201750	-5315.5137110
0	3	1_IVIGCI2_MOI15_pos8	-5914.9429935	0.1101366	0.1235453	0.1291529	0.1345354	16.63	-5915.6347179	-5915.6258970	-5915.5245813	-5915.5157604
0	4	1_MgCl2_mol15_pos2	-5914.9391962	0.1080734	0.1218195	0.1275818	0.1331219	7.37	-5915.6553992	-5915.6430406	-5915.5473257	-5915.5349671
0	5	1 MaCl2 mol15 pos2 5	-5914.9353069	0.1109174	0.1242411	0.1298101	0.1351533	14.74	-5915.6299127	-5915.6205451	-5915.5189952	-5915.5096277
0	6	1 MaCl2 mol15 pos5	-501/ 01/0825	0 1076305	0 121/611	0 1272658	0 132851/	9.54	-5015 6/71313	-5015 6321083	-5015 5305008	-5015 52/5678
0	7	1_MgOl2_Mol15_p035	5014.0170144	0.1070303	0.1214011	0.1272000	0.1320314	14.05	-0015.0471010	-0015.0021000	-0015 E074000	-0015.0240010 E015.4007007
0	1		-5914.9172144	0.1122220	0.1253991	0.1309003	0.1301743	14.65	-2912.0193900	-5915.0089514	-5915.5071660	-5915.4967267
0	8	1_MgCl2_mol15_pos5_10	-5914.8806003	0.1114155	0.1246726	0.1302135	0.1355298	16.23	-5915.6055228	-5915.5911979	-5915.4941073	-5915.4797824
0	1	MgCl2_mol6_aac	-1976.2137842	0.0591820	0.0669854	0.0703047	0.0735294	27.35	-1976.4634116	-1976.4574177	-1976.4042295	-1976.3982356
0	2	MgCl2 mol6 aab	-1976 1982921	0.0572948	0.0652865	0.0686920	0.0720047	11 72	-1976 4504254	-1976 4442743	-1976 3931306	-1976 3869794
0	2	MaCl2 mol6 aak	-1076 1002320	0.0594705	0.0663369	0.0606847	0.0720395	19.22	-1076 /522901	-1076 //69122	-1076 20/9195	-1076 2882/29
U	3		-13/0.13333/0	0.0004705	0.0003308	0.0090047	0.0729365	10.22	-19/0.4032091	-13/0.4400133	-13/0.3940103	-13/0.3003420
U	4	MgCl2_mol6_aao	-1976.1795183	0.0574048	0.0653194	0.0686894	0.0719656	22.22	-1976.4305248	-1976.4241992	-1976.3731200	-1976.3667944
0	5	MgCl2_mol6_abq	-1976.1768208	0.0564817	0.0645270	0.0679547	0.0712882	16.91	-1976.4307275	-1976.4241915	-1976.3742458	-1976.3677098
0	6	MgCl2 mol6 aaa	-1976.1767339	0.0566080	0.0646372	0.0680573	0.0713830	15.66	-1976.4309602	-1976.4244161	-1976.3743522	-1976.3678080
0	7	MgCl2 mol6 aab	-1076 171/202	0.0550006	0.0630765	0.067/159	0.0707623	12.61	1076 /25220/	1076 /195726	1076 2602107	1076 3626620
0	1	Nigola_III0I0_aab	-1970.1714203	0.0339090	0.0039703	0.0074130	0.0707023	13.01	-1970.42J2294	-1970.4103720	-1970.3093197	-1970.3020029
0	8	MgCl2_mol6_aat	-1976.1598527	0.0538347	0.0621955	0.0657679	0.0692492	9.94	-1976.4331990	-1976.4239487	-1976.3793643	-1976.3701140
0	9	MgCl2_mol6_abm	-1976.1349485	0.0565733	0.0644705	0.0678280	0.0710886	33.77	-1976.3840696	-1976.3781708	-1976.3274962	-1976.3215975
0	10	MoCl2 mol6 aad	-1976.0872777	0.0514284	0.0596243	0.0631004	0.0664699	33.14	-1976.3243722	-1976.3208576	-1976.2729437	-1976.2694292
0	11	MgCl2_mol6_box	-1076.0616462	0.0545102	0.0626624	0.0661310	0.0605060	17.92	1076 2081200	1076 20/169/	1076 2/26109	1076 2206/02
0	11		-1970.0010402	0.0343192	0.0020024	0.0001319	0.0093000	17.02	-1970.2901390	-1970.2941004	-1970.2430190	-1970.2390492
0	1	1_MgCl2_mol/e	-2068.4547913	0.0550332	0.0634212	0.0669812	0.0704339	24.83	-2068.7320271	-2068.7255286	-2068.6769938	-2068.6704954
0	1	MgCl2_3TMPZn_d3_mol6_a	-4163.4582307	0.2917048	0.3033145	0.3081550	0.3127950	11.28	-4163.9668128	-4163.9612160	-4163.6751080	-4163.6695112
0	2	MgCl2 5TMPZn d5 mol6 aa	-4163.4575785	0.2922140	0.3037284	0.3085264	0.3131238	20.66	-4163.9654665	-4163.9599996	-4163.6732525	-4163.6677856
0	3	MaCl2 8TMPZn d8 mol6 d	-4163 4508675	0.200/757	0.3021660	0.3070/10	0.31171/6	11.20	-4163 9570476	-/163 9520700	-4163 6665710	-4163 6615942
0	5		4400.4400505	0.2304737	0.3021000	0.0070710	0.0100070	11.20	4400.0040400	4400.0500057	4400.0704400	44.00.0000000
0	4		-4163.4486505	0.2911934	0.3028262	0.3076772	0.3123279	13.57	-4163.9646133	-4163.9580857	-4163.6734198	-4163.6668922
0	5	1_MgCl2_2TMPZn_d2_mol6_b	-4163.4473741	0.2914352	0.3030362	0.3078745	0.3125136	19.67	-4163.9613758	-4163.9550642	-4163.6699406	-4163.6636290
0	6	1 MgCl2 5TMPZn d5 mol6 b	-4163.4428568	0.2900926	0.3019129	0.3068506	0.3115901	7.51	-4163.9708974	-4163.9625162	-4163.6808048	-4163.6724235
0	7	1 MgCl2 5TMPZn d5 mol6 a	-4163 4435833	0 2909140	0 3026325	0 3075251	0 3122195	16 24	-4163 9713519	-4163 9630514	-4163 6804378	-4163 6721373
0	0	1_MgCl2_0TML2h_d0_mol0_a	4100.4405400	0.2000140	0.0020020	0.0070201	0.0122100	45.40	4462.0745760	4100.0004000	4402.0002044	4100.07210000
0	8		-4163.4435198	0.2912756	0.3030009	0.3078966	0.3125941	15.48	-4103.9715708	-4103.9031023	-4103.0003011	-4103.0710000
0	9	1_MgCl2_3TMPZn_d3_mol6_b	-4163.4434840	0.2913128	0.3030353	0.3079298	0.3126263	12.74	-4163.9714100	-4163.9630071	-4163.6800971	-4163.6716942
0	10	1_MgCl2_8TMPZn_d8_mol6_a2	-4163.4422437	0.2903950	0.3021047	0.3069891	0.3116725	8.26	-4163.9586726	-4163.9522227	-4163.6682776	-4163.6618276
0	11	1 MaCl2 8TMPZn d8 mol6 a	-4163,4417638	0.2901382	0.3018307	0.3067083	0.3113855	17.00	-4163,9575308	-4163,9511367	-4163.6673926	-4163.6609984
ů 0	1	1 MaCl2 27nCl d2 mol6 cog	-4215.0671446	0.0441570	0.0530003	0.0568022	0.0605714	21.55	-4215 5346700	-4215 5260011	-4215 4005120	-4215 4919421
U	1		-4213.0071440	0.0441379	0.0000993	0.0000932	0.0003714	31.00	-4213.3340709	-+213.3200011	-+213.4903129	-+213.4010431
0	2	1_wigCl2_82nCl_d8_mol6_aac2	-4215.0614/04	0.0436533	0.0526442	0.0564592	0.0601579	17.81	-4215.5326920	-4215.5235740	-4215.4890386	-4215.4799206
0	3	1_MgCl2_5ZnCl_d5_mol6_aae	-4215.0511562	0.0431647	0.0522461	0.0561055	0.0598511	23.38	-4215.5360744	-4215.5247198	-4215.4929096	-4215.4815550
0	4	1 MgCl2 3ZnCl d3 mol6 aap	-4215.0515669	0.0437319	0.0527938	0.0566446	0.0603817	22.99	-4215.5387910	-4215.5271343	-4215.4950591	-4215.4834023
0	5	MaCl2 87nCl d8 mol6 aac	-4215 0389566	0.0/11081	0.0503503	0.05/2773	0.0580880	12.62	-4215 5094899	-4215 5007294	-1215 1683817	-4215 4596213
0	0		4210.0000000	0.0410007	0.0000000	0.0042110	0.0000000	10.00	4210.0004000	4210.0001204	4210.4000011	4210.4000210
U	0		-4215.0300442	0.0410097	0.0507945	0.0546959	0.0584811	10.00	-4210.0000328	-4210.49900057	-4213.4072230	-4210.4000459
0	7	1_MgCl2_3ZnCl_d3_mol6_aap2	-4215.0053003	0.0416414	0.0508578	0.0547774	0.0585834	22.95	-4215.5215674	-4215.5057765	-4215.4799259	-4215.4641350
0	8	1_MgCl2_5ZnCl_d5_mol6_aae2	-4214.9963445	0.0412604	0.0504779	0.0543973	0.0582026	17.99	-4215.5205855	-4215.5034697	-4215.4793251	-4215.4622092
0	1	8 MgCl d8 mol6 aar	-1515,2932341	0.0485845	0.0556640	0.0586784	0.0616094	49.82	-1515,5096481	-1515,5038104	-1515,4610636	-1515,4552258
0	2	E MgCl dE mole ooo	1616.2002611	0.0494509	0.0552942	0.0502222	0.0612702	47.69	1616.6000101	1515 5071262	1616.1010000	1616.1002200
0	2		-1313.292/030	0.0401000	0.0552642	0.0000200	0.0012192	47.00	-1313.3138/35	-1313.3071203	-1313.403024/	4545 4477007
U	3	z_wigui_az_mol6_aaa	-1515.2864909	0.0484553	0.0555505	0.0585730	0.0615128	31.53	-1515.5018097	-1515.4961561	-1515.4533543	-1515.4477007
0	4	3_MgCl_d3_mol6_aaq_	-1515.2836619	0.0479350	0.0551406	0.0582133	0.0612039	31.56	-1515.5207234	-1515.5114210	-1515.4727883	-1515.4634859
0	5	8 MgCl d8 mol6 age	-1515,1607835	0.0472040	0.0543519	0.0573973	0.0603594	34.02	-1515.4722209	-1515.4509385	-1515.4250169	-1515.4037344
0	6	3 MgCL d3 mole apt	-1515 1265722	0.0450630	0.0533363	0.0564935	0.0505494	24.60	-1515 /2250/1	-1515 3055965	-1515 3966310	-1515 3/0623/
0	4		4007 5500145	0.0453030	0.0500000	0.0504033	0.0000404	24.00	1007 7045400	1007 7000400	4007 7400400	1007 7400234
U	1	5_ivigCi_d5_moi/e	-1007.0522145	0.0452670	0.0528339	0.0000467	0.0591640	32.34	-1007.7945163	-1007.7883188	-1007.7492493	-1007.7430517
0	2	8_MgCl_d8_mol7e	-1607.5371639	0.0443066	0.0519965	0.0552634	0.0584344	40.39	-1607.7829219	-1607.7762968	-1607.7386153	-1607.7319901
0	3	2_MgCl_d2_mol7e	-1607.5292707	0.0434010	0.0511998	0.0545165	0.0577382	28.90	-1607.7901338	-1607.7813378	-1607.7467328	-1607.7379368
0	1	mol14 pos5	-3489 0228264	0 1225781	0 1318548	0 1357675	0 1395493	8 55	-3489 4926308	-3489 4857142	-3489 3700527	-3489 3631361
0	2	mol14_pos3	-3480 0106860	0.1222217	0 1225205	0.1364650	0.1402610	6.16	-3490 4025227	-3490 4950202	-3480 3602020	-3490 2619075
U	~	110114_p055	-0-00.0100000	0.123231/	0.1020000	0.1004039	0.1402010	0.10	-3+03.4323231	-3403.4030392	-3+03.3032320	-0-03.0010070

0	3	mol14_pos8	-3489.0114145	0.1216163	0.1309835	0.1349337	0.1387510	8.80	-3489.4780244	-3489.4725932	-3489.3564080	-3489.3509768
0	4	mol14_pos2	-3489.0085425	0.1216432	0.1310424	0.1350074	0.1388400	6.65	-3489.4747587	-3489.4690538	-3489.3531155	-3489.3474106
0	1	mol15_pos5	-3673.5308560	0.1157600	0.1260128	0.1303217	0.1344747	17.21	-3674.0391242	-3674.0340876	-3673.9233642	-3673.9183275
0	2	mol15_pos8	-3673.5068160	0.1136028	0.1241373	0.1285698	0.1328453	4.09	-3674.0293210	-3674.0227498	-3673.9157181	-3673.9091470
0	3	mol15_pos2	-3673.5069817	0.1145064	0.1249535	0.1293475	0.1335846	8.25	-3674.0321758	-3674.0249961	-3673.9176694	-3673.9104896
0	1	mol16e_2	-1293.3933941	0.1624039	0.1712026	0.1749056	0.1784794	12.20	-1293.6435987	-1293.6419090	-1293.4811947	-1293.4795050
0	2	mol16e_1	-1293.3935825	0.1627296	0.1714881	0.1751731	0.1787291	19.11	-1293.6436615	-1293.6419901	-1293.4809319	-1293.4792605
0	1	mol17_pos5_1	-1953.1836866	0.1485676	0.1583270	0.1624281	0.1663808	26.06	-1953.5096819	-1953.5035562	-1953.3611142	-1953.3549885
0	2	mol17_pos5_2	-1953.1837255	0.1487202	0.1584630	0.1625565	0.1665015	26.07	-1953.5098429	-1953.5037232	-1953.3611227	-1953.3550029
0	3	mol17_pos8_1	-1953.1697210	0.1480646	0.1579131	0.1620527	0.1660430	26.64	-1953.4982884	-1953.4918785	-1953.3502237	-1953.3438139
0	4	mol17_pos8_2	-1953.1694608	0.1479241	0.1577867	0.1619327	0.1659295	25.17	-1953.4983883	-1953.4919209	-1953.3504641	-1953.3439967
0	1	mol3	-395.9217110	0.0758377	0.0812596	0.0835820	0.0858509	211.39	-396.0295672	-396.0281484	-395.9537295	-395.9523107
0	1	mol6	-855.5167140	0.0637447	0.0696462	0.0721675	0.0746258	115.72	-855.6558186	-855.6544115	-855.5920739	-855.5906667
0	1	mol7e	-947.7638999	0.0596118	0.0661294	0.0689054	0.0716059	101.68	-947.9291106	-947.9275182	-947.8694988	-947.8679064
0	1	pyrimidine	-264.3494742	0.0495596	0.0543706	0.0564492	0.0584907	353.36	-264.4213106	-264.4204172	-264.3717510	-264.3708575
0	1	IMP2Zn_1	-2596.4596189	0.4653300	0.4760451	0.4804784	0.4847080	16.47	-2596.8312478	-2596.8296205	-2596.3659178	-2596.3642905
0	1	IMPH_1	-409.2326871	0.2350136	0.2417505	0.2445818	0.2473123	132.21	-409.3318099	-409.3314555	-409.0967962	-409.0964418
0	2	TMPH_2	-409.2321069	0.2353812	0.2421055	0.2449321	0.2476586	130.20	-409.3314995	-409.3311067	-409.0961183	-409.0957254
0	1		-1069.0161812	0.2186717	0.2266002	0.2299349	0.2331512	44.86	-1069.1918494	-1069.1871603	-1068.9731777	-1068.9684886
0	1		-1536.8991700	0.2163637	0.2272010	0.2308985	0.2344558	32.32	-1537.1205478	-1537.1140542	-1536.9021621	-1536.8930083
0	<u> </u>		-1024 5920210	0.2100031	0.2250556	0.2294302	0.2330044	12.74	-102/ 9772902	-102/ 9730/00	-1024 5720072	-1024 5606760
0	2	TMPMgCl_mol6_abc	-1024.5029510	0.3042729	0.3140300	0.3192721	0.3230377	2 22	-1024.0772003	-1024 9726501	-1024.5730073	-1924.5090709
0	2	TMPMaCL mol6 aal	-1924.5836406	0.3053909	0.3142009	0.3107314	0.32/18590	2.33	-1924.8700113	-1924.8720501	-1924.5724144	-1924.5050532
0	4	TMPMaCl mol6 aaa	-1924 5816859	0.3054298	0.3159009	0.3202675	0.3244554	24.42	-1924 8782733	-1924 8745612	-1924 5728435	-1924 5691313
0	5	TMPMgCl_mol6_aba	-1924 5692330	0.3037784	0.3144048	0.3188401	0.3230965	7 74	-1924 8678909	-1924 8640389	-1924 5641124	-1924 5602604
0	6		-1924 5696071	0.3047870	0.3153111	0.3197007	0.3239111	16.36	-1924 8692960	-1924 8653642	-1924 5645089	-1924 5605772
0	7	TMPMgCl mol6 aai	-1924.5698855	0.3052574	0.3157425	0.3201145	0.3243072	15.31	-1924.8700418	-1924.8660235	-1924.5647843	-1924.5607661
0	8	TMPMgCl mol6 aab	-1924.5552660	0.3036013	0.3142244	0.3186584	0.3229133	17.48	-1924.8509695	-1924.8474473	-1924.5473681	-1924.5438460
0	9	TMPMgCl mol6 aae	-1924.5530442	0.3034696	0.3141359	0.3185897	0.3228648	15.18	-1924.8574847	-1924.8527406	-1924.5540150	-1924.5492709
0	10	TMPMgCl_mol6_aaz	-1924.5532130	0.3037753	0.3143906	0.3188226	0.3230768	21.61	-1924.8545726	-1924.8502781	-1924.5507972	-1924.5465028
0	11	TMPMgCl_mol6_aas	-1924.5532401	0.3041218	0.3146923	0.3191024	0.3233331	23.57	-1924.8547302	-1924.8505161	-1924.5506084	-1924.5463942
0	12	TMPMgCI_mol6_aai	-1924.5461929	0.3022907	0.3130421	0.3175350	0.3218500	19.86	-1924.8540065	-1924.8487600	-1924.5517157	-1924.5464693
0	13	TMPMgCI_mol6_abi	-1924.5435991	0.3016157	0.3125019	0.3170564	0.3214346	10.64	-1924.8572349	-1924.8512721	-1924.5556191	-1924.5496564
0	14	TMPMgCl_mol6_abh	-1924.5437163	0.3020251	0.3128773	0.3174169	0.3217801	15.86	-1924.8566490	-1924.8507838	-1924.5546239	-1924.5487586
0	15	TMPMgCl_mol6_aad	-1924.5441325	0.3028022	0.3135657	0.3180658	0.3223896	16.67	-1924.8578915	-1924.8519165	-1924.5550893	-1924.5491142
0	16	TMPMgCl_mol6_aan	-1924.5416592	0.3009007	0.3118694	0.3164607	0.3208756	8.10	-1924.8552450	-1924.8493205	-1924.5543443	-1924.5484197
0	17	TMPMgCl_mol6_abe	-1924.5408757	0.3012302	0.3121717	0.3167518	0.3211560	10.20	-1924.8529729	-1924.8472966	-1924.5517427	-1924.5460664
0	1	5_TMPMg_d5_mol6	-1463.6667741	0.2935363	0.3034817	0.3076320	0.3116148	19.04	-1463.9320138	-1463.9280599	-1463.6384775	-1463.6345235
0	2	8_1MPMg_d8_mol6	-1463.6623647	0.2940871	0.3039573	0.3080726	0.3120196	17.01	-1463.9233373	-1463.9202198	-1463.6292502	-1463.6261327
0	3	3_TMPMg_d3_mol6	-1463.6603139	0.2935946	0.3035831	0.3077532	0.3117565	15.84	-1463.9360832	-1463.9304723	-1463.6424886	-1463.6368///
0	4	2_1MPMg_d2_mol6	-1463.6526211	0.2921261	0.3022456	0.3064735	0.3105341	9.29	-1463.9224840	-1463.9180136	-1463.6303579	-1463.6258874
0	1		-2048.0/54991	0.2182859	0.2203317	0.2297180	0.232985/	12.80	-2048.3958080	-2048.3924478	-2048.1775221	-2048.1/41018
0	2		-3503.0239307	0.3027035	0.3130012	0.3100032	0.3224348	2.23	-3304.0722978	-3304.0090305	-3503.7633942	-3303./003209
0	2		-3503.0222109	0.3044408	0.3150053	0.3194010	0.3237300	20.20	-3504.0007329	-3504.0039334	-3503.7022920	-3503.7593140
0	3		-3503.0130309	0.3044770	0.3146633	0.3190203	0.323/079	20.09	-3504.0047030	-3504.0012109	-3503.7002200	-3503.7555126
0	+ 5	TMPZnCl_mol6_abr	-3503.0123390	0.3039779	0.3140033	0.3191230	0.3234078	19.70	-3504.0029730	-3504.0394910	-3503.7581168	-3503.7505130
0	6	TMPZnCL mol6 abs	-3503.6117676	0.3041295	0.3147854	0.3192348	0.3235057	16.94	-3504.0627023	-3504.0590737	-3503.7585728	-3503 7549441
0	7	TMPZnCL mol6 abb	-3503 6116650	0.3042001	0.3148641	0.3193174	0.3235925	16.03	-3504 0658373	-3504 0617308	-3503 7616372	-3503 7575307
0	8	TMPZnCl mol6 abl	-3503.6102046	0.3038480	0.3145412	0.3190086	0.3232986	17.51	-3504.0628835	-3504.0590332	-3503.7590355	-3503,7551852
0	9	TMPZnCI mol6 aab	-3503.6088558	0.3030851	0.3138281	0.3183175	0.3226293	19.70	-3504.0579885	-3504.0545970	-3503.7549033	-3503.7515118
0	10	TMPZnCI mol6 aas	-3503.6068879	0.3030707	0.3138248	0.3183195	0.3226368	15.26	-3504.0629078	-3504.0586358	-3503.7598371	-3503.7555650
0	11	TMPZnCI_mol6_aaq	-3503.6069039	0.3039183	0.3145559	0.3189981	0.3232624	25.59	-3504.0620387	-3504.0577205	-3503.7581204	-3503.7538021
0	12	TMPZnCl_mol6_aai	-3503.6049887	0.3030126	0.3137712	0.3182675	0.3225860	14.55	-3504.0623625	-3504.0577501	-3503.7593498	-3503.7547375
0	13	TMPZnCl_mol6_aav	-3503.6043195	0.3028548	0.3136375	0.3181456	0.3224770	16.33	-3504.0596021	-3504.0553946	-3503.7567472	-3503.7525398
0	14	TMPZnCl_mol6_abj	-3503.6028698	0.3015915	0.3125443	0.3171283	0.3215356	10.58	-3504.0614098	-3504.0567380	-3503.7598182	-3503.7551464
0	15	TMPZnCI_mol6_abu	-3503.6023609	0.3016269	0.3125795	0.3171631	0.3215697	11.26	-3504.0615100	-3504.0567693	-3503.7598830	-3503.7551423
0	16	TMPZnCI_mol6_aan	-3503.6035182	0.3030058	0.3138150	0.3183351	0.3226785	13.20	-3504.0620943	-3504.0574171	-3503.7590884	-3503.7544113
0	17	TMPZnCI mol6 aaf	-3503.6024695	0.3024039	0.3133015	0.3178615	0.3222453	7.99	-3504.0609825	-3504.0563399	-3503.7585786	-3503.7539360
0	18	TMPZnCI mol6 abg	-3503 6006013	0 3016200	0 3125980	0 3171937	0 3216131	8 58	-3504 0584013	-3504 0539029	-3503 7567812	-3503 7522828
---------	-----	----------------------	---------------	-----------	------------	-----------	-----------	--------	---------------	---------------	---------------	---------------
0	1	E TMDZp dE mol6 b	2042 7421415	0.2020590	0.2020025	0.2091692	0.2121960	0.00	2042 1617660	2042 1579521	2042 9679070	2042 9629042
0	1	5_TMPZ/1_05_111016_0	-3042.7431413	0.2939369	0.3039623	0.3061062	0.3121009	0.30	-3043.1017000	-3043.1376331	-3042.0070070	-3042.0030942
0	2	5_TMPZn_d5_mol6_a	-3042.7438310	0.2948056	0.3047239	0.3088629	0.3128348	23.12	-3043.1622698	-3043.1584160	-3042.8674641	-3042.8636103
0	3	3_TMPZn_d3_mol6_b	-3042.7427847	0.2951707	0.3051011	0.3092456	0.3132232	14.00	-3043.1615150	-3043.1576112	-3042.8663443	-3042.8624404
0	4	8_TMPZn_d8_mol6_a	-3042.7383975	0.2941769	0.3041601	0.3083266	0.3123252	12.85	-3043.1534001	-3043.1503980	-3042.8592231	-3042.8562211
0	5	2_TMPZn_d2_mol6_a	-3042.7354910	0.2941601	0.3041595	0.3083333	0.3123394	12.66	-3043.1512989	-3043.1480212	-3042.8571388	-3042.8538611
0	1	5 TMPZn d5 mol7e	-3134.9955674	0.2910549	0.3015166	0.3058782	0.3100604	14.90	-3135.4353760	-3135.4320245	-3135.1443211	-3135.1409695
0	2	5 TMPZn d5 mol7e 36	-3134.9959083	0.2915053	0.3019152	0.3062533	0.3104116	21.12	-3135.4357751	-3135.4324439	-3135,1442698	-3135,1409385
0	3	5 TMPZn d5 molZe 40	-3134 9894049	0 2902522	0.3007781	0.3051684	0 3093792	17.62	-3135 4304593	-3135 4269410	-3135 1402071	-3135 1366888
0	4	5 TMPZn d5 molZo 39	-3134 0805252	0.2010083	0.301/1930	0.3059519	0.3100421	0.69	-3135 4202892	-3135 4250247	-3135 1392700	-3135 1340164
0	-	5_TMDZp_d5_mol7e_30	2124 0000707	0.2310003	0.3014030	0.3050310	0.3100421	12.00	2125 4292202	2125 4240765	2125 1272441	2125 1240962
0	5		-3134.9000707	0.2908902	0.3013019	0.3057265	0.3099102	13.03	-3133.4202344	-3133.4249703	-3133.1373441	-3133.1340602
0	6	8_TMPZn_d8_moi/e	-3134.9868222	0.2900944	0.3006594	0.3050662	0.3092931	12.56	-3135.4291978	-3135.4257250	-3135.1391033	-3135.1356305
0	7	2_IMPZn_d2_mol7e	-3134.9870950	0.2904551	0.3009963	0.3053927	0.3096093	11.84	-3135.4304438	-3135.4267497	-3135.1399886	-3135.1362946
0	8	8_TMPZn_d8_mol7e_20	-3134.9806229	0.2890643	0.2997685	0.3042363	0.3085233	7.11	-3135.4246599	-3135.4209748	-3135.1355955	-3135.1319104
0	9	8_TMPZn_d8_mol7e_16	-3134.9806979	0.2894850	0.3001247	0.3045638	0.3088222	18.25	-3135.4248471	-3135.4211490	-3135.1353620	-3135.1316640
0	10	2_TMPZn_d2_mol7e_31	-3134.9805606	0.2894338	0.3000915	0.3045385	0.3088048	14.08	-3135.4260180	-3135.4220501	-3135.1365842	-3135.1326162
0	11	2_TMPZn_d2_mol7e_29	-3134.9805183	0.2895803	0.3002142	0.3046528	0.3089123	6.94	-3135.4247405	-3135.4209127	-3135.1351602	-3135.1313324
0	12	2 TMPZn d2 mol7e 28	-3134.9805054	0.2897680	0.3003920	0.3048264	0.3090818	8.33	-3135.4245520	-3135.4207468	-3135.1347839	-3135,1309788
0	13	8 TMPZn d8 molZe 11	-3134 9806321	0 2899643	0.3005466	0.3049623	0.3091990	12 40	-3135 4240053	-3135 4203794	-3135 1340410	-3135 1304151
0	1/	2 TMPZn d2 molZe 26	-3134 9804805	0.2800134	0.3005084	0.30/0205	0.3091712	11 7/	-3135 /2//1/1	-3135 /206353	-3135 13/5007	-3135 1307218
0	15	8 TMPZn d8 molZo 14	-3134.0802080	0.2003104	0.3003004	0.3049259	0.3001101	15.60	-3135.4231630	-3135.4200355	-3135.1343007	-3135.1307210
0	13		-3134.9002000	0.2090001	0.3004020	0.0040700	0.3091101	13.09	-3133.4231039	-3133.4190031	-3133.1332110	-3133.1297109
0	1		-3555.2471047	0.0576751	0.0656348	0.0690223	0.0723142	24.19	-3555.0444580	-3000.0394311	-3000.000/020	-3000.0017000
0	2	ZnCl2_mol6_aaz	-3555.2339545	0.0571338	0.0651337	0.0685397	0.0718507	21.20	-3555.6344334	-3555.6290400	-3555.5772995	-3555.5719061
0	3	ZnCl2_mol6_aab	-3555.2205595	0.0562011	0.0642356	0.0676586	0.0709876	24.78	-3555.6182990	-3555.6130878	-3555.5620978	-3555.5568866
0	4	ZnCl2_mol6_aar	-3555.2153630	0.0550829	0.0632219	0.0666940	0.0700738	20.26	-3555.6189382	-3555.6129339	-3555.5638552	-3555.5578509
0	5	ZnCl2_mol6_abq	-3555.2144758	0.0542271	0.0625184	0.0660575	0.0695036	6.80	-3555.6146618	-3555.6091921	-3555.5604347	-3555.5549650
0	6	ZnCl2 mol6 aan	-3555.2151405	0.0549956	0.0631857	0.0666784	0.0700774	16.36	-3555.6155049	-3555.6100491	-3555.5605092	-3555.5550535
0	7	ZnCl2 mol6 abm	-3555.1649962	0.0558629	0.0638000	0.0671744	0.0704512	39.87	-3555.5535053	-3555.5495176	-3555.4976423	-3555.4936546
0	8	ZnCl2 mol6 aam	-3555 0921596	0.0533090	0.0614851	0.0649655	0.0683481	20.65	-3555 4948247	-3555 4892454	-3555 4415156	-3555 4359363
0	ğ	ZnCl2 mol6 aad	-355/ 00/31/2	0.0510202	0.0593/91	0.0628912	0.0663313	17.06	-3555 /282325	-3555 /158553	-3555 3772122	-3555 36/8350
0	1	5 ZnCl d5 mol6 220	-3004 3545058	0.0070202	0.0546084	0.0577830	0.0607851	46.20	-3004 7278054	-3004 7211046	-3004 6803300	-3004 6737202
0			-3094.3343930	0.0474034	0.0540904	0.0577030	0.0007831	40.20	-3034.7270034	-3094.7211940	-3094.0003399	-3094.0737292
0	2		-3094.3549353	0.0479897	0.0552138	0.0582944	0.0612924	43.01	-3094.7293275	-3094.7225545	-3094.0813378	-3094.0745048
0	3	8_ZnCi_d8_mol6_aac	-3094.3520173	0.0473381	0.0545882	0.0576789	0.0606863	44.28	-3094.7225139	-3094.7168200	-3094.6751758	-3094.6694819
0	4	2_ZnCl_d2_mol6_aaq	-3094.3503611	0.0476409	0.0548552	0.0579303	0.0609224	40.85	-3094.7212760	-3094.7153377	-3094.6736351	-3094.6676967
0	5	5_ZnCl_d5_mol6_aab	-3094.2134952	0.0443687	0.0519060	0.0551258	0.0582630	16.12	-3094.6230770	-3094.5885613	-3094.5787083	-3094.5441926
0	6	5_ZnCl_d5_mol6_aah	-3094.1841339	0.0444339	0.0519439	0.0551493	0.0582705	11.65	-3094.6401257	-3094.6140880	-3094.5956917	-3094.5696541
0	7	5_ZnCl_d5_mol6_aaf	-3094.1814474	0.0435256	0.0510833	0.0543116	0.0574567	25.22	-3094.6310920	-3094.5982832	-3094.5875663	-3094.5547576
0	1	5 ZnCl d5 mol7e	-3186.6055598	0.0436718	0.0514453	0.0547514	0.0579628	37.96	-3187.0007047	-3186.9946733	-3186.9570329	-3186.9510014
0	2	8 ZnCl d8 mol7e	-3186.5986837	0.0433674	0.0511925	0.0545205	0.0577531	41.32	-3186.9977466	-3186.9913672	-3186.9543791	-3186.9479997
0	3	2 ZnCL d2 molZe	-3186 5984027	0.0435609	0.0513634	0.0546813	0.0579040	37 47	-3186 9987410	-3186 9921111	-3186 9551800	-3186 9485502
0	Ū	2_21101_02_1110110	010010001021	0.0100000	0.0010001	0.0010010	0.0010010	01111	010010001110	010010021111	010010001000	010010100002
. 1	1	1 MaCl male 1	1515 6007000	0.0602252	0.0674912	0.0705752	0.0725967	22.67	1516 0110449	1515 0007000	1515 0510106	1515 0204096
+1	1		1054 7500000	0.0002202	0.0074013	0.0703733	0.0733007	23.07	1055 0570450	1055 0054404	1055 0054505	1054 0005500
+1	1		-1004./00089	0.0010928	0.0582008	0.0000078	0.0035019	50.01	-1000.0070403	1055.0354431	-1000.0001020	-1004.9830003
+1	2		-1054.0035855	0.0480987	0.0546429	0.0574343	0.0601521	58.81	-1055.0461779	-1055.0060738	-1054.9980792	-1054.95/9/50
+1	3	1_Mg_d2_mol6	-1054.6628957	0.0490781	0.0555930	0.0583719	0.0610774	69.93	-1055.0351206	-1055.0014959	-1054.9860424	-1054.9524178
+1	4	1_Mg_d3_mol6	-1054.6621544	0.0487993	0.0553399	0.0581303	0.0608474	44.76	-1055.0414638	-1055.0042864	-1054.9926645	-1054.9554871
+1	1	1_ZnCl_mol6_2	-3094.7315316	0.0603980	0.0676416	0.0707291	0.0737335	40.31	-3095.1969113	-3095.1787139	-3095.1365133	-3095.1183159
+1	1	1_Zn_d8_mol6	-2633.7935173	0.0495349	0.0561342	0.0589503	0.0616927	100.50	-2634.2402464	-2634.2192903	-2634.1907114	-2634.1697554
+1	2	1_Zn_d5_mol6	-2633.7155870	0.0453896	0.0522595	0.0551941	0.0580538	18.30	-2634.2040204	-2634.1643047	-2634.1586308	-2634.1189151
+1	3	1 Zn d2 mol6	-2633.7151190	0.0477817	0.0544941	0.0573592	0.0601498	64.81	-2634.1971609	-2634.1639435	-2634.1493792	-2634.1161617
+1	4	1 Zn d3 mol6	-2633,7121215	0.0472270	0.0539255	0.0567852	0.0595709	51.62	-2634,2048901	-2634,1689103	-2634,1576630	-2634,1216832
+1	. 1	MgCL mol6 aal	-1515 6696042	0.0602414	0.0674949	0.0705871	0.0735961	25.81	-1516 0118628	-1515 9911904	-1515 9516214	-1515 9309489
-1	2	MgCl_mol6_aac	-1515 6607712	0.0604852	0.0676973	0.0707609	0.0737584	30.21	-1515 0055/55	-1515 077/566	-1515 0350603	-1515 0160713
τı 1	2		1515.0037712	0.0004032	0.0070373	0.0696012	0.0716624	10.00	1515.0590140	1515.3114300	1515.3330003	1515.3103/13
+1	3		-1010.0100128	0.0560942	0.0004084	0.0000013	0.0710024	19.00	-1010.9009112	-1010.9400101	-1010.9100109	-1010.0004218
+1	4	MgCI_mol6_abm	-1515.5660987	0.0556239	0.0632549	0.0665189	0.0697026	13.86	-1515.9749622	-1515.9445927	-1515.9193382	-1515.8889687
+1	5	MgCI_mol6_abg	-1515.5150954	0.0595221	0.0667544	0.0698330	0.0728257	32.47	-1515.9461444	-1515.9091564	-1515.8866222	-1515.8496343
+1	1	1_Mg_d8_mol6	-1054.7533989	0.0518928	0.0582008	0.0608878	0.0635019	110.14	-1055.0570453	-1055.0354431	-1055.0051525	-1054.9835503
+1	2	2_Mg_d2_mol6	-1054.7297190	0.0513515	0.0577023	0.0604096	0.0630447	70.73	-1055.0478069	-1055.0247203	-1054.9964553	-1054.9733687
+1	3	5_Mg_d5_mol6	-1054.7270991	0.0505045	0.0568978	0.0596214	0.0622708	91.91	-1055.0542140	-1055.0290586	-1055.0037094	-1054.9785541
+1	4	8 Mg d8 mol6	-1054.7272549	0.0510584	0.0574475	0.0601708	0.0628211	107.91	-1055.0513118	-1055.0276262	-1055.0002533	-1054.9765678

11	E	2 Ma d2 mol6	1054 7045064	0.0497002	0.0552707	0.0591010	0.0600227	45.60	1055 0697266	1055 0276992	1055 0100462	1054 0000070
+1	5	3_WQ_03_11010	-1034.7043904	0.0467902	0.0555767	0.0561919	0.0009327	45.00	-1055.0067.500	-1055.0570662	-1055.0199405	-1034.9666979
+1	6	3_Mg_d5_mol6	-1054.7019671	0.0501753	0.0565188	0.0592215	0.0618510	95.26	-1055.0192603	-1054.9949896	-1054.9690849	-1054.9448143
+1	7	7_Mg_d5_mol6	-1054.6850970	0.0491170	0.0555846	0.0583402	0.0610212	63.62	-1055.0329055	-1055.0043464	-1054.9837884	-1054.9552294
+1	8	7_Mg_d8_mol6	-1054.6839808	0.0494255	0.0558804	0.0586297	0.0613038	92.45	-1055.0250674	-1054.9948300	-1054.9756418	-1054.9454044
+1	9	1 Mg d5 mol6	-1054.6635855	0.0480987	0.0546429	0.0574343	0.0601521	58.81	-1055.0461779	-1055.0060738	-1054.9980792	-1054.9579750
+1	10	1 Ma d2 mol6	-1054.6628957	0.0490781	0.0555930	0.0583719	0.0610774	69.93	-1055.0351206	-1055.0014959	-1054.9860424	-1054.9524178
+1	11	1 Mg d3 mol6	-1054 6621544	0.0487993	0.0553399	0.0581303	0.0608474	44 76	-1055 0414638	-1055 0042864	-1054 9926645	-1054 9554871
 1	12	7 Mg d3 mol6	-1054 6524619	0.0488049	0.0552862	0.0580/77	0.0607343	56.76	-1055 0209877	-1054 9871649	-105/ 9721828	-105/ 0383500
+1	12	7_Mg_d3_mol6	-1054.6420307	0.0400043	0.0550061	0.0579975	0.0606043	69.67	-1055.0203077	-1054.0611159	-1054.0527560	-1054.0125670
+1	13		1054.0420307	0.0403400	0.0530301	0.0570075	0.0000043	00.07	1053.0013049	1054.9011130	1054.9327300	1054.9123070
+1	14	3_IVIQ_08_ITIOI6	-1054.6292516	0.0456627	0.0524728	0.0553825	0.0582185	31.83	-1054.9577248	-1054.9122997	-1054.9120620	-1054.8666369
+1	1	p1_mol16e_1	-1293.7572809	0.1756350	0.1844238	0.1881171	0.1916779	30.13	-1294.0756250	-1294.0655675	-1293.8999900	-1293.8899324
+1	2	p1_mol16e_2	-1293.7566491	0.1756591	0.1844395	0.1881289	0.1916859	31.60	-1294.0757321	-1294.0655362	-1293.9000730	-1293.8898770
+1	3	p7_mol16e_1	-1293.7508718	0.1759682	0.1847433	0.1884308	0.1919864	28.98	-1294.0679864	-1294.0579988	-1293.8920181	-1293.8820306
+1	4	p7_mol16e_2	-1293.7506037	0.1757444	0.1845434	0.1882416	0.1918078	24.04	-1294.0677985	-1294.0577970	-1293.8920541	-1293.8820525
+1	5	p4_mol16e_2	-1293.6513137	0.1732368	0.1821085	0.1858378	0.1894342	28.04	-1293.9684217	-1293.9583701	-1293.7951849	-1293.7851332
+1	6	p4 mol16e 1	-1293.6510958	0.1732315	0.1821012	0.1858297	0.1894254	26.27	-1293.9681600	-1293.9581286	-1293,7949284	-1293,7848970
+1	1	p1 mol3	-396,2925964	0.0890962	0.0945580	0.0968943	0.0991750	207.97	-396.4746477	-396,4646557	-396.3855514	-396.3755594
+1	2	n7 mol3	-396 2893922	0.0894735	0.0949189	0.0972489	0.0995239	213.62	-396 4721953	-396 4620514	-396 3827217	-396 3725779
+1	2	p1_mol3	-306 1791061	0.0859001	0.0043032	0.0072400	0.0061103	152.05	-306 3641625	-306 353/199	-306 2782533	-306 2676007
+1	3	p4_11013	-350.1701001	0.0030091	0.0913932	0.0957800	0.0901103	111.00	-590.5041025	-550.5554100	-550.2705555	-550.2070057
+1	1		-000.0010440	0.0770044	0.0020490	0.0053031	0.0070017	111.31	-000.09/40/0	-000.00/002/	-000.0204939	-000.010009/
+1	2	р/_тою	-055.8/42530	0.0772614	0.0831874	0.0857168	0.0881818	121.26	-050.0809495	-056.0770090	-050.0096881	-055.999/4/5
+1	3	p4_mol6	-855.7668907	0.0737468	0.0797931	0.0823733	0.0848873	84.99	-855.9853184	-855.9743255	-855.9115716	-855.9005787
+1	1	p1_mol7e	-948.1090638	0.0723387	0.0789038	0.0816967	0.0844116	98.46	-948.3581474	-948.3463387	-948.2858086	-948.2740000
+1	2	p7_mol7e	-948.1049697	0.0727389	0.0792926	0.0820814	0.0847927	101.69	-948.3510626	-948.3397348	-948.2783236	-948.2669958
+1	3	p4_mol7e	-947.9945228	0.0691396	0.0758129	0.0786524	0.0814127	74.17	-948.2434521	-948.2315865	-948.1743124	-948.1624469
+1	1	p_pyrimidine	-264.7016864	0.0630341	0.0678800	0.0699713	0.0720242	330.03	-264.8575619	-264.8468884	-264.7945278	-264.7838543
+1	1	ZnCl mol6 aag	-3094.7315316	0.0603980	0.0676416	0.0707292	0.0737335	40.31	-3095,1969111	-3095.1787138	-3095.1365131	-3095.1183157
+1	2	ZnCl mol6 aac	-3094,7255307	0.0601793	0.0674379	0.0705320	0.0735430	48.59	-3095,1821335	-3095,1652636	-3095,1219542	-3095,1050843
+1	3	ZnCL mol6 aah	-3094 6910806	0.0588496	0.0661529	0.0692683	0.0723015	33.12	-3095 1582792	-3095 1393114	-3095 0994295	-3095 0804617
+1	1	ZnCL mol6_aan	-3004 6745719	0.0570851	0.0653420	0.0694929	0.0715407	33.07	-3005 1412461	-3005 1223674	-3005.0932610	-3005.0643823
+1	4		-3094.0743710	0.0579051	0.0053429	0.0004020	0.0713407	33.97	-3093.1412401	-3095.1223074	-3093.0032010	-3093.0043023
+1	5	ZnCI_molb_aaj	-3094.6500796	0.0576050	0.0650325	0.0682021	0.0712884	29.36	-3095.1023980	-3095.0861413	-3095.0447930	-3095.0285362
+1	6	ZnCI_mol6_aas	-3094.6291752	0.0551355	0.0627874	0.0660571	0.0692437	19.60	-3095.1432331	-3095.1115110	-3095.0880976	-3095.0563754
+1	7	ZnCI_mol6_aax	-3094.6236248	0.0565633	0.0641021	0.0673201	0.0704540	28.04	-3095.1414967	-3095.1098014	-3095.0849333	-3095.0532381
+1	8	ZnCl_mol6_abm	-3094.6217852	0.0567669	0.0643050	0.0675223	0.0706554	25.83	-3095.1315474	-3095.1036640	-3095.0747805	-3095.0468971
+1	9	ZnCl_mol6_abd	-3094.6161410	0.0545121	0.0622853	0.0656113	0.0688561	9.61	-3095.1458361	-3095.1146753	-3095.0913240	-3095.0601632
+1	10	ZnCl_mol6_aar	-3094.6108065	0.0585812	0.0660253	0.0692032	0.0722986	17.82	-3095.0367178	-3095.0252925	-3094.9781365	-3094.9667113
+1	11	ZnCI mol6 aak	-3094.5990487	0.0588517	0.0662386	0.0693912	0.0724616	21.53	-3095.0230799	-3095.0118856	-3094.9642282	-3094.9530338
+1	12	ZnCI mol6 abg	-3094.5687594	0.0585181	0.0658907	0.0690307	0.0720838	38.65	-3095.0996852	-3095.0642776	-3095.0411670	-3095.0057594
+1	1	3 Zn d3 mol6	-2634.0141878	0.0499214	0.0565064	0.0593172	0.0620551	94.07	-2634,2649477	-2634,2339665	-2634,2150263	-2634,1840451
+1	2	7 Zn d8 mol6	-2633 7935173	0.0495349	0.0561343	0.0589504	0.0616928	100.51	-2634 2402469	-2634 2192908	-2634 1907119	-2634 1697559
 1	3	2 Zn d2 mol6	-2633 77/3025	0.0484628	0.0551031	0.0579363	0.0606951	63.43	-2634 2558488	-2634 2206343	-2634 2073860	-263/ 181171/
+1	3	E Zn dE mole	2633.7743323	0.0404020	0.0531031	0.0573303	0.000000001	00.40	2034.2350400	2624 220545	2634 1093356	2034.1011714
τI	4	J_ZII_UJ_IIIUI0	-2000.1110280	0.0403470	0.0049/00	0.0376003	0.00000000	02.00	-2004.2400000	-2004.2200904	-2034.1902330	-2034.1/22420
10	4	7 Ma male	1054 0040700	0.0625404	0.0600000	0.0700440	0.0750047	00.00	1055 5000700	1055 1705 100	1055 1050004	1055 1100050
+2	1		-1004.9040738	0.0035404	0.0099232	0.0720412	0.0752647	00.30	-1000.0293/99	-1000.4790463	-1000.4000394	-1000.4100059
+2	2	1_Mg_mol6	-1054.9648527	0.0646044	0.0710072	0.0737388	0.0763991	/5./0	-1055.5541226	-1055.4984450	-1055.4895181	-1055.4338406
+2	3	3_Mg_mol6	-1054.9216045	0.0608936	0.0674293	0.0702165	0.0729302	71.48	-1055.5100389	-1055.4519604	-1055.4491452	-1055.3910667
+2	1	7_Zn_mol6	-2634.4731333	0.0622816	0.0689180	0.0717496	0.0745071	70.19	-2634.7094357	-2634.6500698	-2634.6471541	-2634.5877881
+2	2	1_Zn_mol6	-2633.9861162	0.0606289	0.0672910	0.0701340	0.0729029	60.36	-2634.7159304	-2634.6582727	-2634.6553014	-2634.5976437
+2	3	3_Zn_mol6	-2633.9608995	0.0590412	0.0657826	0.0686606	0.0714643	66.24	-2634.6862522	-2634.6285499	-2634.6272109	-2634.5695086
0	1	TS8 TMPMaCILiCI mol6 aav	-2392,425333	0.3015303	0.3127971	0.3174829	0.3219673	-1284.51	-2392.772833		-2392.471303	
0	2	TS2 TMPMgCILiCI mol6 aai	-2392,423484	0.3021875	0.3134105	0.3180764	0.3225404	-1297.66	-2392,769259		-2392,467071	
0	3	TS2 TMPMaCII iCL mol6 agi s1	-2392 426315			0.0.000		-41 56	00200			
0	1	TS2 TMPMaCli iCl mole act	-2302 /17221	0.3000062	0.3122564	0.3170937	0.3216004	-1274 67	-2302 762910		-2302 /6291F	
0	+ F		2002 440545	0.3009902	0.3123004	0.3170037	0.3210094	1200.0	2002 7005 45		2002 400054	
U	5		-2392.412515	0.3014941	0.312/845	0.31/4/8	0.321968	-1328.2	-2392./03545		-2392.462051	
U	6	1 S8_1 IVIPIVIGUILIUI_molb_abz	-2392.410/01	0.3015296	0.3128032	0.3174915	0.3219781	-1335.57	-2392.756601		-2392.455071	
U	7	I S3_I MPMgClLiCl_mol6_1	-2392.406686	0.3041344	0.3151636	0.3197402	0.3241129	-1310.11	-2392.747846		-2392.443712	
0	8	TS3_TMPMgClLiCl_mol6_acb	-2392.40085	0.3026649	0.313837	0.3184821	0.3229266	-1431.22	-2392.751157		-2392.448492	
0	9	TS2_TMPMgClLiCl_mol6_aaj_s2	-2392.387505					-1293.48				
0	10	TS5_TMPMgClLiCl_mol6_acn_s1	-2392.383473					-1339.27				

0	11	TS5_TMPMgClLiCl_mol6_acn_s2	-2392.374327					-1330.33				
0	12	TS3_TMPMgClLiCl_mol6_1_s1	-2392.368185					-1349.24				
0	13	TS3_TMPMgClLiCl_mol6_acb_s1	-2392.364667					-1372.01				
0	14	TS3_TMPMgClLiCl_mol6_1_s2	-2392.362846					-1283.75				
0	15	TS2_TMPMgClLiCl_mol6_aaj_s3	-2392.360684					-1199.87				
Ohanna	№ conf.	Filename			(U)B3LYP-D3/6	6-31G(d)	CPC	M(DMSO)/(U)B3LY (U)B3LYP-I	P-D3/6-311++G(2df D3/6-31G(d)	,2p)//		
Charge				298.15 K	253.15 K	233.15 K	213.15 K	298.15K			298.15K	298.15K
			E _{tot gas}	qh-δG.1	qh-δG.1	qh-δG.1	qh-δG.1	1 st freq.	Etot sol DMSO	Etot sol THF	Gsol DMSO	G _{sol} THF
0	1	TS8_TMPMgClLiCl_mol16e_aav1	-2830.198445	0.3927433	0.4069398	0.4128151	0.4184183	-1310.78	-2830.76219		-2830.369447	
0	1 2	TS8_TMPMgClLiCl_mol16e_aav1 TS8_TMPMgClLiCl_mol16e_aav2	-2830.198445 -2830.198327	0.3927433 0.3928343	0.4069398 0.4070194	0.4128151 0.4128895	0.4184183 0.4184877	-1310.78 -1311.39	-2830.76219 -2830.762445		-2830.369447 -2830.369611	
0 0 0	1 2 3	TS8_TMPMgCILiCI_mol16e_aav1 TS8_TMPMgCILiCI_mol16e_aav2 TS8_TMPMgCILiCI_mol16e_abz2	-2830.198445 -2830.198327 -2830.190355	0.3927433 0.3928343 0.3928005	0.4069398 0.4070194 0.4069829	0.4128151 0.4128895 0.4128506	0.4184183 0.4184877 0.4184454	-1310.78 -1311.39 -1218.26	-2830.76219 -2830.762445 -2830.74575		-2830.369447 -2830.369611 -2830.35295	
0 0 0 0	1 2 3 4	TS8_TMPMgCILiCI_mol16e_aav1 TS8_TMPMgCILiCI_mol16e_aav2 TS8_TMPMgCILiCI_mol16e_abz2 TS8_TMPMgCILiCI_mol16e_abz1	-2830.198445 -2830.198327 -2830.190355 -2830.190205	0.3927433 0.3928343 0.3928005 0.3932347	0.4069398 0.4070194 0.4069829 0.4073633	0.4128151 0.4128895 0.4128506 0.4132077	0.4184183 0.4184877 0.4184454 0.4187796	-1310.78 -1311.39 -1218.26 -1213.13	-2830.76219 -2830.762445 -2830.74575 -2830.746394		-2830.369447 -2830.369611 -2830.35295 -2830.353159	
0 0 0 0	1 2 3 4 5	TS8_TMPMgCILiCI_mol16e_aav1 TS8_TMPMgCILiCI_mol16e_aav2 TS8_TMPMgCILiCI_mol16e_abz2 TS8_TMPMgCILiCI_mol16e_abz1 TS5_TMPMgCILiCI_mol16e_acn1	-2830.198445 -2830.198327 -2830.190355 -2830.190205 -2830.180722	0.3927433 0.3928343 0.3928005 0.3932347 0.3939525	0.4069398 0.4070194 0.4069829 0.4073633 0.4079845	0.4128151 0.4128895 0.4128506 0.4132077 0.4137828	0.4184183 0.4184877 0.4184454 0.4187796 0.4193065	-1310.78 -1311.39 -1218.26 -1213.13 -1439.74	-2830.76219 -2830.762445 -2830.74575 -2830.746394 -2830.749381		-2830.369447 -2830.369611 -2830.35295 -2830.353159 -2830.355429	