SUPPORTING INFORMATION

Nitrilium Ion Trapping as a Strategy to Access Structurally Diverse Heterobiarylcontaining Peptide Macrocycles

Matthew Diamandas, Nicholas W. Heller, Andrei K. Yudin*

Table of Contents

General Experimental Method	3
Experimental Procedure: Building block syntheses	4-5
Building Block NMR Spectra	6-11
Experimental Procedure: Solid-Phase Peptide Synthesis	12-13
Full Characterization of compound 7a-17b	14-63
Isolated Enamine Byproduct (compound S8)	64
LC Traces	65-69
LC Trace of Compound 6b	70
Conformational Analysis	71-76
Macrocycle Conformation Maps	77
References	78

General Experimental Method

All reagents were utilized as received from commercial sources unless otherwise noted. All solvents were of reagent grade quality and freshly distilled prior to use. Dichloromethane was distilled over CaH₂ indicator under an atmosphere of nitrogen. Chromatography: Flash-column chromatography was performed using Merck silica gel 60 (40- 63 µm). Thin-layer chromatography (TLC) was performed using Merck silica gel 60 F 254 plates, with UV (254 nm) detection followed by KMnO₄ or Ninhydrin stain. NMR Spectrometry: All NMR spectra were recorded on either a Bruker DPX300, Bruker AV 300, Bruker AV 400 at 300 K, Agilent 500 MHz DD2 NMR Spectrometer at 298 K or a Varian 600 Unity spectrometer at 298 K. 1H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to residual protonated solvent peak (DMSO- $d\delta = 2.50$). Spectral data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of doublet of triplets, dtd = doublet of triplets, m = doubletmultiplet, br = broad, h = heptet, dddd = doublet of doublet of doublet of doublets, gd = guartet of doublets, td = triplet of doublets, tt = triplet of triplets), coupling constant (J) in Hertz (Hz), and integration. 13C NMR spectra chemical shifts (δ) are reported in parts per million (ppm) and were referenced to carbon resonances in the NMR solvent (DMSO- $d6 \delta$ = 39.5). Mass Spectrometry: High-resolution mass spectrometry (HRMS) ESI (m/z) spectra were recorded on a Bruker MicroTof or an Orbitrap LTQ XL (Nanospray) of Thermo Scientific. At the University of Toronto high resolution mass spectra were obtained on a VG 70-250S (double focusing) mass spectrometer at 70 eV or on an ABI/Sciex Qstar mass spectrometer with ESI source, MS/MS and accurate mass capabilities or on JEOL AccuTOF-DART instrument. RP-HPLC/MS: Low-resolution mass spectra (ESI) were collected on an Agilent Technologies 1200 series HPLC paired to a 6130 Mass Spectrometer. Compounds were resolved on Phenomenex's Kinetex 2.6µ C18 50x4.6mm column at room temperature with a flow of 1 mL/min. The gradient consisted of eluents A (0.1% formic acid in double distilled water) and B (0.1% formic acid in HPLC-grade acetonitrile). LCMS method: A linear gradient starting from 5% of B to 95% over 15 min or 6 min at a flow rate of 1.0 mL/min.

Experimental Procedure

Building block syntheses

2-,3- and 4-aminobenzoic acid derivatives used to prepare peptides **7a**, **7b**, **8a**, **8b 11a**, **11b**, **12a**, **12b**, **14a** and **16a** were loaded onto 2'-CI-TrtCI polystyrene resin as dipeptides in order to avoid poor acylation of the first aniline NH₂. The general method to prepare each of these dipeptides (**S1-S6**) is depicted in Scheme S1. **Scheme S1. General method to prepare compounds S1-S6.**

General Procedure for Compounds S1-2. A suspension of 2-aminobenoic acid (14.5 mmol, 1.2 equiv.) in dry DCM (50 mL) at 0 °C was treated dropwise with 2,6-lutidine (3.52 mL, mmol, 2.5 equiv.) followed by TMSCI (1.91 mL, mmol, 1.25 equiv.). The subsequent homogeneous mixture was removed from cooling and stirred at room temperature for 10 min. In a separate flask, EDC+HCI (2.32 g, 12.1 mmol, 1.0 equiv.) was added to a suspension of FmocGlyOH (3.60 g, 12.1 mmol, 1.0 equiv.) and 6-CI-HOBt (2.05 g, 12.1 mmol, 1.0 equiv.) in dry DCM (50 mL). This mixture was gently agitated at room temperature for 5 min at which point it became clear and homogeneous. Next, the solution of FmocGlyOH/EDC+HCI/6-CI-HOBt in dry DCM was added to the initial solution of carboxylic acid/2,6-lutidine/TMSCI in dry DCM. The resulting solution was stirred at room temperature for 10 min before solid DMAP (1.48 g, 12.1 mmol, 1.0 equiv.) was added. The resulting solution was allowed to stir at room temperature. After 19 h at room temperature, the reaction was evaporated in vacuo to remove the DCM. The mixture was then diluted with EtOAc (250 mL) and 1 M HCI (250 mL). The organic layer was separated, and the aqueous phase was extracted with EtOAc (3 x 250 mL). Then, the combined organic layers were washed with brine (100 mL), dried (Na₂SO₄), filtered and evaporated in vacuo. Each crude solid was then recrystallized from a mixture of EtOH/H₂O or EtOH/MeOH/H₂O to give each title compound.

General Procedure for Compounds S3-6. A suspension of 2-, 3- or 4-aminobenoic acid (2.00 mmol, 1.2 equiv.) in dry DCM (10 mL) at 0 °C was treated dropwise with 2,6-lutidine (0.49 mL, mmol, 2.5 equiv.) followed by TMSCI (0.26 mL, mmol, 1.25 equiv.). The subsequent homogeneous mixture was removed from cooling and stirred at room temperature for 10 min. In a separate flask, EDC•HCI (320 mg, 1.67 mmol, 1.0 equiv.) was added to a suspension of FmocGlyOH (467 mg, 1.67 mmol, 1.0 equiv.) and 6-CI-HOBt (284 mg, 1.67 mmol, 1.0 equiv.) in dry DCM (10 mL). This mixture was gently agitated at room temperature for 5 min at which point it became clear and homogeneous. Next, the solution of FmocGlyOH/EDC•HCI/6-CI-HOBt in dry DCM (10 mL) was added to the initial solution of carboxylic acid/2,6-lutidine/TMSCI in dry DCM (10 min). The resulting solution was stirred at

room temperature for 10 min before solid DMAP (204 mg, 1.67 mmol, 1.0 equiv.) was added. The resulting solution was allowed to stir at room temperature. After 19 h at room temperature, the reaction was evaporated in vacuo to remove the DCM. The mixture was then diluted with EtOAc (50 mL) and 1 M HCl (50 mL). The organic layer was separated, and the aqueous phase was extracted with EtOAc (3 x 50 mL). Then, the combined organic layers were washed with brine (100 mL), dried (Na₂SO₄), filtered and evaporated in vacuo. Each crude solid was then recrystallized from a mixture of EtOH/H₂O or MeOH/H₂O to give each title compound.

Compound S1. The crude solid was recrystallized from 2:1:2 EtOH/MeOH/H₂O (ca. 100 mL), rising with ice cold 1:4 EtOH/H₂O, to give **S1** as a fluffy off-white solid (4.00 g, 71 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 13.63 (s, 1H), 11.63 (s, 1H), 8.60 (d, *J* = 8.4 Hz, 1H), 8.10 – 7.99 (m, 2H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.65 – 7.58 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.20 – 7.14 (m, 1H), 4.36 – 4.23 (m, 3H), 3.83 (d, *J* = 6.0 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 169.4, 168.8, 156.8, 143.8, 140.7, 140.5, 134.2, 131.2, 127.7, 127.1, 125.3, 122.8, 120.1, 119.6, 116.2, 66.1, 46.7, 45.5. LC-MS (ESI+) m/z calculated for C₂₅H₂₃N₂O₅⁺ [M+H]⁺ = 417.1, found = 417.0.

Compound S2. The crude solid was recrystallized from 2:1:2 EtOH/MeOH/H₂O (ca. 100 mL), rising with ice cold 1:4 EtOH/H₂O, to give **S2** as an off-white solid (4.03 g, 69 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 13.50 (s, 1H), 9.93 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.3 Hz, 4H), 7.42 (t, *J* = 7.3 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.06 (d, *J* = 7.6 Hz, 1H), 4.39 – 4.14 (m, 3H), 3.79 (d, *J* = 6.1 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 169.1, 168.3, 156.6, 143.8, 140.7, 136.9, 136.0, 130.2, 127.6, 127.1, 126.7, 125.3, 120.6, 120.1, 65.9, 46.6, 44.5, 20.9. LC-MS (ESI+) m/z calculated for C₂₅H₂₃N₂O₅⁺ [M+H]⁺ = 431.2, found = 431.2.

Compound S3. The crude solid was recrystallized from 1:1 EtOH/H₂O (ca. 20 mL), rising with ice cold 1:4 EtOH/H₂O, to give **S3** as an off-white solid (467.6 mg, 56 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 12.69 (s, 1H), 10.29 (s, 1H), 7.92 – 7.87 (m, 4H), 7.76 – 7.65 (m, 5H), 7.45 – 7.39 (m, 2H), 7.34 (td, *J* = 7.5, 1.2 Hz, 2H), 4.31 (d, *J* = 7.4 Hz, 2H), 4.25 (t, *J* = 7.0 Hz, 1H), 3.83 (d, *J* = 6.2 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 168.54, 166.90, 156.63, 143.85, 142.93, 140.74, 130.45, 127.65, 127.10, 125.26, 125.12, 120.14, 118.33, 65.76, 46.63, 44.13, 40.11, 40.02, 39.94, 39.85, 39.78, 39.69, 39.61, 39.52, 39.44, 39.35, 39.19, 39.02. LC-MS (ESI+) m/z calculated C₂₅H₂₃N₂O₅⁺ [M+H]⁺ = 417.1, found = 417.2.

Compound S4. The crude solid was recrystallized from 1:1 EtOH/H₂O (ca. 20 mL), rising with ice cold 1:4 EtOH/H₂O, to give **S4** as an off-white solid (435.6 mg, 48 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 13.10 (s, 1H), 10.40 (s, 1H), 7.92 – 7.86 (m, 3H), 7.84 (d, *J* = 8.6 Hz, 1H), 7.76 – 7.67 (m, 3H), 7.54 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.34 (td, *J* = 7.4, 1.2 Hz, 2H), 4.34 – 4.30 (m, 3H), 3.83 (d, *J* = 6.1 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 168.88, 165.89, 156.64, 143.84, 142.52, 140.75, 133.08, 132.49, 127.66, 127.10, 125.25, 124.53, 120.14, 116.97, 65.78, 46.63, 44.16, 40.11, 40.02, 39.94, 39.85, 39.78, 39.69, 39.61, 39.52, 39.35, 39.19, 39.02. LC-MS (ESI+) m/z calculated C₂₄H₂₀ClN₂O₅⁺ [M+H]⁺ = 451.1, found = 451.0.

Compound S5. The crude solid was recrystallized from 1:1 EtOH/H₂O (ca. 20 mL), rising with ice cold 1:4 EtOH/H₂O, to give **S5** as an off-white solid (584.2 mg, 70 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 12.98 (s, 1H), 10.18 (s, 1H), 8.27 – 8.23 (m, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.85 – 7.81 (m, 1H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.69 – 7.62 (m, 2H), 7.48 – 7.38 (m, 4H), 7.34 (td, *J* = 7.4, 1.2 Hz, 2H), 4.38 – 4.17 (m, 4H), 3.83 (d, *J* = 6.1 Hz, 2H). (126 MHz, DMSO-*d*6) δ 168.29, 167.17, 156.65, 143.88, 140.76, 140.63, 139.14, 131.34, 129.06, 127.66, 127.11, 127.00, 125.27, 124.06, 123.20, 120.13, 119.88, 65.77, 56.06, 46.66, 44.09, 40.11, 40.02, 39.94, 39.85, 39.78, 39.69, 39.61, 39.52, 39.35, 39.19, 39.02, 18.58. LC-MS (ESI+) m/z calculated C₂₅H₂₃N₂O₅⁺ [M+H]⁺ = 417.1, found = 417.0.

Compound S6. The crude solid was recrystallized from 1:1 MeOH/H₂O (ca. 20 mL), rising with ice cold 1:MeOH EtOH/H₂O, to give **S6** as an off-white solid (310.6 mg, 30 % yield). ¹H NMR (500 MHz, DMSO-*d*6) δ 12.92 (s, 1H), 9.49 (s, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.5 Hz, 2H), 7.67 (t, *J* = 6.2 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 1H), 4.32 (d, *J* = 7.1 Hz, 2H), 4.25 (d, *J* = 6.9 Hz, 1H), 3.86 (d, *J* = 6.1 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 169.10, 168.31, 156.59, 143.85, 140.72, 136.97, 132.79, 132.70, 128.70, 127.62, 127.06, 126.78, 125.50, 125.24, 120.11, 65.73, 46.63, 43.76, 40.00, 39.92, 39.83, 39.76, 39.67, 39.50, 39.33, 39.17, 39.00, 15.05. LC-MS (ESI+) m/z calculated for C₂₅H₂₃N₂O₅⁺ [M+H]⁺ = 431.2, found = 431.2.

Solid-Phase Peptide Synthesis

General Procedure for Resin Loading and Fmoc SPPS (peptides 3, 4, 9, 10, 13, 15)

7.2 e CI <u>dry I</u> (2'-CI-TrtCI) DIPE dry I	equiv. Pyr. DCM, 2h I-S6 (2.0 equiv) EA (4 equiv.) DCM. 18 h	6 % piperazine with 0.1 M 6-CI-HOBt in DMF (2x 10min) and HCTU/DIPEA (4, 8 equiv) in DMF, 1h	30 % HFIP/DCM (3 x 20 min) ➤	3, 4, 9, 10, 13, 15
---	--	--	---------------------------------	------------------------

The SPPS synthesis was performed manually beginning from 2'-CI-TrtCl polystyrene resin (theoretical substitution = 1.1 mmol/g, 181.8 mg, 0.2 mmol, 1 equiv). The 2'-CI-TrtCl polystyrene resin was preactivated in dry DCM (20 mL) with SOCl₂ (26 μ L, 3.6 equiv) and pyridine (58 μ L, 7.2 equiv) under reflux for 2 h. The resin was then transferred to a disposable peptide cartridge and rinsed with dry DCM, followed by loading with **S1**-**S6**(2.0 equiv) and DIPEA (4.0 equiv) in dry DCM (2.0 mL) (18 h). The resin was capped with 17:2:1 DCM/MeOH/DIPEA (3 × 10 min. All Fmoc-amino acids (4 equiv) were activated for 5 min using HCTU (4 equiv) and DIPEA (8 equiv) in DMF (2.0 mL) and then coupled for 1 h. All Fmoc groups were removed using 6 % piperazine with 0.1 M 6-CI-HOBt in DMF (2.0 mL) (2 x 10 min). The global deprotection was executed by treating the resin bound peptide with 30 % hexafluoroisopropanol (HFIP) in DCM (3 x 20 min). The resin was then rinsed with DCM (2x) and then 1 % MeOH in DCM. The cleavage cocktail was condensed under a stream of N₂ to remove volatiles. The peptide residue was then precipitated with ice cold Et₂O. The Et₂O was carefully removed using a stream of N₂ to afford each linear peptide. These linear peptides were subjected to macrocyclization using Pinc and reagent **2**.

General Procedure for Resin Loading and Fmoc SPPS for LDT containing linear peptide S7

The SPPS synthesis was performed manually beginning from 2'-CI-TrtCI polystyrene resin (theoretical substitution = 1.1 mmol/g, 181.8 mg, 0.2 mmol, 1 equiv). The 2'-CI-TrtCl polystyrene resin was preactivated in dry DCM (20 mL) with SOCI₂ (26 µL, 3.6 equiv) and pyridine (58 µL, 7.2 equiv) under reflux for 2 h. The resin was then transferred to a disposable peptide cartridge and rinsed with drv DCM. followed by loading with Fmoc-3-aminobenzoic acid (2.0 equiv) and DIPEA (4.0 equiv) in dry DCM (2.0 mL) (18 h). The resin was capped with 17:2:1 DCM/MeOH/DIPEA (3 × 10 min. The first Fmoc group was removed using 6 % piperazine with 0.1 M 6-CIH-OBt in DMF (2.0 mL) (2 x 10 min) and then the subsequent Fmoc-amino acid was coupled as follows (to form the aryl amide bond): a solution of Fmoc-Thr(O^tBu)-OH (4.0 equiv) and triphosgene (1.33 equiv) in dry THF (1.5 mL) was added 2,4,6-colidine (10 equiv). Upon the addition of the 2,4,6-collidine a suspension immediately formed. This suspension was gently shaken for 1 minute before it was added to the peptide (previously washed with dry THF x 3). The reaction was gently agitated for 18 h before it was carefully drained. The peptide was then rinsed with THF (1.0 mL x 2), DMF (1.0 mL x 3), 3:1 THF/H2O (1.0 mL x 3), MeOH (1.0 mL x 3) and then DMF (1.0 mL x 3).¹ All subsequent Fmoc-amino acids (4 equiv) were activated for 5 min using HCTU (4 equiv) and DIPEA (8 equiv) in DMF (2.0 mL) and then coupled for 1 h. All Fmoc groups were removed using 6 % piperazine with 0.1 M 6-CIH-OBt in DMF (2.0 mL) (2 x 10 min). The global deprotection was executed by treating the resin bound peptide with 30 % hexafluoroisopropanol (HFIP) in DCM (3 x 20 min). The resin was then rinsed with DCM (2x) and then 1 % MeOH in DCM. The cleavage cocktail was condensed under a stream of N_2 to remove volatiles. The peptide residue was then precipitated with ice cold Et₂O. The Et₂O was carefully removed using a stream of N_2 to afford **S7**. These linear peptides were subjected to macrocyclization using Pinc and reagent 2.

General Procedure for Peptide Macrocyclization Reactions for peptides 3, 4, 9 and 10

Pinc: A suspension of linear peptide in 1:1 DCE/MeCN (25 mM) at r.t was treated with EtCHO (1.5 equiv.). After 10 min this mixture was treated with Pinc (1.2 equiv.). The dark orange reaction mixture was then heated to 50

^oC and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was purified by C18-reversed-phase chromatography and then peak fractions were pooled and lyophilized to afford the desired peptides. In each case the major diastereomer was separated from the minor.

Reagent 2: A suspension of linear peptide in 1:1 DCE/MeCN (25 mM) at r.t was treated with EtCHO (1.5 equiv.) followed by catalytic AcOH (0.1 equiv.). After 10 min this mixture was treated with 2 (1.5 equiv.). The dark orange reaction mixture was then heated to 50 °C and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was purified by C18-reversed-phase chromatography and then peak fractions were pooled and lyophilized to afford the desired peptides. In each case the major diastereomer was separated from the minor.

General Procedure for Peptide Macrocyclization Reactions for peptides 13 and 15

Pinc: A suspension of linear peptide in 1:1 DCE/MeCN (5 mM) at r.t was treated with EtCHO (2.0 equiv.). After 10 min this mixture was treated with Pinc (1.5 equiv.). The dark orange reaction mixture was then heated to 60 °C and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was purified by C18-reversed-phase chromatography and then peak fractions were pooled and lyophilized to afford the desired peptides. In each case the major diastereomer was separated from the minor.

Macrocyclization and Global Deprotection of Linear Peptide S7

Pinc: A suspension of linear peptide in 1:1 DCE/MeCN (25 mM) at r.t was treated with EtCHO (1.5 equiv.). After 10 min this mixture was treated with Pinc (1.2 equiv.). The dark orange reaction mixture was then heated to 50 °C and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was taken up in DCM (0.7 mL) at 0 °C and then was treated dropwise with TFA (0.3 mL). The resulting solution was stirred at r.t for 18 h. After 18 h the reaction was concentrated *in vacuo* and the residue was azeotroped with heptane (3x) and chloroform (3x). The crude peptide was purified by C18-reversed-phase chromatography and then peak fractions were pooled and lyophilized to afford **17a**. The major diastereomer was separated from the minor. *Reagent 2:* A suspension of linear peptide in 1:1 DCE/MeCN (25 mM) at r.t was treated with EtCHO (1.5 equiv.) followed by catalytic AcOH (0.1 equiv.). After 10 min this mixture was treated with **2** (1.5 equiv.). The dark orange reaction mixture was then heated to 50 °C and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was taken up in DCM (0.7 mL) at 0 °C and then was treated with **2** (1.5 equiv.). The dark orange reaction mixture was then heated to 50 °C and stirred for 18 h. After 18 h the reaction mixture was evaporated, and the crude peptide was taken up in DCM (0.7 mL) at 0 °C and then was treated dropwise with TFA (0.3 mL). The resulting solution was stirred at r.t for 18 h. After 18 h the reaction was concentrated *in vacuo* and the residue was azeotroped with heptane (3x) and chloroform (3x). The crude peptide was purified by C18-reversed-phase chromatography and then peak fractions were pooled and lyophilized to afford **17b**. The major diastereomer was separated from the minor.

Table 1: Full Characterization of compound 7a

White solid obtained in a 15 % overall yield (based on 100 % resin loading).¹H NMR (600 MHz, DMSO-*d*6) δ 10.26 (s, 1H), 8.46 (d, *J* = 5.7 Hz, 1H), 8.11 (s, 1H), 8.07 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 4.35 (q, *J* = 8.6 Hz, 1H), 4.17 – 4.12 (m, 1H), 4.02 (dd, *J* = 9.8, 5.7 Hz, 1H), 3.94 – 3.83 (m, 2H), 3.72 (d, *J* = 16.7 Hz, 2H), 3.40 (dd, *J* = 9.6, 3.3 Hz, 1H), 2.91 (d, *J* = 7.0 Hz, 1H), 2.64 (d, *J* = 7.3 Hz, 1H), 2.04 (dd, *J* = 12.6, 9.7 Hz, 1H), 1.94 – 1.86 (m, 2H), 1.76 – 1.65 (m, 5H), 1.61 – 1.59 (m, 1H), 1.30 (d, *J* = 7.2 Hz, 3H), 0.88 (d, *J* = 7.4 Hz, 3H), 0.84 (d, *J* = 7.3 Hz, 3H), 0.76 (t, *J* = 7.4 Hz, 3H). HRMS (ESI+) m/z calc. for C₂₉H₄₁N₈O₆⁺ [M+H]⁺ = 597.3136, found 597.3144.

	1H Shifts
Ethyl	CH ₃ (0.76), CH ₂ (1.94 – 1.86), αCH (4.02)
Gly2	αCH₂ (3.72, 3.94 – 3.83), NH (8.11)
Leu	αCH (4.35), βCH ₂ (1.66 – 1.65), γCH (1.61 – 1.59), CH ₃ s (0.88, 0.84) NH (7.86 - 7.81)
Ala	αCH (4.17 – 4.12), CH ₃ (1.30), NH (8.46)
Gly1	αCH ₂ (3.72, 3.85), NH (8.07)
Pro	αCH (3.40), βCH ₂ (2.04, 1.72), γCH ₂ (1.71), δCH ₂ (2.91, 2.64)
Aryl	NH (10.26), C₂H (7.84), C₃H (7.63), C₄H (7.38), C₅H (7.94)
Odz	N/A

	C13 Shifts
Ethyl	CH ₃ (19.5), CH ₂ (24.7), αCH (59.2)
Gly2	αC (42.7), C=O (172.6)
Leu	αC (51.2), βC (39.1), γC (24.1), CH ₃ s (22.6, 20.7), C=O (172.4)
Ala	αC (50.0), CH ₃ (34.7), C=O (169.6)
Gly1	αC (41.9), C=O (174.1)
Pro	αC (63.0), βC (29.9), γC (23.1), δC (50.3), C=O (n.d)
Aryl	C ₁ (n.d), C ₂ (124.3), C ₃ (132.2), C ₄ (124.9), C ₅ (129.3), C ₆ (135.8). C=O (168.2)
Odz	C ₁ ' (164.2), C ₂ ' (165.7)

Figure S15: 2D-TOCSY Compound 7a (600 MHz, DMSO-d6)

Table 2: Full Characterization of compound 8a

White solid obtained in an 18 % overall yield (based on 100 % resin loading). ¹H NMR (600 MHz, DMSO-*d*6) δ 9.74 (s, 1H), 8.43 (d, J = 5.1 Hz, 1H), 8.02 – 7.98 (m, 1H), 7.90 – 7.84 (m, 2H), 7.44 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 4.30 (td, J = 10.1, 4.0 Hz, 1H), 3.99 (p, J = 5.4 Hz, 1H), 3.92 – 3.86 (m, 2H), 3.84 – 3.80 (m, 2H), 3.57 (dd, J = 16.7, 5.6 Hz, 1H), 3.39 – 3.33 (m, 1H), 2.83 - 2.79 (m, 1H), 2.60 – 2.56 (m, 1H), 2.13 – 2.04 (m, 1H), 1.99 – 1.93 (m, 1H), 1.88 – 1.83 (m, 1H), 1.78 – 1.70 (m, 3H), 1.68 – 1.64 (m, 2H), 1.63 – 1.59 (m, 1H), 1.29 (d, J = 7.3 Hz, 3H), 0.90 (d, J = 6.4 Hz, 3H), 0.84 (d, J = 6.4 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H). HRMS (ESI+) m/z calc. for C₃₀H₄₃N₈O₆⁺ [M+H]⁺ = 611.3299, found 611.3300.

	1H Shifts
Ethyl	CH ₃ (0.79), CH ₂ (1.68 – 1.64), αCH (3.92 – 3.86)
Gly2	αCH ₂ (3.92 – 3.86, 3.57), NH (7.90 – 7.84)
Leu	αCH (4.30), βCH ₂ (1.78 – 1.70), γCH (1.88 – 1.83), CH ₃ s (0.90, 0.84) NH (7.90 – 7.84)
Ala	αCH (3.99), CH ₃ (1.29), NH (8.43)
Gly1	αCH ₂ (3.84 – 3.80), NH (8.02 – 7.98)
Pro	α CH (3.35), β CH ₂ (2.83 - 2.79, 2.60 – 2.56), γ CH ₂ (1.78 – 1.70, 1.63 – 1.59), δ CH ₂ (2.13 – 2.04, 1.99 – 1.93)
Aryl	NH (9.74), C ₄ H (7.23), C ₃ H (7.44), C ₂ H (7.34), CH ₃ (2.40)
Odz	N/A

Figure S26: VT 1H-NMR Compound 8a (500 MHz, DMSO-d6)

10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0

_	Shifts (ppm)				
K	ArylNH	Gly2NH	LeuNH	AlaNH	Gly1NH
298	9.74	7.87	7.87	8.42	7.99
323	9.67	7.85	7.77	8.30	7.98
∆ppb/k					
298-323	2.8	0.8	4	4.8	0.4

Table 3: Full Characterization of compound 11a

White solid obtained in a 38 % overall yield (based on 100 % resin loading). ¹H NMR (600 MHz, DMSO-*d*6) δ 9.73 (s, 1H), 8.45 – 8.39 (m, 2H), 8.28 (dd, *J* = 7.3, 4.8 Hz, 1H), 8.23 (t, *J* = 1.9 Hz, 1H), 7.96 (dt, *J* = 8.1, 1.6 Hz, 1H), 7.86 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 4.46 (p, *J* = 7.2 Hz, 1H), 4.14 (dt, *J* = 7.9, 6.5 Hz, 1H), 4.08 – 4.01 (m, 2H), 3.92 (dd, *J* = 9.7, 5.9 Hz, 1H), 3.74 (dd, *J* = 17.1, 4.8 Hz, 1H), 3.67 (dd, *J* = 16.4, 4.7 Hz, 1H), 3.07 (dd, *J* = 8.5, 5.5 Hz, 1H), 2.95 (td, *J* = 8.0, 2.9 Hz, 1H), 2.68 (q, *J* = 8.1 Hz, 1H), 2.03 (ddq, *J* = 14.6, 9.5, 7.2 Hz, 1H), 1.98 – 1.86 (m, 1H), 1.73 – 1.66 (m, 3H), 1.59 (dq, *J* = 8.1, 6.0 Hz, 1H), 1.57 – 1.50 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 3H), 0.86 (d, *J* = 6.3 Hz, 3H), 0.80 (t, *J* = 7.3 Hz, 3H). HRMS (ESI+) m/z calc. for C₂₉H₄₁N₈O₆⁺ [M+H]⁺ = 597.3138, found 597.3144.

	1H Shifts
Ethyl	CH ₃ (0.81), CH ₂ (2.03, 1.90), αCH (3.92)
Gly2	αCH ₂ (3.74, 4.08 – 4.01), NH (8.45 – 8.39)
Leu	αCH (4.14), βCH ₂ (1.57 – 1.50), γCH (1.59), CH ₃ s (0.92, 0.86) NH (8.45 – 8.39)
Ala	αCH (4.46), CH ₃ (1.28), NH (7.52)
Gly1	αCH ₂ (3.67, 4.08 – 4.01), NH (8.28)
Pro	αCH (3.07), βCH ₂ (1.73 – 1.66), γCH ₂ (1.98 – 1.96, 1.73 – 1.66), δCH ₂ (2.68, 2.95)
Aryl	NH (9.73), C ₂ H (7.86), C ₃ H (7.56), C ₄ H (7.96), C ₆ H (8.23)
Odz	N/A

	C13 Shifts
Ethyl	CH ₃ (11.3), CH2 (25.7), αCH (57.4)
Gly2	αC (42.7), C=O (168.0)
Leu	αC (52.2), βC (39.5), γC (24.1), CH ₃ s (22.4), C=O (172.2)
Ala	αC (47.9), CH ₃ (17.8), C=O (173.0)
Gly1	αC (42.3), C=O (168.7)
Pro	αC (63.7), βC (29.3), γC (29.3), δC (47.4), C=O (173.2)
Aryl	C ₁ (139.1), C ₂ (121.5), C ₃ (129.7), C ₄ (122.2), C ₅ (123.6), C ₆ (117.1). C=O (168.1)
Odz	C ₁ ' (163.6), C ₂ ' (165.2)

Figure S29: 2D-TOCSY Compound 11a (500 MHz, DMSO-d6)

Figure S31: 2D-HSQC Compound 11a (500 MHz, DMSO-d6)

Figure S33: VT 1H-NMR Compound 11a (500 MHz, DMSO-d6)

Table 4: Full Characterization of compound 11b

White solid obtained in 38 % overall yield (based on 100 % resin loading). ¹H NMR (500 MHz, DMSO-*d6*) δ 9.78 (s, 1H), 8.27 – 8.20 (m, 1H), 8.20 – 8.16 (m, 2H), 8.06 (dd, *J* = 7.2, 4.5 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 7.1 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 4.35 – 4.26 (m, 3H), 4.21 – 4.02 (m, 3H), 3.81 – 3.73 (m, 2H), 3.65 (dd, *J* = 16.3, 4.3 Hz, 1H), 3.30 – 3.24 (m, 1H), 2.92 – 2.88 (m, 1H), 2.61 – 2.57 (d, *J* = 8.1 Hz, 1H), 2.02 – 1.98 (m, 2H), 1.89 – 1.82 (m, 1H), 1.72 – 1.65 (m, 2H), 1.57 - 1.53 (m, 3H), 1.31 – 1.21 (m, 6H), 0.90 (d, *J* = 5.9 Hz, 3H), 0.87 – 0.78 (m, 6H). HRMS (ESI+) m/z calc. for C₃₀H₄₃N₈O₆⁺ [M+H]⁺ = 611.3292, found 61.3300.

	1H Shifts
Ethyl	CH ₃ (0.87 – 0.78), CH ₂ (1.89 – 1.82, 2.02 – 1.98), α CH (3.81 – 3.73)
Gly2	αCH ₂ (3.81 – 3.73, 4.21 – 4.02), NH (8.20 – 8.16)
Leu	αCH (4.21 – 4.02), βCH ₂ (1.57 - 1.53), γCH (1.57 - 1.53), CH ₃ s (0.90, 0.87 – 0.78) NH (8.27 – 8.20)
Ala	αCH (4.35 – 4.26), CH₃ (1.31 – 1.21), NH (7.74)
Gly1	αCH ₂ (3.65, 4.21 – 4.02), NH (8.06)
Pro	α CH (3.30 – 3.24), β CH ₂ (1.72 – 1.65, 2.02 – 1.98), γ CH ₂ (1.72 – 1.65), δ CH ₂ (2.61 – 2.57, 2.92 – 2.88)
Aryl	NH (9.78), C ₂ H (7.64), C ₃ H (7.46), C ₄ H (7.97), C ₆ H (8.20 – 8.16)
Oxz	CH ₂ (4.35 – 4.26), CH ₃ (1.31 – 1.21)

C13 Shifts

Ethyl	CH ₃ (10.5), CH ₂ (24.8), αCH (59.5)
Gly2	αC (42.8), C=O (171.2)
Leu	αC (51.6), βC (39.6), γC (24.0), CH₃s (21.2, 22.5), C=O (172.2)
Ala	αC (48.5), CH ₃ (17.7), C=O (172.9)
Gly1	αC (42.2), C=O (173.4)
Pro	αC (63.7), βC (29.7), γC (22.6), δC (47.9), C=O (n.d)
Aryl	C ₁ (138.5), C ₂ (121.2), C ₃ (128.7), C ₄ (124.0), C ₅ (n.d), C ₆ (118.0). C=O (167.6)
Odz	C ₁ ' (n.d), C ₂ ' (n.d), C ₃ ' (161.5), CH ₂ (60.5), CH ₃ (13.7), C=O (161.6)

Figure S40: VT 1H-NMR Compound 11b (500 MHz, DMSO-d6)

Table 5: Full Characterization of compound 12a

White solid obtained in 23 % overall yield (based on 100 % resin loading). ¹H NMR (500 MHz, DMSO-*d*6) δ 9.22 (s, 1H), 8.82 (t, *J* = 6.0 Hz, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 8.08 (dd, *J* = 7.2, 4.0 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.76 (d, *J* = 7.3 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.38 (t, *J* = 7.9 Hz, 1H), 4.35 (d, *J* = 7.2 Hz, 1H), 4.29 (t, *J* = 7.3 Hz, 1H), 4.14 – 4.03 (m, 2H), 3.96 (dd, *J* = 10.7, 4.9 Hz, 1H), 3.64 – 3.52 (m, 2H), 3.44 (dd, *J* = 9.8, 3.9 Hz, 2H), 2.78 (t, *J* = 7.4 Hz, 1H), 2.55 – 2.51 (m, 1H), 2.31 (s, 3H), 2.21 – 2.01 (m, 2H), 1.83 – 1.67 (m, 3H), 1.61 – 1.51 (m, 3H), 1.22 (d, *J* = 7.2 Hz, 3H), 0.91 – 0.87 (m, 6H), 0.72 (t, *J* = 7.3 Hz, 3H). HRMS (ESI+) m/z calc. for $C_{30}H_{43}N_8O_6^+$ [M+H]⁺ = 611.3292, found 611.3300.

	1H Shifts
Ethyl	CH ₃ (0.72), CH ₂ (1.83 – 1.67, 2.21 – 2.01), αCH (3.96)
Gly2	αCH ₂ (3.64 – 3.52, 4.14 – 4.03), NH (8.82)
Leu	αCH (4.35), βCH ₂ (1.61 – 1.51), γCH (1.61 – 1.51), CH ₃ s (0.91 – 0.87) NH (7.76)
Ala	αCH (4.29), CH ₃ (1.22), NH (8.15)
Gly1	αCH ₂ (3.64 – 3.52, 4.14 – 4.03), NH (8.08)
Pro	αCH (3.44), β CH ₂ (1.83 – 1.67, 2.21 – 2.01), γ CH ₂ (1.83 – 1.67, 2.21 – 2.01), δ CH ₂ (2.53, 2.77)
Aryl	NH (9.22), C ₂ H (7.67), C ₃ H (7.38), C ₄ H (7.82), C ₆ -CH ₃ (2.31)
Odz	N/A

_	616 Olints
Ethyl	CH ₃ (10.4), CH ₂ (24.3), αCH (59.8)
Gly2	αC (43.6), C=O (168.4)
Leu	αC (50.9), βC (40.7), γC (23.8), CH ₃ s (22.7, 21.6), C=O (173.0)
Ala	αC (48.1), CH ₃ (17.8), C=O (172.1)
Gly1	αC (41.3), C=O (168.6)
Pro	αC (62.4), βC (30.1), γC (24.4), δC (51.5), C=O (173.9)
Aryl	C ₁ (137.3), C ₂ (128.3), C ₃ (126.2), C ₄ (126.5), C ₅ (124.2), C ₆ (132.2). C ₆ CH ₃ (14.8), C=O (168.1)
Odz	C ₁ ' (165.3), C ₂ ' (166.5)

Figure S43: 2D-TOCSY Compound 12a (500 MHz, DMSO-d6)

Figure S47: VT 1H-NMR Compound 12a (500 MHz, DMSO-d6)

9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 f1 (ppm)

Shifts (ppm)					
K	AryINH	Gly2NH	LeuNH	AlaNH	Gly1NH
298	9.22	8.82	7.76	8.15	8.08
323	9.07	8.68	7.69	7.98	8.04
∆ppb/k					
298-323	6	5.6	2.8	6.8	1.6

Table 6: Full Characterization of compound 12b

White solid obtained in a 23 % overall yield (based on 100 % resin loading).¹H NMR (500 MHz, DMSO-*d*6) δ 8.87 (s, 1H), 8.80 (t, *J* = 6.0 Hz, 1H), 8.12 – 8.05 (m, 2H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 4.36 – 4.29 (m, 1H), 4.26 – 4.17 (m, 3H), 4.13 (dd, *J* = 16.3, 7.0 Hz, 1H), 3.96 (dd, *J* = 16.5, 6.6 Hz, 1H), 3.79 (dd, *J* = 10.5, 4.9 Hz, 1H), 3.64 – 3.54 (m, 2H), 3.30 (dd, *J* = 9.6, 4.5 Hz, 1H), 2.81 – 2.75 (3, 1H), 2.61 – 2.55 (m, 1H), 2.12 (s, 3H), 2.02 (d, *J* = 6.9 Hz, 1H), 1.84 – 1.66 (m, 3H), 1.64 - 1.54 (m, 2H), 1.55 – 1.48 (m, 2H), 1.22 – 1.11 (m, 6H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.87 (dd, 6.5 Hz, 6H), 0.73 (t, *J* = 7.4 Hz, 3H). HRMS (ESI+) m/z calc. for C₃₄H₄₈N₇O₈⁺ [M+H]⁺ = 682.3559, found 682.3559.

	1H Shifts
Ethyl	CH ₃ (0.73), CH ₂ (1.84 – 1.66, 2.00), αCH (3.79)
Gly2	αCH ₂ (3.64 – 3.54, 4.132), NH (8.80)
Leu	α CH (4.26 – 4.17), β CH ₂ (1.55 – 1.48, 1.64 - 1.54), γ CH (1.55 – 1.48), CH ₃ s (0.86, 0.90) NH (8.12 – 8.05)
Ala	αCH (4.36 – 4.29), CH ₃ (1.14), NH (7.86)
Gly1	αCH ₂ (3.64 – 3.54, 3.96), NH (8.12 – 8.05)
Pro	α CH (3.30), β CH ₂ (1.84 – 1.66, 2.02), γ CH ₂ (1.64 - 1.54, 1.84 – 1.66), δ CH ₂ (2.61 – 2.55, 2.81 – 2.75)
Aryl	NH (8.87), C ₂ H (7.41), C ₃ H (7.28), C ₄ H (7.64), C ₆ -CH ₃ (2.12)
Oxz	CH ₂ (4.26 – 4.17), CH ₃ (1.18)

C13 Shifts

$ \begin{array}{lll} {\it Ethyl} & {\rm CH}_3(10.5),{\rm CH}_2(25.0),\alpha{\rm CH}(61.3) \\ {\it Gly2} & \alpha{\rm C}(43.4),{\rm C=O}(172.9) \\ {\it Leu} & \alpha{\rm C}(51.4),\beta{\rm C}(23.7),\gamma{\rm C}(39.8),{\rm CH}_3{\rm s}(22.5,21.4),{\rm C=O}(172.5) \\ {\it Ala} & \alpha{\rm C}(47.8),{\rm CH}_3(17.9),{\rm C=O}(168.4) \\ {\it Gly1} & \alpha{\rm C}(42.0),{\rm C=O}(173.8) \\ {\it Pro} & \alpha{\rm C}(63.0),\beta{\rm C}(29.7),\gamma{\rm C}(22.7),\delta{\rm C}(50.4),{\rm C=O}(173.8) \\ {\it Aryl} & {\rm C}_1(136.3),{\rm C}_2(126.3),{\rm C}_3(125.1),{\rm C}_4(128.5),{\rm C}_5(127.3),{\rm C}_6(131.3).{\rm C}_6{\rm CH}_3(15.0),{\rm C=O}(168.2) \\ {\it Oxz} & {\rm C}_1'(155.3),{\rm C}_2'({\rm n.d}),{\rm C}_3'(162.3),{\rm CH}_2(60.3),{\rm CH}_3(13.7),{\rm C=O}(161.0) \\ \end{array} $		
$ \begin{array}{lll} \textbf{Gly2} & & & & & & & & & & & & & & & & & & &$	Ethyl	CH ₃ (10.5), CH ₂ (25.0), αCH (61.3)
$ \begin{array}{c c} \textit{Leu} & \alpha C \ (51.4), \ \beta C \ (23.7), \ \gamma C \ (39.8), \ CH_3 s \ (22.5, \ 21.4), \ C=O \ (172.5) \\ \hline \textit{Ala} & \alpha C \ (47.8), \ CH_3 \ (17.9), \ C=O \ (168.4) \\ \hline \textit{Gly1} & \alpha C \ (42.0), \ C=O \ (173.8) \\ \hline \textit{Pro} & \alpha C \ (63.0), \ \beta C \ (29.7), \ \gamma C \ (22.7), \ \delta C \ (50.4), \ C=O \ (173.8) \\ \hline \textit{Aryl} & C_1 \ (136.3), \ C_2 \ (126.3), \ C_3 \ (125.1), \ C_4 \ (128.5), \ C_5 \ (127.3), \ C_6 \ (131.3). \ C_6 CH_3 \ (15.0), \ C=O \ (168.2) \\ \hline \textit{Oxz} & C_1' \ (155.3), \ C_2' \ (n.d), \ C_3' \ (162.3), \ CH_2 \ (60.3), \ CH_3 \ (13.7), \ C=O \ (161.0) \\ \end{array} $	Gly2	αC (43.4), C=O (172.9)
$ \begin{array}{lll} \textit{Ala} & & & & & & & & & & & & & & & & & & &$	Leu	αC (51.4), βC (23.7), γC (39.8), CH ₃ s (22.5, 21.4), C=O (172.5)
$ \begin{array}{c} \textbf{Gly1} & \alpha C \ (42.0), \ C=O \ (173.8) \\ \textbf{Pro} & \alpha C \ (63.0), \ \beta C \ (29.7), \ \gamma C \ (22.7), \ \delta C \ (50.4), \ C=O \ (173.8) \\ \textbf{Aryl} & C_1 \ (136.3), \ C_2 \ (126.3), \ C_3 \ (125.1), \ C_4 \ (128.5), \ C_5 \ (127.3), \ C_6 \ (131.3). \ C_6 CH_3 \ (15.0), \ C=O \ (168.2) \\ \textbf{Oxz} & C_1' \ (155.3), \ C_2' \ (n.d), \ C_3' \ (162.3), \ CH_2 \ (60.3), \ CH_3 \ (13.7), \ C=O \ (161.0) \\ \end{array} $	Ala	αC (47.8), CH ₃ (17.9), C=O (168.4)
Pro αC (63.0), βC (29.7), γC (22.7), δC (50.4), C=O (173.8)Aryl C_1 (136.3), C_2 (126.3), C_3 (125.1), C_4 (128.5), C_5 (127.3), C_6 (131.3). C_6CH_3 (15.0), C=O (168.2)Oxz C_1' (155.3), C_2' (n.d), C_3' (162.3), CH_2 (60.3), CH_3 (13.7), C=O (161.0)	Gly1	αC (42.0), C=O (173.8)
Aryl C_1 (136.3), C_2 (126.3), C_3 (125.1), C_4 (128.5), C_5 (127.3), C_6 (131.3). C_6CH_3 (15.0), C=O (168.2)Oxz C_1' (155.3), C_2' (n.d), C_3' (162.3), CH_2 (60.3), CH_3 (13.7), C=O (161.0)	Pro	αC (63.0), βC (29.7), γC (22.7), δC (50.4), C=O (173.8)
Oxz C ₁ ' (155.3), C ₂ ' (n.d), C ₃ ' (162.3), CH ₂ (60.3), CH ₃ (13.7), C=O (161.0)	Aryl	C ₁ (136.3), C ₂ (126.3), C ₃ (125.1), C ₄ (128.5), C ₅ (127.3), C ₆ (131.3). C ₆ CH ₃ (15.0), C=O (168.2)
	Oxz	C ₁ ' (155.3), C ₂ ' (n.d), C ₃ ' (162.3), CH ₂ (60.3), CH ₃ (13.7), C=O (161.0)

Figure S50: 2D-TOCSY Compound 12b (500 MHz, DMSO-d6)

Figure S52: 2D-HSQC Compound 12b (500 MHz, DMSO-d6)

Figure S54: VT 1H-NMR Compound 12b (500 MHz, DMSO-d6)

Table 7: Full Characterization of compound 14a

White solid obtained in a 18 % overall yield (based on 100 % resin loading).¹H NMR (600 MHz, DMSO-*d*6) δ 9.48 (s, 1H), 9.03 – 8.97 (m, 1H), 8.20 – 8.16 (m, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.80 (s, 1H), 4.55 (p, *J* = 7.4 Hz, 1H), 4.16 (dd, J = 9.4, 5.9 Hz, 1H), 4.12 – 4.05 (m, 1H), 4.04 – 3.97 (m, 1H), 3.96 – 3.91 (m, 1H), 3.66 – 3.57 (m, 1H), 3.50 (m, 1H), 3.34 (m, 1H), 3.15 – 3.11 (m, 1H), 2.83 (q, *J* = 7.9 Hz, 1H), 1.99 – 1.90 (m, 2H), 1.70 – 1.66 (m, 3H), 1.62 – 1.55 (m, 3H), 1.54 – 1.46 (m, 1H), 1.27 (d, *J* = 7.2 Hz, 3H), 0.93 (d, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 7.2 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H). HRMS (ESI+) m/z calc. for C₂₉H₄₁N₈O₈⁺ [M+H]⁺ = 597.3155, found 597.3144.

	1H Shifts
Ethyl	CH ₃ (0.82), CH ₂ (1.99 – 1.90), αCH (4.16)
Gly2	αCH ₂ (4.12 - 4.05, 3.66 – 3.57), NH (9.03 – 8.97)
Leu	αCH (4.04 – 3.97), βCH ₂ (1.70 – 1.66, 1.62 – 1.55), γCH (1.54 – 1.46), CH ₃ s (0.93, 0.87) NH (8.20 – 8.16)
Ala	αCH (4.55), CH ₃ (1.27), NH (8.15)
Gly1	αCH ₂ (3.50, 3.34), NH (7.80)
Pro	αCH (3.96 – 3.91), β CH ₂ (3.15 – 3.11, 2.83), γ CH ₂ (1.70 – 1.66), δ CH ₂ (1.62 – 1.55)
Aryl	NH (9.48), C₂H (7.97 - 7.91), C₃H (7.85), C₅H (7.85), C ₆ H (7.97 - 7.91)
Odz	N/A

N--N AryINH 02 ŅΗ ŇΗ H AlaNH Gly1NH LeuNH _, NH _{Gly2NH} ö ·NΗ 0 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 8.5 8.4 f1 (ppm) 7.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.3 8.2 8.1 8.0 7.9 7.8 7.6 7.5 7.4 7.3 Shifts (ppm) AryINH Gly1NH Κ Gly2NH LeuNH AlaNH 298 7.80 9.48 9.00 8.17 8.15 323 9.41 8.89 8.07 8.01 7.66 ∆ppb/k 298-323 2.8 4.4 **4.0** 5.6 5.6

Figure S61: VT 1H-NMR Compound 14a (600 MHz, DMSO-d6)

Table 8: Full Characterization of compound 16a

White solid obtained in a 17 % overall yield (based on 100 % resin loading).¹H NMR (500 MHz, DMSO-*d*6) δ 9.58 (s, 1H), 8.93 (s, 1H), 8.40 (s, 1H), 8.20 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.62 (dd, *J* = 8.8, 2.1 Hz, 1H), 4.54 – 4.47 (m, 1H), 4.20 (dd, *J* = 9.1, 6.3 Hz, 1H), 4.11 (dd, *J* = 17.0, 7.6 Hz, 1H), 4.00 (d, *J* = 4.8 Hz, 1H), 3.77 (dd, *J* = 8.4, 3.8 Hz, 1H), 3.64 (dd, *J* = 17.0, 4.6 Hz, 1H), 3.57 (d, *J* = 4.0 Hz, 1H), 3.54 – 3.46 (m, 1H), 3.15 – 3.07 (m, 1H), 2.75 (d, *J* = 8.0 Hz, 1H), 1.99 – 1.90 (m, 3H), 1.74 – 1.66 (m, 2H), 1.63 – 1.57 (m, 3H), 1.53 – 1.47 (m, 1H), 1.24 (d, *J* = 7.2 Hz, 3H), 0.96 (d, *J* = 6.9 Hz, 3H), 0.93 (d, *J* = 6.9 Hz, 3H), 0.91 – 0.85 (m, 6H). HRMS (ESI+) m/z calc. for C₃₄H₄₈N₇O₈⁺ [M+H]⁺ = 631.2746, found 631.2754.

	1H Shifts
Ethy	CH ₃ (0.91 – 0.85), CH ₂ (1.99 – 1.90), αCH (4.20)
Gly2	αCH ₂ (3.64, 4.11), NH (8.93)
Leu	αCH (4.00), βCH ₂ (1.53 – 1.47, 1.63 – 1.57), γCH (1.63 – 1.57), CH ₃ s (0.96, 0.93) NH (8.20)
Ala	αCH (4.54 – 4.47), CH ₃ (0.91 – 0.85), NH (8.11)
Gly1	αCH ₂ (3.54 – 3.46, 3.57), NH (7.86 – 7.78)
Pro	αCH (3.77), βCH ₂ (1.99 – 1.90, 1.63 – 1.57), γCH ₂ (1.74 – 1.66), δCH ₂ (2.75, 3.15 – 3.07)
Aryl	NH (9.58), C ₂ H (8.40), C ₅ H (7.86 − 7.78), C ₆ H (7.62)
Odz	N/A

	C13 Shifts
Ethyl	CH ₃ (11.0), CH ₂ (21.7), αCH (43.8)
Gly2	αC (44.1), C=O (172.3)
Leu	αC (53.9), βC (39.2), γC (24.6), CH ₃ s (22.9, 22.4), C=O (172.4)
Ala	αC (47.7), CH ₃ (18.5), C=O (172.6)
Gly1	αC (42.9), C=O (167.3)
Pro	αC (59.1), βC (31.7), γC (22.9), δC (50.6), C=O (174.0)
Aryl	C ₁ (n.d), C ₂ (119.7), C ₃ (n.d), C ₄ (141.2), C ₅ (130.5), C ₆ (118.7). C=O (168.8)
Odz	C ₁ ' (160.9), C ₂ ' (164.2)

Figure S64: 2D-TOCSY Compound 16a (500 MHz, DMSO-d6)

Figure S68: VT 1H-NMR Compound 16a (500 MHz, DMSO-d6)

Table 9: Full Characterization of compound 17a

White solid obtained in a 27 % overall yield (based on 100 % resin loading). ¹H NMR (500 MHz, DMSO-*d*6) δ 9.88 (s, 1H), 8.72 (d, *J* = 6.3 Hz, 1H), 8.54 (s, 1H), 8.20 – 8.14 (m, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 5.11 (s, 1H), 4.45 (q, *J* = 8.5 Hz, 1H), 4.41 – 4.33 (m, 2H), 4.22 – 4.10 (m, 2H), 3.93 (dd, *J* = 9.9, 5.7 Hz, 1H), 3.71 (dd, *J* = 16.1, 4.5 Hz, 1H), 3.25 – 3.19 (m, 1H), 2.90 (d, *J* = 3.9 Hz, 1H), 2.79 – 2.67 (m, 2H), 2.67 – 2.61 (m, 1H), 2.09 – 1.88 (m, 2H), 1.70 – 1.54 (m, 6H), 1.09 (d, *J* = 6.3 Hz, 3H), 0.88 (d, *J* = 6.2 Hz), 0.84 (d, *J* = 6.2 Hz), 0.78 (t, *J* = 7.3 Hz, 3H). HRMS (ESI+) m/z calc. for $C_{32}H_{45}N_8O_9^+$ [M+H]⁺ = 685.3297, found 685.3304.

	1H Shifts
Ethyl	CH ₃ (0.78), CH ₂ (2.09 – 1.88), αCH (3.93)
Thr	αCH (4.41 – 4.33), βCH (4.22 – 4.10), CH ₃ (1.09), NH (7.31), OH (5.11)
Asp	$lpha$ CH (4.41 – 4.33), eta CH $_2$ (2.79 – 2.67), NH (8.72), CO $_2$ H (n.d)
Leu	αCH (4.45), βCH ₂ (1.70 – 1.54), γCH (1.70 – 1.54) CH ₃ s (0.84, 0.88), NH (7.65)
Gly	αCH ₂ (3.71, 4.22 – 4.10), NH (8.20 – 8.14)
Pro	αCH (3.25 – 3.19), βCH ₂ (1.70 – 1.54, 1.97), γCH ₂ (1.70 – 1.54), δCH ₂ (2.67 – 2.61, 2.90)
Aryl	NH (9.88), C ₂ H (7.65), C ₃ H (7.55), C ₄ H (7.83), C ₆ H (8.54)
Odz	N/A

	C13 Shifts
Ethyl	CH ₃ (10.5), CH ₂ (24.7), αCH (56.0)
Thr	αC (58.0), βC (66.4), CH ₃ (19.7), C=O (170.4)
Asp	αC (51.4), βC (35.9), γC=O (170.9), C=O (170.7)
Leu	αC (51.0), βC (22.4), γC (41.2), CH ₃ s (21.6, 22.5), C=O (173.0)
Gly	αC (42.0), C=O (173.7)
Pro	αC (62.7), βC (29.6), γC (24.1), δC (48.7), C=O (173.7)
Aryl	C ₁ (139.2), C ₂ (122.0), C ₃ (129.7), C ₄ (121.1), C ₅ (117.6), C ₆ (123.5). C=O (168.8)
Odz	C ₁ ' (163.8), C ₂ ' (165.8)

Figure S71: 2D-TOCSY Compound 17a (500 MHz, DMSO-d6)

Figure S75: VT 1H-NMR Compound 17a (500 MHz, DMSO-d6)

Table 10: Full Characterization of compound 17b

White solid obtained in a 21 % overall yield (based on 100 % resin loading).¹H NMR (500 MHz, DMSO-*d*6) δ 9.71 (s, 1H), 8.81 (s, 1H), 8.34 (s, 1H), 8.10 (d, *J* = 7.8 Hz, 2H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.22 (s, 1H), 5.13 (s, 1H), 4.39 – 4.32 (m, 5H), 4.14 – 4.08 (m, 2H), 3.74 (dd, *J* = 9.7, 5.7 Hz, 1H), 3.64 (dd, *J* = 15.7, 4.4 Hz, 1H), 2.86 – 2.80 (m, 1H), 2.70 – 2.62 (m, 3H), 2.04 – 1.93 (m, 2H), 1.88 – 1.79 (m, 1H), 1.74 – 1.52 (m, 6H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.09 (d, *J* = 6.4 Hz, 3H), 0.88 (d, *J* = 6.4 Hz, 3H), 0.83 (d, *J* = 6.4 Hz, 3H), 0.77 (t, *J* = 7.3 Hz, 3H). HRMS (ESI+) m/z calc. for C₃₆H₅₀N₇O₁₁⁺ [M+H]⁺ = 756.3560, found 756.3563.

	1H Shifts
Ethyl	CH ₃ (0.77), CH ₂ (1.88 – 1.79, 2.04 – 1.93), αCH (3.72)
Thr	α CH (4.39 – 4.32), β CH (4.14 – 4.08), CH ₃ (1.09), NH (7.23), OH (5.14)
Asp	α CH (4.39 – 4.32), β CH ₂ (2.70 – 2.62), NH (8.81), CO ₂ H (n.d)
Leu	α CH (4.39 – 4.32), β CH ₂ (1.74 – 1.52), γ CH (1.74 – 1.52) CH ₃ s (0.83, 0.88), NH (7.97)
Gly	αCH ₂ (3.63, 4.14 – 4.08), NH (8.11)
Pro	αCH (3.33), β CH ₂ (2.04 – 1.93, 1.74 – 1.52), γ CH ₂ (1.74 – 1.52), δ CH ₂ (2.70 – 2.62, 2.86 – 2.80)
Aryl	NH (9.71), C ₂ H (7.63), C ₃ H (7.45), C ₄ H (8.09), C ₆ H (8.55)
Oxz	CH ₂ (4.39 – 4.32), CH ₃ (1.30)

	C13 Shifts
Ethyl	CH ₃ (11.1), CH ₂ (25.7), αCH (61.4)
Thr	αC (58.3), βC (67.0), CH ₃ (20.5), C=O (168.9)
Asp	αC (52.0), βC (37.0), γC=O (171.9), C=O (170.6)
Leu	αC (58.9), βC (24.8), γC (24.5), CH ₃ s (22.2, 23.1), C=O (172.2)
Gly	αC (42.8), C=O (169.2)
Pro	αC (63.7), βC (30.6), γC (23.7), δC (50.3), C=O (172.1)
Aryl	C ₁ (138.7), C ₂ (121.7), C ₃ (129.2), C ₄ (124.2), C ₅ (n.d), C ₆ (118.8). C=O (n.d)
Oxz	C ₁ ' (153.7), C ₂ ' (n.d), C ₃ ' (161.8), CH ₂ (60.7), CH ₃ (14.5), C=O (161.7)

**Signal at 3.33 ppm was determined by 2D NMR (Not observable in 1H due to overlapping signal with residual H₂O)

Figure S82: VT 1H-NMR Compound 17b (500 MHz, DMSO-d6)

Compound S8: Isolated Enamine Byproduct

¹H NMR (500 MHz, DMSO-*d6*) δ 10.07 (d, *J* = 6.7 Hz, 1H), 8.36 – 8.24 (m, 2H), 8.20 (d, *J* = 7.2 Hz, 2H), 8.15 (dd, *J* = 7.7, 2.0 Hz, 2H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 4.48 (dd, *J* = 10.8, 3.8 Hz, 1H), 4.29 (pd, *J* = 7.2, 2.7 Hz, 2H), 3.96 (d, *J* = 16.7 Hz, 1H), 3.88 (d, 2H), 3.77 – 3.67 (m, 1H), 3.63 – 3.52 (m, 2H), 3.01 – 2.92 (m, 1H), 2.77 – 2.64 (m, 1H), 2.02 – 1.87 (m, 1H), 1.82 – 1.68 (m, 1H), 1.65 – 1.57 (m, 2H), 1.55 – 1.47 (m, 3H), 1.23 – 1.18 (m, 3H), 0.94 (t, *J* = 7.3 Hz, 2H), 0.91 – 0.87 (m, 3H), 0.86 – 0.81 (m, 3H). LCMS (ESI+) m/z calc. for C₂₈H₄₁N₆O₇ [M+H] = 573.3, found 573.3.

LC Traces

Compound 7a: Retention time = 6.60 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 8a: Retention time = 6.84 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

65

Compound 11a: Retention time = 5.75 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 11b: Retention time = 6.35 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 12a: Retention time = 5.30 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 14a: Retention time = 4.73 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 16a: Retention time = 5.25 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 17a: Retention time = 5.71 min (5-95 %, MeCN/H₂O with 0.1 % formic acid over 15 min)

Compound 6b: Crude reaction of peptide 4 with isocyanide 2 (5-95 %, MeCN/H₂O over 6 min)

Conformational Analysis

ROE-based restraint: The NMR structures were determined by NMR derived distance information. ROESY spectra were integrated by using MestreNova (v. 10.0.2, Mestrelab Research S.L.) software. Integrated volumes of ROE crosspeaks were converted to proton interatomic distances using an inverse sixth power relationship. A reference integral was calculated as the average integral between sets of geminal protons which was then set to the calculated geminal interproton distance of 1.78 Å. The calculated distances were adjusted upwards and downwards by 10% to give upper and lower bounds to account for uncertainty in interproton distances. 3 J coupling constants were recorded from the 1H spectrum. NH-C α H 3 J coupling constants of < 6 Hz were assigned phi dihedral values of -60° +/- 25°. NHC α H 3 J coupling constants of > 8 Hz were assigned phi values of -120° +/- 25°. Crude structures of macrocycles were generated by a restrained Monte Carlo low mode molecular mechanics conformational search with an implicit solvent model (DMSO) in Macromodel (Schrodinger LLC, v11.0). The structures were then checked for violations of the experimental distances and dihedral restraints. The lowest energy structure that satisfied these tests were passed for molecular dynamics study. Molecular dynamics: Solvent explicit molecular dynamics simulations were carried out with the Desmond Molecular Dynamics software module (D.E. Shaw, v4.4) running inside Maestro (Schodinger LLC, v2015-2). The OPLS3e force field was used for parameterization of the peptidomimetic macrocycle. The macrocycle representative structure was placed in an orthorhombic box solvent box (DMSO) with a minimum distance of 12 A between solute atoms and the box boundary. The solvated box was minimized then brought to 300 K from 10 K using a restrained dynamics regime. Coulombic interactions were grouped into near- and far interactions with a near interaction cutoff of 9 A. Bonds were constrained with the SHAKE algorithm and an integration time step of 2 fs was used. The final MD production run was 100 ns in length with energy value recording every 1.2 ps and trajectory recording every 4.8 ps. The trajectory run was clustered using the Trajectory Clustering script within Maestro with a 0.4 A RMSD cutoff for variation between backbone heavy atoms and a sampling frequency of 10%. The most populated cluster (with a hydrogen bond pattern agreeing with that determined by VT-NMR) was taken as the "preferred" structure. The stereochemistry of the ethyl group was determined to be (S) for each peptide according to the method previously described by Saunders and Yudin.² The average interproton distances were measured, compared to the experimental NMR derived distances and the violations were tabulated below:

Compound 7a

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Gly5	NH	2.78	3.06	2.50	2.66	0.00
Aryl	NH	Leu	NH	3.20	3.52	2.88	3.97	0.09
Leu	NH	Leu	αCH	2.72	2.99	2.45	3.12	0.13
Leu	NH	Ala	αCH	2.85	3.14	2.56	2.94	0.00
Ala	NH	Leu	NH	2.72	2.99	2.45	3.03	0.04
Ala	NH	Ala	αCH	2.94	3.23	2.65	3.25	0.02
Gly2	NH	Et	αCH	3.42	3.76	3.08	3.25	0.00
Gly2	NH	Pro	αCH	2.42	2.66	2.18	2.41	0.00
Pro	αCH	Et	αCH	2.51	2.76	2.26	2.86	0.10

Compound 8a

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Gly2	NH	2.67	2.94	2.40	2.77	0.00
Aryl	NH	Aryl	C_6H	2.65	2.91	2.38	2.64	0.00
Ala	NH	Ala	αCH	2.60	2.86	2.34	2.20	0.14
Leu	NH	Ala	αCH	2.83	3.11	2.55	3.45	0.34
Leu	αCH	Leu	NH	2.39	2.63	2.15	2.94	0.31
Compound 11a

Residue	Atom	Residue	Atom	Calculated	NOE Upper	NOE Lower	MD Average	Violation
1	1	2	2	NOE (Å)	Bound (Å)	Bound (Å)	Distance (Å)	(Å)
Aryl	NH	Gly5	NH	2.78	3.06	2.50	2.81	0.00
Gly5	NH	Leu	αCH	2.22	2.44	2.00	2.93	0.49
Leu	NH	Ala	αCH	2.40	2.64	2.16	2.21	0.00
Ala	NH	Ala	αCH	3.20	3.52	2.88	2.23	0.55
Ala	NH	Et	αCH	3.20	3.52	2.88	2.69	0.19
Gly2	NH	Et	αCH	2.94	3.23	2.65	2.70	0.00
Gly2	NH	Pro	αCH	2.54	2.79	2.29	2.96	0.17
Gly2	NH	Ala	NH	3.20	3.52	2.88	2.91	0.00
Pro	αCH	Et	αCH	2.72	2.99	2.45	2.62	0.00

Compound 11b

J.Y	
7 7	
De	

Residue	Atom	Residue	Atom	Calculated	NOE Upper	NOE Lower	MD Average	Violation
1	1	2	2	NOE (Å)	Bound (Å)	Bound (Å)	Distance (Å)	(Å)
Aryl	NH	Gly2	NH	2.93	3.22	2.66	2.75	0.00
Gly5	NH	Leu	αCH	2.36	2.60	2.12	3.05	0.45
Leu	NH	Ala	αCH	2.41	2.65	2.17	2.33	0.00
Ala	NH	Ala	αCH	2.93	3.22	2.66	2.86	0.00
Leu	NH	Leu	αCH	2.71	2.98	2.44	2.28	0.16
Gly2	NH	Pro	αCH	2.41	2.65	2.17	2.91	0.26
Gly2	NH	Et	αCH	2.84	3.12	2.56	3.57	0.45
Pro	αCH	Et	αCH	2.53	2.78	2.28	2.70	0.00

Compound 12a

Gly5 0 NΗ Leu4 0≥ н ŅН 12a Me 0: Ala3 ΗN Ν C Ö Gly2 •H Pro1

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Gly5	NH	2.93	3.22	2.66	3.38	0.16
Gly5	NH	Leu	NH	3.41	3.75	3.07	4.03	0.28
Gly5	NH	Leu	αCH	2.24	2.46	2.02	2.46	0.00
Leu	NH	Leu	αCH	2.77	3.05	2.49	2.60	0.00
Leu	NH	Ala	NH	2.84	3.12	2.56	2.52	0.04
Ala	NH	Ala	αCH	2.98	3.28	2.68	2.93	0.00
Gly2	NH	Pro	αCH	2.77	3.05	2.49	3.30	0.25
Pro	αCH	Et	αCH	2.53	2.78	2.28	2.84	0.06

Compound 12b

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Leu	NH	3.04	3.34	2.74	2.84	0.00
Gly5	NH	Leu	NH	3.42	3.76	3.08	4.03	0.27
Gly5	NH	Leu	αCH	2.23	2.46	2.02	3.37	0.91
Ala	NH	Ala	αCH	2.93	3.28	2.68	3.33	0.05
Pro	αCH	Gly2	NH	2.77	3.05	2.49	2.35	0.14
Et	αCH	Gly2	NH	3.04	3.34	2.74	4.21	0.87
Et	αCH	Pro	αCH	2.50	2.75	2.25	2.46	0.00

Compound 14a

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Gly2	NH	2.39	2.63	2.15	2.72	0.09
Ala	αCH	Ala	NH	2.47	2.72	2.22	2.82	0.10
Leu	αCH	Gly2	NH	2.15	2.36	1.93	2.31	0.00
Leu	αCH	Leu	NH	2.57	2.83	2.31	2.89	0.06
Pro	aCH	Gly1	NH	2.17	2.39	1.95	2.42	0.03

Compound 16a

Residue	Atom	Residue	Atom	Calculated	NOE Upper	NOE Lower	MD Average	Violation
1	1	2	2	NOE (Å)	Bound (Å)	Bound (Å)	Distance (Å)	(Å)
Aryl	NH	Gly5	NH	2.74	3.02	2.46	2.70	0.00
Gly5	NH	Leu	αCH	2.28	2.51	2.05	2.30	0.00
Leu	NH	Leu	αCH	2.71	2.98	2.44	2.79	0.00
Leu	NH	Ala	αCH	2.85	3.14	2.56	3.28	0.14
Gly	NH	Pro	αCH	2.33	2.56	2.10	2.91	0.45

Compound 17a

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Thr	NH	3.19	3.52	2.87	3.62	0.10
Aryl	NH	Thr	αCH	2.53	2.78	2.28	2.28	0.00
Asp	NH	Asp	αCH	3.04	3.44	2.74	3.34	0.00
Asp	NH	Leu	αCH	2.66	2.93	2.39	2.81	0.00
Gly2	NH	Et	αCH	3.19	3.51	2.97	3.93	0.42
Gly2	NH	Pro	αCH	2.71	2.98	2.44	2.22	0.22
Pro	αCH	Et	αCH	2.71	2.98	2.44	3.29	0.31

Compound 17b

Residue 1	Atom 1	Residue 2	Atom 2	Calculated NOE (Å)	NOE Upper Bound (Å)	NOE Lower Bound (Å)	MD Average Distance (Å)	Violation (Å)
Aryl	NH	Thr	αCH	2.84	3.12	2.56	3.34	0.22
Asp	NH	Leu	αCH	2.50	2.75	2.25	2.22	0.03
Gly2	NH	Et	αCH	3.42	3.76	3.08	3.93	0.17
Gly2	NH	Pro	αCH	2.77	3.05	2.49	3.30	0.25
Pro	αCH	Et	αCH	2.57	2.83	2.31	2.81	0.00

Macrocycle Conformation Maps

 ϕ / ψ torsion angles were extracted from the conformations of 17a and 17b using PyMOL and are tabulated below.

MCM Plot of LDT 17a and 17b									
17a 17b									
	ф	Ψ		ф	Ψ				
Pro	-101	11	Pro	-105	15				
Gly	119	68	Gly	-115	-123				
Leu	-109	142	Leu	-80	148				
Asp	-48	91	Asp	-74	-20				
Thr	57	37	Thr	-65	-2				

References:

- Diamandas, M.; Moreira, R.; Taylor, S. D. Solid-Phase Total Synthesis of Dehydrotryptophan-Bearing Cyclic Peptides Tunicyclin B, Sclerotide A, CDA3a, and CDA4a using a Protected β-Hydroxytryptophan Building Block. *Org. Lett.* **2021**, *12* (8), https://doi.org/10.1021/acs.orglett.1c00717.
- Saunders, G. J.; Yudin, A. K. Property-Driven Development of Passively Permeable Macrocyclic Scaffolds Using Heterocycles**. *Angewandte Chemie International Edition* **2022**, *61* (33), e202206866. https://doi.org/https://doi.org/10.1002/anie.202206866.