ELECTRONIC SUPPORTING INFORMATION

for

Base-mediated Homologative Rearrangement of Nitrogen-Oxygen Bonds of N-Methyl-N-oxyamides

Monika Malik,^a Raffaele Senatore,^a Thierry Langer,^a Wolfgang Holzer^a and Vittorio Pace *^{a,b}

^a University of Vienna - Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry - Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

^b University of Turin - Department of Chemistry - Via P. Giuria 7, 10125 Turin, Italy.

e-mail: vittorio.pace@univie.ac.at; vittorio.pace@unito.it

TABLE OF CONTENTS

Instrumentation and general analytical methods	S2
Synthesis of starting materials and their characterization	S3
General procedure for the synthesis of <i>N</i> -(alkoxymethyl)amides	S14
N-(alkoxymethyl)amides: Experimental procedures and characterization	S15
Copies of ¹ H- and ¹³ C-NMR spectra	S47
Copies of heteronuclei NMR spectra for relevant compounds (¹⁹ F, ¹¹⁹ Sn, ⁷⁷ Se)	S121
X-Ray Analysis for compound 17	S124
References	S128

Instrumentation and General Analytical Methods

Melting points were determined on a Reichert–Kofler hot-stage microscope and are uncorrected. Mass spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV) and on a Bruker maXis 4G instrument (ESI-TOF, HRMS). ¹H, ¹³C, ¹⁹F, ¹¹⁹Sn and ⁷⁷Se NMR spectra were recorded with a Bruker Avance III 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 40 MHz for ¹⁵N, 376 MHz for ¹⁹F and 76 MHz for ⁷⁷Se) at 297 K using a directly detecting broadband observe (BBFO) probe. ¹H and ¹³C NMR spectra were additionally recorded with a Bruker 200 spectrometer (200 MHz for ¹H, 50 MHz for ¹³C). The center of the (residual) solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃), 7.16 ppm (¹H in C₆D₆), 2.05 ppm (¹H in acetone-*d*₆) and δ 77.0 ppm (¹³C in CDCl₃), 128.06 (¹³C in C₆D₆), 202.26 – 29.84 ppm (¹³C in acetone-*d*₆).^[1] When recording ¹H spectra in acetone-*d*₆, occasionally it could be observed the water signal in this deuterated solvent at δ 2.84 ppm; in case of recording ¹³C spectra in acetone-*d*₆ it could be noticed overlapping of alkyl-type signals at *ca*. δ 29.8 ppm. ¹⁵N NMR (gs-HMBC) spectra were referenced against neat, external nitromethane. ¹⁹F NMR spectra were referenced via the Ξ ratio (absolute referencing). ⁷⁷Se spectra were referenced against diphenyldiselane (δ Ph₂Se₂ 463 ppm). ¹¹⁹Sn NMR spectra were referenced against external Me₄Sn (0.0 ppm). Spin-spin coupling constants (*J*) are given in Hz.

In nearly all cases, full and unambiguous assignment of all resonances was performed by combined application of standard NMR techniques, such as APT, HSQC, HMBC, HSQCTOCSY, COSY and NOESY experiments.

Starting materials were prepared as detailed below; those ones not reported in the manuscript are indicated with the descriptor **nn**-*sm*, being **nn** the corresponding final compound in the manuscript. Enantiopure and racemic compounds for obtaining (*S*)-**4** and *rac*-**4** were obtained according to our previous work.^[2]

All reactions were performed under an inert atmosphere of argon using standard schlenk techniques. Solvents used for running reactions were distilled over Na/benzophenone; additives were redistilled prior to use. Organolithiums were titrated prior to use. Chemicals were purchased from SigmaAldrich, Acros, Alfa Aesar, Fluorochem and TCI Europe. Solutions were evaporated under reduced pressure with a rotary evaporator. For column chromathography, silica Gel 60 (0.04-0.063 mm) was used. TLC was carried out on aluminium sheets precoated with silica gel 60F254 (Merchery-Nagel, Merk); the spots were visualised under UV light ($\lambda = 254$ nm) and/or KMnO₄ (aq.) was used as revealing system.

Synthesis of Starting Materials

Most of *N*-alkyl-*N*-alkoxyamides employed as starting materials are known substrates and were prepared as indicated below.

Pace, V. *et al.* Chem. Commun. **2017**, 53, 9498

Pace, V. et al. Adv. Synth. Catal. **2020**, 362, 5056

Ackermann, L. *et al.* Org. Lett. **2013**, *15*, 718

Pace, V. *et al.* Org. Lett. **2019**, *21*, 8261

2-(4-isobutylphenyl)-N-methoxy-N-methylpropanamide (1)

To a 50 mL round bottom flask equipped with stir bar was added (*S*)-(+)-2-(4-isobutylphenyl)propanoic acid ((*S*)-lbuprofen) (1.00 g, 4.85 mmol, 1 equiv) and dichloromethane (13 mL, \approx 0.3M). To this stirred solution was added 1,1'-carbonyldiimidazole (0.87 g, 5.34 mmol, 1.1 equiv) in one portion. The solution was allowed to stir for 45 minutes. At this time, *N*,*O*-dimethylhydroxylamine hydrochloride (0.52 g, 5.34 mmol, 1.1 equiv) was added and the reaction mixture was stirred for six hours. The reaction mixture was then quenched with 15 mL of 1 M HCl and stirred vigorously for 10 minutes. The layers were separated and the aqueous layer was extracted with DCM (2 x 30 mL). The combine organic layers were washed with 1 M HCl, deionized water and a 1:1 mixture of brine and a saturated sodium bicarbonate solution. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure to afford the pure compound **1** in 85% yield (1.03 g) as a colorless oil.

The corresponding racemic sample has been prepared starting from racemic 2-(4-isobutylphenyl)propanoic acid and spectroscopic data match with those ones reported below.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.18 (m, 2H, Ph H-2,6), 7.06 (m, 2H, Ph H-3,5), 4.10 (m, COC<u>H</u>CH₃), 3.36 (s, 3H, NOCH₃), 3.12 (s, 3H, NCH₃), 2.41 (d, *J* = 7.2 Hz, 2H, C<u>H</u>₂CH(CH₃)₂), 1.81 (m, 1H, CH₂C<u>H</u>(CH₃)₂), 1.41 (d, *J* = 7.0 Hz, 3H, CHC<u>H₃</u>), 0.86 (d, *J* = 6.6 Hz, 6H, CH₂CH(C<u>H₃</u>)₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 175.4, 139.8, 138.9, 129.1, 127.1, 60.8, 44.8, 41.4, 32.1, 30.0, 22.2, 19.4.

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -260.6 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₂₃NNaO₂⁺: 272.1621 [M + Na]⁺; found: 272.1630.

HPLC analysis: Chiralpak IG Column, λ 254 nm, eluent: *n*-hexane / *i*-propanol 90:10. Flow 1 mL/min.

 $[\alpha]_D^{25} = +38$ (*c* = 1, CHCl₃, lit.^[3] + 40, *c* = 1.1, CHCl₃)

HPLC Charts for Compound 1

Racemate

Peaks	Retention time (min)	Area	Area %
1	6,192	1039054	50,157
2	7,274	1032553	49,843
Total		2071607	100,000

Enantioenriched

Peaks	Retention time (min)	Area	Area %
1	6,192	5261199	99,061
2	7,326	49896	0,939
Total		5311094	100,000

N-methoxy-2-(6-methoxynaphthalen-2-yl)-N-methylpropanamide (3-sm)

To a 50 mL round bottom flask equipped with stir bar was added (*S*)-(+)-2-(6-methoxy-2-naphthyl)propionic acid ((*S*)-naproxen) (1.00 g, 3.9 mmol, 1 equiv) and dichloromethane (13 mL, \approx 0.3M). To this stirred solution was added 1,1'-carbonyl diimadazole (0.7 g, 4.3 mmol, 1.1 equiv) in one portion. The solution was allowed to stir for 45 minutes. At this time, N-O-dimethylhydroxylamine hydrochloride (0.42 g, 4.3 mmol, 1.1 equiv) was added and the reaction mixture was stirred for six hours. The reaction mixture was then quenched with 15 mL of 1 M HCl and stirred vigorously for 10 minutes. The layers were separated and the aqueous layer was extracted with DCM (2 x 30 mL). The combine organic layers were washed with 1 M HCl, deionized water and a 1:1 mixture of brine and a saturated sodium bicarbonate solution. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure to afford the pure compound **3-sm** in 85% yield (0.9 g) as a white solid.

The corresponding racemic sample has been prepared starting from racemic 2-(6-methoxy-2-naphthyl)propionic acid. Spectroscopic data match with those ones reported below.

mp = 59-61 °C

¹**H NMR** (400 MHz, CDCl₃) δ : 7.69 (m, 3H), 7.43 (m, 1H), 7.11 (m, 2H), 4.27 (m, 1H), 3.90 (s, 3H), 3.40 (s, 3H), 3.17 (s, 3H), 1.52 (d, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ: 175.2, 157.6, 136.9, 133.3, 129.2, 129.1, 127.2, 126.7, 125.9, 121.6, 118.7, 105.5, 61.3, 55.5, 41.9, 32.4, 19.6.

HRMS (ESI), *m*/*z*: calcd. for C₁₆H₁₉NNaO₃⁺: 296.1257 [M + Na]⁺; found: 296.1255.

HPLC analysis: Chiralpak IG Column, λ 254 nm, eluent: *n*-hexane / *i*-propanol 95:5. Flow 1 mL/min.

 $[\alpha]_D^{25} = +39 (c = 1, CHCl_3, lit.^{[3]} + 43, c = 1, CHCl_3)$

HPLC Charts for Compound 3-sm

Racemate

Peaks	Retention time (min)	Area	Area %
1	23,938	25704153	49,027
2	29,556	26724115	50,973
Total		52428268	100,000

Enantioenriched

Peaks	Retention time (min)	Area	Area %
1	23,737	9903087	99,580
2	29,487	41770	0,420
Total		9944857	100,000

General Procedure A for the preparation of N-alkyl-N-methoxyamides:

To a solution of *N*-alkoxyamide (1.0 equiv) and K_2CO_3 (2.0 equiv) in THF at room temperature alkyl halide (1.5 equiv) was added and the reaction was stirred overnight before quenching with $NH_4Cl_{(aq)}$. The two resulting phases were separated and the organic phase was dried over anhydrous Na_2SO_4 and evaporated under reduced pressure to give the desired compound without further purification unless otherwise stated.

General Procedure B for the preparation of N-alkoxy-N-methylamides:

To a solution of *N*-hydroxy-*N*-methylbenzamide (1.0 equiv), and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in MeCN (3.0 mL) at the room temperature alkyl halide (1.5 equiv) was added and the reaction was strirred overnight before quenching with $NH_4Cl_{(aq)}$. The two resulting phases were separated and the organic phase was dried over anhydrous Na_2SO_4 and evaporated under reduced pressure to give the desired compound without further purification unless otherwise stated.

N-ethoxy-N-methylbenzamide (37-sm)

By following the general procedure A, starting from *N*-ethoxybenzamide^[4] (0.165 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **37-sm** was obtained in 98% yield (0.175 g) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.66-7.68 (m, 2H, Ph), 7.36-7.44 (m, 3H, Ph), 4.80 (q, 2H, C<u>H</u>₂CH₃), 3.36 (s, 3H, CH₃), 1.04 (t, 3H, CH₂C<u>H₃</u>).

¹³**C NMR** (100 MHz, CDCl₃) δ: 169.9, 134.2, 130.4, 128.2, 127.8, 69.4, 34.6, 13.2.

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₄NO₂⁺: 180.1025 [M + H]⁺; found: 180.1031.

N-ethoxy-N-methyl-4-methylbenzamide (38-sm)

By following the general procedure A, starting from *N*-ethoxy-(4-methyl)benzamide^[4] (0.179 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **38-sm** was obtained in 97% yield (0.187 g) as a yellow oil.

¹**H NMR** (200 MHz, CDCl₃) δ: 7.61 (m, 2H, Ph), 7.18 (m, 2H, Ph), 3.77 (q, 2H, CH₂), 3.36 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 1.07 (t, 3H, CH₃).

¹³C NMR (50 MHz, CDCl₃) δ: 169.8, 140.7, 131.2, 128.5, 69.3, 34.7, 21.4, 13.3.

HRMS (ESI), *m/z*: calcd. for C₁₁H₁₆NO₂⁺: 194.1181 [M + H]⁺; found: 194.1175.

N-ethoxy-N-methyl-3-chlorobenzamide (39-sm)

By following the general procedure A, starting from *N*-ethoxy-3-chlorobenzamide^[5] (0.200 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **39-sm** was obtained in 96% yield (0.187 g) as a yellow oil.

¹**H NMR** (200 MHz, CDCl₃) δ: 7.69 (m, 1H, Ph), 7.59 (m, 1H, Ph), 7.36 (m, 2H, Ph), 3.76 (q, 2H, CH₂), 3.37 (s, 3H, CH₃), 1.06 (t, 3H, CH₃).

¹³C NMR (50 MHz, CDCl₃) δ: 168.2, 135.8, 133.8, 130.5, 129.2, 128.5, 126.5, 69.7, 34.4, 13.2.

HRMS (ESI), m/z: calcd. for C₁₀H₁₃ClNO₂⁺: 214.0635 [M + H]⁺; found: 214.0639.

N-isopropoxy-N-methylbenzamide (40-sm)

By following the general procedure B, starting from *N*-hydroxy-*N*-methylbenzamide^[6] (0.151 g, 1.0 mmol, 1.0 equiv), isopropyl iodide (0.255 g, 1.5 mmol, 1.5 equiv) and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **40**-*sm* was obtained in 75% yield (0.187 g) as an orange oil after purification by column chromatography on silica gel (Hex:EtOAc 8:2).

¹H NMR (200 MHz, CDCl₃) δ: 7.65-7.69 (m, 2H, Ph), 7.32-7.49 (m, 3H, Ph), 3.99 (sept, 1H, C<u>H(</u>CH₃)₂), 3.38 (s, 3H, CH₃), 1,05 (d, 6H, CH(C<u>H₃)₂).</u>

¹³C NMR (50 MHz, CDCl₃) δ: 168.2, 135.8, 133.8, 130.5, 129.2, 128.5, 126.5, 69.7, 34.4, 13.2.

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₆NO₂⁺: 194.1181 [M + H]⁺; found: 194.1174.

N-tert-butoxy-N-methylbenzamide (41-sm)

By following the general procedure A, starting from *N*-(*tert*-butoxy)benzamide^[7] (0.193 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **41-sm** was obtained in 97% yield (0.175 g) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ: 7.67 (m, 2H), 7.39 (m, 3H), 3.39 (s, 3H), 1.14 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ: 172.8, 135.4, 130.3, 128.8, 127.8, 83.4, 27.3.

HRMS (ESI), *m/z*: calcd. for C₁₂H₁₈NO₂⁺: 208.1338 [M + H]⁺; found: 208.1347.

N-allyloxy-N-methylbenzamide (42-sm)

By following the general procedure A, starting from *N*-allyloxybenzamide^[5] (0.177 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **42-sm** was obtained in 98% yield (0.187 g) as a colorless oil.

¹**H NMR** (200 MHz, CDCl₃) δ: 9.55 (brs, 1H, NH), 7.73 (m, 2H, Ph), 7.33-7.48 (m, 3H, Ph), 5.72 (m, 1H), 5.21 (m, 2H), 4.22 (m, 2H), 3.38 (s, 3H).

¹³C NMR (50 MHz, CDCl₃) δ: 170.0, 134.2, 131.4, 130.5, 128.3, 127.9, 120.7, 75.0, 35.3.

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₄NO₂⁺: 192.1025 [M + H]⁺; found: 192.1032.

N-methyl-*N*-(prop-2-yn-1-yloxy)benzamide (43-*sm*)

By following the general procedure B, starting from *N*-hydroxy-*N*-methylbenzamide^[6] (0.151 g, 1.0 mmol, 1.0 equiv), propargyl bromide (0.178 g, 1.5 mmol, 1.5 equiv) and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **43**-*sm* was obtained in 96% yield (0.181 g) as an orange oil with no need of purification.

¹**H NMR** (200 MHz, CDCl₃) δ: 7.64-7.68 (m, 2H, Ph), 7.36-7.49 (m, 3H, Ph), 4.40 (d, 2H, CH₂), 3.45 (s, 3H, CH₃), 2.49 (t, 1H, CH).

 $^{13}\textbf{C}$ NMR (50 MHz, CDCl_3) δ : 134.0, 130.7, 128.3, 128.1, 76.6, 61.6, 36.8.

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₂NO₂⁺: 190.0868 [M + H]⁺; found: 190.0873.

N-(cyclopropylmethoxy)-N-methylbenzamide (44-sm)

By following the general procedure B, starting from *N*-hydroxy-*N*-methylbenzamide^[6] (0.151 g, 1.0 mmol, 1.0 equiv), cyclopropylmethyl bromide (0.203 g, 1.5 mmol, 1.5 equiv) and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **44**-*sm* was obtained in 95% yield (0.195 g) as a colorless oil with no need of purification.

¹**H NMR** (200 MHz, CDCl₃) δ : 7.67-7.71 (m, 2H, Ph), 7.35-7.45 (m, 3H, Ph), 3.50 (d, 2H, CH₂), 3.39 (s, 3H, CH₃), 0.85 (m, 1H, CH), 0.46 (m, 2H), 0.03 (m, 2H).

¹³C NMR (50 MHz, CDCl₃) δ: 168.2, 135.8, 133.8, 130.5, 129.2, 128.5, 126.5, 69.7, 34.4, 13.2.

HRMS (ESI), *m/z*: calcd. for C₁₂H₁₆NO₂⁺: 206.1181 [M + H]⁺; found: 206.1173.

N-(methoxymethoxy)-N-methylbenzamide (45-sm)

By following the general procedure B, starting from *N*-hydroxy-*N*-methylbenzamide^[6] (0.151 g, 1.0 mmol, 1.0 equiv), bromomethyl methyl ether (0.188 g, 1.5 mmol, 1.5 equiv) and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **45**-*sm* was obtained in 85% yield (0.166 g) as a colorless oil after purification by column chromatography on silica gel (Hex:EtOAc 7:3).

¹**H NMR** (200 MHz, CDCl₃) δ: 7.61 (m, 2H, Ph), 7.42 (m, 3H, Ph), 4.92 (s, 2H, CH₂), 3.44(s, 3H, CH₃), 3.27 (s, 3H, CH₃).

 $^{13}\textbf{C}$ NMR (50 MHz, CDCl_3) $\delta:$ 171.0, 133.7, 131.0, 128.3, 128.0, 108.2, 103.7, 39.5

HRMS (ESI), *m/z*: calcd. for C₁₀H₁₄NO₃⁺: 196.0968 [M + H]⁺; found: 196.0954.

N-phenoxy-N-methylbenzamide (46-sm)

By following the general procedure A, starting from *N*-phenoxybenzamide^[8] (0.213 g, 1.0 mmol, 1.0 equiv), methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL) **46-sm** was obtained in 96% yield (0.218 g) as a yellow oil.

¹H NMR (200 MHz, CDCl₃) δ: 7.62 (m, 2H, Ph), 7.26-7.45 (m, 5H, Ph), 6.97-7.11 (m, 3H, Ph), 3.44 (s, 3H, CH₃).

¹³C NMR (50 MHz, CDCl₃) δ: 157.4, 133.3, 131.1, 129.9, 128.1, 128.0, 123.2, 113.3, 35.7.

HRMS (ESI), *m/z*: calcd. for C₁₄H₁₄NO₂⁺: 228.1019 [M + H]⁺; found: 228.1023.

N-benzyloxy-N-methylbenzamide (47-sm)^[9]

To a solution of benzoyl chloride (1.0 equiv, 3.6 mmol, 0.500 g) in Et₂O was added *O*-benzylhydroxylamine hydrochloride (1.1 equiv, 3.9 mmol, 0.624 g) and the resulting suspension was cooled to 0°C. Afterwards, an aqueous solution of potassium carbonate (2.2 equiv, 7.8 mmol, 1.082 g) was added during 2 min. The resulting mixture was stirred at room temperature overnight and subsequently H₂O was added. The two resulting phases were separated and, the organic phase was dried over anhydrous Na₂SO₄, filtered and removed in vacuo to give *N*-benzyloxybenzamide as an oil in 98% yield with no need of purification. ¹H NMR (200 MHz, CDCl₃) δ : 8.51 (NH), 7.66 (m, 2H, Ph), 7.37-7.55 (m, 3H, Ph), 5,04 (s, 2H, CH₂). ¹³C NMR (50 MHz, CDCl₃) δ : 135.2, 132.1, 131.9, 129.3, 128.8, 128.7, 128.7, 127.0, 78.4.

By following the general procedure A, the above prepared *N*-benzyloxybenzamide (0.227 g, 1.0 mmol, 1.0 equiv) was reacted with methyl iodide (0.213 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.276 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL), furnishing **47**-*sm* in 98% yield (0.236 g) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.53 (m, 2H, Ph), 7.37 (m, 1H, Ph), 7.31 (m, 2H, Ph), 7.21 (m, 3H, Ph), 7.00 (m, 2H, Ph), 4.60 (s, 2H, CH₂), 3.28 (s, 3H, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 170.1, 134.3, 134.1, 130.4, 129.4, 128.8, 128.4, 128.2, 127.9.

HRMS (ESI), *m/z*: calcd. for C₁₅H₁₆NO₂⁺: 242.1181 [M + H]⁺; found: 242.1185.

N-([1,1'-biphenyl]-4-ylmethoxy)-N-methylbenzamide (48-sm)

By following the general procedure B, starting from *N*-hydroxy-*N*-methylbenzamide^[6] (0.151 g, 1.0 mmol, 1.0 equiv), 4-(bromomethyl)-1,1'-biphenyl (0.371 g, 1.5 mmol, 1.5 equiv) and Cs_2CO_3 (0.652 g, 2.0 mmol, 2.0 equiv) in THF (3.0 mL), **48-sm** was obtained in 90% yield (0.285 g) as a colorless oil after purification by column chromatography on silica gel (Hex:EtOAc 7:3).

¹**H NMR** (200 MHz, CDCl₃) δ : 7.32-7.66 (m, 12 H, Ph), 7.12-7.16 (m, 2H, Ph), 4.72 (s, 2H, CH₂), 3.41 (s, 3H, CH₃).

¹³**C NMR** (50 MHz, CDCl₃) δ: 170.2, 14.7, 140.4, 134.3, 133.0, 130.4, 129.9, 128.8, 128.3, 127.9, 127.5, 127.2, 127.1, 75.8, 35.0.

HRMS (ESI), *m*/*z*: calcd. for C₂₁H₂₀NO₂⁺: 318.1489 [M + H]⁺; found: 318.1485.

General procedure for the synthesis of N-(alkoxymethyl)amides

To a solution of the starting *N*-alkoxy-*N*-methylamide (1.0 equiv) in dry 2-MeTHF (3 mL) PMDTA (1.6 equiv) was added. Then, *s*-BuLi (1.4 M in cyclohexane, 1.6 equiv) was added dropwise at -78 °C. After stirring for 2 hours at -78 °C, the reaction was quenched with sat. aqueous NH₄Cl. The reaction mixture was allowed to reach room temperature and was exhaustively extracted with Et₂O (3 x 10 ml). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The final products were obtained after purification by column chromatography on silica gel.

N-(alkoxymethyl)amides: Experimental procedures and characterization

2-(4-isobutylphenyl)-N-(methoxymethyl)propanamide (2)

By following the general procedure, starting from *S*-(+)-2-(4-isobutylphenyl)-*N*-methoxy-*N*-methylpropanamide **1** (0.249 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **2** was obtained in 81% yield (0.201 g – *entry 6, Table 1 manuscript*) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

The corresponding racemic sample has been prepared starting from racemic 2-(4-isobutylphenyl)-*N*-methoxy-*N*-methylpropanamide and spectroscopic data match with those ones reported below.

¹**H NMR** (400 MHz, Acetone-d₆) δ : 7.73 (brs, 1H, NH), 7.27 (m, 2H, Ph H-2,6), 7.10 (m, 2H, Ph H-3,5), 4.55 (d of an AB system, ²*J*_{AB} = 10.2 Hz, ³*J*_{H,NH} = 6.8 Hz, 1H, CH₂), 4.53 (d of an AB system, ²*J*_{AB} = 10.2 Hz, ³*J*_{H,NH} = 6.8 Hz, 1H, CH₂), 3.64 (q, ³*J* = 7.1 Hz, 1H, C<u>H</u>CH₃), 3.12 (s, 3H, OCH₃), 2.44 (d, *J* = 7.1 Hz, 2H, C<u>H</u>₂CH(CH₃)₂), 1.84 (m, 1H, CH₂C<u>H(CH₃)₂), 1.40 (d, ³*J* = 7.1 Hz, 3H, CHC<u>H₃</u>), 0.88 (d, *J* = 6.6 Hz, 6H, CH₂CH(C(<u>H₃)₂</u>)).</u>

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 175.3 (C=O), 140.8 (Ph C-4), 140.5 (Ph C-1), 129.9 (Ph C-3,5), 128.1 (Ph C-2,6), 71.7 (CH₂), 55.4 (OCH₃), 47.0 (<u>C</u>HCH₃), 45.6 (<u>C</u>H₂CH(CH₃)₂), 31.0 (CH₂<u>C</u>H(CH₃)₂), 22.60 (CH₂CH(<u>C</u>H₃)₂), 22.59 (CH₂CH(<u>C</u>H₃)₂), 19.2 (CH<u>C</u>H₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -260.6 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₂₃NNaO₂⁺: 272.1621 [M + Na]⁺; found: 272.1630.

HPLC analysis: Chiralpak IG Column, λ 254 nm, eluent: *n*-hexane / *i*-propanol 80:20. Flow 1 mL/min.

 $[\alpha]_{D}^{25} = +13 (c = 1, CHCl_{3}).$

Racemate

Peaks	Retention time (min)	Area	Area %
1	5,339	11766643	50,340
2	6,329	11607588	49,660
Total		23374232	100,000

Enantioenriched

Peaks	Retention time (min)	Area	Area %
1	5,364	4458612	98,980
2	6,531	45931	1,020
Total		4504543	100,000

2-(4-isobutylphenyl)-N-methylpropanamide (2a)

By following the general procedure, starting from *S*-(+)-2-(4-isobutylphenyl)-*N*-methoxy-*N*-methylpropanamide **1** (0.249 g, 1.0 mmol, 1.0 equiv), TMEDA (0.186 g, 0.24 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **2a**^[10] was obtained in 11% yield (0.024 g – *entry 5, Table 1 manuscript*) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

The corresponding racemic sample has been prepared starting from racemic *N*-methoxy-2-(6-methoxynaphthalen-2-yl)-*N*-methylpropanamide and spectroscopic data match with those ones reported below.

mp = 106 °C (lit.^[10] 104-106 °C)

¹**H NMR** (200 MHz, CDCl₃) δ: 7.19 (m, 2H), 7.11 (m, 2H), 5.39 (brs, 1H), 3.53 (q, 1H), 2.73 (d, 3H), 2.45 (d, 2H), 1.85 (m, 1H), 1.51 (d, 3H), 0.90 (d, 6H).

 $^{13}\textbf{C NMR} (100 \text{ MHz, CDCl}_3) \\ \delta: 175.1, 140.7, 138.5, 129.7, 129.6, 127.4, 46.7, 45.0, 30.1, 26.5, 22.4, 18.5.$

HRMS (ESI), *m/z*: calcd. for C₁₄H₂₁NNaO⁺: 242.1521 [M + Na]⁺; found: 242.1526.

 $[\alpha]_{D}^{25} = +40 \ (c = 1, EtOH).$

2-(4-isobutylphenyl)-4-methylhexan-3-one (2b)

By following the general procedure, starting from *S*-(+)-2-(4-isobutylphenyl)-*N*-methoxy-*N*-methylpropanamide **1** (0.249 g, 1.0 mmol, 1.0 equiv), TMEDA (0.186 g, 0.24 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **2b** was obtained in 8% yield (0.020 g – *entry 5, Table 1 manuscript*) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

The corresponding racemic sample has been prepared starting from racemic *N*-methoxy-2-(6-methoxynaphthalen-2-yl)-*N*-methylpropanamide and spectroscopic data match with those ones reported below.

¹H NMR (400 MHz, CDCl₃) δ: 7.10 (m, 4H), 3.83 (m, 1H), 2.55 (m, 1H), 2.44 (d, 2H), 1.83 (m, 1H), 1,59 (m, 1H), 1.37 (m, 3H), 1.25 (m, 1H), 1.03- 0.53 (m, 3H), 0.90 (d, 3H), 0.90-0.80 (m, 9H).

¹³C NMR (50 MHz, CDCl₃) δ: 215.1, 214.4, 140.6, 137.8, 137.4, 129.6, 129.6, 128.0, 127.9, 52.3, 51.3, 46.3, 46.1, 45.1, 30.3, 27.0, 25.6, 22.5, 22.5, 22.4, 17.9, 17.9, 17.5, 16.3, 11.8, 11.7. HRMS (ESI), *m/z*: calcd. for C₁₇H₂₆NaO⁺: 269.1881 [M + Na]⁺; found: 269.1885. $[\alpha]_{D}^{25} = +76$ (*c* = 1, EtOH).

N-(methoxymethyl)-2-(6-methoxy-2-naphthyl)propenamide (3)

By following the general procedure, starting from (*S*)-(+)-*N*-methoxy-2-(6-methoxynaphthalen-2-yl)-*N*-methylpropanamide **1** (0.273 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **3** was obtained in 70% yield (0.191 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

The corresponding racemic sample has been prepared starting from racemic *N*-methoxy-2-(6-methoxynaphthalen-2-yl)-*N*-methylpropanamide and spectroscopic data match with those ones reported below.

mp = 70-75 °C (enantiomer); 83-86 °C (racemate)

¹**H NMR** (400 MHz, Acetone-d₆) δ : 7.78 (m, 1H, NH), 7.75 (m, 3H, Naph H-1,4,8), 7.47 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.8 Hz, 1H, Naph H-3), 7.26 (d, ⁴*J* = 2.6 Hz, 1H, Naph H-5), 7.13 (dd, ³*J* = 9.0 Hz, ⁴*J* = 2.6 Hz, 1H, Naph H-7), 4.56 (d of an AB-system, ²*J*_{AB} = 12.8 Hz, ³*J* = 6.8 Hz, 1 H, CH₂), 4.55 (d of an AB-system, ²*J*_{AB} = 12.8 Hz, ³*J* = 6.8 Hz, 1 H, CH₂), 3.90 (s, 3H, OCH₃), 3.81 (q, ³*J* = 7.1 Hz, 1H, CH), 3.12 (s, 3H, CH₂OC<u>H₃</u>), 1.49 (d, ³*J* = 7.1 Hz, 3H, CHC<u>H₃</u>).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 175.2 (C=O), 158.6 (Naph C-6), 138.3 (Naph C-2), 134.7 (Naph C-4a), 130.0 (Naph C-8), 129.9 (Naph C-8a), 127.9 (Naph C-4), 127.2 (Naph C-3), 126.8 (Naph C-1), 106.5 (Naph C-5), 71.8 (CH₂), 55.6 (OCH₃), 55.5 (CH₂O<u>C</u>H₃), 47.3 (CH), 19.2 (CH<u>C</u>H₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -260.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₆H₁₉NNaO₃⁺: 296.1257 [M + Na]⁺; found: 296.1259.

HPLC analysis: Chiralpak IG Column, λ 254 nm, eluent: *n*-hexane / *i*-propanol 80:20. Flow 1 mL/min.

 $[\alpha]_{D}^{25} = +21 (c = 1, CHCI_{3}).$

Racemate

Peaks	Retention time (min)	Area	Area %
1	10,599	1827233	50,212
2	12,323	1811835	49,788
Total		3639068	100,000

Enantioenriched

Peaks	Retention time (min)	Area	Area %
1	10,605	660713	99,255
2	12,144	4957	0,745
Total		665670	100,000

N-(methoxymethyl)-2-phenylpropanamide (4)

By following the general procedure, starting from (S)-(+)-*N*-methoxy-*N*-methyl-2-phenylpropanamide (0.193 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **4** was obtained in 73% yield (0.164 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

The corresponding racemic sample has been prepared starting from racemic *N*-methoxy-*N*-methyl-2-phenylpropanamide and spectroscopic data match with those ones reported below.

¹**H NMR** (400 MHz, C_6D_6) δ : 7.18 (m, 2H, Ph H-2,6), 7.11 (m, 2H, Ph H-3,5), 7.03 (m, 1H, Ph H-4), 5.63 (brs, 1H, NH), 4.38 (d, J = 6.7 Hz, 2H, CH₂), 3.15 (q, ${}^{3}J = 7.1$ Hz, 1H, CH), 3.05 (s, 3H, OCH₃), 1.44 (d, ${}^{3}J = 7.1$ Hz, 3H, CH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ: 174.2 (C=O), 142.1 (Ph C-1), 129.0 (Ph C-3,5), 127.9 (Ph C-2,6), 127.3 (Ph C-4), 71.4 (CH₂), 55.5 (OCH₃), 47.4 (CH), 19.02 (CH₃).

¹⁵N NMR (40 MHz, C₆D₆) δ: -260.8 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₂⁺: 216.0995 [M + Na]⁺; found: 216.1005.

HPLC analysis: Chiralpak IG Column, λ 254 nm, eluent: *n*-hexane / *i*-propanol 80:20. Flow 1 mL/min. $[\alpha]_{D}^{25} = +49 (c = 1, CHCl_{3}).$

Racemate

Peaks	Retention time (min)	Area	Area %
1	5,957	1189450	49,555
2	7,280	1210834	50,445
Total		2400285	100,000

Enantioenriched

Datafile Name:MAL-336_80HEX_20IPA_02.lcd Sample Name:MAL-336_80HEX_20IPA_ Sample ID:MAL-336_80HEX_20IPA_

Peaks	Retention time (min)	Area	Area %
1	5,925	1383247	98,862
2	7,492	15916	1,138
Total		1399163	100,000

N-(methoxymethyl)-3-phenylpropanamide (5)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-3-phenylpropanamide (0.193 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **5** was obtained in 62% yield (0.120 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 5:5).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 7.74 (brs, 1H, NH), 7.26 (m, 2H, Ph H-3,5), 7.24 (m, 2H, Ph H-2,6), 7.16 (m, 1H, Ph H-4), 4.56 (d, J = 6.8 Hz, 2H, CH₂OCH₃), 3.16 (s, 3H, OCH₃), 2.92 (m, 2H, CH₂CH₂CO), 2.52 (m, 2H, CH₂CH₂CO).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 173.0 (C=O), 142.4 (Ph C-1), 129.2 (Ph C-2,6), 129.15 (Ph C-3,5), 126.8 (Ph C-4), 71.6 (<u>C</u>H₂OCH₃), 55.5 (OCH₃), 38.5 (CH₂<u>C</u>H₂CO), 32.0 (<u>C</u>H₂CH₂CO).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -259.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₂⁺: 216.0995 [M + Na]⁺; found: 216.0999.

N-(methoxymethyl)-2,2-dimethylpropanamide (6)

By following the general procedure, starting from *N*-methoxy-*N*-methylpivalamide (0.145 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **6** was obtained in 79% yield (0.114 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 7.57 (brs, 1H, NH), 4.57 (d, *J* = 6.7 Hz, 2H, CH₂), 3.19 (s, 3H, OCH₃), 1.18 (s, 9H, CH₃).

¹³C NMR (100 MHz, Acetone-d₆) δ: 179.1 (C=O), 71.9 (CH₂), 55.4 (OCH₃), 39.3 (<u>C(</u>CH₃)₃), 27.7 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -267.5 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₇H₁₅NNaO₂⁺: 168.0995 [M + Na]⁺; found: 168.0997.

N-(methoxymethyl)cyclopropanecarboxamide (7)

By following the general procedure, starting from *N*-methoxy-*N*-methylcyclopropanecarboxamide (0.129 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et_2O , 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **7** was obtained in 75% yield (0.097 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

¹**H NMR** (400 MHz, C_6D_6) δ : 6.31 (brs, 1H, NH), 4.53 (d, J = 6.9 Hz, 2H, CH₂), 3.16 (s, 3H, OCH₃), 1.07 (m, 2H, cyclopropane H-2,3), 1.00 (m, 1H, cyclopropane H-1), 0.43 (m, 2H, cyclopropane H-2,3).

¹³**C NMR** (100 MHz, C_6D_6) δ : 174.2 (C=O), 71.5 (CH₂), 55.6 (OCH₃), 14.6 (cyclopropane C-1), 7.5 (cyclopropane C-2,3).

¹⁵N NMR (40 MHz, C₆D₆) δ: -259.9 (NH).

HRMS (ESI), *m/z*: calcd. for C₆H₁₁NNaO₂⁺: 152.0682 [M + Na]⁺; found: 152.0687.

N-(methoxymethyl)cyclobutanecarboxamide (8)

By following the general procedure, starting from *N*-methoxy-*N*-methylcyclobutanecarboxamide (0.143 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **8** was obtained in 71% yield (0.101 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

¹**H NMR** (400 MHz, C₆D₆) δ: 5.59 (brs, 1H, NH), 4.51 (d, J = 6.9 Hz, 2H, CH₂), 3.16 (s, 3H, OCH₃), 2.57 (m, 1H, cyclobutane H-1), 2.29 (m, 2H, cyclobutane H-2,4), 1.88 (m, 2H, cyclobutane H-2,4), 1.71 (m, 2H, cyclobutane H-3).

¹³C NMR (100 MHz, C₆D₆) δ: 175.0 (C=O), 71.3 (CH₂), 55.6 (OCH₃), 40.0 (cyclobutane C-1), 25.4 (cyclobutane C-2,4), 18.6 (cyclobutane C-3).

¹⁵N NMR (40 MHz, C₆D₆) δ: -263.9 (NH).

HRMS (ESI), *m/z*: calcd. for C₇H₁₃NNaO₂⁺: 166.0838 [M + Na]⁺; found: 166.0847.

N-(methoxymethyl)cyclopentanecarboxamide (9)

By following the general procedure, starting from *N*-methoxy-*N*-methylcyclopentanecarboxamide (0.157 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **9** was obtained in 74% yield (0.116 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 35-40 °C

¹**H NMR** (400 MHz, C_6D_6) δ : 5.96 (brs, 1H, NH), 4.54 (d, J = 6.9 Hz, 2H, CH₂), 3.18 (s, 3H, OCH₃), 2.18 (m, 1H, cyclopentane H-1), 1.85 (m, 2H, cyclopentane H-2,5), 1.64 (m, 4H, cyclopentane H-2,3,4,5), 1.39 (m, 2H, cyclopentane C-3,4).

¹³**C NMR** (100 MHz, C₆D₆) δ: 176.5 (C=O), 71.4 (CH₂), 55.6 (OCH₃), 45.8 (cyclopentane C-1), 30.6 (cyclopentane C-2,5), 26.3 (cyclopentane C-3,4).

¹⁵N NMR (40 MHz, C₆D₆) δ: -261.4 (NH).

HRMS (ESI), *m/z*: calcd. for C₈H₁₅NNaO₂⁺: 180.0995 [M + Na]⁺; found: 180.0998.

N-(methoxymethyl)cyclohexanecarboxamide (10)

By following the general procedure, starting from *N*-methoxy-*N*-methylcyclohexanecarboxamide (0.171 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **10** was obtained in 68% yield (0.116 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 69-71 °C

¹**H NMR** (400 MHz, C_6D_6) δ : 5.42 (brs, 1H, NH), 4.54 (d, J = 6.9 Hz, 2H, CH₂), 3.18 (s, 3H, OCH₃), 1.66 (m, 3H, cyclohexane H-1, 2,6), 1.61 (m, 2H, cyclohexane H-3,5), 1.49 (m, 2H, cyclohexane H-4), 1.47 (m, 2H, cyclohexane H-2,6), 1.06 (m, 2H, cyclohexane H-3,5).

¹³C NMR (100 MHz, C₆D₆) δ: 175.9 (C=O), 71.2 (CH₂), 55.6 (OCH₃), 45.5 (cyclohexane C-1), 29.8 (cyclohexane C-2,6), 26.1 (cyclohexane C-4), 26.0 (cyclohexane C-3,5).

¹⁵N NMR (40 MHz, C₆D₆) δ: -263.5 (NH).

HRMS (ESI), *m/z*: calcd. for C₉H₁₇NNaO₂⁺: 194.1151 [M + Na]⁺; found: 194.1152.

N-(methoxymethyl)-1-adamantanecarboxamide (11)

By following the general procedure, starting from *N*-methoxy-*N*-methyladamantane-1-carboxamide (0.223 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL,

1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **11** was obtained in 70% yield (0.156 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 110 °C

¹**H NMR** (400 MHz, C_6D_6) δ : 5.60 (brs, 1H, NH), 4.62 (d, J = 6.8 Hz, 2H, CH_2), 3.21 (s, 3H, OCH_3), 1.81 (m, 3H, Adamantane H-3,5,7), 1.70 (m, 6H, Adamantane H-2,8,9), 1.53 (m, 6H, Adamantane H-4,6,10).

¹³**C NMR** (100 MHz, C₆D₆) δ: 177.5 (C=O), 71.3 (CH₂), 55.6 (OCH₃), 40.9 (Adamantane C-1), 39.3 (Adamantane C-2,8,9), 36.7 (Adamantane C-4,6,10), 28.5 (Adamantane C-3,5,7).

¹⁵N NMR (40 MHz, C₆D₆) δ: -269.4 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₂₁NNaO₂⁺: 246.1464 [M + Na]⁺; found: 246.1471.

N-(methoxymethyl)benzamide (12)

By following the general procedure, starting from *N*-methoxy-*N*-methylbenzamide (0.165 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **12** was obtained in 61% yield (0.101 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.48 (brs, 1H, NH), 7.95 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.48 (m, 2H, Ph H-3,5), 4.80 (d, *J* = 6.6 Hz, 2H, CH₂), 3.30 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 135.4 (Ph C-1), 132.4 (Ph C-4), 129.3 (Ph C-3,5), 128.2 (Ph C-2,6), 72.3 (CH₂), 55.8 (CH₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₁NNaO₂⁺: 188..0682 [M + Na]⁺; found: 188.0680.

N-(methoxymethyl)-4-methylbenzamide (13)

By following the general procedure, starting from *N*-methoxy-*N*,4-dimethylbenzamide (0.179 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **13** was obtained in 68% yield (0.121 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 72-74 °C

¹**H NMR** (400 MHz, C₆D₆) δ: 7.59 (m, 2H, Ph H-2,6), 6.87 (m, 2H, Ph H-3,5), 6.29 (brs, 1H, NH), 4.72 (d, *J* = 6.8 Hz, 2H, CH₂), 3.22 (s, 3H, OCH₃), 2.01 (s, 3H, CH₃).

¹³**C NMR** (100 MHz, C_6D_6) δ : 167.2 (C=O), 141.9 (Ph C-4), 131.9 (Ph C-1), 129.3 (Ph C-3,5), 127.7 (Ph C-2,6), 71.8 (CH₂), 55.9 (OCH₃), 21.2 (CH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₂⁺: 202.0838 [M + Na]⁺; found: 202.0838.

N-(methoxymethyl)-3-methylbenzamide (14)

By following the general procedure, starting from *N*-methoxy-*N*,3-dimethylbenzamide (0.179 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **14** was obtained in 66% yield (0.118 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.42 (brs, 1H, NH), 7.76 (m, 1H, Ph H-2), 7.73 (m, 1H, Ph H-6), 7.36 (m, 2H, Ph H-4,5), 4.79 (d, 2H, CH₂), 3.30 (s, 3H, OCH₃), 2.38 (s, 3H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.1 (C=O), 138.9 (Ph C-3), 135.4 (Ph C-1), 133.0 (Ph C-4), 129.2 (Ph C-5), 128.8 (Ph C-2), 125.3 (Ph C-6), 72.2 (CH₂), 55.8 (OCH₃), 21.3 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.9 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₂⁺: 202.0838 [M + Na]⁺; found: 202.0841.

2-ethyl-*N*-(methoxymethyl)benzamide (15)

By following the general procedure, starting from 2-ethyl-*N*-methoxy-*N*-methylbenzamide (0.193 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **15** was obtained in 63% yield (0.121 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.37 (m, 1H, Ph H-6), 7.36 (m, 1H, Ph H-4), 7.28 (m, 1H, Ph H-3), 7.21 (m, 1H, Ph H-5), 6.43 (brs, 1H, NH), 4.86 (d, J = 6.9 Hz, 2H, CH₂), 3.43 (s, 3H, OCH₃), 2.82 (q, ³J = 7.5 Hz, 2H, CH₂CH₃), 1.25 (t, ³J = 7.5 Hz, 3H, CH₂CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 170.7 (C=O), 142.6 (Ph C-2), 135.5 (Ph C-1), 130.4 (Ph C-6), 129.6 (Ph C-3), 126.5 (Ph C-4), 125.8 (Ph C-5), 71.6 (CH₂), 56.2 (OCH₃), 26.3 (<u>C</u>H₂CH₃), 15.9 (CH₂<u>C</u>H₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₂⁺: 216.0995 [M + Na]⁺; found: 216.0993.

N-(methoxymethyl)-4-(2-methyl-2-propanyl)benzamide (16)

By following the general procedure, starting from 4-(*tert*-butyl)-*N*-methoxy-*N*-methylbenzamide (0.221 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **16** was obtained in 77% yield (0.170 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.41 (brs, 1H, NH), 7.89 (m, 2H, Ph H-2,6), 7.52 (m, 2H, Ph H-3,5), 4.79 (d, *J* = 6.7 Hz, 2H, CH₂), 3.29 (s, 3H, OCH₃), 1.33 (s, 9H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 155.6 (Ph C-4), 132.6 (Ph C-1), 128.1 (Ph C-2,6), 126.1 (Ph C-3,5), 72.2 (CH₂), 55.8 (OCH₃), 35.4 (<u>C</u>(CH₃)₃), 31.4 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.9 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₉NNaO₂⁺: 244.1308 [M + Na]⁺; found: 244.1312.

4-methoxy-N-(methoxymethyl)benzamide (17)

By following the general procedure, starting from *N*,4-dimethoxy-*N*-methylbenzamide (0.195 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **17** was obtained in 74% yield (0.144 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 59-62 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.37 (brs, 1H, NH), 7.93 (m, 2H, H-2,6), 7.00 (m, 2H, H-3,5), 4.78 (d, *J* = 6.7 Hz, 2H, CH₂), 3.29 (s, 3H, CH₂O<u>C</u>H₃), 3.85 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.5 (C=O), 163.3 (Ph C-4), 130.0 (Ph C-2,6), 127.5 (Ph C-1), 114.4 (Ph C-3,5), 72.2 (CH₂), 55.79 (OCH₃), 55.74 (CH₂O<u>C</u>H₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -266.9 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₃⁺: 218.0788 [M + Na]⁺; found: 218.0779.

3-methoxy-N-(methoxymethyl)benzamide (18)

By following the general procedure, starting from *N*,3-dimethoxy-*N*-methylbenzamide (0.195 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **18** was obtained in 67% yield (0.130 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

¹**H NMR** (400 MHz, CDCl₃) δ : 7.39 (m, 1H, Ph H-2), 7.36 (m, 1H, Ph H-5), 7.31 (m, 1H, Ph H-6), 7.07 (ddd, ³*J* = 7.8 Hz, ⁴*J* = 2.6 Hz, ⁵*J* = 1.4 Hz, 1H, Ph H-4), 6.77 (brs, 1H, NH), 4.90 (d, *J* = 6.8 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 3.41 (s, 3H, CH₂OC<u>H₃</u>).

¹³C NMR (100 MHz, CDCl₃) δ: 167.8 (C=O), 159.9 (Ph C-3), 135.3 (Ph C-1), 129.7 (Ph C-5), 118.7 (Ph C- 6), 118.2 (Ph C-4), 112.4 (Ph C-2), 71.9 (CH₂), 56.2 (CH₂O<u>C</u>H₃), 55.5 (OCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₃⁺: 218.0788 [M + Na]⁺; found: 218.0788.

3-methoxy-N-(methoxymethyl)-2-methylbenzamide (19)

By following the general procedure, starting from *N*,3-dimethoxy-*N*,2-dimethylbenzamide (0.209 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **19** was obtained in 65% yield (0.135 g) as a pale yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 32-35 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.03 (brs, 1H, NH), 7.20 (m, 1H, Ph H-5), 7.00 (m, 1H, Ph H-4), 6.92 (m, 1H, Ph H-6), 4.76 (d, J = 6.8 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 3.34 (s, 3H, CH₂OC<u>H₃</u>) 2.23 (s, 3H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 170.8 (C=O), 139.5 (Ph C-1), 158.8 (Ph C-3), 127.3 (Ph C-5), 124.9 (Ph C-2), 119.6 (Ph C-6), 112.1 (Ph C-4), 71.9 (CH₂), 56.0 (OCH₃), 55.9 (CH₂O<u>C</u>H₃), 12.7 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -256.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₃⁺: 232.0944 [M + Na]⁺; found: 232.0933.

(N-methoxymethyl)-4-(methylsulfanyl)benzamide (20)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-4-(methylthio)benzamide (0.211 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **20** was obtained in 72% yield (0.152 g) as a pale yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 87-90 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.42 (brs, 1H, NH), 7.88 (m, 2H, Ph H-2,6), 7.34 (m, 2H, Ph H-3,5), 4.79 (d, *J* = 6.6 Hz, 2H, CH₂), 3.29 (s, 3H, OCH₃), 2.54 (s, 3H, SCH₃).

¹³C NMR (100 MHz, Acetone-d₆) δ: 167.4 (C=O), 144.5 (Ph C-4), 131.4 (Ph C-1), 128.7 (Ph C-2,6), 125.9 (Ph C-3,5), 72.3 (CH₂), 55.8 (OCH₃), 14.7 (SCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -266.2 (NH).

HRMS (ESI), *m/z*: calcd. for C₁₀H₁₃NNaO₂S⁺: 234.0559 [M + Na]⁺; found: 234.0562.

2-chloro-N-(methoxymethyl)benzamide (21)

By following the general procedure, starting from 2-chloro-*N*-methoxy-*N*-methylbenzamide (0.199 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **21** was obtained in 77% yield (0.153 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 65-67 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.21 (brs, 1H, NH), 7.52 (m, 1H, Ph H-6), 7.47 (m, 1H, Ph H-4), 7.46 (m, 1H, Ph H-3), 7.39 (m, 1H, Ph H-5), 4.79 (d, *J* = 6.7 Hz, 2H, CH₂), 3.36 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 137.7 (Ph C-2), 131.8 (Ph C-4), 131.2 (Ph C-1), 130.7 (Ph C-3), 129.9 (Ph C-6), 127.9 (Ph C-5), 71.9 (CH₂), 56.0 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -255.7 (NH).

HRMS (ESI), *m/z*: calcd. for C₉H₁₀ClNNaO₂⁺: 222.0292 [M + Na]⁺; found: 222.0291.

3-chloro-N-(methoxymethyl)benzamide (22)

By following the general procedure, starting from 3-chloro-*N*-methoxy-*N*-methylbenzamide (0.199 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **22** was obtained in 76% yield (0.151 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, C₆D₆) δ: 7.58 (m, 1H, Ph H-2), 7.39 (m, 1H, Ph H-6), 7.05 (m, 1H, Ph H-4), 6.71 (m, 1H, Ph H-5), 6.04 (brs, 1H, NH), 4.60 (d, *J* = 6.8 Hz, 2H, CH₂), 3.16 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, C_6D_6) δ : 166.0 (C=O), 136.4 (Ph C-1), 134.7 (Ph C-3), 131.6 (Ph C-4), 130.0 (Ph C-5), 127.5 (Ph C-2), 125.9 (Ph C-6), 71.8 (CH₂), 56.0 (OCH₃).

HRMS (ESI), *m/z*: calcd. for C₉H₁₀ClNNaO₂⁺: 222.0292 [M + Na]⁺; found: 222.0289.

4-chloro-N-(methoxymethyl)benzamide (23)

By following the general procedure, starting from 4-chloro-*N*-methoxy-*N*-methylbenzamide (0.199 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **23** was obtained in 79% yield (0.157 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

Scale up of the reaction using 20 mmol of starting material.

By following the general procedure, starting from 4-chloro-*N*-methoxy-*N*-methylbenzamide (3.992 g, 20.0 mmol, 1.0 equiv), PMDTA (5.440 g, 6.60 mL, 32 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 14.6 mL, 32 mmol, 1.6 equiv) in dry 2-MeTHF (60 mL), compound **23** was obtained in 73% yield (2.914 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

Spectroscopic and spectrometric data match with those ones reported for running the reaction at 1 mmol scale.

mp = 65-70 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.53 (brs, 1H, NH), 7.96 (m, 2H, Ph H-2,6), 7.52 (m, 2H, Ph H-3,5), 4.80 (d, *J* = 6.6 Hz, 2H, CH₂), 3.30 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 166.9 (C=O), 138.0 (Ph C-4), 134.1 (Ph C-1), 130.0 (Ph C-2,6), 129.4 (Ph C-3,5), 72.3 (CH₂), 55.9 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.3 (NH).

HRMS (ESI), *m/z*: calcd. for C₉H₁₀ClNNaO₂⁺: 222.0292 [M + Na]⁺; found: 222.0280.

3-fluoro-N-(methoxymethyl)benzamide (24)

By following the general procedure, starting from 3-fluoro-*N*-methoxy-*N*-methylbenzamide (0.183 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et_2O , 0.73 mL, 1.6

mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **24** was obtained in 78% yield (0.143 g) as a pale yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 42-45 °C

¹**H NMR** (400 MHz, CDCl₃) δ: 7.56 (m, 1H, Ph H-6), 7.54 (m, 1H, Ph H-2), 7.42 (m, 1H, Ph H-5), 7.22 (m, 1H, Ph H-4), 6.92 (brs, 1H, NH), 4.89 (d, *J* = 6.8 Hz, 2H, CH₂), 3.40 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ : 166.7 (C=O), 162.8 (d, ¹*J*_{C,F} = 248.1 Hz, Ph C-3), 136.1 (d, ³*J*_{C,F} = 6.8 Hz, Ph C-1), 130.9 (d, ³*J*_{C,F} = 7.9 Hz, Ph C-5), 122.5 (d, ⁴*J*_{C,F} = 3.1 Hz, Ph C-6), 119.0 (d, ²*J*_{C,F} = 21.3 Hz, Ph C-4), 114.6 (d, ²*J*_{C,F} = 23.0 Hz, Ph C-2), 71.9 (CH₂), 56.3 (CH₃).

¹⁵N NMR (40 MHz, CDCl₃) δ: -264.5 (NH).

 $^{19}\textbf{F}$ NMR (376 MHz, CDCl₃) δ : -111.5 (m).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₀FNNaO₂⁺: 206.0588 [M + Na]⁺; found: 206.0590.

2,5-difluoro-N-(methoxymethyl)benzamide (25)

By following the general procedure, starting from 2,5-difluoro-*N*-methoxy-*N*-methylbenzamide (0.201 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **25** was obtained in 60% yield (0.120 g) as a yellowish oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 8:2).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.81 (m, 1H, Ph), 7.33 (brs, 1H, NH), 7.20 (m, 1H, Ph), 7.13 (m, 1H, Ph), 4.92 (dd, *J* = 6.6 Hz, *J* = 1.6 Hz, 2H, CH₂), 3.41 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ : 162.8 (m, C=O), 158.8 (m, Ph), 156.5 (m, Ph), 121.9 (dd, ${}^{2}J_{C,F}$ = 14.1 Hz, ${}^{3}J_{C,F}$ = 7.4 Hz, Ph C-1), 120.5 (dd, *J* = 24.6 Hz, *J* = 9.9 Hz, Ph), 118.4 (dd, *J* = 25.9 Hz, *J* = 2.8 Hz, Ph), 117.6 (dd, *J* = 28.2 Hz, *J* = 8.0 Hz, Ph), 71.9 (CH₂), 56.3 (OCH₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -119.1 (m), -116.7 (m).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉F₂NNaO₂⁺: 224.0494 [M + Na]⁺; found: 224.0492.

2,6-difluoro-N-(methoxymethyl)benzamide (26)

By following the general procedure, starting from 2,6-difluoro-*N*-methoxy-*N*-methylbenzamide (0.201 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6

mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **26** was obtained in 65% yield (0.131 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 52-55 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.44 (brs, 1H, NH), 7.52 (m, 1H, Ph H-4), 7.09 (m, 2H, Ph H-3,5), 4.80 (d, *J* = 6.7 Hz, 2H, CH₂), 3.35 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ : 161.1 (C=O), 160.4 (dd, ¹*J*_{*C,F*} = 249.3 Hz, ³*J*_{*C,F*} = 7.8 Hz, Ph C-2,6), 132.6 (t, ³*J*_{*C,F*} = 10.0 Hz, Ph C-4), 112.6 (m, Ph C-3,5), 71.8 (CH₂), 55.9 (OCH₃).

¹⁹**F NMR** (376 MHz, Acetone-d₆) δ: -115.0 (m).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉F₂NNaO₂⁺: 224.0494 [M + Na]⁺; found: 224.0498.

2-fluoro-N-(methoxymethyl)-5-(trifluoromethyl)benzamide (27)

By following the general procedure, starting from 2-fluoro-*N*-methoxy-*N*-methyl-5-(trifluoromethyl)benzamide (0.251 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **27** was obtained in 73% yield (0.183 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 8:2).

mp: 57 °C

¹**H NMR** (400 MHz, C₆D₆) δ : 8.43 (dd, ⁴*J* = 7.0 Hz, ⁴*J* = 2.5 Hz, 1 H, Ph H-6), 6.99 (m, 1H, Ph H-4), 6.47 (brs, 1H, NH), 6.32 (dd, *J* = 10.9 Hz, *J* = 8.8 Hz, 1H, Ph H-3), 4.56 (dd, *J* = 6.7 Hz, *J* = 1.4 Hz, 2H, CH₂), 3.16 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ : 162.0 (d, ³*J*_{*C,F*} = 3.1 Hz, C=O), 162.0 (d, ¹*J*_{*C,F*} = 253.0 Hz, Ph C-2), 130.3 (m, Ph C-4), 130.1 (m, Ph C-6), 127.6 (m, Ph C-5), 124.0 (q, ¹*J*_{*C,F*} = 272.2 Hz, CF₃), 122.5 (d, ²*J*_{*C,F*} = 13.8 Hz, Ph C-1), 116.9 (d, ³*J*_{*C,F*} = 26.2 Hz, Ph C-3), 71.8 (CH₂), 56.1 (OCH₃).

¹⁵N NMR (40 MHz, C₆D₆) δ: -259.0 (NH).

¹⁹**F NMR** (376 MHz, C₆D₆) δ: -109.0 (m, F), -62.1 (d, *J* = 1.3 Hz, CF₃).

HRMS (ESI), *m/z*: calcd. for C₁₀H₉F₄NNaO₂⁺: 274.0462 [M + Na]⁺; found: 274.0461.

4-hydroxy-*N*-(methoxymethyl)benzamide (28)

4-Hydroxy-*N*-methoxy-*N*-methylbenzamide (0.181 g, 1.0 mmol, 1.0 equiv) was pretreated in dry 2-MeTHF (3 mL) at -78 °C with MeLi (1.6 M Et₂O, 0.61 mL, 0.98 mmol) for 5 min. Then, by following the general procedure, PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) were added, obtaining compound **28** in 77% yield (0.139 g) as colourless cristals after purification by column chromatography on silica gel (DCM:EtOAc 6:4).

mp = 156 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 9.01 (s, 1H, OH), 8.27 (brs, 1H, NH), 7.84 (m, 2H, Ph H-2,6), 6.89 (m, 2H, Ph H-3,5), 4.77 (d, *J* = 6.7 Hz, 2H, CH₂), 3.28 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.5 (C=O), 161.4 (Ph C-4), 130.2 (Ph C-2,6), 126.5 (Ph C-1), 115.8 (Ph C-3,5), 72.2 (CH₂), 55.7 (OCH₃).

¹⁵**N NMR** (40 MHz, Acetone-d₆) δ: -267.5 (NH).

HRMS (ESI), *m/z*: calcd. for C₉H₁₁NNaO₃⁺: 204.0631 [M + Na]⁺; found: 204.0623.

4-amino-N-(methoxymethyl)benzamide (29)

4-Amino-*N*-methoxy-*N*-methylbenzamide (0.180 g, 1.0 mmol, 1.0 equiv) was pretreated in dry 2-MeTHF (3 mL) at -78 °C with MeLi (1.6 M Et₂O, 0.61 mL, 0.98 mmol) for 5 min. Then, by following the general procedure, PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) were added, obtaining compound **29** in 75% yield (0.135 g) as a yellow solid after purification by column chromatography on silica gel (DCM:EtOAc 6:4).

mp = 123 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.08 (brs, 1H, NH), 7.71 (m, 2H, Ph H-2,6), 6.68 (m, 2H, Ph H-3,5), 5.18 (brs, 2H, NH₂), 4.75 (d, *J* = 6.7 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 152.7 (Ph C-4), 129.9 (Ph C-2,6), 122.9 (Ph C-1), 114.0 (Ph C-3,5), 72.1 (CH₂), 55.6 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -320.3 (NH₂), -269.2 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₂N₂NaO₂⁺: 203.0791 [M + Na]⁺; found: 203.0791.

3-ethynyl-N-(methoxymethyl)benzamide (30)

3-Ethynyl-*N*-methoxy-*N*-methylbenzamide (0.189 g, 1.0 mmol, 1.0 equiv) was pretreated in dry 2-MeTHF (3 mL) at -78 °C with MeLi (1.6 M Et₂O, 0.61 mL, 0.98 mmol) for 15 min. Then, by following the general procedure, PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) were added, obtaining compound **30** in 62% yield (0.117 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 58-61 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.56 (brs, 1H, NH), 8.03 (m, 1H, Ph H-2), 7.96 (m, 1H, Ph H-6), 7.66 (m, 1H, Ph H-4), 7.51 (m, 1H, Ph H-5), 4.81 (d, *J* = 6.6 Hz, 2H, CH₂), 3.74 (s, 1H, CCH), 3.31 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.1 (C=O), 135.8 (Ph C-1), 135.5 (Ph C-4), 131.6 (Ph C-2), 129.7 (Ph C-5), 128.7 (Ph C-6), 123.5 (Ph C-3), 83.4 (<u>C</u>CH), 80.0 (C<u>C</u>H), 72.3 (CH₂), 55.9 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.8 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₁NNaO₂⁺: 212.0682 [M + Na]⁺; found: 212.0688.

N-(methoxymethyl)-2-naphthamide (31)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-2-naphthamide (0.215 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **31** was obtained in 60% yield (0.129 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.63 (brs, 1H, NH), 8.52 (m, 1H, Naph H-1), 7.96–8.05 (m, 4H), 7.57–7.65 (m, 2H), 4.87 (d, *J* = 6.7 Hz, 2H, CH₂), 3.34 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 135.8 (Naph C-4a), 133.6 (Naph), 132.7 (Naph), 129.8 (Naph C-3), 129.0 (Naph), 128.59 (Naph), 128.58 (Naph), 128.54 (Naph C-1), 127.6 (Naph), 125.0 (Naph), 72.4 (CH₂), 55.9 (OCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₃NNaO₂⁺: 238.0838 [M + Na]⁺; found: 238.0841.

N-(methoxymethyl)-2-furamide (32)

By following the general procedure, starting from *N*-methoxy-*N*-methylfuran-2-carboxamide (0.155 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **32** was obtained in 62% yield (0.096 g) as a yellowish oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

¹**H NMR** (400 MHz, C_6D_6) δ : 7.03 (dd, ³*J* = 3.5 Hz, ⁴*J* = 0.8 Hz, 1H, furan H-3), 6.72 (dd, ³*J* = 1.8 Hz, ⁴*J* = 0.8 Hz, 1H, furan H-5), 6.29 (brs, 1H, NH), 5.86 (dd, ³*J* = 3.5 Hz, ³*J* = 1.8 Hz, 1H, furan H-4), 4.55 (d, *J* = 7.0 Hz, 2H, CH₂), 3.14 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, C_6D_6) δ : 158.3 (C=O), 148.4 (furan C-2), 143.6 (furan C-5), 115.0 (furan C-3), 112.3 (furan C-4), 71.0 (CH₂), 55.8 (OCH₃).

¹⁵N NMR (40 MHz, C₆D₆) δ: -268.3 (NH).

HRMS (ESI), *m/z*: calcd. for C₇H₉NNaO₃⁺: 178.0475 [M + Na]⁺; found: 178.0472.

```
N-(methoxymethyl)-2-tiophencarboxamide (33)
```


By following the general procedure, starting from *N*-methoxy-*N*-methylthiophene-2-carboxamide (0.171 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **33** was obtained in 65% yield (0.111 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 63 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ : 8.45 (brs, 1H, NH), 7.79 (dd, ³*J* = 3.7 Hz, ⁴*J* = 1.1 Hz, 1H, thiophen H-3), 7.72 (dd, ³*J* = 5.0 Hz, ⁴*J* = 1.1 Hz, 1H, thiophen H-5), 7.14 (dd, ³*J* = 5.0 Hz, ³*J* = 3.7 Hz, 1H, thiophen H-4), 4.76 (d, *J* = 6.7 Hz, 2H, CH₂), 3.29 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 162.8 (C=O), 140.7 (thiophen C-2), 131.8 (thiophen C-5), 129.0 (thiophen C-3), 128.6 (thiophen C-4), 72.1 (CH₂), 55.8 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -266.4 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₇H₉NNaO₂S⁺: 194.0246 [M + Na]⁺; found: 194.0239.

N-(methoxymethyl)-4-(tributylstannyl)benzamide (34)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-4-(tributylstannyl)benzamide (0.455 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **34** was obtained in 61% yield (0.278 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, C_6D_6) δ : 7.67 (m, 2H, Ph H-2,6), 7.50 (m, 2H, Ph H-3,5), 6.07 (brt, J = 6.8 Hz, 1H, NH), 4.70 (d, J = 6.8 Hz, 2H, CH₂), 3.23 (s, 3H, OCH₃), 1.59 (m, 6H, Bu H-2), 1.36 (m, 6H, Bu H-3), 1.08 (m, 6H, Bu H-1), 0.91 (t, J = 7.3 Hz, 9H, CH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ: 167.4 (C=O), 147.1 (Ph C-4), 136.8 (Ph C-3,5), 134.4 (Ph C-1), 126.8 (Ph C-2,6), 71.8 (CH₂), 55.9 (OCH₃), 29.5 (Bu C-2), 27.7 (Bu C-3), 13.9 (Bu C-4), 9.9 (Bu C-1).

¹⁵N NMR (40 MHz, C₆D₆) δ: -266.8 (NH).

¹¹⁹Sn NMR (149 MHz, C₆D₆) δ: -42.3 (s).

HRMS (ESI), *m*/*z*: calcd. for C₂₁H₃₇NNaO₂Sn⁺: 478.1739 [M + Na]⁺; found: 478.1738.

4-(sec-butylselanyl)-N-(methoxymethyl)benzamide (35)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-4-(phenylselanyl)benzamide (0.320 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **35** was obtained in 66% yield (0.211 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.46 (brs, 1H, NH), 7.85 (m, 2H, Ph H-2,6), 7.61 (m, 2H, Ph H-3,5), 4.79 (d, J = 6.6 Hz, 2H, CH₂), 3.48 (sept., J = 6.7 Hz, 1H, CH), 3.30 (s, 3H, OCH₃), 1.69 (m, 2H, CH₂CH₃), 1.43 (d, J = 6.9 Hz, 3H, CHCH₃), 1.01 (t, J = 7.4 Hz, 3H, CH₂CH₃),

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.5 (C=O), 135.9 (Ph C-1,4), 133.7 (Ph C-3,5), 128.7 (Ph C-2,6), 72.3 (CH₂), 55.9 (OCH₃), 41.7 (CH), 31.1 (<u>C</u>H₂CH₃), 21.8 (CH<u>C</u>H₃), 12.5 (CH₂<u>C</u>H₃).

⁷⁷Se NMR (76 MHz, Acetone-d₆) δ: 394.3 (s).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₉NNaO₂Se⁺: 324.0473 [M + Na]⁺; found: 324.0476.

N,N-diethyl-N'-(methoxymethyl)terephthalamide (36)

By following the general procedure, starting from *N*,*N*-diethyl-*N*[']-methoxy-*N*[']-methylterephthalamide (0.264 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **36** was obtained in 68% yield (0.179 g) as a pale yellow solid after purification by column chromatography on silica gel (DCM:EtOAc 6:4).

mp: 65-67 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ : 8.54 (brs, 1H, NH), 7.99 (m, 2H, Ph H-3,5), 7.46 (m, 2H, Ph H-2,6), 4.81 (d, J = 6.6 Hz, 2H, CH₂), 3.51 (brs, 2H, NCH₂CH₃), 3.31 (s, 3H, OCH₃), 3.27 (brs, 2H, NCH₂CH₃), 1.18 (brs, 3H, NCH₂CH₃), 1.13 (brs, 3H, NCH₂CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 170.4 (C=O), 167.4 (C=O), 141.9 (Ph C-1), 135.6 (Ph C-4), 128.3 (Ph C-3,5), 127.2 (Ph C-2,6), 72.3 (CH₂), 55.9 (OCH₃), 43.8 (N<u>C</u>H₂CH₃), 39.8 (N<u>C</u>H₂CH₃), 14.4 (NCH₂<u>C</u>H₃), 13.2 (NCH₂<u>C</u>H₃).

HRMS (ESI), *m/z*: calcd. for C₁₄H₂₁N₂O₃⁺: 265.1547 [M + H]⁺; found: 265.1534.

N-(ethoxymethyl)benzamide (37)

By following the general procedure, starting from *N*-ethoxy-*N*-methylbenzamide (0.179 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **37** was obtained in 74% yield (0.132 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 33-36 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.45 (brs, 1H, NH), 7.94 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.47 (m, 2H, Ph H-3,5), 4.86 (d, *J* = 6.6 Hz, 2H, CH₂), 3.56 (q, *J* = 7.0 Hz, 2H, OC<u>H</u>₂CH₃), 1.13 (t, *J* = 7.0 Hz, 3H, OCH₂C<u>H</u>₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 135.5 (Ph C-1), 132.3 (Ph C-4), 129.2 (Ph C-3,5), 128.2 (Ph C-2,6), 70.7 (CH₂), 64.0 (O<u>C</u>H₂CH₃), 15.5 (OCH₂<u>C</u>H₃).

¹⁵**N NMR** (40 MHz, Acetone-d₆) δ: -264.2 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₂⁺: 202.0838 [M + Na]⁺; found: 202.0850.

N-(ethoxymethyl)-4-methylbenzamide (38)

By following the general procedure, starting from *N*-ethoxy-*N*,4-dimethylbenzamide (0.193 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **38** was obtained in 75% yield (0.144 g) as a yellowish solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 81-83 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.44 (brs, 1H, NH), 7.84 (m, 2H, Ph H-2,6), 7.27 (m, 2H, Ph H-3,5), 4.83 (d, J = 6.6 Hz, 2H, CH₂), 3.54 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 2.37 (s, 3H, CH₃), 1.12 (t, J = 7.0 Hz, 3H, OCH₂CH₃).
¹³C NMR (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 132.6 (Ph C-1), 142.7 (Ph C-4), 129.8 (Ph C-3,5), 128.2 (Ph C-2,6), 70.6 (CH₂), 64.0 (O<u>C</u>H₂CH₃), 21.3 (CH₃), 15.5 (OCH₂<u>C</u>H₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.6 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₂⁺: 216.0995 [M + Na]⁺; found: 216.1011.

3-chloro-N-(ethoxymethyl)benzamide (39)

By following the general procedure, starting from 3-chloro-*N*-ethoxy-*N*-methylbenzamide (0.213 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **39** was obtained in 71% yield (0.151 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 64-66 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.65 (brs, 1H, NH), 7.94 (m, 1H, Ph H-6), 7.88 (m, 1H, Ph H-2), 7.57 (m, 1H, Ph H-4), 7.50 (m, 1H, Ph H-3), 4.85 (d, *J* = 6.6 Hz, 2H, CH₂), 3.56 (q, *J* = 7.0 Hz, 2H, OC<u>H</u>₂CH₃), 1.12 (t, *J* = 7.0 Hz, 3H, OCH₂C<u>H₃</u>).

¹³C NMR (100 MHz, Acetone-d₆) δ: 166.6 (C=O), 137.3 (Ph C-1), 134.8 (Ph C-5), 132.2 (Ph C-4), 131.1 (Ph C-3), 128.2 (Ph C-6), 126.2 (Ph C-2), 70.7 (CH₂), 64.1 (O<u>C</u>H₂CH₃), 15.5 (OCH₂<u>C</u>H₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -262.8 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₂ClNNaO₂⁺: 236.0449 [M + Na]⁺; found: 236.0447.

N-(isopropoxymethyl)benzamide (40)

By following the general procedure, starting from *N*-isopropoxy-*N*-methylbenzamide (0.193 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **40** was obtained in 73% yield (0.140 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.40 (brs, 1H, NH), 7.94 (m, 2H, Ph H-2,6), 7.54 (m, 1H, Ph H-4), 7.47 (m, 2H, Ph H-3,5), 4.88 (d, J = 6.6 Hz, 2H, CH₂), 3.86 (sept., J = 6.1 Hz, 1H, CH), 1.12 (d, J = 6.1 Hz, 6H, CH₃).

 $^{13}\textbf{C}$ NMR (100 MHz, Acetone-d_6) $\delta:$ 167.7 (C=O), 135.5 (Ph C-1), 132.3 (Ph C-4), 129.2 (Ph C-3,5), 128.2 (Ph C-2,6), 69.3 (CH), 68.7 (CH_2), 22.8 (CH_3).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -263.0 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₅NNaO₂⁺: 216.0995 [M + Na]⁺; found: 216.0997.

N-{[(2-methyl-2-propanyl)oxy]methyl}benzamide (41)

By following the general procedure, starting from *N*-(*tert*-butoxy)-*N*-methylbenzamide (0.207 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **41** was obtained in 80% yield (0.166 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 8:2).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.23 (brs, 1H, NH), 7.93 (m, 2H, Ph H-2,6), 7.53 (m, 1H, Ph H-4), 7.46 (m, 2H, Ph H-3,5), 4.90 (d, *J* = 6.5 Hz, 2H, CH₂), 1.24 (s, 9H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.1 (C=O), 135.8 (Ph C-1), 132.2 (Ph C-4), 129.2 (Ph C-3,5), 128.1 (Ph C-2,6), 73.7 (<u>C</u>(CH₃)₃), 65.1 (CH₂), 28.4 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -262.1 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₇NNaO₂⁺: 230.1151 [M + Na]⁺; found: 230.1154.

N-[(allyloxy)methyl]benzamide (42)

By following the general procedure, starting from *N*-(allyloxy)-*N*-methylbenzamide (0.191 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **42** was obtained in 65% yield (0.124 g) as a yellow oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.50 (brs, 1H, NH), 7.95 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.48 (m, 2H, Ph H-3,5), 5.91 (m, 1H, OCH₂C<u>H</u>CH₂), 5.27 (m, ³*J*_{trans} = 17.3 Hz, 1H, OCH₂CHC<u>H₂</u>), 5.09 (m, ³*J*_{cis} = 10.5 Hz, 1H, OCH₂CHC<u>H₂</u>), 4.89 (d, *J* = 6.7 Hz, 2H, CH₂), 4.07 (m, 2H, OC<u>H₂</u>CHCH₂).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.9 (C=O), 136.2 (OCH₂<u>C</u>HCH₂), 135.4 (Ph C-1), 132.4 (Ph C-4), 129.3 (Ph C-3,5), 128.2 (Ph C-2,6), 116.2 (OCH₂CH<u>C</u>H₂), 70.6 (CH₂), 69.6 (O<u>C</u>H₂CHCH₂).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₃NNaO₂⁺: 214.0838 [M + Na]⁺; found: 214.0844.

N-[(2-propyn-1-yloxy)methyl]benzamide (43)

By following the general procedure, starting from *N*-methyl-*N*-(prop-2-yn-1-yloxy)benzamide (0.189 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **43** was obtained in 63% yield (0.119 g) as a colourless oil after purification by column chromatography on silica gel (*n*-hexane:EtOAc 8:2).

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.56 (brs, 1H, NH), 7.95 (m, 2H, Ph H-2,6), 7.56 (m, 1H, Ph H-4), 7.48 (m, 2H, Ph H-3,5), 4.94 (d, *J* = 6.7 Hz, 2H, CH₂), 4.24 (d, *J* = 2.4 Hz, 2H, CH₂CCH), 2.90 (t, *J* = 2.4 Hz, 1H, CH₂CC<u>H</u>).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 135.2 (Ph C-1), 132.5 (Ph C-4), 129.3 (Ph C-3,5), 128.2 (Ph C-2,6), 81.1 (CH₂<u>C</u>CH), 75.4 (CH₂C<u>C</u>H), 70.1 (CH₂), 55.9 (<u>C</u>H₂CCH).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.7 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₁NNaO₂⁺: 212.0682 [M + Na]⁺; found: 212.0684.

N-[(cyclopropylmethoxy)methyl]benzamide (44)

By following the general procedure, starting from *N*-(cyclopropylmethoxy)-*N*-methylbenzamide (0.205 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **44** was obtained in 70% yield (0.143 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 53-55 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.45 (brs, 1H, NH), 7.94 (m, 2H, Ph H-2,6), 7.54 (m, 1H, Ph H-4), 7.47 (m, 2H, Ph H-3,5), 4.88 (d, *J* = 6.6 Hz, 2H, NCH₂), 3.37 (d, *J* = 6.8 Hz, 2H, CH₂), 1.02 (m, 1H, cyclopropane H-1), 0.44 (m, 2H, cyclopropane H-2,3), 0.18 (m, 2H, cyclopropane H-2,3).

¹³C NMR (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 135.4 (Ph C-1), 132.3 (Ph C-4), 129.2 (Ph C-3,5), 128.2 (Ph C-2,6), 73.2 (CH₂), 70.7 (NCH₂), 11.3 (cyclopropane C-1), 3.2 (cyclopropane C-2,3).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -263.9 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₅NNaO₂⁺: 228.0995 [M + Na]⁺; found: 228.0992.

N-[(methoxymethoxy)methyl]benzamide (45)

By following the general procedure, starting from *N*-(methoxymethoxy)-*N*-methylbenzamide (0.195 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **45** was obtained in 67% yield (0.130 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 30-32 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.56 (brs, 1H, NH), 7.95 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.47 (m, 2H, Ph H-3,5), 4.95 (d, *J* = 6.7 Hz, 2H, NCH₂), 4.71 (s, 2H C<u>H</u>₂OCH₃), 3.32 (s, 3H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.9 (C=O), 135.3 (Ph C-1), 132.4 (Ph C-4), 129.3 (Ph C-3,5), 128.8 (Ph C-2,6), 95.1 (\underline{C} H₂OCH₃), 68.3 (NCH₂), 55.4 (CH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.8 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃NNaO₃⁺: 218.0788 [M + Na]⁺; found: 218.0790.

N-(phenoxymethyl)benzamide (46)

By following the general procedure, starting from *N*-methyl-*N*-phenoxybenzamide (0.227 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **46** was obtained in 74% yield (0.168 g) as a white solid after purification by column chromatography on silica gel (DCM).

mp = 110-115 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.77 (brs, 1H, NH), 7.95 (m, 2H, Ph1 H-2,6), 7.56 (m, 1H, Ph1 H-4), 7.48 (m, 2H, Ph1 H-3,5), 7.28 (m, 2H, Ph2 H-3,5), 7.06 (m, 2H, Ph2 H-2,6), 6.94 (m, 1H, Ph2 H-4), 5.47 (d, J = 6.7 Hz, 2H, CH₂).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.7 (C=O), 158.2 (Ph2 C-1), 135.0 (Ph1 C-1), 132.6 (Ph1 C-4), 130.3 (Ph2 C-3,5), 129.3 (Ph1 C-3,5), 128.3 (Ph1 C-2,6), 122.0 (Ph2 C-4), 116.4 (Ph2 C-2,6), 69.4 (CH₂).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -266.8 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₃NNaO₂⁺: 250.0838 [M + Na]⁺; found: 250.0845.

N-[(benzyloxy)methyl]benzamide (47)

By following the general procedure, starting from *N*-(benzyloxy)-*N*-methylbenzamide (0.241 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **47** was obtained in 77% yield (0.186 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 60-64 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.58 (brs, 1H, NH), 7.96 (m, 2H, Ph1 H-2,6), 7.55 (m, 1H, Ph1 H-4), 7.48 (m, 2H, Ph1 H-3,5), 7.37 (m, 2H, Ph2 H-2,6), 7.32 (m, 2H, Ph2 H-3,5), 7.25 (m, 1H, Ph2 H-4), 4.98 (d, *J* = 6.6 Hz, 2H, NCH₂), 4.63 (s, 2H, C<u>H</u>₂Ph).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 139.8 (Ph2 C-1), 135.4 (Ph1 C-1), 132.4 (Ph1 C-4), 129.3 (Ph1 C-3,5), 129.0 (Ph2 C-3,5), 128.4 (Ph2 C-2,6), 128.2 (Ph1 C-2,6), 128.1 (Ph2 C-4), 70.8 (NCH₂), 70.7 (<u>C</u>H₂Ph).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.4 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₅NNaO₂⁺: 264.0995 [M + Na]⁺; found: 264.1009.

N-[(4-biphenylylmethoxy)methyl]benzamide (48)

By following the general procedure, starting from N-([1,1'-biphenyl]-4-ylmethoxy)-N-methylbenzamide (0.317 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and s-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **48** was obtained in 79% yield (0.250 g) as a white solid after purification by column chromatography on silica gel (n-hexane:EtOAc 7:3).

mp = 134-136 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.60 (brs, 1H, NH), 7.96 (m, 2H, Ph1 H-2,6), 7.64 (m, 2H, Ph3 H-2,6), 7.62 (m, 2H, Ph2 H-2,6), 7.56 (m, 1H, Ph1 H-4), 7.48 (m, 2H, Ph1 H-3,5), 7.47 (m, 2H, Ph2 H-3,5), 7.45 (m, 2H, Ph3 H-3,5), 7.35 (m, 1H, Ph3 H-4), 5.01 (d, J = 6.7 Hz, 2H, NCH₂), 4.69 (s, 2H, CH₂).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 168.0 (C=O), 141.6 (Ph3 C-1), 140.9 (Ph2 C-1), 139.0 (Ph2 C-4), 135.4 (Ph1 C-1), 132.4 (Ph1 C-4), 129.7 (Ph3 C-3,5), 129.2 (Ph1 C-3,5), 129.0 (Ph2 C-3,5), 128.2 (Ph1 C-2,6), 128.1 (Ph3 C-4), 127.7 (Ph3 C-2,6), 127.6 (Ph2 C-2,6), 70.8 (NCH₂), 70.4 (CH₂).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -264.2 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₂₁H₁₉NNaO₂⁺: 340.1308 [M + Na]⁺; found: 340.1306.

2-methyl-1-phenylbutan-1-one (50)

By following the general procedure, starting from *N*-ethyl-*N*-methoxybenzamide **49**^[11] (0.179 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **50**^[12] was obtained in quantitative yield (0.162 g) as a colorless oil which did not require purification.

¹**H NMR** (200 MHz, CDCl₃) δ: 7.97-7.94 (m, 2H), 7.55-7.42 (m, 3H), 3.45-3.35 (m, 1H), 1.87-1.77 (m, 1H), 1.56-1.46 (m, 1H), 1.19 (d, *J* = 6.8 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (50 MHz, CDCl₃) δ: 204.1, 136.8, 132.9, 128.7, 128.3, 42.2, 26.8, 16.9, 11.9.

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₄NaO⁺: 185.0937 [M + Na]⁺; found: 185.0932.

N-(methoxymethyl)-4-{[methoxy(methyl)amino]methyl}benzamine (52)

By following the general procedure, starting from *N*-methoxy-4-((methoxy(methyl)amino)methyl)-*N*-methylbenzamide (0.238 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et_2O , 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **52** was obtained in 66% yield (0.157 g) as a white solid after purification by column chromatography on silica gel (DCM:EtOAc 6:4).

mp = 55-58 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.44 (brs, 1H, NH), 7.90 (m, 2H, Ph H-2,6), 7.46 (m, 2H, Ph H-3,5), 4.80 (d, *J* = 6.6 Hz, 2H, CH₂), 3.81 (s, 2H, CH₂), 3.31 (s, 3H, NOCH₃), 3.30 (s, 3H, OCH₃), 2.58 (s, 3H, NCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.8 (C=O), 143.0 (Ph C-4), 134.2 (Ph C-1), 130.1 (Ph C-3,5), 128.0 (Ph C-2,6), 72.3 (CH₂), 64.7 (CH₂), 59.8 (NOCH₃), 55.8 (OCH₃), 45.1 (NCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.5 (NH), -218.8 (N).

HRMS (ESI), *m/z*: calcd. for C₁₂H₁₈N₂NaO₃⁺: 261.1210 [M + Na]⁺; found: 261.1222.

N-methoxy-*N*-(²H₃)methylbenzamide (53)

To a solution of *N*-methoxybenzamide^[13] (0.200 g, 1.32 mmol, 1.0 equiv) and Cs_2CO_3 (0.873 g, 2.7 mmol, 2 equiv) in dry DMF (3 mL) Iodomethane- d_3 (0.287, 1.98 mmol, 1.5 equiv) was added and the reaction was stirred overnight at room temperature. The reaction was quenched with sat. aqueous NH₄Cl and the reaction mixture was extracted with Et₂O (3 x 10 ml). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Compound **53** was obtained without purification in 97% yield (0.212 g) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.67 (m, 2H, Ph H-2,6), 7.45 (m, 1H, Ph H-4), 7.40 (m, 2H, Ph H-3,5), 3.56 (s, 3H, OCH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 170.0 (C=O), 134.1 (Ph C-1), 130.5 (Ph H-4), 128.1 (Ph C-2,6), 128.0 (Ph C-3,5), 61.0 (OCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉D₃NO₂⁺: 169.1051 [M + H]⁺; found: 169.1054.

N-[methoxy(²H₂)methyl)benzamide (54)

By following the general procedure, starting from *N*-methyl-*N*-[(${}^{2}H_{3}$)methyloxy]benzamide (compound **53**) (0.168 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **54** was obtained in 62% yield (0.104 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 61-64 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.44 (brs, 1H, NH), 7.94 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.48 (m, 2H, Ph H-3,5), 3.30 (s, 3H, CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.9 (C=O), 135.4 (Ph C-1), 132.4 (Ph C-4), 129.3 (Ph C-3,5), 128.2 (Ph C-2,6), 55.8 (CH₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉D₂NNaO₂⁺: 190.0808 [M + Na]⁺; found: 190.0807.

N-methyl-N-[(²H₃)methyloxy]benzamide (55)

To a solution of *N*-hydroxy-*N*-methylbenzamide^[6] (0.200 g, 1.32 mmol, 1.0 equiv) and Cs_2CO_3 (0.873 g, 2.68 mmol, 2 equiv) in dry DMF (3 mL) Iodomethane-d₃ (0.287g, 1.98 mmol, 2.0 equiv) was added and the reaction

was stirred overnight at room temperature. The reaction was quenched with sat. aqueous NH_4Cl and the reaction mixture was extracted with Et_2O (3 x 10 ml). The combined organic extracts were dried over Na_2SO_4 and the solvent was removed under reduced pressure. The compound **55** was obtained without purification in 95% yield (0.207 g) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.67 (m, 2H, Ph H-2,6), 7.45 (m, 1H, Ph H-4), 7.40 (m, 2H, Ph H-3,5), 3.36 (s, 3H, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 170.0 (C=O), 134.1 (Ph C-1), 130.5 (Ph H-4), 128.1 (Ph C-2,6), 128.0 (Ph C-3,5), 33.8 (CH₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₈D₃NNaO₂⁺: 191.0870 [M + Na]⁺; found: 191.0873.

N-{[(²H₃)methyloxy]methyl}benzamide (56)

By following the general procedure, starting from *N*-methyl-*N*-[(${}^{2}H_{3}$)methyloxy]benzamide (compound **55**) (0.168 g, 1.0 mmol, 1.0 equiv), PMDTA (0.277 g, 0.33 mL, 1.6 mmol, 1.6 equiv) and *s*-BuLi (2.2 M in Et₂O, 0.73 mL, 1.6 mmol, 1.6 equiv) in dry 2-MeTHF (3 mL), compound **56** was obtained in 64% yield (0.107 g) as a white solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 6:4).

mp = 55-58 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.45 (brs, 1H, NH), 7.95 (m, 2H, Ph H-2,6), 7.55 (m, 1H, Ph H-4), 7.48 (m, 2H, Ph H-3,5), 4.80 ((d, *J* = 6.6 Hz, 2H, CH₂).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.9 (C=O), 135.4 (Ph C-1), 132.4 (Ph C-4), 129.3 (Ph C-3,5), 128.2 (Ph C-2,6), 72.2 (CH₂).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉D₂NNaO₂⁺: 190.0808 [M + Na]⁺; found: 190.0806.

N-(methoxymethyl)-4-biphenylcarboxamide (57)

N-(methoxymethyl)-4-(tributylstannyl)benzamide **34** (0.60 mmol, 0.278 g, 1.0 equiv) was dissolved in dry DMF (5 mL) and to this solution were progressively added bromobenzene (0.60 mmol, 0.09 g, 0.06 mL, 1.0 equiv), PdCl₂ (0.01 mmol, 0.002 g, 0.02 equiv), P(*t*-Bu)₃ (0.03 mmol, 0.006 g, 0.007 mL, 0.05 equiv), Cul (0.024 mmol, 0.005 g, 0.04 equiv) and CsF (1.2 mmol, 0.182 mg, 2.0 equiv).^[14] The mixture was heated at 60 °C for 24 h and, after cooling to rt, diethyl ether (10 mL) was added before flushing upon a plug of Celite. Water (1 mL) was added and the organic phase was rapidly extracted, dried over anhydrous sodium sulfate and the

solvent was removed under reduced pressure. The obtained crude was purified on silica gel using *n*-hexane: ethyl acetate (6:4 v/v) as the mobile phase, giving compound **57** in 65% yield (0.094 g) as a white solid.

mp = 134 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.52 (brs, 1H, NH), 8.05 (m, 2H, Ph H-3,5), 7.78 (m, 2H, Ph H-2,6), 7.72 (m, 2H, Ph H-2',6'), 7.50 (m, 2H, Ph H-3',5'), 7.41 (m, 1H, Ph H-4'), 4.83 (d, *J* = 6.6 Hz, 2H, CH₂), 3.32 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.6 (C=O), 144.9 (Ph C-1), 140.8 (Ph C-1'), 134.2 (Ph C-4), 129.9 (Ph C-3',5'), 128.88 (Ph C-4'), 128.86 (Ph C-3,5), 127.9 (Ph C-2',6'), 127.7 (Ph C-2,6), 72.3 (CH₂), 55.9 (OCH₃).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -265.3 (NH).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₅NNaO₂⁺: 264.0995 [M + Na]⁺; found: 264.0989.

N-(methoxymethyl)-4-(4-morpholinyl)benzamide (58)

To the solution of 4-hydroxy-*N*-(methoxymethyl)benzamide (**28**, 0.77 mmol, 0.139 g, 1.0 equiv) in DCM (2mL), TsCl (0.08 mmol, 0.015 g, 1.05 equiv) and NEt₃ (0.92 mmol, 0.093 g, 0.13 mL,1.2 equiv) was added at rt and stirred for 3 h. After that the reaction was quenched with water and the organic phase extracted, dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The so obtained intermediate *O*-Ts was directly used in the following step. Thus, it was dissolved in dry *t*-BuOH (5 mL) and consecutively were added Pd(OAc)₂ (0.039 mmol, 0.009 g, 0.05 equiv), K₂CO₃ (1.9 mmol, 0.262, 2.5 equiv) and morpholine (1.2 mmol, 0.104 g, 0.1 mL, 1.6 equiv). After degassing with Ar (x 3) the resulting mixture was heated at 90 °C for 24 h and then cooled at rt and diluted with diethyl ether (10 mL). The mixture was flushed upon a plug of Celite and washed with water (3 mL). The extracted organic phase was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The obtained crude was purified on silica gel using DCM:MeOH (98:2 v/v) as the mobile phase, giving compound **58** in 74% yield (0.142 g) as a yellow solid.

mp = 89-91 °C

¹**H NMR** (400 MHz, Acetone-d₆) δ: 8.22 (brs, 1H, NH), 7.86 (m, 2H, Ph H-2,6), 6.99 (m, 2H, Ph H-3,5), 4.77 (d, *J* = 6.7 Hz, 2H, CH₂), 3.78 (m, 4H, morpholine H-2,6), 3.27 (s, 3H, OCH₃), 3.26 (m, 4H, morpholine H-3,5).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 167.5 (C=O), 154.6 (Ph C-4), 129.6 (Ph H-2,6), 125.1 (Ph C-1), 114.6 (Ph C-3,5), 72.2 (CH₂), 67.2 (morpholine C-2,6), 55.4 (OCH₃), 48.7 (morpholine C-3,5).

¹⁵N NMR (40 MHz, Acetone-d₆) δ: -312.7 (N), -268.0 (NH).

HRMS (ESI), *m/z*: calcd. for C₁₃H₁₈N₂NaO₃⁺: 273.1210 [M + Na]⁺; found: 273.1215.

(2E)-N-(methoxymethyl)-4-methyl-3-phenyl-2-hexenamide (60)

By following the general procedure, starting from *N*-methoxy-*N*-methyl-3-phenylpropiolamide (**59**, 0.189 g, 1.0 mmol, 1.0 equiv), PMDTA (0.554 g, 0.66 mL, 3.2 mmol, 3.2 equiv) and *s*-BuLi (2.2 M in Et₂O, 1.46 mL, 3.2 mmol, 3.2 equiv) in dry 2-MeTHF (3 mL), compound **60** was obtained in 61% yield (0.151 g) as a yellow solid after purification by column chromatography on silica gel (*n*-hexane:EtOAc 7:3).

mp = 52-55 °C

¹**H NMR** (400 MHz, C_6D_6) δ : 7.17 (m, 4H, Ph H-2,3,5,6), 7.07 (m, 1H, Ph H-4), 6.65 (d, J = 2.4 Hz, 1H, C=CH), 5.77 (brs, 1H, NH), 4.57 (d, J = 6.9 Hz, 2H, CH₂OCH₃), 3.22 (s, 3H, OCH₃), 2.85 (m, 1H, CHCH₃), 1.90 (m, 1H, CH₂), 1.58 (m, 1H, CH₂), 1.34 (d, J = 6.9 Hz, 3H, CH₃), 0.82 (t, J = 7.4 Hz, 3H, CH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ: 170.2 (C=O), 145.1 (<u>C</u>=CH), 131.0 (C=<u>C</u>H), 131.0 (Ph C-1), 129.1 (Ph C-2,6), 128.7 (Ph C-3,5), 127.7 (Ph C-4), 71.2 (<u>C</u>H₂OCH₃), 55.9 (OCH₃), 36.0 (<u>C</u>HCH₃), 28.5 (<u>C</u>H₂CH₃), 20.0 (CH<u>C</u>H₃), 12.9 (CH₂<u>C</u>H₃).

¹⁵N NMR (40 MHz, C₆D₆) δ: -260.3 (NH).

HRMS (ESI), *m/z*: calcd. for C₁₅H₂₂NO₂⁺: 248.1645 [M + H]⁺; found: 248.1652.

N-(methoxymethyl)-N,3-dimethylbenzamide (61)

To the solution of *N*-(methoxymethyl)-3-methylbenzamide **14** (0.66 mmol, 0118 g, 1 equiv) and Cs_2CO_3 (0.86 mmol, 0.280 g, 1.3 equiv) in MeCN (2 mL), MeI (0.79 mmol, 0.112 g, 0.05 mL, 1.2 equiv) was added and reaction was stirred overnight before quenching with $NH_4Cl_{(aq.)}$. The reaction mixture was extracted 3x with EtOAc, dried over Na_2SO_4 and the solvent was removed under reduced pressure. Compound **561** was obtained in 95% (0.121 g) as yellow oil.

¹H NMR (400 MHz, Acetone-d₆) δ: 7.31-7.24 (m, 4H, Ph), 4.61 (brs, 2H, CH₂), 3.16 (brs, 3H, OCH₃), 3.02 (brs, 3H, CH₃), 2.82 (s, 3H, Ar-CH₃).

¹³**C NMR** (100 MHz, Acetone-d₆) δ: 172.5 (C=O), 138.8 (Ph C-3), 135.4 (Ph C-1), 133.0 (Ph C-4), 129.2 (Ph C-5), 128.8 (Ph C-2), 125.3 (Ph C-6), 83.1 (CH₂), 55.2 (OCH₃), 21.3 (Ar-CH₃). The *N*-*C*H₃ signal is overlapped with the solvent residual peak at *ca*. 29.80 ppm.

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₆NO₂⁺: 194.1176 [M + Na]⁺; found: 194.1156.

Copies of NMR spectra

Copies of ¹H and ¹³C-NMR spectra of *N*-alkyl-*N*-alkoxyamides used in Schemes 3 and 4 of the manuscript.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Copies of ¹H and ¹³C-NMR spectra of *N*-acyl-*N*,*O*-acetals

120 110 100 f1 (ppm)

130 120 110 100 90 f1 (ppm)

S95

S97

120 110 100 90 f1 (ppm) 160 150 140

O Me Me

(50) (¹H-NMR, 200 MHz, CDCl₃)

S112

120 110 100 90 f1 (ppm) 150 140

130 120 110 100 90 80 f1 (ppm)

Copies of heteronuclei NMR (¹⁹F-, ⁷⁷Se- and ¹¹⁹Sn) spectra

X-ray analysis for compound_17

The X-ray intensity data were measured on STOE STADIVARI diffractometer equipped with multilayer monochromator, Cu K/α Primux 100 micro, micro focus sealed tube and Oxford cooling system. The structure solved by charge flipping. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted at calculated positions and refined with riding model. The following softwares were used: X-Area Integrate Software package, X-Area LANA for scaling, OLEX2^[15] for structure solution, refinement, molecular diagrams and graphical user-interface, Shelxl for refinement and graphical userinterface *olex2.solve 1.5* for structure solution, *SHELXL-2015* for refinement, *Platonⁱ* for symmetry check. Experimental data and CCDC-Codes Experimental data (Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html) can be found in Table 1. Crystal data, data collection parameters, and structure refinement details given in Table 2. Asymmetric Units visualized in Figure 1, intermolecular H-Bond in Figure 4. Data quality visualizations in Figure 2 and 3.

Table 1

Compound	Machine	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC
			[K]	[mm]	[s]		[°]	
17 (MAL261)	Stoe Stadivari	Cu	100	40	2	2174	1	2191936

Figure 1 Asymmetric Unit (compound 17) drawn with 50% displacement ellipsoid. The bond precision for C-C single bonds is 0.0020Å.

cc_half_vs_resolution.htm

Figure 3 Data Quality - CC 1/2 level view

Figure 4 Intermolecular H-Bonds of moderate character in direction of axis "a" influence the packing.

Table 2 Sample and crystal data, data collection and structure refinement. Detailed information can found in the Cif Code of CCDC:2191936

Identification code	MAL261			
Empirical formula	C ₁₀ H ₁₃ NO ₃			
Formula weight	195.21			
Temperature/K	100			
Crystal system	orthorhombic			
Space group	Pbca			
a/Å	9.3359(13)			
b/Å	10.169(3)			
c/Å	20.658(3)			
α/°	90			
β/°	90			

γ/°	90				
Volume/ų	1961.2(7)				
Z	8				
ρ _{calc} g/cm ³	1.322				
µ/mm ⁻¹	0.813				
F(000)	832.0				
Crystal size/mm ³	0.3 × 0.217 × 0.1				
Radiation	Cu Kα (λ = 1.54186)				
20 range for data collection/°	8.56 to 136.55				
Index ranges	-11 ≤ h ≤ 3, -12 ≤ k ≤ 11, -23 ≤ l ≤ 24				
Reflections collected	11452				
Independent reflections	3563 [R _{int} = 0.0375, R _{sigma} = 0.0212]				
Data/restraints/parameters	3563/0/130				
Goodness-of-fit on F ²	1.051				
Final R indexes [I>=2σ (I)]	R ₁ = 0.0549, wR ₂ = 0.1523				
Final R indexes [all data]	R ₁ = 0.0560, wR ₂ = 0.1541				
Largest diff. peak/hole / e Å ⁻³	0.28/-0.24				

References

- [1] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
- [2] S. Touqeer, R. Senatore, M. Malik, E. Urban, V. Pace, Adv. Syn. Cat. J. 2020, 362, 5056-5061.
 [3] H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 463-466.
- [3] H. A. Duolig, K. E. Glingali, W. E. Cokke, K. J. Hipps, W. J. Gault, Ange
 [4] X. Wu, B. Wang, Y. Zhou, H. Liu, Org. Lett. 2017, 19, 1294-1297.
 [5] A. Nasier, X. Chang, C. Guo, J. Org. Chem. 2021, 86, 16068-16076.
 [6] G. X. Ortiz, Jr., B. N. Hemric, Q. Wang, Org. Lett. 2017, 19, 1314-1317.
- [7] N. Zhang, Q. Yu, R. Chen, J. Huang, Y. Xia, K. Zhao, Chem. Commun. 2013, 49, 9464-9466.
- [8] N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449-6457.
- [9] T. Sheradsky, E. Nov, J. Chem. Soc., Perkin Trans. 1 1980, 2781-2786.
- [10] M. Allegretti, R. Bertini, M. C. Cesta, C. Bizzarri, R. Di Bitondo, V. Di Cioccio, E. Galliera, V. Berdini, A. Topai, G. Zampella, V. Russo, N. Di Bello, G. Nano, L. Nicolini, M.
- Locati, P. Fantucci, S. Florio, F. Colotta, J. Med. Chem. 2005, 48, 4312-4331.
- [11] F. Yang, L. Ackermann, Org. Lett. 2013, 15, 718-720.
- [12] F. Alonso, E. Lorenzo, M. Yus, J. Org. Chem. 1996, 61, 6058-6059.
- [13] Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian, G.-Q. Lin, J. Am. Chem. Soc. 2014, 136, 15607-15614.
- [14] S. P. H. Mee, V. Lee, J. E. Baldwin, Angew. Chem. Int. Ed. 2004, 43, 1132-1136.
- [15] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.