Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for

Chiral gem-Difluoroalkyl Reagent: gem-Difluoroalkyl

Propargylic Boron and gem-Difluoroalkyl α-Allenols

Hui-Na Zou, Meng-Lin Huang, Ming-Yao Huang, Yu-Xuan Su, Jing-Wei Zhang, Xin-

Yu Zhang, Shou-Fei Zhu*

Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

This PDF file includes:

Materials and Methods Supplementary Text Spectral Data References

Table of Contents

1. General Information
2. Preparation and Analytical Data of Substrates
2.1 Synthesis of <i>gem</i> -difluoroalkyl alkynyl <i>N</i> -triftosylhydrazones3
2.2 Analytical data of <i>gem</i> -difluoroalkyl alkynyl <i>N</i> -triftosylhydrazones4
3. Procedures for B-H Bond Insertion Reaction16
3.1 Typical procedures16
3.2 Gram-scale experiment17
4. Scope of Borane Adducts17
5. Analytical Data of B-H Bond Insertion Products
6. The Optimization of the Addition Reaction of Aldehydes with (R)-3ba35
7. Procedures for Addition Reaction of Aldehydes with (R)-3ba
7.1 Procedure A
7.2 Procedure B
8. Analytical Data of Chiral gem-Difluoroalkyl α-Allenols
9. Transformations of Chiral gem-Difluoroalkyl α-Allenols
9.1 Transformation of 5b to 644
9.2 Transformation of 6 to 745
10. X-Ray Diffraction Analysis of (R)-3fa46
11. Confirm Absolute Configurations of (R, S)-5b by ECD Spectra
12. NMR Spectra for New Compounds
13. HPLC Charts136
14. ECD Graph Computation170
15. References

1. General Information

All reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified and dried using standard procedures.¹ All chiral dirhodium complexes were purchased from Strem or TCI and used as received. The borane adducts 2a were purchased from J&K and used as received. The other borane adducts 2 were synthesized according to literature procedures.²

NMR spectra were recorded with a Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 151 MHz (¹³C NMR), 128 MHz (¹¹B NMR), 376 MHz (¹⁹F NMR). Chemical shifts (δ values) were reported in ppm down field from internal Me₄Si (¹H and ¹³C NMR). High Resolution Mass Spectra (HRMS) were recorded on an IonSpec FT-ICR mass spectrometer with Electron Spray Ionization (ESI) resource. Melting points were measured on a RY–I apparatus and uncorrected. Enantioselectivities were recorded on Agilent HPLC, using chiral stationary phase columns. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. As for the absolute structure, it was assigned by different methods including X-ray diffraction and circular dichroism. Circular dichroism spectra were measured on a circular dichroism spectrometer (MOS-500).

2. Preparation and Analytical Data of Substrates

2.1 Synthesis of gem-difluoroalkyl alkynyl N-triftosylhydrazones

All gem-difluoroalkyl alkynyl N-triftosylhydrazones were prepared according to the literature.³

A 50 mL Schlenk bottle equipped with a magnetic stir bar was charged with 2-(trifluoromethyl)benzenesulfonic acid hydrazide (NH₂NHTfs, 1.1 equiv) and anhydrous ethanol (4 mL/mmol). Then, concentrated H₂SO₄ (0.2 mL) was added dropwise into the reaction system. After stirring at room temperature for additional 5 min, the solution became clear and then an ethanol solution (3–5 mL) of alkynyl ketone (1.0 equiv) was injected into the Schlenk bottle. The pale-yellow slurry was stirred at room temperature for 18–24 hours. The solid was isolated by suction filtration and washed with cold water and enthanol and then the white product was obtained.

2.2 Analytical data of gem-difluoroalkyl alkynyl N-triftosylhydrazones

N'-(1,1-difluoro-1,4-diphenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1a)

Serial number: zhn-6-38, 59% yield (1.14 g), white solid, melting point: 119–121 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.78 (s, 1H), 8.12 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.55 – 7.31 (m, 10H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.1, 134.1 (t, J = 36.4 Hz), 133.9 (t, J = 25.2 Hz), 133.7, 133.6, 132.4, 132.4, 131.0, 130.4 (t, J = 1.8 Hz), 128.8, 128.3 (q, J = 7.1 Hz), 128.2, 127.7 (q, J = 33.3 Hz), 125.8 (t, J = 5.9 Hz), 124.1 (t, J = 274.7 Hz), 119.4, 116.5 (t, J = 245.4 Hz), 107.1, 74.4.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.14, -95.51.

HRMS (ESI)

Calcd for $[C_{23}H_{16}F_5N_2O_2S, M + H]^+$: 479.0847, found: 479.0839.

N'-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1b)

Serial number: zjw-1-65, 92% yield (16.82 g), white solid, melting point: 132-134 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.82 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.52 – 7.38 (m, 6H), 7.35 – 7.29 (m, 1H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 1.95 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.4 (t, *J* = 3.0 Hz), 136.1, 133.8 (t, *J* = 36.4 Hz), 133.6, 132.5, 132.4, 132.0 (t, *J* = 23.2 Hz), 131.5, 131.0, 130.3, 128.8, 128.2 (q, *J* = 6.3 Hz), 127.6 (q, *J*

= 33.3 Hz), 126.4 (t, *J* = 8.5 Hz), 125.5, 122.7 (q, *J* = 274.7 Hz), 119.5, 117.5 (t, *J* = 245.4 Hz), 107.0, 74.4, 19.7 (t, *J* = 2.7 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.14, -93.57.

HRMS (ESI)

Calcd for $[C_{24}H_{18}F_5N_2O_2S, M + H]^+$: 493.1004, found: 493.0995.

N'-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1c)

Serial number: zhn-6-52, 54% yield (1.34 g), white solid, melting point: 97–99 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.80 (s, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.70 (dt, *J* = 28.3, 7.7 Hz, 2H), 7.58 – 7.35 (m, 5H), 7.28 – 7.11 (m, 4H), 2.34 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 138.0, 136.2, 134.0 (q, *J* = 31.1 Hz), 133.7, 133.5, 132.4, 132.4, 131.2, 131.0, 128.8, 128.3 (q, *J* = 6.6 Hz), 128.1, 127.7 (q, *J* = 33.3 Hz), 126.3 (t, *J* = 5.7 Hz), 123.0 (t, *J* = 5.9 Hz), 122.7 (q, *J* = 272.7 Hz), 119.5, 116.5 (t, *J* = 245.4 Hz), 107.0, 74.5, 21.4.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -58.10, -95.50.

HRMS (ESI)

Calcd for $[C_{24}H_{18}F_5N_2O_2S, M + H]^+$: 493.1004, found: 493.0995.

N'-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1d)

Serial number: hml-1-41, 45% yield (0.69 g), white solid, melting point: 124–127 °C. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.88 (s, 1H), 7.89 (dd, *J* = 18.5, 7.9 Hz, 2H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.65 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.60 – 7.28 (m, 8H), 7.14 (d, *J* = 7.5 Hz, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.3, 133.7, 133.5, 133.5 (t, *J* = 35.4 Hz), 132.5, 132.4, 132.4, 131.9 (t, *J* = 24.8 Hz), 131.5, 131.0, 130.5, 128.8, 128.3 (q, *J* = 6.1 Hz), 128.1 (t, *J* = 8.1 Hz), 127.8 (q, *J* = 32.3 Hz), 126.5, 122.8 (q, *J* = 274.7 Hz), 119.5, 116.0 (t, *J* = 243.5 Hz), 107.1, 74.2.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.18, -93.87.

HRMS (ESI)

Calcd for [C₂₃H₁₅ClF₅N₂O₂S, M + H]⁺: 513.0457, found: 513.0452.

N'-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1e)

Serial number: zjw-1-88, 37% yield (0.58 g), white solid, melting point: 109–110 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.80 (s, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.79 – 7.67 (m, 2H), 7.57 – 7.40 (m, 6H), 7.35 – 7.27 (m, 3H).

 $\frac{13}{C}$ <u>NMR (101 MHz, CDCl₃)</u>

δ 136.0, 135.7 (t, *J* = 27.3Hz), 134.2, 133.8, 133.5, 133.5, 133.1, 132.5, 132.4, 131.1, 130.6, 129.6, 128.8, 128.3 (q, *J* = 6.4 Hz), 127.7 (q, *J* = 33.5 Hz), 126.2 (t, *J* = 6.0 Hz), 124.2 (t, *J* = 5.6 Hz), 122.7 (q, *J* = 273.7 Hz), 119.3, 116.0 (t, *J* = 245.2 Hz), 107.4, 74.1.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -58.15, -95.30.

HRMS (ESI)

Calcd for [C₂₃H₁₅ClF₅N₂O₂S, M + H]⁺: 513.0457, found: 513.0450.

N'-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1f)

Serial number: hml-1-43, 54% yield (0.84 g), white solid, melting point: 118–121 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.76 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 7.3 Hz, 1H), 7.68 (t, *J* = 6.9 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.51 – 7.30 (m, 5H), 7.28 – 7.18 (m, 4H). ¹³C NMR (101 MHz, CDCl₃)

δ 136.6, 136.0, 133.8, 133.6 (t, *J* = 37.4 Hz), 133.5, 132.5 (t, *J* = 27.3 Hz), 132.4, 131.1, 128.8, 128.5, 128.3 (q, *J* = 6.1 Hz), 127.7 (q, *J* = 32.3 Hz), 127.4 (t, *J* = 5.9 Hz), 122.7 (q, *J* = 274.7 Hz), 119.3, 116.3 (t, *J* = 246.4 Hz), 107.4, 74.1.

```
<sup>19</sup>F <u>NMR (376 MHz, CDCl<sub>3</sub>)</u>
```

δ-58.14, -95.22.

HRMS (ESI)

Calcd for $[C_{23}H_{15}ClF_5N_2O_2S, M + H]^+$: 513.0457, found: 513.0452.

N'-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1g)

Serial number: zhn-6-84, 34% yield (510 mg), white solid, melting point: 95–97 °C. ¹H NMR (400 MHz, CDCl₃)

δ 8.85 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.66 – 7.35 (m, 8H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.90 (dd, *J* = 10.5, 8.3 Hz, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 159.7 (dt, *J* = 253.0, 4.2 Hz), 136.0 (d, *J* = 1.4 Hz), 133.7, 133.4, 133.2 (t, *J* = 36.7 Hz), 132.6 (dt, *J* = 8.2, 1.5 Hz), 132.4, 132.3, 131.0, 128.8, 128.3 (q, *J* = 6.3 Hz), 127.7 (q, 32.3 Hz), 127.5 (td, *J* = 6.9, 2.1 Hz), 123.8 (d, *J* = 3.6 Hz),

122.7 (q, *J* = 274.7 Hz), 121.5 (td, *J* = 38.4, 12.1 Hz), 119.5, 116.0, 115.8, 115.7 (td, *J* = 242.9, 1.4 Hz), 107.0, 74.0.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -58.21, -93.57 (d, J = 10.2 Hz), -112.38 (t, J = 10.2 Hz).

HRMS (ESI)

Calcd for $[C_{23}H_{15}F_6N_2O_2S, M + H]^+$: 497.0753, found: 497.0754.

N'-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1h)

Serial number: zjw-1-94, 73% yield (1.13 g), white solid, melting point: 157–159 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.83 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.80 (dd, *J* = 13.0, 7.8 Hz, 2H), 7.72 - 7.65 (m, 3H), 7.56 - 7.36 (m, 8H), 7.27 (t, *J* = 7.1 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 135.7, 134.0 (t, *J* = 36.4 Hz), 133.7, 133.5, 133.1, 132.4, 132.0, 131.5, 131.0, 129.5 (t, *J* = 23.6 Hz), 129.5 (t, *J* = 2.3 Hz), 128.8, 128.6, 127.9 (q, *J* = 6.4 Hz), 127.3 (q, *J* = 32.9 Hz), 126.7, 125.8, 125.3 (t, *J* = 8.8 Hz), 124.7 (t, *J* = 3.0 Hz), 124.4, 122.7 (q, *J* = 273.9 Hz), 119.5, 117.5 (t, *J* = 245.2 Hz), 107.3, 74.5.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.19, -91.51.

HRMS (ESI)

Calcd for $[C_{27}H_{18}F_5N_2O_2S, M + H]^+$: 529.1004, found: 529.1002.

N'-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1i)

Serial number: zhn-6-39, 66% yield (347 mg), white solid, melting point: 151–152 °C.

<u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.84 (s, 1H), 8.20 (d, *J* = 8.6 Hz, 2H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.65 (td, *J* = 7.8, 1.3 Hz, 1H), 7.60 – 7.49 (m, 5H), 7.46 – 7.42 (m, 2H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 149.1, 140.1 (t, *J* = 26.5 Hz), 136.0, 133.9, 133.3, 132.8 (t, *J* = 36.4 Hz), 132.4, 132.4, 131.3, 128.9, 128.5 (q, *J* = 6.4 Hz), 127.8 (q, *J* = 33.3 Hz), 127.3 (t, *J* = 5.8 Hz), 123.3, 122.6 (q, *J* = 274.7 Hz), 119.1, 115.9 (t, *J* = 246.4 Hz), 107.8, 73.7.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.20, -95.65.

HRMS (ESI)

Calcd for $[C_{23}H_{15}F_5N_3O_4S, M + H]^+$: 524. 0698, found: 524. 0691.

N'-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1j)

Serial number: zhn-6-145, 94% yield (2.01 g), white solid, melting point: 156–157 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.78 (s, 1H), 8.03 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.40 – 7.30 (m, 2H), 7.28 – 7.18 (m, 3H), 7.07 (d, *J* = 7.5 Hz, 1H), 2.40 (s, 3H), 1.96 (t, *J* = 2.0 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 141.3, 136.4 (t, *J* = 3.2 Hz), 136.2, 133.9 (t, *J* = 36.1 Hz), 133.7, 133.6, 132.9, 132.5, 132.1 (t, *J* = 23.7 Hz), 131.5, 131.1, 130.3, 129.9, 128.2 (q, *J* = 6.3 Hz), 127.7 (q, *J* = 33.3 Hz), 126.4 (t, *J* = 8.5 Hz), 126.1, 125.5, 122.7 (q, *J* = 273.9 Hz), 119.4, 117.4 (t, *J* = 244.4 Hz), 106.1, 78.3, 20.6, 19.6 (t, *J* = 2.6 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.14, -93.87.

HRMS (ESI)

Calcd for $[C_{25}H_{20}F_5N_2O_2S, M + H]^+$: 507.1160, found: 507.1160.

N'-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1k)

Serial number: zhn-6-82, 79% yield (1.40 g), white solid, melting point: 146–148 °C. 1 H NMR (400 MHz, CDCl₃)

δ 8.80 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 2.37 (s, 3H), 1.95 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 138.7, 136.5 (t, J = 3.1 Hz), 136.2, 133.9 (t, J = 30.3 Hz), 133.7, 133.6, 132.9, 132.5, 132.1(t, J = 23.6 Hz), 131.9, 131.4, 130.3, 129.6, 128.7, 128.2 (q, J = 6.3 Hz), 127.7 (q, J = 33.0 Hz), 126.4 (t, J = 8.5 Hz), 125.5, 122.7 (q, J = 274.0 Hz), 119.3, 117.5 (t, J = 244.0 Hz), 107.3, 74.1, 21.2, 19.7 (t, J = 2.5 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.18, -93.57.

HRMS (ESI)

Calcd for $[C_{25}H_{20}F_5N_2O_2S, M + H]^+$: 507.1160, found: 507.1162.

N'-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (11)

Serial number: zhn-6-83, 92% yield (1.63 g), white solid, melting point: 164–166 °C. ¹H NMR (400 MHz, CDCl₃)

δ 8.79 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.48 – 7.37 (m, 3H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 3H), 7.06 (d, *J* = 7.4 Hz, 1H), 2.40 (s, 3H), 1.95 (s, 3H).

¹³C NMR (101 MHz, CDCl₃)

δ 141.7, 136.5 (t, *J* = 3.0 Hz), 136.2, 134.0 (t, *J* = 36.5 Hz), 133.7, 133.5, 132.5, 132.4, 132.1 (t, *J* = 23.7 Hz), 131.4, 130.2, 129.6, 128.1 (q, *J* = 6.4 Hz), 127.7 (q, *J* = 33.3 Hz), 126.4 (t, *J* = 8.5 Hz), 125.5, 122.7 (q, *J* = 273.9 Hz), 117.5 (t, *J* = 233.3 Hz), 116.4, 107.5, 74.1, 21.8, 19.7 (t, *J* = 2.7 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.18, -93.60.

HRMS (ESI)

Calcd for $[C_{25}H_{20}F_5N_2O_2S, M + H]^+$: 507.1160, found: 507.1165.

N'-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1m)

Serial number: zhn-6-89, 89% yield (1.41 g), white solid, melting point: 150–152 °C. ¹H NMR (400 MHz, CDCl₃)

δ 9.14 (s, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 7.3 Hz, 1H), 7.72 (t, *J* = 6.8 Hz, 1H), 7.62 – 7.27 (m, 7H), 7.25 – 7.16 (m, 1H), 7.08 (d, *J* = 6.8 Hz, 1H), 1.97 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.8, 136.5 (t, *J* = 2.3 Hz), 136.2, 133.7, 133.6, 132.7 (t, *J* = 36.7 Hz), 132.4, 132.0, 131.9 (t, *J* = 23.6 Hz), 131.5, 130.3, 129.6, 128.1 (q, *J* = 6.0 Hz), 127.8 (q, *J* = 33.4 Hz), 126.9, 126.4 (t, *J* = 8.6 Hz), 125.5, 122.6 (q, *J* = 273.9 Hz), 120.0, 117.5 (t, *J* = 244.0 Hz), 103.3, 79.6, 19.7.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -58.05, -93.37.

HRMS (ESI)

Calcd for $[C_{24}H_{17}ClF_5N_2O_2S, M + H]^+$: 527.0614, found: 527.0611.

N'-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1n)

Serial number: zhn-6-88, 87% yield (1.17 g), white solid, melting point: 147–150 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.82 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 1.8 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.41 – 7.32 (m, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 1.97 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.4 (t, *J* = 3.1 Hz), 136.0, 134.8, 133.7, 133.7, 133.1 (t, *J* = 36.7 Hz), 132.5, 132.1, 131.9 (t, *J* = 23.6 Hz), 131.5, 131.2, 130.5, 130.4, 130.1, 128.2 (q, *J* = 6.2 Hz), 127.7 (q, *J* = 33.3 Hz), 126.4 (t, *J* = 8.5 Hz), 125.5, 122.7 (q, *J* = 274.1 Hz), 121.1, 117.5 (t, *J* = 243.9 Hz), 104.9, 75.1, 19.7 (t, *J* = 2.7 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.17, -93.48.

HRMS (ESI)

Calcd for $[C_{24}H_{17}ClF_5N_2O_2S, M + H]^+$: 527.0614, found: 527.0610.

N'-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (10)

Serial number: zhn-6-87, 92% yield (1.46 g), white solid, melting point: 187–189 °C. <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.78 (s, 1H), 8.03 – 7.29 (m, 10H), 7.28 – 7.00 (m, 2H), 1.94 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 137.4, 136.5, 136.1, 133.7, 133.6, 133.6, 133.4 (t, *J* = 36.6 Hz), 132.5, 131.9 (t, *J* = 24.1 Hz), 131.5, 130.3, 129.3, 128.2 (q, *J* = 6.9 Hz), 127.7 (q, *J* = 32.8 Hz), 126.4 (t, *J* = 8.5 Hz), 125.5, 122.7 (q, *J* = 275.1 Hz), 117.9, 117.5 (t, *J* = 243.1 Hz), 105.5, 75.2, 19.7.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.17, -93.48.

HRMS (ESI)

Calcd for [C₂₄H₁₇ClF₅N₂O₂S, M + H]⁺: 527.0614, found: 527.0610.

N'-1,1-difluoro-4-(3-fluorophenyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1p)

Serial number: zhn-6-191, 82% yield (1.45 g), white solid, melting point: 146–148 °C. ¹H NMR (400 MHz, CDCl₃)

δ 8.80 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.47 – 7.30 (m, 4H), 7.25 – 7.15 (m, 3H), 7.08 (d, *J* = 7.5 Hz, 1H), 1.95 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 163.5, 161.0, 136.4 (t, J = 2.8 Hz), 136.0, 133.7, 133.2 (t, J = 36.8 Hz), 132.5, 131.9 (t, J = 23.6 Hz), 131.5, 130.6 (d, J = 8.5 Hz), 130.4, 128.4, 128.4, 128.2 (q, J = 6.1 Hz), 127.7 (q, J = 33.2 Hz), 126.4 (t, J = 8.5 Hz), 125.5, 122.7 (q, J= 274.2 Hz), 121.2 (d, J = 9.2 Hz), 119.1 (d, J = 23.6 Hz), 118.5 (d, J = 21.0 Hz), 117.5 (t, J = 243.7 Hz), 105.0 (d, J = 3.6 Hz), 74.9, 19.7.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -58.18, -93.52, -111.24.

HRMS (ESI)

Calcd for $[C_{24}H_{17}F_6N_2O_2S, M + H]^+$: 511.0909, found: 511.0907.

N'-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazide (1q)

Serial number: zhn-8-45, 88% yield (702 mg), white solid, melting point: 179–182 °C.

<u>¹H NMR (400 MHz, THF-d₈)</u>

δ 11.24 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.87 – 7.79 (m, 6H), 7.64 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 2.02 (s, 3H).

 $\frac{13}{C}$ NMR (151 MHz, THF-d₈)

δ 136.9, 136.5 (t, *J* = 3.2 Hz), 133.6, 133.5, 132.7, 132.5, 132.4 (t, *J* = 23.5 Hz), 131.5 (t, *J* = 30.2 Hz), 131.4, 130.1, 130.0 (t, *J* = 36.9 Hz), 127.9 (q, *J* = 6.4 Hz), 127.3 (q, *J* = 33.3 Hz), 126.0 (t, *J* = 8.4 Hz), 125.5 (q, *J* = 3.7 Hz), 125.3, 124.6, 123.9 (q, *J* = 271.8 Hz), 122.8 (q, *J* = 286.9 Hz), 118.3 (t, *J* = 242.7 Hz), 102.0, 77.3, 19.1 (t, *J* = 2.5 Hz).

¹⁹F <u>NMR (376 MHz, THF-d8)</u>

δ-60.40, -65.71, -95.34.

HRMS (ESI)

Calcd for $[C_{25}H_{17}F_8N_2O_2S, M + H]^+$: 561.0878, found: 561.0876.

N'-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1r)

Serial number: zhn-6-189, 85% yield (2.01 g), white solid, melting point: 201–203 °C. <u>¹H NMR (400 MHz, THF- d_6)</u>

δ 11.10 (s, 1H), 8.12 (d, *J* = 8.3 Hz, 1H), 8.06 – 7.84 (m, 5H), 7.79 (t, *J* = 7.9 Hz, 1H), 7.69 – 7.47 (m, 5H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.7 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 2.04 (s, 3H).

¹³C <u>NMR (101 MHz, THF-*d*₆)</u>

135.3,134.7 (t, J = 3.2 Hz), 131.7, 131.5, 131.3, 131.1, 130.7 (q, J = 23.2 Hz), 130.6, 130.3, 129.6, 129.2, 128.2, 126.5, 126.0 (q, J = 6.4 Hz), 125.6, 125.5 (q, J = 33.3 Hz), 124.9, 124.2 (t, J = 8.6 Hz), 123.5, 123.5, 123.2, 121.0 (q, J = 273.9 Hz), 116.4 (t, J = 243.4 Hz), 116.0, 100.7, 78.4, 17.2 (t, J = 2.5 Hz).

 $\frac{19}{\text{F}}$ <u>NMR</u> (376 <u>MHz</u>, <u>THF-d_6</u>)

 δ -60.34, -95.55.

HRMS (ESI)

Calcd for $[C_{28}H_{20}F_5N_2O_2S, M + H]^+$: 543.1160, found: 543.1159.

N'-(1,1-difluoro-4-(thiophen-2-yl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1s)

Serial number: zhn-6-90, 78% yield (1.17 g), white solid, melting point: 129–131 °C. ¹H NMR (400 MHz, CDCl₃)

δ 8.78 (s, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.76 – 7.66 (m, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.40 – 7.29 (m, 2H), 7.24 – 7.15 (m, 2H), 7.07 (d, *J* = 7.6 Hz, 1H), 1.95 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.5 (t, J = 3.0 Hz), 136.1, 133.8 (t, J = 36.7 Hz), 133.7, 133.6, 133.1, 132.5, 132.0 (t, J = 23.6 Hz), 131.4, 130.3, 129.7, 128.2 (q, J = 6.5 Hz), 127.6 (q, J = 33.2 Hz), 126.6, 126.4 (t, J = 8.5 Hz), 125.5, 122.7 (q, J = 273.9 Hz), 118.6, 117.5 (t, J = 244.1 Hz), 102.1, 74.5, 19.7 (t, J = 2.5 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.15, -93.44.

HRMS (ESI)

Calcd for [C₂₂H₁₆F₅N₂O₂S₂, M + H]⁺: 499.0568, found: 499.0564.

N'-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1t)

Serial number: zhn-7-123, 82% yield (306 mg), yellow solid, melting point: 106–108 °C.

¹<u>H NMR (400 MHz, CDCl₃)</u>

 δ 8.94 (s, 1H), 8.42 – 8.36 (m, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.93 – 7.90 (m, 2H), 7.87 – 7.74 (m, 3H), 7.69 – 7.48 (m, 3H), 1.83 (t, J = 18.3 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.4, 133.9, 133.8 (t, *J* = 35.8 Hz), 133.2, 133.1, 132.9, 132.6, 132.5, 131.8, 128.7, 128.6 (q, *J* = 6.3 Hz), 128.0, 127.9 (q, *J* = 33.2 Hz), 127.1, 125.4, 125.2, 122.8 (q, *J* = 274.0 Hz), 118.6 (t, *J* = 238.0 Hz), 117.1, 105.2, 78.6, 21.4 (t, *J* = 25.8 Hz).

¹⁹F <u>NMR</u> (376 <u>MHz</u>, <u>CDCl₃</u>)

δ-58.07, -89.13.

HRMS (ESI)

Calcd for [C₂₂H₁₅F₅N₂O₂SNa, M+Na]⁺: 489.0667, found: 489.0667.

3. Procedures for B-H Bond Insertion Reaction

3.1 Typical procedures

Procedure A:

gem-Difluoroalkyl alkynyl *N*-triftosylhydrazones **1a** (71.7 mg, 0.15 mmol, 1.5 equiv), trimethylamine borane adduct **2a** (7.3 mg, 0.1 mmol), $Rh_2(S$ -TBPTTL)₄ (**4d**, 1.3 mg, 0.0005 mmol, 0.5 mol%), and NaH (10.8 mg, 0.45 mmol, 4.5 equiv) were charged into a 25 mL Schlenk tube under argon atmosphere. After the mixture was cooled to $-10 \,^{\circ}$ C, 2.5 mL dry MTBE was injected into the tube. At this temperature, the reaction was kept stirring for 24 h. Then the reaction system was concentrated and purified by a flash chromatography on silica gel to give **3aa** as light yellow oil (30.9 mg, 99% yield, 93% ee). Serial number: zhn-6-36.

Procedure B:

gem-Difluoroalkyl alkynyl *N*-triftosylhydrazones **1t** (69.9 mg, 0.15 mmol, 1.5 equiv), trimethylamine borane adduct **2a** (7.3 mg, 0.1 mmol), $Rh_2(S$ -TFPTTL)₄ (**4b**, 0.8 mg, 0.0005 mmol, 0.5 mol%), and NaH (10.8 mg, 0.45 mmol, 4.5 equiv) were charged into a 25 mL Schlenk tube under argon atmosphere. After the mixture was cooled to -10 °C, 2.5 mL dry MTBE was injected into the tube. At this temperature, the reaction

was kept stirring for 24 h. Then the reaction system was concentrated and purified by a flash chromatography on silica gel to give **3ta** as yellow oil (26.0 mg, 86% yield, 73% ee). Serial number: zhn-7-129.

3.2 Gram-scale experiment

gem-Difluoroalkyl alkynyl *N*-triftosylhydrazones **1b** (2.58 g, 5.24 mmol, 1.5 equiv), trimethylamine borane adduct **2a** (256 mg, 3.50 mmol, 1.0 equiv), and NaH (378 mg, 15.75 mmol, 4.5 equiv) were charged into an oven-dried 200 mL Schlenk tube under argon atmosphere. After the mixture was cooled to -10 °C, 75 mL dry MTBE was injected into the Schlenk tube by syringe. $Rh_2(S-TBPTTL)_4$ (**4d**, 18.7 mg, 0.007 mmol, 0.2 mol%) dissolved in 5 mL dry MTBE were injected into the Schlenk tube by a syringe. At this temperature, the reaction was kept stirring for 40 h. Then the reaction system was concentrated and purified by a flash chromatography on silica gel to give (*R*)-**3ba** as light yellow soild (0.87 g, 76% yield, 96% ee). Serial number: zhn-6-155.

4. Scope of Borane Adducts

Note: due to the small polarity of **3ad**, the ee value is difficult to measure.

5. Analytical Data of B-H Bond Insertion Products

(-)-Trimethylamine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3aa)

Serial number: zhn-6-36, Light yellow oil, 99% yield (30.9 mg), 93% ee. $[\alpha]_D^{24}$ -41.6 (*c* 1.0, CHCl₃). TLC R_f = 0.50 (PE/EA = 3:1, v/v).

¹<u>H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

δ 7.68 – 7.59 (m, 2H), 7.43 – 7.29 (m, 5H), 7.29 – 7.16 (m, 3H), 2.80 – 2.54 (m, 10H).

 $\frac{13}{C}$ <u>NMR (101 MHz, CDCl₃)</u>

δ 138.1 (t, *J* = 27.4 Hz), 131.2, 128.8, 128.1, 127.4, 127.1, 126.1 (t, *J* = 6.2 Hz), 124.7, 124.2 (t, *J* = 245.8 Hz), 93.5 (dd, *J* = 10.9, 5.5 Hz), 82.7, 52.7.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-3.98.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -86.63 (d, *J* = 231.7 Hz), -89.72 (d, *J* = 231.6 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₂BF₂NK, M+K]⁺: 352.1445, found: 352.1449.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.22 \text{ min (major)}$ and $t_R = 7.56 \text{ min (minor)}$.

(-)-1-methylpyrrolidine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ab)

Serial number: zhn-6-58, Colorless oil, 90% yield (30.7 mg), 91% ee. $[\alpha]_D^{24}$ -40.0 (*c* 0.5, CHCl₃). TLC R_f = 0.28 (PE/EA = 5:1, v/v). <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.68 – 7.58 (m, 2H), 7.41 – 7.31 (m, 5H) 7.29 – 7.19 (m, 3H), 3.42 – 3.35 (m, 1H), 3.27 – 3.20 (m, 1H), 2.95 – 2.81 (m, 2H), 2.79 – 2.74 (m, 1H), 2.67 (s, 3H), 2.10 – 1.86 (m, 4H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 138.3 (t, *J* = 27.4 Hz), 131.2, 128.8 (t, *J* = 1.4 Hz), 128.1, 127.4, 127.0, 126.1 (t, *J* = 6.2 Hz), 124.9, 124.4 (t, *J* = 246.0 Hz), 82.5, 62.3, 61.8, 48.3, 22.7, 22.2. ¹¹B NMR (128 MHz, CDCl₃)

δ -5.03 (t, J = 106.3 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -87.22 (d, *J* = 231.8 Hz), -89.48 (d, *J* = 231.5 Hz).

HRMS (ESI)

Calcd for [C₂₁H₂₄BF₂NK, M+K]⁺: 378.1601, found: 378.1605.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 7.61 \text{ min (major)}$ and $t_R = 9.23 \text{ min (minor)}$.

(+)-3,5-dimethylpyridine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ac)

Serial number: hml-1-65, Light yellow oil, 81% yield (29.2 mg), 68% ee. $[\alpha]_D^{26}$ +4.0 (*c* 0.5, CHCl₃). TLC R_f = 0.70 (PE/EA = 3:1, v/v).

¹<u>H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

δ 8.25 (s, 2H), 7.64 – 7.58 (m, 2H), 7.54 (s, 1H), 7.41 – 7.34 (m, 3H), 7.21 (s, 5H), 2.96 – 2.83 (m, 1H), 2.29 (s, 6H).

$\frac{1^{3}\text{C}}{1^{3}\text{C}}$ <u>NMR</u> (101 <u>MHz</u>, <u>CDCl₃</u>)

δ 145.4, 141.3, 138.7 (t, *J* = 27.5 Hz), 134.7, 131.1, 128.9, 128.0, 127.6, 127.0, 125.8 (t, *J* = 6.2 Hz), 124.7, 124.5 (t, *J* = 245.0 Hz), 92.3 (dd, *J* = 8.0 Hz), 83.8, 18.3.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -6.54.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-58.24, -89.67.

HRMS (ESI)

Calcd for [C₂₃H₂₂BF₂NK, M+K]⁺: 400.1445, found: 400.1447.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.64 \text{ min (minor)}$ and $t_R = 9.20 \text{ min (major)}$.

(-)-tributylphosphane-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ad)

Serial number: zhn-6-61, Light yellow oil, 85% yield (38.9 mg), --% ee. $[\alpha]_D^{24}$ -55.0 (*c* 1.0, CHCl₃). TLC R_f = 0.65 (PE/EA = 50:1, v/v). Note: due to the small polarity of **3ad**, the ee value is difficult to measure.

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.56 – 7.54 (m, 2H), 7.31 – 7.29 (m, 3H), 7.23 – 7.21 (m, 2H), 7.17 – 7.13 (m, 3H), 2.77 – 2.63 (m, 1H), 1.61 – 1.55 (m, 6H), 1.40 – 1.30 (m, 6H), 1.28 – 1.18 (m, 6H), 0.79 (t, *J* = 7.2 Hz, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 138.1 (t, *J* = 27.6 Hz), 131.1, 128.8, 128.1, 127.4, 127.0, 126.2 (t, *J* = 6.2 Hz), 124.7, 124.5 (t, *J* = 229.3 Hz), 93.6 – 93.3 (m), 82.1, 24.5, 24.5, 24.5, 24.4, 21.2, 20.8, 13.6.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -29.27 (t, J = 89.2 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

-90.51, 90.56.

HRMS (ESI)

Calcd for [C₂₈H₄₀BF₂PK, M+K]⁺: 495.2560, found: 495.2563.

(+)-(*R*)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ba)

Serial number: zhn-6-67, Yellow oil, 99% yield (32.4 mg), 99% ee. $[\alpha]_D^{25}$ +18.0 (*c* 1.0, CHCl₃). TLC R_f = 0.29 (PE/EA = 5:1, v/v). The absolute configuration of (*R*)-**3ba** was inferred from (*R*)-**3fa**.

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.62 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.27 – 7.14 (m, 6H), 2.84 – 2.71 (m, 1H), 2.68 (s, 9H), 2.54 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.5 (t, *J* = 25.7 Hz), 135.5, 131.5, 131.3, 128.8, 128.1, 127.7 (t, *J* = 8.3 Hz), 127.1, 125.5 (t, *J* = 252.5 Hz), 124.8, 93.5 (t, *J* = 7.0 Hz), 82.6, 52.7, 20.9 (t, *J* = 4.0 Hz).

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -4.12.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.27 (d, *J* = 240.3 Hz), -88.31 (d, *J* = 240.3 Hz).

HRMS (ESI)

Calcd for [C₂₀H₂₄BF₂NK, M+K]⁺: 366.1601, found: 366.1604.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.30 \text{ min}$ (major) and $t_R = 7.09 \text{ min}$ (minor).

(-)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-yl)borane (3ca)

Me

Serial number: zhn-6-66, Yellow oil, 99% yield (32.5 mg), 89% ee. $[\alpha]_D^{25}$ -30.1 (*c* 1.0, CHCl₃). TLC R_f = 0.29 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.47 – 7.40 (m, 2H), 7.35 – 7.29 (m, 2H), 7.28 – 7.21 (m, 4H), 7.17 (d, *J* = 7.5 Hz, 1H), 2.78 – 2.69 (m, 1H), 2.67 (s, 9H), 2.37 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 138.1 (t, *J* = 27.2 Hz), 136.9, 131.2, 129.6, 128.1, 127.3, 127.1, 126.8 (t, *J* = 6.2 Hz), 124.8, 124.3 (t, *J* = 242.4 Hz), 123.2 (t, *J* = 6.2 Hz), 93.7 (dd, *J* = 10.2, 6.0 Hz), 82.8, 52.8, 21.6.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -3.68 (t, J = 105.9 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -86.56 (d, *J* = 231.4 Hz), -89.56 (d, *J* = 231.1 Hz).

HRMS (ESI)

Calcd for [C₂₀H₂₄BF₂NNa, M+Na]⁺: 350.1862, found: 350.1871.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0

mL/min, 254 nm UV detector, $t_R = 6.24$ min (major) and $t_R = 7.10$ min (minor).

(+)-Trimethylamine-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3da)

Serial number: zhn-6-71, Yellow oil, 74% yield (25.6 mg), 92% ee. $[\alpha]_D^{25}$ +24.0 (*c* 0.5 CHCl₃). TLC R_f = 0.31 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.73 – 7.66 (m, 1H), 7.41 – 7.39 (m, 1H), 7.31 – 7.29 (m, 4H), 7.25 – 7.19 (m, 4H), 3.32 – 3.16 (m, 1H), 2.69 (s, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 135.0 (t, *J* = 27.1 Hz), 130.3, 129.7, 129.1, 128.0 (t, *J* = 9.3 Hz), 127.0, 126.0, 125.0, 123.7, 122.4 (t, *J* = 247.3 Hz), 92.0 (dd, *J* = 7.6, 3.2 Hz), 81.5, 51.6.

¹¹B <u>NMR</u> (128 <u>MHz</u>, <u>CDCl₃</u>)

δ -3.86.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -87.70 (d, *J* = 240.5 Hz), -94.87 (d, *J* = 240.5 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₁BClF₂NK, M+K]⁺: 386.1055, found: 386.1060.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 7.15 \text{ min (major)}$ and $t_R = 7.97 \text{ min (minor)}$.

(-)-Trimethylamine-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3ea)

Serial number: zhn-6-74, Light yellow oil, 83% yield (28.7 mg), 87% ee. $[\alpha]_D^{25}$ -4.0 (*c* 0.5, CHCl₃). TLC R_f = 0.32 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.58 (s, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.29 – 7.16 (m, 7H), 2.68 – 2.64 (m, 1H), 2.61 (s, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 139.9 (t, *J* = 27.9 Hz), 133.4, 131.2, 129.0, 128.7, 128.1, 127.2, 126.7 (t, *J* = 6.4 Hz), 124.5, 124.4 (t, *J* = 6.2 Hz), 123.5 (t, *J* = 246.3 Hz), 93.0 (dd, *J* = 11.1, 5.6 Hz), 83.1, 52.8.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -3.85 (t, J = 109.3 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.67 (d, *J* = 231.7 Hz), -91.31 (d, *J* = 232.2 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₁BClF₂NK, M+K]⁺: 386.1055, found: 386.1063.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 5.64 \text{ min (major)}$ and $t_R = 6.72 \text{ min (minor)}$.

(-)-(*R*)-Trimethylamine-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3fa)

Serial number: zhn-6-72, White solid, melting point: $111-113 \,^{\circ}$ C, 97% yield (33.8 mg), 90% ee. [α]_D²⁵ -57.8 (*c* 1.0, CHCl₃). TLC R_f = 0.32 (PE/EA = 5:1, v/v). <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.52 – 7.48 (m, 2H), 7.29 – 7.23 (m, 4H), 7.19 – 7.16 (m, 3H), 7.71 – 2.55 (m, 10H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

 δ 136.6 (t, J = 28.2 Hz), 134.9, 131.2, 128.2, 127.7 (t, J = 6.2 Hz), 127.6, 127.3,

124.6, 123.9 (t, *J* = 246.3 Hz), 93.1 (dd, *J* = 12.1, 5.1 Hz), 82.9, 52.8.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-3.70.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -85.04 (d, J = 232.0 Hz), -90.59 (d, J = 231.6 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₁BClF₂NK, M+K]⁺: 386.1055, found: 386.1062.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.04 \text{ min (major)}$ and $t_R = 7.14 \text{ min (minor)}$.

(+)-Trimethylamine-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-yl)borane (3ga)

Serial number: zhn-6-99, White solid, melting point: 92–94 °C, 98% yield (32.4 mg), 95% ee. $[\alpha]_D^{26}$ +22.4 (*c* 1.0, CHCl₃). TLC R_f = 0.30 (PE/EA = 5:1, v/v).

 ^{1}H <u>NMR (400 MHz, CDCl₃)</u>

δ 7.61 (t, *J* = 7.7 Hz, 1H), 7.40 – 7.20 (m, 6H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.07 (dd, *J* = 11.2, 8.3 Hz, 1H), 3.01 – 2.86 (m, 1H), 2.67 (s, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 159.3 (dt, *J* = 249.9, 4.2 Hz), 131.3, 130.9 (d, *J* = 8.5 Hz), 128.5 – 128.3 (m), 128.0, 127.1, 126.1 (td, *J* = 28.2, 11.4 Hz), 124.7, 123.3 (d, *J* = 3.4 Hz), 123.0 (td, *J* = 245.9, 2.9 Hz), 115.9 (d, *J* = 22.3 Hz), 93.0 – 92.8 (m), 82.6, 52.7.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-3.79.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.78 (dd, *J* = 242.1, 11.4 Hz), -94.11 (dd, *J* = 241.5, 12.7 Hz), -114.63 (t, *J* = 12.1 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₁BF₃NNa, M+Na]⁺: 354.1611, found: 354.1608.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.61 \text{ min (major)}$ and $t_R = 7.63 \text{ min (minor)}$.

(+)-Trimethylamine-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-yl)borane (3ha)

Serial number: zhn-6-96, Light yellow oil, 99% yield (36.0 mg), 97% ee. $[\alpha]_D^{26}$ +130.6 (*c* 1.0, CHCl₃). TLC R_f = 0.45 (PE/EA = 5:1, v/v).

<u>¹H NMR (400 MHz, CDCl₃)</u>

δ 8.42 (d, *J* = 8.5 Hz, 1H), 7.87 – 7.84 (m, 3H), 7.54 – 7.45 (m, 3H), 7.34 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 3.13 – 2.98 (m, 1H), 2.60 (s, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 134.1, 133.8 (t, *J* = 25.1 Hz), 131.3, 130.1, 129.8, 128.8, 128.0, 127.1, 126.2, 125.8 (t, *J* = 9.1 Hz), 125.5 (t, *J* = 4.7 Hz), 125.3 (t, *J* = 247.5 Hz), 125.3, 124.8, 124.3, 93.5 (dd, *J* = 6.5, 6.5 Hz), 83.0, 52.6.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-3.70.

¹⁹F <u>NMR</u> (376 <u>MHz</u>, <u>CDCl₃)</u>

δ -82.71 (d, J = 240.2 Hz), -88.88 (d, J = 240.8 Hz).

HRMS (ESI)

Calcd for [C₂₃H₂₄BF₂NNa, M+Na]⁺: 386.1862, found: 386.1866.

<u>HPLC condition</u>: Chiralcel IC-3 column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 11.35 min (major) and $t_{\rm R}$ = 19.75 min (minor).

(-)-Trimethylamine-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-yl)borane (3ia)

Serial number: zhn-6-68, Light yellow oil, 80% yield (28.6 mg), 82% ee. $[\alpha]_D^{26}$ -77.2 (*c* 1.0, CHCl₃). TLC R_f = 0.25 (PE/EA = 3:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 8.15 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.27 – 7.14 (m, 5H), 2.73 – 2.65 (m, 1H), 2.61 (s, 9H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

 δ 148.2, 144.3 (t, J = 28.1 Hz), 131.2, 128.3, 127.6, 127.6, 127.5, 124.2, 123.3 (t, J = 252.5 Hz), 122.6, 92.4 (dd, J = 12.5, 5.3 Hz), 83.3 (d, J = 1.8 Hz), 52.8.

 $\frac{^{11}\text{B}}{^{11}\text{B}} \underline{\text{NMR}} (128 \underline{\text{MHz}}, \underline{\text{CDCl}}_3)$

δ -4.22.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.31 (d, *J* = 232.7 Hz), -92.57 (d, *J* = 232.9 Hz).

HRMS (ESI)

Calcd for [C₁₉H₂₁BF₂N₂O₂Na, M+Na]⁺: 381.1556, found: 381.1557.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 10.28 min (major) and $t_{\rm R}$ = 12.67 min (minor).

(+)-Trimethylamine-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-yl)borane (3ja)

Serial number: zhn-6-151, Light yellow oil, 94% yield (32.0 mg), 98% ee. $[\alpha]_D^{27}$ +5.2 (*c* 1.0, CHCl₃). TLC R_{*f*} = 0.39 (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.19 – 6.95 (m, 7H), 2.78 – 2.67 (m, 1H), 2.59 (s, 9H), 2.45 (t, *J* = 2.6 Hz, 3H), 2.25 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 140.0, 136.5 (t, *J* = 25.8 Hz), 135.5 (t, *J* = 2.3 Hz), 131.5, 131.5, 129.2, 128.9, 127.8 (t, *J* = 8.2 Hz), 127.1, 125.5 (t, *J* = 242.4 Hz), 125.3, 124.9, 124.6, 97.5 (t, *J* = 7.3 Hz), 81.4, 52.7, 20.9 (t, *J* = 4.1 Hz), 20.8.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -3.58 (t, J = 105.5 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -85.51 (d, J = 241.6 Hz), -87.95 (d, J = 241.5 Hz).

HRMS (ESI)

Calcd for [C₂₁H₂₆BF₂NNa, M+Na]⁺: 364.2019, found: 364.2027.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 10.42 min (major) and $t_{\rm R}$ = 11.16 min (minor).

(+)-Trimethylamine-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ka)

Serial number: zhn-6-97, Yellow oil, 82% yield (27.9 mg), 98% ee. $[\alpha]_D^{25}$ +18.2 (*c* 1.0, CHCl₃). TLC R_f = 0.34 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.61 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.27 – 7.08 (m, 6H), 7.04 – 7.01 (m, 1H), 2.86 – 2.74 (m, 1H), 2.68 (s, 9H), 2.54 (s, 3H), 2.28 (s, 3H).

 $\frac{13}{C}$ <u>NMR</u> (101 <u>MHz</u>, <u>CDCl₃</u>)

δ 137.7, 136.5 (t, *J* = 25.8 Hz), 135.5, 131.9, 131.4, 128.8, 128.3, 128.0, 127.7 (t, *J* = 8.6 Hz), 125.5 (t, *J* = 252.5 Hz), 124.8, 124.6 (t, *J* = 246.44 Hz), 93.1 – 93.0 (m), 82.8, 52.8, 21.2, 20.9 (t, *J* = 4.1 Hz).

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-4.00.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -85.10 (d, J = 240.1 Hz), -88.35 (d, J = 240.2 Hz).

HRMS (ESI)

Calcd for [C₂₁H₂₆BF₂NNa, M+Na]⁺: 364.2019, found: 364.2026.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 5.07 \text{ min (major)}$ and $t_R = 5.46 \text{ min (minor)}$.

(+)-Trimethylamine-(1,1-difluoro-1-(o-tolyl)-4-(p-tolyl)but-3-yn-2-yl)borane (3la)

Serial number: zhn-6-98, Yellow oil, 80% yield (27.4 mg), 98% ee. $[\alpha]_D^{21}$ +15.5 (*c* 0.5, CHCl₃). TLC R_f = 0.33 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.61 (d, *J* = 7.7 Hz, 1H), 7.25 – 7.15 (m, 5H), 7.04 (d, *J* = 7.8 Hz, 2H), 2.86 – 2.73 (m, 1H), 2.68 (s, 9H), 2.53 (s, 3H), 2.30 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 137.0, 136.6 (t, *J* = 25.7 Hz), 135.5 (t, *J* = 2.5 Hz), 131.4, 131.2, 128.8, 128.8, 127.7 (t, *J* = 8.7 Hz), 125.5 (t, *J* = 242.4 Hz), 124.8, 121.7, 92.6 (t, *J* = 7.1 Hz), 82.7, 52.8, 21.4, 20.9 (t, *J* = 4.1 Hz).

¹¹B <u>NMR</u> (128 <u>MHz</u>, <u>CDCl₃</u>)

δ-3.93.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.35 (d, *J* = 239.9 Hz), -88.32 (d, *J* = 239.8 Hz).

HRMS (ESI)

Calcd for [C₂₁H₂₆BF₂NNa, M+Na]⁺: 364.2019, found: 364.2026.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.20 \text{ min (major)}$ and $t_R = 6.84 \text{ min (minor)}$.

(+)-Trimethylamine-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ma)

Serial number: zhn-6-104, Colorless oil, 97% yield (34.9 mg), 98% ee. $[\alpha]_D^{27}$ +19.6 (*c* 1.0, CHCl₃). TLC R_f = 0.34 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.30 – 7.01 (m, 7H), 2.83 – 2.70 (m, 1H), 2.63 (s, 9H), 2.47 – 2.46 (m, 3H).

$\frac{13}{C}$ <u>NMR</u> (101 <u>MHz</u>, <u>CDCl₃</u>)

δ 136.4, 135.5, 135.3, 133.3, 131.5, 128.9, 128.9, 128.0, 127.7 (t, *J* = 8.5 Hz), 126.3, 125.3 (t, *J* = 252.5 Hz), 124.9, 124.5, 99.3 (t, *J* = 7.2 Hz), 79.7, 52.8, 20.9.

¹¹B <u>NMR</u> (128 <u>MHz</u>, <u>CDCl₃</u>)

δ -3.56.

δ -85.26 (d, *J* = 241.3 Hz), -88.02 (d, *J* = 241.4 Hz).

HRMS (ESI)

```
Calcd for [C<sub>20</sub>H<sub>23</sub>BClF<sub>2</sub>NNa, M+Na]<sup>+</sup>: 384.1472, found: 384.1469.
```

<u>HPLC condition</u>: Chiralcel IC-3 column, *n*-hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 12.42 min (major) and $t_{\rm R}$ = 14.63 min (minor).

(+)-Trimethylamine-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3na)

Serial number: zhn-6-103, Colorless oil, 98% yield (35.2 mg), 98% ee. $[\alpha]_D^{27}$ +18.6 (*c* 1.0, CHCl₃). TLC R_f = 0.35 (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 1H), 7.31 – 7.10 (m, 7H), 2.83 – 2.73 (m, 1H), 2.67 (s, 9H), 2.53 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.3 (t, *J* = 25.7 Hz), 135.4, 133.8, 131.5, 131.1, 129.4, 129.3, 129.0, 127.6 (t, *J* = 8.5 Hz), 127.3, 126.5, 125.3 (t, *J* = 246.4 Hz), 124.9, 95.2 (t, *J* = 6.8, 6.8 Hz), 81.3, 52.7, 20.9.

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ-3.95.

```
<sup>19</sup>F <u>NMR (376 MHz, CDCl<sub>3</sub>)</u>
```

 δ -84.99 (d, J = 241.0 Hz), -88.43 (d, J = 240.8 Hz).

HRMS (ESI)

Calcd for [C₂₀H₂₃BClF₂NNa, M+Na]⁺: 384.1472, found: 384.1472.

<u>HPLC condition</u>: Chiralcel AD-H column, n-hexane/i-PrOH = 90:10, flow rate = 1.0

mL/min, 254 nm UV detector, $t_R = 5.43 \text{ min (major)}$ and $t_R = 6.28 \text{ min (minor)}$.

(+)-Trimethylamine-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (30a)

Serial number: zhn-6-102, Light yellow oil, 95% yield (34.3 mg), 99% ee. $[\alpha]_D^{27}$ +17.1 (*c* 1.0, CHCl₃). TLC R_f = 0.34 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.52 (d, J = 7.8 Hz, 1H), 7.25 – 7.92 (m, 7H), 2.77 – 2.66 (m, 1H), 2.60 (s, 9H), 2.45 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.4 (t, *J* = 26.1 Hz), 135.4, 132.9, 132.5, 131.5, 128.9, 128.3, 127.6 (t, *J* = 8.6 Hz), 125.4 (t, *J* = 252.5 Hz), 124.8, 123.3, 94.7 (t, *J* = 7.1 Hz), 81.5, 52.7, 20.9 (t, *J* = 4.0 Hz).

¹¹B <u>NMR</u> (128 <u>MHz</u>, <u>CDCl₃</u>)

δ-3.94.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -85.01 (d, J = 240.2 Hz), -88.50 (d, J = 240.3 Hz).

HRMS (ESI)

Calcd for [C₂₀H₂₃BClF₂NK, M+K]⁺: 400.1212, found: 400.1206.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.37 \text{ min (minor)}$ and $t_R = 7.20 \text{ min (major)}$.

(+)-Trimethylamine-(1,1-difluoro-4-(3-fluorophenyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3pa)

Serial number: zhn-6-201, Light yellow oil, 98% yield (33.8 mg), 97% ee. $[\alpha]_D^{24}$ +16.6 (*c* 1.0, CHCl₃). TLC R_f = 0.31 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.53 (d, *J* = 7.6 Hz, 1H), 7.21 – 7.07 (m, 4H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.93 – 6.89 (m, 1H), 6.87 – 6.82 (m, 1H), 2.80 – 2.66 (m, 1H), 2.61 (s, 9H), 2.46 (t, *J* = 2.9 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 162.3 (d, J = 245.3 Hz), 136.4 (t, J = 25.8 Hz), 135.4, 131.5, 131.1, 129.6 (d, J = 8.8 Hz), 128.9, 127.6 (t, J = 8.4 Hz), 127.1 (d, J = 2.4 Hz), 126.6 (d, J = 9.7 Hz), 125.3 (t, J = 246.4 Hz), 124.9, 118.0 (d, J = 21.9 Hz), 114.3 (d, J = 21.1 Hz), 95.0 – 94.8 (m), 81.5 (d, J = 3.2 Hz), 52.7, 20.9 (t, J = 3.8 Hz).

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -4.03.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.11 (d, *J* = 240.7 Hz), -88.39 (d, *J* = 241.0 Hz), -113.74.

HRMS (ESI)

Calcd for [C₂₀H₂₃BF₃NK, M+K]⁺: 384.1507, found: 384.1505.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 5.41 \text{ min (major)}$ and $t_R = 6.37 \text{ min (minor)}$.

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3yn-2-yl)borane (3qa)

Serial number: zhn-8-51, Light yellow oil, 97% yield (38.3 mg), 99% ee. $[\alpha]_D^{27}$ +15.4 (*c* 1.0, CHCl₃). TLC R_{*f*} = 0.35 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.64 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.18 (m, 3H), 2.90 – 2.77 (m, 1H), 2.71 (s, 9H), 2.57 (s, 2H).

¹³C <u>NMR</u> (101 MHz, CDCl₃)

δ 136.3 (t, J = 25.7 Hz), 135.4 (t, J = 2.6 Hz), 131.6, 131.4, 129.0, 128.8 (q, J = 45.3 Hz), 128.6, 127.6 (t, J = 8.5 Hz), 127.6 (t, J = 8.4 Hz), 125.3 (t, J = 252.5 Hz), 125.0 (q, J = 3.9 Hz), 124.9, 124.2 (t, J = 272.7 Hz), 96.8 (t, J = 6.8 Hz), 81.5, 52.7, 20.9 (t, J = 4.0 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -62.62, -84.97 (d, *J* = 241.0 Hz), -88.40 (d, *J* = 241.1 Hz).

¹¹B NMR (128 MHz, CDCl₃)

δ-3.68.

HRMS (ESI)

Calcd for [C₂₁H₂₃BF₅NNa, M + Na]⁺: 418.1736, found: 418.1735.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 7.05 min (major) and $t_{\rm R}$ = 8.29 min (minor).

(-)-Trimethylamine-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ra)

Serial number: zhn-7-3, Light yellow oil, 94% yield (38.2 mg), 99% ee. $[\alpha]_D^{21}$ -3.2 (*c* 1.0, CHCl₃). TLC R_f = 0.34 (PE/EA = 5:1, v/v). <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.19 (d, *J* = 7.3 Hz, 1H), 7.82 – 7.62 (m, 3H), 7.56 – 7.11 (m, 7H), 2.99 – 2.84 (m, 1H), 2.69 (s, 9H), 2.56 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.6 (t, *J* = 25.8 Hz), 135.6 (t, *J* = 2.4 Hz), 133.7, 133.2, 131.6, 131.2, 129.4, 128.9, 128.0, 127.7 (t, *J* = 8.5 Hz), 127.5, 126.7, 126.4, 126.1, 125.5 (t, *J* = 238.4 Hz), 125.2, 125.0, 122.5, 98.7 – 98.6 (m), 80.6, 52.8, 21.0 (t, *J* = 3.9 Hz). ¹¹B NMR (128 MHz, CDCl₃)

δ-3.56.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -85.44 (d, J = 241.3 Hz), -87.83 (d, J = 240.6 Hz).

HRMS (ESI)

Calcd for [C₂₄H₂₆BF₂NNa, M+Na]⁺: 400.2019, found: 400.2024.

<u>HPLC condition</u>: Chiralcel IC-3 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R} = 6.87$ min (major) and $t_{\rm R} = 7.29$ min (minor).

(+)-Trimethylamine-(1,1-difluoro-4-(thiophen-2-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3sa)

Serial number: zhn-6-105, Yellow oil, 82% yield (27.5 mg), 96% ee. $[\alpha]_D^{27}$ +7.4 (*c* 1.0, CHCl₃). TLC R_f = 0.32 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.20 – 7.06 (m, 5H), 6.92 (d, *J* = 4.9 Hz, 1H), 2.73 – 2.67 (m, 1H), 2.60 (s, 9H), 2.46 (t, *J* = 2.5 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 136.5 (t, *J* = 25.5 Hz), 135.5 (t, *J* = 2.3 Hz), 131.5, 130.0, 128.9, 127.7 (t, *J* = 8.5 Hz), 126.8, 125.4 (t, *J* = 246.4 Hz), 124.8, 124.7, 123.7, 92.9 – 92.6 (m), 77.6, 52.7, 20.9 (t, *J* = 4.0 Hz).

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -4.08.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -84.68 (d, *J* = 239.7 Hz), -88.64 (d, *J* = 240.0 Hz).

HRMS (ESI)

Calcd for [C₁₈H₂₂BF₂NSNa, M+Na]⁺: 356.1426, found: 356.1433.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.67 \text{ min (major)}$ and $t_R = 7.19 \text{ min (minor)}$.

(-)-Trimethylamine-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-yl) borane (3ta)

Serial number: zhn-7-129, Light yellow oil, 86% yield (26.0 mg), 73% ee. $[\alpha]_D^{27}$ -4.0 (*c* 0.5, CHCl₃). TLC R_f = 0.32 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 8.32 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.36 (m, 3H), 7.29 (t, *J* = 7.7 Hz, 1H), 2.65 (s, 9H), 2.54 – 2.40 (m, 1H), 1.70 (t, *J* = 18.4 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 133.8, 133.2, 129.5, 128.1, 127.5, 126.9 (t, *J* = 242.4 Hz), 126.5, 126.5, 126.2, 125.2, 122.5, 99.4 (dd, *J* = 14.5, 3.4 Hz), 79.8 (d, *J* = 2.2 Hz), 52.8, 22.1 (t, *J* = 27.7 Hz).

¹¹B <u>NMR (128 MHz, CDCl₃)</u>

δ -3.16 (t, J = 103.2 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -78.86 (d, *J* = 224.8 Hz), -87.46 (d, *J* = 223.4 Hz).

HRMS (ESI)

Calcd for [C₁₈H₂₂BF₂NNa, M + Na]⁺: 324.1706, found: 324.1710.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 5.88 \text{ min}$ (major) and $t_R = 6.34 \text{ min}$ (minor).

6. The Optimization of the Addition Reaction of Aldehydes with

NMe₂ H_2B F₂C Condition Me Ĥ Me $R = 4-PhC_6H_4$ 5b (R)-3ba, 0.1 mmol (96% ee) 2.5 equiv Aı Condition A: , 5 Å MS, toluene, rt, 24 h No Conv. Ar = 2,4,6-triPh, (R)(5 mol%) Condition B: CuBr (1 equiv), THF, rt, 24 h No Conv. Condition C: Et₂Zn (1.2 equiv, 1 M in toluene), toluene, rt, 24 h No Conv. Condition D: BF₃•Et₂O (2 equiv), rt, 3 h 75% yield, 95% ee

Chiral gem-Difluoroalkyl Propargylic Boron (R)-3ba

7. Procedures for Addition Reaction of Aldehydes with Chiral gem-

Difluoroalkyl Propargylic Boron (R)-3ba

7.1 Procedure A

A 25 mL Schlenk tube was charged with $(\text{HCHO})_n$ (30.0 mg, 1.0 mmol). Then 1.2 mL dry THF was injected under nitrogen atmosphere. The reaction mixture was heated to 70 °C for 2 h. To another 25 mL Schlenk tube was charged with (*R*)-**3ba** (32.7 mg, 0.1 mmol). Then 0.7 mL dry THF was injected under nitrogen atmosphere. After cooling to room temperature, transfer the latter mixture into the former Shlenck tube with a syringe. Then, BF₃•Et₂O (28.4 mg, 0.2 mmol) was added dropwise into the reaction system with a syringe. At room temperature, the reaction was kept stirring for

3 h, then TLC indicated that the substrate (*R*)-**3ba** was consumed completely. The reaction mixture was diluted with EtOAc (8 mL), and washed with brine (3 x 4 mL). The organic extract was dried over anhydrous NaSO₄, filtered, and concentrated to give crude product. The crude product was purified by a flash chromatography on silica gel (eluting with petroleum ether/EtOAc/NEt₃ = 100:10:1, v/v) to afford **5a** as colorless oil (21.9 mg, 77% yield, 95% ee, 99% es).

7.2 Procedure B

A 25 mL Schlenk tube was charged with (*R*)-**3ba** (32.7 mg, 0.1 mmol) and RCHO (0.25 mmol). Then 2.0 mL dry THF was injected under nitrogen atmosphere. Then, BF₃•Et₂O (28.4 mg, 0.2 mmol) was added dropwise into the reaction system with a syringe. At room temperature, the reaction was kept stirring for 3-24 h, then TLC indicated that the substrate (*R*)-**3ba** was consumed completely. The reaction mixture was diluted with EtOAc (8 mL), and washed with brine (3 x 4 mL). The organic extract was dried over anhydrous NaSO₄, filtered, and concentrated to give crude product. The crude product was purified by a flash chromatography on silica gel (eluting with petroleum ether/EtOAc/NEt₃ = 100:x:1, v/v) to afford **5b-5l**.

8. Analytical Data of Chiral gem-Difluoroalkyl α-Allenols

(-)-(S)-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-dien-1-ol (5a)

Serial number: zhn-7-31, 77% yield (21.9 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{22}$ - 233.6 (*c* 0.5, CHCl₃). TLC R_f = 0.39 (PE/EA = 5:1, v/v).

 $\frac{1}{1}$ <u>H NMR (400 MHz, CDCl₃)</u>

δ 7.47 (d, *J* = 7.8 Hz, 1H), 7.28 – 7.07 (m, 8H), 6.14 – 6.00 (m, 1H), 4.43 – 4.27 (m, 2H), 2.34 (d, *J* = 2.4 Hz, 3H), 1.12 (s, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>
δ 204.9, 136.0 (t, *J* = 2.5 Hz), 134.8 (t, *J* = 25.3 Hz), 132.2 (t, *J* = 2.0 Hz), 131.7, 130.0, 128.7, 128.1, 126.5, 125.7 (t, *J* = 7.8 Hz), 125.6, 120.1, 112.1, 96.9 (t, *J* = 35.6 Hz), 61.6 (t, *J* = 2.4 Hz), 20.3 (t, *J* = 3.1 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.22.

HRMS (ESI)

Calcd for $[C_{18}H_{16}F_2ONa, M + Na]^+$: 309.1061, found: 309.1065.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.69 \text{ min (minor)}$ and $t_R = 7.81 \text{ min (major)}$.

(-)-(1*R*,3*S*)-1-([1,1'-biphenyl]-4-yl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3dien-1-ol (5b)

Serial number: zhn-7-29, 75% yield (33.0 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{23}$ -234.0 (*c* 1.0, CHCl₃). TLC R_f = 0.37 (PE/EA = 5:1, v/v). Note: we confirmed absolute configurations of (*R*, *S*)-**5b** by ECD spectra (experimental and computed ECD spectra). <u>¹H NMR (400 MHz, CDCl₃)</u>

δ 7.60 – 7.49 (m, 3H), 7.44 – 7.40 (m, 4H), 7.36 – 7.32 (m, 2H), 7.29 – 7.14 (m, 7H), 7.10 (d, *J* = 7.9 Hz, 2H), 6.32 (td, *J* = 6.1, 2.6 Hz, 1H), 5.61 (s, 1H), 2.39 (s, 3H), 1.96 (d, *J* = 4.9 Hz, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.4 (t, *J* = 10.0 Hz), 141.0, 140.6, 139.6, 136.4, 134.8 (t, *J* = 25.3 Hz), 132.6, 131.9, 130.0, 128.8, 128.6, 128.0, 127.6, 127.4, 127.3, 127.3, 127.1, 126.0 (t, *J* = 7.9 Hz), 125.7, 120.3, 115.8, 98.4 (t, *J* = 35.9 Hz), 72.7, 20.4.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-84.05, -84.16.

HRMS (ESI)

Calcd for $[C_{30}H_{24}F_2ONa, M + Na]^+$: 461.1687, found: 461.1678.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 23.34 min (minor) and $t_{\rm R}$ = 32.00 min (major).

(-)-(1*R*,3*S*)-1-(4-chlorophenyl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5c)

Serial number: zhn-7-81, 69% yield (27.4 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{26}$ - 244.8 (*c* 1.0, CHCl₃). TLC R_f = 0.39 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.32 – 7.10 (m, 9H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.31 (td, *J* = 6.4, 2.6 Hz, 1H), 5.57 (s, 1H), 2.40 (s, 3H), 2.01 (s, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 203.3 (t, *J* = 10.0 Hz), 138.0, 135.3, 133.7 (t, *J* = 25.1 Hz), 132.8, 131.2, 130.9, 129.0, 127.7, 127.5, 127.4, 127.1, 126.2, 124.9 (t, *J* = 7.9 Hz), 124.6, 119.1 (t, *J* = 242.4 Hz), 114.6, 97.3 (t, *J* = 36.1 Hz), 71.3, 19.3 (t, *J* = 3.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃)

δ-84.13, -84.27.

HRMS (ESI)

Calcd for $[C_{24}H_{19}Cl_2F_2O, M + Cl]^-$: 431.0787, found: 431.0785.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 9.40 min (minor) and $t_{\rm R}$ = 14.36 min (major).

(-)-(1*R*,3*S*)-1-(4-bromophenyl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5d)

Serial number: zhn-7-79, 73% yield (32.0 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{26}$ - 202.1 (*c* 1.0, CHCl₃). TLC R_f = 0.38 (PE/EA = 5:1, v/v).

¹<u>H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

δ 7.54 (t, *J* = 6.0 Hz, 1H), 7.47 – 7.08 (m, 10H), 6.93 (t, *J* = 5.8 Hz, 2H), 6.31 (s, 1H), 5.55 (s, 1H), 2.40 (s, 3H), 2.02 (s, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.3 (t, *J* = 10.0 Hz), 139.6, 136.4, 134.7 (t, *J* = 25.0 Hz), 132.3, 131.9, 131.6, 130.1, 128.8, 128.6, 128.1, 127.2, 126.0 (t, *J* = 7.9 Hz), 125.7, 122.1, 120.1 (t, *J* = 241.4 Hz), 115.6, 98.4 (t, *J* = 35.8 Hz), 72.4, 20.3.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-84.15, -84.27.

HRMS (ESI)

Calcd for $[C_{24}H_{19}BrF_2OCl, M + Cl]^-$: 475.0281, found: 475.0280.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 10.09 min (minor) and $t_{\rm R}$ = 14.89 min (major).

(-)-(1*R*,3*S*)-5,5-difluoro-1-(4-methoxyphenyl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5e)

Serial number: zhn-7-83, 54% yield (21.2 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{25}$ - 198.8 (*c* 0.5, CHCl₃). TLC R_f = 0.34 (PE/EA = 5:1, v/v).

 $\frac{1}{1}$ <u>H NMR (400 MHz, CDCl₃)</u>

δ 7.59 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.32 – 7.11 (m, 7H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 6.33 (td, *J* = 6.5, 2.9 Hz, 1H), 5.55 (dd, *J* = 5.1, 2.9 Hz, 1H), 3.79 (s, 3H), 2.43 (s, 3H), 1.88 (d, *J* = 5.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃)

δ 204.1 (t, *J* = 9.1 Hz), 159.4, 136.4, 134.8, 132.8, 132.6, 131.9, 130.0, 128.5, 128.5, 127.9, 127.2, 126.0 (t, *J* = 7.9 Hz), 125.6, 120.4 (t, *J* = 288.9 Hz), 116.0, 113.9, 98.3 (t, *J* = 36.4 Hz), 72.5, 55.2, 20.4 (t, *J* = 2.0 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-84.06, -84.21.

HRMS (ESI)

Calcd for $[C_{25}H_{22}F_2O_2K, M + K]^+$: 431.1219, found: 431.1225.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R} = 15.19$ min (minor) and $t_{\rm R} = 26.85$ min

(major).

(-)-(1*S*,3*S*)-5,5-difluoro-2-phenyl-1-(thiophen-2-yl)-5-(*o*-tolyl)penta-2,3-dien-1-ol (5f)

Serial number: zhn-7-95, 62% yield (22.7 mg), 94% ee, 98% es, colorless oil, $[\alpha]_D^{25}$ - 241.2 (*c* 0.5, CHCl₃). TLC R_f = 0.37 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.33 – 7.16 (m, 9H), 6.81 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.60 (d, *J* = 3.5 Hz, 1H), 6.31 (td, *J* = 6.9, 2.5 Hz, 1H), 5.79 (s, 1H), 2.38 (s, 3H), 2.07 (d, *J* = 5.4 Hz, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.0 (t, *J* = 9.8 Hz), 144.5, 136.3, 134.7, 132.3, 131.9, 130.0, 128.6, 128.1, 127.2, 126.8, 125.9 (t, *J* = 8.2 Hz), 125.9, 125.8, 125.7, 120.03 (t, *J* = 242.4 Hz), 116.0, 98.7 (t, *J* = 35.5 Hz), 68.5, 20.4.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -84.56.

HRMS (ESI)

Calcd for [C₂₂H₁₈F₂OSNa, M + Na]⁺: 391.0939, found: 391.0930.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 9.95 min (minor) and $t_{\rm R}$ = 22.70 min (major).

(-)-(1S,3S)-5,5-difluoro-1-(furan-2-yl)-2-phenyl-5-(o-tolyl)penta-2,3-dien-1-ol (5g)

Serial number: zhn-7-91, 66% yield (23.2 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{26}$ - 131.2 (*c* 0.25, CHCl₃). TLC R_f = 0.35 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.3 – 7.12 (m, 9H), 6.31 (td, *J* = 6.9, 2.6 Hz, 1H), 6.19 (dd, *J* = 3.1, 1.8 Hz, 1H), 5.79 (d, *J* = 3.3 Hz, 1H), 5.61 (d, *J* = 2.7 Hz, 1H), 2.38 (s, 3H), 2.11 (s, 1H). ¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 203.3 (t, *J* = 9.9 Hz), 152.4, 141.5, 135.2, 133.6 (t, *J* = 25.3 Hz), 131.3 (t, *J* = 1.8 Hz), 130.8, 128.9, 127.5, 127.0, 125.8, 124.9 (t, *J* = 7.9 Hz), 124.6, 119.0 (t, *J* = 242.4 Hz), 113.1, 109.4, 107.2, 97.7 (t, *J* = 35.8 Hz), 65.3, 19.3.

 $\frac{19}{\mathrm{F}}$ <u>NMR</u> (376 <u>MHz</u>, <u>CDCl₃</u>)

δ -84.65.

HRMS (ESI)

Calcd for $[C_{22}H_{18}F_2O_2Na, M + Na]^+$: 375.1167, found: 375.1163.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 10.99 min (minor) and $t_{\rm R}$ = 14.68 min (major).

(-)-(3*R*,5*S*)-7,7-difluoro-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-3-ol (5h)

Serial number: zhn-7-39, 70% yield (27.2 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{26}$ - 19.2 (*c* 1.0, CHCl₃). TLC R_f = 0.42 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.54 (d, *J* = 7.7 Hz, 1H), 7.37 – 6.94 (m, 13H), 6.18 (t, *J* = 6.4 Hz, 1H), 4.47 (t, *J* = 5.8 Hz, 1H), 2.69 – 2.49 (m, 2H), 2.35 (s, 3H), 1.81 – 1.54 (m, 2H), 1.48 (s, 1H)

 $\frac{13}{C}$ <u>NMR</u> (101 <u>MHz</u>, <u>CDCl₃</u>)

δ 204.1 (t, *J* = 9.8 Hz), 141.5, 136.2 (t, *J* = 2.6 Hz), 134.9 (t, *J* = 24.9 Hz), 133.0 (t, *J* = 2.0 Hz), 131.8, 130.0, 128.7, 128.5, 128.3, 128.1, 127.1, 125.9, 125.8 (t, *J* = 8.0 Hz), 125.6, 120.3 (t, *J* = 242.4 Hz), 116.4, 97.5 (t, *J* = 35.8 Hz), 69.9, 37.1, 31.6, 20.4 (t, *J* = 2.8 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -84.14 (d, J = 261.7 Hz), -85.22 (d, J = 260.8 Hz).

HRMS (ESI)

Calcd for $[C_{26}H_{24}F_2ONa, M + Na]^+$: 413.1687, found: 413.1676.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 8.14 min (minor) and $t_{\rm R}$ = 11.67 min (major).

(-)-(2*R*,4*S*)-6,6-difluoro-1,3-diphenyl-6-(*o*-tolyl)hexa-3,4-dien-2-ol (5i)

Serial number: zhn-7-73, 71% yield (26.8 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{24}$ - 86.4 (*c* 1.0, CHCl₃). TLC R_f = 0.48 (PE/EA = 5:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.57 – 7.52 (m, 1H), 7.36 – 7.17 (m, 11H), 7.11 (d, *J* = 7.3 Hz, 2H), 6.18 (t, *J* = 8.0 Hz, 1H), 4.67 (d, *J* = 9.0 Hz, 1H), 2.77 – 2.72 (m, 1H), 2.50 – 2.43 (m, 1H), 2.40 (s, 3H), 1.61 (s, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.5 (t, *J* = 9.5 Hz), 137.9, 136.3, 135.0 (t, *J* = 25.2 Hz), 133.1 (t, *J* = 2.0 Hz), 131.8, 130.0, 129.3, 128.7, 128.6, 128.1, 127.2, 126.7, 125.8 (t, *J* = 7.9 Hz), 125.6, 120.3 (t, *J* = 242.4 Hz), 115.9, 97.6 (t, *J* = 35.4 Hz), 71.4, 42.3, 20.4 (t, *J* = 3.0 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

 δ -84.25 (d, J = 261.2 Hz), -85.20 (d, J = 261.0 Hz).

HRMS (ESI)

Calcd for $[C_{25}H_{22}F_2ONa, M + Na]^+$: 399.1531, found: 399.1530.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 8.63 min (minor) and $t_{\rm R}$ = 10.55 min (major).

(-)-(1R,3S)-1-cyclopentyl-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-dien-1-ol (5j)

Serial number: zhn-7-93, 73% yield (25.7 mg), 95% ee, 99% es, colorless oil, $[\alpha]_D^{26}$ - 127.6 (*c* 0.5, CHCl₃). TLC R_f = 0.51 (PE/EA = 5:1, v/v).

¹<u>H</u> <u>NMR (400 MHz, CDCl₃)</u>

δ 7.49 (d, *J* = 7.9 Hz, 1H), 7.28 – 7.04 (m, 8H), 6.04 (t, *J* = 6.7 Hz, 1H), 4.18 (d, *J* = 7.6 Hz, 1H), 2.26 (s, 3H), 1.86 (q, *J* = 7.9 Hz, 1H), 1.58 – 1.39 (m, 5H), 1.27 – 0.96 (m, 4H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.7 (t, *J* = 9.7 Hz), 136.4 (t, *J* = 2.4 Hz), 134.9 (t, *J* = 25.1 Hz), 133.6, 131.8, 130.0, 128.5, 127.9, 127.5, 125.8 (t, *J* = 7.9 Hz), 125.5, 120.3 (t, *J* = 240.4 Hz), 116.2, 96.2 (t, *J* = 35.5 Hz), 75.5, 44.0, 29.2, 28.2, 25.7, 20.3 (t, *J* = 2.9 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -84.15 (d, *J* = 261.7 Hz), -85.37 (d, *J* = 261.2 Hz).

HRMS (ESI)

Calcd for [C₂₃H₂₄F₂ONa, M + Na]⁺: 377.1687, found: 377.1688.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 5.88 min (minor) and $t_{\rm R}$ = 10.25 min (major).

(-)*-tert*-butyl((2*S*,3*S*,5*S*)-7,7-difluoro-3-hydroxy-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-2-yl)carbamate (5k)

Serial number: zhn-7-77, 83% yield (41.8 mg), d.r. > 20:1, colorless oil, $[\alpha]_D^{24}$ -79.4 (*c* 1.0, CHCl₃). TLC R_f = 0.36 (PE/EA = 3:1, v/v).

^{1}H <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

δ 7.61 (d, *J* = 7.7 Hz, 1H), 7.32 – 7.14 (m, 11H), 6.98 (s, 2H), 6.15 (t, *J* = 7.6 Hz, 1H), 4.76 (s, 1H), 4.57 (s, 1H), 3.85 – 3.71 (m, 1H), 2.89 (d, *J* = 7.6 Hz, 2H), 2.42 (s, 3H), 1.36 (s, 9H), 1.18 (s, 1H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 203.4 (t, *J* = 8.7 Hz), 155.9, 138.1, 136.1, 133.0, 131.8, 130.0, 129.4, 128.7, 128.5, 128.5 (t, *J* = 23.7 Hz), 128.2, 127.1, 126.5, 125.8 (t, *J* = 8.1 Hz), 125.7, 119.49 (t, *J* = 242.4 Hz), 115.2, 97.7 (t, *J* = 35.4 Hz), 79.4, 70.0, 54.6, 38.0, 28.2, 20.3 (t, *J* = 3.0 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -85.17 (d, *J* = 257.2 Hz), -86.08 (d, *J* = 256.6 Hz).

HRMS (ESI)

Calcd for $[C_{31}H_{34}F_2NO_3, M + H]^+$: 506.2501, found: 506.2494.

(-)-*tert*-butyl((2*S*,3*S*,5*S*)-7,7-difluoro-3-hydroxy-4-phenyl-7-(*o*-tolyl)hepta-4,5-dien-2-yl)carbamate (5l)

Serial number: zhn-7-89, 77% yield (33.1 mg), d.r. > 20:1, colorless oil, $[\alpha]_D^{23}$ -65.0 (*c* 1.0, CHCl₃). TLC R_f = 0.34 (PE/EA = 3:1, v/v).

¹<u>H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

δ 7.64 (d, *J* = 6.9 Hz, 1H), 7.39 – 7.18 (m, 8H), 6.20 (t, *J* = 8.2 Hz, 1H), 4.60 (s, 1H), 4.48 – 4.41 (m, 1H), 3.76 – 3.65 (m, 1H), 2.45 (s, 3H), 1.44 (d, *J* = 3.0 Hz, 9H), 1.29 (d, *J* = 3.1 Hz, 1H), 1.05 (dd, *J* = 7.1, 2.9 Hz, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 204.1 (t, *J* = 8.8 Hz), 156.3, 136.2, 135.0 (t, *J* = 25.4 Hz), 133.6, 131.9, 130.0, 128.7, 128.1, 127.3, 125.8 (t, *J* = 7.9 Hz), 125.7, 119.7 (t, *J* = 242.4 Hz), 114.7, 97.2 (t, *J* = 34.7 Hz), 79.7, 74.9, 50.2, 28.3, 20.3 (t, *J* = 3.1 Hz), 17.8.

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ-85.04, -84.11.

HRMS (ESI)

Calcd for $[C_{25}H_{30}F_2NO_3, M + H]^+$: 430.2188, found: 430.2185.

9. Transformations of Chiral gem-Difluoroalkyl α-Allenols

9.1 Transformation of 5b to 6

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with **5b** (43.8 mg, 0.1 mmol, 1.0 equiv), [Au(Johnphos)(CH₃CN)]SbF₆ (3.8 mg, 0.005 mmol, 5 mol%) in a glove box under Ar atmosphere. Anhydrous DCM (3.0 mL) was added via a syringe. The resulting reaction mixture was stirred at room temperature for 24 hours. After the volatiles were removed under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) to give the product **6** (35.9 mg, colorless oil, 82% yield, 94% ee, 99% es, > 20:1

d.r.). Serial number: zhn-7-107, $[\alpha]_D^{23}$ -146.8 (*c* 0.5, CHCl₃). TLC R_f = 0.39 (PE/EA = 20:1, v/v). Note: The relative configuration of the compound **6** was determined by ¹H-¹H Noesy.

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.63 – 6.98 (m, 18H), 6.41 (s, 1H), 6.18 (s, 1H), 5.44 (p, *J* = 5.3 Hz, 1H), 2.32 (s, 3H).

¹³C <u>NMR (101 MHz, CDCl₃)</u>

δ 144.2, 141.0, 140.7, 138.2, 137.0, 132.5 (t, *J* = 23.7 Hz), 132.1, 132.0, 129.9, 129.1, 128.8, 128.5, 128.4, 127.5 (t, *J* = 8.1 Hz), 127.4, 127.1, 127.1, 126.8, 125.5, 121.6, (t, *J* = 249.0 Hz), 120.1, 89.1, 88.11 (t, *J* = 33.3 Hz), 20.7 (t, *J* = 4.3 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

δ -99.38 (d, *J* = 256.1 Hz), -103.19 (d, *J* = 256.0 Hz).

HRMS (ESI)

Calcd for [C₃₀H₂₈F₂NO, M+NH₄]⁺: 456.2134, found: 456.2128.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, 254 nm UV detector, $t_R = 6.71 \text{ min (minor)}$ and $t_R = 8.72 \text{ min (major)}$.

9.2 Transformation of 6 to 7

0.07 mmol (94% ee, >20:1 d.r.)

A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with **6** (30.7 mg, 0.07 mmol, 1.0 equiv) and EtOAc (3 mL). To the solution was added Pd/C (3.7 mg, 10% w/w). The resulting mixture was stirred for 12 hours at room temperature under H₂ atomosphere (a balloon). The black solids were filtered off and washed thoroughly with DCM. After the volatiles were removed under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to give product 7 (27.0 mg, colorless oil, 88% yield, 94% ee, 100% es, > 20:1 d.r.). Serial number: zhn-7-109. [α]_D²³ +120.7 (*c* 0.5, CHCl₃). TLC R_f = 0.37 (PE/EA = 20:1, v/v).

¹<u>H NMR (400 MHz, CDCl₃)</u>

δ 7.64 (d, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.41 – 7.33 (m, 3H), 7.31 – 7.25 (m, 5H), 7.06 – 6.93 (m, 5H), 6.88 – 6.77 (m, 2H), 5.34 (d, *J* = 8.6 Hz, 1H), 4.72 – 4.63 (m, 1H), 3.92 – 3.85 (m, 1H), 2.60 (t, *J* = 2.7 Hz, 3H), 2.58 – 2.50 (m, 1H), 2.44 – 2.38 (m, 1H).

$\frac{1^{3}C}{1^{3}C}$ <u>NMR</u> (101 <u>MHz</u>, <u>CDCl₃</u>)

δ 140.9, 139.5, 138.9, 138.5, 136.7, 133.0 (t, *J* = 24.1 Hz), 132.1, 130.12, 128.7, 128.6, 127.8, 127.3 (t, *J* = 8.8 Hz), 127.1, 127.0, 126.9, 126.5, 126.1, 125.7, 121.9 (dd, *J* = 249.0, 243.6 Hz), 84.8, 80.8 (dd, *J* = 35.0, 29.4 Hz), 49.8, 32.2, 20.9 (t, *J* = 4.2 Hz).

¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

-99.63 (d, *J* = 257.5 Hz), -105.49 (d, *J* = 257.7 Hz).

HRMS (ESI)

Calcd for [C₃₀H₂₆F₂NaO, M+Na]⁺: 463.1844, found: 463.1850.

<u>HPLC condition</u>: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 11.56 min (major) and $t_{\rm R}$ = 13.10 min (minor).

10. X-Ray Diffraction Analysis of (R)-3fa

CCDC number	2246187				
Empirical formula	$C_{19}H_{21}BClF_{2}N$				
Formula weight	347.63				
Temperature/K	113.15				
Crystal system	monoclinic				
Space group	P21				
a/Å	8.2271(5)				
b/Å	10.3968(7)				
c/Å	21.4304(11)				
α/°	90				

β/°	96.909(6)				
$\gamma/^{\circ}$	90				
Volume/Å ³	1819.75(19)				
Z	4				
ρ_{calcg}/cm^3	1.269				
μ/mm^{-1}	0.228				
F(000)	728.0				
Crystal size/mm ³	0.23 imes 0.2 imes 0.17				
Radiation	Mo Ka ($\lambda = 0.71073$)				
2Θ range for data collection/°	3.828 to 65.884				
Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -32 \le l \le 31$				
Reflections collected	22992				
Independent reflections	11704 [$R_{int} = 0.0679, R_{sigma} = 0.1339$]				
Data/restraints/parameters	11704/7/456				
Goodness-of-fit on F ²	1.024				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0677, wR_2 = 0.1228$				
Final R indexes [all data]	$R_1 = 0.1428, wR_2 = 0.1648$				
Largest diff. peak/hole / e Å-3	0.26/-0.26				
Flack parameter	0.05(7)				

11. Confirm Absolute Configurations of (*R*, *S*)-5b by ECD Spectra.

Figure 1. Experimental ECD spectrum of (-)-**5b** (The experimental spectra were measured at a concentration of 0.2 mg/mL in CHCl₃ solvent and 0.1 cm path length.)

Figure 2. Computed ECD spectrum of (R, S)-**5b**

12. NMR Spectra for New Compounds

N'-(1,1-difluoro-1,4-diphenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1a): <u>¹H NMR (400 MHz, CDCl₃)</u>

N'-(1,1-difluoro-1,4-diphenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1a): ${}^{13}C$ NMR (101 MHz, CDCl₃) ${}^{13}C_{222}$ NMR (101 MHz, CDCl₃)

N'-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1b): <u>¹H NMR (400 MHz, CDCl₃)</u>

N'-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1c): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

N'-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1c): ¹³C <u>NMR (101 MHz, CDCl3)</u>


```
N'-(1,1-difluoro-4-phenyl-1-(m-tolyl)but-3-yn-2-ylidene)-2-
(trifluoromethyl)benzenesulfonohydrazone (1c): <sup>19</sup>F <u>NMR (376 MHz, CDCl3)</u>
```


N'-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1d): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1d): <u>¹³C</u> <u>NMR</u> (<u>101</u> <u>MHz</u>, <u>CDCl₃</u>)

N'-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1e): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1e): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

```
N'-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-
(trifluoromethyl)benzenesulfonohydrazone (1e): <sup>19</sup>F <u>NMR (376 MHz, CDCl3)</u>
```


N'-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1f): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

· · ·									
100	50	0	-50	-100	-150	-200	-250	-300	
				fl (nom))				

N'-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1g): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

8.88 7.99 7.97 7.87 7.87 7.86 7.86 7.77 7.75 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.75 7.55 7.77 7.55 7

N'-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1g): <u>¹³C</u> <u>NMR</u> (<u>101</u> <u>MHz</u>, <u>CDCl</u>₃)

N'-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1h): <u>¹H NMR (400 MHz, CDCl₃)</u>

N'-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1h): ¹³C NMR (101 MHz, CDCl₃) (101 MHz, CDCl₃)

N'-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1i): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1i): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

N'-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-ylidene)-2-(trifluoromothyl)bongonosylfonobydrogono (1i)-1H NMP (400 M

(trifluoromethyl)benzenesulfonohydrazone (1j): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

8.78 8.78 8.78 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.60 7.75 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73 7.60 7.73

N'-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1j): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

N'-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1k): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1k): <u>¹³C</u> <u>NMR (101 MHz, CDCl3)</u>

 $= \int_{0}^{1} \int$

90 80 fl (ppm) $\frac{1}{70}$

60

50

40

30

20

10

180

170

160

150

140 130

120

110

100

-10

```
N'-(1,1-difluoro-4-(m-tolyl)-1-(o-tolyl)but-3-yn-2-ylidene)-2-
(trifluoromethyl)benzenesulfonohydrazone (1k): <sup>19</sup>F <u>NMR (376 MHz, CDCl3)</u>
```


N'-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (11): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

90 80 f1 (ppm) -10

N'-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (11): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

N'-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1m): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1m): <u>¹³C NMR (101 MHz, CDCl₃)</u>

N'-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1n): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

N'-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1n): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

f1 (ppm) $\frac{1}{40}$

N'-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (10): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

N'-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (10): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

5.5 5.0 4.5 4.0 3.5 3.0 2.5 f1 (ppm) 00.0 2.0

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.

10.01

7.5 7.0 6.5 6.0

42

98

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0

N'1,1-difluoro-(4-(3-chlorophenyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1p): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

N'-1,1-difluoro-(4-(3-chlorophenyl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1p): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

N'-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazide (1q): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>THF-d</u>₈)

 $N'-(1,1-difluoro-1-(o-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazide (1q): <math>\frac{13C}{NMR}$ (151 MHz, THF-d₈)

N'-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1r): <u>¹H</u> <u>NMR (400 MHz, THF-*d*₆)</u>

N'-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1r): <u>¹⁹F NMR (376 MHz, THF-*d*6)</u>

N'-(1,1-difluoro-4-(thiophen-2-yl)-1-(*o*-tolyl)but-3-yn-2-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1s): ¹³C <u>NMR (101 MHz, CDCl3)</u>


```
N'-(1,1-difluoro-4-(thiophen-2-yl)-1-(o-tolyl)but-3-yn-2-ylidene)-2-
(trifluoromethyl)benzenesulfonohydrazone (1s): <sup>19</sup>F <u>NMR (376 MHz, CDCl3)</u>
```


N'-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-ylidene)-2-(trifluoromethyl)benzenesulfonohydrazone (1t): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3aa): <u>1H</u> <u>NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3aa): <u>¹³C</u> NMR (101 MHz, CDCl₃)

4.0

3.5

2.5

3. 0

2.0

1.5

1.0 0.5

5.0 4.5 f1 (ppm)

5.5

6.0

-0.5

0.0

5

7.0 6.5

9.5

9.0

8.5 8.0

(-)-Trimethylamine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3aa): ¹⁹F NMR (376 MHz, CDCl₃)

(-)-1-methylpyrrolidine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ab): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

(-)-1-methylpyrrolidine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ab): <u>¹³C NMR (101 MHz, CDCl₃)</u>

80 70 f1 (ppm) (-)-1-methylpyrrolidine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ab): <u>¹⁹F</u> <u>NMR (376 MHz, CDCl3)</u>

(+)-3,5-dimethylpyridine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ac): <u>¹³C</u> NMR (101 MHz, CDCl₃)

(-)-tributylphosphane-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ad): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

(-)-tributylphosphane-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ad): <u>¹⁹F</u> <u>NMR (376 MHz, CDCl₃)</u>

(+)-(*R*)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ba): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(+)-(*R*)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ba): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-yl)borane (3ca): <u>¹H NMR (400 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3da): <u>¹³C NMR (101 MHz, CDCl3)</u>

(-)-Trimethylamine-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2yl)borane (3ea): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3ea): <u>¹⁹F NMR (376 MHz, CDCl3)</u>

(-)-(*R*)-Trimethylamine-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3fa): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

(-)-(*R*)-Trimethylamine-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3fa): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

4.5 4.0 fl (ppm)

5.0

5.5

8.0 7.5 7.0

9.5 9.0 8.5

6.5 6.0

0.12]

2.5

2.0

1.5 1.0 0.5

0.0

-0.5 -1.

(+)-Trimethylamine-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2yl)borane (3ga): <u>¹H NMR (400 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-yl)borane (3ga): <u>¹³C</u> <u>NMR (101 MHz, CDCl3)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2yl)borane (3ga): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

-100 f1 (ppm)

-50

-150

-200

-250

-300

100

50

0

(+)-Trimethylamine-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-yl)borane (3ha): <u>¹H NMR (400 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-yl)borane (3ha): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(-)-Trimethylamine-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2yl)borane (3ia): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-yl)borane (3ia): <u>¹³C NMR (101 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2yl)borane (3ia): ¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-yl)borane (3ja): <u>¹H</u> <u>NMR (400 MHz, CDCl3)</u>

7.58 7.156 7.17 7.16 7.116 7.116 7.116 7.116 7.116 7.112 7.1

(+)-Trimethylamine-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-yl)borane (3ja): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ka): <u>¹H NMR (400 MHz, CDCl₃)</u>

63 61 60	26 25	23 24 23	22	19	15 4	<u>5</u> 5	11 09	040	03 02 01
アブブブ	アア	スプス	7.7	N N	7.7	アア	7.7	7.7	アブブ

2.82 2.82 2.82 2.82 2.73 2.77 2.75 2.75 2.68 2.54 2.54

(+)-Trimethylamine-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ka): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-yl)borane (3la): <u>¹H NMR (400 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-yl)borane (3la): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(+)-Trimethylamine-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ma): <u>¹H NMR (400 MHz, CDCl_3)</u>

 $\begin{array}{c} 7.59\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.25\\ 7.25\\ 7.25\\ 7.25\\ 7.12\\ 7.05\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.25\\$

(+)-Trimethylamine-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2yl)borane (3ma): <u>¹³C NMR (101 MHz, CDCl3)</u>

(+)-Trimethylamine-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ma): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(+)-Trimethylamine-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2yl)borane (3na): <u>¹H NMR (400 MHz, CDCl3)</u>

(+)-Trimethylamine-(4-(3-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3na): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(+)-Trimethylamine-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2yl)borane (30a): <u>¹H NMR (400 MHz, CDCl3)</u>

-100 f1 (ppm)

-50

100

50

0

-300

-250

-200

-150

(+)-Trimethylamine-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (30a): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-4-(3-fluorophenyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3pa): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(+)-Trimethylamine-(1,1-difluoro-4-(3-fluorophenyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3pa): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3yn-2-yl)borane (3qa): 1H NMR (400 MHz, CDCl3)

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3yn-2-yl)borane (3qa): ¹⁹F <u>NMR (376 MHz, CDCl3)</u>

(-)-Trimethylamine-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ra): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

(-)-Trimethylamine-(1,1-difluoro-4-(naphthalen-1-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ra): <u>¹³C</u> <u>NMR (101 MHz, CDCl3)</u>

(+)-Trimethylamine-(1,1-difluoro-4-(thiophen-2-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3sa): <u>¹H NMR (400 MHz, CDCl3)</u>

(-)-Trimethylamine-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-yl) borane (3ta): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(-)-Trimethylamine-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-yl) borane (3ta): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(-)-(S)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5a): <u>¹³C</u> <u>NMR (101</u> <u>MHz, CDCl₃)</u>

(-)-(S)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5a): <u>19F</u> <u>NMR (376</u> <u>MHz, CDCl₃)</u>

(-)-(1*R*,3*S*)-1-([1,1'-biphenyl]-4-yl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3dien-1-ol (5b): <u>¹H</u> <u>NMR (400 MHz, CDCl₃)</u>

120 110 100 f1 (ppm)

90 80

70

60 50 40 30

-10

20 10 0

240 230 220 210 200 190 180 170 160 150 140 130

(-)-(1R,3S)-1-(4-chlorophenyl)-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-dien-1ol (5c): 1H NMR (400 MHz, CDCl3)

(-)-(1R,3S)-1-([1,1'-biphenyl]-4-yl)-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-(o-tolydien-1-ol (5b): 19F NMR (376 MHz, CDCl3)

S117

(-)-(1*R*,3*S*)-1-(4-bromophenyl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1ol (5d): <u>¹³C</u> <u>NMR (101 MHz, CDCl₃)</u>

(-)-(1*R*,3*S*)-1-(4-bromophenyl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1ol (5d): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(-)-(1*R*,3*S*)-5,5-difluoro-1-(4-methoxyphenyl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5e): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

 7.60

 7.58

 7.730

 7.731

 7.731

 7.732

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 7.736

 7.737

 7.736

 7.737

 7.736

 7.737

 7.736

 7.737

 7.736

 7.737

 7.738

 7.738

 7.738

 7.738

 7.739

 7.739

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.730

 7.731

 7.731

 7.732

 7.733

 7.740

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

<tr

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

(-)-(1*R*,3*S*)-5,5-difluoro-1-(4-methoxyphenyl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5e): <u>¹⁹F NMR (376 MHz, CDCl3)</u>

(-)-(1*S*,3*S*)-5,5-difluoro-2-phenyl-1-(thiophen-2-yl)-5-(*o*-tolyl)penta-2,3-dien-1-ol (5f): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

(-)-(1*S*,3*S*)-5,5-difluoro-2-phenyl-1-(thiophen-2-yl)-5-(*o*-tolyl)penta-2,3-dien-1-ol (5f): <u>¹³C NMR (101 MHz, CDCl3)</u>

(-)-(1*S*,3*S*)-5,5-difluoro-2-phenyl-1-(thiophen-2-yl)-5-(*o*-tolyl)penta-2,3-dien-1-ol (5f): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(-)-(1*S*,3*S*)-5,5-difluoro-1-(furan-2-yl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5g): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-(1*S*,3*S*)-5,5-difluoro-1-(furan-2-yl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5g): <u>¹³C NMR (101 MHz, CDCl3)</u>

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(-)-(1*S*,3*S*)-5,5-difluoro-1-(furan-2-yl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5g):

(-)-(3*R*,5*S*)-7,7-difluoro-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-3-ol (5h): <u>¹H</u> <u>NMR</u> (400 MHz, CDCl₃)

7.55 7.55 7.73 7.73 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.725 7.77 7.725 7.77 7.725 7.77 7.725 7.77 7.77 7.725 7.7777 7.7777 7.777 7.777 7.777 7.777 7.777

(-)-(3*R*,5*S*)-7,7-difluoro-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-3-ol (5h): <u>¹³C</u> NMR (101 MHz, CDCl₃)

80

60 50 40 30 20 10 0

(-)-(3*R*,5*S*)-7,7-difluoro-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-3-ol (5h): <u>¹⁹F NMR</u> (<u>376 MHz, CDCl</u>₃)

(-)-(2*R*,4*S*)-6,6-difluoro-1,3-diphenyl-6-(*o*-tolyl)hexa-3,4-dien-2-ol (5i): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl</u>₃)

(-)-(2*R*,4*S*)-6,6-difluoro-1,3-diphenyl-6-(*o*-tolyl)hexa-3,4-dien-2-ol (5i): <u>¹³C</u> <u>NMR</u> (<u>101</u> <u>MHz</u>, <u>CDCl</u>₃)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

(-)-(2*R*,4*S*)-6,6-difluoro-1,3-diphenyl-6-(*o*-tolyl)hexa-3,4-dien-2-ol (5i): <u>¹⁹F</u> <u>NMR</u> (<u>376</u> <u>MHz</u>, <u>CDCl₃</u>)

(-)-(1*R*,3*S*)-1-cyclopentyl-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5j): <u>¹H NMR (400 MHz, CDCl₃)</u>

(-)-(1*R*,3*S*)-1-cyclopentyl-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5j): <u>¹³C</u> NMR (101 MHz, CDCl₃)

(-)-(1*R*,3*S*)-1-cyclopentyl-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5j): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

(-)*-tert*-butyl((2*S*,3*S*,5*S*)-7,7-difluoro-3-hydroxy-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5dien-2-yl)carbamate (5k): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

(-)-*tert*-butyl((2*S*,3*S*,5*S*)-7,7-difluoro-3-hydroxy-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-2-yl)carbamate (5k): ¹⁹F <u>NMR (376 MHz, CDCl₃)</u>

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

(-)-*tert*-butyl((2S,3S,5S)-7,7-difluoro-3-hydroxy-4-phenyl-7-(*o*-tolyl)hepta-4,5dien-2-yl)carbamate (5l): <u>¹H</u> <u>NMR</u> (400 <u>MHz</u>, <u>CDCl₃</u>)

(-)-*tert*-butyl((2*S*,3*S*,5*S*)-7,7-difluoro-3-hydroxy-4-phenyl-7-(*o*-tolyl)hepta-4,5dien-2-yl)carbamate (51): <u>¹³C NMR (101 MHz, CDCl₃)</u>

(-)-(2*R*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3-phenyl-2,5dihydrofuran (6): <u>¹H NMR (400 MHz, CDCl₃)</u>

144.2 1441.0 146.7 137.0 137.0 137.0 132.1 132.3 132.5 125.5	20.8 20.7 20.7

-]

80 70 60 50 40 f1 (ppm) (-)-(2*R*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3-phenyl-2,5-

160 150

(-)-(2*R*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3-phenyl-2,5dihydrofuran (6): ¹H-¹H Noesy (400 MHz, CDCl₃)

(-)-(2*S*,3*S*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3phenyltetrahydrofuran (7) <u>¹H NMR (400 MHz, CDCl₃)</u>

 $\begin{array}{c} 7.65\\ 7.7.7.33\\ 7.7.7.33\\ 7.7.7.33\\ 7.7.7.33\\ 7.7.7.33\\ 7.7.7.33\\ 7.7.2$

(-)-(2S,3S,5R)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(o-tolyl)methyl)-3-phenyltetrahydrofuran (7): <u>¹³C NMR (101 MHz, CDCl_3)</u>

(-)-(2*S*,3*S*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3phenyltetrahydrofuran (7): <u>¹⁹F NMR (376 MHz, CDCl₃)</u>

13. HPLC Charts

(-)-Trimethylamine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3aa)

Area%	Height	Area	Width [min]	Туре	RT [min]
96.42	1545.98	14994.86	0.15	MM m	6.102
3.58	50.56	556.17	0.17	MM m	7.221
		15551.03	Sum		

(-)-1-methylpyrrolidine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ab)

RT [min]	Туре	Width [min]	Area	Height	Area%
7.551	MM m	0.19	16774.35	1406.40	95.56
9.152	MM m	0.22	780.06	56.41	4.44
		Sum	17554.40		

(+)-3,5-dimethylpyridine-(1,1-difluoro-1,4-diphenylbut-3-yn-2-yl)borane (3ac)

(+)-(*R*)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ba)

34072.19

Sum

(-)-Trimethylamine-(1,1-difluoro-4-phenyl-1-(*m*-tolyl)but-3-yn-2-yl)borane (3ca)

(+)-Trimethylamine-(1-(2-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3da)

(-)-Trimethylamine-(1-(3-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3ea)

(-)-(*R*)-Trimethylamine-(1-(4-chlorophenyl)-1,1-difluoro-4-phenylbut-3-yn-2-yl)borane (3fa)

(+)-Trimethylamine-(1,1-difluoro-1-(2-fluorophenyl)-4-phenylbut-3-yn-2-yl)borane (3ga)

(+)-Trimethylamine-(1,1-difluoro-1-(naphthalen-1-yl)-4-phenylbut-3-yn-2-yl)borane (3ha)

RT [min]	Туре	Width [min]	Area	Height	Area%
11.364	MB m	0.27	38290.84	2176.05	98.39
19.831	BBA	0.89	627.71	23.99	1.61
		Sum	38918.55		

(-)-Trimethylamine-(1,1-difluoro-1-(4-nitrophenyl)-4-phenylbut-3-yn-2-yl)borane (3ia)

(+)-Trimethylamine-(1,1-difluoro-1,4-di-*o*-tolylbut-3-yn-2-yl)borane (3ja)

RT [min]	Туре	Width [min]	Area	Height	Area%
10.311	BB	0.86	27571.40	1704.96	99.11
11.182	BBA	0.61	247.71	14.64	0.89
		Sum	27819.11		

(+)-Trimethylamine-(1,1-difluoro-4-(*m*-tolyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ka)

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(*p*-tolyl)but-3-yn-2-yl)borane (3la)

(+)-Trimethylamine-(4-(2-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (3ma)

21879.21

Sum

(+)-Trimethylamine-(4-(4-chlorophenyl)-1,1-difluoro-1-(*o*-tolyl)but-3-yn-2-yl)borane (30a)

(+)-Trimethylamine-(1,1-difluoro-4-(3-fluorophenyl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3pa)

Area%	Height	Area	Width [min]	Туре	RT [min]
98.33	3120.41	29311.52	0.58	BBA	5.266
1.67	51.61	498.65	0.39	BBA	6.093
		29810.17	Sum		

(+)-Trimethylamine-(1,1-difluoro-1-(*o*-tolyl)-4-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)borane (3qa)

RT [min]	Туре	Width [min]	Area	Height	Area%
6.884	BB	0.67	27378.80	2857.51	99.36
8.048	BBA	0.41	177.66	18.39	0.64
		Sum	27556.46		

(+)-Trimethylamine-(1,1-difluoro-4-(thiophen-2-yl)-1-(*o*-tolyl)but-3-yn-2-yl)borane (3sa)

Area%	Height	Area	Width [min]	Type	RT [min]
98.30	1067.06	11661.58	0.65	BV	6.700
1.70	15.91	202.02	0.58	VB	7.245
		11863.60	Sum		

(-)-Trimethylamine-(4,4-difluoro-1-(naphthalen-1-yl)pent-1-yn-3-yl) borane (3ta)

(-)-(S)-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-dien-1-ol (5a)

(-)-(1*R*,3*S*)-1-([1,1'-biphenyl]-4-yl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5b)

(-)-(1*R*,3*S*)-1-(4-bromophenyl)-5,5-difluoro-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5d)

i me (min)							
RT [min]	Туре	Width [min]	Area	Height	Area%		
9.980	BBA	0.57	564.01	36.23	2.59		
14.747	BBA	1.57	21217.57	852.05	97.41		
		Sum	21781.59				

(-)-(1*R*,3*S*)-5,5-difluoro-1-(4-methoxyphenyl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5e)

Sum

7726.19

22.198

BBA

2.07

Sum

11280.52

11644.94

305.52

96.87

(-)-(1*S*,3*S*)-5,5-difluoro-2-phenyl-1-(thiophen-2-yl)-5-(*o*-tolyl)penta-2,3-dien-1-ol (5f)

(-)-(1*S*,3*S*)-5,5-difluoro-1-(furan-2-yl)-2-phenyl-5-(*o*-tolyl)penta-2,3-dien-1-ol (5g)

51573.75

52992.99

97.32

2577.77

1.29

Sum

11.617

BBA

(-)-(3*R*,5*S*)-7,7-difluoro-1,4-diphenyl-7-(*o*-tolyl)hepta-4,5-dien-3-ol (5h)

(-)-(2*R*,4*S*)-6,6-difluoro-1,3-diphenyl-6-(*o*-tolyl)hexa-3,4-dien-2-ol (5i)

(-)-(1R,3S)-1-cyclopentyl-5,5-difluoro-2-phenyl-5-(o-tolyl)penta-2,3-dien-1-ol (5j)

(-)-(2*R*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3-phenyl-2,5dihydrofuran (6)

(-)-(2*S*,3*S*,5*R*)-2-([1,1'-biphenyl]-4-yl)-5-(difluoro(*o*-tolyl)methyl)-3-phenyltetrahydrofuran (7)

10 11 Time [min] 13 19 2 5 8 ģ 12 14 15 16 17 18 RT [min] Width [min] Туре Area Height Area%

97.13	1237.81	24807.84	1.19	BB	11.599
2.87	34.55	733.80	0.90	BBA	13.221
		25541.64	Sum		

14. ECD Graph Computation

The theoretical ECD graph was computed by the following method.

- 1. Draw one conformer of the molecule.
- Run molecular dynamics with GFN0-xTB⁴ method using xTB⁵ software under temperature 400 K and total simulation time 100 ps. Save molecular structure to a file every 50 fs.
- Optimize the structures generated by molecular dynamics using crest⁶ software. The conformers were optimized by GFN0-xTB method using xTB at 298.15 K.
- 4. Remove duplicated optimized structures using Molclus⁷ software with energy threshold 0.5 kcal/mol and distance threshold 0.5 angstroms, and save the conformers.
- 5. Run DFT calculations for the conformers. The optimization and frequency calculations were carried out with the restricted PBE0⁸ functional with D3BJ⁹ dispersion correction and def2-SVP¹⁰ basis set involving the solvation effect of chloroform using the SMD solvent model¹¹ in Gaussian 16¹² under 298.15 K. The duplicated structures were removed again after DFT optimizations.
- 6. Run TDDFT calculation and retrieve the ECD graph. The TDDFT calculations were carried out under the same theory level with the optimization. The 30 lowest energy excited states were calculated for each different conformer. The ECD graph for each conformer were generated by GaussView¹³ and exported to a text file.
- 7. Retrieve the final ECD graph. The final graph was calculated by the weighted average of graphs for each conformer. The weight was calculated by Boltzmann distribution with the Gibbs energy value from frequency calculations. The graph was generated by matplotlib¹⁴ in python.

The optimized structures can be found in the supporting information as an xyz file.

15. References

¹ W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals-Six Edition*, London: Elsevier Inc., 2009.

^{2 (}a) S.-H. Ueng, M. Makhlouf Brahmi, É. Derat, L. Fensterbank, E. Lacôte, M. Malacria and D. P. Curran, *J. Am. Chem. Soc.* 2008, **130**, 10082–10083. (b) Y. Pang, Q. He, Z.-Q. Li, J.-M. Yang, J.-H. Yu, S.-F. Zhu and Q.-L. Zhou, *J. Am. Chem. Soc.* 2018, **140**, 10663–10668.

- 3 (a) J. T. DePinto, W. A. deProphetis, J. L. Menke and R. J. McMahon, *J. Am. Chem. Soc.* 2007, **129**, 2308–2315.
 (b) M.-T. Hsieh, K.-H. Lee, S.-C. Kuo and H.-C. Lin, *Adv. Synth. Catal.* 2018, **360**, 1605–1610.
- 4 S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989–2009.
- 5 C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme, *WIREs Comput. Mol. Sci.* 2020, **11**, e01493.
- 6 P. Pracht, F. Bohle and S. Grimme, *Phys. Chem. Chem. Phys.* 2020, 22, 7169–7192.
 7 T. Lu, Molclus program, Version 1.9.9.9, http://www.keinsci.com/research/molclus.html (accessed March 30th, 2023)
- 8 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 9 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 10 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 11 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, **113**, 6378–6396.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian, Inc.*, Wallingford CT, 2016.
- 13 GaussView, Version 6, R. Dennington, T. Keith and J. Millam, *Semichem Inc.*, Shawnee Mission, KS, 2016.
- 14 J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90–95.