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 S2 

Hubbard molecule model for CeO2: O 2p and Ce 4f, (A2u) mixing 
 
For CeO2, the unperturbed ground state is |L14f1⟩, which consists of four wavefunctions y1-y4. 
This state corresponds to a “hole” in the O 2p A2u1 orbital (L1) and one electron in the Ce 4f A2u 
orbital (4f1), which is the main component of the G7 state if spin orbit coupling is included. The 
energy of y1-y4 is assigned as 0. The excited state that interacts with |L14f1⟩ is |L24f0⟩ and 
consists of a single wavefunction y5. The energy of |L14f1⟩ is set to zero, and the energy of 
|L24f0⟩ is U'. The individual states are shown in Table S1. Only states in which the electron can 
hop from the occupied O 2p A2u orbitals into the Ce 4f orbital without changing sign may 
interact with y5; these states are y1 and y4. In other words, only y1 and y4 have non-zero, off-
diagonal matrix elements. The other states cannot interact with y5 and are  excluded from the 
model. 
 
Table S1: A2u symmetry, L1 4f1 basis states for the Hubbard molecule model of LnO2. Only the 
states in red are used in the model. 
  

 4f1 (↑) 4f1 (↓) 
L1 (↓) y1 y3 
L1 (↑) y2 y4 
y5 is |L2G70⟩ 
 
The Hubbard molecule model Hamiltonian for the interaction between the |L14f1⟩ and |L2G70⟩ in 
CeO2 can be described using the following matrix,  
 

𝑨 = 	%
0 0 −𝑡
0 0 −𝑡
−𝑡 −𝑡 𝑈′

+, where %
1
0
0
+	= y1, %

0
1
0
+	= y4, and %

0
0
1
+	= y5,  

 
t is the electron hopping term (interaction integral), which is analogous to the off-diagonal matrix 
element, Hij, (orbital interaction integral) in MO theory, and U is the energy of the unperturbed 
excited state with respect to the ground state. 
 
The eigenvalues are 0 and 𝐸± =

"
#
.𝑈′ ± √𝑈′# + 8𝑡#3. The eigenvectors of interest are y±, which 

have energies E±. The eigenvectors are determined from A-E±I = 0. From the first 2 rows of A, a1 

= a4 and E±a1=-ta5 or a5 = -(E±/t) a1, where ai is the coefficient of yi. Using a1 = 1, the 
unnormalized wasvefunction is y± = y1 + y4 - (E±/t)y5. The normalization constant, N, is 
1 42 + (𝐸± 𝑡⁄ )#⁄ . The y± can be simplified by dividing by √2 to give 𝜓± =

𝑁;(𝜓" + 𝜓$) √2 −	.𝐸± √2⁄ 𝑡3𝜓%⁄ <, with N=1 =1 + .𝐸± √2𝑡⁄ 3
#

> . Finally, (𝜓" + 𝜓$) √2⁄ 	can 
be more conveniently represented as |L14f1⟩ and	y5 by |L24f0〉, to give the following: 

𝐸± =
"
#
.𝑈′ ± √𝑈′# + 8𝑡#3 and y± = N(|L1	4f1⟩ + l|L2 4f0〉) where N=1 √1 + 𝜆#⁄ , l = -𝐸± √2𝑡⁄ .  

 
EMLCT = √𝑈&# + 8𝑡# and nf = 1/N2.   
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Hubbard molecule model for PrO2: O 2p and Ln 4f, A2u mixing 
 
The ground state of Pr4+ in cubic symmetry is 4f1. As discussed for CeO2, the f-orbital that most 
strongly interacts with the oxygen orbitals is A2u, which is unoccupied in Pr4+. Since the only 
portion of the Pr wavefunction involved in the HMM is the single electron in the A2u orbital, the 
HMM for PrO2 is identical to that of CeO2.   
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Hubbard molecule model for TbO2: O 2p and Ln 4f, A2u mixing 
 
Unlike CeO2 and PrO2, the unperturbed ground state of TbO2 in the HMM involves a tetravalent 
lanthanide and has two electrons in the OA2u (L2) orbital. In the unperturbed ground state, 
|L24f7⟩, the oxygen A2u orbital is doubly occupied and each of the f-orbitals is singly occupied. 
While the actual ground state is an octet, in the HMM, the ground state is simplified to a doublet: 
y1 is spin up and y2 is spin down. Likewise, in the unperturbed charge transfer state, the oxygen 
A2u orbital is singly occupied, and the corresponding orbital on Tb is double occupied: y3 is spin 
up and y4 is spin down. Only y3 can interact with y1, and only y4  can interact with y2. The 
energy of |L24f7⟩	is set to zero, and the energy of |L14f8⟩	is U'. 
 
 
Table S1: A2u symmetry, L1 4f8 basis states for the Hubbard molecule model of TbO2.  

 4f8 (↓↑) 
L1 (↑) y3 
L1 (↓) y4 

y1 is |L24f7↑⟩;	y2 is |L24f7↓⟩ 
 
 
The Hubbard molecule model Hamiltonian for TbO2 can be described using the following 
matrix, A, 
 

𝑨 = 	H

0 0 −𝑡 0
0 0 0 −𝑡
−𝑡 0 𝑈′ 0
0 −𝑡 0 𝑈′

I, where H

1
0
0
0

I	= y1, H

0
1
0
0

I	= y2, H

0
0
1
0

I	= y3, and H

0
0
0
1

I	= y4 

 
The eigenvalues for the model are 𝐸± =

"
#
.𝑈′ ± √𝑈′# + 4𝑡#3. The only eigenvectors we care 

about are y±, which have energies E±. The eigenvectors are determined by solving A-E±I = 0. 
From the first 2 rows of A, we get E±a2=-t a4 and E±a1=-t a3, where ai is the coefficient of yi. The 
ground and excited states are doubly degenerate. Using a1 = 1, we get y±1 = y1 - (E±/t)y3 and y±2 
= y2 - (E±/t)y4, which is not normalized. The normalization constant, N, is 1 41 + (𝐸± 𝑡⁄ )#⁄ . For 
TbO2, the HMM gives the following result: 

𝐸± =
"
#
.𝑈′ ± √′ + 4𝑡#3, y±1 = N[|L24f7↑⟩	+ l|L↑4f8〉]; y±2 = N[|L24f7↓⟩	+ l|L↓4f8〉] where 

N=1 √1 + 𝜆#⁄  and l = -𝐸± 𝑡⁄ . 
 
EMLCT = √𝑈′# + 4𝑡# and nf = 2(l2/N2). 
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Figure S1. HMM for the 4f interaction in TbO2. 
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Hubbard molecule model for LnO2: O 2p and Ln 5d, Eg mixing 
 
The ground state is |L4Eg0⟩, which corresponds to O 2p Eg4 and Ln 5d Eg0. This state is spatially 
degenerate, and the model may be more conveniently applied by considering each component of 
the ground state separately since they interact with different excited states. The spatially 
degenerate wavefunctions of ground state are given by y1 and y2, which correspond to the empty 
dz2 and empty dx2-y2 orbitals and the matching, filled O 2p SALCs, respectively. The energy of 
y1 and y2 is 0. The excited state that interacts with y1 is |L3Eg1⟩ , which 16-fold degenerate and 
given by y3 - y18. The individual states are shown in Table S1. Only states in which the electron 
can hop from the occupied O 2p Eg orbitals into the Ln 5d Eg orbitals without changing sign can 
interact with the ground state: y1a can interact with y2 and y7, and y1b can interact with y12 and 
y17. The other states cannot interact with y1 and are  excluded from the model.  
 
Table S1: Eg3 5d Eg1 basis states for the Hubbard molecule model for LnO2. The spatially 
degenerate orbitals are indicated by the curved brackets. Only the states in red are used in the 
model. 
O 2p Eg3  Ce 5d Eg1 

states 
 

states (↑)(   ) (↓)(   ) (   )(↑) (   )(↓) 
(↓)(↑↓) y3 y7 y11 y15 

(↑)(↑↓) y4 y8 y12 y16 

(↑↓)(↓) y5 y9 y13 y17 

(↑↓)(↑) y6 y10 y14 y18 

 
The Hubbard molecule model Hamiltonian for the 5d Eg orbitals in LnO2 can be described using 
the following matrix for each of the two spatially independent wavefunctions y1 and y2. 
 

𝑨 = 	%
0 −𝑡 −𝑡
−𝑡 𝑈′ 0
−𝑡 0 𝑈′

+, where %
1
0
0
+	= y1 (or y2), %

0
1
0
+	= y3 (or y13), and %

0
0
1
+	= y8 (or y18),  

 
and t is the electron hopping term (interaction integral), which is analogous to off-diagonal matrix 
element, Hij, (orbital interaction integral) in MO theory. 

For each of the two spatially independent components of y1, the eigenvalues for the model are 0 
(singly degenerate) and 𝐸± =

"
#
.𝑈′ ± √𝑈′# + 8𝑡#3. The eigenvectors we care about are y±, which 

have energies E±. The eigenvectors are determined by solving A-E±I = 0. From the last 2 rows of 
A, we get a2 = a7 (= a12 = a17), and from the first row, we get -E±a1 = t(a2 + a7) = 2ta2 or a2 = a7 = -
(E±/2t)a1 taking a1 = 1, we get y± = y1a - (E±/2t)[y2 + y7]. Since |L4Eg0〉	 is	y1a and	 |L3Eg1〉	 is	
(𝜓# + 𝜓') √2⁄ ,	y± can be expressed as y± = |L4Eg0〉	-(E±/√2t)|L3Eg1〉,	which	is	not	normalized. 
The normalized wavefunction is given by y± = N[|L4Eg0〉	+	l|L3Eg1〉], where N=1 √1 + 𝜆#⁄ , and l 
= -E±/√2t,  

𝐸± =
"
#
.𝑈′ ± √𝑈′# + 8𝑡#3 y± = N[|L4Eg0〉	+	l|L3Eg1〉], where N=1 √1 + 𝜆#⁄ , and l = -E±/√2t. 

EMLCT = √𝑈′# + 8𝑡# and nf = 2(l2/N2).   
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|L15d1⟩ 5d1 (↑) 5d1 (↓) 
L1 (↓) y2 y4 
L1 (↑) y3 y5 

y1 is |L25d0⟩ 

Figure S2. HMM for one of the spatially degenerate 5d interactions in LnO2 (left), and its basis 
states (right). 
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Hubbard molecule model for LnO2: O 2p and Ln 5d, T2g mixing 
 
The ground state is |L6 T2g0⟩, which corresponds to O 2p T2g6 and Ln 5d T2g0. This state is triply 
spatially degenerate and consists of wavefunctions y1, y2, and y3. The energy of y1, y2, and y3 is 
0. The excited state that interacts with y1, y2, and y3 is |L5T2g1⟩ , which 36-fold degenerate and 
given by y4 - y39. The individual states are shown in Table S1. Only states in which the electron 
can hop from the occupied O 2p Eg orbitals into the Ln 5d Eg orbitals without changing sign can 
interact with the ground state: y1a can interact with y2 and y7, and y1b can interact with y12 and 
y17, and y1c can interact with y30 and y37. The other states cannot interact with y1 and are excluded 
from the model.  
 
Table S1: T2g5 5d T2g1 basis states for the Hubbard molecule model of LnO2. The spatially 
degenerate orbitals are indicated by the curved brackets. Only the states in red are used in the 
model. 

O 2p T2g5   Ln 5d T2g1 states for (dxz)(dyz)(dxy)   
states (↑)(  )(  )  (↓)(  )(  ) (  )(↑)(  ) (  )(↓)(  ) (  )(  )(↑) (  )(  )(↓) 

(↓)(↑↓)(↑↓) y4 y10 y16 y22 y28 y34 

(↑)(↑↓)(↑↓) y5 y11 y17 y23 y29 y35 

(↑↓)(↓)(↑↓) y6 y12 y18 y24 y30 y36 

(↑↓)(↑)(↑↓) y7 y13 y19 y25 y31 y37 

(↑↓)(↑↓)(↓) y8 y14 y20 y26 y32 y38 

(↑↓)(↑↓)(↑) y9 y15 y21 y27 y33 y39 

 
The Hubbard molecule model Hamiltonian for the 5d T2g orbitals in LnO2 can be described using 
the following matrix for each of the three spatially independent components of y1. 
 

𝑨 = 	%
0 −𝑡 −𝑡
−𝑡 𝑈′ 0
−𝑡 0 𝑈′

+, where %
1
0
0
+	= y1, y2, or y3, %

0
1
0
+	= y4, y18, or y32, and %

0
0
1
+	= y11, y25 or 

y39  
 
t is the electron hopping term (interaction integral), which is analogous to off-diagonal matrix 
element, Hij, (orbital interaction integral) in MO theory. 

For each of the three spatially independent components of |L6 T2g0⟩, the eigenvalues for the 
model are 0 (singly degenerate) and 𝐸± =

"
#
.𝑈′ ± √𝑈′# + 8𝑡#3. The eigenvectors we care about 

are y±, which have energies E±. The eigenvectors are determined by solving A-E±I = 0. From the 
last 2 rows of A, we get a4 = a11 = a18 = a25 = a32 = a39, and from the first row, we get -E±a1 = t(a4 
+ a11) = 2ta4 or a4 = a11 = -(E±/2t)a1 taking a1 = 1, we get y± = y1 - (E±/2t)[y4 + y9]. Since |L6T2g0〉	
is	y1 and	|L5T2g1〉	is	(𝜓$ + 𝜓"") √2⁄ ,	so	y± = N[|L6T2g0〉	-(E±/√2t)|L5T2g1〉],	where 
N=1 √1 + 𝜆#⁄ , and l = -E±/√2t: 
 
𝐸± =

"
#
.𝑈′ ± √𝑈′# + 8𝑡#3 and y± = N[|L6Eg0〉	+	l|L5Eg1〉], where N=1 √1 + 𝜆#⁄ , and l = -

E±/√2t. EMLCT = √𝑈′# + 8𝑡# and nf = 3(l2/N2).   
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HMM to second order for CeO2 4f interaction  

The energies can be determined to second order by solving |A-ES| = 0, where A is Hamiltonian 
for the HMM and S are the overlap integrals. Sii is equal to 1 and there is only one unique value 
of Sij, which can be shortened to S. For the CeO2 4f interaction, the determinant is given below 

 

Y
−𝐸 0 −𝑡 − 𝐸𝑆
0 −𝐸 −𝑡 − 𝐸𝑆

−𝑡 − 𝐸𝑆 −𝑡 − 𝐸𝑆 𝑈& − 𝐸
Y = 0 with 𝑡 = −𝑆(2𝐸( + 𝑈′), and EF -7.4 eV 

 
 
The eigenvalues are 0 and 𝐸± =

"
#("*#+!)

.𝑈& + 4𝑆𝑡 ± √𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3. The eigenvectors 
of interest are y±, which have energies E±. The eigenvectors are determined from A-E±S = 0. 
From the first 2 rows of A, a1 = a4 and E±a1=(-t- E±S)a5 or a5 = -E±/(t+ E±S) a1, where ai is the 
coefficient of yi. Using a1 = 1, the unnormalized wavefunction is y± = y1 + y4 - E±/(t+ E±S)y5. 
The normalization constant, N, is 1 42 + (𝐸±/(t +	𝐸±S))#⁄ . The y± can be simplified by 
dividing by √2 to give 𝜓± = 𝑁 ](𝜓" + 𝜓$) √2 −	^𝐸± √2⁄ (t +	𝐸±S)_𝜓%> `, with 

N=1 =1 + ^𝐸± √2⁄ (t +	𝐸±S)_
#

> . Finally, (𝜓" + 𝜓$) √2⁄ 	can be more conveniently represented 

as |L14f1⟩ and	y5 by |L24f0〉, to give the following: 

𝐸± =
"

#("*#+!)
.𝑈& + 4𝑆𝑡 ± √𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3 and y± = N(|L1	4f1⟩ + l|L2 4f0〉) where 

N=1 √1 + 𝜆#⁄ , l� = -𝐸± ;√2(t +	𝐸±S)<⁄ 	. 

 
ECT = "

"*#+!
.√𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3 and nf = 1/N2. 𝑡 = −𝑆(2𝐸( + 𝑈′) with EF -7.4 eV. 
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HMM to second order for PrO2 4f interactions.  
 
The model for PrO2 is the same as for CeO2. 
 

𝐸± =
"

#("*#+!)
.𝑈& + 4𝑆𝑡 ± √𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3 and y± = N(|L1	4f1⟩ + l|L2 4f0〉) where 

N=1 √1 + 𝜆#⁄ , l� = -𝐸± ;√2(t +	𝐸±S)<⁄ 	.EMLCT = "
"*#+!

.√𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3 and nf = 1/N2. 
Using 𝑡 = −𝑆(2𝐸( + 𝑈′) with EF -7.4 eV. 
 
 
 
HMM to second order for TbO2 4f interactions. 
 
The HMM for TbO2 can be expressed as doubly degenerate (spin degenerate) with  
 
𝑨 = 	^ 0 −𝑡

−𝑡 𝑈′_, where ^10_	= y� or y2, ^01_	= y3 or y4 

 

Solving |A-ES| = 0 gives 𝐸± =
"

#("*+!)
.𝑈& + 2𝑆𝑡 ± √𝑈′# + 4𝑡# + 4𝑈′𝑆𝑡3 and y± = N(|L2	4f0⟩ + 

l|L1 4f1〉) where N=1 √1 + 𝜆#⁄ , l� = -𝐸± [(t +	𝐸±S)]⁄ 	. ECT = "
"*+!

.√𝑈′# + 4𝑡# + 4𝑈′𝑆𝑡3 and nf 
= 2l�/N2. 𝑡 = −𝑆(2𝐸( + 𝑈′) with EF -7.4 eV. 
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HMM to second order for LnO2: O 2p and Ln 5d interactions 
 
The HMMs for the T2g and Eg interactions are essentially the same apart from their spatial 
degeneracy. In both cases, the interaction can be broken into non-degenerate cases (e.g., the 
double degenerate Eg interaction can be divided into the dz2 and dx2-y2 interactions). For each of 
the non-degenerate cases, the HMM can be expressed as  
 

𝑨 = 	%
0 −𝑡 −𝑡
−𝑡 𝑈′ 0
−𝑡 0 𝑈′

+, where %
1
0
0
+	= |L2 5d0ñ and %

0
1
0
+ and %

0
0
1
+ are |L1 5d1ñ. 

 

Solving |A-ES| = 0 gives the same solution as for CeO2 4f interactions. 𝐸± =
"

#("*#+!)
^𝑈& +

4𝑆𝑡 ± 4𝑈&# + 8𝑡# + 8𝑈&𝑆𝑡_ and y± = N(|L1	4f1⟩ + l|L2 4f0〉) where N =	1 √1 + 𝜆#⁄ , 
l� = -𝐸± ;√2(t +	𝐸±S)<⁄ ,  

 
ECT = "

"*#+!
.√𝑈′# + 8𝑡# + 8𝑈′𝑆𝑡3 and nf = ndegl2/N2, where ndeg is the degree of degeneracy. t =

−𝑆(2𝐸( + 𝑈′) with EF -7.4 eV.  
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Experimental details 
 
Magnetic susceptibility measurements. In an argon filled glovebox, samples were loaded into 
3 mm OD quartz tubes by sandwiching them between two plugs of quartz wool. The samples 
were compressed into a pellet by squeezing them between two quartz rods. The quartz rods were 
removed, and the ends of the tube were capped by inserting them into septa for 7 mm tubing. The 
capped tube was removed from the glovebox. The center of the tube was wrapped with a 
Kimwipe, saturated with liquid nitrogen, and sealed with a propane/oxygen torch. Variable 
temperature magnetization data were recorded at 1 T, 2 T, and 4 T  using a Quantum Designs 
MPMS SQUID magnetometer.  
Variable temperature magnetization was corrected for the diamagnetism of the quartz wool using 
Pascal’s constants for covalent compounds, χQW = 3.7 × 10-7 emu g-1 (no correction for the 
diamagnetism of the quartz tube is needed as it never leaves the SQUID coils). Molar 
susceptibility was calculated using the following equation: 

χ-./ =	
(molecular	weight)
(sample	mass) f

(M-012 −M3044.)
H − χ56	i − χ781 

Where χmol is the molar susceptibility, Mmeas is the measured magnetization, Mferro is the 
magnetization of the ferromagnetic impurity, which is temperature and field- independent; χQW is 
the contribution to the susceptibility due to the quartz wool, χdia is the diamagnetic correction 
determined using Pascal’s constants, and H is the applied field. 
Two ferromagnetic impurities are commonly encountered in laboratory samples, ferrous metals 
and magnetite or other ferrites from the oxide coating on stainless steel lab equipment. Of these, 
magnetite is far more likely to be encountered. In general, the magnetization of ferromagnets is 
temperature independent below the Curie temperature, which is 860 K for magnetite, so 
magnetization of the impurity is temperature independent for this experiment. The magnetization 
of magnetite reaches saturation at approximately 0.2 T, above which the magnetization is ~90 
emu/g. Below this field, the magnetization of magnetite is roughly linear with applied field. 
Based on the assumption that the impurity is magnetite or a related ferrite resulting from the 
abrasion of stainless steel lab equipment, the data were corrected for a temperature and field 
independent ferromagnetic impurity. Mferro was allowed to vary to minimize the least squares 
difference between χmol at different fields. Variable temperature magnetic susceptibility data 
including before and after the correction for ferromagnetic impurities are included in the SI.  
 
Diffuse reflectance (DR) measurements. DR spectra were obtained with an Ocean Optics 
T3000 spectrometer equipped with a diffuse reflectance probe. Samples were smeared onto a 
glass microscope slide covered with several layers of poly-tetrafluoroethylene (PTFE) tape. The 
blank spectrum was obtained from the PTFE-covered microscope slide prior to taking the data on 
the compound. Reflectance data were converted to F(R∞) using the Kubelka-Munk transform.1 
The DR spectra were normalized by setting the lowest absorbance of the spectrum to zero 
(Figures S1 and S2).  
 
Charge-transfer band gap energy (EBG) determination. Tauc plots were generated assuming 
that the O 2p to Ln 4f and 5d transitions are allowed, direct transitions.1-3 The band gap was 
determined using the approach described by Makula et al.1 Briefly, the data are plotted as 
[F(R∞)•hu]2 vs hu (DR spectra) or (a•hu)2 vs hu (XANES spectra), where a is the absorbance. 
The regions below and above the transition are fit to straight lines. The intercept of these lines is 
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the band gap. In the case of the O 2p to 4f transitions in the DR spectra of LnO2, the intercept 
with the x-axis was used instead of fitting the region before the transition. To determine the 
CeO2 O 2p to Ce 5d band gaps, the CeO2 absorption spectrum reported by Niwano et al. was 
digitized using the program UN-SCAN-IT, and the band gaps were determined using the 
approach described by Makula et al.1, 4-5 The uncertainty in Tauc plot determinations of band 
gaps is typically reported as 0.03 eV. Based on work on CeO2 thin films, we assume the 
uncertainty is slightly larger, 0.05 eV, for the band gap determined from the UV-Visible DR data 
(the numerical error from fitting the Tauc plots is smaller).6  
 
Least Squares fitting and uncertainty analysis. Least squares fitting of the XANES pre-edge 
energies to the charge transfer band gap energies with errors in both dimensions was performed 
as described in “Numerical Recipes.”7 Uncertainties in the modeled parameters, sf, were 

determined using 𝜎9# = ∑ ^:9
:;"
_
#
𝜎;"
#

< , where sxi  is the uncertainty of measured property xi, and 
the derivatives were determined numerically. 
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Figure S3. Tauc plots for CeO2 from the data published by Niwano, et al.5 Band gap given in the 
upper left corner of each plot. 
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Figure S4. Tauc plots for CeO2 O K-edge XANES pre-edge peaks. Band gap given in the upper 
left corner of each plot. 
 
 
 

   

Figure S5. Tauc plots for PrO2 O K-edge XANES pre-edge peaks. Band gap given in the upper 
left corner of each plot. 
 
 
 
 

   
Figure S6. Tauc plots for TbO2 O K-edge XANES pre-edge peaks. Band gap given in the upper 
left corner of each plot. 
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Figure S7. Magnetic Susceptibility of CeO2 from Aldrich, dried under vacuum for 48 hr. Data 
are corrected for underlying diamagnetism using Pascal’s constants. (left) Data before correction 
for a ferromagnetic impurity. (right) Data corrected for a ferromagnetic impurity. 
 
 

  
Figure S8. Magnetic Susceptibility of CeO2 from Strem, dried under vacuum for 48 hr. Data are 
corrected for underlying diamagnetism using Pascal’s constants. (left) Data before correction for 
a ferromagnetic impurity. (right) Data corrected for a ferromagnetic impurity. 
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