Electronic Supplementary Information (ESI)

Acid-base responsive multifunctional poly(formyl sulfide)s through a facile catalyst-free click polymerization of aldehydeactivated internal dignes and dithiols

Baixue Li,^a Xue Wang,^a Die Huang,^b Mingzhao Li,^b Anjun Qin,^{*b} Yusheng Qin,^{*a} and Ben Zhong Tang^c

^{*a*} College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China

^b State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China ^c School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China

Contents

Materials and instruments	S3
Synthesis and characterization	S 4
Thermostability of polymers (Fig. S1)	S11
FT-IR, ¹ H and ¹³ C NMR spectra of monomers and polymers (Fig. S2-S15)	S11
Mechanism study of acid-base response (Fig. S16-S19)	S23
Function applications (Fig. S20-S22)	S24
References	S26

Materials and instruments.

Materials: 4,4'-Thiobisbenzenethiol (**2a**), 1,4-benzenedithiol (**2b**) and 1,3benzenedithiol (**2c**) were purchased from TCI or Energy. Tetrakis (acetonitrile)copper(I) hexafluorophosphate [Cu(MeCN)₄PF₆], tetramethylpiperidine 1-oxyl (TEMPO) were purchased from TCI, and copper(I) iodide (CuI) was purchased from Energy. Cinnamaldehyde, 4-methylbenzenethiol were purchased from Bidepharm. All the commercial chemicals were purchased and used directly without further purification. THF, CHCl₃ and toluene were distilled under argon at normal pressure from sodium benzophenone ketyl immediately prior to use. DCM and DMF were extra-dry grade. Other commercial chemicals were purchased and used as received.

Instruments: Fourier transform infrared (FT-IR) spectra were collected on a Shimadzu IRAffinity-1S spectrometer (KBr disks). The ¹H and ¹³C NMR spectra were measured on a Bruker AVANCE NEO spectrometer in CDCl₃ using tetramethylsilane (TMS, $\delta = 0$) as internal reference. The weight- and number-average molecular weights (M_w and M_n) and polydispersity index (PDI, M_w/M_n) of the polymers were estimated by gel permeation chromatography (GPC) on a Waters 2414 binary system equipped with a refractive index detector, using monodisperse polystyrene as calibration and THF as the eluent at a flow rate of 1.0 mL/min. Thermogravimetric analysis (TGA) measurements were carried out on a Netzsch TG 209 under dry nitrogen at a heating rate of 20 °C/min. UV-visible absorption spectra were recorded on a Persee TU-1901 spectrophotometer. Photoluminescence (PL) spectra were measured on a Hitachi F-4700 spectrofluorometer. Refractive indices of the resultant polymers were measured

on J. A. Woollam V-VASE variable angle ellipsometry system. The thin films of polymers were fabricated on silicon wafers by spin-coating procedure from their solutions in dichloroethane (15 mg/mL⁻¹, 100 μ L). The Cauchy dispersion law was applied to analyze the polymer layer. High resolution mass spectrometry (HRMS) measurements were performed on a Bruker Agilent1290/maXis impact mass spectrometer.

Synthesis and characterization

Monomers: Monomers diynes **1a** and **1b** were prepared according to the published procedures.^{1,2} The detailed synthetic routes are shown in Scheme S1.

Characterization data of **1a**: FT-IR (KBr disk), *v* (cm⁻¹): 2956, 2930, 2857, 2183, 1659, 1607, 1465, 1384, 1280, 1013, 993, 967, 870, 824, 712, 624, 539. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 9.46, 7.75, 7.61, 1.99, 1.09, 0.68, 0.55. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 176.73, 151.92, 143.05, 133.04, 128.17, 120.95, 118.86, 95.97, 89.45, 55.60, 40.02, 26.01, 22.96, 13.82.

Characterization data of **1b**: FT-IR (KBr disk), *ν* (cm⁻¹): 2928, 2849, 2172, 1650, 1604, 1010, 984, 848, 814, 720, 488. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 9.46, 7.76, 7.70, 7.63, 1.51. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 176.79, 154.63, 141.20. 133.19, 127.93, 121.29, 119.19, 95.73, 89.34, 47.27, 26.80.

Scheme S1 Synthesis of monomer 1a and 1b.

4

Molecule model reaction: Into a 25 mL Schlenk tube were added 3-phenylpropiolaldehyde (130.1 mg, 1 mmol) and 4-methylbenzenethiol (124.2 mg, 1 mmol), followed by 2 mL of extra-dry DMF under argon. The mixture was stirred at 60 °C for 10 h. The solution was condensed and the crude product was purified by silica-gel column chromatography using a hexane/ethyl acetate mixture (v/v = 100/1) as the eluent. The model product **3** was obtained in 65% yield. The detailed synthetic route is shown in Scheme S2.

Characterization data of model compound **3**: FT-IR (KBr disk), *v* (cm⁻¹): 2962, 2922, 2846, 1663, 1562, 1490, 1453, 1381, 1306, 1261, 1162, 1121, 1018, 897, 808, 737, 699, 506. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.32, 9.26, 7.51, 7.45, 7.28, 7.10, 6.94, 6.52, 5.63, 2.40, 2.21. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 190.65, 190.13, 169.76, 140.96, 135.48, 134,87, 131.04, 130.52, 129.56, 128.78, 125.38, 123.29, 21.48.

Scheme S2 Synthesis of model compound 3.

Hydrazine responsive model reaction: Into a 25 mL Schlenk tube were added cinnamaldehyde (132.1 mg, 1 mmol) and hydrazine hydrate (88.6 mg, 1.4 mmol), followed by 2 mL of THF under air atmosphere. The mixture was stirred at room temperature for overnight. The solution was condensed and the crude product was purified by silica-gel column chromatography using a hexane/ethyl acetate mixture (v/v

= 30/1) as the eluent. The model product **4** was obtained in 50% yield. The detailed synthetic route is shown in Scheme S3.

Characterization data of model compound **4**: FT-IR (KBr disk), *v* (cm⁻¹): 2922, 1628, 1585, 1446, 1285, 1070, 974, 744, 690. 508. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 8.38, 8.36, 7.53, 7.52, 7.41, 7.39, 7.37, 7.36, 7.34, 7.09, 7.08. HRMS: m/z 261.1389 ([M + H]⁺, calcd 260.1313).

Scheme S3 Synthesis of model compound 4.

Fluorescence changing of the various pattens

The THF solutions of imino-P**1a2a**, P**2** and MTBZ-Br with the concentration of 1.0 mg/mL were loaded on filter papers with the assistance of different masks. Then the HCl and NH₃ vapors were then fumed on the pattens, respectively. The detailed synthetic routes of P**2** and MTBZ-Br are shown in Scheme S4 and S5.

Scheme S4 Synthesis of P2.

P**2** was prepared according to the published procedure³. A light-yellow powder, *M*_w: 21250; PDI: 1.65. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.17, 8.64, 8.52, 7.88-6.72, 4.96, 4.38, 3.85, 2.37-0.61.

Scheme S5 Synthesis of MTBZ-Br.

MTBZ-Br was prepared according to the published procedure⁴. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 7.88-7.85, 7.75-7.74, 7.51-7.49, 7.14-7.13, 7.04-7.02, 6.87-6.86, 3.81.

Polymerization: Unless otherwise stated, all the polymerizations of aldehyde-activated internal diynes **1** and dithiols **2** were conducted under argon using standard Schlenk techniques. Typical experimental procedure for the polycycloaddition is given below. Monomer **1a** (38.1 mg, 0.1 mmol) and **2a** (25.0 mg, 0.1 mmol) were added into a 10 mL Schlenk tube. After evacuated and refilled with argon for three times, extra-dry DMF (0.5 mL) was injected to dissolve the monomers. The mixture was stirred at 60 °C for 4 h. The resultant solution was diluted with 2 mL CHCl₃ and dropwise added to 100 mL *n*-hexane through a cotton filter under stirring. The precipitates were filtered and washed with *n*-hexane for several times and dried under vacuum at 40 °C to a constant weight.

Characterization data of P**1a2a**. A light-yellow powder was obtained in 86% yield. *M*_w: 40260; PDI: 2.74. FT-IR (KBr disk), *v* (cm⁻¹): 2960, 2925, 2860, 1665, 1571, 1472, 1384, 1306, 1123, 1011, 1009, 816, 739, 495. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.31, 9.32, 7.71, 7.51, 7.33, 7.18, 7.08, 7.01, 6.85, 6.63, 5.80, 5.71, 1.90, 1.80,

0.97, 0.60, 0.37, 0.15. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 190.38, 189.69, 168.55, 158.02, 151.75, 142.53, 136.78, 136.00, 134.26, 133.22, 132.17, 131.47, 130.43, 129.04, 128.34, 124.34, 123.30, 120.42, 55.33, 39.85, 25.92, 23.13, 13.91. Characterization data of P1a2b. A pale-yellow powder was obtained in 80% yield. M_w: 42390; PDI: 2.64. FT-IR (KBr disk), v (cm⁻¹): 2956, 2928, 2855, 1665, 1569, 1464, 1385, 1308, 1263, 1215, 1123, 1011, 818, 736, 701, 498. ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 10.36, 9.33, 7.76, 7.58, 7.49, 6.93, 6.73, 6.58, 5.85, 5.58, 1.99, 1.05, 0.65, 0.38. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 190.58, 189.70, 151.82, 142.72, 136.33, 135.45, 132.65, 131.43, 129.07, 128.20, 127.23, 124.43, 123.21, 120.58, 59.78, 55.58, 39.83, 38.17, 31.96, 31.26, 29.77, 29.42, 26.01, 22.95, 13.93. Characterization data of P1b2a. A faint yellow powder was obtained in 84% yield. M_w: 22140; PDI: 1.84. FT-IR (KBr disk), v (cm⁻¹): 2962, 2922, 2849, 1662, 1569, 1473, 1416, 1384, 1312, 1264, 1160, 1123, 1010, 816, 738, 700, 498. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.35, 10.29, 9.33, 7.81, 7.75, 7.59, 7.53, 7.51, 7.38, 7.21, 7.18, 7.00, 6.83, 6.66, 5.79, 5.66, 1.53, 1.39, 1.35, 1.20, 1.18. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 190.15, 168.62, 154.62, 140.39 136.99, 136.10, 134.40, 133.27, 132.30, 131.16, 130.35, 129.22, 128.25, 124.37, 123.64, 120.73, 47.19, 38.37, 31.98, 31.25, 26.96.

Characterization data of P**1b2b**. A primrose yellow powder was obtained in 85% yield. *M*_w: 22100; PDI: 1.79. FT-IR (KBr disk), *v* (cm⁻¹): 2962, 2925, 2849, 1662, 1558, 1460, 1416, 1385, 1312, 1264, 1163, 1123, 1012, 819, 737, 700, 503. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.35, 10.18, 9.35, 9.25, 8.03, 7.76, 7.61, 7.48, 7.33, 6.97, 6.73, 6.58, 5.80, 5.53, 1.53, 1.49, 1.42, 1.36, 1.32. ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 190.47, 189.81, 154.75, 140.67, 136.56, 135.73, 134.05, 131.95, 129.39, 128.24, 124.12, 123.30, 120.83, 47.16, 26.75.

Characterization data of P**1b2c**. A light-yellow powder was obtained in 88% yield. *M*_w: 10850; PDI: 1.93. FT-IR (KBr disk), *v* (cm⁻¹): 2959, 2925, 2852, 2178, 1662, 1606, 1554, 1460, 1416, 1380, 1122, 993, 819, 773, 735, 685, 454. ¹H NMR (500 MHz, CDCl₃), *δ* (TMS, ppm): 10.36, 10.20, 9.30, 9.20, 7.67, 7.50, 7.05, 6.89, 6.67, 6.60, 5.75, 5.44, 1.61, 1.48, 1.40, 1.31, 1.18. ¹³C NMR (125 MHz, CDCl₃), *δ* (TMS, ppm): 190.31, 158.12, 154.50, 140.59, 137.71, 136.63, 135.23, 134.08, 131.53, 130.38, 129.64, 128.41, 124.21, 123.30, 120.99, 46.99, 26.91.

Optimization of polymerization conditions

To obtain soluble poly(formyl sulfide)s with high molecular weights and high yields, the polyhydrothiolation conditions were systematically optimized using aldehydeactivated internal diyne **1a** and dithiol **2a** as model monomers.

Entry	Solvent	Yield (%)	$M_{ m w}{}^b$	PDI^b
1	THF	58	880	1.06
2	DCM	60	1 510	1.25
3	CHCl ₃	61	3 3 3 0	1.27
4	toluene	70	1 240	1.15
5	DMF	75	29 540	2.09

Table S1 Effect of solvent on the polymerization of 1a and $2a^a$

^{*a*} Carried out at 40 °C for 4 h under argon at a monomer concentration of 0.2 M, [1a] = [2a]. ^{*b*} Estimated by GPC using THF as an eluant on the basis of a polystyrene (PS) calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight.

Entry	$T(^{\circ}\mathrm{C})$	Yield (%)	$M_{ m w}{}^b$	PDI^b
1	30	63	10 070	1.64
2^c	40	75	29 540	2.09
3	50	83	33 300	2.13
4	60	80	41 560	2.59

Table S2 Effect of reaction temperature on the polymerization of 1a and $2a^a$

^{*a*} Carried out in DMF for 4 h under argon at a monomer concentration of 0.2 M, [1a] = [2a]. ^{*b*} Estimated by GPC using THF as an eluant on the basis of a PS calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight. ^{*c*} Data taken from Table S1, entry 5.

Table S3 Effect of monomer concentration on the polymerization of 1a and $2a^a$

Entry	<i>C</i> (M)	Yield (%)	$M_{ m w}{}^b$	PDI^b
1	0.05	50	6 1 5 0	1.82
2	0.10	69	19 100	1.60
3^c	0.20	80	41 560	2.59
4	0.25	86	40 260	2.74
5^d	0.33	gel	44 700	2.91

^{*a*} Carried out in DMF at 60 °C under argon for 4 h, [1a] = [2a]. ^{*b*} Estimated by GPC using THF as an eluent on the basis of a PS calibration; $M_w =$ weight-average molecular weight; PDI = M_w/M_n ; $M_n =$ number-average molecular weight. ^{*c*} Data taken from Table S2, entry 4. ^{*d*} Molecular weight of the soluble part.

Entry	t (h)	Yield (%)	$M_{ m w}{}^b$	PDI^b
1	2	73	32 320	2.23
2	3	73	41 980	2.12
3 ^c	4	86	40 260	2.74
4	5	77	32 230	2.03
5	6	76	37 340	2.54

Table S4 Time course of the polymerization of 1a and $2a^a$

^{*a*} Carried out in DMF at 60 °C under argon at a monomer concentration of 0.25 M, [**1a**] = [**2a**]. ^{*b*} Estimated by GPC using THF as an eluent on the basis of a PS calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight. ^{*c*} Data taken from Table S3, entry 4.

Entry	$[T]^b (mM)$	Yield (%)	$M_{ m w}{}^c$	PDI ^c	
1	0	74	38 340	2.98	
2	50	77	32 400	1.86	
3	100	76	34 350	1.96	

Table S5 Polymerization of **1a** and **2a** in the presence of γ -terpinene^{*a*}

^{*a*} Carried out in DMF at 60 °C for 2 h under argon at a monomer concentration of 0.2 M, [**1a**] = [**2a**]. ^{*b*} T= γ -terpinene. ^{*c*} Estimated by gel permeation chromatography using THF as an eluant on the basis of a polystyrene calibration; M_w = weight-average molecular weight; PDI = M_w/M_n ; M_n = number-average molecular weight.

Fig. S1 TGA curves of P**1a2a**-P**1b2c** at a heating rate of 20 °C/min under nitrogen. T_d presents temperature of 5% weight loss.

Fig. S2 ¹H NMR spectra of model compound in in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S3 FT-IR spectra of 1a (A), 2b (B) and P1a2b (C).

Fig. S4 FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).

Fig. S5 FT-IR spectra of 1b (A), 2b (B) and P1b2b (C).

Fig. S6 FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).

Fig. S7 ¹³C NMR spectra of **1a** (A), **2a** (B), model compound **3** (C) and P**1a2a** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S8 ¹H NMR spectra of **1a** (A), **2b** (B) and P**1a2b** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S9 ¹H NMR spectra of **1b** (A), **2a** (B) and P**1b2a** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S10 1 H NMR spectra of **1b** (A), **2b** (B) and P**1b2b** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S11 ¹H NMR spectra of **1b** (A), **2c** (B) and P**1b2c** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S12 ¹³C NMR spectra of **1a** (A), **2b** (B) and P**1a2b** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S13 13 C NMR spectra of 1b (A), 2a (B) and P1b2a (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S14 ¹³C NMR spectra of **1b** (A), **2b** (B) and P**1b2b** (D) in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S15 13 C NMR spectra of 1b (A), 2c (B) and P1b2c (D) in CDCl₃. The solvent peaks are marked with asterisks.

Table S6 Refractive indices (n_D) , Abbé numbers (v_D) , optical dispersions (D) and thickness of thin films of polymers P1a2a-P1b2c, n_D values of commercial polymers

Polymer	$n_{\rm D}{}^a$	$v_{\rm D}{}^b$	D^c	Thickness (nm)	Commercial polymer	$n_{\rm D}^{d}$
P 1a2a	1.7098	11.1393	0.0898	156.12	Poly(ethyleneterephthalate)	1.635
P 1a2b	1.7117	8.1039	0.1234	263.02	Polystyrene	1.587
P 1b2 a	1.7552	8.3189	0.1202	225.43	Polycarbonate	1.581
P1b2b	1.7510	8.5600	0.1168	145.16	Polyethylene	1.499
P1b2c	1.7557	7.9536	0.1257	221.83	Polyacrylate	1.492

^{*a*} Data of polymers at 632.8 nm. ^{*b*} $v_D = (n_{589.3}-1)/(n_{486.1}-n_{656.3})$. ^{*c*} $D = 1/v_{D..}$ ^{*d*} Data of commercial polymers at 632.8 nm taken from refractive index database.

Fig. S16 Absorption (A) and PL (B) spectra of imino-P**1a2a** film upon fumigation with HCl and NH₃ vapor.

Fig. S17 ¹H NMR spectra of **4** (A) before and (B) after addition of one equivalent TFA and (C) a mixture of **4** and TFA after addition of one equivalent $NH_3 \cdot H_2O$ in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S18 FT-IR spectra of 4 (A), protonated (B) and deprotonated (C) analogues.

Fig. S19 Theoretical calculation model structure.

Fig. S20 Responsive patten by spraying imino-P1a2a solution on the filter papers using photomask with HCl and NH_3 vapors.

Fig. S21 Schematic representation of the designed pattern in Fig. 8 using different fluorescent materials.

Fig. S22 Spoilage detection of seafood in sealed packages for 24 h at room temperature (experimental group) and 4 °C (control group) using protonated imino-P**1a2a** filter papers. Photographs taken under normal room illumination and UV irradiation.

References

- 1. X. Lang, F. You, X. He, Y. Yu and L. He, Green Chem., 2019, 21, 509-514.
- 2. J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901–16910.
- 3. B. Li, A. Qin and B. Z. Tang, Polym. Chem., 2020, 11, 3075–3083.
- 4. Q. Wan, R. Zhang, Z. Zhuang, Y. Li, Y. Huang, Z. Wang, W. Zhang, J. Hou and
- B. Z. Tang, Adv. Funct. Mater., 2020, 30, 2002057.