Supporting Information

Trifluoromethylarylation of alkenes using anilines

Carlos Corral Suarez ${ }^{\text {a,b }}$ and Ignacio Colomer ${ }^{\text {a }}$,b

${ }^{a}$ Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
${ }^{\mathrm{b}}$ IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.

Table of Contents

1. General experimental details S3
2. Synthesis of starting materials S3
3. Optimization details S5
4. General procedure for the trifluoromethylarylation of alkenes using anilines in HFIP S7
5. Derivatization of trifluoromethyl products S39
6. Selective derivatization of bioactive molecules S45
7. Sequential trifluoromethylarylation and hydroarylation of quinolines S47
8. Mechanistic studies S49
9. References S69
10. X-Ray diffraction analysis S70
11. NMR spectra S79

1. General experimental details

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker DPX 400 MHz , VARIAN INOVA-300 MHz or VARIAN SYSTEM-500 MHz spectrometers in CDCl_{3} or $\left(\mathrm{CD}_{3}\right) \mathrm{SO}$ and referenced to residual solvent peaks. Chemical shifts are quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m) and broad singlet (br s). Coupling constants, J, are measured in Hz to the nearest 0.1 Hz . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature. High resolution mass spectra are given to four decimal places and were registered in a spectrometer GCT Agilent Technologies 6890N using Electronic Impact (EI) techniques at 70 eV , Fast Atom Bombardment and Time-ofFlight (TOF) detector or Agilent 6500 Accurate Mass using electrospray (ESI) and Time-of-Flight (TOF) detector. Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and are uncorrected. The solvent systems used for recrystallization are quoted in parentheses. Flash column chromatography was performed using silica gel ($60 \AA$, $0.033-0.070 \mathrm{~mm}, \mathrm{BDH})$. TLC analyses were performed on Merck Kiesegel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ precoated silica plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem, Apollo and TCI were used directly as supplied. All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon. All reactions were stirred with magnetic followers. 3900 Parr Instrument Company hydrogenator was used when required.

2. Synthesis of starting materials

2.1. Synthesis of N-Benzylanilines

N-Benzylanilines were obtained following well established reductive amination procedure.

General procedure for reductive amination

A solution of benzaldehyde (1.0 equiv.), aniline $\mathbf{S 1}$ (1.1 equiv.) and AcOH (0.25 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{M})$ was stirred for 30 min . at room temperature and sodium triacetoxyborohydride (1.5 equiv.) was added in one portion. The reaction mixture was monitored until completion by TLC and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by flash column chromatography ($\mathrm{EtOAc} / \mathrm{Hexane}$) to afford product 1 .

2.2. Synthesis of alkenes

Alkenes $\mathbf{2 a}, \mathbf{2 f}, \mathbf{2 u}, \mathbf{2 y}$ and $\mathbf{2 a c}$ were commercially available and used directly as provided.

2.2.1. General procedure for Wittig olefination

Alkenes $\mathbf{2 b}-\mathbf{t}, \mathbf{2 x}$ and $\mathbf{2 z - a b}$ were obtained following well established Wittig olefination procedure using the corresponding aldehyde or ketone.

A suspension of triphenylphosphonium salt (1.3 equiv.) in dry THF ($5.0 \mathrm{~mL} / \mathrm{mmol}$) was placed in a flame-dried round-bottom flask. The solution was cooled to $0^{\circ} \mathrm{C}$ and kept under argon. The base (1.5 equiv. of t-BuOK or 1.8 equiv. of n-BuLi) was added in one portion. After stirring at $0^{\circ} \mathrm{C}$ for 30 \min the solution turns into an intense bright colour, then the aldehyde or ketone $\mathbf{S 2}$ (1.0 equiv.) was added. The reaction mixture was gradually warmed to room temperature. After stirring overnight, the reaction was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The phases were separated and the aqueous phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to give the corresponding alkene $\mathbf{2}$ that was purified by chromatography on silica gel using the appropriate mixture of eluents.

2.2.2. General procedure for ketone reduction and dehydration

Alkenes $\mathbf{2 v}$ and $\mathbf{2 w}$ were obtained following a two-step procedure consisting on ketone reduction and alcohol dehydration.

Following an adapted procedure, ${ }^{1,2} \mathrm{NaBH}_{4}$ (5.0 equiv.) was slowly added over a solution of ketone $\mathbf{S 3}$ (1 equiv.) in MeOH at $0^{\circ} \mathrm{C}$. The resulting solution was then allowed to reach room temperature and stirred for 75 min . until complete conversion (monitored by TLC). The solvent was removed under reduced pressure and the resulting solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and successively washed with water and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum to afford the desired product $\mathbf{S 4}$, that was used without further purification. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.1 equiv) was added to a solution of alcohol $\mathbf{S 4}$ in CHCl_{3} $(0.05 \mathrm{M})$ at room temperature under vigorous stirring (important to avoid side reactions). The mixture
was stirred and monitored by TLC until completion. The solvent was evaporated, and the crude reaction was purified by chromatography on silica gel ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane) to give alkene $\mathbf{2 v}$ or $\mathbf{2 w}$.

2.2.3. Quinoline reduction and N-Boc protection

Dihydroquinoline $\mathbf{9}$ was obtained via quinoline reduction and in-situ N -Boc protection.

Following an adapted procedure ${ }^{3}$, suspension of lithium aluminum hydride (2 equiv.) in dry THF (2 mL) was added slowly over an ice-cold solution of quinoline (1.0 equiv.) in dry THF (4 mL). The solution was stirred for 2 h at $0^{\circ} \mathrm{C}$, then lithium aluminum hydride (2 equiv.) in dry THF (2 mL) was again added and the reaction mixture stirred for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction was then carefully quenched with water and filtered. The filtrate was extracted using ethyl acetate, washed successively with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting crude was immediately protected. The crude was dissolved in dry DCM (0.2 M), and Boc anhydride (1.5 equiv.), triethylamine (3 equiv.) and 4 -(Dimethylamino)pyridine (0.10 equiv.) were added to the solution at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature and monitored by TLC until completion. Reaction mixture was diluted with DCM and extracted with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by silica gel chromatography (50\% EtOAc - hexane) to give 9.

3. Optimization details

3.1. Table S1. Effect of the solvent

${ }^{\mathrm{a}} \mathrm{OAc}$ incorporation, instead of aniline, was observed (36% yield). nr: no reaction. nc: no conversion.

3.2. Table S2. Effect of temperature

3.3. Table S3. Effect of the concentration

Entry	Concentration (M)	Isolated Yield, 4a (\%)
1	0.4 M	72%
2	0.2 M	67%
3	0.1 M	49%

3.4. Table S4. Effect of stoichiometry in the reaction

PIDA: (Diacetoxyiodo)benzene. nr: no reaction
4. General procedure for the trifluoromethylarylation of alkenes using anilines in HFIP.

Aniline 1 (1 equiv.) and alkene 2 (1 equiv.) were placed in an oven-dry 10 mL vial and hexafluoroisopropanol (0.4 M) was added, followed by trifluoromethyl reagent $\mathbf{3}$ (1 equiv.). The vial was sealed, purged with Argon and set in a preheated heating block overnight at $40^{\circ} \mathrm{C}$, unless other temperature is stated. The reaction mixture was cooled down, the solvent was evaporated under reduced pressure and the crude was purified by chromatography on silica gel using the appropriate mixture of eluents to give the corresponding product, 4.

N-Benzyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4a.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a}$ ($48.2 \mathrm{mg}, 72 \%$), as a yellow oil.

Data for $\mathbf{4 a}: \boldsymbol{R}_{f} 0.3\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\mathbf{d}_{6}\right) \delta 7.40-7.17(7 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.51(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 6-\mathrm{H}), 6.13$ $(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{NH}), 4.23\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.08(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 1-\mathrm{H}), 3.69(3 \mathrm{H}, \mathrm{s}$, OMe), $2.99\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ D M S O - d ~}{ }_{\mathbf{6}}$) 157.6 (1C, C Ar), 147.2 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 140.4 (1C, C Ar), 136.3 (1C, C Ar), 131.0 (1C, C Ar), 128.3 (2C, CH Ar), 128.2 (2C, CH Ar), 127.7 (2C, CH Ar), 127.2 (2C, CH Ar), 126.6 (1C, CH Ar), 127.1 ($1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 113.8 (2C, CH Ar), 112.3 (2C, CH Ar), 54.9 (1C, OMe), 46.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.1 ($1 \mathrm{C}, \mathrm{q}, J=3.1 \mathrm{~Hz}, \mathrm{C}-1$), 38.3 (1C, q, $J=25.8 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ D M S O - d ~} \mathbf{d}_{6}$) δ-63.6 (3F, CF_{3}). HRMS (EI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$requires $m / z 385.1648$, found $m / z 385.1635$.
N-Methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4b.

From aniline 1b ($21.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 b}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 30: 70 \mathrm{Et}_{2} \mathrm{O}-$ hexane) gave $\mathbf{4 b}$ ($28.2 \mathrm{mg}, 50 \%$), as a colourless oil.

Data for 4b: $\boldsymbol{R}_{f} 0.1\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.15(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, 9-\mathrm{H}), 7.04(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-\mathrm{H}), 6.55(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 6-$ H), $4.19(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.82(2 \mathrm{H}, \mathrm{qd}, J=10.5$ and $\left.7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.80(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (1C, C Ar), 148.1 (1C, C
$\mathrm{Ar}), 135.9$ (1C, C Ar), 132.1 (1C, C Ar), 128.5 (2C, CH Ar), 128.3 (2C, C-5), 126.7 (1C, q, $J=277.8$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 114.1 (2C, CH Ar), 112.7 (2C, C-6), 55.4 (1C, OMe), 43.5 (1C, C-1), 40.1 (1C, q, $J=26.9$ $\mathrm{Hz}, \mathrm{C}-2), 30.9$ (1C, NMe). ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-63.6 (3F, CF_{3}). HRMS (EI): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$requires $\mathrm{m} / \mathrm{z} 309.1335$, found 309.1328.

4-[3,3,3-Trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4c.

From aniline 1c ($18.6 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 c}$ was obtained. Chromatographic purification (gradient elution: 20:80 $\rightarrow 40: 60 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 c}$ ($14.5 \mathrm{mg}, 25 \%$), as a brownish oil.

Data for 4c: $\boldsymbol{R}_{f} 0.10\left(60 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.13(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, 9-\mathrm{H}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-\mathrm{H}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 6-$ $\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.81\left(2 \mathrm{H}, \mathrm{qd}, J=10.5\right.$ and $\left.7.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$) $\delta 158.3$ (1C, C Ar), 144.5 (1C, C Ar), 135.7 (1C, C Ar), 133.8 (1C, C Ar), 128.5 (2C, CH Ar), 128.4 (2C, CH Ar), 126.7 (1C, q, $J=277.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 115.8 (2C, CH Ar), 114.1 (2C, CH Ar), 55.4 (1C, OMe), 43.6 (1C, C-1), 40.0 (1C, q, $J=27.0 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ CDCl_{3}) δ-63.6 (3F, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 296.1257, found 296.1257.
N, N-dimethyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4d.

From aniline 1d ($24.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 d}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 d}$ ($33.6 \mathrm{mg}, 52 \%$), as a colourless oil.

Data for 4d: $\boldsymbol{R}_{f} 0.15\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.15(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, 9-\mathrm{H}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-\mathrm{H}), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $6-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.91\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.82(2 \mathrm{H}, \mathrm{qd}, J=10.5$ and $7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (1C, C Ar), 149.4 (1C, C Ar), 135.9 (1C, C $\mathrm{Ar}), 131.3$ (1C, C Ar), 128.5 (2C, CH Ar), 128.1 (2C, C-5), 126.7 (1C, q, $J=277.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.1 (2C, CH Ar), 113.0 (2C, C-6), 55.4 (1C, OMe), 43.4 (1C, q, $J=2.7 \mathrm{~Hz}, \mathrm{C}-1$), 40.8 (2C, NMe_{2}), 40.1 (1C, q, $J=26.8 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 324.1570$, found $\mathrm{m} / \mathrm{z} 324.1572$.
N-Benzyl-2-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4e.

From aniline 1e ($39.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 e}$ was obtained. Chromatographic purification (gradient elution: $10: 90 \rightarrow 15: 85 \mathrm{Et}_{2} \mathrm{O}-$ hexane) gave $4 \mathbf{e}$ ($51.4 \mathrm{mg}, 64 \%$), as a colourless oil.

Data for 4e: $\boldsymbol{R}_{f} 0.40\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.29(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 9-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 8-\mathrm{H}), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.19(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H})$, $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.84\left(2 \mathrm{H}, \mathrm{qd}, J=10.5\right.$ and $\left.7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 158.2$ (1C, C Ar), 144.9 (1C, C Ar), 139.5 (1C, C Ar), 135.9 (1C, C Ar), 131.9 (1C, C Ar), 129.4 (1C, C-9), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), $126.7\left(1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 125.8 ($1 \mathrm{C}, \mathrm{C}-5$), 122.3 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 114.0 (2C, CH Ar), 110.1 (1 C , C-6), 55.3 (1C, OMe), 48.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.5 ($1 \mathrm{C}, \mathrm{C}-1$), 40.1 ($1 \mathrm{C}, \mathrm{q}, J=26.8 \mathrm{~Hz}, \mathrm{C}-2$), 17.8 (1C, $\mathrm{Me}) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.6$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$ requires m / z 399.1810, found m / z 399.1797.

$N, 2-D i e n z y l-4-[3,3,3-t r i f l u o r o-1-(4-m e t h o x y p h e n y l) p r o p y l] a n i l i n e, 4 f$.

From aniline 1f ($52.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 f}$ was obtained. Chromatographic purification (gradient elution: 5:95 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 f}$ (51.5 $\mathrm{mg}, 57 \%$), as a colourless oil.

Data for $\mathbf{4 f}: \boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.35-7.22(6 \mathrm{H}, \mathrm{m}$, Ar), $7.18(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 12-\mathrm{H}), 7.16(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 7.10(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.02$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 9-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 13-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $8-\mathrm{H}), 4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.23(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.92\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.85\left(2 \mathrm{H}, \mathrm{qd}, J=10.5 \mathrm{and} 8.0 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 158.2$ ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 144.7 (1C, C Ar), 139.2 (2C, C Ar), 135.8 (1C, C Ar), 132.0 (1C, C Ar), 130.0 (1C, C-5), 128.8 (2C, CH $\mathrm{Ar}), 128.6$ (2C, CH Ar), 128.5 (2C, CH Ar), 128.5 (2C, CH Ar), 127.3 (2C, CH Ar), 127.2 (1C, CH Ar), 126.7 ($1 \mathrm{C}, \mathrm{q}, J=279.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 126.7 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.6 ($1 \mathrm{C}, \mathrm{C}-9$), 124.9 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 114.0 (2C, CH Ar), 111.2 (1C, C-8), 55.3 ($1 \mathrm{C}, \mathrm{OMe}$), 48.2 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.5 ($1 \mathrm{C}, \mathrm{C}-1$), 40.1 ($1 \mathrm{C}, \mathrm{q}, ~ J=$ $26.8 \mathrm{~Hz}, \mathrm{C}-2), 38.5$ ($1 \mathrm{C}, \mathrm{C}-10$). ${ }^{19}$ F NMR ($376 \mathbf{~ M H z , ~ C D C l} 3$) $\delta-63.5$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 476.2196$, found $\mathrm{m} / \mathrm{z} 476.2191$.
N-Benzyl-5-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-[1,1'-biphenyl]-2-amine, 4g.

From aniline $\mathbf{1 g}(43 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 g}$ was obtained. Chromatographic purification (gradient elution: 10:90 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 g}$ ($43.2 \mathrm{mg} 56 \%$), as a colourless oil.

Data for $\mathbf{4 g}: \boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.46(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.40-7.22(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $2.3 \mathrm{~Hz}, 9-\mathrm{H}), 7.00$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.30(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Bn}\right), 4.22(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.85\left(2 \mathrm{H}, \mathrm{qd}, J=10.5\right.$ and $\left.7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right)$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 158.3$ (1C, C Ar), 143.5 (1C, C Ar), 139.3 (1C, C Ar), 135.7 (1C, C Ar), 132.2 (1C, C Ar), 129.4 (2C, CH Ar), 129.3 (1C, C-5), 129.1 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 128.0 (1C, C Ar) 127.5 (1C, C Ar), 127.5 (1C, C-9), 127.2 (4C, CH Ar), 126.6 ($1 \mathrm{C}, \mathrm{q}, J=278.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.1 (2C, CH Ar), 111.2 (1C, C-8), 55.3 (1C, OMe), 48.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.6 (1C, C-1), 40.1 ($1 \mathrm{C}, \mathrm{q}, J=26.9 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($376 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.6$ (3F, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 462.2039$, found $\mathrm{m} / \mathrm{z} 462.2036$.
N-Benzyl-2-methoxy-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4h.

From aniline $\mathbf{1 h}(42.7 \mathrm{mg}, 0.20 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 h}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 h}$ $(44.5 \mathrm{mg}, 54 \%)$, as a colourless oil.

Data for 4h: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.21(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and 1.9 Hz , $9-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, 5-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 8-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.19(1 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.82\left(2 \mathrm{H}, \mathrm{qd}, J=10.5\right.$ and $\left.7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) \cdot{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 158.3$ ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 147.2 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 139.3 (1C, C Ar), 136.4 (1C, C Ar), 135.7 (1C, C Ar), 132.3 (1C, C Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 127.8 (2C, CH Ar), 127.4 (1C, CH Ar), 126.7 ($1 \mathrm{C}, \mathrm{q}, J=278.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 119.7 (1C, C-9), 114.1 (2C, CH Ar), 110.6 (1C, C-8) 109.3 (1C, C-5), 55.6 (1C, OMe), 55.4 (1C, OMe), 48.5 (1C, $\mathrm{CH}_{2} \mathrm{Bn}$), 44.0 (1C, C-1), 40.2 ($1 \mathrm{C}, \mathrm{q}, J$ $=26.9 \mathrm{~Hz}, \mathrm{C}-2) \cdot{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 416.1832$, found $\mathrm{m} / \mathrm{z} 416.1837$.
N-Benzyl-2-chloro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4i.

From aniline $\mathbf{1 i}(42.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 i}$ was obtained. Chromatographic purification (gradient elution: 100% toluene) gave $\mathbf{4 i}(41.3 \mathrm{mg}, 50 \%)$, as a colourless oil.

Data for 4i: $\boldsymbol{R}_{f} 0.60$ (100% toluene). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.41-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.14(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 11-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $2.1 \mathrm{~Hz}, 9-\mathrm{H}), 6.85(2 \mathrm{H}$, $\mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.16(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-$ H), $3.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 2.80\left(1 \mathrm{H}, \mathrm{qd}, J=10.4\right.$ and $\left.7.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 158.4 (1C , C Ar), 142.6 (1C, C Ar), 138.8 (1C, C Ar), 135.1 (1C, C Ar), 132.5 (1C, C Ar), 128.8 (2C, CH Ar), 128.4 (2C, CH Ar), 128.1 (1C, C-5), 127.5 (1C, CH Ar), 127.4 (2C, CH Ar), 126.8 (1C, C9), 126.5 ($1 \mathrm{C}, \mathrm{q}, J=277.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 119.3 (1C, C Ar), 114.2 (2C, CH Ar), 111.7 (1C, C-8), 55.3 (1C, OMe) 48.1 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.3 (1C, C-1), 39.9 ($1 \mathrm{C}, \mathrm{q}, J=27.1 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR (376 MHz , $\mathbf{C D C l}_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}]^{+}$requires $\mathrm{m} / \mathrm{z} 419.1258$, found $m / z 419.1271$.
N-Benzyl-2-bromo-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4j.

From aniline $\mathbf{1 j}$ ($52.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 j}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 j}$ (52.8 $\mathrm{mg}, 58 \%$), as a colourless oil.

Data for $\mathbf{4 j}$: $\boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.26(5 \mathrm{H}, \mathrm{m}$, Ar), $7.33(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, 5-\mathrm{H}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 2.1 Hz ,
$9-\mathrm{H}), 6.86(2 \mathrm{H} \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.38(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Bn}\right), 4.17(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.80\left(2 \mathrm{H}, \mathrm{qd}, J=10.4\right.$ and $\left.7.7 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right)$. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) $\delta 158.5$ (1C, C Ar), 143.6 (1C, C Ar), 138.7 (1C, C Ar), 135.1 (1C, C $\mathrm{Ar}), 133.1$ (1C, C Ar), 131.3 (1C, C-5), 128.9 (2C, CH Ar), 128.5 (2C, CH Ar), 127.54 (1C, CH Ar), $127.51(1 \mathrm{C}, \mathrm{C}-9), 127.4(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 126.5\left(1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 114.2(2 \mathrm{C}, \mathrm{C}-12), 111.8(1 \mathrm{C}$, $\mathrm{C}-8), 109.9(1 \mathrm{C}, \mathrm{C} \mathrm{Ar}), 55.3(1 \mathrm{C}, \mathrm{OMe}), 48.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 43.2(1 \mathrm{C}, \mathrm{C}-1), 39.9(1 \mathrm{C}, \mathrm{q}, J=27.1 \mathrm{~Hz}$, C-2). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrF}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ requires 464.0831, found $\mathrm{m} / \mathrm{z} 464.0798$.
N-Benzyl-3-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4k.

From aniline $\mathbf{1 k}$ ($39.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 k}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 15:95 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 k}$ (40.3 $\mathrm{mg}, 50 \%$), as a colourless oil.

Data for $\mathbf{4 k}: \boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.25(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 9-\mathrm{H}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$, $6.53(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $2.4 \mathrm{~Hz}, 8-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, 6-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 1-\mathrm{H})$, $4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.79\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 158.2$ (1C, C Ar), 146.2 (1C, C Ar), 139.2 (1C, C Ar), 136.9 (1C, C Ar), 135.2 (1C, C Ar), 131.0 (1C, C Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 127.9 (2C, CH Ar), 127.5 (1C, CH Ar), 127.3 ($1 \mathrm{C}, \mathrm{C}-9$), 126.8 ($1 \mathrm{C}, \mathrm{q}, ~ J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 115.9 ($1 \mathrm{C}, \mathrm{C}-6$), 114.0 (2C, CH Ar), 111.1 (1 C , C-8), 55.3 (1C, OMe), 48.9 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 40.2 ($1 \mathrm{C}, \mathrm{q}, ~ J=26.8 \mathrm{~Hz}, \mathrm{C}-2$), 39.2 (1C, C-1), 20.1 (1C, Me). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-63.7 (1C, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z$ requires 400.1883, found $m / z 400.1878$.

N-Benzyl-6-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-[1,1'-biphenyl]-3-amine, 41.

From aniline $\mathbf{1 1}(51.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 I}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 41 ($55.9 \mathrm{mg}, 61 \%$), as a colourless oil.

Data for 4l: $\boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.44-7.26(8 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.22(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 7.21-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.76(2 \mathrm{H}$, $\mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.69(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.6 \mathrm{~Hz}, 8-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, 6-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.88-2.63\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 158.0$ (1C, C Ar), 146.0 (1C, C Ar), 143.0 (1C, C Ar), 141.7 (1C, C Ar), 139.1 (1C, C Ar), 135.8 (1C, C Ar), 129.8 (1C, C Ar), 129.3 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH $\mathrm{Ar}), 128.1$ (2C, CH Ar), 127.8 (2C, CH Ar), 127.7 (1C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 126.3 ($1 \mathrm{C}, \mathrm{q}, J=277.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.9 (1C, C-6), 113.8 (2C, CH Ar), 112.6 (1C, C-8), 55.3 (1C, OMe), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 40.3 ($1 \mathrm{C}, \mathrm{q}, ~ J=26.8 \mathrm{~Hz}, \mathrm{C}-2$), 39.0 ($1 \mathrm{C}, \mathrm{C}-1$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z$ requires 462.2039, found $m / z 462.2037$.
N-Benzyl-3-ethynyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4m.

From aniline 1m ($41.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $3(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 m}$ was obtained. Chromatographic purification (100% toluene elution) gave $\mathbf{4 m}$ ($50.1 \mathrm{mg}, 61 \%$), as a colourless oil.

Data for $\mathbf{4 m}: \boldsymbol{R}_{f} 0.20$ (100% toluene). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.21(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 13-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 14-\mathrm{H}), 6.79$ $(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, 6-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.5 \mathrm{and} 2.6 \mathrm{~Hz}, 8-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 4.28$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.29(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 2.83\left(2 \mathrm{H} \mathrm{qd}, J=10.4\right.$ and $\left.7.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (1C, C Ar), 146.1 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 138.8 (1C, C Ar), 134.9 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 134.7 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 127.6 (1C, CH Ar), 127.5 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.6 ($1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 121.9 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 117.1 ($1 \mathrm{C}, \mathrm{C}-6$), 114.6 (1 C , C-8), 113.9 (2C, CH Ar), 82.4 (1C, C-10), 81.4 (1C, C-11), 55.3 (1C, OMe), 48.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 40.5 (1C, C-1), 39.4 (1C, q, $J=27.2 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C D C l} \mathbf{H}_{3}$) $\delta-63.8\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 410.1726$, found $m / z 410.1723$.

Methyl 2-\{5-(benzylamino)-2-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]phenyl\}acetate, 4n.

From aniline $\mathbf{1 n}(51.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 n}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}-$ hexane) gave $\mathbf{4 n}$ ($49.7 \mathrm{mg}, 54 \%$), as an orange oil.

Data for $\mathbf{4 n}: \boldsymbol{R}_{f} 0.1\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.41-7.25(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 12-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 9-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 13-\mathrm{H})$, $6.60(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 8-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, 6-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 1-\mathrm{H}), 4.30$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64\left(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{A}}\right), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.52(1 \mathrm{H}$, $\left.\mathrm{d}, J=15.5 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{B}}\right), 2.88-2.72\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.9(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$, 158.3 (1C, C Ar), 146.6 (1C, C Ar), 139.1 (1C, C Ar), 134.9 (1C, C Ar), 133.1 (1C, C Ar), 130.7 (1C, C Ar), 128.9 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 128.8 (2C, CH Ar), 128.1 (1C, CH Ar), 127.8 (2C, CH Ar), 127.5 (1C, CH Ar), 126.6 ($1 \mathrm{C}, \mathrm{q}, J=277.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), $116.0(1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 114.0(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 112.4$ ($1 \mathrm{C}, \mathrm{CH}$ $\mathrm{Ar}), 55.3(1 \mathrm{C}, \mathrm{OMe}), 52.1\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{Me}\right), 48.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 40.3(1 \mathrm{C}, \mathrm{q}, J=26.9 \mathrm{~Hz}, \mathrm{C}-2), 39.02$ (1C, C-10), 38.97 ($1 \mathrm{C}, \mathrm{C}-1$). ${ }^{19}$ F NMR ($376 \mathbf{~ M H z , ~}$ CDCl $_{3}$) δ-63.7 (3F, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 458.1938$, found $\mathrm{m} / \mathrm{z} 458.1935$.

N-Benzyl-3-fluoro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4 .

From aniline $\mathbf{1 0}$ ($40.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 o}$ was obtained. Chromatographic purification (gradient elution: 4:96 $\mathrm{Et}_{2} \mathrm{O}$ - toluene) gave $\mathbf{4 0}$ (64.4 mg , 80%), as a colourless oil.

Data for 40: $\boldsymbol{R}_{f} 0.50\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - toluene). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.26(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.37$ $(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $2.4 \mathrm{~Hz}, 8-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{dd}, J=12.9$ and $2.4 \mathrm{~Hz}, 6-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 1-$ H), $4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.96-2.73\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 161.3$ (1C, d, $J=243.6 \mathrm{~Hz}, \mathrm{C}-5), 158.3$ (1C, C Ar), 148.6 (1C, d, $J=11.1 \mathrm{~Hz}, \mathrm{C}-7$), 138.8 (1C, C Ar), 134.6 (1C, C Ar), 129.2 (1C, d, $J=6.4 \mathrm{~Hz}, \mathrm{C}-9$), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar), 126.6 ($1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 118.6 ($1 \mathrm{C}, \mathrm{d}, J=14.6 \mathrm{~Hz}, \mathrm{C}-4$), 114.0 (2C, CH Ar), 109.0 (1C, C-8), 100.1 ($1 \mathrm{C}, \mathrm{d}, J=26.7 \mathrm{~Hz}, \mathrm{C}-6$), 55.3 (1C, OMe), 48.4 ($1 \mathrm{C}, \mathrm{CH}_{2}$
 -116.6 ($1 \mathrm{~F}, \mathrm{C} 5-\mathrm{F}$). HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ requires 404.1632 , found $m / z 404.1615$.
N-Benzyl-3-chloro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4p.

From aniline $\mathbf{1 p}$ ($43.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 p}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 p}$ (40.8 $\mathrm{mg}, 50 \%$), as a colourless oil.

Data for $\mathbf{4 p}$: $\boldsymbol{R}_{f} 0.20\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.41-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$,
$6.66(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 6-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.5 \mathrm{~Hz}, 8-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H})$, $4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.81\left(2 \mathrm{H}, \mathrm{qd}, J=10.4\right.$ and $\left.7.7 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (1C, C Ar), 147.6 (1C, C Ar), 138.7 (1C, C Ar), 134.2 (1C, C Ar), 134.2 (1C, C Ar), 129.1 (1C, C Ar), 128.8 (2C, CH Ar), 128.8 (2C, CH Ar), 128.7 (1C, C-9), 127.6 (2C, CH Ar), $127.5(1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 126.5\left(1 \mathrm{C}, \mathrm{q}, J=278.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 114.0(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 113.6(1 \mathrm{C}, \mathrm{C}-6), 112.0(1 \mathrm{C}$, C-8), 55.3 (1C, OMe), 48.3 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 39.4 ($1 \mathrm{C}, \mathrm{C}-1$), 39.2 ($1 \mathrm{C}, \mathrm{q}, J=27.2 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.7\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+$ requires $m / z 420.1337$, found $m / z 420.1316$.
N-Benzyl-3-bromo-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4q.

From aniline 1q ($52.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 q}$ was obtained. Chromatographic purification (gradient elution: 10:90 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 q}$ ($54.7 \mathrm{mg}, 60 \%$), as a colourless oil.

Data for $\mathbf{4 q}: \boldsymbol{R}_{f} 0.40\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 12-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 11-\mathrm{H})$, $6.85(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{dd}, J=8.6$ and $2.5 \mathrm{~Hz}, 8-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1-\mathrm{H})$, $4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.81(2 \mathrm{H}, \mathrm{qd}, J=10.2$ and $7.9 \mathrm{~Hz}, 2-$ H_{2}). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3$ (1C, C Ar), 147.7 (1C, C Ar), 138.7 (1C, C Ar), 134.2 (1C, C Ar), 130.6 (1C, C Ar), 128.8 (5C, CH Ar), 128.7 (1C, CH Ar), 127.6 (2C, CH Ar), 126.4 (1C, $\mathrm{q}, J=280.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.0 (1C, C Ar), 116.8 ($1 \mathrm{C}, \mathrm{C}-6$), 114.0 (2C, CH Ar), 112.6 (1C, C-8), 55.3 (1C, OMe), 48.3 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 41.8 ($1 \mathrm{C}, \mathrm{C}-1$), 39.4 ($1 \mathrm{C}, \mathrm{q}, J=27.2 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}]^{+}$requires $463.0754 \mathrm{~m} / \mathrm{z}$, found $463.0737 \mathrm{~m} / \mathrm{z}$.

N-Benzyl-2,5-dimethyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4r.

From aniline $\mathbf{1 r}(42.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 r}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 r}$ ($47.9 \mathrm{mg}, 58 \%$), as a white foam.

Data for 4r: $\boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 1-\mathrm{H}), 4.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.93-2.71(2 \mathrm{H}, \mathrm{m}, 2-$ H_{2}), 2.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.1$ (1C, C Ar), 144.1 (1C, C Ar), 139.2 (1C, C Ar), 135.3 (1C, C Ar), 134.3 (1C, C Ar), 130.0 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 128.6 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 128.2 ($1 \mathrm{C}, \mathrm{C}-9$), 127.9 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.5 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.8 ($1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 120.1 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$) 113.9 (2C, CH Ar), 112.9 (1C, C-6), 55.3 (1C, OMe), 48.8 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 40.1 (1C, q, $J=26.8 \mathrm{~Hz}, \mathrm{C}-2$), 39.1 (1C, C-1), 19.8 (1C, Me), 17.5 (1C, Me). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.7\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 414.2039$, found $m / z 414.2048$.
N-Benzyl-5-chloro-2-methoxy-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4s.

From aniline 1s ($49.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 s}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4 s (52.0 $\mathrm{mg}, 58 \%$), as a colourless oil.

Data for 4s: $\boldsymbol{R}_{f} 0.20\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.25(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.56(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}), 4.78(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.90$
$-2.76\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) \cdot{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 158.4$ (1C, C Ar), 146.0 (1C, C Ar), 138.6 (1C, C Ar), 137.4 (1C, C Ar), 134.1 (1C, C Ar), 129.9 (1C, C Ar) 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.5 ($1 \mathrm{C}, \mathrm{q}, J=278.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.4 (1C, C Ar), 114.0 (2C, CH Ar), 111.1 (1C, CH Ar), 109.0 (1C, CH Ar), 55.7 (1C, OMe), 55.3 (1C, OMe), 48.1 (1C, $\mathrm{CH}_{2} \mathrm{Bn}$), 39.8 ($1 \mathrm{C}, \mathrm{C}-1$), $39.1(1 \mathrm{C}, \mathrm{q}, J=27.3 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{\mathbf{1}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.7(3 \mathrm{~F}$, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ requires 450.1443 , found m / z 450.1437.
N-Benzyl-3-fluoro-2-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4t.

From aniline 1t ($43.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 t}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4 t (52.7 $\mathrm{mg}, 64 \%$), as a colourless oil.

Data for 4t: $\boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 9-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$, $6.41(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 2.98 - $2.74\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.8(1 \mathrm{C}, \mathrm{d}, \mathrm{J}=241.6$ $\mathrm{Hz}, \mathrm{C}-5), 158.3$ (1C, C Ar), 146.3 (1C, C Ar), 139.0 (1C, C Ar), 134.7 (1C, C Ar), 128.8 (2C, CH $\mathrm{Ar}), 128.6$ (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.6 ($1 \mathrm{C}, \mathrm{q}, J=277.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.9 ($1 \mathrm{C}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-9$), 119.0 ($1 \mathrm{C}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{C}-4$), 114.0 (2C, CH Ar), 109.3 ($1 \mathrm{C}, \mathrm{d}, J=$ $18.9 \mathrm{~Hz}, \mathrm{C}-6$), 105.9 (1C, C-8), 55.3 (1C, OMe), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 38.9 ($1 \mathrm{C}, \mathrm{q}, J=27.1 \mathrm{~Hz}, \mathrm{C}-2$), 37.8 (1 C , quint, $J=2.7 \mathrm{~Hz}, \mathrm{C}-1$), $8.6(1 \mathrm{C}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Me}) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-64.0$ (3F, CF_{3}), -121.3 ($1 \mathrm{~F}, \mathrm{C} 5-\mathrm{F}$). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ requires 418.1789, found $m / z 418.1778$.
N-Benzyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-5,6,7,8-tetrahydronaphthalen-1amine, 4u.

From aniline 1u ($47.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 u}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 u}$ (26.9 $\mathrm{mg}, 31 \%$), as brownish oil.

Data for $\mathbf{4 u}: \boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.44-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 9-\mathrm{H}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$, $6.56(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 1-\mathrm{H}), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.90-2.70\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and CH_{2} tetrahydronaphth), $2.57\left(1 \mathrm{H}, \mathrm{dt}, J=16.4\right.$ and $6.0 \mathrm{~Hz}, \mathrm{CH}_{2}$ tetrahydronaphth $), 2.51-2.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ tetrahydronaphth $), 1.89-1.67\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ tetrahydronaphth). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.1$ (1C, C Ar), 144.3 (1C, C Ar), 139.5 (1C, C Ar), 135.4 (1C, C Ar), 135.2 (1C, C Ar), 130.3 (1C, C Ar), 129.1 (2C, C-11), 128.8 (2C, CH Ar), 128.20 ($1 \mathrm{C}, \mathrm{q}, J=277.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.8 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.4 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 124.3 ($1 \mathrm{C}, \mathrm{C}-9$), 122.1 (1C, C Ar), 113.9 (2C, C-12), 107.5 (1C, C-8), 55.3 (1C, OMe), 48.7 (1C, $\mathrm{CH}_{2} \mathrm{Bn}$), 40.58 (1C, q, J $=26.6 \mathrm{~Hz}, \mathrm{C}-2), 38.58(1 \mathrm{C}, \mathrm{q}, J=2.6 \mathrm{~Hz}, \mathrm{C}-1), 26.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right.$ tetrahydronaphth $), 24.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right.$ tetrahydronaphth), 22.9 ($1 \mathrm{C}, \mathrm{CH}_{2}$ tetrahydronaphth), 22.4 ($1 \mathrm{C}, \mathrm{CH}_{2}$ tetrahydronaphth). ${ }^{19} \mathbf{F}$ NMR (376 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-63.6\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z$ requires 440.2196, found $m / z 440.2190$.

4-\{1-[4-(Benzylamino)phenyl]-3,3,3-trifluoropropyl\}phenol, 4v.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2b ($24.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 v}$ was
obtained. Chromatographic purification (gradient elution: $30: 70 \rightarrow 50: 50 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 v}$ ($41.1 \mathrm{mg}, 55 \%$), as a colourless oil.

Data for 4v: $\boldsymbol{R}_{f} 0.20\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 7.03(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}), 6.73(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 10-\mathrm{H})$, $6.60(2 \mathrm{H} \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.18(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 2.80(2 \mathrm{H}, \mathrm{qd}, J=$ 10.5 and $7.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 154.2$ (1C, C Ar), 146.6 (1C, C Ar), 139.2 (1C, C Ar), 135.9 (1C, C Ar), 132.6 (1C, C Ar), 128.7 (2C, CH Ar), 128.7 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.6 (1C, q, $J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 115.5 (2C, CH $\mathrm{Ar}), 113.4$ (2C, CH Ar), $48.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 43.5(1 \mathrm{C}, \mathrm{C}-1), 40.0(1 \mathrm{C}, \mathrm{q}, J=26.9 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{19} \mathbf{F}$ NMR $\left(\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta-63.5\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ requires 372.1570 , found $m / z 372.1563$.

4-\{1-[4-(Benzylamino)phenyl]-3,3,3-trifluoropropyl\}-2,6-dibromophenol, 4w.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 c}(55.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 w}$ was obtained. Chromatographic purification (gradient elution: 15:80 \rightarrow 55:45 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 w}$ ($78.4 \mathrm{mg}, 74 \%$), as a colourless oil.

Data for $\mathbf{4 w}$: $\boldsymbol{R}_{f} 0.20\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.41-7.24(7 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.60(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.12(1 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 2.78\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 148.2(1 \mathrm{C}, \mathrm{C} \mathrm{Ar}), 147.3$ (1C, C $\mathrm{Ar}), 139.3$ (1C, C Ar), 138.4 (1C, C Ar), 131.0 (2C, CH Ar), 130.6 (1C, C Ar), 128.8 (2C, CH Ar), 128.2 (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar), 126.3 (1C, q, $J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 113.3 (2C, CH Ar), 110.0 (2C, C Ar), 48.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.1 (1C, C-1), 39.7 ($1 \mathrm{C}, \mathrm{q}, J=27.3 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-63.6$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (EI): calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$ requires $m / z 526.9532$, found $m / z 526.9520$.

N-Benzyl-4-\{3,3,3-trifluoro-1-[4-(methylthio)phenyl]propyl\}aniline, 4x.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 d}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 x}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 x}$ $(46.2 \mathrm{mg}, 60 \%)$, as a colourless oil.

Data for 4x: $\boldsymbol{R}_{f} 0.40\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 13-\mathrm{H}), 7.17(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 12-\mathrm{H}), 7.04(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H})$, $6.59(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.21(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $2.84\left(2 \mathrm{H}, \mathrm{qd}, J=10.5\right.$ and $\left.7.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 147.0$ (1C, C Ar), 140.6 (1C, C Ar), 139.4 (1C, C Ar), 136.5 (1C, C Ar), 131.7 (1C, C Ar), 128.7 (2C, CH $\mathrm{Ar}), 128.3$ (2C, CH Ar), 128.0 (2C, CH Ar), 127.6 (2C, CH Ar), 127.3 (1C, CH Ar), 127.1 (2C, CH $\mathrm{Ar}), 126.6\left(1 \mathrm{C}, \mathrm{q}, J=277.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 113.1(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 43.8(1 \mathrm{C}, \mathrm{C}-1), 39.7$ ($1 \mathrm{C}, \mathrm{q}, J=27.0 \mathrm{~Hz}, \mathrm{C}-2$), 16.0 ($1 \mathrm{C}, \mathrm{SMe}$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-63.5\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NS}[\mathrm{M}]^{+}$requires $\mathrm{m} / \mathrm{z} 401.1420$, found $\mathrm{m} / \mathrm{z} 401.1281$.
N-Benzyl-4-[1-(2,3-dihydrobenzofuran-5-yl)-3,3,3-trifluoropropyl]aniline, 4y.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2e ($29.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 y}$ was obtained. Chromatographic purification (gradient elution: 10:90 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}-$ hexane) gave $4 y$ ($56.2 \mathrm{mg}, 71 \%$), as a colourless oil.

Data for 4y: $\boldsymbol{R}_{f} 0.20\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.41-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{H} \mathrm{Ar}), 7.06(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 5-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 9-\mathrm{H}), 6.72(1 \mathrm{H}$, $\mathrm{d}, J=8.2 \mathrm{~Hz}, 10-\mathrm{H}), 6.61(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 6-\mathrm{H}), 4.54\left(2 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}_{2}\right), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$
$\mathrm{Bn}), 4.19(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1-\mathrm{H}), 3.15\left(2 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, 13-\mathrm{H}_{2}\right), 2.83(2 \mathrm{H}, \mathrm{qd}, J=10.5$ and 7.1 Hz , $2-\mathrm{H}_{2}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 158.8$ (1C, C Ar), 146.7 (1C, C Ar), 139.3 (1C, C Ar), 135.8 (1C, C Ar), 132.6 (1C, C Ar), 128.7 (2C, CH Ar), 128.2 (2C, CH Ar), 127.6 (2C, CH Ar), 127.4 (1C, C Ar), 127.4 (1C, CH Ar), 127.0 ($1 \mathrm{C}, \mathrm{C}-9$), 126.7 ($1 \mathrm{C}, \mathrm{q}, J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 124.1 (1C, C-15), 113.2 (2C, C-6), $109.2(1 \mathrm{C}, \mathrm{C}-10), 71.3(1 \mathrm{C}, \mathrm{C}-12), 48.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 43.7(1 \mathrm{C}, \mathrm{C}-1), 40.1(1 \mathrm{C}, \mathrm{q}, J=$ $26.8 \mathrm{~Hz}, \mathrm{C}-2), 29.8(1 \mathrm{C}, \mathrm{C}-13) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-65.5$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 398.1727, found $m / z 398.1714$.

N-Benzyl-4-(3,3,3-trifluoro-1,1-diphenylpropyl)aniline, 4z.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 f}(36.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure at $30^{\circ} \mathrm{C}$, aniline $\mathbf{4 z}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 10: 90 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $4 z(54.8 \mathrm{mg}, 65 \%)$, as a colourless oil.

Data for 4z: $\boldsymbol{R}_{f} 0.30\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.44-7.18(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.58(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.03(1 \mathrm{H}$, br s, NH), $3.55\left(2 \mathrm{H}, \mathrm{q}, J=10.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.5$ (1C, C Ar), 146.0 (2C, C Ar), 139.4 (1C, C Ar), 134.2 (1C, C Ar), 130.0 (2C, CH Ar), 129.0 (4C, CH Ar), 128.7 (2C, CH Ar), 127.9 (4C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.3 (2C, CH Ar), 126.2 (1C, $\left.\mathrm{q}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 112.2(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 53.5(1 \mathrm{C}, \mathrm{C}-1), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 44.2(1 \mathrm{C}, \mathrm{q}, J=26.4$ $\mathrm{Hz}, \mathrm{C}-2) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-55.8\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (EI): calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}$ [M] ${ }^{+}$requires $m / z 431.1856$, found $m / z 431.1868$.
N-Benzyl-4-[3,3,3-trifluoro-1-phenyl-1-(p-tolyl)propyl]aniline, 4aa.

From aniline $\mathbf{1 a}(36.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 g}(38.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP at room temperature, following the general procedure, aniline 4aa was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 5:95 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4aa ($52.3 \mathrm{mg}, 60 \%$), as a colourless oil.

Data for 4aa: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.49-7.17(12 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.11(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.59(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.53(2 \mathrm{H}$, $\left.\mathrm{q}, J=10.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.3$ (1C, C Ar), 146.2 (1C, C Ar), 143.1 (1C, C Ar), 139.3 (1C, C Ar), 135.9 (1C, C Ar), 134.6 (1C, C Ar), 130.0 (2C, CH Ar), 129.0 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.9 (2C, CH Ar), 127.7 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.5 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.29 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.26 ($1 \mathrm{C}, \mathrm{q}, J=279.3 \mathrm{~Hz}, \mathrm{CF}_{3}$), 112.4 (2C, CH Ar), $53.2(1 \mathrm{C}, \mathrm{C}-1), 48.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 44.3(1 \mathrm{C}, \mathrm{q}, J=26.2 \mathrm{~Hz}, \mathrm{C}-2), 21.0(1 \mathrm{C}, \mathrm{Me}) .{ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-55.8\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}[\mathrm{M}]+$ requires $\mathrm{m} / \mathrm{z} 449.1767$, found $\mathrm{m} / \mathrm{z} 449.1768$.

N-Benzyl-4-[3,3,3-trifluoro-1-(4-fluorophenyl)-1-phenylpropyl]aniline, 4ab.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 h}(39.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a b}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 6:94 $\mathrm{Et}_{2} \mathrm{O}-$ hexane) gave 4ab ($56.1 \mathrm{mg}, 63 \%$), as a colourless oil.

Data for 4ab: $\boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.19(10 \mathrm{H}$, $\mathrm{m}, \mathrm{H} \mathrm{Ar}), 7.33(2 \mathrm{H}, \mathrm{dd}, J=31.1 \mathrm{and} 4.0 \mathrm{~Hz}, 9-\mathrm{H}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.97(2 \mathrm{H}, \mathrm{t}, J=8.7$ $\mathrm{Hz}, 10-\mathrm{H}), 6.57(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.51(2 \mathrm{H}, \mathrm{q}, J=$ $\left.10.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 161.3(1 \mathrm{C}, \mathrm{d}, J=246.0 \mathrm{~Hz}, \mathrm{C}-11), 146.6$ ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 146.0 (1C, C Ar), 141.5 (1C, d, $J=3.5 \mathrm{~Hz}, \mathrm{C}-8$), 139.3 (1C, C Ar), 134.1 (1C, C Ar), 130.8 (2C, d, J $=7.8 \mathrm{~Hz}, \mathrm{C}-9), 129.7$ (2C, CH Ar), 128.8 (2C, CH Ar), 128.0 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (2C, CH Ar), 126.4 (2C, CH Ar), 123.3 ($1 \mathrm{C}, \mathrm{d}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.6 ($2 \mathrm{C}, \mathrm{d}, J=21.0 \mathrm{~Hz}, \mathrm{C}-10$), 112.3 (2C, CH Ar), $53.1(1 \mathrm{C}, \mathrm{C}-1), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 44.3(1 \mathrm{C}, \mathrm{q}, J=26.4 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{19}$ F NMR (376 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-55.9\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right),-116.8(1 \mathrm{~F}, \mathrm{~F} \mathrm{Ar})$. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ requires $m / z 446.2091$, found $m / z 446.2092$.
N-Benzyl-4-[1-(4-bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]aniline, 4ac.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 i}(51.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4 ac was obtained. Chromatographic purification (gradient elution: 5:95 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ac $(62.7 \mathrm{mg}, 62 \%)$, as a colourless oil.

Data for 4ac: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, 10-\mathrm{H}), 7.27-7.09(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 9-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H})$, $6.45(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.37(2 \mathrm{H}, \mathrm{q}, J=10.5 \mathrm{~Hz}, 2-$ H_{2}). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 146.7$ ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 145.5 (1C, C Ar), 145.0 (1C, C Ar), 139.3 (1C, C Ar), 133.6 (1C, C Ar), 131.0 (2C, CH Ar), 130.9 (2C, CH Ar), 129.8 (2C, CH Ar), 128.8 (2C, CH Ar), 128.8 (2C, CH Ar), 128.1 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.5 (1C, $\mathrm{CH} \mathrm{Ar}), 126.0\left(1 \mathrm{C}, \mathrm{q}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.4$ (1C, C Ar), 112.3 (2C, CH Ar), 53.2 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 48.4 ($1 \mathrm{C}, \mathrm{C}-1$), 44.1 ($1 \mathrm{C}, \mathrm{q}, J=26.4 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-55.9$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (EI): calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrF}_{3} \mathrm{~N}[\mathrm{M}]^{+}$requires $m / z 509.0961$, found m / z 509.0952.

N-Benzyl-4-[3,3,3-trifluoro-1-phenyl-1-(m-tolyl)propyl]aniline, 4ad.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 j}$ ($38.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a d}$ was obtained. Chromatographic purification (gradient elution: $4: 96 \rightarrow 15: 85 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $4 \mathbf{4 a d}$ ($60.3 \mathrm{mg}, 70 \%$), as a colourless oil.

Data for 4ad: $\boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.41-7.24(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=7.6$ and $2.0 \mathrm{~Hz}, \mathrm{Ar}), 7.16(1 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{~Hz}, \mathrm{Ar}), 7.11(1 \mathrm{H}, \mathrm{s}, J=2.8 \mathrm{~Hz}$, $\mathrm{Ar}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}), 6.58(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.30$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.51\left(2 \mathrm{H}, \mathrm{q}, J=10.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$
146.17 (1C, C Ar), 146.11 (1C, C Ar), 146.0 (1C, C Ar), 139.2 (1C, C Ar), 137.4 (1C, C Ar), 134.6 (1C, C Ar), 130.1 (2C, CH Ar), 129.5 (1C, CH Ar), 129.1 (2C, CH Ar), 128.7 (2C, CH Ar), 127.9 (4C, CH Ar), 127.8 (1C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 126.3 (1C, CH Ar), 126.2 $\left(1 \mathrm{C}, \mathrm{q}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.1(1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 112.5(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 53.5(1 \mathrm{C}, \mathrm{C}-1), 48.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right.$ $\mathrm{Bn}), 44.3$ (1C, q, $J=26.2 \mathrm{~Hz}, \mathrm{C}-2), 21.8$ (1C, Me). ${ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-55.9\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 446.2091$, found m / z 446.2087.
N-Benzyl-4-[1-(3-bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]aniline, 4ae.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 k}(51.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a e}$ was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ae ($60.4 \mathrm{mg}, 60 \%$), as a colourless oil.

Data for 4ae: $\boldsymbol{R}_{f} 0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.47(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$, $7.42-7.18(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.15(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 12-\mathrm{H}), 7.06(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.59(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.50\left(2 \mathrm{H}, \mathrm{q}, J=10.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$) $\delta 148.5$ (1C, C Ar), 146.5 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 145.2 (1C, C Ar), 139.2 (1C, C Ar), 133.5 (1C, C Ar), 131.9 (1C, CH Ar), 129.9 (2C, CH Ar), 129.5 (1C, CH Ar), 129.5 (1C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.1 (2C, CH Ar), 127.7 (3C, CH Ar), 127.5 (1C, CH Ar), 126.6 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.0 ($1 \mathrm{C}, \mathrm{q}, J=279.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.2 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 112.5 (2C, CH Ar), 53.4 (1 C , $\mathrm{C}-1), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 44.1(1 \mathrm{C}, \mathrm{q}, J=26.5 \mathrm{~Hz}, \mathrm{C}-2) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-55.9$ (3 F, CF_{3}). HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{BrF}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 510.1039$, found $\mathrm{m} / \mathrm{z} 510.1011$.

N-Benzyl-4-[3,3,3-trifluoro-1-(2-fluorophenyl)-1-phenylpropyl]aniline, 4af.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 1}(39.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a f}$ was obtained. Chromatographic purification (gradient elution: $4: 96 \rightarrow 10: 90 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a f}$ ($57.9 \mathrm{mg}, 65 \%$), as a colourless oil.

Data for 4af: $\boldsymbol{R}_{f} 0.45\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.11(12 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.10-6.98(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.02(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.30$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.00(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.76-3.55\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.6$ (1C, d, $J=248.9 \mathrm{~Hz}, \mathrm{C}-9$), 146.6 (1C, C Ar), 145.6 (1C, C Ar), 139.4 (1C, C Ar), 133.4 (1C, C Ar), 131.7 ($1 \mathrm{C}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{C}-8$), 131.4 ($1 \mathrm{C}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{Ar}$), 129.4 (2C, CH Ar), 129.2 ($1 \mathrm{C}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}, \mathrm{CH} \mathrm{Ar}) 128.8$ (2C, CH Ar), 128.0 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (2C, CH Ar), 126.4 (2C, CH Ar), 126.2 ($1 \mathrm{C}, \mathrm{q}, J=279.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.6 ($1 \mathrm{C}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{Ar}$), 116.3 ($1 \mathrm{C}, \mathrm{d}$, $J=23.9 \mathrm{~Hz}, \mathrm{C}-10), 112.3$ (2C, CH Ar), $52.0(1 \mathrm{C}, \mathrm{C}-1), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 43.6(1 \mathrm{C}, \mathrm{q}, J=26.8,4.6$ $\mathrm{Hz}, \mathrm{C}-2) .{ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-56.7\left(3 \mathrm{~F}, \mathrm{~d},{ }^{6} J_{\mathrm{FF}}=2.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-103.3\left(1 \mathrm{~F}, \mathrm{q},{ }^{6} \mathrm{~J}_{\mathrm{FF}}=2.1\right.$ Hz, F Ar). HRMS (EI): calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}[\mathrm{M}]^{+}$requires $m / z 449.1762$, found $m / z 449.1766$.
N-Benzyl-4-[3,3,3-trifluoro-1-phenyl-1-(pyridin-4-yl)propyl]aniline, 4ag.

From aniline $\mathbf{1 a}(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 m}(36.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a g}$ was obtained. Chromatographic purification (gradient elution: 49:50:1 \rightarrow 69:30:1 $\mathrm{Et}_{2} \mathrm{O}$ - hexane - AcOH) gave $\mathbf{4 a g}$ ($35.9 \mathrm{mg}, 41 \%$), as a colourless oil.

Data for $\mathbf{4 a g}: \boldsymbol{R}_{f} 0.30\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane with 1% of AcOH$) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.52(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.38-7.20(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.49\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=10.3 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.3$ (1C, C Ar), 148.5 (2C, C-10), 147.0 (1C, C Ar), 144.0 (1C, C Ar), 139.1 (1C, C Ar), 132.2 (1C, C Ar), 129.8 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH $\mathrm{Ar}), 127.5$ ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.1 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), $125.8\left(1 \mathrm{C} \mathrm{q}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 124.3 (2C, C-9), 112.5 (2C, CH Ar), 53.5 (1C, C-1), 48.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.6 ($1 \mathrm{C}, \mathrm{q}, J=27.0 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta-56.1\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 433.1887, found $m / z 433.1883$.

N-Benzyl-4[(3,3,3-trifluoro-1-phenyl-1-(pyridin-3-yl)propyl]aniline, 4ah.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 n}(36.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4} \mathbf{a h}$ was obtained. Chromatographic purification (gradient elution: $10: 90 \rightarrow 60: 40 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ah ($38.1 \mathrm{mg}, 46 \%$), as a colourless oil.

Data for 4ah: $\boldsymbol{R}_{f} 0.10\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). H NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.59(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$, $8.46(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, 10-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{dt}, J=8.2$ and $1.9 \mathrm{~Hz}, 12-\mathrm{H}), 7.39-7.15(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.02(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.04(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $3.52\left(2 \mathrm{H}, \mathrm{q}, J=10.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 150.2$ (1C, C-9), 147.1 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 146.9 (1C, C-10), 145.0 (1C, C Ar), 141.5 (1C, C Ar), 139.2 (1C, C Ar), 137.0 (1C, C-12), 133.12 (1C, C Ar), 129.6 (2C, CH Ar), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 126.8 (1C, CH Ar), 125.9 (1C, q, $J=279.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.9 (1C, CH Ar), 112.5 (2C, CH Ar), 52.1 (1C, C-1), 48.4 (1C, CH ${ }_{2} \mathrm{Bn}$), 43.9 (1C, q, J=26.6 Hz, C-2). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.0\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ requires $m / z 433.1887$, found $m / z 433.1786$.
N-Benzyl-4-[4,4,4-trifluoro-2-(4-methoxyphenyl)-1-phenylbutan-2-yl]aniline, 4ai.

From aniline 1a ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 0}(44.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $3(66.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4ai was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ai ($45.1 \mathrm{mg}, 51 \%$), as a yellow oil.

Data for 4ai: $\boldsymbol{R}_{f} 0.4$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\mathbf{d}_{6}\right.$) $\delta 7.41$ - 7.28 (5 H , $\mathrm{m}, \mathrm{Ar}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{NH}), 7.15-7.01(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84-6.76$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.58-6.47$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.45\left(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{A}}\right), 3.41(1 \mathrm{H}, \mathrm{d}$,
$\left.J=13.2 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{B}}\right), 2.89-2.72\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO-d $\left.\mathbf{d}_{\mathbf{6}}\right) \delta 157.3(1 \mathrm{C}, \mathrm{C} \mathrm{Ar})$, 146.4 (1C, C Ar), 140.0 (1C, C Ar), 138.4 (1C, C Ar), 137.0 (1C, C Ar), 133.6 (1C, C Ar), 130.5 (2C, CH Ar), 128.9 (2C, CH Ar), 128.2 (4C, CH Ar), 127.4 (2C, CH Ar), 127.4 (2C, CH Ar), 127.1 (1C, $\mathrm{q}, J=279.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 126.7 (1C, CH Ar), 126.2 (1C, CH Ar), 112.9 (2C, CH Ar), 112.0 (2C, CH Ar), 54.9 (1C , OMe), $46.9\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 46.2(1 \mathrm{C}, \mathrm{C}-1), 44.4(1 \mathrm{C}, \mathrm{C}-8), 39.1(1 \mathrm{C}, \mathrm{C}-2) .{ }^{\mathbf{1 9} \mathbf{F}} \mathbf{~ N M R}$ (376 MHz, DMSO-d \mathbf{d}_{6}) $\delta-55.9\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 476.2196$, found $m / z 476.2190$.

Methyl 4-[4-(benzylamino)phenyl]-6,6,6-trifluoro-4-(4-methoxyphenyl)hexanoate, 4aj.

From aniline 1a ($37.6 \mathrm{mg}, 0.205 \mathrm{mmol}$), alkene $\mathbf{2 p}(45.2 \mathrm{mg}, 0.205 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($67.7 \mathrm{mg}, 0.205 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline 4aj was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4aj ($69.0 \mathrm{mg}, 71 \%$), as a yellow oil.

Data for 4aj: $\boldsymbol{R}_{f} 0.15$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.47-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5-\mathrm{H}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.57$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.91(2 \mathrm{H}, \mathrm{q}$, $\left.J=10.8 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.63-2.54\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.12-2.03\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 173.9$ ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$), 158.0 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 146.4 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 139.2 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 138.3 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 135.0 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 128.3 (2C, CH Ar), 127.8 (2C, CH Ar), 127.5 (1C, CH Ar), 126.7 ($1 \mathrm{C}, \mathrm{q}, J=279.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 113.5 (2C, CH Ar), 112.8 (2C, C-6), 55.3 (1C, OMe), 51.7 ($1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{Me}$), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), $45.3(1 \mathrm{C}, \mathrm{C}-1), 41.7$ ($1 \mathrm{C}, \mathrm{q}, J=25.5 \mathrm{~Hz}, \mathrm{C}-2$), 33.2 (1C, C-9), 29.7 (1, C-8). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$) $\delta-58.9$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 472.2095$, found $m / z 472.2075$.
N-Benzyl-4-[1,1,1-trifluoro-3-(4-methoxyphenyl)-5-(thiophen-2-yl)pentan-3-yl]aniline, 4ak.

From aniline $\mathbf{1 a}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol})$, alkene $\mathbf{2 q}(48.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a k}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ak ($60.0 \mathrm{mg}, 61 \%$), as a colourless oil.

Data for 4ak: $\boldsymbol{R}_{f} 0.25$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.41-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=5.0$ and $1.2 \mathrm{~Hz}, 13-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $5-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=5.1$ and $3.4 \mathrm{~Hz}, 12-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=3.4$ and $1.1 \mathrm{~Hz}, 11-\mathrm{H}), 6.59(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.00(2 \mathrm{H}, \mathrm{qd}$, $J=10.8$ and $\left.2.0 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.65-2.58\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.57-2.51\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 157.9$ (1C, C Ar), 146.4 (1C, C Ar), 145.1 (1C, C Ar), 139.3 (1C, C Ar), 138.9 (1C, C Ar), 135.6 (1C, C Ar), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 128.3 (2C, CH Ar), 127.9 (2C, CH $\mathrm{Ar}), 127.5$ (1C, CH Ar), 126.9 (1C, C-12), 126.8 ($1 \mathrm{C}, \mathrm{q}, J=279.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 124.2 (1C, C-11), 123.1 (1C, C-13), 113.5 (2C, CH Ar), 112.8 (2C, CH Ar), 55.3 (1C, OMe), 48.8 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 45.8 (1C,
 $-58.81\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 496.1917$, found $m / z 496.1915$.
N-Benzyl-4-[1,1,1-trifluoro-3-(4-methoxyphenyl)-5-(pyridin-3-yl)pentan-3-yl]aniline, 4al.

From aniline 1a ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 r}(47.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $4 \mathbf{a l}$ was obtained. Chromatographic purification (gradient elution: $20: 100 \rightarrow 80: 20 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4al ($75.4 \mathrm{mg}, 77 \%$), as a colourless oil.

Data for 4al: $\boldsymbol{R}_{f} 0.1\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.44(1 \mathrm{H}, \mathrm{d}, J=3.9$ $\mathrm{Hz}, 12-\mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{dt}, J=7.8$ and $2.0 \mathrm{~Hz}, 14-\mathrm{H}), 7.40-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.21$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $4.8 \mathrm{~Hz}, 13-\mathrm{H}), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5-\mathrm{H}), 6.82$ $(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.58(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.12$ $\left.-2.93\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.50\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.33\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.0$ (1C, C Ar), 149.7 (1C, C-12), 147.2 (1C, C-11), 146.6 (1C, C Ar), 139.4 (1C, C Ar), 139.0 (1C, C Ar), 137.9 (1C, C Ar), 136.2 (1C, C-14), 135.5 (1C, C Ar), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 128.2 (2C, CH Ar), 128.0 (2C, CH Ar), 127.5 (1C, CH Ar), 126.9 ($1 \mathrm{C}, \mathrm{q}, J=279.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.6
(1C, C-13), 113.6 (2C, CH Ar), 112.7 (2C, CH Ar), 55.3 (1C, OMe), 48.6 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 45.8 (1 C , C-1), 41.2 (1C, q, $J=25.6 \mathrm{~Hz}, \mathrm{C}-2$), 40.5 ($1 \mathrm{C}, \mathrm{C}-9$), $28.2(1 \mathrm{C}, \mathrm{C}-8) .{ }^{\mathbf{1}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ -58.8 (3F, CF_{3}) HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{230} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 491.2305$, found m / z 491.2301 .
N-Benzyl-4-[5-(2,2,2-trifluoroethyl)-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl]aniline, 4 am .

From aniline $\mathbf{1 a}(36.6 \mathrm{mg}, 0.20 \mathrm{mmol})$, alkene $\mathbf{2 s}(41.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $3(66.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4 am was obtained. Chromatographic purification (gradient elution: 5:95 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}-$ hexane) gave 4am ($38.0 \mathrm{mg}, 42 \%$), as a colourless oil and a $2: 1$ mixture of unreacted alkene $\mathbf{2 s}$: trifluoromethyl alkene $\mathbf{2 s} \mathbf{- C F}_{\mathbf{3}}$ (25.8 mg).

Data for 4am: $\boldsymbol{R}_{f} 0.5$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.25-7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.13-7.07(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.06-6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.92(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.57(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 6-\mathrm{H}), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.49\left(2 \mathrm{H}, \mathrm{q}, J=10.2 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.90$ ($4 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 145.7$ (2C, C Ar), 143.9 (1C, C Ar), 139.7 (2C, C $\mathrm{Ar}), 138.7$ (2C, C Ar), 131.5 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.0 (2C, CH $\mathrm{Ar}), 127.6$ ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.5 (2C, CH Ar), 126.7 (2C, CH Ar), 126.4 ($1 \mathrm{C}, \mathrm{q}, J=280.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.9 (2C, CH Ar), 113.2 (2C, CH Ar), 53.1 (1C, C-1), 49.0 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 46.4 (1C, C-2), 34.1 (2C, C-10). ${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-56.1$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 458.2091$, found $m / z 458.2094$.

Partial data for $\mathbf{2 s} \mathbf{- C F}_{3}$ (from the mixture): $\boldsymbol{R}_{f} 0.5\left(5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.51-6.96(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.03(1 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}, 2-\mathrm{H}), 3.57-3.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.10-$ $2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-56.03\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$.
N-Benzyl-4-[5-(2,2,2-trifluoroethyl)-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl]aniline, 4 an.

From aniline 1a ($36.6 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 t}(45.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4} \mathbf{a n}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 50: 50 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4an $(16.8 \mathrm{mg}, 20 \%)$, as a colourless oil.

Data for 4an: $\boldsymbol{R}_{f} 0.1\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.28(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{Ar}), 6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.68(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, 6-\mathrm{H}) 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}$, $\left.8-\mathrm{H}_{\mathrm{A}}\right), 3.27\left(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{B}}\right), 3.00-2.89\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.69(1 \mathrm{H}, \mathrm{dq}, J=14.9$ and 10.8 $\mathrm{Hz}, 2-\mathrm{H}_{\mathrm{B}}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.8$ (1C, C Ar), 149.8 (1C, C Ar), 139.3 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 138.2 (1C, C Ar), 137.0 (1C, C Ar), 133.1 (1C, C Ar), 132.4 (1C, C Ar), 128.8 (2C, CH Ar), 128.2 (1C, CH Ar), 127.7 (4C, CH Ar), 126.5 (1C, q, $J=278.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.0 (2C, C-6) 108.1 (1C, CH Ar), 107.7 (1C, CH Ar), 56.6 (1C, OMe), 56.4 (1C, OMe), 50.5 (1C, C-1), 49.4 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 46.0 (1C, C-8), 44.5 (1C, q, $J=26.3 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($376 \mathbf{~ M H z , ~ C D C l} 3$) $\delta-61.2\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 428.1832$, found $\mathrm{m} / \mathrm{z} 428.1825$.

N-Benzyl-4-(3,3,3-trifluoro-1-(4-methoxyphenyl)-2-methylpropyl)aniline, 4ao.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 u}(29.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a o}$ was obtained as a 60:40 diastereomeric ratio. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a o}(55.3 \mathrm{mg}, 70 \%)$ in a $60: 40$ diastereomeric ratio, as a colourless oil.

Data for 4ao-major isomer (from the mixture): $\boldsymbol{R}_{f} 0.30$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.41-7.25(5 H, m, A r), 7.17(2 H, d, J=8.7 \mathrm{~Hz}, 9-\mathrm{H}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-$ H), $6.84(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, 10-\mathrm{H}), 6.57(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 6-\mathrm{H}), 4.29\left(2 \mathrm{H} \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.96(1 \mathrm{H}, \mathrm{d}$, $J=9.5 \mathrm{~Hz}, 1-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.17-2.98(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.07(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$) $\delta 158.2$ (1C, C Ar), 146.7 (1C, C Ar), 139.5 (1C, C Ar), 134.9 (1C, C Ar), 132.2 (1C, C Ar), 129.3 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 127.7 (2C, CH Ar), 127.3 (1C, CH Ar), 128.3 ($1 \mathrm{C}, \mathrm{q}, J=281.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.0 (2C, CH Ar), 112.9 (2C, CH Ar), 55.3 (1C, OMe), 50.7 (1C, C-1), 48.6 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 41.9 ($1 \mathrm{C}, \mathrm{q}, ~ J=24.0 \mathrm{~Hz}, \mathrm{C}-2$), 13.0 ($1 \mathrm{C}, \mathrm{d}, ~ J=3.1$ $\mathrm{Hz}, \mathrm{Me}) .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-68.5$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}$ [M] ${ }^{+}$requires m / z 399.1805, found $m / z 399.1784$.

Partial data for 4ao-minor isomer (from the mixture): The NMR signals overlapped with those of 4ao-major isomer, except for: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.21(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 9-$ H), $7.05(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 10-\mathrm{H}), 6.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 6-\mathrm{H}), 3.92$ $(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, 1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.09(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 158.0$ (1C, C Ar), 146.9 (1C, C Ar), 135.8 (1C, C Ar), 131.4 (1C, C Ar), 128.7 (2C, CH Ar), 128.6 (1C, CH Ar), 127.6 (2C, CH Ar), 127.4 (1C, CH Ar), 113.8 (2C, CH Ar), 113.1 (2C, CH $\mathrm{Ar}), 55.2(1 \mathrm{C}, \mathrm{OMe}), 50.9(1 \mathrm{C}, \mathrm{C}-1), 48.5\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 42.0(1 \mathrm{C}, \mathrm{q}, J=23.9 \mathrm{~Hz}, \mathrm{C}-2), 13.2(1 \mathrm{C}, \mathrm{d}$, $J=3.1 \mathrm{~Hz}, \mathrm{Me}) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-68.4\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$.
N-Benzyl-4-[5,6-dimethoxy-2-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]aniline, 4ap.

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 v}(35.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP at room temperature, following the general procedure, aniline 4ap was obtained. Chromatographic purification (gradient elution: 15:85 \rightarrow 20:80 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a p}(42.5 \mathrm{mg}, 50 \%)$, as a colourless oil.

Data for 4ap: $\boldsymbol{R}_{f} 0.10\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.27(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.97(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.61(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 10-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}), 4.42(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 1-\mathrm{H}), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.28-3.18\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.15-2.99\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.2-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~}$ $\mathbf{C D C l}_{3}$) $\delta 148.9$ (2C, C Ar), 147.2 (1C, C Ar), 139.4 (1C, C Ar), 136.5 (1C, C Ar), 132.7 (1C, C Ar),
132.0 (1C, C Ar), 129.1 (2C, C-9), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 128.2 (1C, q, $J=278.3$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 127.4 (1C, CH Ar), 113.1 (2C, C-10), 108.06 (1C, CH Ar), 107.0 (1C, CH Ar), 56.2 (2C, $2 \mathrm{x} \mathrm{OMe}), 52.9(1 \mathrm{C}, \mathrm{q}, J=25.7 \mathrm{~Hz}, \mathrm{C}-2), 51.3(1 \mathrm{C}, \mathrm{C}-1), 48.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 32.2(1 \mathrm{C}, \mathrm{C}-3) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-70.3\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}]^{+}$requires $m / z 427.1754$, found $m / z 427.1749$.
N-Benzyl-4-[6-methoxy-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl]aniline, 4aq.

From aniline $\mathbf{1 a}(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 w}(32.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a q}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a q}$ ($66.4 \mathrm{mg}, 81 \%$) as a colourless oil.

Data for 4aq: $\boldsymbol{R}_{f} 0.30\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.45-7.23(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 10-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 8-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, 7-\mathrm{H}), 6.59(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.17(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H})$, $3.97(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{NH}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.91\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.76-2.59(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 2.18\left(1 \mathrm{H}, \mathrm{dtd}, J=13.5,6.1\right.$ and $\left.3.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.90\left(1 \mathrm{H}, \mathrm{ddt}, J=13.7,8.9\right.$ and $\left.7.0 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right)$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 157.7$ (1C, C Ar), 146.8 (1C, C Ar), 139.5 (1C, C Ar), 137.2 (1C, C Ar), 134.9 (1C, C Ar), 131.6 (1C, C-8), 130.2 (1C, C Ar), 129.6 (2C, C-10), 128.7 (2C, CH Ar), 128.1 (1C, q, $J=281.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 112.9 (2C, C-11), 112.8 (1C, C7), 112.7 ($1 \mathrm{C}, \mathrm{C}-5$), 55.2 ($1 \mathrm{C}, \mathrm{OMe}$), $48.6\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 46.7$ ($1 \mathrm{C}, \mathrm{q}, J=24.4 \mathrm{~Hz}, \mathrm{C}-2$), 43.0 ($1 \mathrm{C}, \mathrm{C}-$ 1), 27.7 (1C, C-4), 20.9 (1C, C-3). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-69.5$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (EI): calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$requires $m / z 411.1805$, found $m / z 411.1815$.

From aniline 1a ($36.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 x}(38.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}$ ($64.9 \mathrm{mg}, 0.20 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $4 \mathbf{a r}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4ar ($61.1 \mathrm{mg}, 70 \%$), as a colourless oil.

Data for 4ar: $\boldsymbol{R}_{f} 0.5\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.27(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.58(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-6), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.28$ $-4.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 145.7$ (1C, C Ar), 139.0 (1C, C Ar), 130.9 (1C, C Ar), 129.9 (1C, C Ar), 129.2 (1C, C Ar), 128.8 (3C, CH Ar), 128.1 (1C, q, $J=282.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 128.0 (3C, CH Ar), 127.7 (3C, CH Ar), 127.62 (3C, CH Ar), 127.56 (3C, CH Ar), 125.9 (2C, CH Ar), 112.5 (2C, CH Ar), $58.2(1 \mathrm{C}, \mathrm{C}-1), 49.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 42.7(1 \mathrm{C}, \mathrm{q}, J=$ $23.6 \mathrm{~Hz}, \mathrm{C}-2)$, 11.7 ($1 \mathrm{C}, \mathrm{Me}$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-61.6$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 446.2091$, found $\mathrm{m} / \mathrm{z} 446.2084$.
N-Benzyl-4-[1-phenyl-2-(trifluoromethyl)cyclohexyl]aniline, 4as.

From aniline $\mathbf{1 a}(31.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, alkene $\mathbf{2 y}(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, and trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline 4as was obtained as a 65:35 diastereomeric ratio. Chromatographic purification (gradient elution: 0:100 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4} \mathbf{a s}(24 \mathrm{mg}, 37 \%$) in a $65: 35$ diastereomeric ratio, as a colourless oil.

Data for 4as-major isomer (from the mixture): $\boldsymbol{R}_{f} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.09(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 9-\mathrm{H}), 6.61(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-$ H), $4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.08(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.44-3.30(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.74-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c-\right.$ Hex), $2.48-2.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c\right.$-Hex), $2.14-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c\right.$ - Hex), $1.77-1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c-\right.$

Hex), $1.66-1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c\right.$-Hex), $1.41-1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} c\right.$-Hex). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 147.5$ (1C, C Ar), 145.9 (1C, C Ar), 139.4 (1C, C Ar), 135.3 (1C, C Ar), 128.7 (2C, CH Ar), 128.4 (1C, q, $J=283.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 128.0 (2C, CH Ar), 127.8 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 125.8 (2C, CH Ar), 113.1 (2C, C-10), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 46.7 ($1 \mathrm{C}, \mathrm{C}-$ 1), 45.9 ($1 \mathrm{C}, \mathrm{q}, J=20.9 \mathrm{~Hz}, \mathrm{C}-2$), $31.8\left(1 \mathrm{C}, \mathrm{CH}_{2} c\right.$-Hex) $, 23.2(1 \mathrm{C}, \mathrm{q}, J=3.0 \mathrm{~Hz}, \mathrm{C}-4), 22.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right.$ c-Hex), $21.8\left(1 \mathrm{C}, \mathrm{CH}_{2} c\right.$-Hex). ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-58.0\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right),-58.2\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}]^{+}$requires m / z 409.2012, found $m / z 409.2022$.

Partial data for 4as-minor isomer (from the mixture): The NMR signals overlapped with those of 4as-major isomer, except for: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.03(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 9-$ H), $6.53(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 10-\mathrm{H}), 4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.1$ (1C, C Ar), 139.5 (1C, C Ar), 135.7 (1C, C Ar), 127.4 (1C, CH Ar), 125.7 (1C, C Ar), 112.4 (2C, C-10), 47.0 (1C, C-2), 32.9 ($1 \mathrm{C}, \mathrm{CH}_{2} c$-Hex), $23.3\left(1 \mathrm{C}, \mathrm{q}, J=3.2 \mathrm{~Hz}, \mathrm{C}-4\right.$), $22.2\left(1 \mathrm{C}, \mathrm{CH}_{2} c\right.$-Hex), 22.1 (1 C , $\mathrm{CH}_{2} c$-Hex).
(E)-N-Benzyl-4-[5,5,5-trifluoro-1-(4-methoxyphenyl)pent-2-en-1-yl]aniline, 4at.

From aniline 1a ($36.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 z}(32 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trifluoromethyl reagent $3(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a t}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 15:85 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 4at $(44.9 \mathrm{mg}, 55 \%)$, as a colourless oil.

Data for 4at: $\boldsymbol{R f} 0.4\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.26(5 \mathrm{H} \mathrm{m}$, Ar), $7.06(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{H}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$, $6.65(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=15.4$ and $7.3 \mathrm{~Hz}, 2-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{dtd}, J=15.4,7.1$ and $1.3 \mathrm{~Hz}, 3-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 1-\mathrm{H}), 4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.84(2 \mathrm{H}$, $\mathrm{qd}, J=10.6$ and $\left.7.2 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right) \cdot{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.2$ (1C, C Ar), 146.1 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 141.2 (1C, C-2), 139.0 (1C, C Ar), 135.7 (1C, C Ar), 132.9 (1C, C Ar), 129.5 (2C, CH Ar), 129.4 (2C, CH Ar), 128.8 (2C, CH Ar), 127.9 (2C, CH Ar), 127.5 (1C, CH Ar), 126.0 (1C, q, J=276.7 Hz, CF_{3}), 118.86 (1C, C-3), 113.9 (2C, CH Ar), 113.6 (2C, CH Ar), 55.4 (1C, OMe), 52.3 (1C, C-1), 49.0 $\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 37.4(1 \mathrm{C}, \mathrm{q}, J=29.6 \mathrm{~Hz}, \mathrm{C}-4) .{ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-66.4\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (EI): calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 412.1883$, found 412.1885 .
(E)-N-Benzyl-4-[5,5,5-trifluoro-1-(4-methoxyphenyl)-4,4-dimethylpent-2-en-1-yl]aniline, 4au.

From aniline 1a ($36.7 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene 2aa ($37.7 \mathrm{mg}, 0.20 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4au was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 5:95 $\mathrm{Et}_{2} \mathrm{O}-$ hexane) gave 4au ($44.5 \mathrm{mg}, 52 \%$), as a colourless oil.

Data for 4au: $\boldsymbol{R}_{f} 0.4\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.28(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H})$, $6.62(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{dd}, J=15.7$ and $7.5 \mathrm{~Hz}, 2-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 3-$ H), $4.60(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 1-\mathrm{H}), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.25(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$) $\delta 158.1$ ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 146.4 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 139.4 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 136.1 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 135.2 (1C, C-3), 133.0 (1C, C Ar), 131.1 (1C, C-2), 129.5 (2C, CH Ar), 129.4 (2C, CH Ar), 128.8 (2C, CH Ar), $128.6\left(1 \mathrm{C}, \mathrm{q}, J=282.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 127.8 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.4 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 113.9 (2 C , CH Ar), 113.3 (2C, CH Ar), 55.4 (1C, OMe), 52.2 (1C, C-1), 48.9 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 42.4 ($1 \mathrm{C}, \mathrm{q}, J=$ $25.3 \mathrm{~Hz}, \mathrm{C}-4)$, 21.4 (2C, $2 \times \mathrm{Me}$). ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-77.9$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 440.2196$, found $m / z 440.2185$.

N-Benzyl-4-methyl-2-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, S10.

From aniline 1v ($39.5 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{S 1 0}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{S 1 0}$ ($21.1 \mathrm{mg}, 26 \%$), as a colourless oil.

Data for S10: $\boldsymbol{R}_{f} 0.50\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.35(3 \mathrm{H}$, $\mathrm{m}, \mathrm{H} \mathrm{Ar}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 11-\mathrm{H}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.0, \mathrm{HAr}), 7.13(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, 9-\mathrm{H})$, $7.07(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and $1.3 \mathrm{~Hz}, 7-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 12-\mathrm{H})$, $4.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.13-2.89\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.42(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.8$ (1C, C Ar), 147.3 (1C, C Ar), 142.5 (1C, C Ar), 139.0 (1C, C Ar), 136.1 (1C, C Ar), 133.4 (1C, C Ar), 129.2 (2C, CH Ar), 128.6 (3C, CH Ar) 128.4 (2C, CH Ar), 127.5 (2C, CH Ar), 127.3 (1C, CH Ar), 126.8 (1C, q, $J=277.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.4 (2C, CH $\mathrm{Ar}), 55.4$ (1C, OMe), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 39.17 ($1 \mathrm{C}, \mathrm{q}, J=27.1 \mathrm{~Hz}, \mathrm{C}-2$), 38.99 ($1 \mathrm{C}, \mathrm{q}, J=2.9 \mathrm{~Hz}$, C-1) 20.9 (1C, Me). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ CDCl $_{3}$) δ-64.1 (3F, CF_{3}).

4.1. Unsuccessful or low yielding substrates

Alkene Aniline

5. Derivatization of trifluoromethyl products

5.1. General procedure for the synthesis of sulfonamides

To an oven-dried vial/flask a solution of aniline in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added, followed by triethylamine ($2-3$ equiv.), pyridine ($0-2$ equiv.) and sulfonyl chloride (1.2-2.1 equiv.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was let warm up to rt and stirred overnight. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, extracted with water and the organic layers dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting crude was purified by silica gel chromatography using the appropriate mixture of eluents.
N-Benzyl- N-\{4-[(1R,2R)-6-methoxy-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl]phenyl\}-2,4-dinitrobenzenesulfonamide, 5.

4aq

5

From aniline $\mathbf{4 a q}(149.0 \mathrm{mg}, 0.362 \mathrm{mmol})$, triethylamine ($101 \mu \mathrm{~L}, 0.734 \mathrm{mmol}, 2.0$ equiv.), pyridine ($58.6 \mu \mathrm{~L}, 0.734 \mathrm{mmol}, 2.0$ equiv.) and 2,4-dinitrosulfonyl chloride ($145 \mathrm{mg}, 0.543 \mathrm{mmol}$, 1.5 equiv.), in 3.6 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure, sulfonamide $\mathbf{5}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 40: 70 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave 5, as a brown solid. The solid was washed 3 times using a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give a white solid (75.1 $\mathrm{mg}, 32 \%$), that was recrystalized using THF - pentane, to give white crystals for x-ray diffraction.

Data for 5: $\boldsymbol{R}_{f} 0.2$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). m.p.: $197{ }^{\circ} \mathrm{C}\left(10 \% \mathrm{THF}\right.$ - pentane). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.47(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 15-\mathrm{H}), 8.22(1 \mathrm{H}, \mathrm{dd}, J=8.7$ and $2.2 \mathrm{~Hz}, 14-\mathrm{H}), 7.66(1 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}, 13-\mathrm{H}), 7.31-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.97(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 10-\mathrm{H}$ and $11-\mathrm{H}) 6.63(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}$, $5-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.7 \mathrm{~Hz}, 7-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{Bn}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{B}} \mathrm{Bn}\right), 4.13(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.90$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.64-2.52(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.23-2.11\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.91-1.77(1 \mathrm{H}, \mathrm{m}, 3-$ H_{B}). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 158.2$ (1C, C Ar), 149.8 (1C, C Ar), 148.1 (1C, C Ar), 146.7 (1C, C Ar), 137.8 (1C, C Ar), 137.2 (1C, C Ar), 135.6 (1C, C Ar), 135.5 (1C, C Ar), 134.0 (1C, C13), 131.2 (1C, C-8), 130.2 (2C, CH Ar), 129.9 (2C, CH Ar), 129.0 (1C, C Ar), 128.9 (2C, CH Ar), 128.7 (2C, CH Ar), 128.2 (1C, CH Ar), 125.4 (1C, C-14), 119.5 (1C, C-15), 113.1 (1C, C-5), 113.0 (1C, C-7), 57.1 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 55.4 ($1 \mathrm{C}, \mathrm{OMe}$), 47.1 ($1 \mathrm{C}, ~ J=25.0 \mathrm{~Hz}, \mathrm{C}-2$), 44.2 ($1 \mathrm{C}, \mathrm{C}-1$), 28.3 (1 C , C-4), 21.8 ($1 \mathrm{C}, \mathrm{C}-3$). ${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta-69.34$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HMRS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $m / z 659.1782$, found $m / z 659.1783$.

N-Benzyl-4-methyl- N-\{4-[3,3,3-trifluoro-1-(4-

methoxyphenyl)propyl]phenyl\}benzenesulfonamide, S11.

From aniline $\mathbf{4 a}$ ($500.0 \mathrm{mg}, 1.297 \mathrm{mmol}$), triethylamine ($542 \mu \mathrm{~L}, 3.892 \mathrm{mmol}, 3.0$ equiv.) and para-toluenesulfonyl chloride ($519.3 \mathrm{mg}, 2.724 \mathrm{mmol}, 2.1$ equiv.) in 13 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure, sulfonamide $\mathbf{S 1 1}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 30:70 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{S 1 1}$, as a colourless oil.

Data for S11: $\boldsymbol{R}_{f} 0.1$ ($30 \% \mathrm{EtOAc}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.49(2 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.22-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 10-\mathrm{H})$, $7.05(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 5-\mathrm{H}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 9-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.68(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.84-2.69\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.43(3 \mathrm{H}, \mathrm{s}$, Me). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 158.6$ (1C, C Ar), 143.6 (1C, C Ar), 142.8 (1C, C Ar), 137.8 (1C, C Ar), 136.1 (1C, C Ar), 135.8 (1C, C Ar), 134.3 (1C, C Ar), 129.6 (2C, CH Ar), 129.2 (2C, CH Ar), 128.7 (2C, CH Ar), 128.6 (2C, CH Ar) , 128.5(2C, CH Ar), 128.1 (2C, CH Ar), 127.8 (2C, CH $\mathrm{Ar}), 127.7$ (1C, CH Ar), 126.4 (1C, q, $J=277.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 114.2 (2C, CH Ar), 55.4 (1C, OMe), 54.8 (1C, $\mathrm{CH}_{2} \mathrm{Bn}$), 43.9 (1C, C-1), 34.0 ($1 \mathrm{C}, \mathrm{q}, J=27.3 \mathrm{~Hz}, \mathrm{C}-2$), 21.7 ($1 \mathrm{C}, \mathrm{Me}$). ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-63.63 (3F, CF_{3}).

4-Methyl- N-tosyl- N-\{4-[5,5,5-trifluoro-1-(4-
 methoxyphenyl)pentyl]phenyl\}benzenesulfonamide, S12.

From aniline 7 ($57.0 \mathrm{mg}, 0.176 \mathrm{mmol}$), triethylamine ($75 \mu \mathrm{~L}, 0.528 \mathrm{mmol}, 3.0$ equiv.), and para-toluenesulfonyl chloride ($75 \mathrm{mg}, 0.388 \mathrm{mmol}$, 2.2 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}$), following the general procedure, sulfonamide $\mathbf{S 1 2}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 80:20 EtOAc - hexane) gave $\mathbf{S 1 2}$ ($85 \mathrm{mg}, 76 \%$), as a colourless oil.

Data for S12: $\boldsymbol{R}_{f} 0.35$ ($50 \% \mathrm{EtOAc}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.79(4 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.31(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 11-\mathrm{H}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, $7-\mathrm{H}), 6.94(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 12-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 8-\mathrm{H}), 3.86(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 1-\mathrm{H}), 3.80$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.20-1.50\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 3-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right)$. HMRS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires $m / z 649.2013$, found $m / z 649.2016$.

5.2. General procedure for hydrogenation

To an oven-dried vial, N-Benzyl aniline (1 equiv.) and $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$ (0.1 equiv.) were added. Then, MeOH was added and the reaction mixture was kept under hydrogen for the specified time. The reaction mixture was diluted with dichloromethane, filtered through a pad of celite and evaporated under reduced pressure. The crude was purified by silica gel chromatography using the appropriate mixture of eluents to give the corresponding free anilines.

4-[3,3,3-Trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4c.

From N-Benzyl aniline $\mathbf{4 a}(30 \mathrm{mg}, 1$ equiv., 0.08 mmol) and $\mathrm{Pd} / \mathrm{C}(8.3 \mathrm{mg}, 0.1$ equiv., 0.008 mmol) in 3.9 mL of MeOH under 4 bar hydrogen pressure, following the general procedure, aniline $\mathbf{4 c}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 50:50 EtOAc - hexane) gave $\mathbf{4 c}(16 \mathrm{mg}, 70 \%)$ as a colourless oil. Spectroscopy data matches with those previously reported.

4-[5,5,5-Trifluoro-1-(4-methoxyphenyl)pentyl]aniline, 7.

From N-Benzyl aniline 4at (180 mg , 1 equiv., 0.437 mmol) and $\mathrm{Pd} / \mathrm{C}(48 \mathrm{mg}, 0.1$ equiv., 0.0437 mmol) in 2.2 mL of MeOH under hydrogen balloon pressure, following the general procedure, aniline 7 was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 30:70 EtOAc hexane) gave 7 ($101 \mathrm{mg}, 71 \%$) as a colourless oil.

Data for 7: $\boldsymbol{R}_{f} 0.2\left(30 \% \mathrm{EtOAc}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.13(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, 11-\mathrm{H}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 7-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 12-\mathrm{H}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-$ H), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.83-3.70(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.16-1.97\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 1.62-1.44$ (2H, m, 3-H2). ${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$) $\delta 158.0$ (1C, C Ar), 144.1 (1C, C Ar), 137.3 (1C, C Ar), 135.4 (1C, C Ar), 128.63 (2C, C-11), 128.58 (2C, C-7), 127.3 (1C, q, $J=276.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 115.7 (2C, $\mathrm{C}-8), 113.98(2 \mathrm{C}, \mathrm{C}-12), 55.33\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 49.48(1 \mathrm{C}, \mathrm{C}-1), 35.15(1 \mathrm{C}, \mathrm{C}-2), 33.79(1 \mathrm{C}, \mathrm{q}, J=$ $28.4 \mathrm{~Hz}, \mathrm{C}-4), 20.68(1 \mathrm{C}, \mathrm{q}, J=2.9 \mathrm{~Hz}, \mathrm{C}-3) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-66.12\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 324.1570$, found m / z 324.1558.

5.3. General procedure for Ru-catalyzed oxidation

To a cold ($0{ }^{\circ} \mathrm{C}$) solution of para-methoxyphenyl (PMP) derivative (1 equiv.) in 40.0 $\mathrm{mL} / \mathrm{mmol}$ of a 2:2:3 mixture of $\mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{K}_{2} \mathrm{HPO}_{4}$ aq. (0.2 M), NaIO_{4} (20.0 equiv.) was added in one portion. The mixture was stirred at that temperature for 15 min and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mol} \%)$ was added in one portion. The mixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The water layer was acidified until pH 1 using 1 M HCl aq. and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid.

2-\{4-[(N-Benzyl-4-methylphenyl)sulfonamido]phenyl\}-4,4,4-trifluorobutanoic acid, 6.

From aniline $\mathbf{S 1 1}(54 \mathrm{mg}, 0.100 \mathrm{mmol}), \mathrm{NaIO}_{4}(460 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(6.8 \mathrm{mg}$, 0.030 mmol) in 4 mL of the appropriate mixture of solvents, following the general procedure, carboxylic acid 6 was obtained. Chromatographic purification (gradient elution: 30:70 \rightarrow 70:30 EtOAc - hexane) gave 6 ($29.1 \mathrm{mg}, 61 \%$) as a white foam.

Data for 6: $\boldsymbol{R}_{f} 0.3\left(70 \% \mathrm{EtOAc}-\right.$ hexane). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.60(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}, \mathrm{Ar}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.31-7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}), 7.07$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J=8.6$ and $5.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.08(1 \mathrm{H}$, dqd $J=15.0,10.3$ and $\left.8.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 2.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.60-2.42\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 175.5$ ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$), 143.8 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 139.3 (1C, C Ar), 135.89 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar}$), 135.87 ($1 \mathrm{C}, \mathrm{C}$ $\mathrm{Ar}), 135.6$ (1C, C Ar), 129.7 (2C, CH Ar), 129.5 (2C, CH Ar), 128.5 (5C, CH Ar), 128.4 (2C, CH $\mathrm{Ar}), 127.8(2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}), 125.9\left(1 \mathrm{C}, \mathrm{q}, J=276.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 54.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}\right), 44.7(1 \mathrm{C}, \mathrm{C}-1), 37.2$ (1C, q, $J=29.0 \mathrm{~Hz}, \mathrm{C}-2$), 21.7 ($1 \mathrm{C}, \mathrm{Me}$). ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-65.2\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right.$). HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 477.1217$, found $\mathrm{m} / \mathrm{z} 478.1278$.

6,6,6-Trifluoro-2-\{4-[(4-methyl- N-tosylphenyl)sulfonamido]phenyl\}hexanoic acid, 8.

From aniline $\mathbf{S 1 2}(22.7 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{NaIO}_{4}(154 \mathrm{mg}, 0.719 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(2.4$ $\mathrm{mg}, 0.013 \mathrm{mmol}$) in 1.44 mL of the appropriate mixture of solvents, following the general procedure, carboxylic acid 8 was obtained. Chromatography purification (gradient elution: 50:50 \rightarrow 100:0 EtOAc - hexane) gave 8 ($14.8 \mathrm{mg}, 72 \%$) as a colourless oil.

Data for 8: $\boldsymbol{R}_{f} 0.1(70 \% \mathrm{EtOAc}-\mathrm{hexane}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.79(4 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.32(4 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-$ H), $3.60(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 1-\mathrm{H}), 2.46(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 2.23-2.03\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{2}\right), 1.85$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 1.68-1.46\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 177.5(1 \mathrm{C}, \mathrm{C}=\mathrm{O}), 145.3$ (2C, C Ar), 140.0 (1C, C Ar), 136.7 (2C, C Ar), 134.1 (1C, C Ar), 132.1 (2C, C-7), 129.8 (4C, CH Ar), 128.9 (2C, C-6), 128.7 (4C, CH Ar), 127.0 ($1, \mathrm{q}, J=276.3 \mathrm{~Hz}, \mathrm{CF}_{3}$), 50.9 (1C, C-1), 33.6 (1C, $\mathrm{q}, J=28.6 \mathrm{~Hz}, \mathrm{C}-4), 32.3(1 \mathrm{C}, \mathrm{C}-2), 21.9(2 \mathrm{C}, 2 \mathrm{x} \mathrm{Me}), 20.3(1 \mathrm{C}, \mathrm{q}, J=3.0 \mathrm{~Hz}, \mathrm{C}-3) .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-66.2\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ requires $m / z 587.1492$, found $m / z 587.1480$.

6. Selective derivatization of bioactive molecules

2-[(2,3-Dimethylphenyl)amino]-5-(3,3,3-trifluoro-1,1-diphenylpropyl)benzoic acid, 4av.

Mefenamic acid

$2 f$

HFIP (0.4 M), $40^{\circ} \mathrm{C}$

4av

From Mefenamic acid ($38.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $2 \mathrm{f}(72.2 \mathrm{mg}, 0.40 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(132.0 \mathrm{mg}, 0.40 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4av was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 50:50 EtOAc hexane) gave $\mathbf{4 a v}$ ($39 \mathrm{mg}, 40 \%$), as a brown oil.

Data for 4av: $\boldsymbol{R}_{f} 0.25\left(50 \% \mathrm{EtOAc}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.08(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 8.00(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.35-7.27(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.23-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17(1 \mathrm{H}, \mathrm{dd}, J$ $=9.2$ and $2.7 \mathrm{~Hz}, 9-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $1.6 \mathrm{~Hz}, 12-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 11-\mathrm{H}), 7.03$ $(1 \mathrm{H}, \mathrm{dd}, J=7.4$ and $1.7 \mathrm{~Hz}, 10-\mathrm{H}) 6.65(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 8-\mathrm{H}), 3.53\left(2 \mathrm{H}, \mathrm{q}, J=10.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.32$ (3H, s, Me), 2.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$) $\delta 173.8$ ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$), 149.0 ($1 \mathrm{C}, \mathrm{C}-7$), 145.4 (2C, C Ar), 138.4 (1C, C Ar), 138.3 (1C, C Ar), 136.7 (1C, C-9), 132.9 (1C, C Ar), 132.8 (1C, C-4), 131.9 ($1 \mathrm{C}, \mathrm{C}-5$), 128.9 (4C, CH Ar), 128.2 ($4 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.4 (1C, C-10), 126.6 (2C, CH Ar), 126.12 ($1 \mathrm{C}, \mathrm{C}-11$), 126.10 ($1 \mathrm{C}, \mathrm{q}, J=279.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.8 ($1 \mathrm{C}, \mathrm{C}-12$), 113.7 ($1 \mathrm{C}, \mathrm{C}-8$), 108.6 (1 C , C-6), 53.4 (1C, C-1), 44.0 ($1 \mathrm{C}, \mathrm{q}, J=26.6 \mathrm{~Hz}, \mathrm{C}-2$), 20.7 (1C, Me), 14.3 (1C, Me). ${ }^{19}$ F NMR (376 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-56.1\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 490.1989, found m/z 490.1990 .

5-[1-(4-Bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]-2-[(2,3-dimethylphenyl)amino]benzoic acid, 4aw.

Mefenamic acid

$2 i$

HFIP $(0.4 \mathrm{M}), 40^{\circ} \mathrm{C}$

3

4aw

From Mefenamic acid ($48.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene $\mathbf{2 i}$ ($104 \mathrm{mg}, 0.40 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(132.0 \mathrm{mg}, 0.40 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4aw was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 20:80 EtOAchexane) gave 4aw ($49 \mathrm{mg}, 43 \%$), as a yellow oil.

Data for 4aw: $\boldsymbol{R}_{f} 0.3\left(50 \% \mathrm{EtOAc}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.09(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 7.97(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 15-\mathrm{H}), 7.33-7.25(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.24-$ $7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.18(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 14-\mathrm{H}), 7.14-7.08(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) 7.04(1 \mathrm{H}, \mathrm{dd}, J=6.7$ and $1.8 \mathrm{~Hz}, 10-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 8-\mathrm{H}), 3.49\left(2 \mathrm{H}, \mathrm{q}, J=10.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.18$ (3H, s, Me). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 173.8$ ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$), 149.1 (1C, C-7), 145.0 ($1 \mathrm{C}, \mathrm{C} \mathrm{Ar)}$, 144.4 (1C, C-13), 138.5 (1C, C Ar), 138.2 (1C, C Ar), 136.4 (1C, C-9), 133.0 (1C, C Ar), 132.2 (1C, C-4), 131.8 (1C, C-5), 131.3 (2C, C-15), 130.8 (2C, C-14), 128.7 (2C, CH Ar), 128.3 (2, CH Ar), 127.5 ($1 \mathrm{C}, \mathrm{C}-10$), 126.9 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 126.2 ($1 \mathrm{C}, \mathrm{C}-11$), 125.9 ($1 \mathrm{C}, \mathrm{q}, J=279.4 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.9 (1 C , C-12), 120.8 (1C, C-16), 113.9 (1C, C-8), 108.6 (1C, C-6), 53.1 (1C, C-1), 43.9 ($1 \mathrm{C}, \mathrm{q}, J=26.4 \mathrm{~Hz}$, C-2), 20.7 (1C, Me), 14.3 (1C, Me). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$) δ-56.1 ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 568.1094$, found $\mathrm{m} / \mathrm{z} 568.1103$.

5-[1-(4-Acetoxyphenyl)-3,3,3-trifluoro-1-phenylpropyl]-2-[(2,3-dimethylphenyl)amino]benzoic acid, 4ax.

From Mefenamic acid ($48.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), alkene 2ab ($95.4 \mathrm{mg}, 0.40 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(132.0 \mathrm{mg}, 0.40 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 4ax was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 50:50 EtOAchexane) gave $\mathbf{4 a x}$ ($37.1 \mathrm{mg}, 35 \%$), as a yellow oil.

Data for 4ax: $\boldsymbol{R}_{f} 0.15\left(50 \% \mathrm{EtOAc}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.11(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 8.00(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.34-7.29(6 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}), 7.26-7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.16-7.09$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and $2.7 \mathrm{~Hz}, 9-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 11-\mathrm{H}), 7.06-7.01(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.02(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 14-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 8-\mathrm{H}), 3.53\left(2 \mathrm{H}, \mathrm{q}, J=10.4 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right)$, $2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OAc}), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 173.5(1 \mathrm{C}$,
$\mathrm{C}=\mathrm{O}$), 169.4 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O} \mathrm{Ac}$), 149.2 (1C, C-16), 149.0 ($1 \mathrm{C}, \mathrm{C}-7$), 145.2 (1C, C Ar), 142.9 (1C, C Ar), 138.4 (1C, C Ar), 138.3 (1C, C Ar), 136.5 (1C, C-9), 132.9 (1C, C Ar), 132.5 (1C, C-4), 131.7 (1C, C-5), 130.1 (2C, CH Ar), 128.9 (2C, CH Ar), 128.3 (2C, CH Ar), 127.4 (1C, C-10), 126.8 (1C, CH $\mathrm{Ar}), 126.1$ (1C, C-11), 126.0 ($1 \mathrm{C}, \mathrm{q}, J=279.3 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.8 ($1 \mathrm{C}, \mathrm{C}-12$), 121.1 (2C, C-14), 113.8 (1C, C-8), 108.5 (1C, C-6), 53.1 (1C, C-1), 44.1 ($1 \mathrm{C}, \mathrm{q}, ~ J=26.4 \mathrm{~Hz}, \mathrm{C}-2$), 21.3 (1C, Me OAc), 20.7 (1C, Me), 14.3 (1C, Me). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ - 56.1 ($3 \mathrm{~F}, \mathrm{CF}_{3}$). HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 548.2044$, found $m / z 548.2041$.

7. Sequential trifluoromethylarylation and hydroarylation of quinolines.

tert-Butyl 4-[4-(benzylamino)phenyl]-7-methoxy-3-(trifluoromethyl)-3,4-dihydroquinoline-1(2H)-carboxylate, 10 .

From aniline 1a ($34.8 \mathrm{mg}, 0.19 \mathrm{mmol}$), dihydroquinoline $9(49.7 \mathrm{mg}, 0.19 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(62.7 \mathrm{mg}, 0.19 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline 10 was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 50: 50 \mathrm{Et}_{2} \mathrm{O}-$ hexane) gave $\mathbf{1 0}$ ($38 \mathrm{mg}, 40 \%$), as a colourless oil.

Data for 10: $\boldsymbol{R}_{f} 0.2\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.27(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 7.22(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 8-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 10-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=8.6$ and 0.8 Hz , $6-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 5-\mathrm{H}), 6.57(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 11-\mathrm{H}), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.17(1 \mathrm{H}$, $\mathrm{d}, J=5.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J=13.6\right.$ and $\left.4.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.85(1 \mathrm{H}, \mathrm{dd}, J=13.7$ and $7.3 \mathrm{~Hz}, 2-$ $\left.\mathrm{H}_{\mathrm{B}}\right) 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.85-2.70(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.55\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{x}\right.$ Me Boc). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~}$ $\mathbf{C D C l}_{3}$) $\delta 157.9$ (1C, $\mathrm{C}=\mathrm{O}$ Boc), 153.3 (1C, C Ar), 146.8 (1C, C Ar), 139.4 (1C, C Ar), 139.2 (1C, C Ar), 134.5 (1C, C Ar), 131.0 (1C, C-5), 129.2 (2C, CH Ar), 128.8 (2C, CH Ar), 127.8 (2C, CH Ar), 127.5 (1C, CH Ar), 126.94 (1C, q, $J=280.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.9 (1C, C Ar), 113.4 (2C, C-11), 111.7 (1C, C-6), 108.8 (1C, C-8), 81.6 ($1 \mathrm{C}, \mathrm{C} t$-Bu Boc), 55.5 (1C, OMe), 48.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 47.3 ($1 \mathrm{C}, \mathrm{q}$, $J=24.8 \mathrm{~Hz}, \mathrm{C}-3$), 41.5 (1C, C-2), 41.4 (1C, C-4), 28.4 (3C, $3 \times \mathrm{Me} \mathrm{Boc)}$) ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right) \delta-70.1\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HMRS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $m / z 513.2360$, found $m / z 513.2358$.
N-Benzyl-4-[(3S,4R)-7-methoxy-3-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl]aniline, S13.

To a stirring solution of aniline $\mathbf{1 0}$ ($129 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dichloromethane (1 mL), trifluoroacetic acid ($252 \mu \mathrm{~m}$) was added, and the reaction mixture stirred for 30 min and checked by TLC. The reaction mixture was then evaporated under reduced pressure and aniline $\mathbf{S 1 3}$ was obtained. Chromatographic purification (gradient elution: $20: 80 \rightarrow 50: 50 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{S 1 3}$ (100 mg , 96\%), as a yellowish foam.

Data for S13: $\boldsymbol{R}_{f} 0.15$ ($40 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.26(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar})$, $7.08(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 7.03(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{Ar}) 6.55(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 5-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{dt}$, $J=8.6,2.3 \mathrm{~Hz}, 6-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.22(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 4-$ H), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39\left(2 \mathrm{H}, \mathrm{m}, J=10.2\right.$ and $\left.5.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.86-2.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$.
N-Benzyl-4-[(3S,4R)-7-methoxy-6-(2-phenylpropan-2-yl)-3-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl]aniline, 11 .

From adapted procedure, ${ }^{6}$ aniline $\mathbf{S 1 3}(82.5 \mathrm{mg}, 0.20 \mathrm{mmol})$, alkene $\mathbf{2 a c}(47.3 \mathrm{mg}, 0.4 \mathrm{mmol})$, and sodium acetate ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 1 mL of HFIP, aniline $\mathbf{1 1}$ was obtained. Chromatographic purification with deactivated silica (gradient elution: $10: 90 \rightarrow 50: 50 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{1 1}(49 \mathrm{mg}$, 46%; 53% based on recovered starting material), as a white foam. Note: acid-sensitive compound.

Data for 11: $\boldsymbol{R}_{f} 0.2\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - d _ { 6 }) ~} \delta 7.36(2 \mathrm{H} \mathrm{d}, J=$ $6.9 \mathrm{~Hz}, \mathrm{Ar} \mathrm{Bn}), 7.29(2 \mathrm{Ht}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} \mathrm{Bn}), 7.20(1 \mathrm{H} \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{Ar} \mathrm{Bn}), 7.14(2 \mathrm{H} \mathrm{t}, J=7.6 \mathrm{~Hz}$, Ar Ph) , $7.03(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{Ar} \mathrm{Ph}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} \mathrm{Ph}) 6.84(2 \mathrm{H} \mathrm{d}, J=8.5 \mathrm{~Hz}, 10-$ H), $6.67(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 11-\mathrm{H}), 6.13(1 \mathrm{H} \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH} \operatorname{Bn}), 6.11(1 \mathrm{H}, \mathrm{s}, 8-$
H), $5.78(1 \mathrm{H}, \mathrm{t}, J=2.8 \mathrm{~Hz}, \mathrm{NH}), 4.24\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.08(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, 4-\mathrm{H})$, $3.24-3.24\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.74(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.43$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$). ${ }^{13}$ C NMR (126 MHz, DMSO-d \mathbf{d}_{6}) $\delta 156.5$ (1C, C Ar), 151.7 (1C, C Ar), 147.2 (1C, C Ar), 144.0 (1C, C Ar), 140.3 (1C, C Ar), 132.6(1C, C Ar), 128.8 (2C, C-10), 128.2 (2C, CH Ar), 128.0 (1C, C-5), 127.5 ($1 \mathrm{C}, \mathrm{q}, J=281.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.4 ($2 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 127.3 (2C, CH Ar), 126.6 ($1 \mathrm{C}, \mathrm{CH} \mathrm{Ar}$), 125.9 (1C, C Ar), 125.1 (2C, CH Ar), 124.5 (1C, CH Ar), 112.2 (2C, CH Ar), 112.1 (1C, C Ar), 98.6 (1C, C-8), 54.8 ($1 \mathrm{C}, \mathrm{OMe}$), 46.7 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 43.8 ($1 \mathrm{C}, \mathrm{q}, ~ J=23.8 \mathrm{~Hz}, \mathrm{C}-3$), 40.7 ($1 \mathrm{C}, \mathrm{C}-\mathrm{Me}_{2}$), 40.4 (1C, C-4), 36.9 (1C, C-2), 30.2 (1C, Me), 29.5 (1C, Me). HRMS (ESI): calculated for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ [M+H]+ requires $m / z 631.3143$, found $m / z 631.3148$.

8. Mechanistic studies

8.1. Control experiments

- Radical trapping

4a

From aniline $\mathbf{1 a}$ ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, trifluoromethyl reagent 3 ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and BHT ($48.5 \mathrm{mg}, 0.22 \mathrm{mmol}$) in 0.5 mL of HFIP, following the general procedure, aniline 4a was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 10:90 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{4 a}(46.3 \mathrm{mg}, 62 \%)$, as a yellow oil.
-Radical clock experiment

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{S 1 4}(40.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), trifluoromethyl reagent $\mathbf{3}$ ($66.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{S 1 5}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 12: 88 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{S 1 5}(21.5 \mathrm{mg}$, 24%), as a yellow oil.

Data for S15: $\boldsymbol{R}_{f} 0.2\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.51-7.28(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.94(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ar}), 6.56$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.71(1 \mathrm{H}, \mathrm{ddt}, J=16.9,10.2$ and $6.7 \mathrm{~Hz}, 8-\mathrm{H}), 5.06-4.86\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right)$, $4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.93\left(2 \mathrm{H}, \mathrm{q}, J=10.9 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.28-2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.10$ $-1.94\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 454.2352$, found $m / z 454.2350$.

Note: Compound S15 is unstable and decomposes during column flash purification.

- Intramolecular lactonization

From aniline 1a ($31.9 \mathrm{mg}, 0.175 \mathrm{mmol}$), alkene $\mathbf{S 1 6}(41.1 \mathrm{mg}, 0.175 \mathrm{mmol})$, trifluoromethyl reagent $\mathbf{3}(57.4 \mathrm{mg}, 0.175 \mathrm{mmol})$, in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{S 1 7}$ was obtained. Chromatographic purification (gradient elution: 0:100 $\rightarrow 40: 90 \mathrm{Et}_{2} \mathrm{O}$ - hexane) gave $\mathbf{S 1 7}$ (52 mg, 98\%), as a colourless oil.

Data for S17: $\boldsymbol{R}_{f} 0.1\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ - hexane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.07-6.76(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.82\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.70-2.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.56-$ $2.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.

- Using E and Z alkene

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), (\mathbf{Z})-2 \mathbf{u}^{4} (dr 90:10) alkene ($29.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 0.5 mL of HFIP, following the general procedure, aniline 4ao was obtained (60%, dr 58:42).

- Michael addition to vinyl- CF_{3}

From aniline 1a ($6.3 \mathrm{mg}, 0.04 \mathrm{mmol}$) and alkene $\mathbf{2 a - C F}{ }_{3}{ }^{5}(6.9 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $85 \mu \mathrm{~mL}$ of HFIP, following the general procedure, starting materials were recovered, without formation of product 4a.

- Reactivity of styrenes against $\mathbf{3}$ in HFIP

From alkene 2a ($13.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and trifluoromethyl reagent $\mathbf{3}(33.0 \mathrm{mg}, 01 \mathrm{mmol})$ in 0.25 mL of HFIP, following the general procedure, starting materials were recovered, with 5% of $\mathbf{2 a}-$ CF_{3} formation.

From alkene $2 f(18.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(33.0 \mathrm{mg}, 0.1 \mathrm{mmol}) 0.25$ mL of HFIP, following the general procedure, starting materials were recovered, with 10% of $\mathbf{2 f - C F}$ formation.

- Competition experiment

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene 2a ($26.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), anisole ($109 \mathrm{mg}, 1$ $\mathrm{mmol})$ and trifluoromethyl reagent $\mathbf{3}(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 0.5 mL of HFIP, following the general procedure, aniline $\mathbf{4 a}$ was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 20:80 $\mathrm{Et}_{2} \mathrm{O}$ - hexane) and (isocratic elution: 4:96 AcOH - Toluene) gave 12 ($54.2 \mathrm{mg}, 70 \%$), as a colourless oil.

Retroarylation experiment

From aniline $\mathbf{1 a}(11.6 \mathrm{mg}, 0.064 \mathrm{mmol})$ and compound $\mathbf{S 1 8}^{6}(19.7 \mathrm{mg}, 0.064 \mathrm{mmol})$ in 160 $\mu \mathrm{L}$ of HFIP, following the general procedure, starting materials 1a and S18 were recovered, without formation of $\mathbf{4 a}$ or anisole.

8.2. Cyclic Voltammetry (CV)

General Information

Voltametric experiments were performed using an IKA Electrasyn 2.0 equipment inside a homemade Faraday's cage, recording the results at a glassy carbon macroelectrode (radius $=3.0 \mathrm{~mm}$) with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as the supporting electrolyte, using an $\mathrm{Ag} / \mathrm{Ag}^{+}(\mathrm{KCl}, 3 \mathrm{M})$ reference electrode and a platinum counter electrode at variable scan rates $(0.1-0.4 \mathrm{~V} \mathrm{s-1})$.

The reductive potential of trifluoromethyl reagent $\mathbf{3}$ was investigated in ACN (Figure S1) and HFIP (Figure S2), bubbling Ar through the solution to degas it. In both cases an irreversible reductive peak is observed, the absolute maximum of which is recorded at -1.75 V for ACN and -0.58 V for HFIP at a scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$ (Figure S3).

Figure S1. Reduction of trifluoromethyl reagent $\mathbf{3}(30 \mathrm{mM}), 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in ACN at different scan rates (mV / s) using glassy C electrode.

Figure S2. Reduction of trifluoromethyl reagent $\mathbf{3}(30 \mathrm{mM}), 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in HFIP at different scan rates $\left(\mathrm{V} \mathrm{s}^{-1}\right)$ using glassy C electrode.

Figure S3. Reduction of $\mathbf{3}(30 \mathrm{mM}), 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in HFIP (green) and ACN (grey) at a scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$.

Substrate	HFIP (V)	Acetonitrile (V)
	1.035	$1.429 ; 1.874 ; 2.275$

Table S6. Table of oxidation potentials for alkenes and anilines tested in the trifluoromethylarylation of alkenes using anilines in HFIP.

8.3. NMR experiments

8.3.1. ${ }^{1} \mathrm{H}$ NMR study

${ }^{1}$ H NMR of individual species (HFIP, 1b and 3), two binary mixtures (HFIP : 1b and HFIP : 3) and one ternary mixture (HFIP: 1b: 3) were recorded at a 0.2 mmol scale of aniline $\mathbf{1 b}$ and trifluoromethyl reagent 3 .

Analysis of the binary mixtures
The most significant changes found in ${ }^{1} \mathrm{H}$ NMR, for the HFIP : 1b binary mixture (Figure S4D) compared to the individual species (Figure S4A and Figure S4B) are the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to $5.84 \mathrm{ppm}(\Delta \delta=2.85)$ and the downfield shift (deshieled) of the $\mathrm{NH}(\mathbf{1 b})$, from a frequency of 3.66 ppm to $4.98 \mathrm{ppm}(\Delta \delta=1.32)$. These data support a H -bonding between the basic amino group of the aniline and the exceptionally good hydrogen bond donor HFIP (Table S7).

The most significant changes found in ${ }^{1} \mathrm{H}$ NMR, for the HFIP : $\mathbf{3}$ binary mixture (Figure S4E) compared to the individual species (Figure S4A and Figure S4C) is the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to $6.38 \mathrm{ppm}(\Delta \delta=3.39)$, supporting a H -bonding between the ether backbone of the trifluoromethyl reagent and the exceptionally good hydrogen bond donor HFIP (Table S7).

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR of the individual species (A-C) and the two binary mixtures (D-E).

Signal	Species				
	HFIP	$\mathbf{1 b}$	$\mathbf{3}$	Binary mixtures	
				HFIP $: \mathbf{1 b}(\Delta \boldsymbol{\delta})$	HFIP $: \mathbf{3}(\Delta \mathbf{\delta})$
OH (HFIP)	$2.99, \mathrm{~d}, J=8.5 \mathrm{~Hz}$	-	-	4.55, br s $(+1.56)$	6.38, br s $(+3.39)$
NH (1b)	-	3.66, br s	-	$4.55, \mathrm{~s}(+0.89)$	-

Table S7. Significant changes for the binary mixtures with respect to individual species.
2) Analysis for the ternary mixture

The most significant changes found in ${ }^{1} \mathrm{H}$ NMR, for the ternary mixture (Figure S5D) compared to the individual species (Figure S5A-C) are the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to $5.84 \mathrm{ppm}(\Delta \delta=2.85)$ and the downfield shift (deshieled) of the NH (aniline), from a frequency of 3.66 ppm to $5.84 \mathrm{ppm}(\Delta \delta=2.18)$. These data support a $\mathrm{H}-$ bonding between the exceptionally good hydrogen bond donor HFIP and both the basic amino group of the aniline and the ether backbone of the trifluoromethyl reagent (Table S8).

Figure S5. ${ }^{1} \mathrm{H}$ NMR of the individual species (A-C) and the ternary mixture (D).

Signal	Species			
	HFIP	$\mathbf{1 b}$	$\mathbf{3}$	HFIP : 1b : 3 ($\mathbf{\Delta} \mathbf{\delta})$
OH (HFIP)	$2.99, \mathrm{~d}, J=8.5 \mathrm{~Hz}$	-	-	5.84, br. s. $(+2.85)$
NH (1b)	-	3.66, br s	-	5.84, br. s. $(+2.18)$

Table S8. Significant changes for the ternary mixture with respect to individual species.

8.3.2. ${ }^{19}$ F NMR study

${ }^{19}$ F NMR of individual species ($\mathbf{3}$ and HFIP) and four binary mixtures of $\mathbf{3}$: HFIP at different ratios ($1: 1,1: 2,1: 3$ and $1: 4$) were recorded at a 0.2 mmol scale.

The most significant changes found in ${ }^{19} \mathrm{~F}$ NMR for the binary mixtures (Figure S6C-F) compared to the individual species (Figure S6A-B) are the downfield shift (deshieled) of the CF_{3} of 3 from a frequency of -40.11 ppm up to $-37.66 \mathrm{ppm}(\Delta \delta=2.45)$ and a downfield shift (deshieled) of the CF_{3} (HFIP) from a frequency of -75.79 ppm up to $-75.54 \mathrm{ppm}(\Delta \delta=0.25)$. These data support a more electrophilic CF_{3} group within the hypervalent iodine $\mathbf{3}$ (Table S9).

Figure S6. ${ }^{19}$ F NMR of HFIP, $\mathbf{3}$ and binary mixtures of $\mathbf{3}$:HFIP.

Signal	Species						
	$\mathbf{3}$	HFIP	3:HFIP $(1: 1)$ $(\Delta \delta)$	$\mathbf{3}$ HFIP $(1: 2)$ $(\Delta \delta)$	$\mathbf{3}:$ HFIP $(1: 3)$ $(\Delta \delta)$	$\mathbf{3}:$ HFIP $(1: 4)$ $(\Delta \delta)$	
$\mathrm{CF}_{3}(\mathbf{3})$	-40.11	-	-38.40 $(+1.71)$	-38.15 $(+1.96)$	-37.84 $(+2.27)$	-37.66 $(+2.45)$	
$\mathrm{CF}_{3}($ HFIP $)$	-	-75.79	-75.54 $(+0.25)$	-75.61 $(+0.18)$	-75.71 $(+0.08)$	-75.54 $(+0.25)$	

Table S9. Significant changes of $\mathbf{3}$ and HFIP for the binary mixtures with respect to individual species.

8.3.3. ${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ NOESY-2D experiment

NOESY-2D spectra were collected using the standard Bruker pulse programs noesyphsw (90-$\left.\mathrm{t}_{1}-90-\tau_{\mathrm{m}}-90-\mathrm{Acq}\right)$ for the ternary mixture HFIP : $\mathbf{1 b}: \mathbf{3}$ (3:1:1).

The most significant interaction observed in the NOESY-2D, among other, is between CH (HFIP) and Me (3), that is highlighted under a red box. This interaction confirms the intermolecular spatial connection between HFIP and 3. Additionally, there is an interesting cross-peak between interchangeable OH (HFIP) and NH (aniline) signal with NMe (1b), highlighted under a green box, that confirms the Hydrogen-bonded ternary species.

Figure S7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY-2D $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the ternary mixture (HFIP : 1b : 3)

8.3.4. ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ HOESY-2D experiments

In order to confirm the proposed intermolecular interaction and taking advantage of the fluorine atoms in both components, HFIP and $\mathbf{3}$, a series of ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ Heteronuclear experiments were performed for both the binary (Figures S8-9) and ternary (Figure S10) mixtures.

For the HFIP : 1b binary mixture the most significant interaction observed are between ${ }^{19} \mathrm{~F}$ (HFIP) and NMe and aromatic signals (1b), that are highlighted under red boxes (Figure S8). These interactions confirm the intermolecular spatial connection between HFIP and 1b.

For the HFIP : $\mathbf{3}$ binary mixture the most significant interaction observed are between ${ }^{19} \mathrm{~F}$ (HFIP) and Me (3), that is highlighted under a green box (Figure S9). This interaction confirms the intermolecular spatial connection between HFIP and $\mathbf{3}$.

For the most interesting ternary mixture the most significant interaction observed are between ${ }^{19} \mathrm{~F}$ (HFIP) and NMe and aromatic signals (1b), that are highlighted under red boxes. Additionally, there is a strong interaction between ${ }^{19} \mathrm{~F}$ (HFIP) and $\mathrm{Me}(\mathbf{3})$, that is highlighted under a green box (Figure S10). These interactions reinforce the intermolecular spatial connection between the three species within the ternary mixture.

Figure S8. ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ HOESY-2D experiment of the HFIP : 1b binary mixture.

Figure S9. ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ HOESY-2D experiment of the HFIP : $\mathbf{3}$ binary mixture.

Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}-{ }^{-19} \mathrm{~F}$ HOESY-2D experiment of the ternary mixture.

8.3.5. Diffusion ordered spectroscopy (DOSY) experiments

DOSY measurements were performed using a Bruker DPX-400 equipped with a BBFO probe head at 298 K with constant temperature control (air flow $400 \mathrm{lh}-1$) using the 2D sequence for diffusion measurement, double stimulated echo for convection compensation and longitudinal eddy current delay, using bipolar gradient pulses for diffusion and three spoil gradients (Bruker terminology: dstebpgp35) pulse sequence. Diffusion data were collected using 32K data points on well mixed homogeneous samples containing TMS as a suitable internal reference. Experiments were performed in two stages: 1) initially 1D-edited DOSY experiments were used to optimize the diffusion period Δ for each sample ($\Delta=100 \mathrm{~ms}$) and 2) the 2D dstebpgp35 sequence was then used, based on the optimized Δ from the previous procedure and with $\delta=4 \mathrm{~ms}$, with gradient amplitudes ranging from 2 to 85% using 16 increments (difflist). Diffusion constants were obtained directly employing the T1/T2 module in TOPSPIN 3.2 using the variable gradient function and plots were generated using the eddosy module.

DOSY experiments were performed as an approach to study the presence of the proposed H bonded ternary species in solution. Individual species (HFIP, 1b and 3), two binary mixtures (HFIP : $\mathbf{1 b}$ and HFIP : 3) and one ternary mixture (HFIP : 1b:3) were analysed to calculate their diffusion
coefficients. The diffusion coefficient for a given species is calculated as the average of the coefficients of all signals belonging to that species.

For the HFIP : 1b binary mixture (Figure S14 and Table S10, entry 4) there is a moderate reduction in the diffusion coefficients for both $\operatorname{HFIP}\left(\boldsymbol{\Delta} / \mathrm{D}_{\text {тМS }}=0.2\right)$ and $\mathbf{1 b}\left(\boldsymbol{D} / \mathrm{D}_{\text {TMS }}=0.1\right)$.

For the HFIP : $\mathbf{3}$ binary mixture (Figure S 15 and Table S10, entry 5) there is a strong reduction in the diffusion coefficient for $\operatorname{HFIP}\left(\Delta \mathrm{D} / \mathrm{D}_{\mathrm{TMS}}=0.52\right)$, while $\mathbf{3}$ remains at the same value $\left(\Delta \mathrm{D} / \mathrm{D}_{\text {TMS }}\right.$ $=0.02$) .

For the HFIP : 1b : 3 ternary mixture (Figure S16 and Table S10, entry 6) there is a strong reduction in the diffusion coefficient for $\operatorname{HFIP}\left(\Delta \mathrm{D} / \mathrm{D}_{\text {тм }}=0.38\right)$, a moderate reduction in the diffusion coefficient for $\mathbf{1 b}\left(\Delta \mathrm{D} / \mathrm{D}_{\text {TMS }}=0.11\right)$, while $\mathbf{3}$ remains at the same value $\left(\Delta \mathrm{D} / \mathrm{D}_{\text {TMS }}=-0.01\right)$. In the ternary mixture, all species diffuse at a similar rate that is very close to the value of the heaviest component $3\left(D / D_{\text {TмS }}=0.54\right)$, where HFIP and $\mathbf{1 b}$ reduces their diffusing rate $\left(D / D_{\text {TMS }}=0.38\right.$ and 0.11 respectively) to meet that of $\mathbf{3}$, as a proof of the proposed supramolecular H -bonded species.

Entry	Species		$\mathbf{D}\left(\mathbf{c m}^{2} / \mathbf{s}\right)$	$\mathbf{D} / \mathbf{D}_{\text {TMS }}$	$\mathbf{\Delta} \mathbf{D} / \mathbf{D}_{\text {TMS }}$
$\mathbf{1}$	HFIP		$2.07 * 10^{-5}$	1.03	-
$\mathbf{2}$	$\mathbf{1 b}$		$1.72^{*} 10^{-5}$	0.96	-
$\mathbf{3}$	3		$1.04 * 10^{-5}$	0.53	-
$\mathbf{4}$	HFIP $: \mathbf{1 b}$	HFIP	$1.55 * 10^{-5}$	0.83	0.2
	binary mixture	$\mathbf{1 b}$	$1.53 * 10^{-5}$	0.86	0.1
$\mathbf{5}$	HFIP : $\mathbf{3}$	HFIP	$1.11^{*} 10^{-5}$	0.51	0.52
	binary mixture	3	$1.10^{*} 10^{-5}$	0.51	0.02
$\mathbf{6}$	HFIP : 1b $: \mathbf{3}$	HFIP	$1.41^{*} 10^{-5}$	0.65	0.38
	ternary mixture	$\mathbf{1 b}$	$1.84 * 10^{-5}$	0.85	0.11
		$\mathbf{3}$	$1.18 * 10^{-5}$	0.54	-0.01

Table S10. Diffusion coefficients: absolute values and relative to TMS.

Figure S11. DOSY experiment of HFIP

Figure S12. DOSY experiment of $\mathbf{1 b}$.

Figure S13. DOSY experiment of $\mathbf{3}$.

Figure S14. DOSY experiment of the $\mathbf{1 b}$: HFIP binary mixture.

Figure S15. DOSY experiment of the $\mathbf{3}$: HFIP binary mixture.

Figure S16. DOSY experiment of the $\mathbf{1 b}: \mathbf{3}$: HFIP ternary mixture.

8.4. Kinetic studies

Synthesis of N-Benzyl- N-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 12a

From aniline 1a ($36.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkene $\mathbf{2 a}(26.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, trifluoromethyl reagent $3(66.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{TfOH}(1.78 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$ in 0.5 mL of dry DCM, following the general procedure, aniline 12a was obtained. The crude was quenched with NaHCO_{3}, and extracted with ethyl acetate and brine. The organic phases were dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and chromatographic purification (gradient elution: 0:100 $\rightarrow 20: 80 \mathrm{Et}_{2} \mathrm{O}$ - hexane) and (isocratic elution: 4:96 AcOH - Toluene) gave 12a ($20.5 \mathrm{mg}, 27 \%$), as a colourless oil.

Data for 12a: $\boldsymbol{R}_{f} 0.45$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ - hexane), $0.7\left(4 \% \mathrm{AcOH}\right.$ - toluene). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.18-7.03(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.74(1 \mathrm{H}, \mathrm{t}, J=$ 7.4 and $1.0 \mathrm{~Hz}, \mathrm{Ar}), 5.37(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, 1-\mathrm{H}), 4.31\left(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.15(1 \mathrm{H}, \mathrm{d}, J$ $=16.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}$), $\left.3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.05-2.87\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathbf{C D} \mathbf{3} \mathbf{O D}\right) \delta$ 160.7 (1C, C Ar), 149.8 (1C, C Ar), 140.4 (1C, C Ar), 131.9 (1C, C Ar), 130.1 (2C, CH Ar), 129.9 (2C, CH Ar), 129.1 (2C, CH Ar), 128.23 (1C, q, $J=276.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 128.18 (2C, CH Ar), 127.5 (1C, CH Ar), 120.3 (1C, CH Ar), 118.8 (2C, CH Ar), 114.7 (2C, CH Ar), 59.9 (1C, q, $J=2.9 \mathrm{~Hz}, \mathrm{C}-1$), 55.7 (1C, OMe), 50.5 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Bn}$), 36.3 ($1 \mathrm{C}, \mathrm{q}, J=27.1 \mathrm{~Hz}, \mathrm{C}-2$). ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ M e O H - ~}$ $\left.\mathbf{d}_{4}\right) \delta-64.4\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$.

- Hoffman-Martius rearrangement of product 12a

From aniline 12a ($20.5 \mathrm{mg}, 0.053 \mathrm{mmol}$) in $133 \mu \mathrm{~L}$ of HFIP, following the general procedure, aniline $\mathbf{4 a}(18.8 \mathrm{mg}, 92 \%)$ was obtained without further purification.

- Kinetic studies

Kinetic experiments were performed one round and carrying out the reaction following the general protocol. Aliquots at $5,10,20,40,60,100,180$ and 300 minutes were taken, diluted with a solution of CDCl_{3} containing the internal standard and ${ }^{1} \mathrm{H}$ NMR experiments recorded in JEOL JNM-

ECZ400R spectrometer using benzoic acid as internal standard. The integrals were measured over the most clean and isolated signal of each component of the mixture. Concentration of each aliquot was corrected to the concentration in the reaction mixture.

Different anilines were tested: N -Benzylaniline 1a, Aniline 1c and N, N-Dimethylaniline 1d.

Figure S17. Kinetic experiment for the reaction mixture containing 1a.

Figure S 18 . Kinetic experiment for the reaction mixture containing $\mathbf{1 c}$.

Figure S19. Kinetic experiment for the reaction mixture containing 1d.

9. References

(1) Yue, J. F., Ran, G. Y., Yang, X. X., Du, W. \& Chen, Y. C. Asymmetric Diels-Alder Cycloadditions of Benzofulvene-Based 2,4-Dienals via Trienamine Activation. Org. Chem. Front. 5, 2676-2679 (2018).
(2) Zhang, X., Thimmaiah, M. \& Fang, S. Simple and Efficient Synthesis of 4,7-Dimethoxy-1(H)Indene. Synth. Commun. 37, 1873-1877 (2007).
(3) Jiao, M., Gao, J. \& Fang, X. Enantioselective Synthesis of 4-Cyanotetrahydroquinolines via Ni-Catalyzed Hydrocyanation of 1,2-Dihydroquinolines. Org. Lett. 22, 8566-8571 (2020).
(4) Nakayama, K., Maeta, N., Horiguchi, G., Kamiya, H. \& Okada, Y. Radical Cation Diels-Alder Reactions by TiO 2_{2} Photocatalysis. Org. Lett. 21, 2246-2250 (2019).
(5) Wang, X.-P., Lin, J.-H., Zhang, C.-P., Xiao, J.-C. \& Zheng, X. Copper-Catalyzed Trifluoromethylation of Alkenes with an Electrophilic Trifluoromethylating Reagent. Beilstein J. Org. Chem. 9, 2635-2640 (2013).
(6) Wang, F., Wang, D., Mu, X., Chen, P. \& Liu, G. Copper-Catalyzed Intermolecular Trifluoromethylarylation of Alkenes: Mutual Activation of Arylboronic Acid and $\mathrm{CF}_{3}{ }^{+}$ Reagent. J. Am. Chem. Soc. 136, 10202-10205 (2014).

10. X-Ray diffraction analysis

Crystal structure report for compound 5

Compound $\mathbf{5}$ was crystallized using a mixture of THF : Pentane (compound $\mathbf{5}$ was dissolved in THF, and exposed to pentane vapours) in order to obtain appropriate crystals for X-ray analysis.

Figure S20. Ball and stick plot of compound $\mathbf{5}$ with non-hydrogen atoms labelled.
Compound 5 collection details are gathered in the following tables:
Table S11. Sample and crystal data for 5.
Identification code
03673

Chemical formula	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	
Formula weight	$713.71 \mathrm{~g} / \mathrm{mol}$	
Temperature	$250(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.026 \times 0.132 \times 0.285 \mathrm{~mm}$	
Crystal habit	clear colourless ribbon	
Crystal system	triclinic	
Space group	$\mathrm{P}-1$	
Unit cell dimensions	$a=5.9290(19) \AA \quad \alpha=86.336(14)^{\circ}$	
	$b=13.676(4) \AA$	$\beta=88.961(14)^{\circ}$
	$c=20.842(6) \AA$	$\gamma=85.079(15)^{\circ}$
Volume	$1680.2(9) \AA^{3}$	
Z	2	
Density (calculated)	$1.411 \mathrm{~g}^{\circ} \mathrm{cm}^{3}$	
Absorption coefficient	$0.170 \mathrm{~mm}^{-1}$	
F(000)	744	

Table S12. Data collection and structure refinement for 5.

Theta range for data collection	1.84 to 25.35°
Index ranges	$-7<=\mathrm{h}<=7,-16<=\mathrm{k}<=16,-24<=1<=25$
Reflections collected	50261
Independent reflections	$6138[\mathrm{R}(\mathrm{int})=0.0595]$
Coverage of independent reflections	99.9\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9960 and 0.9530
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	6138/156/492
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.049
$\Delta / \sigma_{\text {max }}$	0.001
Final R indices	4077 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0489, \mathrm{wR} 2=0.1248$
	all data $\quad \mathrm{R} 1=0.0856, \mathrm{wR} 2=0.1489$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0716 \mathrm{P})^{2}+0.6321 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.328 and $-0.376 \mathrm{e}^{-3}$
R.M.S. deviation from mean	$0.053 \mathrm{e}^{-3}$

Table S13. Atomic coordinates and equivalent isotropic atomic displacemente parameters (A2) for 5
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
C1	$0.6812(4)$	$0.69387(18)$	$0.78307(12)$	$0.0373(6)$
C2	$0.6965(4)$	$0.70953(18)$	$0.71618(12)$	$0.0357(6)$
C3	$0.5456(4)$	$0.77381(19)$	$0.68213(13)$	$0.0399(6)$
C4	$0.3724(4)$	$0.82130(18)$	$0.71586(13)$	$0.0412(6)$
C5	$0.3492(5)$	$0.8089(2)$	$0.78123(14)$	$0.0468(7)$
C6	$0.5069(5)$	$0.74553(19)$	$0.81473(13)$	$0.0446(7)$
C7	$0.5627(5)$	$0.5148(2)$	$0.89714(13)$	$0.0499(7)$
C8	$0.5603(4)$	$0.4160(2)$	$0.93277(12)$	$0.0417(6)$
C9	$0.7380(5)$	$0.3784(2)$	$0.97172(13)$	$0.0491(7)$
C10	$0.7336(6)$	$0.2885(2)$	$0.00524(15)$	$0.0603(9)$
C11	$0.5535(7)$	$0.2343(3)$	$0.00043(17)$	$0.0715(10)$
C12	$0.3758(7)$	$0.2705(3)$	$0.96267(19)$	$0.0849(12)$
C13	$0.3783(6)$	$0.3611(3)$	$0.92924(16)$	$0.0668(9)$
C14	$0.7235(4)$	$0.44783(18)$	$0.79498(11)$	$0.0350(6)$
C15	$0.5325(4)$	$0.45498(19)$	$0.75776(12)$	$0.0380(6)$

	x/a	y/b	z/c	U(eq)
C16	0.5183(4)	0.39351(19)	0.70810(12)	$0.0395(6)$
C17	0.6925(4)	0.32407(18)	$0.69497(12)$	0.0370(6)
C18	$0.8835(5)$	$0.31744(19)$	$0.73317(13)$	0.0439(7)
C19	0.8995(4)	$0.37791(19)$	$0.78311(12)$	0.0411(6)
C20	$0.6765(5)$	0.25892(19)	$0.63876(13)$	0.0425(6)
C21	0.8654(4)	$0.27321(18)$	0.58901(12)	$0.0377(6)$
C22	0.9637(5)	$0.36133(19)$	$0.58105(13)$	0.0431(7)
C23	0.1347(5)	0.3771(2)	$0.53627(12)$	0.0434(7)
C24	$0.2086(5)$	$0.3015(2)$	$0.49773(12)$	$0.0445(7)$
C25	0.1091(5)	0.2139(2)	$0.50430(13)$	$0.0476(7)$
C26	$0.9401(5)$	$0.19789(19)$	$0.54917(12)$	0.0404(6)
C27	$0.5093(5)$	0.3888(3)	$0.45005(15)$	0.0604(8)
C28	0.6720(5)	0.1491(2)	0.65904(13)	0.0468(7)
C29	$0.6489(5)$	0.0918(2)	0.59849(15)	0.0563(8)
C30	0.8512(6)	0.0978(2)	0.55589(14)	0.0537(8)
C31	0.4839(5)	0.1257(2)	$0.70474(16)$	0.0542(8)
F1	0.4773(4)	$0.17316(14)$	0.75891(9)	0.0799(6)
F2	0.2793(3)	$0.14497(17)$	0.67987(11)	0.0865(7)
F3	0.5021(3)	$0.03000(13)$	$0.72425(10)$	0.0736(6)
N1	0.7445(4)	$0.51288(16)$	$0.84685(10)$	0.0407(5)
N2	0.8774(4)	$0.65853(17)$	$0.67759(10)$	$0.0425(5)$
N3	0.2047(4)	0.88810(18)	0.67887(14)	0.0549(6)
O1	0.0646(3)	$0.58918(14)$	$0.79204(10)$	$0.0517(5)$
O 2	0.8914(4)	0.65760(16)	0.88970(10)	0.0634(6)
O3	0.8590(4)	$0.57345(14)$	0.66738(10)	0.0566(6)
O4	0.0272(3)	$0.70723(16)$	0.65659(11)	0.0642(6)
O5	0.2416(4)	0.90490(17)	0.62182(12)	0.0720(7)
O6	0.0392(4)	$0.92198(17)$	$0.70802(13)$	0.0759(7)
O7	0.3797(4)	$0.30662(16)$	0.45293(9)	0.0609(6)
S1	0.87011(12)	0.61234(5)	0.83071(3)	0.0437(2)
O8A	0.0962(15)	0.9357(6)	0.8965(5)	0.1069(18)
C32A	0.1215(19)	0.0388(8)	0.8782(8)	0.131(4)
C33A	0.908(2)	0.0860(10)	0.8689(10)	0.179(6)
C34A	0.7384(15)	0.0168(7)	0.9043(8)	0.148(4)
C35A	0.8692(19)	0.9245(8)	0.8997(8)	0.125(4)
O8B	0.124(4)	0.9676(16)	0.8873(13)	0.1069(18)
C32B	0.052(4)	0.0604(15)	0.8529(12)	$0.112(5)$
C33B	0.843(4)	0.0909(19)	0.8810(16)	0.128(6)
C34B	0.778(4)	0.9904(19)	0.8691(13)	0.130(6)
C35B	0.924(4)	0.934(2)	0.9175(15)	0.127(7)

Table S14. Bond lengths ((\AA) for 5.

C1-C6	1.383(4)	C1-C2	1.399(4)
C1-S1	$1.780(3)$	C2-C3	$1.373(4)$
C2-N2	1.482(3)	C3-C4	$1.374(4)$
C4-C5	$1.368(4)$	$\mathrm{C} 4-\mathrm{N} 3$	1.483(4)
C5-C6	$1.386(4)$	C7-N1	1.489(3)
C7-C8	1.500(4)	C8-C13	$1.372(4)$
C8-C9	$1.385(4)$	C9-C10	$1.376(4)$
C10-C11	$1.360(5)$	C11-C12	$1.366(5)$
C12-C13	$1.384(5)$	C14-C15	1.377(4)
C14-C19	$1.383(3)$	C14-N1	1.457(3)
C15-C16	$1.383(4)$	C16-C17	$1.378(3)$
C17-C18	1.389(4)	C17-C20	1.526 (4)
C18-C19	$1.380(4)$	C20-C21	$1.528(4)$
C20-C28	$1.537(4)$	C21-C22	$1.382(4)$
C21-C26	$1.402(3)$	C22-C23	1.387(4)
C23-C24	$1.386(4)$	C24-O7	$1.370(3)$
C24-C25	$1.377(4)$	C25-C26	$1.380(4)$
C26-C30	$1.505(4)$	C27-O7	1.413(4)
C28-C31	$1.495(4)$	C28-C29	1.541(4)
C29-C30	1.484(4)	C31-F2	1.327(4)
C31-F1	$1.336(4)$	C31-F3	$1.341(3)$
N1-S1	$1.620(2)$	N2-O3	1.211(3)
N2-O4	$1.214(3)$	N3-O5	$1.216(3)$
N3-O6	1.217 (3)	O1-S1	$1.420(2)$
O2-S1	$1.424(2)$	O8A-C35A	$1.368(10)$
O8A-C32A	1.457(10)	C32A-C33A	1.380(12)
C33A-C34A	1.581(13)	C34A-C35A	1.431(12)
O8B-C35B	1.427(17)	O8B-C32B	1.451(16)
C32B-C33B	$1.406(17)$	C32B-C34B	1.97(3)
C33B-C34B	1.494(19)	C34B-C35B	1.473 (19)

Table S15. Bond angles $\left(^{\circ}\right)$ for 5.

C6-C1-C2	$117.8(2)$	C6-C1-S1	$117.3(2)$
C2-C1-S1	$124.86(19)$	C3-C2-C1	$122.1(2)$
C3-C2-N2	$115.7(2)$	C1-C2-N2	$122.2(2)$
C2-C3-C4	$117.6(2)$	C5-C4-C3	$122.8(3)$
C5-C4-N3	$119.5(2)$	C3-C4-N3	$117.7(3)$
C4-C5-C6	$118.5(2)$	C1-C6-C5	$121.2(3)$
N1-C7-C8	$110.4(2)$	C13-C8-C9	$117.7(3)$
C13-C8-C7	$120.9(3)$	C9-C8-C7	$121.3(3)$
C10-C9-C8	$121.2(3)$	C11-C10-C9	$120.3(3)$
C10-C11-C12	$119.3(3)$	C11-C12-C13	$120.7(3)$
C8-C13-C12	$120.7(3)$	C15-C14-C19	$119.7(2)$

C15-C14-N1	121.2(2)	C19-C14-N1	119.1(2)
C14-C15-C16	120.1(2)	C17-C16-C15	121.1(2)
C16-C17-C18	118.0(2)	C16-C17-C20	120.4(2)
C18-C17-C20	121.6(2)	C19-C18-C17	121.4(2)
C18-C19-C14	119.5(2)	C17-C20-C21	111.9(2)
C17-C20-C28	113.9(2)	C21-C20-C28	109.7(2)
C22-C21-C26	118.2(2)	C22-C21-C20	$121.0(2)$
C26-C21-C20	120.8(2)	C21-C22-C23	122.7(2)
C24-C23-C22	118.5(2)	O7-C24-C25	116.2(2)
O7-C24-C23	124.3(3)	C25-C24-C23	119.5(2)
C24-C25-C26	122.1(2)	C25-C26-C21	119.1(2)
C25-C26-C30	118.5(2)	C21-C26-C30	122.3(2)
C31-C28-C20	114.4(2)	C31-C28-C29	108.2(2)
C20-C28-C29	108.9(2)	C30-C29-C28	111.1(2)
C29-C30-C26	114.4(2)	F2-C31-F1	105.1(3)
F2-C31-F3	106.6(3)	F1-C31-F3	104.9(2)
F2-C31-C28	113.7(3)	F1-C31-C28	115.0(3)
F3-C31-C28	110.8(2)	C14-N1-C7	116.9(2)
C14-N1-S1	117.77(16)	C7-N1-S1	117.99(18)
O3-N2-O4	125.5(2)	O3-N2-C2	117.6(2)
O4-N2-C2	116.8(2)	O5-N3-O6	124.8(3)
O5-N3-C4	117.9(3)	O6-N3-C4	117.3(3)
C24-O7-C27	118.9(2)	O1-S1-O2	120.19(13)
O1-S1-N1	108.56(12)	O2-S1-N1	107.31(13)
O1-S1-C1	107.15(12)	O2-S1-C1	105.99(12)
N1-S1-C1	106.94(12)	C35A-O8A-C32A	107.2(8)
C33A-C32A-O8A	108.1(9)	C32A-C33A-C34A	105.8(10)
C35A-C34A-C33A	98.9(10)	O8A-C35A-C34A	111.6 (9)
C35B-O8B-C32B	105.4(17)	C33B-C32B-O8B	105.1(18)
C33B-C32B-C34B	49.2(11)	O8B-C32B-C34B	73.4(13)
C32B-C33B-C34B	85.4(18)	C35B-C34B-C33B	98.(2)
C35B-C34B-C32B	82.1(14)	C33B-C34B-C32B	45.4(10)
O8B-C35B-C34B	92.0(19)		

Table S16. Torsion angles $\left({ }^{\circ}\right)$ for 5.

C6-C1-C2-C3	$0.1(4)$	S1-C1-C2-C3	$-179.78(19)$
C6-C1-C2-N2	$179.6(2)$	S1-C1-C2-N2	$-0.3(4)$
C1-C2-C3-C4	$-1.7(4)$	N2-C2-C3-C4	$178.8(2)$
C2-C3-C4-C5	$1.8(4)$	C2-C3-C4-N3	$-177.9(2)$
C3-C4-C5-C6	$-0.2(4)$	N3-C4-C5-C6	$179.5(2)$
C2-C1-C6-C5	$1.5(4)$	S1-C1-C6-C5	$-178.6(2)$
C4-C5-C6-C1	$-1.5(4)$	N1-C7-C8-C13	$-115.1(3)$

N1-C7-C8-C9	66.8(3)	C13-C8-C9-C10	0.7(4)
C7-C8-C9-C10	178.8(3)	C8-C9-C10-C11	0.3(5)
C9-C10-C11-C12	-0.9(5)	C10-C11-C12-C13	0.3(6)
C9-C8-C13-C12	-1.2(5)	C7-C8-C13-C12	-179.4(3)
C11-C12-C13-C8	0.7(6)	C19-C14-C15-C16	-1.0(4)
N1-C14-C15-C16	178.9(2)	C14-C15-C16-C17	0.3(4)
C15-C16-C17-C18	0.1(4)	C15-C16-C17-C20	-178.2(2)
C16-C17-C18-C19	0.3(4)	C20-C17-C18-C19	178.6(2)
C17-C18-C19-C14	-1.0(4)	C15-C14-C19-C18	1.4(4)
N1-C14-C19-C18	-178.5(2)	C16-C17-C20-C21	119.0(3)
C18-C17-C20-C21	-59.2(3)	C16-C17-C20-C28	-115.8(3)
C18-C17-C20-C28	66.0(3)	C17-C20-C21-C22	-27.5(3)
C28-C20-C21-C22	-154.9(2)	C17-C20-C21-C26	154.0(2)
C28-C20-C21-C26	26.5(3)	C26-C21-C22-C23	-1.2(4)
C20-C21-C22-C23	-179.8(2)	C21-C22-C23-C24	0.5(4)
C22-C23-C24-O7	-178.2(3)	C22-C23-C24-C25	0.8(4)
O7-C24-C25-C26	177.8(3)	C23-C24-C25-C26	-1.3(4)
C24-C25-C26-C21	0.6(4)	C24-C25-C26-C30	-176.2(3)
C22-C21-C26-C25	0.6(4)	C20-C21-C26-C25	179.2(2)
C22-C21-C26-C30	177.3(3)	C20-C21-C26-C30	-4.1(4)
C17-C20-C28-C31	57.3(3)	C21-C20-C28-C31	-176.4(2)
C17-C20-C28-C29	178.4(2)	C21-C20-C28-C29	-55.3(3)
C31-C28-C29-C30	-170.3(3)	C20-C28-C29-C30	64.9(3)
C28-C29-C30-C26	-41.4(4)	C25-C26-C30-C29	-171.8(3)
C21-C26-C30-C29	11.5(4)	C20-C28-C31-F2	65.0(3)
C29-C28-C31-F2	-56.5(3)	C20-C28-C31-F1	-56.2(4)
C29-C28-C31-F1	-177.7(3)	C20-C28-C31-F3	-174.9(2)
C29-C28-C31-F3	63.6(3)	C15-C14-N1-C7	55.8(3)
C19-C14-N1-C7	-124.3(3)	C15-C14-N1-S1	-93.7(3)
C19-C14-N1-S1	86.1(3)	C8-C7-N1-C14	63.6(3)
C8-C7-N1-S1	-146.9(2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 3$	-103.6(3)
C1-C2-N2-O3	76.8(3)	C3-C2-N2-O4	73.3(3)
C1-C2-N2-O4	-106.2(3)	C5-C4-N3-O5	173.1(3)
C3-C4-N3-O5	-7.2(4)	C5-C4-N3-O6	-7.1(4)
C3-C4-N3-O6	172.6(3)	C25-C24-O7-C27	-171.3(3)
C23-C24-O7-C27	7.8(4)	C14-N1-S1-O1	-42.5(2)
C7-N1-S1-O1	168.20(19)	C14-N1-S1-O2	-173.86(18)
C7-N1-S1-O2	36.9(2)	C14-N1-S1-C1	72.8(2)
C7-N1-S1-C1	-76.5(2)	C6-C1-S1-O1	-164.3(2)
C2-C1-S1-O1	15.6(3)	C6-C1-S1-O2	-34.8(3)
C2-C1-S1-O2	145.1(2)	C6-C1-S1-N1	79.5(2)
C2-C1-S1-N1	-100.7(2)	C35A-O8A-C32A-C33A	-2.0(17)
O8A-C32A-C33A-C34A	19.(2)	C32A-C33A-C34A-C35A	-27.(2)

C32A-O8A-C35A-C34A	$-18.0(18)$	C33A-C34A-C35A-O8A	$27 .(2)$
C35B-O8B-C32B-C33B	$19 .(3)$	C35B-O8B-C32B-C34B	$-20 .(2)$
O8B-C32B-C33B-C34B	$-51 .(3)$	C32B-C33B-C34B-C35B	$70 .(3)$
C32B-O8B-C35B-C34B	$25 .(3)$	C33B-C34B-C35B-O8B	$-61 .(3)$
C32B-C34B-C35B-O8B	$-18 .(2)$		

Table S17. Anisotropic atomic displacement parameters (\mathbf{A}^{2}) for 5.
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{U}_{12}\right]$

	U_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	U_{12}
C1	0.0386(15)	0.0345(14)	$0.0395(15)$	$-0.0105(11)$	-0.0002(11)	-0.0008(11)
C2	0.0320(14)	0.0331(13)	$0.0430(15)$	$-0.0119(11)$	0.0050 (11)	-0.0037(11)
C3	$0.0439(16)$	0.0352(14)	0.0411(15)	$-0.0053(11)$	0.0021(12)	-0.0053(12)
C4	0.0390(15)	0.0310 (14)	0.0531(17)	$-0.0045(12)$	$-0.0011(12)$	0.0008(11)
C5	0.0427(16)	0.0398(15)	$0.0565(18)$	$-0.0100(13)$	0.0096 (13)	0.0069(12)
C6	0.0520(17)	0.0404(15)	$0.0404(15)$	$-0.0089(12)$	0.0079(13)	0.0056(13)
C7	0.0508(17)	$0.0596(19)$	$0.0361(15)$	$-0.0093(13)$	0.0068(13)	0.0162(14)
C8	$0.0398(15)$	$0.0557(17)$	$0.0294(13)$	$-0.0119(12)$	$0.0028(11)$	0.0031(13)
C9	0.0427(16)	0.0581(19)	$0.0468(16)$	$-0.0099(14)$	-0.0054(13)	0.0005(14)
10	0.064(2)	0.064(2)	$0.0495(18)$	$-0.0021(16)$	$-0.0065(15)$	0.0111(17)
C11	0.096(3)	0.061(2)	0.058(2)	-0.0044(17)	0.015(2)	-0.013(2)
C12	0.082(3)	0.103(3)	0.078 (-0.015(2)	0.008(2)	-0.046(3)
3	0.052(2)	0.099(3)	$0.0515(19)$	-0.0074(19)	-0.0087(15)	-0.0148(19)
4	0.0376(14)	0.0347 (14)	$0.0316(13)$	$-0.0048(11)$	0.0036(11)	0.0038(11)
C15	$0.0322(14)$	0.0380 (14)	$0.0427(15)$	-0.0063(12)	$0.0077(11)$	$0.0055(11)$
6	$0.0315(14)$	$0.0434(15)$	$0.0433(15)$	$-0.0049(12)$	0.0008(11)	-0.0006(11)
7	$0.0373(14)$	$0.0355(14)$	$0.0385(14)$	$-0.0055(11)$	0.0062(11)	-0.0036(11)
18	0.0401(15)	0.0394(15)	$0.0508(16)$	$-0.0135(13)$	0.0044(13)	0.0118(12)
19	0.0360(15)	0.0434(15)	$0.0428(15)$	$-0.0077(12)$	-0.0040 (12)	0.0079(12)
0	$0.0432(16)$	0.0393 (15)	$0.0452(16)$	$-0.0103(12)$	0.0004(12)	-0.0001(12)
21	0.0414(15)	0.0342 (14)	$0.0369(14)$	$-0.0044(11)$	$-0.0005(11)$	0.0012(11)
22	$0.0483(16)$	$0.0374(15)$	$0.0441(15)$	-0.0114(12)	$0.0058(13)$	-0.0020(12)
3	$0.0526(17)$	$0.0388(15)$	0.0400(15)	$-0.0054(12)$	-0.0004(13)	-0.0074(13)
4	0.0500(17)	$0.0514(17)$	$0.0318(14)$	$-0.0052(12)$	$0.0045(12)$	-0.0018(13)
25	$0.0635(19)$	0.0415(16)	$0.0381(15)$	$-0.0118(12)$	0.0074(14)	-0.0013(14)
26	0.0499(16)	0.0350(14)	$0.0360(14)$	$-0.0068(11)$	0.0007 (12)	0.0007(12)
27	0.057(2)	0.074(2)	$0.0534(18)$	$-0.0097(16)$	0.0079(15)	-0.0187(17)
28	0.0482(17)	0.0431(16)	0.0491(16)	$-0.0067(13)$	0.0055(13)	-0.0024(13)
C29	0.063(2)	$0.0464(17)$	0.0621(19)	$-0.0166(14)$	0.0097 (16)	-0.0127(15)
0	0.072(2)	0.0380(16)	$0.0516(17)$	$-0.0102(13)$	0.0080(15)	-0.0032(14)
C31	0.057(2)	0.0404(17)	0.065(2)	-0.0070(15)	0.0085(16)	-0.0049(14)
F1	0.1122(17)	0.0664(12)	0.0648(12)	$-0.0167(10)$	0.0405(11)	-0.0282(12)
F2	$0.0449(11)$	$0.1063(17)$	0.1051(16)	-0.0054(13)	$0.0110(11)$	0.0083(11)
F3	0.0848(14)	$0.0456(11)$	0.0901(14)	-0.0012(9)	0.0140 (11)	-0.0102(9)

	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	$\mathbf{U}_{\mathbf{1 2}}$
N 1	$0.0473(13)$	$0.0420(13)$	$0.0316(11)$	$-0.0091(9)$	$0.0033(10)$	$0.0071(10)$
N 2	$0.0397(13)$	$0.0440(14)$	$0.0443(13)$	$-0.0114(11)$	$0.0075(10)$	$-0.0018(11)$
N 3	$0.0530(16)$	$0.0398(14)$	$0.0705(19)$	$-0.0035(13)$	$-0.0109(14)$	$0.0058(12)$
O1	$0.0332(10)$	$0.0539(12)$	$0.0682(13)$	$-0.0139(10)$	$-0.0045(9)$	$0.0034(9)$
O2	$0.0784(15)$	$0.0605(13)$	$0.0528(12)$	$-0.0243(10)$	$-0.0255(11)$	$0.0062(11)$
O3	$0.0648(14)$	$0.0404(12)$	$0.0654(13)$	$-0.0193(10)$	$0.0169(11)$	$-0.0013(10)$
O4	$0.0468(12)$	$0.0678(14)$	$0.0809(15)$	$-0.0157(12)$	$0.0265(11)$	$-0.0190(11)$
O5	$0.0846(17)$	$0.0603(15)$	$0.0666(16)$	$0.0117(12)$	$-0.0116(13)$	$0.0096(12)$
O6	$0.0579(14)$	$0.0648(15)$	$0.0999(18)$	$-0.0078(13)$	$-0.0025(13)$	$0.0261(12)$
O7	$0.0706(14)$	$0.0654(14)$	$0.0495(12)$	$-0.0183(10)$	$0.0231(11)$	$-0.0172(11)$
S1	$0.0421(4)$	$0.0446(4)$	$0.0447(4)$	$-0.0147(3)$	$-0.0089(3)$	$0.0063(3)$
O8A	$0.097(3)$	$0.073(5)$	$0.144(4)$	$0.013(4)$	$0.032(3)$	$0.011(3)$
C32A	$0.109(6)$	$0.078(6)$	$0.206(11)$	$0.011(6)$	$0.014(6)$	$-0.018(4)$
C33A	$0.124(7)$	$0.096(6)$	$0.303(16)$	$0.053(8)$	$0.029(8)$	$0.021(5)$
C34A	$0.096(5)$	$0.103(6)$	$0.243(12)$	$-0.018(7)$	$0.035(6)$	$0.011(4)$
C35A	$0.101(5)$	$0.079(4)$	$0.194(11)$	$-0.008(5)$	$0.030(6)$	$-0.013(4)$
O8B	$0.097(3)$	$0.073(5)$	$0.144(4)$	$0.013(4)$	$0.032(3)$	$0.011(3)$
C32B	$0.094(9)$	$0.092(8)$	$0.138(12)$	$0.027(7)$	$0.049(8)$	$0.021(6)$
C33B	$0.100(9)$	$0.112(9)$	$0.160(14)$	$0.022(8)$	$0.050(9)$	$0.030(6)$
C34B	$0.096(7)$	$0.123(10)$	$0.162(13)$	$0.025(9)$	$0.025(7)$	$0.016(7)$
C35B	$0.101(8)$	$0.117(11)$	$0.154(14)$	$0.044(11)$	$0.032(7)$	$0.002(7)$

Table S18. Hydrogen atomic coordinates and isotropic atomic displacement parameters (A 2) for 5.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
H3	0.5603	0.7849	0.6373	0.048000
H5	0.2291	0.8427	0.8029	0.056000
H6	0.4952	0.7375	0.8598	0.054000
H7A	0.4156	0.5327	0.8770	0.060000
H7B	0.5885	0.5646	0.9274	0.060000
H9	0.8640	0.4149	0.9753	0.059000
H10	0.8556	0.2645	1.0316	0.072000
H11	0.5514	0.1725	1.0229	0.086000
H12	0.2506	0.2334	0.9594	0.102000
H13	0.2539	0.3853	0.9038	0.080000
H15	0.4117	0.5017	0.7661	0.046000
H16	0.3875	0.3992	0.6829	0.047000
H18	1.0044	0.2707	0.7248	0.053000
H19	1.0290	0.3716	0.8089	0.049000
H20	0.5316	0.2799	0.6171	0.051000
H22	0.9125	0.4126	0.6070	0.052000
H23	1.1991	0.4377	0.5321	0.052000

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
H25	1.1579	0.1635	0.4774	0.057000
H27A	1.6291	0.3802	0.4181	0.091000
H27B	1.5752	0.3948	0.4917	0.091000
H27C	1.4126	0.4479	0.4384	0.091000
H28	0.8176	0.1259	0.6796	0.056000
H29A	0.6300	0.0228	0.6113	0.068000
H29B	0.5138	0.1190	0.5749	0.068000
H30A	0.8131	0.0788	0.5131	0.064000
H30B	0.9718	0.0502	0.5728	0.064000
H32A	0.1987	1.0688	0.9123	0.158000
H32B	0.2122	1.0446	0.8386	0.158000
H33A	-0.1250	1.0954	0.8229	0.215000
H33B	-0.1030	1.1504	0.8873	0.215000
H34A	-0.2901	1.0327	0.9490	0.178000
H34B	-0.4056	1.0188	0.8817	0.178000
H35A	-0.1631	0.8809	0.9373	0.150000
H35B	-0.1752	0.8936	0.8612	0.150000
H32C	0.1622	1.1088	0.8579	0.134000
H32D	0.0356	1.0515	0.8070	0.134000
H33C	-0.2445	1.1443	0.8563	0.154000
H33D	-0.1501	1.1042	0.9265	0.154000
H34C	-0.3829	0.9835	0.8779	0.156000
H34D	-0.1830	0.9721	0.8253	0.156000
H35C	-0.1013	0.9566	0.9610	0.153000
H35D	-0.0833	0.8631	0.9173	0.153000

Table S19. Hydrogen bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 5.

	Donor-H Acceptor-H C3-H3 C57\#2	0.94	2.33	$3.098(3)$

11. NMR spectra

(400 MHz, CDCla)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1		17		1	14		1			0	18		60		10			
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

+	\%	 		

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | |
| :--- |

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4 a c$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4aj

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4ak

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4al

													ホ্ণ				1.0	0.5
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5		
				 									$\stackrel{0}{\sim}$			$\stackrel{\sim}{\sim}$		

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4al

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1

	8				
	¢	¢ึํ.		ñ	
]	$\underbrace{-2-2-v-2]}$	V	-	1	- $\underbrace{\text { g }}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5

S11

[^0]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8

8

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8

+
$\stackrel{\stackrel{n}{n}}{\stackrel{\infty}{\infty}}$

l, 11
suld
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

11

	 								$\stackrel{\text { TI }}{\underset{\sim}{\sigma}}$		$\begin{aligned} & \text {-r } \\ & \stackrel{\rightharpoonup}{\prime} \end{aligned}$				
8.0	7.5	7.0	6.5	6.0	5.5	${ }^{1} .0$	${ }^{4.5}$	${ }^{4.0}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6})

11

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S17

[^0]:

[^1]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

