Supporting Information

Trifluoromethylarylation of alkenes using anilines

Carlos Corral Suarez ^{a,b} and Ignacio Colomer^{* a,b}

^a Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain. ^b IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.

Table of Contents

1. General experimental details	S3
2. Synthesis of starting materials	S 3
3. Optimization details	S 5
4. General procedure for the trifluoromethylarylation of alkenes using anilines in HFIP	S7
5. Derivatization of trifluoromethyl products	S39
6. Selective derivatization of bioactive molecules	S45
7. Sequential trifluoromethylarylation and hydroarylation of quinolines	S47
8. Mechanistic studies	S49
9. References	S69
10. X-Ray diffraction analysis	S70
11. NMR spectra	S79

1. General experimental details

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker DPX 400 MHz, VARIAN INOVA-300 MHz or VARIAN SYSTEM-500 MHz spectrometers in CDCl₃ or (CD₃)SO and referenced to residual solvent peaks. Chemical shifts are quoted in ppm (parts per million) to the nearest 0.01 ppm with signal splitting recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m) and broad singlet (br s). Coupling constants, J, are measured in Hz to the nearest 0.1 Hz. ¹H and ¹³C NMR spectra were recorded at room temperature. High resolution mass spectra are given to four decimal places and were registered in a spectrometer GCT Agilent Technologies 6890N using Electronic Impact (EI) techniques at 70 eV, Fast Atom Bombardment and Time-of-Flight (TOF) detector or Agilent 6500 Accurate Mass using electrospray (ESI) and Time-of-Flight (TOF) detector. Melting points (m.p.) were obtained from recrystallized samples using a Lecia VMTG heated-stage microscope and are uncorrected. The solvent systems used for recrystallization are quoted in parentheses. Flash column chromatography was performed using silica gel (60 Å, 0.033-0.070 mm, BDH). TLC analyses were performed on Merck Kiesegel 60 F₂₅₄ 0.25 mm precoated silica plates. Reagents obtained from Sigma-Aldrich, Alfa, Fluorochem, Apollo and TCI were used directly as supplied. All anhydrous reactions were carried out in flame dried glassware and under an inert atmosphere of argon. All reactions were stirred with magnetic followers. 3900 Parr Instrument Company hydrogenator was used when required.

2. Synthesis of starting materials

2.1. Synthesis of N-Benzylanilines

N-Benzylanilines were obtained following well established reductive amination procedure.

General procedure for reductive amination

A solution of benzaldehyde (1.0 equiv.), aniline **S1** (1.1 equiv.) and AcOH (0.25 equiv.) in CH_2Cl_2 (0.15 M) was stirred for 30 min. at room temperature and sodium triacetoxyborohydride (1.5 equiv.) was added in one portion. The reaction mixture was monitored until completion by TLC and quenched with saturated NH₄Cl aqueous solution. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure and purified by flash column chromatography (EtOAc/Hexane) to afford product **1**.

2.2. Synthesis of alkenes

Alkenes 2a, 2f, 2u, 2y and 2ac were commercially available and used directly as provided.

2.2.1. General procedure for Wittig olefination

Alkenes 2b-t, 2x and 2z-ab were obtained following well established Wittig olefination procedure using the corresponding aldehyde or ketone.

A suspension of triphenylphosphonium salt (1.3 equiv.) in dry THF (5.0mL/mmol) was placed in a flame-dried round-bottom flask. The solution was cooled to 0 °C and kept under argon. The base (1.5 equiv. of *t*-BuOK or 1.8 equiv. of *n*-BuLi) was added in one portion. After stirring at 0 °C for 30 min the solution turns into an intense bright colour, then the aldehyde or ketone **S2** (1.0 equiv.) was added. The reaction mixture was gradually warmed to room temperature. After stirring overnight, the reaction was quenched by slow addition of saturated NH₄Cl. The phases were separated and the aqueous phase was extracted twice with Et_2O . The combined organic layers were dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give the corresponding alkene **2** that was purified by chromatography on silica gel using the appropriate mixture of eluents.

2.2.2. General procedure for ketone reduction and dehydration

Alkenes 2v and 2w were obtained following a two-step procedure consisting on ketone reduction and alcohol dehydration.

Following an adapted procedure,^{1,2} NaBH₄ (5.0 equiv.) was slowly added over a solution of ketone **S3** (1 equiv.) in MeOH at 0 °C. The resulting solution was then allowed to reach room temperature and stirred for 75 min. until complete conversion (monitored by TLC). The solvent was removed under reduced pressure and the resulting solid was dissolved in Et₂O and successively washed with water and saturated aqueous solution of NH₄Cl. The organic phase was dried over Na₂SO₄, filtered and concentrated under vacuum to afford the desired product **S4**, that was used without further purification. TsOH·H₂O (0.1 equiv) was added to a solution of alcohol **S4** in CHCl₃ (0.05M) at room temperature under vigorous stirring (important to avoid side reactions). The mixture

was stirred and monitored by TLC until completion. The solvent was evaporated, and the crude reaction was purified by chromatography on silica gel (30% Et₂O – hexane) to give alkene **2v** or **2w**.

2.2.3. Quinoline reduction and N-Boc protection

Dihydroquinoline 9 was obtained via quinoline reduction and in-situ N-Boc protection.

Following an adapted procedure³, suspension of lithium aluminum hydride (2 equiv.) in dry THF (2 mL) was added slowly over an ice-cold solution of quinoline (1.0 equiv.) in dry THF (4 mL). The solution was stirred for 2h at 0 °C, then lithium aluminum hydride (2 equiv.) in dry THF (2 mL) was again added and the reaction mixture stirred for 2h at 0 °C. The reaction was then carefully quenched with water and filtered. The filtrate was extracted using ethyl acetate, washed successively with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The resulting crude was immediately protected. The crude was dissolved in dry DCM (0.2 M), and Boc anhydride (1.5 equiv.), triethylamine (3 equiv.) and 4-(Dimethylamino)pyridine (0.10 equiv.) were added to the solution at 0 °C. The reaction mixture was stirred at room temperature and monitored by TLC until completion. Reaction mixture was diluted with DCM and extracted with water, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude was purified by silica gel chromatography (50% EtOAc – hexane) to give **9**.

3. Optimization details

3.1. Table S1. Effect of the solvent

NHBn + N H	/eO +	F ₃ C I Me Me	Solvent (0.2M), rt	MeO NHBn	
1a (1 oguiy)	2a	3		4a	
	(Tequiv.)		T 1 4		
Entry	Solvent		Isolated yield, 4a (%)		
1		HFIP		58%	
2		TFE		11%	
3		CH_2Cl_2		nc	
4		TFA		TFA nr	
5		AcOH		nr ^a	
6	A	Acetonitrile		nc	
7	HFIP	HFIP: $CH_2Cl_2(1:1)$		HFIP:CH ₂ Cl ₂ (1:1) 53%	

^aOAc incorporation, instead of aniline, was observed (36% yield). nr: no reaction. nc: no conversion.

3.3. Table S3. Effect of the concentration

3.4. Table S4. Effect of stoichiometry in the reaction

PIDA: (Diacetoxyiodo)benzene. nr: no reaction

4. General procedure for the trifluoromethylarylation of alkenes using anilines in HFIP.

Aniline 1 (1 equiv.) and alkene 2 (1 equiv.) were placed in an oven-dry 10 mL vial and hexafluoroisopropanol (0.4 M) was added, followed by trifluoromethyl reagent 3 (1 equiv.). The vial was sealed, purged with Argon and set in a preheated heating block overnight at 40 °C, unless other temperature is stated. The reaction mixture was cooled down, the solvent was evaporated under reduced pressure and the crude was purified by chromatography on silica gel using the appropriate mixture of eluents to give the corresponding product, 4.

N-Benzyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4a.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4a** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 10:90$ Et₂O – hexane) gave **4a** (48.2 mg, 72%), as a yellow oil.

Data for **4a**: $R_f 0.3$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, DMSO-d**₆) δ 7.40 – 7.17 (7H, m, Ar), 7.05 (2H, d, J = 8.6 Hz, 5-H), 6.83 (2H, d, J = 8.7 Hz, Ar), 6.51 (2H, d, J = 8.6 Hz, 6-H), 6.13 (1H, t, J = 6.0 Hz, NH), 4.23 (2H, d, J = 6.0 Hz, CH₂ Bn), 4.08 (1H, t, J = 7.6 Hz, 1-H), 3.69 (3H, s, OMe), 2.99 (2H, m, 2-H₂). ¹³**C NMR** (**101 MHz, DMSO-d**₆) δ 157.6 (1C, C Ar), 147.2 (1C, C Ar), 140.4 (1C, C Ar), 136.3 (1C, C Ar), 131.0 (1C, C Ar), 128.3 (2C, CH Ar), 128.2 (2C, CH Ar), 127.7 (2C, CH Ar), 127.2 (2C, CH Ar), 126.6 (1C, CH Ar), 127.1 (1C, q, J = 277.8 Hz, CF₃), 113.8 (2C, CH Ar), 112.3 (2C, CH Ar), 54.9 (1C, OMe), 46.7 (1C, CH₂ Bn), 43.1 (1C, q, J = 3.1 Hz, C-1), 38.3 (1C, q, J = 25.8 Hz, C-2). ¹⁹**F NMR (376 MHz, DMSO-d**₆) δ -63.6 (3F, CF₃). **HRMS** (EI): calculated for C₂₃H₂₂F₃NO [M]⁺ requires *m/z* 385.1648, found *m/z* 385.1635.

N-Methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4b.

From aniline **1b** (21.4 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4b** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 30:70 \text{ Et}_2\text{O}$ – hexane) gave **4b** (28.2 mg, 50%), as a colourless oil.

Data for **4b**: $R_f 0.1$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.15 (2H, d, J = 8.7 Hz, 9-H), 7.04 (2H, d, J = 8.5 Hz, 5-H), 6.83 (2H, d, J = 8.7 Hz, 10-H), 6.55 (2H, d, J = 8.6 Hz, 6-H), 4.19 (1H, t, J = 7.4 Hz, 1-H), 3.77 (3H, s, OMe), 3.65 (1H, br s, NH), 2.82 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂), 2.80 (3H, s, NMe). ¹³C NMR (**101** MHz, CDCl₃) δ 158.3 (1C, C Ar), 148.1 (1C, C

Ar), 135.9 (1C, C Ar), 132.1 (1C, C Ar), 128.5 (2C, CH Ar), 128.3 (2C, C-5), 126.7 (1C, q, J = 277.8 Hz, CF₃), 114.1 (2C, CH Ar), 112.7 (2C, C-6), 55.4 (1C, OMe), 43.5 (1C, C-1), 40.1 (1C, q, J = 26.9 Hz, C-2), 30.9 (1C, NMe). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (EI): calculated for C₁₇H₁₈F₃NO [M]⁺ requires *m/z* 309.1335, found 309.1328.

4-[3,3,3-Trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4c.

From aniline **1c** (18.6 mg, 0.20 mmol), alkene **2a** (26.8 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4c** was obtained. Chromatographic purification (gradient elution: $20:80 \rightarrow 40:60$ Et₂O – hexane) gave **4c** (14.5 mg, 25%), as a brownish oil.

Data for 4c: $R_f 0.10$ (60% Et₂O – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (2H, d, J = 8.7 Hz, 9-H), 7.01 (2H, d, J = 8.4 Hz, 5-H), 6.82 (2H, d, J = 8.7 Hz, 10-H), 6.65 (2H, d, J = 8.4 Hz, 6-H), 4.18 (1H, t, J = 7.4 Hz, 1-H), 3.77 (3H, s, OMe), 2.81 (2H, qd, J = 10.5 and 7.5 Hz, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (1C, C Ar), 144.5 (1C, C Ar), 135.7 (1C, C Ar), 133.8 (1C, C Ar), 128.5 (2C, CH Ar), 128.4 (2C, CH Ar), 126.7 (1C, q, J = 277.6 Hz, CF₃), 115.8 (2C, CH Ar), 114.1 (2C, CH Ar), 55.4 (1C, OMe), 43.6 (1C, C-1), 40.0 (1C, q, J = 27.0 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (ESI): calculated for C₁₆H₁₇F₃NO [M+H]⁺ requires *m*/*z* 296.1257, found 296.1257.

N,N-dimethyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4d.

From aniline 1d (24.0 mg, 0.2 mmol), alkene 2a (26.8 mg, 0.2 mmol) and trifluoromethyl reagent 3 (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline 4d was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85 \text{ Et}_2\text{O}$ – hexane) gave 4d (33.6 mg, 52%), as a colourless oil.

Data for **4d**: R_f 0.15 (20% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.15 (2H, d, J = 8.7 Hz, 9-H), 7.09 (2H, d, J = 8.8 Hz, 5-H), 6.83 (2H, d, J = 8.7 Hz, 10-H), 6.68 (2H, d, J = 8.3 Hz, 6-H), 4.20 (1H, t, J = 7.4 Hz, 1-H), 3.77 (3H, s, OMe), 2.91 (6H, s, NMe₂), 2.82 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 158.3 (1C, C Ar), 149.4 (1C, C Ar), 135.9 (1C, C Ar), 131.3 (1C, C Ar), 128.5 (2C, CH Ar), 128.1 (2C, C-5), 126.7 (1C, q, J = 277.9 Hz, CF₃), 114.1 (2C, CH Ar), 113.0 (2C, C-6), 55.4 (1C, OMe), 43.4 (1C, q, J = 2.7 Hz, C-1), 40.8 (2C, NMe₂), 40.1 (1C, q, J = 26.8 Hz, C-2). ¹⁹F NMR (**376** MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (ESI): calculated for C₁₈H₂₁F₃NO [M+H]⁺ requires m/z 324.1570, found m/z 324.1572.

N-Benzyl-2-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4e.

From aniline **1e** (39.5 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4e** was obtained. Chromatographic purification (gradient elution: $10:90 \rightarrow 15:85$ Et₂O – hexane) gave **4e** (51.4 mg, 64%), as a colourless oil.

Data for **4e**: $R_f 0.40$ (30% Et₂O – hexane). ¹**H** NMR (**400** MHz, CDCl₃) δ 7.43 – 7.29 (5H, m, Ar), 7.18 (2H, d, J = 8.7 Hz, 11-H), 6.98 (1H, d, J = 8.2 Hz, 9-H), 6.94 (1H, s, 5-H), 6.85 (2H, d, J = 8.7 Hz, 12-H), 6.57 (1H, d, J = 8.2 Hz, 8-H), 4.35 (2H, s, CH₂ Bn), 4.19 (1H, t, J = 7.4 Hz, 1-H), 3.79 (3H, s, OMe), 2.84 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂), 2.15 (3H, s, Me). ¹³C NMR (**101** MHz, CDCl₃) δ 158.2 (1C, C Ar), 144.9 (1C, C Ar), 139.5 (1C, C Ar), 135.9 (1C, C Ar), 131.9 (1C, C Ar), 129.4 (1C, C-9), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.7 (1C, q, J = 277.8 Hz, CF₃), 125.8 (1C, C-5), 122.3 (1C, CH Ar), 114.0 (2C, CH Ar), 110.1 (1C, C-6), 55.3 (1C, OMe), 48.5 (1C, CH₂ Bn), 43.5 (1C, C-1), 40.1 (1C, q, J = 26.8 Hz, C-2), 17.8 (1C, Me). ¹⁹F NMR (**376** MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (EI): calculated for C₂₄H₂₄F₃NO [M]⁺ requires *m*/z 399.1810, found *m*/z 399.1797.

N,2-Dienzyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4f.

From aniline **1f** (52.2 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4f** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 20:80 \text{ Et}_2\text{O} - \text{hexane}$) gave **4f** (51.5 mg, 57%), as a colourless oil.

Data for **4f**: R_f 0.50 (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.22 (6H, m, Ar), 7.18 (2H, d, J = 8.6 Hz, 12-H), 7.16 (2H, d, J = 7.9 Hz, Ar), 7.10 (2H, d, J = 7.7 Hz, Ar), 7.02 (1H, d, J = 8.2 Hz, 9-H), 7.00 (1H, s, 5-H), 6.86 (2H, d, J = 8.6 Hz, 13-H), 6.59 (1H, d, J = 8.2 Hz, 8-H), 4.23 (2H, s, CH₂ Bn), 4.23 (1H, t, J = 8.0 Hz, 1-H), 3.92 (2H, s, 10-H₂), 3.80 (3H, s, OMe), 2.85 (2H, qd, J = 10.5 and 8.0 Hz, 2-H₂). ¹³**C NMR (101 MHz, CDCl**₃) δ 158.2 (1C, C Ar), 144.7 (1C, C Ar), 139.2 (2C, C Ar), 135.8 (1C, C Ar), 132.0 (1C, C Ar), 130.0 (1C, C-5), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 128.5 (2C, CH Ar), 128.5 (2C, CH Ar), 127.2 (1C, CH Ar), 126.7 (1C, q, J = 279.8 Hz, CF₃), 126.7 (1C, CH Ar), 126.6 (1C, C-9), 124.9 (1C, C Ar), 114.0 (2C, CH Ar), 111.2 (1C, C-8), 55.3 (1C, OMe), 48.2 (1C, CH₂ Bn), 43.5 (1C, C-1), 40.1 (1C, q, J = 26.8 Hz, C-2), 38.5 (1C, C-10). ¹⁹**F NMR (376 MHz, CDCl**₃) δ -63.5 (3F, CF₃). **HRMS** (ESI): calculated for C₃₀H₂₉F₃NO [M+H]⁺ requires *m/z* 476.2196, found *m/z* 476.2191.

N-Benzyl-5-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-[1,1'-biphenyl]-2-amine, 4g.

From aniline **1g** (43 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4g** was obtained. Chromatographic purification (gradient elution: $10:90 \rightarrow 15:85$ Et₂O – hexane) gave **4g** (43.2 mg 56%), as a colourless oil.

Data for **4g**: $R_f 0.50$ (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (4H, m, Ar), 7.40 – 7.22 (6H, m, Ar), 7.18 (2H, d, J = 8.7 Hz, 11-H), 7.04 (1H, dd, J = 8.4 and 2.3 Hz, 9-H), 7.00 (1H, d, J = 2.2 Hz, 5-H), 6.84 (2H, d, J = 8.7 Hz, 12-H), 6.62 (1H, d, J = 8.4 Hz, 8-H), 4.30 (2H, s, CH₂ Bn), 4.22 (1H, t, J = 7.4 Hz, 1-H), 3.78 (3H, s, OMe), 2.85 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (1C, C Ar), 143.5 (1C, C Ar), 139.3 (1C, C Ar), 135.7 (1C, C Ar), 132.2 (1C, C Ar), 129.4 (2C, CH Ar), 129.3 (1C, C-5), 129.1 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 128.0 (1C, C Ar) 127.5 (1C, C Ar), 127.5 (1C, C-9), 127.2 (4C, CH Ar), 126.6 (1C, q, J = 278.8 Hz, CF₃), 114.1 (2C, CH Ar), 111.2 (1C, C-8), 55.3 (1C, OMe), 48.5 (1C, CH₂ Bn), 43.6 (1C, C-1), 40.1 (1C, q, J = 26.9 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (ESI): calculated for C₂₉H₂₇F₃NO [M+H]⁺ requires *m/z* 462.2039, found *m/z* 462.2036.

N-Benzyl-2-methoxy-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4h.

From aniline **1h** (42.7 mg, 0.20 mmol), alkene **2a** (26.8 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4h** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85$ Et₂O – hexane) gave **4h** (44.5 mg, 54%), as a colourless oil.

Data for **4h**: $R_f 0.5$ (30% Et₂O – hexane). ¹**H** NMR (**400** MHz, CDCl₃) δ 7.40 – 7.21 (5H, m, Ar), 7.15 (2H, d, J = 8.7 Hz, 11-H), 6.83 (2H, d, J = 8.7 Hz, 12-H), 6.70 (1H, dd, J = 8.1 and 1.9 Hz, 9-H), 6.60 (1H, d, J = 1.9 Hz, 5-H), 6.55 (1H, d, J = 8.1 Hz, 8-H), 4.30 (2H, s, CH₂ Bn), 4.19 (1H, t, J = 7.4 Hz, 1-H), 3.80 (3H, s, OMe), 3.77 (3H, s, OMe), 2.82 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂).¹³C NMR (101 MHz, CDCl₃) δ 158.3 (1C, C Ar), 147.2 (1C, C Ar), 139.3 (1C, C Ar), 136.4 (1C, C Ar), 135.7 (1C, C Ar), 132.3 (1C, C Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 127.8 (2C, CH Ar), 127.4 (1C, CH Ar), 126.7 (1C, q, J = 278.0 Hz, CF₃), 119.7 (1C, C-9), 114.1 (2C, CH Ar), 110.6 (1C, C-8) 109.3 (1C, C-5), 55.6 (1C, OMe), 55.4 (1C, OMe), 48.5 (1C, CH₂ Bn), 44.0 (1C, C-1), 40.2 (1C, q, J = 26.9 Hz, C-2).¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (3F, CF₃). HRMS (ESI): calculated for C₂₄H₂₅F₃NO₂ [M+H]⁺ requires m/z 416.1832, found m/z 416.1837.

N-Benzyl-2-chloro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4i.

From aniline **1i** (42.8 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4i** was obtained. Chromatographic purification (gradient elution: 100% toluene) gave **4i** (41.3 mg, 50%), as a colourless oil.

Data for **4**i: R_f 0.60 (100% toluene). ¹**H** NMR (**400** MHz, CDCl₃) δ 7.41 – 7.24 (5H, m, Ar), 7.14 (1H, s, 5-H), 7.14 (2H, d, J = 8.5 Hz, 11-H), 6.96 (1H, dd, J = 8.4 and 2.1 Hz, 9-H), 6.85 (2H, d, J = 8.7 Hz, 12-H), 6.57 (1H, d, J = 8.4 Hz, 8-H), 4.37 (1H, br s, NH), 4.16 (1H, t, J = 7.4 Hz, 1-H), 3.78 (2H, s, CH₂ Bn), 2.80 (1H, qd, J = 10.4 and 7.5 Hz, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 158.4 (1C, C Ar), 142.6 (1C, C Ar), 138.8 (1C, C Ar), 135.1 (1C, C Ar), 132.5 (1C, C Ar), 128.8 (2C, CH Ar), 128.4 (2C, CH Ar), 128.1 (1C, C-5), 127.5 (1C, CH Ar), 127.4 (2C, CH Ar), 126.8 (1C, C-9), 126.5 (1C, q, J = 277.7 Hz, CF₃), 119.3 (1C, C Ar), 114.2 (2C, CH Ar), 111.7 (1C, C-8), 55.3 (1C, OMe) 48.1 (1C, CH₂ Bn), 43.3 (1C, C-1), 39.9 (1C, q, J = 27.1 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (EI): calculated for C₂₃H₂₁ClF₃NO [M]⁺ requires *m*/*z* 419.1258, found *m*/*z* 419.1271.

N-Benzyl-2-bromo-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4j.

From aniline **1j** (52.4 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4j** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 10:90 \text{ Et}_2\text{O} - \text{hexane}$) gave **4j** (52.8 mg, 58%), as a colourless oil.

Data for **4j**: $R_f 0.30$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.42 – 7.26 (5H, m, Ar), 7.33 (1H, d, J = 2.1 Hz, 5-H), 7.15 (2H, d, J = 8.7 Hz, 11-H), 7.01 (1H, dd, J = 8.4 and 2.1 Hz,

9-H), 6.86 (2H d, J = 8.7 Hz, 12-H), 6.56 (1H, d, J = 8.4 Hz, 8-H), 4.74 (1H, br s, NH), 4.38 (2H, s, CH₂ Bn), 4.17 (1H, t, J = 7.4 Hz, 1-H), 3.79 (3H, s, OMe), 2.80 (2H, qd, J = 10.4 and 7.7 Hz, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (1C, C Ar), 143.6 (1C, C Ar), 138.7 (1C, C Ar), 135.1 (1C, C Ar), 133.1 (1C, C Ar), 131.3 (1C, C-5), 128.9 (2C, CH Ar), 128.5 (2C, CH Ar), 127.54 (1C, CH Ar), 127.51 (1C, C-9), 127.4 (2C, CH Ar), 126.5 (1C, q, J = 277.8 Hz, CF₃), 114.2 (2C, C-12), 111.8 (1C, C-8), 109.9 (1C, C Ar), 55.3 (1C, OMe), 48.2 (1C, CH₂ Bn), 43.2 (1C, C-1), 39.9 (1C, q, J = 27.1 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (3F, CF₃). HRMS (ESI): calculated for C₂₃H₂₂BrF₃NO [M+H]⁺ *m*/*z* requires 464.0831, found *m*/*z* 464.0798.

N-Benzyl-3-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4k.

From aniline **1k** (39.5 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4k** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 15:95$ Et₂O – hexane) gave **4k** (40.3 mg, 50%), as a colourless oil.

Data for **4k**: $R_f 0.30$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.40 – 7.25 (5H, m, Ar), 7.13 (2H, d, J = 8.7 Hz, 11-H), 7.05 (1H, d, J = 8.4 Hz, 9-H), 6.81 (2H, d, J = 8.7 Hz, 12-H), 6.53 (1H, dd, J = 8.4 and 2.4 Hz, 8-H), 6.49 (1H, d, J = 2.4 Hz, 6-H), 4.41 (1H, t, J = 7.2 Hz, 1-H), 4.30 (2H, s, CH₂ Bn), 3.77 (3H, s, OMe), 2.79 (2H, m, 2-H₂), 2.24 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (1C, C Ar), 146.2 (1C, C Ar), 139.2 (1C, C Ar), 136.9 (1C, C Ar), 135.2 (1C, C Ar), 131.0 (1C, C Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 127.9 (2C, CH Ar), 127.5 (1C, CH Ar), 127.3 (1C, C-9), 126.8 (1C, q, J = 277.8 Hz, CF₃), 115.9 (1C, C-6), 114.0 (2C, CH Ar), 111.1 (1C, C-8), 55.3 (1C, OMe), 48.9 (1C, CH₂ Bn), 40.2 (1C, q, J = 26.8 Hz, C-2), 39.2 (1C, C-1), 20.1 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.7 (1C, CF₃). HRMS (ESI): calculated for C₂₄H₂₅F₃NO [M+H]⁺ *m*/z requires 400.1883, found *m*/z 400.1878.

N-Benzyl-6-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-[1,1'-biphenyl]-3-amine, 4l.

From aniline **11** (51.4 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **41** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80$ Et₂O – hexane) gave **41** (55.9 mg, 61%), as a colourless oil.

Data for **4I**: R_f 0.50 (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.44 – 7.26 (8H, m, Ar), 7.22 (1H, d, J = 8.5 Hz, 9-H), 7.21 – 7.14 (2H, m, Ar), 6.93 (2H, d, J = 8.7 Hz, Ar), 6.69 (1H, dd, J = 8.5 and 2.6 Hz, 8-H), 6.53 (1H, d, J = 2.6 Hz, 6-H), 4.35 (1H, t, J = 7.4 Hz, 1-H), 4.31 (2H, s, CH₂ Bn), 3.77 (3H, s, OMe), 2.88 – 2.63 (2H, m, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 158.0 (1C, C Ar), 146.0 (1C, C Ar), 143.0 (1C, C Ar), 141.7 (1C, C Ar), 139.1 (1C, C Ar), 135.8 (1C, C Ar), 129.8 (1C, C Ar), 129.3 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 128.1 (2C, CH Ar), 127.8 (2C, CH Ar), 127.7 (1C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 126.3 (1C, q, J = 277.9 Hz, CF₃), 114.9 (1C, C-6), 113.8 (2C, CH Ar), 112.6 (1C, C-8), 55.3 (1C, OMe), 48.7 (1C, CH₂ Bn), 40.3 (1C, q, J = 26.8 Hz, C-2), 39.0 (1C, C-1). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (ESI): calculated for C₂₉H₂₇F₃NO [M+H]⁺ *m*/*z* requires 462.2039, found *m*/*z* 462.2037.

N-Benzyl-3-ethynyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4m.

From aniline **1m** (41.5 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4m** was obtained. Chromatographic purification (100% toluene elution) gave **4m** (50.1 mg, 61%), as a colourless oil.

Data for **4m**: R_f 0.20 (100% toluene). ¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.24 (5H, m, Ar), 7.21 (2H, d, J = 8.7 Hz, 13-H), 7.00 (1H, d, J = 8.5 Hz, 9-H), 6.83 (2H, d, J = 8.7 Hz, 14-H), 6.79 (1H, d, J = 2.6 Hz, 6-H), 6.60 (1H, dd, J = 8.5 and 2.6 Hz, 8-H), 4.85 (1H, t, J = 7.4 Hz, 1-H), 4.28 (2H, s, CH₂ Bn), 3.77 (3H, s, OMe), 3.29 (1H, s, 11-H), 2.83 (2H qd, J = 10.4 and 7.5 Hz, 2-H₂). ¹³**C NMR (101 MHz, CDCl₃)** δ 158.3 (1C, C Ar), 146.1 (1C, C Ar), 138.8 (1C, C Ar), 134.9 (1C, C Ar), 134.7 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 127.6 (1C, CH Ar), 127.5 (1C, CH Ar), 126.6 (1C, q, J = 277.8 Hz, CF₃), 121.9 (1C, C Ar), 117.1 (1C, C-6), 114.6 (1C, C-8), 113.9 (2C, CH Ar), 82.4 (1C, C-10), 81.4 (1C, C-11), 55.3 (1C, OMe), 48.5 (1C, CH₂ Bn), 40.5 (1C, C-1), 39.4 (1C, q, J = 27.2 Hz, C-2). ¹⁹**F NMR (376 MHz, CDCl₃)** δ –63.8 (3F, CF₃). **HRMS** (ESI): calculated for C₂₅H₂₃F₃NO [M+H]⁺ requires *m/z* 410.1726, found *m/z* 410.1723.

Methyl 2-{5-(benzylamino)-2-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]phenyl}acetate, 4n.

From aniline **1n** (51.0 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4n** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4n** (49.7 mg, 54%), as an orange oil.

Data for **4n**: $R_f 0.1$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.41 – 7.25 (5H, m, Ar), 7.14 (2H, d, J = 8.6 Hz, 12-H), 7.10 (1H, d, J = 8.4 Hz, 9-H), 6.82 (2H, d, J = 8.6 Hz, 13-H), 6.60 (1H, dd, J = 8.4, 2.4 Hz, 8-H), 6.53 (1H, d, J = 2.3 Hz, 6-H), 4.47 (1H, t, J = 7.2 Hz, 1-H), 4.30 (2H, s, CH₂ Bn), 3.77 (3H, s, OMe), 3.64 (1H, d, J = 15.5 Hz, 10-H_A), 3.62 (3H, s, CO₂Me), 3.52 (1H, d, J = 15.5 Hz, 10-H_B), 2.88 – 2.72 (2H, m, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 171.9 (1C, C=O), 158.3 (1C, C Ar), 146.6 (1C, C Ar), 139.1 (1C, C Ar), 134.9 (1C, C Ar), 133.1 (1C, C Ar), 130.7 (1C, C Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.1 (1C, CH Ar), 127.8 (2C, CH Ar), 127.5 (1C, CH Ar), 126.6 (1C, q, J = 277.9 Hz, CF₃), 116.0 (1C, CH Ar), 114.0 (2C, CH Ar), 112.4 (1C, CH Ar), 55.3 (1C, OMe), 52.1 (1C, CO₂Me), 48.7 (1C, CH₂ Bn), 40.3 (1C, q, J = 26.9 Hz, C-2), 39.02 (1C, C-10), 38.97 (1C, C-1). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.7 (3F, CF₃). HRMS (ESI): calculated for C₂₆H₂₇F₃NO₃ [M+H]⁺ requires *m*/z 458.1938, found *m*/z 458.1935.

N-Benzyl-3-fluoro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 40.

From aniline **1o** (40.2 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4o** was obtained. Chromatographic purification (gradient elution: $4:96 \text{ Et}_2\text{O}$ – toluene) gave **4o** (64.4 mg, 80%), as a colourless oil.

Data for **4o**: $R_f 0.50$ (4% Et₂O – toluene). ¹H NMR (**400** MHz, CDCl₃) δ 7.38 – 7.26 (5H, m, Ar), 7.19 (2H, d, J = 8.7 Hz, 11-H), 6.98 (1H, t, J = 8.5 Hz, 9-H), 6.84 (2H, d, J = 8.7 Hz, 12-H), 6.37 (1H, dd, J = 8.4 and 2.4 Hz, 8-H), 6.30 (1H, dd, J = 12.9 and 2.4 Hz, 6-H), 4.44 (1H, t, J = 7.5 Hz, 1-H), 4.27 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.96 – 2.73 (2H, m, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 161.3 (1C, d, J = 243.6 Hz, C-5), 158.3 (1C, C Ar), 148.6 (1C, d, J = 11.1 Hz, C-7), 138.8 (1C, C Ar), 134.6 (1C, C Ar), 129.2 (1C, d, J = 6.4 Hz, C-9), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar), 126.6 (1C, q, J = 277.8 Hz, CF₃), 118.6 (1C, d, J = 14.6 Hz, C-4), 114.0 (2C, CH Ar), 109.0 (1C, C-8), 100.1 (1C, d, J = 26.7 Hz, C-6), 55.3 (1C, OMe), 48.4 (1C, CH₂ Bn), 38.9 (1C, q, J = 27.1 Hz, C-2), 37.6 (1C, C-1). ¹⁹F NMR (376 MHz, CDCl₃) δ –64.1 (3F, CF₃), -116.6 (1F, C5-F). HRMS (ESI): calculated for C₂₃H₂₂F₄NO [M+H]⁺ *m*/*z* requires 404.1632, found *m*/*z* 404.1615.

N-Benzyl-3-chloro-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4p.

From aniline **1p** (43.5 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4p** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 15:85$ Et₂O – hexane) gave **4p** (40.8 mg, 50%), as a colourless oil.

Data for **4p**: $R_f 0.20$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.41 – 7.26 (5H, m, Ar), 7.20 (2H, d, J = 8.6 Hz, 11-H), 7.03 (1H, d, J = 8.5 Hz, 9-H), 6.85 (2H, d, J = 8.7 Hz, 12-H),

6.66 (1H, d, J = 2.5 Hz, 6-H), 6.51 (1H, dd, J = 8.5 and 2.5 Hz, 8-H), 4.77 (1H, t, J = 7.4 Hz, 1-H), 4.28 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.81 (2H, qd, J = 10.4 and 7.7 Hz, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (1C, C Ar), 147.6 (1C, C Ar), 138.7 (1C, C Ar), 134.2 (1C, C Ar), 134.2 (1C, C Ar), 129.1 (1C, C Ar), 128.8 (2C, CH Ar), 128.8 (2C, CH Ar), 128.7 (1C, C-9), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar),126.5 (1C, q, J = 278.0 Hz, CF₃), 114.0 (2C, CH Ar), 113.6 (1C, C-6), 112.0 (1C, C-8), 55.3 (1C, OMe), 48.3 (1C, CH₂ Bn), 39.4 (1C, C-1), 39.2 (1C, q, J = 27.2 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ –63.7 (3F, CF₃). HRMS (ESI): calculated for C₂₃H₂₂ClF₃NO [M+H]⁺ requires *m*/z 420.1337, found *m*/z 420.1316.

N-Benzyl-3-bromo-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4q.

From aniline **1q** (52.4 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4q** was obtained. Chromatographic purification (gradient elution: $10:90 \rightarrow 20:80$ Et₂O – hexane) gave **4q** (54.7 mg, 60%), as a colourless oil.

Data for **4q**: $R_f 0.40$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.42 – 7.27 (5H, m, Ar), 7.22 (2H, d, J = 8.6 Hz, 12-H), 7.03 (1H, d, J = 8.5 Hz, 9-H), 6.86 (2H, d, J = 8.4 Hz, 11-H), 6.85 (1H, d, J = 3.6 Hz, 6-H), 6.55 (1H, dd, J = 8.6 and 2.5 Hz, 8-H), 4.78 (1H, t, J = 7.3 Hz, 1-H), 4.27 (2H, s, CH₂ Bn), 4.13 (1H, br s, NH), 3.79 (3H, s, OMe), 2.81 (2H, qd, J = 10.2 and 7.9 Hz, 2-H₂). ¹³C NMR (**101 MHz, CDCl**₃) δ 158.3 (1C, C Ar), 147.7 (1C, C Ar), 138.7 (1C, C Ar), 134.2 (1C, C Ar), 130.6 (1C, C Ar), 128.8 (5C, CH Ar), 128.7 (1C, CH Ar), 127.6 (2C, CH Ar), 126.4 (1C, q, J = 280.5 Hz, CF₃), 125.0 (1C, C Ar), 116.8 (1C, C-6), 114.0 (2C, CH Ar), 112.6 (1C, C-8), 55.3 (1C, OMe), 48.3 (1C, CH₂ Bn), 41.8 (1C, C-1), 39.4 (1C, q, J = 27.2 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (3F, CF₃). HRMS (EI): calculated for C₂₃H₂₁BrF₃NO [M]⁺ requires 463.0754 *m/z*, found 463.0737 *m/z*.

N-Benzyl-2,5-dimethyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4r.

From aniline **1r** (42.0 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4r** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4r** (47.9 mg, 58%), as a white foam.

Data for **4r**: $R_f 0.30$ (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.26 (5H, m, Ar), 7.15 (2H, d, J = 8.6 Hz, 11-H), 6.92 (1H, s, 9-H), 6.82 (2H, d, J = 8.7 Hz, 12-H), 6.47 (1H, s, 6-H), 4.41 (1H, t, J = 7.2 Hz, 1-H), 4.33 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.93 – 2.71 (2H, m, 2-H₂), 2.25 (3H, s, Me), 2.14 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (1C, C Ar), 144.1 (1C, C Ar), 139.2 (1C, C Ar), 135.3 (1C, C Ar), 134.3 (1C, C Ar), 130.0 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 128.6 (1C, CH Ar), 128.2 (1C, C-9), 127.9 (1C, CH Ar), 127.5 (1C, CH Ar), 126.8 (1C, q, J = 277.8 Hz, CF₃), 120.1 (1C, C Ar) 113.9 (2C, CH Ar), 112.9 (1C, C-6), 55.3 (1C, OMe), 48.8 (1C, CH₂ Bn), 40.1 (1C, q, J = 26.8 Hz, C-2), 39.1 (1C, C-1), 19.8 (1C, Me), 17.5 (1C, Me).¹⁹F NMR (376 MHz, CDCl₃) δ –63.7 (3F, CF₃). HRMS (ESI): calculated for C₂₅H₂₇F₃NO [M+H]⁺ requires *m/z* 414.2039, found *m/z* 414.2048.

N-Benzyl-5-chloro-2-methoxy-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4s.

From aniline **1s** (49.1 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4s** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 10:90$ Et₂O – hexane) gave **4s** (52.0 mg, 58%), as a colourless oil.

Data for **4s**: $R_f 0.20$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.38 – 7.25 (5H, m, Ar), 7.20 (2H, d, J = 8.6 Hz, 11-H), 6.85 (2H, d, J = 8.7 Hz, 12-H), 6.57 (1H, s, Ar), 6.56 (1H, s, Ar), 4.78 (1H, t, J = 7.4 Hz, 1-H), 4.28 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 3.78 (3H, s, OMe), 2.90

-2.76 (2H, m, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (1C, C Ar), 146.0 (1C, C Ar), 138.6 (1C, C Ar), 137.4 (1C, C Ar), 134.1 (1C, C Ar), 129.9 (1C, C Ar) 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 126.5 (1C, q, *J* = 278.2 Hz, CF₃), 125.4 (1C, C Ar), 114.0 (2C, CH Ar), 111.1 (1C, CH Ar), 109.0 (1C, CH Ar), 55.7 (1C, OMe), 55.3 (1C, OMe), 48.1 (1C, CH₂ Bn), 39.8 (1C, C-1), 39.1 (1C, q, *J* = 27.3 Hz, C-2).¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (3F, CF₃). HRMS (ESI): calculated for C₂₄H₂₄ClF₃NO₂ [M+H]⁺ *m*/*z* requires 450.1443, found *m*/*z* 450.1437.

N-Benzyl-3-fluoro-2-methyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4t.

From aniline **1t** (43.0 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4t** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 10:90 \text{ Et}_2\text{O} - \text{hexane}$) gave **4t** (52.7 mg, 64%), as a colourless oil.

Data for **4t**: $R_f 0.30$ (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.26 (5H, m, Ar), 7.20 (2H, d, J = 8.6 Hz, 11-H), 6.93 (1H, t, J = 8.4 Hz, 9-H), 6.84 (2H, d, J = 8.7 Hz, 12-H), 6.41 (1H, d, J = 8.4 Hz, 8-H), 4.49 (1H, t, J = 7.4 Hz, 1-H), 4.35 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.98 – 2.74 (2H, m, 2-H₂), 2.05 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (1C, d, J = 241.6 Hz, C-5), 158.3 (1C, C Ar), 146.3 (1C, C Ar), 139.0 (1C, C Ar), 134.7 (1C, C Ar), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar), 126.6 (1C, q, J = 277.7 Hz, CF₃), 125.9 (1C, d, J = 6.5 Hz, C-9), 119.0 (1C, d, J = 14.3 Hz, C-4), 114.0 (2C, CH Ar), 109.3 (1C, d, J = 18.9 Hz, C-6), 105.9 (1C, C-8), 55.3 (1C, OMe), 48.7 (1C, CH₂ Bn), 38.9 (1C, q, J = 271.1 Hz, C-2), 37.8 (1C, quint, J = 2.7 Hz, C-1), 8.6 (1C, d, J = 7.3 Hz, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –64.0 (3F, CF₃), –121.3 (1F, C5-F). HRMS (ESI): calculated for C₂₄H₂₄F₄NO [M+H]⁺ *m*/z requires 418.1789, found *m*/z 418.1778.

N-Benzyl-4-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]-5,6,7,8-tetrahydronaphthalen-1amine, 4u.

From aniline **1u** (47.2 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4u** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 15:85$ Et₂O – hexane) gave **4u** (26.9 mg, 31%), as brownish oil.

Data for **4u**: $R_f 0.30$ (30% Et₂O – hexane). ¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 5H), 7.15 (2H, d, J = 8.6 Hz, 11-H), 7.04 (1H, d, J = 8.4 Hz, 9-H), 6.81 (2H, d, J = 8.7 Hz, 12-H), 6.56 (1H, d, J = 8.4 Hz, 8-H), 4.46 (1H, t, J = 7.2 Hz, 1-H), 4.36 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.90 – 2.70 (3H, m, 2-H₂ and CH₂ tetrahydronaphth), 2.57 (1H, dt, J = 16.4 and 6.0 Hz, CH₂ tetrahydronaphth), 2.51 – 2.37 (2H, m, CH₂ tetrahydronaphth), 1.89 – 1.67 (4H, m, 2 x CH₂ tetrahydronaphth). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (1C, C Ar), 144.3 (1C, C Ar), 139.5 (1C, C Ar), 135.4 (1C, C Ar), 135.2 (1C, C Ar), 130.3 (1C, C Ar), 129.1 (2C, C-11), 128.8 (2C, CH Ar), 128.20 (1C, q, J = 277.2 Hz, CF₃), 127.8 (2C, CH Ar), 127.4 (1C, CH Ar), 124.3 (1C, C-9), 122.1 (1C, C Ar), 113.9 (2C, C-12), 107.5 (1C, C-8), 55.3 (1C, OMe), 48.7 (1C, CH₂ Bn), 40.58 (1C, q, J = 26.6 Hz, C-2), 38.58 (1C, q, J = 2.6 Hz, C-1), 26.8 (1C, CH₂ tetrahydronaphth), 24.8 (1C, CH₂ tetrahydronaphth), 22.9 (1C, CH₂ tetrahydronaphth), 22.4 (1C, CH₂ tetrahydronaphth). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (3F, CF₃). HRMS (ESI): calculated for C₂₇H₂₉F₃NO [M+H]⁺ *m*/z requires 440.2196, found *m*/z 440.2190.

4-{1-[4-(Benzylamino)phenyl]-3,3,3-trifluoropropyl}phenol, 4v.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2b** (24.0 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4v** was

obtained. Chromatographic purification (gradient elution: $30:70 \rightarrow 50:50 \text{ Et}_2\text{O}$ – hexane) gave 4v (41.1 mg, 55%), as a colourless oil.

Data for **4v**: $R_f 0.20$ (50% Et₂O – hexane). ¹**H** NMR (**400** MHz, CDCl₃) δ 7.38 – 7.26 (5H, m, Ar), 7.09 (2H, d, J = 8.5 Hz, 9-H), 7.03 (2H, d, J = 8.5 Hz, 5-H), 6.73 (2H, d, J = 8.6 Hz, 10-H), 6.60 (2H d, J = 8.5 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 4.18 (1H, t, J = 7.4 Hz, 1-H), 2.80 (2H, qd, J = 10.5 and 7.4 Hz, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 154.2 (1C, C Ar), 146.6 (1C, C Ar), 139.2 (1C, C Ar), 135.9 (1C, C Ar), 132.6 (1C, C Ar), 128.7 (2C, CH Ar), 128.7 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.6 (1C, q, J = 277.8 Hz, CF₃), 115.5 (2C, CH Ar), 113.4 (2C, CH Ar), 48.7 (1C, CH₂ Bn), 43.5 (1C, C-1), 40.0 (1C, q, J = 26.9 Hz, C-2). ¹⁹F NMR (**376** MHz, CDCl₃) δ –63.5 (3F, CF₃). HRMS (ESI): calculated for C₂₂H₂₁F₃NO [M+H]⁺ *m/z* requires 372.1570, found *m/z* 372.1563.

4-{1-[4-(Benzylamino)phenyl]-3,3,3-trifluoropropyl}-2,6-dibromophenol, 4w.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2c** (55.6 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4w** was obtained. Chromatographic purification (gradient elution: $15:80 \rightarrow 55:45$ Et₂O – hexane) gave **4w** (78.4 mg, 74%), as a colourless oil.

Data for **4w**: R_f 0.20 (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.41 – 7.24 (7H, m, Ar), 7.00 (2H, d, J = 8.5 Hz, Ar), 6.60 (2H, d, J = 8.6 Hz, Ar), 4.31 (2H, s, CH₂ Bn), 4.12 (1H, t, J = 7.4 Hz, 1-H), 2.78 (2H, m, 2-H₂).¹³C NMR (**101** MHz, CDCl₃) δ 148.2 (1C, C Ar), 147.3 (1C, C Ar), 139.3 (1C, C Ar), 138.4 (1C, C Ar), 131.0 (2C, CH Ar), 130.6 (1C, C Ar), 128.8 (2C, CH Ar), 128.2 (2C, CH Ar), 127.6 (2C, CH Ar), 127.5 (1C, CH Ar), 126.3 (1C, q, J = 277.8 Hz, CF₃), 113.3 (2C, CH Ar), 110.0 (2C, C Ar), 48.5 (1C, CH₂ Bn), 43.1 (1C, C-1), 39.7 (1C, q, J = 27.3 Hz, C-2). ¹⁹F NMR (**376** MHz, CDCl₃) δ –63.6 (3F, CF₃). HRMS (EI): calculated for C₂₂H₁₆Br₂F₃NO [M]⁺ requires m/z 526.9532, found m/z 526.9520.

N-Benzyl-4-{3,3,3-trifluoro-1-[4-(methylthio)phenyl]propyl}aniline, 4x.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2d** (30.0 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4x** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 10:90$ Et₂O – hexane) gave **4x** (46.2 mg, 60%), as a colourless oil.

Data for **4x**: $R_f 0.40$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.43 – 7.27 (5H, m, Ar), 7.21 (2H, d, J = 8.5 Hz, 13-H), 7.17 (2H, d, J = 8.5 Hz, 12-H), 7.04 (2H, d, J = 8.5 Hz, 5-H), 6.59 (2H, d, J = 8.5 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 4.21 (1H, t, J = 7.4 Hz, 1-H), 4.01 (1H, s, NH), 2.84 (2H, qd, J = 10.5 and 7.5 Hz, 2-H₂), 2.46 (3H, s, SMe). ¹³C NMR (101 MHz, CDCl₃) δ 147.0 (1C, C Ar), 140.6 (1C, C Ar), 139.4 (1C, C Ar), 136.5 (1C, C Ar), 131.7 (1C, C Ar), 128.7 (2C, CH Ar), 128.3 (2C, CH Ar), 128.0 (2C, CH Ar), 127.6 (2C, CH Ar), 127.3 (1C, CH Ar), 127.1 (2C, CH Ar), 126.6 (1C, q, J = 277.7 Hz, CF₃), 113.1 (2C, CH Ar), 48.5 (1C, CH₂ Bn), 43.8 (1C, C-1), 39.7 (1C, q, J = 27.0 Hz, C-2), 16.0 (1C, SMe). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (3F, CF₃). HRMS (EI): calculated for C₂₃H₂₂F₃NS [M]⁺ requires *m/z* 401.1420, found *m/z* 401.1281.

N-Benzyl-4-[1-(2,3-dihydrobenzofuran-5-yl)-3,3,3-trifluoropropyl]aniline, 4y.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2e** (29.2 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4y** was obtained. Chromatographic purification (gradient elution: $10:90 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4y** (56.2 mg, 71%), as a colourless oil.

Data for **4y**: $R_f 0.20$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.41 – 7.27 (5H, m, H Ar), 7.06 (2H, d, J = 8.3 Hz, 5-H), 7.06 (1H, s, 15-H), 7.00 (1H, d, J = 8.2 Hz, 9-H), 6.72 (1H, d, J = 8.2 Hz, 10-H), 6.61 (2H, d, J = 8.3 Hz, 6-H), 4.54 (2H, t, J = 8.7 Hz, 12-H₂), 4.31 (2H, s, CH₂)

Bn), 4.19 (1H, t, J = 7.3 Hz, 1-H), 3.15 (2H, t, J = 8.7 Hz, 13-H₂), 2.83 (2H, qd, J = 10.5 and 7.1 Hz, 2-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (1C, C Ar), 146.7 (1C, C Ar), 139.3 (1C, C Ar), 135.8 (1C, C Ar), 132.6 (1C, C Ar), 128.7 (2C, CH Ar), 128.2 (2C, CH Ar), 127.6 (2C, CH Ar), 127.4 (1C, C Ar), 127.4 (1C, C H Ar), 127.0 (1C, C-9), 126.7 (1C, q, J = 277.8 Hz, CF₃), 124.1 (1C, C-15), 113.2 (2C, C-6), 109.2 (1C, C-10), 71.3 (1C, C-12), 48.6 (1C, CH₂ Bn), 43.7 (1C, C-1), 40.1 (1C, q, J = 26.8 Hz, C-2), 29.8 (1C, C-13). ¹⁹F NMR (376 MHz, CDCl₃) δ –65.5 (3F, CF₃). HRMS (ESI): calculated for C₂₄H₂₃F₃NO [M+H]⁺ requires *m*/*z* 398.1727, found *m*/*z* 398.1714.

N-Benzyl-4-(3,3,3-trifluoro-1,1-diphenylpropyl)aniline, 4z.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2f** (36.1 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure at 30 °C, aniline **4z** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 10:90 \text{ Et}_2\text{O}$ – hexane) gave **4z** (54.8 mg, 65%), as a colourless oil.

Data for **4z**: R_f 0.30 (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.44 – 7.18 (15H, m, Ar), 7.10 (2H, d, J = 8.8 Hz, 5-H), 6.58 (2H, d, J = 8.8 Hz, 6-H), 4.32 (2H, s, CH₂ Bn), 4.03 (1H, br s, NH), 3.55 (2H, q, J = 10.6 Hz, 2-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 146.5 (1C, C Ar), 146.0 (2C, C Ar), 139.4 (1C, C Ar), 134.2 (1C, C Ar), 130.0 (2C, CH Ar), 129.0 (4C, CH Ar), 128.7 (2C, CH Ar), 127.9 (4C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.3 (2C, CH Ar), 126.2 (1C, q, J = 279.4 Hz, CF₃), 112.2 (2C, CH Ar), 53.5 (1C, C-1), 48.5 (1C, CH₂ Bn), 44.2 (1C, q, J = 26.4 Hz, C-2). ¹⁹F NMR (**376** MHz, CDCl₃) δ –55.8 (3F, CF₃). HRMS (EI): calculated for C₂₈H₂₄F₃N [M]⁺ requires *m/z* 431.1856, found *m/z* 431.1868.

From aniline **1a** (36.1 mg, 0.2 mmol), alkene **2g** (38.9 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP at room temperature, following the general procedure, aniline **4aa** was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 5:95 Et₂O – hexane) gave **4aa** (52.3 mg, 60%), as a colourless oil.

Data for **4aa**: $R_f 0.5$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.49 – 7.17 (12H, m, Ar), 7.11 (4H, d, J = 8.7 Hz, Ar), 6.59 (2H, d, J = 8.8 Hz, 6-H), 4.32 (2H, s, CH₂ Bn), 3.53 (2H, q, J = 10.6 Hz, 2-H₂), 2.34 (3H, s, Me). ¹³C NMR (**101** MHz, CDCl₃) δ 146.3 (1C, C Ar), 146.2 (1C, C Ar), 143.1 (1C, C Ar), 139.3 (1C, C Ar), 135.9 (1C, C Ar), 134.6 (1C, C Ar), 130.0 (2C, CH Ar), 129.0 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 127.9 (2C, CH Ar), 126.29 (1C, CH Ar), 126.26 (1C, q, J = 279.3 Hz, CF₃), 112.4 (2C, CH Ar), 53.2 (1C, C-1), 48.7 (1C, CH₂ Bn), 44.3 (1C, q, J = 26.2 Hz, C-2), 21.0 (1C, Me). ¹⁹F NMR (**376** MHz, CDCl₃) δ –55.8 (3F, CF₃). HRMS (ESI): calculated for C₂₈H₂₃F₄N [M]+ requires m/z 449.1767, found m/z 449.1768.

N-Benzyl-4-[3,3,3-trifluoro-1-(4-fluorophenyl)-1-phenylpropyl]aniline, 4ab.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2h** (39.6 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ab** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 6:94$ Et₂O – hexane) gave **4ab** (56.1 mg, 63%), as a colourless oil.

Data for **4ab**: $R_f 0.50$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.42 – 7.19 (10H, m, H Ar), 7.33 (2H, dd, J = 31.1 and 4.0 Hz, 9-H), 7.07 (2H, d, J = 8.8 Hz, 5-H), 6.97 (2H, t, J = 8.7 Hz, 10-H), 6.57 (2H, d, J = 8.8 Hz, 6-H), 4.31 (2H, s, CH₂ Bn), 4.03 (1H, br s, NH), 3.51 (2H, q, J = 10.5 Hz, 2-H₂). ¹³C NMR (**101 MHz, CDCl**₃) δ 161.3 (1C, d, J = 246.0 Hz, C-11), 146.6 (1C, C Ar), 146.0 (1C, C Ar), 141.5 (1C, d, J = 3.5 Hz, C-8), 139.3 (1C, C Ar), 134.1 (1C, C Ar), 130.8 (2C, d, J = 7.8 Hz, C-9), 129.7 (2C, CH Ar), 128.8 (2C, CH Ar), 128.0 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (2C, CH Ar), 126.4 (2C, CH Ar), 123.3 (1C, d, J = 279.4 Hz, CF₃), 114.6 (2C, d, J = 21.0 Hz, C-10), 112.3 (2C, CH Ar), 53.1 (1C, C-1), 48.5 (1C, CH₂ Bn), 44.3 (1C, q, J = 26.4 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ –55.9 (3F, CF₃), –116.8 (1F, F Ar). HRMS (ESI): calculated for C₂₉H₂₇F₃N [M+H]⁺ requires *m*/z 446.2091, found *m*/z 446.2092.

N-Benzyl-4-[1-(4-bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]aniline, 4ac.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2i** (51.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ac** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 20:80$ Et₂O – hexane) gave **4ac** (62.7 mg, 62%), as a colourless oil.

Data for **4ac**: R_f 0.5 (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (2H, d, J = 8.8 Hz, 10-H), 7.27 – 7.09 (10H, m, Ar), 7.08 (2H, d, J = 8.8 Hz, 9-H), 6.93 (2H, d, J = 8.8 Hz, 5-H), 6.45 (2H, d, J = 8.8 Hz, 6-H), 4.19 (2H, s, CH₂ Bn), 3.91 (1H, s, NH), 3.37 (2H, q, J = 10.5 Hz, 2-H₂). ¹³**C NMR (101 MHz, CDCl₃)** δ 146.7 (1C, C Ar), 145.5 (1C, C Ar), 145.0 (1C, C Ar), 139.3 (1C, C Ar), 133.6 (1C, C Ar), 131.0 (2C, CH Ar), 130.9 (2C, CH Ar), 129.8 (2C, CH Ar), 128.8 (2C, CH Ar), 128.1 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 126.5 (1C, CH Ar), 126.0 (1C, q, J = 279.4 Hz, CF₃), 120.4 (1C, C Ar), 112.3 (2C, CH Ar), 53.2 (1C, CH₂ Bn), 48.4 (1C, C-1), 44.1 (1C, q, J = 26.4 Hz, C-2). ¹⁹**F NMR (376 MHz, CDCl₃)** δ –55.9 (3F, CF₃). **HRMS** (EI): calculated for C₂₈H₂₃BrF₃N [M]⁺ requires *m/z* 509.0961, found *m/z* 509.0952.

N-Benzyl-4-[3,3,3-trifluoro-1-phenyl-1-(m-tolyl)propyl]aniline, 4ad.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2j** (38.9 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ad** was obtained. Chromatographic purification (gradient elution: $4:96 \rightarrow 15:85$ Et₂O – hexane) gave **4ad** (60.3 mg, 70%), as a colourless oil.

Data for **4ad**: $R_f 0.50 (30\% \text{ Et}_2\text{O} - \text{hexane})$. ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.41 – 7.24 (10H, m, Ar), 7.21 (1H, dt, J = 7.6 and 2.0 Hz, Ar), 7.16 (1H, t, J = 7.6, Hz, Ar), 7.11 (1H, s, J = 2.8 Hz, Ar), 7.08 (2H, d, J = 8.7 Hz, 5-H), 7.01 (1H, d, J = 7.2 Hz, Ar), 6.58 (2H, d, J = 8.7 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 3.51 (2H, q, J = 10.6 Hz, 2-H₂), 2.30 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ

146.17 (1C, C Ar), 146.11 (1C, C Ar), 146.0 (1C, C Ar), 139.2 (1C, C Ar), 137.4 (1C, C Ar), 134.6 (1C, C Ar), 130.1 (2C, CH Ar), 129.5 (1C, CH Ar), 129.1 (2C, CH Ar), 128.7 (2C, CH Ar), 127.9 (4C, CH Ar), 127.8 (1C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 126.3 (1C, CH Ar), 126.2 (1C, q, J = 279.4 Hz, CF₃), 126.1 (1C, CH Ar), 112.5 (2C, CH Ar), 53.5 (1C, C-1), 48.8 (1C, CH₂ Bn), 44.3 (1C, q, J = 26.2 Hz, C-2), 21.8 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –55.9 (3F, CF₃). HRMS (ESI): calculated for C₂₉H₂₇F₃N [M+H]⁺ requires *m*/*z* 446.2091, found *m*/*z* 446.2087.

N-Benzyl-4-[1-(3-bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]aniline, 4ae.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2k** (51.8 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ae** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 15:85$ Et₂O – hexane) gave **4ae** (60.4 mg, 60%), as a colourless oil.

Data for **4ae**: $R_f 0.50 (30\% \text{ Et}_2\text{O} - \text{hexane})$. ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.47 (1H, s, 9-H), 7.42 - 7.18 (12H, m, Ar), 7.15 (1H, t, J = 7.9 Hz, 12-H), 7.06 (2H, d, J = 8.6 Hz, 5-H), 6.59 (2H, d, J = 8.7 Hz, 6-H), 4.31 (2H, s, CH₂ Bn), 4.19 (1H, br s, NH), 3.50 (2H, q, J = 10.5 Hz, 2-H₂). ¹³**C NMR (101 MHz, CDCl**₃) δ 148.5 (1C, C Ar), 146.5 (1C, C Ar), 145.2 (1C, C Ar), 139.2 (1C, C Ar), 133.5 (1C, C Ar), 131.9 (1C, CH Ar), 129.9 (2C, CH Ar), 129.5 (1C, CH Ar), 129.5 (1C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.1 (2C, CH Ar), 127.7 (3C, CH Ar), 127.5 (1C, CH Ar), 126.6 (1C, CH Ar), 126.0 (1C, q, J = 279.2 Hz, CF₃), 122.2 (1C, C Ar), 112.5 (2C, CH Ar), 53.4 (1C, C-1), 48.5 (1C, CH₂ Bn), 44.1 (1C, q, J = 26.5 Hz, C-2). ¹⁹**F NMR (376 MHz, CDCl**₃) δ -55.9 (3F, CF₃). **HRMS** (ESI): calculated for C₂₈H₂₄BrF₃N [M+H]⁺ requires *m/z* 510.1039, found *m/z* 510.1011.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2l** (39.6 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4af** was obtained. Chromatographic purification (gradient elution: $4:96 \rightarrow 10:90$ Et₂O – hexane) gave **4af** (57.9 mg, 65%), as a colourless oil.

Data for **4af**: R_f 0.45 (30% Et₂O – hexane). ¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.11 (12H, m, Ar), 7.10 – 6.98 (2H, m, Ar), 7.02 (2H, d, J = 8.7 Hz, 5-H), 6.56 (2H, d, J = 8.8 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 4.00 (1H, s, NH), 3.76 – 3.55 (2H, m, 2-H₂). ¹³**C NMR (101 MHz, CDCl₃)** δ 161.6 (1C, d, J = 248.9 Hz, C-9), 146.6 (1C, C Ar), 145.6 (1C, C Ar), 139.4 (1C, C Ar), 133.4 (1C, C Ar), 131.7 (1C, d, J = 3.9 Hz, C-8), 131.4 (1C, d, J = 11.2 Hz, CH Ar), 129.4 (2C, CH Ar), 129.2 (1C, d, J = 8.9 Hz, CH Ar) 128.8 (2C, CH Ar), 128.0 (2C, CH Ar), 127.7 (2C, CH Ar), 127.4 (2C, CH Ar), 126.4 (2C, CH Ar), 126.2 (1C, q, J = 279.6 Hz, CF₃), 123.6 (1C, d, J = 3.2 Hz, CH Ar), 116.3 (1C, d, J = 23.9 Hz, C-10), 112.3 (2C, CH Ar), 52.0 (1C, C-1), 48.5 (1C, CH₂ Bn), 43.6 (1C, q, J = 26.8, 4.6 Hz, C-2). ¹⁹**F NMR (376 MHz, CDCl₃)** δ –56.7 (3F, d, ⁶_{JFF} = 2.0 Hz, CF₃), -103.3 (1F, q, ⁶_{JFF} = 2.1 Hz, F Ar). **HRMS** (EI): calculated for C₂₈H₂₃F₄N [M]⁺ requires *m/z* 449.1762, found *m/z* 449.1766.

N-Benzyl-4-[3,3,3-trifluoro-1-phenyl-1-(pyridin-4-yl)propyl]aniline, 4ag.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2m** (36.2 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ag** was obtained. Chromatographic purification (gradient elution: $49:50:1 \rightarrow 69:30:1$ Et₂O – hexane – AcOH) gave **4ag** (35.9 mg, 41%), as a colourless oil.

Data for **4ag**: $R_f 0.30$ (70% Et₂O – hexane with 1% of AcOH). ¹H NMR (**400 MHz, CDCl**₃) δ 8.52 (2H, s, 10-H), 7.38 – 7.20 (12H, m, Ar), 7.00 (2H, d, J = 8.8 Hz, 5-H), 6.56 (2H, d, J = 8.8 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 3.49 (2H, q, J = 10.3 Hz, 2-H₂). ¹³C NMR (**101 MHz, CDCl**₃) δ 156.3 (1C, C Ar), 148.5 (2C, C-10), 147.0 (1C, C Ar), 144.0 (1C, C Ar), 139.1 (1C, C Ar), 132.2 (1C, C Ar), 129.8 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 125.8 (1C q, J = 279.4 Hz, CF₃), 124.3 (2C, C-9), 112.5 (2C, CH Ar), 53.5 (1C, C-1), 48.4 (1C, CH₂ Bn), 43.6 (1C, q, J = 27.0 Hz, C-2). ¹⁹F NMR (**376 MHz, CDCl**₃) δ –56.1 (3F, CF₃). **HRMS** (ESI): calculated for C₂₇H₂₄F₃N₂ [M+H]⁺ requires *m*/*z* 433.1887, found *m*/*z* 433.1883.

N-Benzyl-4[(3,3,3-trifluoro-1-phenyl-1-(pyridin-3-yl)propyl]aniline, 4ah.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2n** (36.2 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ah** was obtained. Chromatographic purification (gradient elution: $10:90 \rightarrow 60:40$ Et₂O – hexane) gave **4ah** (38.1 mg, 46%), as a colourless oil.

Data for **4ah**: $R_f 0.10$ (30% Et₂O – hexane). **H NMR (400 MHz, CDCl₃)** δ 8.59 (1H, s, 9-H), 8.46 (1H, d, J = 3.3 Hz, 10-H), 7.65 (1H, dt, J = 8.2 and 1.9 Hz, 12-H), 7.39 – 7.15 (11H, m, Ar), 7.02 (2H, d, J = 8.8 Hz, 5-H), 6.56 (2H, d, J = 8.8 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 4.04 (1H, s, NH), 3.52 (2H, q, J = 10.4 Hz, 2-H₂). ¹³C **NMR (101 MHz, CDCl₃)** δ 150.2 (1C, C-9), 147.1 (1C, C Ar), 146.9 (1C, C-10), 145.0 (1C, C Ar), 141.5 (1C, C Ar), 139.2 (1C, C Ar), 137.0 (1C, C-12), 133.12 (1C, C Ar), 129.6 (2C, CH Ar), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 128.3 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 126.8 (1C, CH Ar), 125.9 (1C, q, J = 279.1 Hz, CF₃), 122.9 (1C, CH Ar), 112.5 (2C, CH Ar), 52.1 (1C, C-1), 48.4 (1C, CH₂ Bn), 43.9 (1C, q, J = 26.6 Hz, C-2). ¹⁹F **NMR (376 MHz, CDCl₃)** δ –56.0 (3F, CF₃). **HRMS** (ESI): calculated for C₂₇H₂₄F₃N₂ [M+H]⁺ requires *m*/z 433.1887, found *m*/z 433.1786.

From aniline **1a** (36.6 mg, 0.20 mmol), alkene **2o** (44.9 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ai** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4ai** (45.1 mg, 51%), as a yellow oil.

Data for **4ai**: $R_f 0.4$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, DMSO-d**₆) δ 7.41 – 7.28 (5H, m, Ar), 7.23 (1H, t, J = 7.0 Hz, NH), 7.15 – 7.01 (5H, m, Ar), 6.84 – 6.76 (4H, m, Ar), 6.58 – 6.47 (4H, m, Ar), 4.25 (2H, s, CH₂ Bn), 3.72 (3H, s, OMe), 3.45 (1H, d, J = 13.3 Hz, 8-H_A), 3.41 (1H, d,

 $J = 13.2 \text{ Hz}, 8-\text{H}_{\text{B}}, 2.89 - 2.72 \text{ (2H, m, 2-H}_2). {}^{13}\text{C NMR} (101 \text{ MHz}, \text{DMSO-d}_6) \delta 157.3 \text{ (1C, C Ar)}, 146.4 \text{ (1C, C Ar)}, 140.0 \text{ (1C, C Ar)}, 138.4 \text{ (1C, C Ar)}, 137.0 \text{ (1C, C Ar)}, 133.6 \text{ (1C, C Ar)}, 130.5 \text{ (2C, CH Ar)}, 128.9 \text{ (2C, CH Ar)}, 128.2 \text{ (4C, CH Ar)}, 127.4 \text{ (2C, CH Ar)}, 127.4 \text{ (2C, CH Ar)}, 127.1 \text{ (1C, q, } J = 279.0 \text{ Hz}, \text{CF}_3), 126.7 \text{ (1C, CH Ar)}, 126.2 \text{ (1C, CH Ar)}, 112.9 \text{ (2C, CH Ar)}, 112.0 \text{ (2C, CH Ar)}, 54.9 \text{ (1C, OMe)}, 46.9 \text{ (1C, CH}_2 \text{ Bn)}, 46.2 \text{ (1C, C-1)}, 44.4 \text{ (1C, C-8)}, 39.1 \text{ (1C, C-2)}. {}^{19}\text{F NMR} \text{ (376 MHz, DMSO-d}_6) \delta -55.9 \text{ (3F, CF}_3). \text{HRMS} \text{ (ESI)}: calculated for C}_{30}\text{H}_{29}\text{F}_3\text{NO} \text{ [M+H]}^+ \text{ requires} m/z 476.2196 \text{, found } m/z 476.2190.$

Methyl 4-[4-(benzylamino)phenyl]-6,6,6-trifluoro-4-(4-methoxyphenyl)hexanoate, 4aj.

From aniline **1a** (37.6 mg, 0.205 mmol), alkene **2p** (45.2 mg, 0.205 mmol) and trifluoromethyl reagent **3** (67.7 mg, 0.205 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4aj** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4aj** (69.0 mg, 71%), as a yellow oil.

Data for **4aj**: R_f 0.15 (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.47 – 7.27 (5H, m, Ar), 7.10 (2H, d, J = 8.9 Hz, Ar), 6.95 (2H, d, J = 8.7 Hz, 5-H), 6.81 (2H, d, J = 8.9 Hz, Ar), 6.57 (2H, d, J = 8.7 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 3.79 (3H, s, OMe), 3.60 (3H, s, CO₂Me), 2.91 (2H, q, J = 10.8 Hz, 2-H₂), 2.63 – 2.54 (2H, m, 9-H₂), 2.12 – 2.03 (2H, m, 8-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 173.9 (1C, C=O), 158.0 (1C, C Ar), 146.4 (1C, C Ar), 139.2 (1C, C Ar), 138.3 (1C, C Ar), 135.0 (1C, C Ar), 128.8 (2C, CH Ar), 128.7 (2C, CH Ar), 128.3 (2C, CH Ar), 127.5 (1C, CH Ar), 126.7 (1C, q, J = 279.1 Hz, CF₃), 113.5 (2C, CH Ar), 112.8 (2C, C-6), 55.3 (1C, OMe), 51.7 (1C, CO₂Me), 48.7 (1C, CH₂ Bn), 45.3 (1C, C-1), 41.7 (1C, q, J = 25.5 Hz, C-2), 33.2 (1C, C-9), 29.7 (1, C-8). ¹⁹F NMR (376 MHz, CDCl₃) δ –58.9 (3F, CF₃). HRMS (ESI): calculated for C₂₇H₂₉F₃NO₃ [M+H]⁺ requires *m/z* 472.2095, found *m/z* 472.2075.

From aniline **1a** (36.6 mg, 0.20 mmol), alkene **2q** (48.9 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ak** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80 \text{ Et}_2\text{O}$ – hexane) gave **4ak** (60.0 mg, 61%), as a colourless oil.

Data for **4ak**: $R_f 0.25$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.41 – 7.27 (5H, m, Ar), 7.13 (2H, d, J = 8.9 Hz, Ar), 7.10 (1H, dd, J = 5.0 and 1.2 Hz, 13-H), 6.99 (2H, d, J = 8.7 Hz, 5-H), 6.90 (1H, dd, J = 5.1 and 3.4 Hz, 12-H), 6.83 (2H, d, J = 8.9 Hz, Ar), 6.73 (1H, dd, J = 3.4 and 1.1 Hz, 11-H), 6.59 (2H, d, J = 8.7 Hz, 6-H), 4.31 (2H, s, CH₂ Bn), 3.80 (3H, s, OMe), 3.00 (2H, qd, J = 10.8 and 2.0 Hz, 2-H₂), 2.65 – 2.58 (2H, m, 9-H₂), 2.57 – 2.51 (2H, m, 8-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 157.9 (1C, C Ar), 146.4 (1C, C Ar), 145.1 (1C, C Ar), 139.3 (1C, C Ar), 138.9 (1C, C Ar), 135.6 (1C, C Ar), 128.8 (2C, CH Ar), 128.6 (2C, CH Ar), 128.3 (2C, CH Ar), 127.9 (2C, CH Ar), 127.5 (1C, CH Ar), 126.9 (1C, C-12), 126.8 (1C, q, J = 279.0 Hz, CF₃), 124.2 (1C, C-11), 123.1 (1C, C-13), 113.5 (2C, CH Ar), 112.8 (2C, CH Ar), 55.3 (1C, OMe), 48.8 (1C, CH₂ Bn), 45.8 (1C, C-1), 41.5 (1C, q, J = 25.5 Hz, C-2), 40.7 (1C, C-9), 25.2 (1C, C-8). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.81 (3F, CF₃). HRMS (ESI): calculated for C₂₉H₂₉F₃NOS [M+H]⁺ requires *m/z* 496.1917, found *m/z* 496.1915.

N-Benzyl-4-[1,1,1-trifluoro-3-(4-methoxyphenyl)-5-(pyridin-3-yl)pentan-3-yl]aniline, 4al.

From aniline **1a** (36.6 mg, 0.20 mmol), alkene **2r** (47.9 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4al** was obtained. Chromatographic purification (gradient elution: $20:100 \rightarrow 80:20$ Et₂O – hexane) gave **4al** (75.4 mg, 77%), as a colourless oil.

Data for **4al**: $R_f 0.1$ (70% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 8.44 (1H, d, J = 3.9 Hz, 12-H), 8.32 (1H, s, 11-H), 7.43 (1H, dt, J = 7.8 and 2.0 Hz, 14-H), 7.40 – 7.27 (5H, m, Ar), 7.21 (1H, dd, J = 7.8 and 4.8 Hz, 13-H), 7.11 (2H, d, J = 8.9 Hz, Ar), 6.96 (2H, d, J = 8.7 Hz, 5-H), 6.82 (2H, d, J = 8.9 Hz, Ar), 6.58 (2H, d, J = 8.7 Hz, 6-H), 4.30 (2H, s, CH₂ Bn), 3.79 (3H, s, OMe), 3.12 – 2.93 (2H, m, 2-H₂), 2.50 (2H, m, 9-H₂), 2.33 (2H, m, 8-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 158.0 (1C, C Ar), 149.7 (1C, C-12), 147.2 (1C, C-11), 146.6 (1C, C Ar), 139.4 (1C, C Ar), 139.0 (1C, C Ar), 137.9 (1C, C Ar), 136.2 (1C, C-14), 135.5 (1C, C Ar), 128.8 (2C, CH Ar), 128.5 (2C, CH Ar), 128.0 (2C, CH Ar), 127.5 (1C, CH Ar), 126.9 (1C, q, J = 279.5 Hz, CF₃), 123.6

(1C, C-13), 113.6 (2C, CH Ar), 112.7 (2C, CH Ar), 55.3 (1C, OMe), 48.6 (1C, CH₂ Bn), 45.8 (1C, C-1), 41.2 (1C, q, J = 25.6 Hz, C-2), 40.5 (1C, C-9), 28.2 (1C, C-8). ¹⁹F NMR (376 MHz, CDCl₃) δ –58.8 (3F, CF₃) HRMS (ESI): calculated for C₃₀H₂₃₀F₃N₂O [M+H]⁺ requires *m*/*z* 491.2305, found *m*/*z* 491.2301.

N-Benzyl-4-[5-(2,2,2-trifluoroethyl)-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl]aniline, 4am.

From aniline **1a** (36.6 mg, 0.20 mmol), alkene **2s** (41.3 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4am** was obtained. Chromatographic purification (gradient elution: $5:95 \rightarrow 10:90$ Et₂O – hexane) gave **4am** (38.0 mg, 42%), as a colourless oil and a 2:1 mixture of unreacted alkene **2s** : trifluoromethyl alkene **2s-CF₃** (25.8 mg).

Data for **4am**: $R_f 0.5$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.39 – 7.26 (5H, m, Ar), 7.25 – 7.18 (2H, m, Ar), 7.13 – 7.07 (4H, m, Ar), 7.06 – 6.99 (2H, m, Ar), 6.92 (2H, d, J = 8.6 Hz, Ar), 6.57 (2H, d, J = 8.6 Hz, 6-H), 4.29 (2H, s, CH₂ Bn), 3.49 (2H, q, J = 10.2 Hz, 2-H₂), 2.90 (4H, s, 10-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 145.7 (2C, C Ar), 143.9 (1C, C Ar), 139.7 (2C, C Ar), 138.7 (2C, C Ar), 131.5 (2C, CH Ar), 128.9 (2C, CH Ar), 128.8 (2C, CH Ar), 128.0 (2C, CH Ar), 127.6 (1C, CH Ar), 127.5 (2C, CH Ar), 126.7 (2C, CH Ar), 126.4 (1C, q, J = 280.7 Hz, CF₃), 125.9 (2C, CH Ar), 113.2 (2C, CH Ar), 53.1 (1C, C-1), 49.0 (1C, CH₂ Bn), 46.4 (1C, C-2), 34.1 (2C, C-10). ¹⁹F NMR (**376** MHz, CDCl₃) δ –56.1 (3F, CF₃). HRMS (ESI): calculated for C₃₀H₂₇F₃N [M+H]⁺ requires *m/z* 458.2091, found *m/z* 458.2094.

Partial data for **2s-CF₃** (from the mixture): $R_f 0.5$ (5% Et₂O – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 6.96 (8H, m, Ar), 6.03 (1H, q, J = 8.1 Hz, 2-H), 3.57 – 3.26 (2H, m, CH₂), 3.10 – 2.75 (2H, m, CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ –56.03 (3F, CF₃).

N-Benzyl-4-[5-(2,2,2-trifluoroethyl)-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl]aniline, 4an.

From aniline **1a** (36.6 mg, 0.20 mmol), alkene **2t** (45.2 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4an** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 50:50 \text{ Et}_2\text{O}$ – hexane) gave **4an** (16.8 mg, 20%), as a colourless oil.

Data for **4an**: $R_f 0.1$ (30% Et₂O – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (5H, m, Ar), 7.19 (2H, d, J = 8.6 Hz, 5-H), 6.98 (1H, d, J = 1.2 Hz, Ar), 6.69 (1H, s, Ar), 6.68 (2H, d, J = 8.4 Hz, 6-H) 4.31 (2H, s, CH₂ Bn), 3.92 (3H, s, OMe), 3.84 (3H, s, OMe), 3.38 (1H, d, J = 13.2 Hz, 8-H_A), 3.27 (1H, d, J = 13.3 Hz, 8-H_B), 3.00 – 2.89 (1H, m, 2-H_A), 2.69 (1H, dq, J = 14.9 and 10.8 Hz, 2-H_B). ¹³C NMR (101 MHz, CDCl₃) δ 150.8 (1C, C Ar), 149.8 (1C, C Ar), 139.3 (1C, C Ar), 138.2 (1C, C Ar), 137.0 (1C, C Ar), 133.1 (1C, C Ar), 132.4 (1C, C Ar), 128.8 (2C, CH Ar), 128.2 (1C, C H Ar), 127.7 (4C, CH Ar), 126.5 (1C, q, J = 278.5 Hz, CF₃), 114.0 (2C, C-6) 108.1 (1C, CH Ar), 107.7 (1C, CH Ar), 56.6 (1C, OMe), 56.4 (1C, OMe), 50.5 (1C, C-1), 49.4 (1C, CH₂ Bn), 46.0 (1C, C-8), 44.5 (1C, q, J = 26.3 Hz, C-2). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2 (3F, CF₃). HRMS (ESI): calculated for C₂₅H₂₅F₃NO₂ [M+H]⁺ requires *m/z* 428.1832, found *m/z* 428.1825.

*N-B*enzyl-4-(3,3,3-trifluoro-1-(4-methoxyphenyl)-2-methylpropyl)aniline, 4ao.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2u** (29.6 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ao** was obtained as a 60:40 diastereometric ratio. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85 \text{ Et}_2\text{O}$ – hexane) gave **4ao** (55.3 mg, 70%) in a 60:40 diastereometric ratio, as a colourless oil.

Data for **4ao-major isomer** (from the mixture): $R_f 0.30$ (30% Et₂O – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.25 (5H, m, Ar), 7.17 (2H, d, J = 8.7 Hz, 9-H), 7.10 (2H, d, J = 8.5 Hz, 5-H), 6.84 (2H, d, J = 8.9 Hz, 10-H), 6.57 (2H, d, J = 8.6 Hz, 6-H), 4.29 (2H s, CH₂ Bn), 3.96 (1H, d, J = 9.5 Hz, 1-H), 3.78 (3H, s, OMe), 3.17 – 2.98 (1H, m, 2-H), 1.07 (3H, d, J = 7.0 Hz, Me). ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (1C, C Ar), 146.7 (1C, C Ar), 139.5 (1C, C Ar), 134.9 (1C, C Ar), 132.2 (1C, C Ar), 129.3 (2C, CH Ar), 128.7 (2C, CH Ar), 128.5 (2C, CH Ar), 127.7 (2C, CH Ar), 127.3 (1C, CH Ar), 128.3 (1C, q, J = 281.0 Hz, CF₃), 114.0 (2C, CH Ar), 112.9 (2C, CH Ar), 55.3 (1C, OMe), 50.7 (1C, C-1), 48.6 (1C, CH₂ Bn), 41.9 (1C, q, J = 24.0 Hz, C-2), 13.0 (1C, d, J = 3.1 Hz, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –68.5 (3F, CF₃). HRMS (EI): calculated for C₂₄H₂₄F₃NO [M]⁺ requires *m*/z 399.1805, found *m*/z 399.1784.

Partial data for **4ao-minor isomer** (from the mixture): The NMR signals overlapped with those of **4ao-major isomer**, except for: ¹H NMR (**400** MHz, CDCl₃) δ 7.21 (2H, d, *J* = 8.7 Hz, 9-H), 7.05 (2H, d, *J* = 8.6 Hz, 5-H), 6.82 (2H, d, J = 8.7 Hz, 10-H), 6.58 (2H, d, J = 8.6 Hz, 6-H), 3.92 (1H, d, *J* = 9.9 Hz, 1-H), 3.77 (3H, s, OMe), 1.09 (3H, d, *J* = 6.9 Hz, Me). ¹³C NMR (**101** MHz, CDCl₃) δ 158.0 (1C, C Ar), 146.9 (1C, C Ar), 135.8 (1C, C Ar), 131.4 (1C, C Ar), 128.7 (2C, CH Ar), 128.6 (1C, CH Ar), 127.6 (2C, CH Ar), 127.4 (1C, CH Ar), 113.8 (2C, CH Ar), 113.1 (2C, CH Ar), 55.2 (1C, OMe), 50.9 (1C, C-1), 48.5 (1C, CH₂ Bn), 42.0 (1C, q, *J* = 23.9 Hz, C-2), 13.2 (1C, d, *J* = 3.1 Hz, Me). ¹⁹F NMR (**376** MHz, CDCl₃) δ -68.4 (3F, CF₃).

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2v** (35.2 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP at room temperature, following the general procedure, aniline **4ap** was obtained. Chromatographic purification (gradient elution: $15:85 \rightarrow 20:80$ Et₂O – hexane) gave **4ap** (42.5 mg, 50%), as a colourless oil.

Data for **4ap**: $R_f 0.10 (30\% \text{ Et}_2\text{O} - \text{hexane})$. ¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.27 (5H, m, Ar), 6.97 (2H, d, J = 8.5 Hz, 9-H), 6.78 (1H, s, Ar), 6.61 (2H, d, J = 8.5 Hz, 10-H), 6.43 (1H, s, Ar), 4.42 (1H, d, J = 6.9 Hz, 1-H), 4.32 (2H, s, CH₂ Bn), 4.03 (1H, br s, NH), 3.89 (3H, s, OMe), 3.74 (3H, s, OMe), 3.28 – 3.18 (1H, m, 3-H_A), 3.15 – 2.99 (2H, m, 3-H_B and 2-H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9 (2C, C Ar), 147.2 (1C, C Ar), 139.4 (1C, C Ar), 136.5 (1C, C Ar), 132.7 (1C, C Ar),

132.0 (1C, C Ar), 129.1 (2C, C-9), 128.7 (2C, CH Ar), 127.7 (2C, CH Ar), 128.2 (1C, q, J = 278.3 Hz, CF₃), 127.4 (1C, CH Ar), 113.1 (2C, C-10), 108.06 (1C, CH Ar), 107.0 (1C, CH Ar), 56.2 (2C, 2 x OMe), 52.9 (1C, q, J = 25.7 Hz, C-2), 51.3 (1C, C-1), 48.6 (1C, CH₂ Bn), 32.2 (1C, C-3). ¹⁹F NMR (376 MHz, CDCl₃) δ –70.3 (3F, CF₃). HRMS (EI): calculated for C₂₅H₂₄F₃NO₂ [M]⁺ requires *m*/*z* 427.1754, found *m*/*z* 427.1749.

N-Benzyl-4-[6-methoxy-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl]aniline, 4aq.

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2w** (32.0 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4aq** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85$ Et₂O – hexane) gave **4aq** (66.4 mg, 81%) as a colourless oil.

Data for **4aq**: $R_f 0.30$ (20% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.45 – 7.23 (5H, m, Ar), 6.90 (2H, d, J = 8.5 Hz, 10-H), 6.82 (1H, d, J = 8.2 Hz, 8-H), 6.67 (1H, s, 5-H), 6.66 (1H, d, J = 8.3 Hz, 7-H), 6.59 (2H, d, J = 8.6 Hz, 11-H), 4.31 (2H, s, CH₂ Bn), 4.17 (1H, d, J = 6.8 Hz, 1-H), 3.97 (1H, d, J = 3.6 Hz, NH), 3.79 (3H, s, OMe), 2.91 (2H, t, J = 6.5 Hz, 4-H₂), 2.76 – 2.59 (1H, m, 2-H), 2.18 (1H, dtd, J = 13.5, 6.1 and 3.9 Hz, 3-H_A), 1.90 (1H, ddt, J = 13.7, 8.9 and 7.0 Hz, 3-H_B). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (1C, C Ar), 146.8 (1C, C Ar), 139.5 (1C, C Ar), 137.2 (1C, C Ar), 134.9 (1C, C Ar), 131.6 (1C, C-8), 130.2 (1C, C Ar), 129.6 (2C, C-10), 128.7 (2C, CH Ar), 128.1 (1C, q, J = 281.1 Hz, CF₃), 127.7 (2C, CH Ar), 127.4 (1C, CH Ar), 112.9 (2C, C-11), 112.8 (1C, C-7), 112.7 (1C, C-5), 55.2 (1C, OMe), 48.6 (1C, CH₂ Bn), 46.7 (1C, q, J = 24.4 Hz, C-2), 43.0 (1C, C-1), 27.7 (1C, C-4), 20.9 (1C, C-3). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.5 (3F, CF₃). HRMS (EI): calculated for C₂₅H₂₄F₃NO [M]⁺ requires *m/z* 411.1805, found *m/z* 411.1815.

N-Benzyl-4-(3,3,3-trifluoro-1,1-diphenylpropyl)aniline, 4ar.

From aniline **1a** (36.0 mg, 0.20 mmol), alkene **2x** (38.2 mg, 0.20 mmol) and trifluoromethyl reagent **3** (64.9 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ar** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85$ Et₂O – hexane) gave **4ar** (61.1 mg, 70%), as a colourless oil.

Data for **4ar**: $R_f 0.5$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.43 – 7.27 (10H, m, Ar), 7.23 (3H, m, Ar), 7.17 (4H, m, Ar), 6.58 (2H, d, J = 8.6 Hz, H-6), 4.29 (2H, s, CH₂ Bn), 4.28 – 4.10 (1H, m, 2-H), 1.27 (3H, d, J = 6.8 Hz, Me). ¹³C NMR (**101** MHz, CDCl₃) δ 145.7 (1C, C Ar), 139.0 (1C, C Ar), 130.9 (1C, C Ar), 129.9 (1C, C Ar), 129.2 (1C, C Ar), 128.8 (3C, CH Ar), 128.1 (1C, q, J = 282.8 Hz, CF₃), 128.0 (3C, CH Ar), 127.7 (3C, CH Ar), 127.62 (3C, CH Ar), 127.56 (3C, CH Ar), 125.9 (2C, CH Ar), 112.5 (2C, CH Ar), 58.2 (1C, C-1), 49.0 (1C, CH₂ Bn), 42.7 (1C, q, J = 23.6 Hz, C-2), 11.7 (1C, Me). ¹⁹F NMR (**376** MHz, CDCl₃) δ –61.6 (3F, CF₃). HRMS (ESI): calculated for C₂₉H₂₇F₃N [M+H]⁺ requires m/z 446.2091, found m/z 446.2084.

N-Benzyl-4-[1-phenyl-2-(trifluoromethyl) cyclohexyl] aniline, 4 as.

From aniline **1a** (31.6 mg, 0.2 mmol), alkene **2y** (36.7 mg, 0.2 mmol), and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4as** was obtained as a 65:35 diastereometric ratio. Chromatographic purification (gradient elution: 0:100 \rightarrow 10:90 Et₂O – hexane) gave **4as** (24 mg, 37%) in a 65:35 diastereometric ratio, as a colourless oil.

Data for **4as-major isomer** (from the mixture): $R_f 0.50 (30\% \text{ Et}_2\text{O} - \text{hexane})$. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.09 (10H, m, Ar), 7.09 (2H, d, J = 8.7 Hz, 9-H), 6.61 (2H, d, J = 8.7 Hz, 10-H), 4.30 (2H, s, CH₂ Bn), 4.08 (1H, s, NH), 3.44 – 3.30 (1H, m, 2-H), 2.74 – 2.59 (1H, m, CH₂ *c*-Hex), 2.48 – 2.36 (1H, m, CH₂ *c*-Hex), 2.14 – 2.00 (2H, m, CH₂ *c*-Hex), 1.77 – 1.65 (1H, m, CH₂ *c*-
Hex), 1.66 – 1.47 (2H, m, CH₂ *c*-Hex), 1.41 – 1.21 (1H, m, CH₂ *c*-Hex). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (1C, C Ar), 145.9 (1C, C Ar), 139.4 (1C, C Ar), 135.3 (1C, C Ar), 128.7 (2C, CH Ar), 128.4 (1C, q, *J* = 283.8 Hz, CF₃), 128.0 (2C, CH Ar), 127.8 (2C, CH Ar), 127.7 (2C, CH Ar), 127.5 (1C, CH Ar), 127.1 (1C, CH Ar), 125.8 (2C, CH Ar), 113.1 (2C, C-10), 48.7 (1C, CH₂ Bn), 46.7 (1C, C-1), 45.9 (1C, q, *J* = 20.9 Hz, C-2), 31.8 (1C, CH₂ *c*-Hex), 23.2 (1C, q, *J* = 3.0 Hz, C-4), 22.0 (1C, CH₂ *c*-Hex), 21.8 (1C, CH₂ *c*-Hex). ¹⁹F NMR (376 MHz, CDCl₃) δ –58.0 (3F, CF₃), -58.2 (3F, CF₃). HRMS (EI): calculated for C₂₆H₂₆F₃N [M]⁺ requires *m/z* 409.2012, found *m/z* 409.2022.

Partial data for **4as-minor isomer** (from the mixture): The NMR signals overlapped with those of **4as-major isomer**, except for: ¹H NMR (**400 MHz, CDCl**₃) δ 7.03 (2H, d, *J* = 8.7 Hz, 9-H), 6.53 (2H, d, *J* = 8.7 Hz, 10-H), 4.27 (2H, s, CH₂ Bn). ¹³C NMR (**101 MHz, CDCl**₃) δ 147.1 (1C, C Ar), 139.5 (1C, C Ar), 135.7 (1C, C Ar), 127.4 (1C, CH Ar), 125.7 (1C, C Ar), 112.4 (2C, C-10), 47.0 (1C, C-2), 32.9 (1C, CH₂ *c*-Hex), 23.3 (1C, q, *J* = 3.2 Hz, C-4), 22.2 (1C, CH₂ *c*-Hex), 22.1 (1C, CH₂ *c*-Hex).

(E)-N-Benzyl-4-[5,5,5-trifluoro-1-(4-methoxyphenyl)pent-2-en-1-yl]aniline, 4at.

From aniline **1a** (36.6 mg, 0.2 mmol), alkene **2z** (32 mg, 0.2 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4at** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 15:85$ Et₂O – hexane) gave **4at** (44.9 mg, 55%), as a colourless oil.

Data for **4at**: *Rf* 0.4 (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.39 – 7.26 (5H m, Ar), 7.06 (2H, d, *J* = 8.6 Hz, 11-H), 6.96 (2H, d, *J* = 8.5 Hz, 7-H), 6.83 (2H, d, *J* = 8.7 Hz, 12-H), 6.65 (2H, d, *J* = 8.5 Hz, 8-H), 6.12 (1H, dd, *J* = 15.4 and 7.3 Hz, 2-H), 5.33 (1H, dtd, *J* = 15.4, 7.1 and 1.3 Hz, 3-H), 4.60 (1H, d, *J* = 7.3 Hz, 1-H), 4.30 (2H, s, CH₂ Bn), 3.78 (3H, s, OMe), 2.84 (2H, qd, *J* = 10.6 and 7.2 Hz, 4-H₂). ¹³C NMR (**101** MHz, CDCl₃) δ 158.2 (1C, C Ar), 146.1 (1C, C Ar), 141.2 (1C, C-2), 139.0 (1C, C Ar), 135.7 (1C, C Ar), 132.9 (1C, C Ar), 129.5 (2C, CH Ar), 129.4 (2C, CH Ar), 127.9 (2C, CH Ar), 127.5 (1C, CH Ar), 126.0 (1C, q, *J* = 276.7 Hz, CF₃), 118.86 (1C, C-3), 113.9 (2C, CH Ar), 113.6 (2C, CH Ar), 55.4 (1C, OMe), 52.3 (1C, C-1), 49.0 (1C, CH₂ Bn), 37.4 (1C, q, *J* = 29.6 Hz, C-4). ¹⁹F NMR (**376** MHz, CDCl₃) δ -66.4 (3F, CF₃). HRMS (EI): calculated for C₂₅H₂₅F₃NO [M+H]⁺ requires *m*/*z* 412.1883, found 412.1885.

(E)-N-Benzyl-4-[5,5,5-trifluoro-1-(4-methoxyphenyl)-4,4-dimethylpent-2-en-1-yl]aniline, 4au.

From aniline **1a** (36.7 mg, 0.20 mmol), alkene **2aa** (37.7 mg, 0.20 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4au** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 5:95$ Et₂O – hexane) gave **4au** (44.5 mg, 52%), as a colourless oil.

Data for **4au**: $R_f 0.4$ (30% Et₂O – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.43 – 7.28 (5H, m, Ar), 7.07 (2H, d, J = 8.7 Hz, 11-H), 6.96 (2H, d, J = 8.5 Hz, 7-H), 6.85 (2H, d, J = 8.7 Hz, 12-H), 6.62 (2H, d, J = 8.5 Hz, 8-H), 6.06 (1H, dd, J = 15.7 and 7.5 Hz, 2-H), 5.49 (1H, d, J = 15.8 Hz, 3-H), 4.60 (1H, d, J = 7.5 Hz, 1-H), 4.32 (2H, s, CH₂ Bn), 3.80 (3H, s, OMe), 1.25 (6H, s, 2 x Me). ¹³C **NMR (101 MHz, CDCl**₃) δ 158.1 (1C, C Ar), 146.4 (1C, C Ar), 139.4 (1C, C Ar), 136.1 (1C, C Ar), 135.2 (1C, C-3), 133.0 (1C, C Ar), 131.1 (1C, C-2), 129.5 (2C, CH Ar), 129.4 (2C, CH Ar), 128.8 (2C, CH Ar), 128.6 (1C, q, J = 282.0 Hz, CF₃), 127.8 (2C, CH Ar), 127.4 (1C, CH Ar), 113.9 (2C, CH Ar), 113.3 (2C, CH Ar), 55.4 (1C, OMe), 52.2 (1C, C-1), 48.9 (1C, CH₂ Bn), 42.4 (1C, q, J = 25.3 Hz, C-4), 21.4 (2C, 2 x Me). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.9 (3F, CF₃). HRMS (ESI): calculated for C₂₇H₂₉F₃NO [M+H]⁺ requires *m/z* 440.2196, found *m/z* 440.2185.

N-Benzyl-4-methyl-2-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, S10.

From aniline 1v (39.5 mg, 0.20 mmol), alkene 2a (26.8 mg, 0.20 mmol) and trifluoromethyl reagent 3 (66.0 mg, 0.20 mmol), in 0.5 mL of HFIP, following the general procedure, aniline S10 was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80$ Et₂O – hexane) gave S10 (21.1 mg, 26%), as a colourless oil.

Data for **S10**: R_f 0.50 (20% Et₂O – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (3H, m, H Ar), 7.26 (2H, d, J = 8.7 Hz, 11-H), 7.18 (2H, d, J = 8.0, H Ar), 7.13 (1H, d, J = 2.0 Hz, 9-H), 7.07 (1H, dd, J = 8.1 and 1.3 Hz, 7-H), 6.93 (1H, d, J = 8.7 Hz, 6-H), 6.68 (2H, d, J = 8.1 Hz, 12-H), 4.42 (1H, br s, 1-H), 4.31 (2H, s, CH₂Bn), 3.90 (3H, s, OMe), 3.13 – 2.89 (2H, m, 2-H₂), 2.42 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (1C, C Ar), 147.3 (1C, C Ar), 142.5 (1C, C Ar), 139.0 (1C, C Ar), 136.1 (1C, C Ar), 133.4 (1C, C Ar), 129.2 (2C, CH Ar), 128.6 (3C, CH Ar) 128.4 (2C, CH Ar), 127.5 (2C, CH Ar), 127.3 (1C, CH Ar), 126.8 (1C, q, J = 277.5 Hz, CF₃), 114.4 (2C, CH Ar), 55.4 (1C, OMe), 48.7 (1C, CH₂Bn), 39.17 (1C, q, J = 27.1 Hz, C-2), 38.99 (1C, q, J = 2.9 Hz, C-1) 20.9 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –64.1 (3F, CF₃).

4.1. Unsuccessful or low yielding substrates

5. Derivatization of trifluoromethyl products

5.1. General procedure for the synthesis of sulfonamides

To an oven-dried vial/flask a solution of aniline in CH_2Cl_2 (0.1 M) was added, followed by triethylamine (2-3 equiv.), pyridine (0-2 equiv.) and sulfonyl chloride (1.2-2.1 equiv.) at 0 °C. The reaction mixture was let warm up to rt and stirred overnight. The reaction mixture was diluted with CH_2Cl_2 , extracted with water and the organic layers dried over Na_2SO_4 . The resulting crude was purified by silica gel chromatography using the appropriate mixture of eluents.

N-Benzyl-*N*-{4-[(1R,2R)-6-methoxy-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1yl]phenyl}-2,4-dinitrobenzenesulfonamide, 5.

From aniline **4aq** (149.0 mg, 0.362 mmol), triethylamine (101 μ L, 0.734 mmol, 2.0 equiv.), pyridine (58.6 μ L, 0.734 mmol, 2.0 equiv.) and 2,4-dinitrosulfonyl chloride (145 mg, 0.543 mmol, 1.5 equiv.), in 3.6 mL of dry CH₂Cl₂, following the general procedure, sulfonamide **5** was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 40:70 Et₂O – hexane) gave **5**, as a brown solid. The solid was washed 3 times using a mixture of CH₂Cl₂/pentane to give a white solid (75.1 mg, 32%), that was recrystalized using THF – pentane, to give white crystals for x-ray diffraction.

Data for **5**: $R_f 0.2$ (40% Et₂O – hexane). **m.p.**: 197 °C (10% THF – pentane). ¹**H NMR (400 MHz, CDCl₃)** δ 8.47 (1H, d, J = 2.2 Hz, 15-H), 8.22 (1H, dd, J = 8.7 and 2.2 Hz, 14-H), 7.66 (1H, d, J = 8.7 Hz, 13-H), 7.31 – 7.18 (5H, m, Ar), 6.97 (4H, br s, 10-H and 11-H) 6.63 (1H, d, J = 2.7 Hz, 5-H), 6.60 (1H, dd, J = 8.5 and 2.7 Hz, 7-H), 6.51 (1H, d, J = 8.5 Hz, 8-H), 4.98 (1H, d, J = 14.7 Hz, CH_A Bn), 4.92 (1H, d, J = 14.8 Hz, CH_B Bn), 4.13 (1H, d, J = 8.6 Hz, 1-H), 3.77 (3H, s, OMe), 2.90 (2H, t, J = 6.4 Hz, 4-H₂), 2.64 – 2.52 (1H, m, 2-H), 2.23 – 2.11 (1H, m, 3-H_A), 1.91 – 1.77 (1H, m, 3-H_B). ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (1C, C Ar), 149.8 (1C, C Ar), 148.1 (1C, C Ar), 146.7 (1C, C Ar), 137.8 (1C, C Ar), 137.2 (1C, C Ar), 135.6 (1C, C Ar), 135.5 (1C, C Ar), 134.0 (1C, C-13), 131.2 (1C, C-8), 130.2 (2C, CH Ar), 129.9 (2C, CH Ar), 129.0 (1C, C Ar), 128.9 (2C, CH Ar), 128.7 (2C, CH Ar), 128.2 (1C, C Mar), 125.4 (1C, C-14), 119.5 (1C, C-15), 113.1 (1C, C-5), 113.0 (1C, C-7), 57.1 (1C, CH₂ Bn), 55.4 (1C, OMe), 47.1 (1C, J = 25.0 Hz, C-2), 44.2 (1C, C-1), 28.3 (1C, C-4), 21.8 (1C, C-3). ¹⁹F NMR (376 MHz, CDCl₃) δ –69.34 (3F, CF₃). HMRS (ESI): calculated for C₃₁H₃₀F₃N₄O₇S [M+NH₄]⁺ requires *m*/z 659.1782, found *m*/z 659.1783.

N-Benzyl-4-methyl-N-{4-[3,3,3-trifluoro-1-(4-

methoxyphenyl)propyl]phenyl}benzenesulfonamide, S11.

From aniline **4a** (500.0 mg, 1.297 mmol), triethylamine (542 μ L, 3.892 mmol, 3.0 equiv.) and para-toluenesulfonyl chloride (519.3 mg, 2.724 mmol, 2.1 equiv.) in 13 mL of dry CH₂Cl₂, following the general procedure, sulfonamide **S11** was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 30:70 Et₂O – hexane) gave **S11**, as a colourless oil.

Data for **S11**: R_f 0.1 (30% EtOAc – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.49 (2H, d, J = 8.3 Hz, Ar), 7.25 (2H, d, J = 8.4 Hz, Ar), 7.22 – 7.15 (5H, m, Ar), 7.07 (2H, d, J = 8.8 Hz, 10-H), 7.05 (2H, d, J = 8.8 Hz, 5-H), 6.91 (2H, d, J = 8.5 Hz, 9-H), 6.82 (2H, d, J = 8.7 Hz, 6-H), 4.68 (2H, s, CH₂ Bn), 4.19 (1H, t, J = 7.4 Hz, 1-H), 3.78 (3H, s, OMe), 2.84 – 2.69 (2H, m, 2-H₂), 2.43 (3H, s, Me). ¹³C NMR (**101 MHz, CDCl**₃) δ 158.6 (1C, C Ar), 143.6 (1C, C Ar), 142.8 (1C, C Ar), 137.8 (1C, C Ar), 136.1 (1C, C Ar), 135.8 (1C, C Ar), 134.3 (1C, C Ar), 129.6 (2C, CH Ar), 129.2 (2C, CH Ar), 128.7 (2C, CH Ar), 128.6 (2C, CH Ar), 128.5(2C, CH Ar), 128.1 (2C, CH Ar), 127.8 (2C, CH Ar), 127.7 (1C, CH Ar), 126.4 (1C, q, J = 277.8 Hz, CF₃), 114.2 (2C, CH Ar), 55.4 (1C, OMe), 54.8 (1C, CH₂ Bn), 43.9 (1C, C-1), 34.0 (1C, q, J = 27.3 Hz, C-2), 21.7 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.63 (3F, CF₃).

4-Methyl-N-tosyl-N-{4-[5,5,5-trifluoro-1-(4-

methoxyphenyl)pentyl]phenyl}benzenesulfonamide, S12.

From aniline **7** (57.0 mg, 0.176 mmol), triethylamine (75 μ L, 0.528 mmol, 3.0 equiv.), and para-toluenesulfonyl chloride (75 mg, 0.388 mmol, 2.2 equiv.) in dry CH₂Cl₂ (0.1M), following the general procedure, sulfonamide **S12** was obtained. Chromatographic purification (gradient elution: 0:100 \rightarrow 80:20 EtOAc – hexane) gave **S12** (85 mg, 76%), as a colourless oil.

Data for **S12**: R_f 0.35 (50% EtOAc – hexane). ¹H NMR (300 MHz, CDCl₃) δ 7.79 (4H, d, J = 8.1 Hz, Ar), 7.31 (4H, d, J = 8.1 Hz, Ar), 7.18 (2H, d, J = 8.3 Hz, 11-H), 7.13 (2H, d, J = 8.6 Hz, 7-H), 6.94 (2H, d, J = 8.2 Hz, 12-H), 6.86 (2H, d, J = 8.6 Hz, 8-H), 3.86 (1H, t, J = 7.6 Hz, 1-H), 3.80 (3H, s, OMe), 2.20 – 1.50 (6H, m, 2-H₂, 3-H₂ and 4-H₂). HMRS (ESI): calculated for C₃₂H₃₆F₃N₂O₅S₂ [M+NH₄]⁺ requires *m/z* 649.2013, found *m/z* 649.2016.

5.2. General procedure for hydrogenation

To an oven-dried vial, *N*-Benzyl aniline (1 equiv.) and 10 mol % Pd/C (0.1 equiv.) were added. Then, MeOH was added and the reaction mixture was kept under hydrogen for the specified time. The reaction mixture was diluted with dichloromethane, filtered through a pad of celite and evaporated under reduced pressure. The crude was purified by silica gel chromatography using the appropriate mixture of eluents to give the corresponding free anilines.

4-[3,3,3-Trifluoro-1-(4-methoxyphenyl)propyl]aniline, 4c.

From *N*-Benzyl aniline **4a** (30 mg, 1 equiv., 0.08 mmol) and Pd/C (8.3 mg, 0.1 equiv., 0.008 mmol) in 3.9 mL of MeOH under 4 bar hydrogen pressure, following the general procedure, aniline **4c** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 50:50$ EtOAc – hexane) gave **4c** (16 mg, 70%) as a colourless oil. Spectroscopy data matches with those previously reported.

4-[5,5,5-Trifluoro-1-(4-methoxyphenyl)pentyl]aniline, 7.

From *N*-Benzyl aniline **4at** (180 mg, 1 equiv., 0.437 mmol) and Pd/C (48 mg, 0.1 equiv., 0.0437 mmol) in 2.2 mL of MeOH under hydrogen balloon pressure, following the general procedure, aniline **7** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 30:70$ EtOAc – hexane) gave **7** (101 mg, 71%) as a colourless oil.

Data for 7: R_f 0.2 (30% EtOAc – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (2H, d, J = 8.7 Hz, 11-H), 7.01 (2H, d, J = 8.4 Hz, 7-H), 6.83 (2H, d, J = 8.7 Hz, 12-H), 6.65 (2H, d, J = 8.4 Hz, 8-H), 3.78 (3H, s, OMe), 3.83 – 3.70 (1H, m, 1-H), 2.16 – 1.97 (4H, m, 2-H₂ and 4-H₂), 1.62 – 1.44 (2H, m, 3-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (1C, C Ar), 144.1 (1C, C Ar), 137.3 (1C, C Ar), 135.4 (1C, C Ar), 128.63 (2C, C-11), 128.58 (2C, C-7), 127.3 (1C, q, J = 276.7 Hz, CF₃), 115.7 (2C, C-8), 113.98 (2C, C-12), 55.33 (1C, CH₂ Bn), 49.48 (1C, C-1), 35.15 (1C, C-2), 33.79 (1C, q, J = 28.4 Hz, C-4), 20.68 (1C, q, J = 2.9 Hz, C-3). ¹⁹F NMR (376 MHz, CDCl₃) δ –66.12 (3F, CF₃). HRMS (ESI): calculated for C₁₈H₂₁F₃NO [M+H]⁺ requires *m*/*z* 324.1570, found *m*/*z* 324.1558.

5.3. General procedure for Ru-catalyzed oxidation

To a cold (0 °C) solution of *para*-methoxyphenyl (PMP) derivative (1 equiv.) in 40.0 mL/mmol of a 2:2:3 mixture of CCl₄ : MeCN : K_2 HPO₄ aq. (0.2M), NaIO₄ (20.0 equiv.) was added in one portion. The mixture was stirred at that temperature for 15 min and RuCl₃·H₂O (30 mol %) was added in one portion. The mixture was warmed up to room temperature. The reaction was monitored by TLC until completion, diluted with Et₂O, and H₂O and extracted with Et₂O. The water layer was acidified until pH 1 using 1M HCl aq. and extracted with Et₂O. The combined organic layers were dried using Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to give the corresponding carboxylic acid.

2-{4-[(*N*-Benzyl-4-methylphenyl)sulfonamido]phenyl}-4,4,4-trifluorobutanoic acid, 6.

From aniline **S11** (54 mg, 0.100 mmol), NaIO₄ (460 mg, 2.0 mmol) and RuCl₃·H₂O (6.8 mg, 0.030 mmol) in 4 mL of the appropriate mixture of solvents, following the general procedure, carboxylic acid **6** was obtained. Chromatographic purification (gradient elution: $30:70 \rightarrow 70:30$ EtOAc – hexane) gave **6** (29.1 mg, 61%) as a white foam.

Data for 6: $R_f 0.3$ (70% EtOAc – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (2H, d, J = 8.3 Hz, Ar), 7.35 (2H, d, J = 8.8 Hz, Ar), 7.31 – 7.26 (5H, m, Ar), 7.24 (2H, d, J = 8.5 Hz, 5-H), 7.07 (2H, d, J = 8.5 Hz, 6-H), 4.78 (2H, s, CH₂ Bn), 3.92 (1H, dd, J = 8.6 and 5.4 Hz, 1-H), 3.08 (1H, dqd J = 15.0, 10.3 and 8.5 Hz, 2-H_A), 2.52 (3H, s, Me), 2.60 – 2.42 (1H, m, 2-H_B). ¹³C NMR (101 MHz, CDCl₃) δ 175.5 (1C, C=O), 143.8 (1C, C Ar), 139.3 (1C, C Ar), 135.89 (1C, C Ar), 135.87 (1C, C Ar), 135.6 (1C, C Ar), 129.7 (2C, CH Ar), 129.5 (2C, CH Ar), 128.5 (5C, CH Ar), 128.4 (2C, CH Ar), 127.8 (2C, CH Ar), 125.9 (1C, q, J = 276.9 Hz, CF₃), 54.7 (1C, CH₂ Bn), 44.7 (1C, C-1), 37.2 (1C, q, J = 29.0 Hz, C-2), 21.7 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –65.2 (3F, CF₃). HRMS (ESI): calculated for C₂₄H₂₂F₃NO₄S [M+H]⁺ requires *m/z* 477.1217, found *m/z* 478.1278.

6,6,6-Trifluoro-2-{4-[(4-methyl-*N*-tosylphenyl)sulfonamido]phenyl}hexanoic acid, 8.

From aniline **S12** (22.7 mg, 0.036 mmol), NaIO₄(154 mg, 0.719 mmol) and RuCl₃·H₂O(2.4 mg, 0.013 mmol) in 1.44 mL of the appropriate mixture of solvents, following the general procedure, carboxylic acid **8** was obtained. Chromatography purification (gradient elution: $50:50 \rightarrow 100:0$ EtOAc – hexane) gave **8** (14.8 mg, 72%) as a colourless oil.

Data for 8: R_f 0.1 (70% EtOAc – hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (4H, d, J = 8.4 Hz, Ar), 7.32 (4H, d, J = 8.2 Hz, Ar), 7.31 (2H, d, J = 8.5 Hz, 7-H), 7.01 (2H, d, J = 8.4 Hz, 8-H), 3.60 (1H, t, J = 7.6 Hz, 1-H), 2.46 (6H, s, 2 x Me), 2.23 – 2.03 (3H, m, 2-H_A and 4-H₂), 1.85 (1H, m, 2-H_B), 1.68 – 1.46 (2H, m, 3-H₂). ¹³C NMR (101 MHz, CDCl₃) δ 177.5 (1C, C=O), 145.3 (2C, C Ar), 140.0 (1C, C Ar), 136.7 (2C, C Ar), 134.1 (1C, C Ar), 132.1 (2C, C-7), 129.8 (4C, CH Ar), 128.9 (2C, C-6), 128.7 (4C, CH Ar), 127.0 (1, q, J = 276.3 Hz, CF₃), 50.9 (1C, C-1), 33.6 (1C, q, J = 28.6 Hz, C-4), 32.3 (1C, C-2), 21.9 (2C, 2 x Me), 20.3 (1C, q, J = 3.0 Hz, C-3). ¹⁹F NMR (376 MHz, CDCl₃) δ –66.2 (3F, CF₃). HRMS (ESI): calculated for C₂₆H₃₀F₃N₂O₆S₂ [M+NH₄]⁺ requires m/z 587.1492, found m/z 587.1480.

6. Selective derivatization of bioactive molecules

2-[(2,3-Dimethylphenyl)amino]-5-(3,3,3-trifluoro-1,1-diphenylpropyl)benzoic acid, 4av.

From Mefenamic acid (38.3 mg, 0.20 mmol), alkene **2f** (72.2 mg, 0.40 mmol) and trifluoromethyl reagent **3** (132.0 mg, 0.40 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4av** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 50:50$ EtOAc – hexane) gave **4av** (39 mg, 40%), as a brown oil.

Data for **4av**: $R_f 0.25$ (50% EtOAc – hexane). ¹**H NMR** (**400 MHz, CDCl**₃) δ 9.08 (1H, s, NH), 8.00 (1H, d, J = 2.6 Hz, 5-H), 7.35 – 7.27 (8H, m, Ar), 7.23 – 7.19 (2H, m, Ar), 7.17 (1H, dd, J = 9.2 and 2.7 Hz, 9-H), 7.13 (1H, dd, J = 7.2 and 1.6 Hz, 12-H), 7.09 (1H, t, J = 7.6 Hz, 11-H), 7.03 (1H, dd, J = 7.4 and 1.7 Hz, 10-H) 6.65 (1H, d, J = 9.0 Hz, 8-H), 3.53 (2H, q, J = 10.5 Hz, 2-H₂), 2.32 (3H, s, Me), 2.18 (3H, s, Me). ¹³**C NMR (101 MHz, CDCl**₃) δ 173.8 (1C, C=O), 149.0 (1C, C-7), 145.4 (2C, C Ar), 138.4 (1C, C Ar), 138.3 (1C, C Ar), 136.7 (1C, C-9), 132.9 (1C, C Ar), 132.8 (1C, C-4), 131.9 (1C, C-5), 128.9 (4C, CH Ar), 128.2 (4C, CH Ar), 127.4 (1C, C-10), 126.6 (2C, CH Ar), 126.12 (1C, C-11), 126.10 (1C, q, J = 279.6 Hz, CF₃), 123.8 (1C, C-12), 113.7 (1C, C-8), 108.6 (1C, C-6), 53.4 (1C, C-1), 44.0 (1C, q, J = 26.6 Hz, C-2), 20.7 (1C, Me), 14.3 (1C, Me). ¹⁹**F NMR (376 MHz, CDCl**₃) δ –56.1 (3F, CF₃). **HRMS** (ESI): calculated for C₃₀H₂₇F₃NO₂ [M+H]⁺ requires m/z 490.1989, found m/z 490.1990.

5-[1-(4-Bromophenyl)-3,3,3-trifluoro-1-phenylpropyl]-2-[(2,3-dimethylphenyl)amino]benzoic acid, 4aw.

S45

From Mefenamic acid (48.3 mg, 0.20 mmol), alkene **2i** (104 mg, 0.40 mmol) and trifluoromethyl reagent **3** (132.0 mg, 0.40 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4aw** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80$ EtOAc-hexane) gave **4aw** (49 mg, 43%), as a yellow oil.

Data for **4aw**: $R_f 0.3$ (50% EtOAc – hexane). ¹H NMR (**400** MHz, **CDCl**₃) δ 9.09 (1H, s, NH), 7.97 (1H, d, J = 2.6 Hz, 5-H), 7.41 (2H, d, J = 8.7 Hz, 15-H), 7.33 – 7.25 (4H, m, Ar), 7.24 – 7.20 (1H, m, Ar), 7.18 (2H, d, J = 8.7 Hz, 14-H), 7.14 – 7.08 (3H, m, Ar) 7.04 (1H, dd, J = 6.7 and 1.8 Hz, 10-H), 6.64 (1H, d, J = 9.1 Hz, 8-H), 3.49 (2H, q, J = 10.4 Hz, 2-H₂), 2.33 (3H, s, Me), 2.18 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 173.8 (1C, C=O), 149.1 (1C, C-7), 145.0 (1C, C Ar), 144.4 (1C, C-13), 138.5 (1C, C Ar), 138.2 (1C, C Ar), 136.4 (1C, C-9), 133.0 (1C, C Ar), 132.2 (1C, C-4), 131.8 (1C, C-5), 131.3 (2C, C-15), 130.8 (2C, C-14), 128.7 (2C, CH Ar), 128.3 (2, CH Ar), 127.5 (1C, C-10), 126.9 (1C, CH Ar), 126.2 (1C, C-11), 125.9 (1C, q, J = 279.4 Hz, CF₃), 123.9 (1C, C-12), 120.8 (1C, C-16), 113.9 (1C, C-8), 108.6 (1C, C-6), 53.1 (1C, C-1), 43.9 (1C, q, J = 26.4 Hz, C-2), 20.7 (1C, Me), 14.3 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –56.1 (3F, CF₃). HRMS (ESI): calculated for C₃₀H₂₆BrF₃NO₂ [M+H]⁺ requires *m*/*z* 568.1094, found *m*/*z* 568.1103.

5-[1-(4-Acetoxyphenyl)-3,3,3-trifluoro-1-phenylpropyl]-2-[(2,3-dimethylphenyl)amino]benzoic acid, 4ax.

From Mefenamic acid (48.3 mg, 0.20 mmol), alkene **2ab** (95.4 mg, 0.40 mmol) and trifluoromethyl reagent **3** (132.0 mg, 0.40 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **4ax** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 50:50$ EtOAc-hexane) gave **4ax** (37.1 mg, 35%), as a yellow oil.

Data for **4ax**: $R_f 0.15$ (50% EtOAc – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 9.11 (1H, s, NH), 8.00 (1H, d, J = 2.6 Hz, 5-H), 7.34 – 7.29 (6H, m, H Ar), 7.26 – 7.20 (1H, m, Ar), 7.16 – 7.09 (1H, m, Ar), 7.14 (1H, dd, J = 9.0 and 2.7 Hz, 9-H), 7.09 (1H, t, J = 7.5 Hz, 11-H), 7.06 – 7.01 (1H, m, Ar), 7.02 (2H, d, J = 8.8 Hz, 14-H), 6.66 (1H, d, J = 9.1 Hz, 8-H), 3.53 (2H, q, J = 10.4 Hz, 2-H₂), 2.34 (3H, s, Me), 2.30 (3H, s, Me OAc), 2.20 (3H, s, Me). ¹³C NMR (101 MHz, CDCl₃) δ 173.5 (1C,

C=O), 169.4 (1C, C=O Ac), 149.2 (1C, C-16), 149.0 (1C, C-7), 145.2 (1C, C Ar), 142.9 (1C, C Ar), 138.4 (1C, C Ar), 138.3 (1C, C Ar), 136.5 (1C, C-9), 132.9 (1C, C Ar), 132.5 (1C, C-4), 131.7 (1C, C-5), 130.1 (2C, CH Ar), 128.9 (2C, CH Ar), 128.3 (2C, CH Ar), 127.4 (1C, C-10), 126.8 (1C, CH Ar), 126.1 (1C, C-11), 126.0 (1C, q, J = 279.3 Hz, CF₃), 123.8 (1C, C-12), 121.1 (2C, C-14), 113.8 (1C, C-8), 108.5 (1C, C-6), 53.1 (1C, C-1), 44.1 (1C, q, J = 26.4 Hz, C-2), 21.3 (1C, Me OAc), 20.7 (1C, Me), 14.3 (1C, Me). ¹⁹F NMR (376 MHz, CDCl₃) δ –56.1 (3F, CF₃). HRMS (ESI): calculated for C₃₂H₂₉F₃NO₄ [M+H]⁺ requires *m*/*z* 548.2044, found *m*/*z* 548.2041.

7. Sequential trifluoromethylarylation and hydroarylation of quinolines.

tert-Butyl 4-[4-(benzylamino)phenyl]-7-methoxy-3-(trifluoromethyl)-3,4-dihydroquinoline-1(2H)-carboxylate, 10.

From aniline **1a** (34.8 mg, 0.19 mmol), dihydroquinoline **9** (49.7 mg, 0.19 mmol) and trifluoromethyl reagent **3** (62.7 mg, 0.19 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **10** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 50:50 \text{ Et}_2\text{O} - \text{hexane}$) gave **10** (38 mg, 40%), as a colourless oil.

Data for **10**: $R_f 0.2$ (30% Et₂O – hexane). ¹H NMR (**400** MHz, CDCl₃) δ 7.43 – 7.27 (5H, m, Ar), 7.22 (1H, d, J = 2.5 Hz, 8-H), 6.87 (2H, d, J = 8.5 Hz, 10-H), 6.83 (1H, dd, J = 8.6 and 0.8 Hz, 6-H), 6.58 (1H, d, J = 8.7 Hz, 5-H), 6.57 (2H, d, J = 8.5 Hz, 11-H), 4.29 (2H, s, CH₂ Bn), 4.17 (1H, d, J = 5.5 Hz, 4-H), 4.03 (1H, dd, J = 13.6 and 4.4 Hz, 2-H_A), 3.85 (1H, dd, J = 13.7 and 7.3 Hz, 2-H_B) 3.79 (3H, s, OMe), 2.85 – 2.70 (1H, m, 3-H), 1.55 (9H, s, 3 x Me Boc). ¹³C NMR (**101** MHz, CDCl₃) δ 157.9 (1C, C=O Boc), 153.3 (1C, C Ar), 146.8 (1C, C Ar), 139.4 (1C, C Ar), 139.2 (1C, C Ar), 134.5 (1C, C Ar), 131.0 (1C, C-5), 129.2 (2C, CH Ar), 128.8 (2C, CH Ar), 127.8 (2C, CH Ar), 127.5 (1C, CH Ar), 126.94 (1C, q, J = 280.8 Hz, CF₃), 122.9 (1C, C Ar), 113.4 (2C, C-11), 111.7 (1C, C-6), 108.8 (1C, C-8), 81.6 (1C, C *t*-Bu Boc), 55.5 (1C, OMe), 48.7 (1C, CH₂ Bn), 47.3 (1C, q, J = 24.8 Hz, C-3), 41.5 (1C, C-2), 41.4 (1C, C-4), 28.4 (3C, 3 x Me Boc). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.1 (3F, CF₃). HMRS (ESI): calculated for C₂₉H₃₂F₃N₂O₃ [M+H]⁺ requires *m/z* 513.2360, found *m/z* 513.2358.

N-Benzyl-4-[(3S,4R)-7-methoxy-3-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl]aniline, S13.

To a stirring solution of aniline **10** (129 mg, 0.25 mmol) in dichloromethane (1 mL), trifluoroacetic acid (252 μ m) was added, and the reaction mixture stirred for 30 min and checked by TLC. The reaction mixture was then evaporated under reduced pressure and aniline **S13** was obtained. Chromatographic purification (gradient elution: 20:80 \rightarrow 50:50 Et₂O – hexane) gave **S13** (100 mg, 96%), as a yellowish foam.

Data for **S13**: R_f 0.15 (40% Et₂O – hexane). ¹**H NMR (300 MHz, CDCl₃)** δ 7.26 (5H, s, Ar), 7.08 (2H, d, J = 8.9 Hz, Ar), 7.03 (2H, d, J = 9.1 Hz, Ar) 6.55 (1H, d, J = 8.5 Hz, 5-H), 6.22 (1H, dt, J = 8.6, 2.3 Hz, 6-H), 6.16 (1H, d, J = 2.4 Hz, 8-H), 4.27 (2H, s, CH₂ Bn), 4.22 (1H, d, J = 6.6 Hz, 4-H), 3.73 (3H, s, OMe), 3.39 (2H, m, J = 10.2 and 5.5 Hz, 2-H₂), 2.86 – 2.62 (1H, m, 3-H).

N-Benzyl-4-[(3S,4R)-7-methoxy-6-(2-phenylpropan-2-yl)-3-(trifluoromethyl)-1,2,3,4tetrahydroquinolin-4-yl]aniline, 11.

From adapted procedure,⁶ aniline **S13** (82.5 mg, 0.20 mmol), alkene **2ac** (47.3 mg, 0.4 mmol), and sodium acetate (16.4 mg, 0.2 mmol), in 1 mL of HFIP, aniline **11** was obtained. Chromatographic purification with deactivated silica (gradient elution: $10:90 \rightarrow 50:50$ Et₂O – hexane) gave **11** (49 mg, 46%; 53% based on recovered starting material), as a white foam. Note: acid-sensitive compound.

Data for **11**: R_f 0.2 (30% Et₂O – hexane). ¹**H NMR (500 MHz, DMSO-d₆)** δ 7.36 (2H d, J = 6.9 Hz, Ar Bn), 7.29 (2H t, J = 7.6 Hz, Ar Bn), 7.20 (1H t, J = 7.1 Hz, Ar Bn), 7.14 (2H t, J = 7.6 Hz, Ar Ph), 7.03 (1H, t, J = 7.3 Hz, Ar Ph), 7.01 (2H, d, J = 8.0 Hz, Ar Ph) 6.84 (2H d, J = 8.5 Hz, 10-H), 6.67 (1H, s, 5-H), 6.56 (2H, d, J = 8.5 Hz, 11-H), 6.13 (1H t, J = 5.9 Hz, NH Bn), 6.11 (1H, s, 8-

H), 5.78 (1H, t, J = 2.8 Hz, NH), 4.24 (2H, d, J = 5.9 Hz, CH₂ Bn), 4.08 (1H, d, J = 5.0 Hz, 4-H), 3.24 – 3.24 (2H, m, 2-H₂), 3.23 (3H, s, OMe), 2.74 (1H, m, 3-H), 1.43 (3H, s, Me), 1.37 (3H, s, Me). ¹³C NMR (126 MHz, DMSO-d₆) δ 156.5 (1C, C Ar), 151.7 (1C, C Ar), 147.2 (1C, C Ar), 144.0 (1C, C Ar), 140.3 (1C, C Ar), 132.6(1C, C Ar), 128.8 (2C, C-10), 128.2 (2C, CH Ar), 128.0 (1C, C-5), 127.5 (1C, q, J = 281.1 Hz, CF₃), 127.4 (2C, CH Ar), 127.3 (2C, CH Ar), 126.6 (1C, CH Ar), 125.9 (1C, C Ar), 125.1 (2C, CH Ar), 124.5 (1C, CH Ar), 112.2 (2C, CH Ar), 112.1 (1C, C Ar), 98.6 (1C, C-8), 54.8 (1C, OMe), 46.7 (1C, CH₂ Bn), 43.8 (1C, q, J = 23.8 Hz, C-3), 40.7 (1C, C-Me₂), 40.4 (1C, C-4), 36.9 (1C, C-2), 30.2 (1C, Me), 29.5 (1C, Me). HRMS (ESI): calculated for C₃₈H₄₂F₃N₂O₃ [M+H]⁺ requires *m/z* 631.3143, found *m/z* 631.3148.

8. Mechanistic studies

8.1. Control experiments

· Radical trapping

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol), trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol) and BHT (48.5 mg, 0.22 mmol) in 0.5 mL of HFIP, following the general procedure, aniline **4a** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 10:90$ Et₂O – hexane) gave **4a** (46.3 mg, 62%), as a yellow oil.

· Radical clock experiment

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **S14** (40.5 mg, 0.2 mmol), trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **S15** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 12:88 \text{ Et}_2\text{O}$ – hexane) gave **S15** (21.5 mg, 24%), as a yellow oil.

Data for **S15**: $R_f 0.2$ (20% Et₂O – hexane). ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.28 (5H, m, Ar), 7.08 (2H, d, J = 8.9 Hz, Ar), 6.94 (2H, d, J = 8.7 Hz, Ar), 6.80 (2H, d, J = 8.9 Hz, Ar), 6.56 (2H, d, J = 8.7 Hz, Ar), 5.71 (1H, ddt, J = 16.9, 10.2 and 6.7 Hz, 8-H), 5.06 – 4.86 (2H, m, 9-H₂), 4.30 (2H, s, CH₂), 3.79 (3H, s, OMe), 2.93 (2H, q, J = 10.9 Hz, 2-H₂), 2.28 – 2.17 (2H, m, CH₂), 2.10 – 1.94 (4H, m, 2 x CH₂). HRMS (ESI): calculated for C₂₈H₃₁F₃NO [M+H]⁺ requires *m/z* 454.2352, found *m/z* 454.2350.

Note: Compound S15 is unstable and decomposes during column flash purification.

· Intramolecular lactonization

From aniline **1a** (31.9 mg, 0.175 mmol), alkene **S16** (41.1 mg, 0.175 mmol), trifluoromethyl reagent **3** (57.4 mg, 0.175 mmol), in 0.5 mL of HFIP, following the general procedure, aniline **S17** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 40:90$ Et₂O – hexane) gave **S17** (52 mg, 98%), as a colourless oil.

Data for S17: R_f 0.1 (40% Et₂O – hexane). ¹H NMR (300 MHz, CDCl₃) δ 7.07 – 6.76 (3H, m, Ar), 3.90 (3H, s, OMe), 3.89 (3H, s, OMe), 2.82 (2H, m, 2-H₂), 2.70 – 2.56 (3H, m, CH₂), 2.56 – 2.39 (1H, m, CH₂).

· Using E and Z alkene

From aniline **1a** (36.7 mg, 0.2 mmol), (**Z**)- $2\mathbf{u}^4$ (dr 90:10) alkene (29.6 mg, 0.2 mmol), trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol) in 0.5 mL of HFIP, following the general procedure, aniline **4ao** was obtained (60%, dr 58:42).

· Michael addition to vinyl-CF₃

From aniline **1a** (6.3 mg, 0.04 mmol) and alkene **2a-CF**₃⁵ (6.9 mg, 0.04 mmol) in 85 μ mL of HFIP, following the general procedure, starting materials were recovered, without formation of product **4a**.

· Reactivity of styrenes against 3 in HFIP

From alkene 2a (13.4 mg, 0.1 mmol) and trifluoromethyl reagent 3 (33.0 mg, 01 mmol) in 0.25 mL of HFIP, following the general procedure, starting materials were recovered, with 5% of 2a-CF₃ formation.

From alkene **2f** (18.0 mg, 0.1 mmol) and trifluoromethyl reagent **3** (33.0 mg, 0.1 mmol) 0.25 mL of HFIP, following the general procedure, starting materials were recovered, with 10% of **2f-CF**₃ formation.

· Competition experiment

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol), anisole (109 mg, 1 mmol) and trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol) in 0.5 mL of HFIP, following the general procedure, aniline **4a** was obtained. Chromatographic purification (gradient elution: $0:100 \rightarrow 20:80$ Et₂O – hexane) and (isocratic elution: 4:96 AcOH – Toluene) gave **12** (54.2 mg, 70%), as a colourless oil.

Retroarylation experiment

From aniline **1a** (11.6 mg, 0.064 mmol) and compound **S18**⁶ (19.7 mg, 0.064 mmol) in 160 μ L of HFIP, following the general procedure, starting materials **1a** and **S18** were recovered, without formation of **4a** or **anisole**.

8.2. Cyclic Voltammetry (CV)

General Information

Voltametric experiments were performed using an IKA Electrasyn 2.0 equipment inside a homemade Faraday's cage, recording the results at a glassy carbon macroelectrode (radius = 3.0 mm) with Bu₄NPF₆(0.1M) as the supporting electrolyte, using an Ag/Ag⁺ (KCl, 3M) reference electrode and a platinum counter electrode at variable scan rates (0.1 – 0.4 V s-1).

The reductive potential of trifluoromethyl reagent **3** was investigated in ACN (Figure S1) and HFIP (Figure S2), bubbling Ar through the solution to degas it. In both cases an irreversible reductive peak is observed, the absolute maximum of which is recorded at -1.75 V for ACN and -0.58 V for HFIP at a scan rate of 0.1 V s⁻¹ (Figure S3).

Figure S1. Reduction of trifluoromethyl reagent **3** (30 mM), 0.1 M Bu₄NPF₆ in ACN at different scan rates (mV/s) using glassy C electrode.

Figure S2. Reduction of trifluoromethyl reagent **3** (30 mM), 0.1 M Bu₄NPF₆ in HFIP at different scan rates (V s⁻¹) using glassy C electrode.

Figure S3. Reduction of **3** (30 mM), 0.1 M Bu₄NPF₆ in HFIP (green) and ACN (grey) at a scan rate of 0.1 V s⁻¹.

Substrate	HFIP (V)	Acetonitrile (V)
MeO	1.035	1.429; 1.874; 2.275
	1.503	1.934
NH ₂	1.030	1.120
NH	0.856	0.965
NH	0.811	1.032

Table S6. Table of oxidation potentials for alkenes and anilines tested in thetrifluoromethylarylation of alkenes using anilines in HFIP.

8.3. NMR experiments

8.3.1. ¹H NMR study

¹H NMR of individual species (HFIP, **1b** and **3**), two binary mixtures (HFIP : **1b** and HFIP : **3**) and one ternary mixture (HFIP : **1b** : **3**) were recorded at a 0.2 mmol scale of aniline **1b** and trifluoromethyl reagent **3**.

Analysis of the binary mixtures

The most significant changes found in ¹H NMR, for the HFIP : **1b** binary mixture (Figure S4D) compared to the individual species (Figure S4A and Figure S4B) are the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to 5.84 ppm ($\Delta\delta = 2.85$) and the downfield shift (deshieled) of the NH (**1b**), from a frequency of 3.66 ppm to 4.98 ppm ($\Delta\delta = 1.32$). These data support a H-bonding between the basic amino group of the aniline and the exceptionally good hydrogen bond donor HFIP (Table S7).

The most significant changes found in ¹H NMR, for the HFIP : **3** binary mixture (Figure S4E) compared to the individual species (Figure S4A and Figure S4C) is the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to 6.38 ppm ($\Delta\delta = 3.39$), supporting a H-bonding between the ether backbone of the trifluoromethyl reagent and the exceptionally good hydrogen bond donor HFIP (Table S7).

Figure S4. ¹H NMR of the individual species (A-C) and the two binary mixtures (D-E).

	Species				
Signal	HFIP	1b	3	Binary mixtures	
				HFIP : 1b (Δδ)	HFIP : 3 (Δδ)
OH (HFIP)	2.99, d, <i>J</i> = 8.5 Hz	-	-	4.55, br s (+1.56)	6.38, br s (+3.39)
NH (1b)	-	3.66, br s	-	4.55, s (+0.89)	-

Table S7. Significant changes for the binary mixtures with respect to individual species.

2) Analysis for the ternary mixture

The most significant changes found in ¹H NMR, for the ternary mixture (Figure S5D) compared to the individual species (Figure S5A-C) are the downfield shift (deshieled) of the OH (HFIP), from a frequency of 2.99 ppm to 5.84 ppm ($\Delta\delta = 2.85$) and the downfield shift (deshieled) of the NH (aniline), from a frequency of 3.66 ppm to 5.84 ppm ($\Delta\delta = 2.18$). These data support a H-bonding between the exceptionally good hydrogen bond donor HFIP and both the basic amino group of the aniline and the ether backbone of the trifluoromethyl reagent (Table S8).

Figure S5. ¹H NMR of the individual species (A-C) and the ternary mixture (D).

Signal	Species				
Signai	HFIP	1b	3	HFIP : 1b : 3 (Δδ)	
OH (HFIP)	2.99, d, <i>J</i> = 8.5 Hz	-	-	5.84, br. s. (+2.85)	
NH (1b)	-	3.66, br s	-	5.84, br. s. (+2.18)	

Table S8. Significant changes for the ternary mixture with respect to individual species.

8.3.2. ¹⁹F NMR study

¹⁹F NMR of individual species (**3** and HFIP) and four binary mixtures of **3** : HFIP at different ratios (1:1, 1:2, 1:3 and 1:4) were recorded at a 0.2 mmol scale.

The most significant changes found in ¹⁹F NMR for the binary mixtures (Figure S6C-F) compared to the individual species (Figure S6A-B) are the downfield shift (deshieled) of the CF₃ of **3** from a frequency of –40.11 ppm up to –37.66 ppm ($\Delta\delta$ = 2.45) and a downfield shift (deshieled) of the CF₃ (HFIP) from a frequency of –75.79 ppm up to –75.54 ppm ($\Delta\delta$ = 0.25). These data support a more electrophilic CF₃ group within the hypervalent iodine **3** (Table S9).

Figure S6. ¹⁹F NMR of HFIP, **3** and binary mixtures of **3**:HFIP.

	Species					
Signal	3	HFID	3 :HFIP (1:1)	3 :HFIP (1:2)	3 :HFIP (1:3)	3 :HFIP (1:4)
	3	111,11	(<u>Δ</u> δ)	(<u>Δδ</u>)	(<u>Δ</u> δ)	(<u>Δ</u> δ)
CE(3)	40.11		-38.40	-38.15	-37.84	-37.66
$CF_3(3)$	-40.11 -	-	(+1.71)	(+1.96)	(+2.27)	(+2.45)
CE (UEID)		75 70	-75.54	-75.61	-75.71	-75.54
$CF_3(\mathbf{nrir})$	/5./9	(+0.25)	(+0.18)	(+0.08)	(+0.25)	

Table S9. Significant changes of **3** and HFIP for the binary mixtures with respect to individual species.

8.3.3. ¹H-¹H NOESY-2D experiment

NOESY-2D spectra were collected using the standard Bruker pulse programs noesyphsw (90- t_1 -90- τ_m -90-Acq) for the ternary mixture HFIP : **1b** : **3** (3:1:1).

The most significant interaction observed in the NOESY-2D, among other, is between CH (HFIP) and Me (**3**), that is highlighted under a red box. This interaction confirms the intermolecular

spatial connection between HFIP and **3**. Additionally, there is an interesting cross-peak between interchangeable OH (HFIP) and NH (aniline) signal with NMe (**1b**), highlighted under a green box, that confirms the Hydrogen-bonded ternary species.

Figure S7. ¹H-¹H NOESY-2D (400 MHz, CDCl₃) of the ternary mixture (HFIP : **1b** : **3**)

8.3.4. ¹H-¹⁹F HOESY-2D experiments

In order to confirm the proposed intermolecular interaction and taking advantage of the fluorine atoms in both components, HFIP and **3**, a series of ¹H-¹⁹F Heteronuclear experiments were performed for both the binary (Figures S8-9) and ternary (Figure S10) mixtures.

For the HFIP : **1b** binary mixture the most significant interaction observed are between ¹⁹F (HFIP) and NMe and aromatic signals (**1b**), that are highlighted under red boxes (Figure S8). These interactions confirm the intermolecular spatial connection between HFIP and **1b**.

For the HFIP : **3** binary mixture the most significant interaction observed are between 19 F (HFIP) and Me (**3**), that is highlighted under a green box (Figure S9). This interaction confirms the intermolecular spatial connection between HFIP and **3**.

For the most interesting ternary mixture the most significant interaction observed are between ¹⁹F (HFIP) and NMe and aromatic signals (**1b**), that are highlighted under red boxes. Additionally, there is a strong interaction between ¹⁹F (HFIP) and Me (**3**), that is highlighted under a green box (Figure S10). These interactions reinforce the intermolecular spatial connection between the three species within the ternary mixture.

Figure S9. ¹H-¹⁹F HOESY-2D experiment of the HFIP : **3** binary mixture.

Figure S10. ¹H-¹⁹F HOESY-2D experiment of the ternary mixture.

8.3.5. Diffusion ordered spectroscopy (DOSY) experiments

DOSY measurements were performed using a Bruker DPX-400 equipped with a BBFO probe head at 298 K with constant temperature control (air flow 400 l h-1) using the 2D sequence for diffusion measurement, double stimulated echo for convection compensation and longitudinal eddy current delay, using bipolar gradient pulses for diffusion and three spoil gradients (Bruker terminology: dstebpgp35) pulse sequence. Diffusion data were collected using 32K data points on well mixed homogeneous samples containing TMS as a suitable internal reference. Experiments were performed in two stages: 1) initially 1D-edited DOSY experiments were used to optimize the diffusion period Δ for each sample (Δ =100 ms) and 2) the 2D dstebpgp35 sequence was then used, based on the optimized Δ from the previous procedure and with δ =4 ms, with gradient amplitudes ranging from 2 to 85% using 16 increments (difflist). Diffusion constants were obtained directly employing the T1/T2 module in TOPSPIN 3.2 using the variable gradient function and plots were generated using the eddosy module.

DOSY experiments were performed as an approach to study the presence of the proposed Hbonded ternary species in solution. Individual species (HFIP, **1b** and **3**), two binary mixtures (HFIP : **1b** and HFIP : **3**) and one ternary mixture (HFIP : **1b** : **3**) were analysed to calculate their diffusion coefficients. The diffusion coefficient for a given species is calculated as the average of the coefficients of all signals belonging to that species.

For the HFIP : **1b** binary mixture (Figure S14 and Table S10, entry 4) there is a moderate reduction in the diffusion coefficients for both HFIP ($\Delta D/D_{TMS} = 0.2$) and **1b** ($\Delta D/D_{TMS} = 0.1$).

For the HFIP : **3** binary mixture (Figure S15 and Table S10, entry 5) there is a strong reduction in the diffusion coefficient for HFIP ($\Delta D/D_{TMS} = 0.52$), while **3** remains at the same value ($\Delta D/D_{TMS} = 0.02$).

For the HFIP : **1b** : **3** ternary mixture (Figure S16 and Table S10, entry 6) there is a strong reduction in the diffusion coefficient for HFIP ($\Delta D/D_{TMS} = 0.38$), a moderate reduction in the diffusion coefficient for **1b** ($\Delta D/D_{TMS} = 0.11$), while **3** remains at the same value ($\Delta D/D_{TMS} = -0.01$). In the ternary mixture, all species diffuse at a similar rate that is very close to the value of the heaviest component **3** ($D/D_{TMS} = 0.54$), where HFIP and **1b** reduces their diffusing rate ($D/D_{TMS} = 0.38$ and 0.11 respectively) to meet that of **3**, as a proof of the proposed supramolecular H-bonded species.

Entry	Spec	ies	D (cm ² /s)	D/D _{TMS}	$\Delta D/D_{TMS}$
1	HFIP		2.07*10-5	1.03	-
2	1b		1.72*10-5	0.96	-
3	3		1.04*10-5	0.53	-
	HFIP : 1b	HFIP	1.55*10-5	0.83	0.2
4	4 binary mixture	1b	1.53*10-5	0.86	0.1
	HEID · 3	HFIP	1.11*10-5	0.51	0.52
5	5 binary mixture	3	1.10*10-5	0.51	0.02
		HFIP	1.41*10-5	0.65	0.38
6 HFIP : 1b : 3 ternary mixture	1b	1.84*10-5	0.85	0.11	
	3	1.18*10-5	0.54	- 0.01	

Table S10. Diffusion coefficients: absolute values and relative to TMS.

Figure S12. DOSY experiment of 1b.

Figure S14. DOSY experiment of the **1b** : HFIP binary mixture.

Figure S16. DOSY experiment of the **1b** : **3** : HFIP ternary mixture.

8.4. Kinetic studies

Synthesis of N-Benzyl-N-[3,3,3-trifluoro-1-(4-methoxyphenyl)propyl]aniline, 12a

From aniline **1a** (36.7 mg, 0.2 mmol), alkene **2a** (26.8 mg, 0.2 mmol), trifluoromethyl reagent **3** (66.0 mg, 0.2 mmol) and TfOH (1.78 μ L, 0.02 mmol) in 0.5 mL of dry DCM, following the general procedure, aniline **12a** was obtained. The crude was quenched with NaHCO₃, and extracted with ethyl acetate and brine. The organic phases were dry over Na₂SO₄ and chromatographic purification (gradient elution: 0:100 \rightarrow 20:80 Et₂O – hexane) and (isocratic elution: 4:96 AcOH – Toluene) gave **12a** (20.5 mg, 27%), as a colourless oil.

Data for **12a**: R_f 0.45 (20% Et₂O – hexane), 0.7 (4% AcOH – toluene). ¹H NMR (400 MHz, CD₃OD) δ 7.25 (2H, d, J = 8.7 Hz, Ar), 7.18 – 7.03 (7H, m, Ar), 6.86 (4H, m, Ar), 6.74 (1H, t, J = 7.4 and 1.0 Hz, Ar), 5.37 (1H, t, J = 6.8 Hz, 1-H), 4.31 (1H, d, J = 16.3 Hz, CH₂ Bn), 4.15 (1H, d, J = 16.4 Hz, CH₂ Bn), 3.76 (3H, s, OMe), 3.05 – 2.87 (2H, m, 2-H₂). ¹³C NMR (101 MHz, CD₃OD) δ 160.7 (1C, C Ar), 149.8 (1C, C Ar), 140.4 (1C, C Ar), 131.9 (1C, C Ar), 130.1 (2C, CH Ar), 129.9 (2C, CH Ar), 129.1 (2C, CH Ar), 128.23 (1C, q, J = 276.5 Hz, CF₃), 128.18 (2C, CH Ar), 127.5 (1C, CH Ar), 120.3 (1C, CH Ar), 118.8 (2C, CH Ar), 114.7 (2C, CH Ar), 59.9 (1C, q, J = 2.9 Hz, C-1), 55.7 (1C, OMe), 50.5 (1C, CH₂ Bn), 36.3 (1C, q, J = 27.1 Hz, C-2). ¹⁹F NMR (376 MHz, MeOH-d₄) δ –64.4 (3F, CF₃).

· Hoffman-Martius rearrangement of product 12a

From aniline **12a** (20.5 mg, 0.053 mmol) in 133 μ L of HFIP, following the general procedure, aniline **4a** (18.8 mg, 92%) was obtained without further purification.

· Kinetic studies

Kinetic experiments were performed one round and carrying out the reaction following the general protocol. Aliquots at 5, 10, 20, 40, 60, 100, 180 and 300 minutes were taken, diluted with a solution of CDCl₃ containing the internal standard and ¹H NMR experiments recorded in JEOL JNM-

ECZ400R spectrometer using benzoic acid as internal standard. The integrals were measured over the most clean and isolated signal of each component of the mixture. Concentration of each aliquot was corrected to the concentration in the reaction mixture.

Different anilines were tested: *N*-Benzylaniline **1a**, Aniline **1c** and *N*,*N*-Dimethylaniline **1d**.

Figure S17. Kinetic experiment for the reaction mixture containing 1a.

Figure S18. Kinetic experiment for the reaction mixture containing 1c.

Figure S19. Kinetic experiment for the reaction mixture containing 1d.

9. References

- Yue, J. F., Ran, G. Y., Yang, X. X., Du, W. & Chen, Y. C. Asymmetric Diels-Alder Cycloadditions of Benzofulvene-Based 2,4-Dienals via Trienamine Activation. Org. Chem. Front. 5, 2676–2679 (2018).
- (2) Zhang, X., Thimmaiah, M. & Fang, S. Simple and Efficient Synthesis of 4,7-Dimethoxy-1(H)-Indene. *Synth. Commun.* 37, 1873-1877 (2007).
- Jiao, M., Gao, J. & Fang, X. Enantioselective Synthesis of 4-Cyanotetrahydroquinolines via Ni-Catalyzed Hydrocyanation of 1,2-Dihydroquinolines. *Org. Lett.* 22, 8566-8571 (2020).
- Nakayama, K., Maeta, N., Horiguchi, G., Kamiya, H. & Okada, Y. Radical Cation Diels–Alder Reactions by TiO₂ Photocatalysis. Org. Lett. 21, 2246–2250 (2019).
- (5) Wang, X.-P., Lin, J.-H., Zhang, C.-P., Xiao, J.-C. & Zheng, X. Copper-Catalyzed Trifluoromethylation of Alkenes with an Electrophilic Trifluoromethylating Reagent. *Beilstein J. Org. Chem.* 9, 2635–2640 (2013).
- (6) Wang, F., Wang, D., Mu, X., Chen, P. & Liu, G. Copper-Catalyzed Intermolecular Trifluoromethylarylation of Alkenes: Mutual Activation of Arylboronic Acid and CF₃⁺ Reagent. J. Am. Chem. Soc. 136, 10202–10205 (2014).

10. X-Ray diffraction analysis

Crystal structure report for compound 5

Compound **5** was crystallized using a mixture of THF : Pentane (compound **5**was dissolved in THF, and exposed to pentane vapours) in order to obtain appropriate crystals for X-ray analysis.

Figure S20. Ball and stick plot of compound **5** with non-hydrogen atoms labelled.

Compound **5** collection details are gathered in the following tables:

Identification code	03673			
Chemical formula	$C_{31}H_{26}F_3N_3O_7S \cdot C_4H_8O$			
Formula weight	713.71 g/mol			
Temperature	250(2) K			
Wavelength	0.71073 Å			
Crystal size	0.026 x 0.132 x 0.285	mm		
Crystal habit	clear colourless ribbon	1		
Crystal system	triclinic			
Space group	P -1			
Unit cell dimensions	a = 5.9290(19) Å	$\alpha=86.336(14)^\circ$		
	b = 13.676(4) Å	$\beta = 88.961(14)^{\circ}$		
	c = 20.842(6) Å	$\gamma = 85.079(15)^{\circ}$		
Volume	1680.2(9) Å ³			
Z	2			
Density (calculated)	1.411 g/cm ³			
Absorption coefficient	0.170 mm ⁻¹			
F(000)	744			

Theta range for data collection	1.84 to 25.35°			
Index ranges	-7<=h<=7, -16<=k<=16, -24<=l<=25			
Reflections collected	50261			
Independent reflections	6138 [R(int) = 0.059	5]		
Coverage of independent reflections	99.9%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9960 and 0.9530			
Structure solution technique	direct methods			
Structure solution program	XT, VERSION 2018/2			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)			
Function minimized	$\Sigma \mathrm{w} (\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	6138 / 156 / 492			
Goodness-of-fit on F ²	1.049			
Δ / σ_{max}	0.001			
Final R indices	4077 data; I>2σ(I)	R1 = 0.0489, wR2 = 0.1248		
	all data	R1 = 0.0856, wR2 = 0.1489		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.071) where P=(F_o^2 +2 F_c^2)/3	6P) ² +0.6321P] 3		
Largest diff. peak and hole	0.328 and -0.376 eÅ	3		
R.M.S. deviation from mean	0.053 eÅ ⁻³			

Table S12. Data collection and structure refinement for 5.

Table S13. Atomic coordinates and equivalent isotropic atomic displacemente parameters (A2) for 5

U(eq) is defined as one third of the trace of the orthogonalized

	x/a	y/b	z/c	U(eq)
C1	0.6812(4)	0.69387(18)	0.78307(12)	0.0373(6)
C2	0.6965(4)	0.70953(18)	0.71618(12)	0.0357(6)
C3	0.5456(4)	0.77381(19)	0.68213(13)	0.0399(6)
C4	0.3724(4)	0.82130(18)	0.71586(13)	0.0412(6)
C5	0.3492(5)	0.8089(2)	0.78123(14)	0.0468(7)
C6	0.5069(5)	0.74553(19)	0.81473(13)	0.0446(7)
C7	0.5627(5)	0.5148(2)	0.89714(13)	0.0499(7)
C8	0.5603(4)	0.4160(2)	0.93277(12)	0.0417(6)
С9	0.7380(5)	0.3784(2)	0.97172(13)	0.0491(7)
C10	0.7336(6)	0.2885(2)	0.00524(15)	0.0603(9)
C11	0.5535(7)	0.2343(3)	0.00043(17)	0.0715(10)
C12	0.3758(7)	0.2705(3)	0.96267(19)	0.0849(12)
C13	0.3783(6)	0.3611(3)	0.92924(16)	0.0668(9)
C14	0.7235(4)	0.44783(18)	0.79498(11)	0.0350(6)
C15	0.5325(4)	0.45498(19)	0.75776(12)	0.0380(6)

	x/a	y/b	z/c	U(eq)
C16	0.5183(4)	0.39351(19)	0.70810(12)	0.0395(6)
C17	0.6925(4)	0.32407(18)	0.69497(12)	0.0370(6)
C18	0.8835(5)	0.31744(19)	0.73317(13)	0.0439(7)
C19	0.8995(4)	0.37791(19)	0.78311(12)	0.0411(6)
C20	0.6765(5)	0.25892(19)	0.63876(13)	0.0425(6)
C21	0.8654(4)	0.27321(18)	0.58901(12)	0.0377(6)
C22	0.9637(5)	0.36133(19)	0.58105(13)	0.0431(7)
C23	0.1347(5)	0.3771(2)	0.53627(12)	0.0434(7)
C24	0.2086(5)	0.3015(2)	0.49773(12)	0.0445(7)
C25	0.1091(5)	0.2139(2)	0.50430(13)	0.0476(7)
C26	0.9401(5)	0.19789(19)	0.54917(12)	0.0404(6)
C27	0.5093(5)	0.3888(3)	0.45005(15)	0.0604(8)
C28	0.6720(5)	0.1491(2)	0.65904(13)	0.0468(7)
C29	0.6489(5)	0.0918(2)	0.59849(15)	0.0563(8)
C30	0.8512(6)	0.0978(2)	0.55589(14)	0.0537(8)
C31	0.4839(5)	0.1257(2)	0.70474(16)	0.0542(8)
F1	0.4773(4)	0.17316(14)	0.75891(9)	0.0799(6)
F2	0.2793(3)	0.14497(17)	0.67987(11)	0.0865(7)
F3	0.5021(3)	0.03000(13)	0.72425(10)	0.0736(6)
N1	0.7445(4)	0.51288(16)	0.84685(10)	0.0407(5)
N2	0.8774(4)	0.65853(17)	0.67759(10)	0.0425(5)
N3	0.2047(4)	0.88810(18)	0.67887(14)	0.0549(6)
01	0.0646(3)	0.58918(14)	0.79204(10)	0.0517(5)
02	0.8914(4)	0.65760(16)	0.88970(10)	0.0634(6)
03	0.8590(4)	0.57345(14)	0.66738(10)	0.0566(6)
04	0.0272(3)	0.70723(16)	0.65659(11)	0.0642(6)
05	0.2416(4)	0.90490(17)	0.62182(12)	0.0720(7)
06	0.0392(4)	0.92198(17)	0.70802(13)	0.0759(7)
07	0.3797(4)	0.30662(16)	0.45293(9)	0.0609(6)
S 1	0.87011(12)	0.61234(5)	0.83071(3)	0.0437(2)
08A	0.0962(15)	0.9357(6)	0.8965(5)	0.1069(18)
C32A	0.1215(19)	0.0388(8)	0.8782(8)	0.131(4)
C33A	0.908(2)	0.0860(10)	0.8689(10)	0.179(6)
C34A	0.7384(15)	0.0168(7)	0.9043(8)	0.148(4)
C35A	0.8692(19)	0.9245(8)	0.8997(8)	0.125(4)
O8B	0.124(4)	0.9676(16)	0.8873(13)	0.1069(18)
C32B	0.052(4)	0.0604(15)	0.8529(12)	0.112(5)
C33B	0.843(4)	0.0909(19)	0.8810(16)	0.128(6)
C34B	0.778(4)	0.9904(19)	0.8691(13)	0.130(6)
C35B	0.924(4)	0.934(2)	0.9175(15)	0.127(7)

Table S14. Bond lengths (Å) for 5.
C1-C6	1.383(4)	C1-C2	1.399(4)
C1-S1	1.780(3)	C2-C3	1.373(4)
C2-N2	1.482(3)	C3-C4	1.374(4)
C4-C5	1.368(4)	C4-N3	1.483(4)
C5-C6	1.386(4)	C7-N1	1.489(3)
C7-C8	1.500(4)	C8-C13	1.372(4)
C8-C9	1.385(4)	C9-C10	1.376(4)
C10-C11	1.360(5)	C11-C12	1.366(5)
C12-C13	1.384(5)	C14-C15	1.377(4)
C14-C19	1.383(3)	C14-N1	1.457(3)
C15-C16	1.383(4)	C16-C17	1.378(3)
C17-C18	1.389(4)	C17-C20	1.526(4)
C18-C19	1.380(4)	C20-C21	1.528(4)
C20-C28	1.537(4)	C21-C22	1.382(4)
C21-C26	1.402(3)	C22-C23	1.387(4)
C23-C24	1.386(4)	C24-O7	1.370(3)
C24-C25	1.377(4)	C25-C26	1.380(4)
C26-C30	1.505(4)	C27-O7	1.413(4)
C28-C31	1.495(4)	C28-C29	1.541(4)
C29-C30	1.484(4)	C31-F2	1.327(4)
C31-F1	1.336(4)	C31-F3	1.341(3)
N1-S1	1.620(2)	N2-O3	1.211(3)
N2-O4	1.214(3)	N3-O5	1.216(3)
N3-06	1.217(3)	O1-S1	1.420(2)
O2-S1	1.424(2)	O8A-C35A	1.368(10)
08A-C32A	1.457(10)	C32A-C33A	1.380(12)
C33A-C34A	1.581(13)	C34A-C35A	1.431(12)
O8B-C35B	1.427(17)	O8B-C32B	1.451(16)
C32B-C33B	1.406(17)	C32B-C34B	1.97(3)
C33B-C34B	1.494(19)	C34B-C35B	1.473(19)

Table S15. Bond angles (°) for 5.

C6-C1-C2	117.8(2)	C6-C1-S1	117.3(2)
C2-C1-S1	124.86(19)	C3-C2-C1	122.1(2)
C3-C2-N2	115.7(2)	C1-C2-N2	122.2(2)
C2-C3-C4	117.6(2)	C5-C4-C3	122.8(3)
C5-C4-N3	119.5(2)	C3-C4-N3	117.7(3)
C4-C5-C6	118.5(2)	C1-C6-C5	121.2(3)
N1-C7-C8	110.4(2)	C13-C8-C9	117.7(3)
C13-C8-C7	120.9(3)	C9-C8-C7	121.3(3)
C10-C9-C8	121.2(3)	C11-C10-C9	120.3(3)
C10-C11-C12	119.3(3)	C11-C12-C13	120.7(3)
C8-C13-C12	120.7(3)	C15-C14-C19	119.7(2)

C15-C14-N1	121.2(2)	C19-C14-N1	119.1(2)
C14-C15-C16	120.1(2)	C17-C16-C15	121.1(2)
C16-C17-C18	118.0(2)	C16-C17-C20	120.4(2)
C18-C17-C20	121.6(2)	C19-C18-C17	121.4(2)
C18-C19-C14	119.5(2)	C17-C20-C21	111.9(2)
C17-C20-C28	113.9(2)	C21-C20-C28	109.7(2)
C22-C21-C26	118.2(2)	C22-C21-C20	121.0(2)
C26-C21-C20	120.8(2)	C21-C22-C23	122.7(2)
C24-C23-C22	118.5(2)	O7-C24-C25	116.2(2)
O7-C24-C23	124.3(3)	C25-C24-C23	119.5(2)
C24-C25-C26	122.1(2)	C25-C26-C21	119.1(2)
C25-C26-C30	118.5(2)	C21-C26-C30	122.3(2)
C31-C28-C20	114.4(2)	C31-C28-C29	108.2(2)
C20-C28-C29	108.9(2)	C30-C29-C28	111.1(2)
C29-C30-C26	114.4(2)	F2-C31-F1	105.1(3)
F2-C31-F3	106.6(3)	F1-C31-F3	104.9(2)
F2-C31-C28	113.7(3)	F1-C31-C28	115.0(3)
F3-C31-C28	110.8(2)	C14-N1-C7	116.9(2)
C14-N1-S1	117.77(16)	C7-N1-S1	117.99(18)
O3-N2-O4	125.5(2)	O3-N2-C2	117.6(2)
O4-N2-C2	116.8(2)	O5-N3-O6	124.8(3)
O5-N3-C4	117.9(3)	O6-N3-C4	117.3(3)
C24-O7-C27	118.9(2)	O1-S1-O2	120.19(13)
O1-S1-N1	108.56(12)	O2-S1-N1	107.31(13)
O1-S1-C1	107.15(12)	O2-S1-C1	105.99(12)
N1-S1-C1	106.94(12)	C35A-O8A-C32A	107.2(8)
C33A-C32A-O8A	108.1(9)	C32A-C33A-C34A	105.8(10)
C35A-C34A-C33A	98.9(10)	O8A-C35A-C34A	111.6(9)
C35B-O8B-C32B	105.4(17)	C33B-C32B-O8B	105.1(18)
C33B-C32B-C34B	49.2(11)	O8B-C32B-C34B	73.4(13)
C32B-C33B-C34B	85.4(18)	C35B-C34B-C33B	98.(2)
C35B-C34B-C32B	82.1(14)	C33B-C34B-C32B	45.4(10)
O8B-C35B-C34B	92.0(19)		

Table S16. Torsion angles (°) for 5.

C6-C1-C2-C3	0.1(4)	S1-C1-C2-C3	-179.78(19)
C6-C1-C2-N2	179.6(2)	S1-C1-C2-N2	-0.3(4)
C1-C2-C3-C4	-1.7(4)	N2-C2-C3-C4	178.8(2)
C2-C3-C4-C5	1.8(4)	C2-C3-C4-N3	-177.9(2)
C3-C4-C5-C6	-0.2(4)	N3-C4-C5-C6	179.5(2)
C2-C1-C6-C5	1.5(4)	S1-C1-C6-C5	-178.6(2)
C4-C5-C6-C1	-1.5(4)	N1-C7-C8-C13	-115.1(3)

N1-C7-C8-C9	66.8(3)	C13-C8-C9-C10	0.7(4)
C7-C8-C9-C10	178.8(3)	C8-C9-C10-C11	0.3(5)
C9-C10-C11-C12	-0.9(5)	C10-C11-C12-C13	0.3(6)
C9-C8-C13-C12	-1.2(5)	C7-C8-C13-C12	-179.4(3)
C11-C12-C13-C8	0.7(6)	C19-C14-C15-C16	-1.0(4)
N1-C14-C15-C16	178.9(2)	C14-C15-C16-C17	0.3(4)
C15-C16-C17-C18	0.1(4)	C15-C16-C17-C20	-178.2(2)
C16-C17-C18-C19	0.3(4)	C20-C17-C18-C19	178.6(2)
C17-C18-C19-C14	-1.0(4)	C15-C14-C19-C18	1.4(4)
N1-C14-C19-C18	-178.5(2)	C16-C17-C20-C21	119.0(3)
C18-C17-C20-C21	-59.2(3)	C16-C17-C20-C28	-115.8(3)
C18-C17-C20-C28	66.0(3)	C17-C20-C21-C22	-27.5(3)
C28-C20-C21-C22	-154.9(2)	C17-C20-C21-C26	154.0(2)
C28-C20-C21-C26	26.5(3)	C26-C21-C22-C23	-1.2(4)
C20-C21-C22-C23	-179.8(2)	C21-C22-C23-C24	0.5(4)
C22-C23-C24-O7	-178.2(3)	C22-C23-C24-C25	0.8(4)
O7-C24-C25-C26	177.8(3)	C23-C24-C25-C26	-1.3(4)
C24-C25-C26-C21	0.6(4)	C24-C25-C26-C30	-176.2(3)
C22-C21-C26-C25	0.6(4)	C20-C21-C26-C25	179.2(2)
C22-C21-C26-C30	177.3(3)	C20-C21-C26-C30	-4.1(4)
C17-C20-C28-C31	57.3(3)	C21-C20-C28-C31	-176.4(2)
C17-C20-C28-C29	178.4(2)	C21-C20-C28-C29	-55.3(3)
C31-C28-C29-C30	-170.3(3)	C20-C28-C29-C30	64.9(3)
C28-C29-C30-C26	-41.4(4)	C25-C26-C30-C29	-171.8(3)
C21-C26-C30-C29	11.5(4)	C20-C28-C31-F2	65.0(3)
C29-C28-C31-F2	-56.5(3)	C20-C28-C31-F1	-56.2(4)
C29-C28-C31-F1	-177.7(3)	C20-C28-C31-F3	-174.9(2)
C29-C28-C31-F3	63.6(3)	C15-C14-N1-C7	55.8(3)
C19-C14-N1-C7	-124.3(3)	C15-C14-N1-S1	-93.7(3)
C19-C14-N1-S1	86.1(3)	C8-C7-N1-C14	63.6(3)
C8-C7-N1-S1	-146.9(2)	C3-C2-N2-O3	-103.6(3)
C1-C2-N2-O3	76.8(3)	C3-C2-N2-O4	73.3(3)
C1-C2-N2-O4	-106.2(3)	C5-C4-N3-O5	173.1(3)
C3-C4-N3-O5	-7.2(4)	C5-C4-N3-O6	-7.1(4)
C3-C4-N3-O6	172.6(3)	C25-C24-O7-C27	-171.3(3)
C23-C24-O7-C27	7.8(4)	C14-N1-S1-O1	-42.5(2)
C7-N1-S1-O1	168.20(19)	C14-N1-S1-O2	-173.86(18)
C7-N1-S1-O2	36.9(2)	C14-N1-S1-C1	72.8(2)
C7-N1-S1-C1	-76.5(2)	C6-C1-S1-O1	-164.3(2)
C2-C1-S1-O1	15.6(3)	C6-C1-S1-O2	-34.8(3)
C2-C1-S1-O2	145.1(2)	C6-C1-S1-N1	79.5(2)
C2-C1-S1-N1	-100.7(2)	C35A-O8A-C32A-C33A	-2.0(17)
O8A-C32A-C33A-C34A	19.(2)	C32A-C33A-C34A-C35A	-27.(2)

C32A-O8A-C35A-C34A	-18.0(18)	C33A-C34A-C35A-O8A	27.(2)
C35B-O8B-C32B-C33B	19.(3)	C35B-O8B-C32B-C34B	-20.(2)
O8B-C32B-C33B-C34B	-51.(3)	C32B-C33B-C34B-C35B	70.(3)
C32B-O8B-C35B-C34B	25.(3)	C33B-C34B-C35B-O8B	-61.(3)
C32B-C34B-C35B-O8B	-18.(2)		

Table S17. Anisotropic atomic displacement parameters (\check{A}^2) for 5.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U_{11}	\mathbf{U}_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C1	0.0386(15)	0.0345(14)	0.0395(15)	-0.0105(11)	-0.0002(11)	-0.0008(11)
C2	0.0320(14)	0.0331(13)	0.0430(15)	-0.0119(11)	0.0050(11)	-0.0037(11)
C3	0.0439(16)	0.0352(14)	0.0411(15)	-0.0053(11)	0.0021(12)	-0.0053(12)
C4	0.0390(15)	0.0310(14)	0.0531(17)	-0.0045(12)	-0.0011(12)	0.0008(11)
C5	0.0427(16)	0.0398(15)	0.0565(18)	-0.0100(13)	0.0096(13)	0.0069(12)
C6	0.0520(17)	0.0404(15)	0.0404(15)	-0.0089(12)	0.0079(13)	0.0056(13)
C7	0.0508(17)	0.0596(19)	0.0361(15)	-0.0093(13)	0.0068(13)	0.0162(14)
C8	0.0398(15)	0.0557(17)	0.0294(13)	-0.0119(12)	0.0028(11)	0.0031(13)
С9	0.0427(16)	0.0581(19)	0.0468(16)	-0.0099(14)	-0.0054(13)	0.0005(14)
C10	0.064(2)	0.064(2)	0.0495(18)	-0.0021(16)	-0.0065(15)	0.0111(17)
C11	0.096(3)	0.061(2)	0.058(2)	-0.0044(17)	0.015(2)	-0.013(2)
C12	0.082(3)	0.103(3)	0.078(3)	-0.015(2)	0.008(2)	-0.046(3)
C13	0.052(2)	0.099(3)	0.0515(19)	-0.0074(19)	-0.0087(15)	-0.0148(19)
C14	0.0376(14)	0.0347(14)	0.0316(13)	-0.0048(11)	0.0036(11)	0.0038(11)
C15	0.0322(14)	0.0380(14)	0.0427(15)	-0.0063(12)	0.0077(11)	0.0055(11)
C16	0.0315(14)	0.0434(15)	0.0433(15)	-0.0049(12)	0.0008(11)	-0.0006(11)
C17	0.0373(14)	0.0355(14)	0.0385(14)	-0.0055(11)	0.0062(11)	-0.0036(11)
C18	0.0401(15)	0.0394(15)	0.0508(16)	-0.0135(13)	0.0044(13)	0.0118(12)
C19	0.0360(15)	0.0434(15)	0.0428(15)	-0.0077(12)	-0.0040(12)	0.0079(12)
C20	0.0432(16)	0.0393(15)	0.0452(16)	-0.0103(12)	0.0004(12)	-0.0001(12)
C21	0.0414(15)	0.0342(14)	0.0369(14)	-0.0044(11)	-0.0005(11)	0.0012(11)
C22	0.0483(16)	0.0374(15)	0.0441(15)	-0.0114(12)	0.0058(13)	-0.0020(12)
C23	0.0526(17)	0.0388(15)	0.0400(15)	-0.0054(12)	-0.0004(13)	-0.0074(13)
C24	0.0500(17)	0.0514(17)	0.0318(14)	-0.0052(12)	0.0045(12)	-0.0018(13)
C25	0.0635(19)	0.0415(16)	0.0381(15)	-0.0118(12)	0.0074(14)	-0.0013(14)
C26	0.0499(16)	0.0350(14)	0.0360(14)	-0.0068(11)	0.0007(12)	0.0007(12)
C27	0.057(2)	0.074(2)	0.0534(18)	-0.0097(16)	0.0079(15)	-0.0187(17)
C28	0.0482(17)	0.0431(16)	0.0491(16)	-0.0067(13)	0.0055(13)	-0.0024(13)
C29	0.063(2)	0.0464(17)	0.0621(19)	-0.0166(14)	0.0097(16)	-0.0127(15)
C30	0.072(2)	0.0380(16)	0.0516(17)	-0.0102(13)	0.0080(15)	-0.0032(14)
C31	0.057(2)	0.0404(17)	0.065(2)	-0.0070(15)	0.0085(16)	-0.0049(14)
F1	0.1122(17)	0.0664(12)	0.0648(12)	-0.0167(10)	0.0405(11)	-0.0282(12)
F2	0.0449(11)	0.1063(17)	0.1051(16)	-0.0054(13)	0.0110(11)	0.0083(11)
F3	0.0848(14)	0.0456(11)	0.0901(14)	-0.0012(9)	0.0140(11)	-0.0102(9)

	U_{11}	\mathbf{U}_{22}	U_{33}	U_{23}	U_{13}	U_{12}
N1	0.0473(13)	0.0420(13)	0.0316(11)	-0.0091(9)	0.0033(10)	0.0071(10)
N2	0.0397(13)	0.0440(14)	0.0443(13)	-0.0114(11)	0.0075(10)	-0.0018(11)
N3	0.0530(16)	0.0398(14)	0.0705(19)	-0.0035(13)	-0.0109(14)	0.0058(12)
01	0.0332(10)	0.0539(12)	0.0682(13)	-0.0139(10)	-0.0045(9)	0.0034(9)
O2	0.0784(15)	0.0605(13)	0.0528(12)	-0.0243(10)	-0.0255(11)	0.0062(11)
03	0.0648(14)	0.0404(12)	0.0654(13)	-0.0193(10)	0.0169(11)	-0.0013(10)
04	0.0468(12)	0.0678(14)	0.0809(15)	-0.0157(12)	0.0265(11)	-0.0190(11)
05	0.0846(17)	0.0603(15)	0.0666(16)	0.0117(12)	-0.0116(13)	0.0096(12)
06	0.0579(14)	0.0648(15)	0.0999(18)	-0.0078(13)	-0.0025(13)	0.0261(12)
07	0.0706(14)	0.0654(14)	0.0495(12)	-0.0183(10)	0.0231(11)	-0.0172(11)
S 1	0.0421(4)	0.0446(4)	0.0447(4)	-0.0147(3)	-0.0089(3)	0.0063(3)
08A	0.097(3)	0.073(5)	0.144(4)	0.013(4)	0.032(3)	0.011(3)
C32A	0.109(6)	0.078(6)	0.206(11)	0.011(6)	0.014(6)	-0.018(4)
C33A	0.124(7)	0.096(6)	0.303(16)	0.053(8)	0.029(8)	0.021(5)
C34A	0.096(5)	0.103(6)	0.243(12)	-0.018(7)	0.035(6)	0.011(4)
C35A	0.101(5)	0.079(4)	0.194(11)	-0.008(5)	0.030(6)	-0.013(4)
O8B	0.097(3)	0.073(5)	0.144(4)	0.013(4)	0.032(3)	0.011(3)
C32B	0.094(9)	0.092(8)	0.138(12)	0.027(7)	0.049(8)	0.021(6)
C33B	0.100(9)	0.112(9)	0.160(14)	0.022(8)	0.050(9)	0.030(6)
C34B	0.096(7)	0.123(10)	0.162(13)	0.025(9)	0.025(7)	0.016(7)
C35B	0.101(8)	0.117(11)	0.154(14)	0.044(11)	0.032(7)	0.002(7)

Table S18. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for 5.

	x/a	y/b	z/c	U(eq)
H3	0.5603	0.7849	0.6373	0.048000
H5	0.2291	0.8427	0.8029	0.056000
H6	0.4952	0.7375	0.8598	0.054000
H7A	0.4156	0.5327	0.8770	0.060000
H7B	0.5885	0.5646	0.9274	0.060000
H9	0.8640	0.4149	0.9753	0.059000
H10	0.8556	0.2645	1.0316	0.072000
H11	0.5514	0.1725	1.0229	0.086000
H12	0.2506	0.2334	0.9594	0.102000
H13	0.2539	0.3853	0.9038	0.080000
H15	0.4117	0.5017	0.7661	0.046000
H16	0.3875	0.3992	0.6829	0.047000
H18	1.0044	0.2707	0.7248	0.053000
H19	1.0290	0.3716	0.8089	0.049000
H20	0.5316	0.2799	0.6171	0.051000
H22	0.9125	0.4126	0.6070	0.052000
H23	1.1991	0.4377	0.5321	0.052000

	x/a	y/b	z/c	U(eq)
H25	1.1579	0.1635	0.4774	0.057000
H27A	1.6291	0.3802	0.4181	0.091000
H27B	1.5752	0.3948	0.4917	0.091000
H27C	1.4126	0.4479	0.4384	0.091000
H28	0.8176	0.1259	0.6796	0.056000
H29A	0.6300	0.0228	0.6113	0.068000
H29B	0.5138	0.1190	0.5749	0.068000
H30A	0.8131	0.0788	0.5131	0.064000
H30B	0.9718	0.0502	0.5728	0.064000
H32A	0.1987	1.0688	0.9123	0.158000
H32B	0.2122	1.0446	0.8386	0.158000
H33A	-0.1250	1.0954	0.8229	0.215000
H33B	-0.1030	1.1504	0.8873	0.215000
H34A	-0.2901	1.0327	0.9490	0.178000
H34B	-0.4056	1.0188	0.8817	0.178000
H35A	-0.1631	0.8809	0.9373	0.150000
H35B	-0.1752	0.8936	0.8612	0.150000
H32C	0.1622	1.1088	0.8579	0.134000
H32D	0.0356	1.0515	0.8070	0.134000
H33C	-0.2445	1.1443	0.8563	0.154000
H33D	-0.1501	1.1042	0.9265	0.154000
H34C	-0.3829	0.9835	0.8779	0.156000
H34D	-0.1830	0.9721	0.8253	0.156000
H35C	-0.1013	0.9566	0.9610	0.153000
H35D	-0.0833	0.8631	0.9173	0.153000

Table S19. Hydrogen bond distances (Å) and angles (°) for 5.

	Donor-H	Acceptor-H	Donor-Acceptor	Angle
C3-H3-07#2	0.94	2.33	3.098(3)	138.4
C5-H5-O8A^a	0.94	2.48	3.314(11)	148.5
C5-H5-08B^b	0.94	2.56	3.37(3)	145.0
C7-H7B-02	0.98	2.38	2.870(4)	110.1
C15-H15-01#1	0.94	2.36	3.286(3)	167.7

11. NMR spectra

S136

