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Extraction and curation of amide coupling reactions

The dataset for amide coupling reactions was obtained by querying the Reaxys database 

using predefined reaction templates. These templates were constructed by initiating a "Quick 

search" within the Reaxys interface. Subsequently, a generic amide coupling reaction was drawn, 

and this template was then applied to formulate queries for the desired reactions.

The approach involved sketching reactions using the MarvinJS interface integrated into 

Reaxys, akin to the process one might undertake on a physical whiteboard. This interface offers a 

multitude of functionalities. For instance, it allows for the specification of "R" groups denoting 

various atom assemblies, mapping of atoms from reactants to products, and delineation of the 

catalyst by illustrating it above the reaction arrow. A comprehensive guide for fundamental 

operations can be accessed here.

The initial download yielded approximately 195,800 amide coupling reactions catalyzed 

by carbodiimides. Subsequent refinement and curation procedures resulted in a final set of 41,239 

reactions. For the sake of reproducibility, the Reaxys IDs corresponding to the reactions in our 

dataset can be found on the GitHub page: https://github.com/isayevlab/amide_reaction_data.

Reaction mechanism

The amide coupling dataset involves 3 types of carbodiimides: EDC, DIC and DCC 

(Figure S1). O-acylisourea is the key intermediate during the formation of amide. It has two 

pathways to form the desired amide. It also undergoes a slow rearrangement, producing the side 

product N-acylurea.
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Figure S1. The mechanism for amide coupling catalyzed by carbodiimides. 

Generation of O-acylisourea

All reactions in the amide coupling dataset follow the same mechanism, so the 

intermediates can be obtained via SMARTS pattern mapping. Below is an example of transforming 

10 carboxylic acids into 10 O-acylisoureas by the reaction between acids and EDCI (Figure S2). 
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Figure S2. Example of generating O-acylisourea from acid and EDCI through SMARTS 

mapping

Annotation of the reactive centers

Algorithm 1 describes the process for identifying the reactive centers of the acids, amines 

and products. The isomorphic test was implemented via NetworkX1. It returns True if two groups 

of atoms have the same connectivity. For each molecule, the reactive center is the indexes of the 

reactive atoms in the molecular SDF format.

 

Generation of QM descriptors

With the 3D structures from Auto3D2, the descriptors from Table S1 can be calculated 

directly from AIMNET3. From these original descriptors, we derived 51 descriptors that capture 

the properties of the amide reactions in Table S2. 
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Table S1. Original AIMNET descriptors
Descriptor Data Type and Shape Explanation

energy list, length=3 The energies for three states (+1, 0, -1) of 
the input molecule, unit eV

energy_std list, length=3 Standard deviation from the AIMNET 
ensemble (5 models in total)

charges 2D list, (3, number of atoms)
The atomic charges (summation of the alpha 
and beta charges) for three states (+1, 0, -1) 

of the input molecule

charges_std 3D list, (3, number of atoms, 2) Standard deviation of the atomic alpha and 
beta charge from the AIMNET ensemble

ip float ionization potential, unit eV
ea float electron affinity, unit eV

f_el list, length=number of atoms 
(including H) atomic Fukui functions for electronic attack

f_nuc list, length=number of atoms 
(including H)

atomic Fukui function for nucleophilic 
attack

f_rad list, length=number of atoms 
(including H) atomic Fukui function for radical attack

chi float electronegativity, unit eV
eta float hardness, unit eV

omega float electrophilicity index, unit eV

omega_el list, length=number of atoms 
(including H)

atomic electrophilicity index for 
electrophilic attack, unit eV

omega_nuc list, length=number of atoms 
(including H)

atomic electrophilicity index for 
nucleophilic attack, unit eV

omega_rad list, length=number of atoms 
(including H)

atomic electrophilicity index for radical 
attack, unit eV

Table S2. The QM descriptors for amide coupling reactions

Descriptor Explanation Formula

∆𝐸 𝑒𝑙
𝑟𝑥𝑛 electronic reaction energy ∆𝐸 𝑒𝑙

𝑟𝑥𝑛 =  𝐸 𝑒𝑙
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 +  𝐸 𝑒𝑙

𝑤𝑎𝑡𝑒𝑟 ‒  𝐸 𝑒𝑙
𝑎𝑐𝑖𝑑 ‒  𝐸 𝑒𝑙

𝑎𝑚𝑖𝑛𝑒

∆𝐸𝑒𝑙
𝑖

the electronic energy 

difference between the 

intermediate and the reactant

∆𝐸𝑒𝑙
𝑖 =  𝐸 𝑒𝑙

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ‒  𝐸 𝑒𝑙
𝑎𝑐𝑖𝑑 ‒  𝐸 𝑒𝑙

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
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rxn_acid_fukui Fukui index 𝑓 𝑛𝑢𝑐
𝑎𝑚𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 ‒  𝑓 𝑟𝑎𝑑

𝑎𝑚𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟

rxn_amine_fukui Fukui index 𝑓 𝑒𝑙
𝑎𝑐𝑖𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 ‒  𝑓 𝑛𝑢𝑐

𝑎𝑐𝑖𝑑 𝑐𝑒𝑛𝑡𝑒𝑟

rxn_fukui Fukui index 𝑓𝑟𝑥𝑛 =  𝑓 𝑛𝑢𝑐
𝑎𝑚𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 ‒  𝑓 𝑟𝑎𝑑

𝑎𝑚𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟) ‒  (𝑓 𝑒𝑙
𝑎𝑐𝑖𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 ‒  𝑓 𝑛𝑢𝑐

𝑎𝑐𝑖𝑑 𝑐𝑒𝑛𝑡𝑒𝑟)

acid_ip ionization energy potential 𝐼𝑃𝑎𝑐𝑖𝑑

amine_ip ionization energy potential 𝐼𝑃𝑎𝑚𝑖𝑛𝑒

p_ip ionization energy potential 𝐼𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡

aa_ip ionization energy potential 𝐼𝑃𝑎𝑚𝑖𝑛𝑒 ‒  𝐼𝑃𝑎𝑐𝑖𝑑

rxn_ip ionization energy potential 𝐼𝑃𝑟𝑥𝑛 =  𝐼𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ‒  𝐼𝑃𝑎𝑐𝑖𝑑 ‒  𝐼𝑃𝑎𝑚𝑖𝑛𝑒

acid_ea electron affinity 𝐸𝐴𝑎𝑐𝑖𝑑

amine_ea electron affinity 𝐸𝐴𝑎𝑚𝑖𝑛𝑒

p_ea electron affinity 𝐸𝐴𝑝𝑟𝑜𝑑𝑢𝑐𝑡

aa_ea electron affinity 𝐸𝐴𝑎𝑚𝑖𝑛𝑒 ‒  𝐸𝐴𝑎𝑐𝑖𝑑

rxn_ea electron affinity 𝐸𝐴𝑟𝑥𝑛 =  𝐸𝐴𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ‒  𝐸𝐴𝑎𝑐𝑖𝑑 ‒  𝐸𝐴𝑎𝑚𝑖𝑛𝑒

acid_chi electronegativity 𝜒𝑎𝑐𝑖𝑑

amine_chi electronegativity 𝜒𝑎𝑚𝑖𝑛𝑒

p_chi electronegativity 𝜒𝑝𝑟𝑜𝑑𝑢𝑐𝑡

aa_chi electronegativity  𝜒𝑎𝑚𝑖𝑛𝑒 ‒  𝜒𝑎𝑐𝑖𝑑

rxn_chi electronegativity 𝜒𝑟𝑥𝑛 =  𝜒𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ‒  𝜒𝑎𝑐𝑖𝑑 ‒  𝜒𝑎𝑚𝑖𝑛𝑒

acid_eta hardness 𝜂𝑎𝑐𝑖𝑑

amine_eta hardness 𝜂𝑎𝑚𝑖𝑛𝑒

p_eta hardness 𝜂𝑝𝑟𝑜𝑑𝑢𝑐𝑡

aa_eta hardness 𝜂𝑎𝑚𝑖𝑛𝑒 ‒  𝜂𝑎𝑐𝑖𝑑

rxn_eta hardness 𝜂𝑟𝑥𝑛 =  𝜂𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ‒  𝜂𝑎𝑐𝑖𝑑 ‒  𝜂𝑎𝑚𝑖𝑛𝑒

acid_omega electrophilicity index 𝜔𝑎𝑐𝑖𝑑

amine_omega electrophilicity index 𝜔𝑎𝑚𝑖𝑛𝑒

p_omega electrophilicity index 𝜔𝑝𝑟𝑜𝑑𝑢𝑐𝑡

aa_omega electrophilicity index 𝜔𝑎𝑚𝑖𝑛𝑒 ‒  𝜔𝑎𝑐𝑖𝑑

rxn_omega electrophilicity index 𝜔𝑟𝑥𝑛 =  𝜔𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ‒   𝜔𝑎𝑐𝑖𝑑 ‒  𝜔𝑎𝑚𝑖𝑛𝑒

C_charge atomic charge on the acid carbon center

N_charge atomic charge on the amine nitrogen center
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pC_charge atomic charge on the product carbon center 

pN_charge atomic charge on the product nitrogen center

pCC_charge pCC_charge = pC_charge - C_charge

pNN_charge pNN_charge = pN_charge - N_charge

CN_charge CN_charge = N_charge - C_charge

C_fukui Fukui index on the acid carbon center

N_ fukui Fukui index on the amine nitrogen center

pC_ fukui Fukui index on the product carbon center 

pN_ fukui Fukui index on the product nitrogen center

pCC_fukui pCC_fukui = pC_fukui - C_fukui

pNN_fukui pNN_fukui = pN_fukui - N_fukui

CN_fukui CN_fukui = N_fukui - C_fukui

C_omega electrophilicity index on the acid carbon center

N_omega electrophilicity index on the amine nitrogen center

pC_omega electrophilicity index on the product carbon center 

pN_omega electrophilicity index on the product nitrogen center

pCC_omega pCC_omega = pC_omega - C_omega

pNN_omega pNN_omega = pN_omega - N_omega

CN_omega CN_omega = N_omega - C_omega
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Figure S3. UMAP projection of the reaction space colored by additional QM features.

Generation of AEV and Mordred descriptors

The atomic environment vector (AEV) descriptor was calculated using the AEV computer 

in TorchANI4. We considered 12 elements for the AEV calculator to cover all the molecules in the 

amide coupling dataset. The conversion rule from the atomic number to the atomic index in 

TorchANI was {1:0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 14: 6, 15: 7, 16: 8, 17: 9, 35: 10, 53: 11}. The other 

parameters for the AEV computer are default values. The resulting AEV has a dimension of 2,688. 

Since many columns contain mostly the same values, we only kept the AEV features of which the 

variance is at least 0.0001. The final AEV feature length is 1,716.

The Mordred descriptor was calculated using the Mordred package5. The original Mordred 

descriptor contains 1,826 features. After removing features with missing values, we ended up with 

1648 features.
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Amide coupling dataset statistics

After downloading from Reaxys, reactions involving organometallic compounds or very 

large molecules were excluded. After processing, each reactant contains no more than 100 atoms, 

and each product contains no more than 150 atoms. The raw dataset contained approximately 

195,800 amide coupling reactions with different catalysts, from which we sampled a subset of 

reactions that are catalyzed by carbodiimides. The carbodiimides include N,N'-

Dicyclohexylcarbodiimide (DCC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 

N,N′-Diisopropylcarbodiimide (DIC).  

The amide coupling dataset contains 41,239 reactions, which consist of 111,071 unique 

molecules. There are hundreds to thousands of low-yield reactions, although the yield distribution 

is left-skewed (i.e., most reactions have high yields). Most reactions involve medium to large 

molecules because the product molecular weight is between 250 to 650. More statistics about the 

dataset can be found in Figure S4 and S5.
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Figure S4. The distribution of reaction yield (A), size (B), temperature (C), solvent (D) 

and time (E).
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Figure S5. The distribution of electronic reaction energy
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The MAE metric on the amide coupling dataset and the Buchwald-Hartwig dataset

Figure S6. The MAE metric for yield prediction on the amide coupling dataset (A) and 

Buchwald-Hartwig dataset (B).

Recursive feature elimination (RFE)

RFE is a technique for selecting the most informative features. The process is as follows: 

a model is first trained using the full features. The features are then ranked by the importance 

assigned by this trained model. A subset of the features will be pruned based on the importance 

ranking. The remaining features are used to train another model, then we further prune the features 

based on the new importance scores… This process is repeated until the total number of features 

decreases to a specific threshold. In our case, we trained an RF at each step and used it for feature 
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selection. At each step, we removed the bottom 20% of the features based on the importance 

ranking. Figure S7 summarizes the model performance along the feature elimination process. 

Figure S7. The model performance during the feature elimination process.

Figure S8 displays the top-10 most important features for each descriptor as identified 

during the Recursive Feature Elimination (RFE) process. The importance on the x-axis is derived 

from the "feature_importance_" attribute of a trained random forest, computed based on the mean 

decrease in impurity within each tree.

In Panel A, the y-axis portrays the substructure or condition linked with each bit of the 

fingerprint. In Panel B, the y-axis elucidates the physical significance of individual features within 

the Mordred descriptor. Panel C's y-axis signifies the coordinates of the top-10 features of the 

AEV, although the AEV descriptor lacks a corresponding physical interpretation. Meanwhile, in 

Panel D, the y-axis represents the QM terms, as outlined in Table S2.
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It is worth noting that despite the heightened importance of the QM terms in comparison 

to other features, relying solely on the QM descriptor did not yield satisfactory performance.
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Figure S8. The top-10 most important features in the fingerprint descriptor (A), Mordred 

descriptor (B), AEV descriptor (C) and the QM descriptor (D).
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Yield prediction performance on different amine types

For each type of amine, 90% of the data was allocated for training purposes, while the 

remaining 10% was reserved for testing. The identical stacking technique and descriptors, as 

discussed in the main text, were employed in this context as well.

Table S3. Yield prediction performance on different subsets of the amide coupling 
dataset

Amine Category primary aliphatic primary aromatic secondary
Subset Size 28,067 12,530 634

R2 0.363 0.425 0.424
MAE (%) 13.29 13.42 14.29

Model performance after injecting artificial negative reactions

The following experiments were done using reaction context and fingerprint as the 

descriptor. The artificial negative reactions were produced by changing the fingerprint bits for the 

acid or amine to be all zeros and then assigning the reaction yield as 0. The logic behind these 

artificial negative data points was that the reaction cannot happen when either acid or amine was 

missing.

Table S4. Model performance with artificial negative data augmentation
Model Percent of negative data points in the training set R2 MAE (%)

0 0.348 13.97
20 0.341 14.07
50 0.340 14.07RF

100 0.342 14.06
0 0.331 14.03
20 0.331 13.91
50 0.312 13.98MLP

100 0.312 13.98

Comparison between the HTE dataset and the amide dataset

The details of the HTE dataset was discussed by Doyle et al6. We added the side-by-side 

comparison of the HTE dataset and the amide dataset curated in this work. Compared with the 

HTE dataset, the amide dataset is around 10 times larger in terms of reaction size, around 1500 

times larger in terms of unique molecules, and contains comprehensive (though not complete) 

information about molecules and reactions. Besides the difference in dataset size, a notable 

difference is the yield distribution. For the HTE dataset, a larger portion of the reactions have low 

yields, but a large portion of reactions have high yields for the amide dataset. It is commonly 
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believed that lacking negative reaction is a major reason for the poor performance on large 

literature dataset. However, the R2 can be as low as 0.2 even on a large electronic notebook dataset 

where there is a large portion of negative examples7. This phenomenon indicates the existence of 

other factors that degrading model performance in yield prediction. Compared with other literature 

dataset, a unique advantage of our amide dataset is that all reactions follow the same mechanism. 

We could identify many similar reactions and observe how subtle structure change could lead to 

the difference in the final yield, providing the opportunity to observe the reactivity cliffs and 

uncertain yields. 

Table S5. Comparing the HTE dataset and the amide dataset

Metric HTE dataset Amide dataset

Number of 

reactions
4,608 41,239

Number of 

unique 

reactants

45 (15 aryl halides, 23 additives, 4 Pd 

catalysts, 3 bases)

70,081 (16,285 acids, 12,598 amines, 

3 carbodiimide catalysts, 17,518 

intermediates)

3D structure NO Yes

Intermediate NO Yes

Context NO Yes

Yield 

distribution
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