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1 Methods

1.1 Synthetic Structure generation

The synthetic systems are build from a pool of structures.
This pool contains single amino acids, the modified amino
acids dihydroxyphenylalanine (dopa) and hydroxyproline,
obtained from pubchem.!' Additionally, modified versions of
these structures are used, in which the free carboxyl group
is converted into an amid group to closer mimic the chemi-
cal situation in a protein. Water, as well as nine amino acid
fragments derived from alanine, glutamine, glycine, hydrox-
yproline and proline, resulting from breaks in the backbone
of a protein are also added to the pool.

All structures in the pool are considered in every possi-
ble charge state. From this pool of structures two, not nec-
essarily the same, structures are selected. Within each of
them, a hydrogen atom is randomly picked. The hydrogens
and their bonds are placed on top of each other, one of the
structures is rotated 180° around an axis perpendicular to
the bond. Then the structures are pulled apart, one struc-
ture is rotated around the bond of the hydrogen and tilted
around the hydrogen of the other structure. Also see
[ure 2|A in the main text for the definition of the translation,
rotation and tilt. The translations are sampled from a stan-
dard exponential distribution, the tilt angle from a normal
distribution with standard deviation of 45, the rotations are
sampled in 30° increments. If any atom from one structure
ends up being closer than 2 A to any atom of the other struc-
ture, this structure pair is discarded. Additionally, systems
get excluded if in a cylinder around the transition path with
a radius of 0.8 Aany atom is found, as this would lead to
non-physical reactions paths.

1.2 Trajectory Structure generation

The trajectory systems are generated from a collagen model
spanning one overlap and one gap region, which was ob-
tained from Colbuilder. Sequences from Loxodonta africana,
Pongo abelii and Rattus norvegicus were used, paired with
the divalent HLKNL and the trivalent PYD crosslink at var-
ious positions. These collagen models are simulated under
tension, i.e., the peptide chain ends are pulled apart. On
each collagen chain, a force of 1nN, or 3nN per triple he-
lix is exerted. Four different pulling methods are used: I)

the triple helices are pulled from both ends, II) and III) they
are pulled from one side, while the other is fixed in place,
and IV) on different triple helices different forces are ex-
erted, drawn from a Gaussian distribution with F,, = 1nN
mean force and width o = F,, /3. In this last scheme, the
outer ring of triple helices is still pulled at the average force
to prevent triple helices from sliding. More details on the
pulling simulations are given by Rennekamp et al.,” where
the same simulations are used.

The simulations can further by divided in two groups,
one containing two radicals as a result of a backbone break,
the other consisting of intact collagen system without radi-
cals. For the latter, HAT reactive systems are sampled by H-H
distance. As the energy barrier is highly correlated with this
distance, small distance were emphasized when sampling.
>98% of the samples have translation <3 A, >50% <2A.
Systems, where atoms are closer than 0.8 Ato
the transition path of the reacting hydrogen are excluded
in the same way as for synthetic systems. The radicals in
the other type are result of a homolytic bond breakage per-
formed using KIMMDY.? In these trajectories, only poten-
tial HAT reactions involving the existing radicals are consid-
ered. Again, systems with atoms intersecting the transition
path of the hydrogen where excluded. In contrast to the
fully saturated systems, the exact end position of the react-
ing hydrogen is not known and is therefore guessed from
the geometry. In case of an ambiguous endpoint, like the
hydrogen in an alcohol group, the smallest distance on a
109.5° cone around the oxygen is sampled.

To ensure chemical sensible systems, capping groups are
added to the cut-out sections from the trajectory. For the
N terminus these are acetyl groups and for the C terminus
NH—-CH; groups. To know where to add capping groups,
first we defined the groups we want to keep: all complete
amino acids with atoms in beta position to the reacting hy-
drogen, or alpha position to the radical heavy atom. The
next atoms from adjacent amino acids are then used to con-
struct the capping groups. In[Figure S3|A, this is show. Here,
the reacting amino acids and the atoms used for capping are
drawn solid, while the environment which will be removed
is drawn translucent. The result of the capping is shown in
[Figure S3|B. If the selected amino acids are part of the same



protein chain, but with one other amino acid in between,
this amino acid is replaced by glycine to decrease the atom

amount (Figure S3|C to E).

1.3 DFT Optimization
As mentioned in the main text, due to the closed-shell pa-
rameters of our input MD structures, it is necessary to op-
timize the structures to obtain realistic barriers. We froze
most of the system during the optimization to restrict it to
correcting wrong MD parameters, while not perturbing the
system any more than necessary. In we visualize
the atom layers around the reacting hydrogen. Each layer
includes all hydrogen atoms connected to any member of
the respective layer.
Layer 1 is highlighted in green and what we ultimately used
in the main text. Increasing the optimization region by one
bond, layer 2 (yellow) already allows in the shown example
complete movement of the side chain. This does lead to the
situation, that in some optimization steps (start, TS, end) a
hydrogen bond between the NH; and an oxygen in the back-
bone is formed, and in others not. This disturbs the calcu-
lated HAT barrier. Furthermore, this rearrangement can be
sampled in MD, therefore we want the DFT optimization to
stick to other degrees of freedom not covered by MD.
Unsurprisingly, bigger optimized regions do lead to on
average lower barriers, as can be seen in panel B and C of

1.4 Hyperparameter

Following hyperparameters were used for training the en-
semble model. The complete training routines can be found
on github: https://github.com/HITS-MBM/HAT prediction
GNN

"loss": "MAE",
"lr_start": 0.0008,

>

"lr_scheduler": "cos
0.01,

# Only central nodes of GNN pooled

"lr_fraction":
"out_emb": "poi",

# all mlp layers have same size
"mlp_style": "static",

"mlp_layers": 2,

"mlp_size": 128,

# mlp repetitions with skip connections
"mlp_rep": 1,

# message passing iterations

"depth": 2,

"equiv_norm": false,

"node_norm": false,

# pooling going from gnn to mlp

"pooling": "sum",
"epochs": 200,

"batchsize": 128,
"val_split": 0.1,

# optional output normalization
"scale": false,

# maximum translation

"max_dist": null,
# minimum translation
"min_dist": null,

1.5 Random Forest Regressor

A random forest regressor is compared against the devel-
oped ensemble GNN. It is used as implemented in scikit-
learn®. 100 trees are used, the maximum tree depth is un-
restricted. No hyperparameter optimization was performed
as the mode serves only as a point of reference.

1.6 Software

L-MBTR descriptors are calculated using DScribe 1.2.2.° Neu-
ral Networks are build using Tensorflow 2.10, graph neural
networks use additionally KGCNN.®


https://github.com/HITS-MBM/HAT_prediction_GNN
https://github.com/HITS-MBM/HAT_prediction_GNN
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Fig. S1 Histograms of (A) the synthetic data and (B) the trajectory data over translation distance of the reacting hydrogen.

Fig. S2 Example systems with low barriers in A-C, high barrier in D. All barriers in kcal /mol. The start position of the hydrogen is highlighted
orange, the interpolated transition path green. (A) Ea = 19.8;Ea,, = 3.6 The strong decrease of the barrier during optimization is due to
the donating CH, group adapting sp®> conformation. (B) Ea = 0.3;Ea,p = 0.4 The barrier in the reverse direction has also a low barrier
of Ea=8.7 (C) Ea=14.8;Ea,p, = 13.0 Very little rearrangement necessary during the reaction. (D) Ea = 112.0;Ea,p; = 108.8 The high
barrier is caused by another hydrogen interfering with the reaction path. In purple, the optimized TS is shown, where the hydrogen is
pushed out of the way. This pushing opens the transition path, but comes with an energy penalty, leading to the high barrier. Additionally,
the reacting hydrogen has to travel 2.9 A.



Fig. S3 Capping of trajectory systems. (A) A trajectory system with its context around shown translucently. (Same as Q) (B)
Same system as in A now isolated with the capping groups. (C) A intramolecular HAT reaction between the radical (bottom right) and
the adjacent CH3 group. (D) Same system as in C. The bridging amino acid between the reacting groups is removed. (E) Same system
as in C and D, with capping groups added. A glycine replaces the removed amino acid, in the background an acetyl group caps the N
terminus.
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Fig. S4 Histogram of optimized energy barriers versus not optimized energy barriers.
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Fig. S5 Analysis of different sized optimization regions. (A) lllustration of different possible optimization regions. The ultimately used
region is highlighted green, the next bigger region layer 2 yellow, and layer 3 red. (B) Comparison of the non-optimized trajectory systems,

the same systems optimized as in the main text, and these systems optimized at layer 2 and layer 3. (C) Histogram of the barriers
optimized at all different layers in relation to the non-optimized ones.
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Fig. S6 Performance of the ensemble model on synthetic test data. Left: Translation <2 A, Right: Translation <3 A
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Fig. S7 Training and validation performance of GNNs for non-optimized barriers. Left: Training curves at different points of learning
curve, shaded area is the 95% confidence interval. Right: Box plot of learning curve of training and validation data.
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Fig. S8 Training and validation performance of GNNs for transfer learning optimized barriers. Left: Training curves at different points of
learning curve, shaded area is the 95% confidence interval. Right: Box plot of learning curve of training and validation data.
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Fig. S9 Amino acid distribution in the training data set, including synthetic and trajectory data, compared to the amino acid distribution
in the test data of the FOF1 domains of FERM.
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Fig. S10 Performance of the feed-forward neural network using L-MBTR as input. The model is evaluated on all trajectory data. In A,
the ensemble model performance is plotted, B shows the performance of ten individual models in a density-colored scatter plot.

Fig. S11 Learning curve of a random forest model using L-MBTR as input with up to 12100 training points.
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Fig. S12 Reaction barriers predicted with BMK vs. with GFN2-xTB¥. 100 structures were drawn randomly from the combined synthetic
and trajectory data set.
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