Supporting Information

Ligand-controlled regiodivergent Ni-catalyzed trans-

hydroboration/carboboration of internal alkynes with B2pin2

Zunsheng Chen^{a#}, Biao Nie^{b#}, Xiaoning Li^a, Teng Liu^a, Chunsheng Li^c, Jiuzhong Huang^{*a}

^{*a*} School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China. E-mail: huangjz@gmu.edu.cn

^b State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd, Dongguan 523871, P. R. China.

^c School of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526060, P. R. China.

[#] equal contribution

Table of Contents

General information	2
General procedure for the synthesis of reaction substrates	2
Optimization of the <i>trans</i> -hydroboration reaction conditions	6
Optimization of the <i>trans</i> -carboboration reaction conditions	7
General procedure for the synthesis of products 2 and 3	8
Gram-scale reaction and the transformation of alkenyl boronate	8
Synthesis of <i>d</i> -50	9
Mechanism study with <i>meta</i> -CH ₂ CN diphenyl acetylene as substrate	10
Primary DFT calculation on the <i>cis</i> -to- <i>trans</i> isomerization	11
X-ray Crystallographic data of compounds 10, 24, 36, α - and β	-cis-
hydroboration of 53	20
Characterization data for all products	26
References	41
NMR Spectra for all compounds	43

General information

¹H NMR, ¹³C NMR, ¹¹B NMR and ¹⁹F NMR spectra were recorded on a Bruker AscendTM 400M spectrometer at ambient temperature in chloroform-*d* and tetramethylsilane (TMS) as an internal standard unless otherwise noted, the chemical shifts of ¹H NMR, ¹³C NMR are referenced to signals at 7.26 and 77.0 ppm, respectively. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity, integration, and coupling constant (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Data for ¹¹B NMR and ¹⁹F NMR are reported in terms of chemical shift (δ ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), td (triplet of doublets), dt (doublet of triplets), ddd (doublet of doublet of doublets). The data of HRMS were carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). Melting points were determined with Büchi Melting Point B-545 instrument. The data of X-ray were performed on a BRUKER Single Crystal X-Ray Diffractometer, Germany (model of the instrument-AXS D8 Quest System). TLC was performed by using commercially prepared 200-300 mesh silica gel plates and visualization effected at 254 nm. Unless stated otherwise, all reagents and solvents were purchased from commercial suppliers and used without further purification.

General procedure for the synthesis of reaction substrates

Synthetic methods and spectral data for $1a^1$, $1b^2$, $1c^1$, $1d^3$, $1e^1$, $1f^4$, $1g^2$, $1h^2$, $1i^5$, $1j^3$, $1k^1$, $1l^2$, $1m^5$, $1n^5$, $1o^6$, $1p^7$, $1q^8$, $1r^9$, $1s^{10}$, $1t^{11}$ were consistent with the methods and data reported in the literatures.

To a 25 mL sealed tube with magnetic stirrer bar, 2-(2-bromophenyl)acetonitrile (**SM1**, 5 mmol), alkyne(1.2 equiv), Pd(dppf)Cl₂ (2 mol %), PPh₃ (9 mol %), CuI (1 mol %), and Et₃N (15 mL) were successively added and vigorously stirred together in 80 °C oil bath under N₂ atmosphere. After the reaction was finished, the mixture was cooled to room temperature. The reaction was quenched with saturated NH₄Cl aq. and extracted with EtOAc (3×25 mL). The combined ethyl acetate layer was washed with brine (25 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate) on silica gel to afford the product **S1**.

Step 1: In a 100 mL round-bottom flask with magnetic stirrer bar, 2-(2-bromophenyl)acetonitrile (**S2**, 5 mmol), DMSO (15 mL) and K₂CO₃ (1.1 equiv) were successively added, the mixture was stirred at room temperature for 20 minutes, then iodomethane (1.1 equiv) was slowly added to the reaction, the reaction was stopped when **S2** disappeared. After the reaction, the reaction was quenched with water and extracted with dichloromethane (3×25 mL). The combined ethyl acetate layer was washed with brine (25 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate=20/1) on silica gel to afford the product **S3**.

Step 2: The second synthesis step is performed in the same way as the general procedure for the synthesis of substrates.

2-(2-(phenylethynyl)phenyl)propanenitrile (1u) yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.53 (m, 5H), 7.37 (td, J = 6.2, 5.4, 2.6 Hz, 4H), 4.48 (q, J = 7.2 Hz, 1H), 1.69 (d, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.7, 132.7, 131.6, 129.3, 128.9, 128.6, 128.1, 126.7, 122.6, 121.8, 121.5, 95.0, 86.0, 30.0, 20.5. HRMS-ESI (m/z): calcd for C₂₀H₁₉N, [M+H]⁺: 222.0953, found, 222.0969.

2-(2-((4-butylphenyl)ethynyl)phenyl)acetonitrile (1v) yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.56 (m, 1H), 7.51 (dd, J = 13.3, 8.2 Hz, 3H), 7.42 – 7.34 (m, 2H), 7.22 (d, J = 8.1 Hz, 2H), 4.00 (s, 2H), 2.70 – 2.64 (m, 2H), 1.70 – 1.59 (m, 2H), 1.43 – 1.35 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.2, 133.1, 132.3, 131.5, 128.9, 128.7, 128.2, 128.1, 123.0, 119.60, 117.6, 96.0, 35.7, 33.4, 22.8, 22.4, 14.0. HRMS-ESI (m/z): calcd for C₂₀H₁₉N, [M+H]⁺: 274.1596, found, 274.1596.

2-(2-([1,1'-biphenyl]-4-ylethynyl)phenyl)acetonitrile (1w) white solid, m.p. = 128-130 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.57 (m, 7H), 7.52 – 7.44 (m, 3H), 7.40 – 7.32 (m, 3H), 3.99 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.6, 140.2, 132.4, 132.1, 131.7, 129.1, 128.9, 128.2, 127.8, 127.2, 127.1, 122.9, 121.4, 117.5, 95.7, 86.7, 22.9. HRMS-ESI (m/z): calcd for C₂₂H₁₅N, [M+H]⁺: 294.1283, found, 294.1271.

2-(2-((2-methoxyphenyl)ethynyl)phenyl)acetonitrile (1x) white solid, m.p. = 92-94 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, J = 7.4, 1.5 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.36 (ddd, J = 10.4, 7.9, 6.3 Hz, 3H), 6.95 (dd, J = 17.3, 8.0 Hz, 2H), 4.07 (s, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2, 133.1, 132.0, 131.9, 130.3, 128.8, 128.0, 128.0, 123.2, 120.6, 117.8, 111.8, 110.6, 92.2, 90.3, 55.8, 22.6. HRMS-ESI (m/z): calcd for C₁₇H₁₃ON, [M+H]⁺: 248.1075, found, 248.1091.

2-(5-methoxy-2-(phenylethynyl)phenyl)acetonitrile (1y) light yellow solid, m.p. = 43-45 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.69 (m, 3H), 7.58 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.29 – 7.23 (m, 1H), 7.09 (dd, *J* = 8.5, 2.6 Hz, 1H), 4.19 (d, *J* = 4.9 Hz, 2H), 4.07 (d, *J* = 2.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.1, 133.8, 133.3, 133.3, 131.5, 128.5, 122.9, 117.5, 114.8, 113.9, 113.8, 94.1, 86.0, 55.6, 23.0. HRMS-ESI (m/z): C₁₇H₁₃ON, [M+H]⁺: 248.1075, found, 248.1091.

2-(5-fluoro-2-(phenylethynyl)phenyl)acetonitrile (1z) white solid, m.p. = 59-61 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.51 (m, 3H), 7.37 (dd, *J* = 6.5, 2.8 Hz, 3H), 7.27 – 7.24 (m, 1H), 7.06 (td, *J* = 8.3, 2.6 Hz, 1H), 3.97 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.5 (d, *J* = 251.7 Hz), 161.2, 134.3, 134.2, 131.6, 129.0, 128.6, 122.3, 118.9 (d, *J* = 3.6 Hz), 116.9, 115.7 (dd, *J* = 22.9, 16.4 Hz), δ 95.4 (d, *J* = 1.8 Hz), 85.0, 22.9. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ - 108.89. HRMS-ESI (m/z): calcd for C₁₆H₁₀FN, [M+H]⁺: 236.0876, found, 236.0880.

2-(2-(4-phenylbut-1-yn-1-yl)phenyl)acetonitrile (1aa) yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.19 (m, 9H), 3.59 (s, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.79 (t, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.31, 132.17, 131.78, 128.58, 128.51, 128.36, 127.92, 127.81, 126.57, 123.25, 117.65, 96.02, 78.52, 34.72, 22.36, 21.45. HRMS-ESI (m/z): calcd for C₁₈H₁₅N, [M+H]⁺: 246.1283, found, 246.1287.

2-(2-(4-((tert-butyldimethylsilyl)oxy)but-1-yn-1-yl)phenyl)acetonitrile (1ab) yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.41 (m, 2H), 7.33 – 7.24 (m, 2H), 3.89 (s, 2H), 3.83 (t, J = 6.9 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 0.92 (s, 9H), 0.10 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.28, 131.73, 128.44, 128.00, 127.89, 123.26, 117.63, 94.09, 78.53, 61.73, 25.90, 23.97, 22.67, 18.36, -5.23. HRMS-ESI (m/z): calcd for C₁₈H₂₅NOSi, [M+H]⁺: 300.1784, found, 300.1798.

2-(2-(prop-1-yn-1-yl)phenyl)acetonitrile (1ac) yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 2H), 7.32 – 7.23 (m, 2H), 3.87 (s, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.3, 131.6, 128.3, 128.0, 127.9, 123.6, 117.7, 92.6, 76.8, 22.7, 4.5. HRMS-ESI (m/z): calcd for C₁₁H₉N, [M+H]⁺: 156.0813, found, 156.0800.

2-(2-(cyclohex-1-en-1-ylethynyl)phenyl)acetonitrile (1ad) yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, J = 7.4, 1.6 Hz, 2H), 7.29 (pd, J = 7.5, 1.4 Hz, 2H), 6.26 (tt, J = 3.8, 1.7 Hz, 1H), 3.87 (s, 2H), 2.24 (ddq, J = 6.0, 4.6, 2.3 Hz, 2H), 2.15 (qd, J = 6.3, 5.0, 1.9 Hz, 2H), 1.65 (dddt, J = 24.3, 7.9, 5.8, 2.9 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.3, 132.1, 131.4, 128.5, 128.1, 128.0, 123.3, 120.3, 117.6, 97.8, 83.5, 29.1, 25., 22.7, 22.3, 21.4. HRMS-ESI (m/z): calcd for C₁₆H₁₅N, [M+H]⁺: 222.1283, found, 222.1270.

tert-butyl (3-(2-(cyanomethyl)phenyl)prop- 2-yn-1-yl)carbamate (1ae) yellow soild. m. p. = $51-53^{\circ}$ C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (dd, J = 7.3, 4.6 Hz, 2H), 7.36 (t, J = 7.1 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H), 4.91 (s, 1H), 4.19 (d, J = 5.5 Hz, 2H), 3.88 (s, 2H), 1.48 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.4, 132.5, 132.0, 129.1, 128.1, 122.3, 117.5, 92.1, 80.2, 79.9, 28.4, 22.7. HRMS-ESI (m/z): calcd for C₁₆H₁₅N, [M+Na]⁺:293.1266, found, 293.1270.

Optimization of the trans-hydroboration reaction conditions

entry ^a	catalyst	ligand	base	solvent	yield of 2 (%)
1	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	cyclohexane	88 (85)
2	Ni(PPh ₃) ₂ Cl ₂	bpy	K ₃ PO ₄	cyclohexane	N.D.
3	Ni(PPh ₃) ₂ Cl ₂	DAF	K ₃ PO ₄	cyclohexane	70
4	Ni(PPh ₃) ₂ Cl ₂	1,10-phen	K ₃ PO ₄	cyclohexane	22
5	$Ni(acac)_2$	terpy	K ₃ PO ₄	cyclohexane	60
6	Ni(OAc) ₂	terpy	K ₃ PO ₄	cyclohexane	62
7	$Pd(OAc)_2$	terpy	K ₃ PO ₄	cyclohexane	N.D.
8	Ni(PPh ₃) ₂ Cl ₂	terpy	Na ₃ PO ₄	cyclohexane	N.D.
9	Ni(PPh ₃) ₂ Cl ₂	terpy	K_2CO_3	cyclohexane	41
10	Ni(PPh ₃) ₂ Cl ₂	terpy	MeOK	cyclohexane	20
11	Ni(PPh ₃) ₂ Cl ₂	terpy	^t BuOK	cyclohexane	42
12	Ni(PPh ₃) ₂ Cl ₂	terpy	K_3PO_4	toluene	68
13	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	acetone	<5
14	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	THF	15
15	Ni(PPh ₃) ₂ Cl ₂	terpy	K_3PO_4	MTBE	40
16^{b}	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	cyclohexane	53
17^{c}	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	cyclohexane	50
18^{d}	Ni(PPh ₃) ₂ Cl ₂	terpy	K ₃ PO ₄	cyclohexane	65

^{*a*} Unless otherwise specified, the reactions were carried out with **1** (0.2 mmol), B_2pin_2 (1.5 equiv), catalyst (5 mol %), ligand (10 mol %), base (1.5 equiv), solvent (2.0 mL) under N_2 atmosphere in oil bath (130 °C) for 24 h in seal tube; Yields were determined by ¹H NMR with CH_2Br_2 as internal

		+O +O	$0 + bas N_2,$	catalyst ligand se, solvent 130°C, 24h	NH ₂ 3 0
entry ^a	catalyst	ligand	base	solvent	yield of 3 (%)
1	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	toluene	79 (74)
2	Ni(PPh ₃) ₂ Cl ₂	dppp	K ₃ PO ₄	toluene	25
3	Ni(PPh ₃) ₂ Cl ₂	Brettphos	K ₃ PO ₄	toluene	31
4	Ni(PPh ₃) ₂ Cl ₂	Cy ₃ P	K ₃ PO ₄	toluene	20
5	$Ni(acac)_2$	Xantphos	K ₃ PO ₄	toluene	35
6	Ni(OAc) ₂ ·4H ₂ O	Xantphos	K_3PO_4	toluene	28
7	$Pd(OAc)_2$	Xantphos	K_3PO_4	toluene	N.D.
8	$Pd(PPh_3)_2Cl_2$	Xantphos	K_3PO_4	toluene	N.D.
9	Ni(PPh ₃) ₂ Cl ₂	Xantphos	Li ₃ PO ₄	toluene	N.D.
10	Ni(PPh ₃) ₂ Cl ₂	Xantphos	Na ₂ CO ₃	toluene	32
11	Ni(PPh ₃) ₂ Cl ₂	Xantphos	Cs_2CO_3	toluene	10
12	Ni(PPh ₃) ₂ Cl ₂	Xantphos	^t BuOK	toluene	45
13	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	cyclohexane	58
14	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	MTBE	50
15	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	DME	41
16	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	THF	38
17	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	CH ₃ CN	N.D.
18^{b}	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K_3PO_4	toluene	42
19 ^c	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K_3PO_4	toluene	30
20^d	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K_3PO_4	toluene	55
21 ^e	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	toluene	78
22 ^f	Ni(PPh ₃) ₂ Cl ₂	Xantphos	K ₃ PO ₄	toluene	<5

Optimization of the *trans*-carboboration reaction conditions

^{*a*} Unless otherwise specified, the reactions were carried out with 1 (0.2 mmol), B_2pin_2 (1.5 equiv), catalyst (5 mol %), ligand (7.5 mol %), base (1.5 equiv), solvent (2.0 mL) under N_2 atmosphere in oil bath (130 °C) for 24 h in seal tube; Yields were determined by ¹H NMR with CH₂Br₂ as internal standard; N.D. = not detected; Isolated yield is in the parentheses; ^{*b*} Under air atmosphere; ^{*c*} Under 80 °C; ^{*d*} Under 110 °C; ^{*e*} absolute dry toluene; ^{*f*} absolute dry toluene, H₂O (5 equiv).

General procedure for the synthesis of products 2 and 3

To a 25 mL sealed tube with magnetic stirrer bar, 2-(2-(phenylethynyl)phenyl)acetonitrile (S1, 0.2 mmol), B_2pin_2 (1.5 eq), Ni(PPh₃)₂Cl₂ (5 mol %), terpy (10 mol %) or Xantphos (7.5 mol %), K_3PO_4 (1.5 equiv), cyclohexane or toluene (2.0 mL) were successively added and vigorously stirred together in 130 °C oil bath under N₂ atmosphere. After the reaction was finished, the mixture was cooled to room temperature. The reaction was quenched with saturated NH₄Cl aq. and extracted with EtOAc (3 × 15 mL). The combined ethyl acetate layer was washed with brine (15 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate) on silica gel to afford the product S2 or S3.

Gram-scale reaction and the transformation of alkenyl boronate

Gram-scale reaction: To a 50 mL sealed tube with magnetic stirrer bar, 2-(2-(phenylethynyl)phenyl)acetonitrile (**S1**, 5 mmol), B_2pin_2 (1.5 equiv), Ni(PPh_3)₂Cl₂ (3 mol %), terpy (6 mol %), K₃PO₄ (1.5 equiv), cyclohexane (35 mL) were successively added and vigorously stirred together in 130 °C oil bath under N₂ atmosphere for 24 hours. Then the mixture was cooled to room temperature, the reaction was quenched with saturated NH₄Cl aq. and extracted with EtOAc (3 × 60 mL). The combined ethyl acetate layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = (12/1 - 10/1) on silica gel to afford product **2** as pale solid (1.24 g, 72% yield).

 H_2O_2 oxidation of alkenyl boronate: To a 20 mL sealed tube with magnetic stirrer bar, alkenyl boronate 2 (0.5 mmol), THF (6 mL) and 30% H_2O_2 aq. (3.0 equiv) were successively added and vigorously stirred together in 75 °C oil bath under air atmosphere for 16 hours. Then the reaction was cooled to room temperature and quenched with saturated Na₂S₂O₃ aq.. The mixture was extracted with EtOAc (3 × 20 mL). The combined ethyl acetate layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 4:1) on silica gel to afford the product **46**.

Suzuki cross-coupling: To a 20 mL sealed tube with magnetic stirrer bar, alkenyl boronate **2** (0.5 mmol), 4-Iodotoluene (1.5 equiv), $Pd(OAc)_2$ (5 mol %), 'Bu₃P·HBF₄ (5 mol %), K₂CO₃ (3.0 equiv), dioxane (5 mL) and H₂O (1 mL) were successively added and vigorously stirred together in 100 °C oil bath under N₂ atmosphere for 24 hours. Then the reaction was cooled to room temperature and quenched with saturated NH₄Cl aq.. The mixture was extracted with EtOAc (3 × 20 mL). The combined ethyl acetate layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 6:1) on silica gel to

afford the product 47.

Synthesis of 3-phenyl isoquinoline: To a 20 mL sealed tube with magnetic stirrer bar, alkenyl boronate 2 (0.5 mmol), CuSO₄ (0.6 equiv), MeOH (6 mL) and NaN₃ (3.0 equiv) were successively added and vigorously stirred together in 50 °C oil bath under air atmosphere for 20 hours. Then the reaction was cooled to room temperature and quenched with saturated NH₄Cl aqueous. The mixture was extracted with EtOAc (3×20 mL). The combined ethyl acetate layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 6:1) on silica gel to afford the product **48**. The proposed mechanism for the formation of **48** was shown as follows:

Proposed mechanism for the formation of 48:

Figure S1 The proposed mechanism for the formation of 48

Synthesis of 2-phenyl-3-naphthylamine: To a 20 mL sealed tube with magnetic stirrer bar, alkenyl boronate 2 (0.5 mmol), $[Rh(COD)Cl]_2$ (5 mol %), K_3PO_4 (1.5 equiv), dioxane (5 mL) and H_2O (2 mL) were successively added and vigorously stirred together in 80 °C oil bath under N_2 atmosphere for 8 hours. Then the reaction was cooled to room temperature and quenched with saturated NH₄Cl aq.. The mixture was extracted with EtOAc (3 × 20 mL). The combined ethyl acetate layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = 5:1) on silica gel to afford the product **49**.

Synthesis of d-50

To a 50 mL sealed tube with magnetic stirrer bar, 2-(2-(hex-1-yn-1-yl)phenyl)acetonitrile (**50**, 1.0 mmol), K₂CO₃ (2.2 equiv), anhydrous toluene (8 mL) and D₂O (10 equiv) were successively added and vigorously stirred together in 130 °C oil bath under N₂ atmosphere for 24 hours. Then the mixture was cooled to room temperature, the reaction was filtrated with celite and washed by EtOAc. The filtrate was concentrated and purified by flash column chromatography (eluting with petroleum ether/ethyl acetate = (12/1 - 10/1) on silica gel to afford product *d*-**50** (0.18 g, 90% yield) with 75% proportion deuterium.

Mechanism study with meta-CH₂CN diphenyl acetylene as substrate

We obtained the hydroboration products (**oil**) of *meta*-CH₂CN diphenyl acetylene **53** in 34% yield under Ni(PPh₃)₂Cl₂/terpy catalysis system (Figure S2). The ratio of two isomers was 16:84 (minor isomer: major isomer) determined by the integral value of ¹H NMR spectrum. However, the absolute configuration (*trans-* or *cis-*, α - or β -site) of hydroboration products couldn't be confirmed by NMR spectrum, and single crystals was also hard to form for the oily state. In the other hand, the mixed products (**solid**, 1:2 ratio) were produced under CuCl or CuCl(IMes) as catalyst, that were different with isomers producing under Ni(PPh₃)₂Cl₂/terpy catalysis system (Figure S3). Fortunately, the single crystals of isomers producing under CuCl(IMes) as catalyst were acquired from the wall and bottom of EP tube and confirmed as α -*cis*-isomer (CCDC: 2312562) and β -*cis*-isomer (CCDC: 2312563), the ratio of α -*cis*-isomer and β -*cis*-isomer is 1:2 (Figure S4). Logically, isomers producing under Ni(PPh₃)₂Cl₂/terpy catalysis system were α *trans*-isomer and β -*trans*-isomer. Therefore, directing group was crucial for the regioselectivity and reactivity of internal alkynes.

Figure S2 The hydroboration reaction of 53

ure S3 ¹HNMR of α/β -*cis*-isomers with α/β -*trans*-isomers

Figure S4 ¹HNMR of α-*cis*-isomer (CCDC: 2312562) and β-*cis*-isomer (CCDC: 2312563)

Primary DFT calculation on the *cis*-to-*trans* isomerization

Complete reference for Gaussian 09: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Version D. 01, Inc., Wallingford CT, 2009.

All electronic structure calculations in this work were performed using Gaussian 09 program. A combination of the PBE functional, along with the def2TZVP basis set (for the metal atom of Ni), and the def2SVP basis set (for the non-metals of C, N, B, O, H, Cl), was employed for the full parameter optimization of all stationary points (intermediates) and saddle points (transition states) studied in this work. This includes reactants, intermediates, transition states, and products. Subsequently, frequency analysis was carried out to ensure that all intermediates have no imaginary frequencies, while transition states (saddle points) have one and only one imaginary frequency. The SMD solvent model was used in the calculations to obtain results that are closer to experimental conditions, with cyclohexane as the solvent. Furthermore, to obtain more accurate relative energies, we performed single-point energy calculations using the M06-2X/Def2-TZVPP method on the above optimized geometries. Through these calculations, the Gibbs free energy reaction potential surface shown in Figure S3 was obtained. Two transient states TS-A (zwitterionic carbene-type species) and TS-B (metallacyclopropene) from cis-Int-2 were evaluated via the comparison of free energy barrier. The calculated results demonstrate that cis-Int-2 are prone to undergo zwitterionic carbene-type species TS-A cis-to-trans isomerization, achieving carbon-carbon double bond rotation. And trans-Int-3 is more stable than cis-Int-2 due to removal of the huge steric-hindrance between Bpin and tpy ligand, that may be the inherent driving force for selective formation of the trans-isomer.

Figure S3 Free energy profile of the synthesis of *cis*-to-*trans* isomerization

Table S4 Cartesian coordinates and energies of optimized structures

Species	Engrgy (in a.u.)	Cartesian coordinates
		C -2.64956100 3.84029700 -3.20136500
		C -2.66416000 2.44723900 -3.35291100
		C -2.21740700 1.63009000 -2.30831500
		C -1.74814500 2.16782600 -1.08429000
		C -1.74270400 3.59080300 -0.93774900
		C -2.18580100 4.39705900 -2.00094800
		C -1.32743600 1.19235800 -0.04530100
		C -2.11643700 0.30977100 0.62060100
		C -3.59340600 0.21108000 0.40837900
		C -1.31137100 4.29081400 0.35173900
		C -0.19689700 3.53644600 0.95243000
	D21 VD SCE an array 2228 720677	N 0.22516700 2.42471900 0.87489200
	D21 VD ontholmy: 2229 697697	C -4.42575500 1.35117700 0.35469000
cis-Int-2	B3L 1 F chulapy5526.08/08/	C -5.80813400 1.21956500 0.16872600
B3LYP free energy M06 SCF energy in so	M06 SCE energy in solution: 2222 8002	C -6.38786600 -0.05266500 0.03111800
	Moo SCF energy in solution5552.8095	C -5.57434700 -1.19497200 0.09191200
		C -4.19190400 -1.06510500 0.28757900
		В -1.54342700 -0.71985500 1.67334300
		O -0.92658800 -1.89305000 1.30151000
		C -0.45780100 -2.54603400 2.52866900
		C -1.37133100 -1.87838400 3.63668900
		O -1.71007400 -0.58522100 3.03027200
		C -0.67072600 -1.63607300 4.96807100
		C -2.69875600 -2.60867000 3.85332400
		C -0.63869900 -4.05069300 2.37381400
		C 1.02320900 -2.18740600 2.67420900
		C 4.49520200 1.41792100 2.19314900

С	3.09143700 1.43905900 2.08099700
Ν	2.47823500 0.83286900 1.03638700
С	3.19514500 0.10589600 0.14015500
С	4.59590500 0.03823500 0.21160300
С	5.25090100 0.72647600 1.24012800
С	2.36700400 -0.62576600 -0.83933500
С	2.22354900 2.04777400 3.12446400
С	2.58749800 3.22866000 3.80075600
С	1.69788700 3.75195500 4.74888400
С	0.49017100 3.08189800 4.98866400
С	0.22227400 1.90272900 4.27175900
Ν	1.06861400 1.39479000 3.36730200
Ν	1.02077700 -0.43957700 -0.69635600
С	0.17477800 -1.13518600 -1.47975100
С	0.62297000 -2.03082100 -2.45650300
С	2.00118800 -2.20501300 -2.63532100
С	2.88391600 -1.49574500 -1.81229200
Ni	0.56764700 1.07901100 0.48181900
Н	-2.99381900 4.49629500 -4.01470200
Н	-3.02491600 1.99159800 -4.28716900
Н	-2.23986000 0.53724100 -2.42693800
Н	-2.17358100 5.49143200 -1.87726600
Η	-2.14262700 4.30592700 1.09506700
Η	-1.05319000 5.35139900 0.16467400
Η	-3.98136200 2.34915500 0.47505900
Η	-6.44065600 2.11985900 0.13525400
Η	-7.47376100 -0.15295400 -0.11637100
Н	-6.01985900 -2.19631900 -0.01041400
Н	-3.55635500 -1.96409000 0.32899100
Н	-1.37049700 -1.15845100 5.68203800
Н	-0.34283200 -2.59655600 5.41341100
Н	0.21241900 -0.98195100 4.85563000
Н	-3.35875200 -1.97587400 4.47830800
Н	-3.22399600 -2.79570700 2.89603200
Н	-2.55654000 -3.57629000 4.37221600
Н	0.01710600 -4.42686900 1.56373100
Н	-0.35668700 -4.57599300 3.30791100
Н	-1.68091900 -4.31969000 2.12154700
Н	1.48224600 -2.70522900 3.53878600
Н	1.56208700 -2.50919200 1.76114600
Н	1.15792300 -1.09486600 2.80092000
Н	4.97792900 1.90904500 3.04902200
Η	5.16614900 -0.54817400 -0.52066400
Н	6.34732400 0.69441400 1.31702900

	H 3.52916200 3.74601000 3.56632200
	H 1.94147800 4.68062200 5.28629300
	Н -0.23719000 3.46308900 5.72020700
	Н -0.71501400 1.34025000 4.41877300
	Н -0.89396000 -0.96235600 -1.30017700
	Н -0.10987300 -2.57708100 -3.06641200
	Н 2.38840300 -2.89139500 -3.40232200
	Н 3.96895500 -1.62299800 -1.92064400
	C 2.09251600 -3.69551500 2.89586100
	C 2.07095300 -3.83625200 1.49804900
	C 1.49300000 -2.83177900 0.70409100
	C 0.93444500 -1.65716600 1.27214600
	C 0.93783900 -1.53398800 2.70204600
	C 1.51910300 -2.55230400 3.48499600
	C 0.43271000 -0.60002500 0.30756400
	C 1.54753300 0.35948600 -0.35667400
	C 2.99876200 0.15133800 -0.32424900
	C 0.39798200 -0.29478700 3.44629300
	C -0.70479300 0.26191700 2.64245000
	N-1.12964200 0.13758100 1.53695400
	C 3.71927200 -0.41868600 0.76594500
	C 5.11648500 -0.53984100 0.72194600
	C 5.84295700 -0.09879700 -0.40342100
	C 5.15418100 0.48473200 -1.48511000
B3LYP SCF energy: -3328.683209	C 3.75703400 0.61294600 -1.44408400
B3LYP enthalny: -3328 642565	B 0.86411900 1.44939300 -1.26711400
B3LVP free energy: -3328.755605	O = 0.59473400 = 1.23328400 - 2.61036300
M06 SCF energy in solution: -3332 7334	C -0 29321800 2 31685700 -3 05398000
	C = 0.00242000 = 3.45202500 - 1.98498000
	0 0.42591800 2.67587200 = 0.80954800
	C -1 21650400 4 29604300 -1 61005100
	C = 1.21030400 = 4.25004500 = 1.01005100
	C = 0.06583500 = 2.68116200 = 4.0424500
	C = 1.72008600 = 1.77627000 = 2.07246100
	C = 5 + 60(47500 - 0.20140000 - 0.40042200)
	C -3.80647500 -0.29140900 0.49043200
	C -4.25444400 0.11251500 0.56978500
	N -3.298/6/00 -0.49909600 -0.1/395400
	C -3.64507100 -1.46232000 -1.07142000
	C -4.98018300 -1.89377000 -1.21109200
	C -5.96782700 -1.31172700 -0.40151600
	C -2.53019600 -1.97145700 -1.90888400
	C -3.84691600 1.25477700 1.44503000
	C -4.32231600 1.35205700 2.77311200
	C -3.86288800 2.41328700 3.57186100

TS-A

	C -2.96615800 3.34081000 3.01286600
	C -2.57265600 3.17087800 1.66984400
	N -2.99794500 2.15536900 0.90008600
	N -1.28723100 -1.49499000 -1.59696800
	C -0.23256300 -1.82190600 -2.37145700
	C -0.35358000 -2.66080800 -3.49050900
	C -1.61607700 -3.19346200 -3.80044300
	C -2.71660900 -2.84199100 -3.00255200
	Ni -1.1603920 -0.42637300 0.16417000
	Н 2.53844000 -4.47763300 3.53368200
	Н 2.50466400 -4.73142000 1.01957100
	Н 1.49265800 -2.93687700 -0.39372500
	Н 1.52227800 -2.44518300 4.58454900
	Н 1.18785900 0.49131900 3.53448000
	Н 0.08956000 -0.54625800 4.48397400
	Н 3.18213000 -0.74938400 1.66704400
	Н 5.64769400 -0.98020600 1.58449500
	Н 6.94182500 -0.20046200 -0.43208900
	Н 5.71026300 0.84437400 -2.36919000
	Н 3.22376200 1.06041500 -2.30203500
	Н -0.92725700 5.06363900 -0.85905000
	H -1.60707100 4.83301500 -2.50170600
	H -2.02918800 3.67302800 -1.18473800
	Н 1.46433000 4.97016700 -1.47988300
	Н 2.08264200 3.75674600 -2.65213600
	Н 0.93566200 5.03615100 -3.19911000
	H -0.15213800 1.82373800 -5.16796000
	Н -0.53574000 3.54862700 -4.84201700
	Н 1.14175900 2.93201200 -4.59977700
	H -2.46321600 2.51467000 -3.36109900
	Н -1.80853500 0.85698800 -3.59489400
	Н -2.01480900 1.52206700 -1.92927000
	H-6.36449600 0.22303900 1.10309400
	H -5.24813700 -2.67634700 -1.93758700
	H -7.01889900 -1.63651600 -0.48506500
	H-5.00769800 0.59063700 3.18231600
	H -4.19481600 2.50752000 4.62063400
	H -2.57647400 4.18779200 3.60301000
	H-1.86997800 3.88079300 1.19517200
	Н 0.73209100 -1.38101100 -2.06657300
	Н 0.53697200 -2.89012400 -4.09829400
	H -1.74917300 -3.87027100 -4.66194800
	H -3.71915900 -3.23052100 -3.23979000
ergy: -3328.652657	C 1.04371400 0.12203100 4.76688000

TS-B

B3LYP SCF energy: -3328.652657

1.043/1400

B3LYP enthalpy: -3328.612715	C 0.99814700 1.39882800 4.18173800
B3LYP free energy: -3328.727101	C 0.57765200 1.55954200 2.85689100
M06 SCF energy in solution: -3332.6557	C 0.17737300 0.43467300 2.09004500
	C 0.17473300 -0.84992800 2.71573000
	C 0.63722200 -1.00037900 4.02920800
	C -0.22133500 0.51072000 0.71195100
	C -1.14173400 0.76160300 -0.30514900
	C -1.49262600 2.17271500 -0.68754500
	C -0.44116200 -1.99671400 1.91688600
	C -0.31128700 -1.80006800 0.46894900
	N -0.18925200 -1.17786900 -0.79155300
	C -2.61845900 2.42421800 -1.50821200
	C -2.94197900 3.72999900 -1.90238000
	C -2.15194500 4.81346900 -1.48654500
	C -1.02696300 4.57967200 -0.67668100
	C -0.69663400 3.27551700 -0.29248700
	В -2.60037300 -0.14723300 0.01273500
	O -3.48637200 -0.56984500 -0.93564500
	C -4.52273700 -1.33794600 -0.22552400
	C -4.38793000 -0.79604700 1.25916900
	O -2.98408200 -0.34782300 1.30736200
	C -4.59085300 -1.84656300 2.34308300
	C -5.23950900 0.44280200 1.53735600
	C -5.86732100 -1.06011300 -0.88477900
	C -4.14363000 -2.81236400 -0.37496100
	C 3.67116200 3.16290100 -1.04809800
	C 2.92696200 1.99442300 -0.80488000
	N 1.80833700 1.73092600 -1.50634500
	C 1.44788300 2.48301600 -2.56432400
	C 2.14354200 3.66884100 -2.86803400
	C 3.24595400 4.01878900 -2.07592700
	C 0.34562300 1.89307400 -3.36321700
	C 3.30193900 0.90021100 0.12262200
	C 4.38928300 0.94799700 1.01227800
	C 4.69564300 -0.18811000 1.77160200
	C 3.90792100 -1.33902000 1.62358900
	C 2.82122600 -1.29511500 0.74022200
	N 2.52669700 -0.20989200 0.01372600
	N 0.01175600 0.63230300 -2.99318000
	C -0.96477200 -0.01554600 -3.63908200
	C -1.65376000 0.55600000 -4.71846200
	C -1.31295200 1.85738000 -5.11766000
	C -0.30205600 2.54081700 -4.43051200
	Ni 0.57578900 0.14470800 -0.88667300

		Н	1.38524400 0.00153600 5.80561500
		Н	1.30965900 2.28160500 4.76003000
		Н	0.56882400 2.55780700 2.39890500
		Н	0.65074600 -2.00033000 4.48981000
		Н	-1.53243100 -2.01647100 2.15018900
		Н	-0.02834100 -2.97839600 2.23706400
		Н	-3.23788100 1.58002400 -1.84301700
		Н	-3.82107600 3.90270600 -2.54180900
		Н	-2.40854200 5.83824600 -1.79481600
		Н	-0.39685300 5.42121600 -0.35032500
		Н	0.20807800 3.09668300 0.30682700
		Н	-4.43035600 -1.39209300 3.34040500
		Н	-5.62523700 -2.24251500 2.31416100
		Н	-3.89246200 -2.69722900 2.23488000
		Н	-4.93956600 0.87519000 2.51170200
		Н	-5.09460500 1.22040200 0.76179000
		Н	-6.31674000 0.19313800 1.58778200
		Н	-5.86167600 -1.44751600 -1.92241300
		Н	-6.68415500 -1.57174100 -0.33808500
		Н	-6.09557400 0.02084600 -0.92505200
		Н	-4.90564600 -3.47648500 0.07667100
		Н	-4.06838000 -3.05812500 -1.45209700
		Н	-3.16115700 -3.03490700 0.08638600
		Н	4.57994000 3.38634100 -0.47256000
		Н	1.84827800 4.29508800 -3.72080000
		Н	3.80479400 4.94185000 -2.28868300
		Н	4.98690500 1.86481200 1.11013500
		Н	5.54209500 -0.17416600 2.47381400
		Н	4.12302500 -2.25708300 2.18841800
		Н	2.14785500 -2.15950900 0.60459700
		Н	-1.20341100 -1.02266900 -3.25549400
		Н	-2.44485500 -0.00997000 -5.23071500
		Н	-1.83846500 2.34252000 -5.95339800
		Н	-0.03144000 3.56850600 -4.70900500
		С	1.96626100 -3.71245300 3.00011500
		С	1.97751900 -3.90410400 1.61249200
		С	1.50467600 -2.89262900 0.76416200
	B3LYP SCF energy: -3328.7602	С	1.01107600 -1.66846900 1.27145600
	B3LYP enthalpy: -3328.718	С	1.01625100 -1.47738400 2.68966500
trans-Int-3	B3LYP free energy: -3328.8412	С	1.48542900 -2.50360800 3.52658600
	M06 SCF energy in solution: -3332.8453	С	0.56128900 -0.61234200 0.31831300
	6,	-	
		С	1.42518900 0.25145400 -0.28147000
		C C	1.42518900 0.25145400 -0.28147000 1.07646800 1.42844600 -1.10865700

С	-0.65752500 0.28064500 2.61365800
Ν	-1.12617300 0.13715900 1.53223400
С	-0.14235500 1.55770400 -1.81558600
С	-0.43915500 2.71600700 -2.54487000
С	0.47986200 3.77701800 -2.59766400
С	1.70217700 3.66360600 -1.91470300
С	1.99653100 2.50459400 -1.18536800
В	2.95493300 -0.02985900 0.00680200
0	3.63068300 0.53162900 1.06394100
С	4.94239500 -0.12316500 1.13289200
С	5.10919100 -0.70869300 -0.33179500
0	3.71932500 -0.85776300 -0.77561000
С	5.78722300 -2.07207600 -0.39654600
С	5.77096000 0.26851700 -1.30613200
С	5.98317300 0.91724200 1.52787100
С	4.83102600 -1.20573800 2.20781800
С	-5.59831500 0.18633500 0.60296100
С	-4.22248300 0.48502900 0.54470600
Ν	-3.36400000 -0.36577000 -0.06552300
С	-3.82746400 -1.45739400 -0.72975400
С	-5.18876200 -1.79924600 -0.71331800
С	-6.07830500 -0.97480900 -0.01255700
С	-2.78689700 -2.17266900 -1.49470400
С	-3.66540200 1.76522600 1.05838000
С	-4.17878400 2.39869700 2.20766100
С	-3.59705700 3.60707300 2.61599000
С	-2.54040300 4.13923000 1.86412000
С	-2.10474900 3.43432900 0.72753700
Ν	-2.64914600 2.27780300 0.33492500
Ν	-1.52620800 -1.66368300 -1.34699100
С	-0.52100500 -2.15980000 -2.09717500
С	-0.71375500 -3.20568300 -3.00575000
С	-1.99195200 -3.76671600 -3.13242100
С	-3.04175900 -3.23858800 -2.37158600
Ni	-1.37861200 -0.40088900 0.14370400
Н	2.33073400 -4.49945600 3.67692200
Н	2.35670200 -4.84367000 1.18321400
Н	1.53076800 -3.04126600 -0.32417600
Н	1.48180500 -2.34597400 4.61642400
Н	1.32292400 0.62161900 3.20530900
Н	0.38679900 -0.28761200 4.42158300
Н	-0.87596700 0.73687000 -1.80533500
Н	-1.40009900 2.78877700 -3.07640900
Н	0.24719500 4.68505600 -3.17412000

Η	2.43301500 4.48611200 -1.94822100
Н	2.94569200 2.43698400 -0.63130700
Н	5.84746900 -2.41227200 -1.44918400
Η	6.82051700 -2.01478500 0.00004500
Н	5.23196800 -2.83652700 0.17786400
Н	5.67015600 -0.12482000 -2.33667000
Η	5.28541900 1.26400100 -1.27644700
Н	6.84930300 0.39710800 -1.09030400
Н	5.77731100 1.28270600 2.55337700
Н	6.99984300 0.47622700 1.52446500
Н	5.97795900 1.78967700 0.84882400
Н	5.79914400 -1.71710000 2.37220100
Н	4.52628800 -0.73626200 3.16349900
Н	4.07026000 -1.96438900 1.94335600
Н	-6.28593100 0.88791100 1.09482000
Н	-5.54917500 -2.69191800 -1.24150900
Н	-7.14960500 -1.22029700 0.02320000
Н	-4.99570800 1.94445300 2.78681500
Н	-3.96284200 4.12321800 3.51648100
Н	-2.05824400 5.08623500 2.14792600
Н	-1.27833700 3.81768700 0.10379800
Н	0.46303100 -1.69071400 -1.95119400
Н	0.13599700 -3.56910300 -3.60023200
Н	-2.17543900 -4.59921400 -3.82721000
Н	-4.05922800 -3.64013300 -2.46913100

X-ray Crystallographic data of compounds 10, 24, 36, α - and β -cishydroboration of 53

Crystal of compound 10, 24 and 36 were prepared in a solvent mixture of DCM and petroleum ether (v/v = 1/1) respectively. 10 (30 mg), 24 (30 mg) and 36 (27 mg) were firstly dissolved in DCM (1 mL) in a vial, then petroleum ether (1 mL) was added dropwise to it. The vial was not fully screwed down and the sample was carefully setting in room temperature. The crystal was obtained in about 96 h. The single crystals of α - and β -cis-hydroboration of 53 were acquired from the wall and bottom of EP tube, respectively.

The X-ray crystallographic structure for **10**. ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2265346.

Table S1 Crystal data and structure refinements for 10

Identification code	10
Empirical formula	$C_{23}H_{26}BNO_2$
Formula weight	359.26
Temperature/K	149.99(10)
Crystal system	Triclinic
Space group	P-1
a/Å	7.0732(3)
b/Å	12.8154(5)
c/Å	12.8838(5)
$\alpha/^{\circ}$	109.101(4)
β/°	103.862(4)
$\gamma/^{\circ}$	102.475(4)
Volume/Å ³	1014.75(8)
Z	2
$\rho_{calc}g/cm^3$	1.176
µ/mm ⁻¹	0.573
F(000)	384.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.708 to 143.196
Index ranges	$-8 \le h \le 6, 15 \le k \le 15, 15 \le l \le 15$
Reflections collected	10644
Independent reflections	$3847 [R_{int} = 0.0683, R_{sigma} = 0.0677]$
Data/restraints/parameters	3847/0/249
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0838, wR_2 = 0.2317$
Final R indexes [all data]	$R_1 = 0.0884, wR_2 = 0.2377$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.41

The X-ray crystallographic structure for **24** ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2265348.

Table S2 Crystal data and structure refinements for 24

Identification code	24
Empirical formula	$C_{20}H_{28}BNO_2$
Formula weight	325.24
Temperature/K	166(20)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.9832(5)
b/Å	9.6904(4)
c/Å	13.4858(4)
$\alpha/^{\circ}$	90
β/°	100.376(3)
$\gamma^{/\circ}$	90
Volume/Å ³	1926.03(12)
Z	4
$\rho_{calc}g/cm^3$	1.122
µ/mm ⁻¹	0.548
F(000)	704.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.996 to 142.71
Index ranges	$-17 \le h \le 18, -11 \le k \le 11, -16 \le l \le 16$
Reflections collected	10323
Independent reflections	$3658 [R_{int} = 0.0404, R_{sigma} = 0.0455]$
Data/restraints/parameters	3658/0/226
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0634, wR_2 = 0.1697$
Final R indexes [all data]	$R_1 = 0.0795, wR_2 = 0.1779$
Largest diff. peak/hole / e Å-3	0.50/-0.22

The X-ray crystallographic structure for **36** ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2265345.

Table S3 Crystal data and structure refinements for 36

Identification code	36
Empirical formula	C ₂₂ H ₂₃ BFNO ₂
Formula weight	363.22
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.8733(9)
b/Å	11.5417(10)
c/Å	17.0581(17)
α'°	90
β/°	95.130(9)
$\gamma/^{\circ}$	90
Volume/Å ³	1936.1(3)
Z	4
$\rho_{calc}g/cm^3$	1.246
µ/mm ⁻¹	0.085
F(000)	768.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.266 to 49.992
Index ranges	$\textbf{-9} \le h \le 11, \textbf{-11} \le k \le 13, \textbf{-20} \le \textbf{l} \le 17$
Reflections collected	8907
Independent reflections	3417 [$R_{int} = 0.0250, R_{sigma} = 0.0340$]
Data/restraints/parameters	3417/0/249
Goodness-of-fit on F ²	1.045

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0475, wR_2 = 0.1094$
Final R indexes [all data]	$R_1 = 0.0627, wR_2 = 0.1198$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21

The X-ray crystallographic structure for α -*cis*-hydroboration of 53 ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2312562.

Table S4 Crystal data and structure refinement for α-cis-hydroboration of 53

Identification code	a-cis-hydroboration of 53	
Empirical formula	$C_{22}H_{24}BNO_2$	
Formula weight	345.23	
Temperature/K	150.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	10.1597(2)	
b/Å	10.2937(2)	
c/Å	11.2498(3)	
a/°	79.933(2)	
β/°	89.723(2)	
$\gamma/^{\circ}$	76.120(2)	
Volume/Å ³	1123.73(4)	
Z	2	
$ ho_{calc}g/cm^3$	1.020	
μ/mm^{-1}	0.501	
F(000)	368.0	
Crystal size/mm ³	$0.15 \times 0.13 \times 0.11$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
20 range for data collection/° 7.988 to 153.098		
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, -14 \le l \le 14$	
Reflections collected	13108	
Independent reflections	4524 [$R_{int} = 0.0166, R_{sigma} = 0.0139$]	
Data/restraints/parameters	4524/0/239	

 $\begin{array}{ll} Goodness-of-fit \ on \ F^2 & 1.065 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0649, \ wR_2 = 0.1629 \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0665, \ wR_2 = 0.1641 \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} \ 0.66/-0.56 \end{array}$

The X-ray crystallographic structure for β -*cis*-hydroboration of 53 ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2312563.

Table S5 Crystal data and structure refinement for β-cis-hydroboration of 53

Identification code	β- <i>cis</i> -hydroboration of 53	
Empirical formula	$C_{22}H_{24}BNO_2$	
Formula weight	345.23	
Temperature/K	150.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.6547(10)	
b/Å	10.2621(13)	
c/Å	10.6861(15)	
$\alpha/^{\circ}$	102.169(11)	
β/°	105.217(10)	
$\gamma/^{\circ}$	103.684(10)	
Volume/Å ³	949.7(2)	
Z	2	
$\rho_{calc}g/cm^3$	1.207	
μ/mm^{-1}	0.076	
F(000)	368.0	
Crystal size/mm ³	$0.16 \times 0.14 \times 0.11$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
2@ range for data collection/° 4.128 to 49.996		
Index ranges	$-11 \le h \le 10, -11 \le k \le 12, -8 \le l \le 12$	
Reflections collected	7165	

 Independent reflections
 $3351 [R_{int} = 0.0254, R_{sigma} = 0.0415]$

 Data/restraints/parameters
 3351/0/239

 Goodness-of-fit on F²
 1.076

 Final R indexes [I>= 2σ (I)]
 $R_1 = 0.0498, wR_2 = 0.1141$

 Final R indexes [all data]
 $R_1 = 0.0626, wR_2 = 0.1232$

 Largest diff. peak/hole / e Å⁻³ 0.53/-0.27

Characterization data for all products

(E)-2-(2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (2)

White solid (53.8 mg, 78%), m.p. = 141-143 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.51 – 7.43 (m, 3H), 7.42 – 7.26 (m, 7H), 3.80 (s, 2H), 1.14 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.2, 138.3, 136.7, 129.4, 128.7, 128.55, 128.3, 128.0, 127.8, 127.5, 126.9, 117.9, 84.1, 24.6, 22.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.51. HRMS-ESI (m/z): calcd for $C_{22}H_{24}BNO_2$, [M+H]⁺: 346.1978, found, 346.1963.

(E)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)vinyl)phenyl)acetonitrile (10)

White solid (53.2 mg, 74%), m.p. = 142-144 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 7.0 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.21 (s, 1H), 7.14 (d, J = 8.0 Hz, 2H), 3.75 (s, 2H), 2.32 (s, 3H), 1.10 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.4, 138.4, 137.3, 135.8, 129.5, 129.4, 128.6, 128.2, 128.0, 127.8, 126.8, 117.9, 84.0, 24.7, 22.0, 21.2. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.30. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₂, [M+H]⁺: 360.2135, found, 360.2140.

(E)-2-(2-(2-(4-butylphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (11)

Yellow solid (56.2 mg, 70%), m.p. = 81-83 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 3H), 7.27 – 7.19 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 3.72 (s, 2H), 2.56 (t, J = 7.7 Hz, 2H), 1.58 – 1.51 (m, 2H), 1.35 – 1.28 (m, 2H), 1.08 (s, 12H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.4, 138.5, 138.4, 135.8, 129.5, 128.7, 128.6, 128.2, 128.0, 127.8, 126.8, 118.0, 84.0, 35.4, 33.6, 24.66, 22.4, 22.0, 14.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.24. HRMS-ESI (m/z): calcd for C₂₆H₃₂BNO₂, [M+H]⁺: 402.2604, found, 402.2605.

(E)-2-(2-(2-(4-(tert-butyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (12)

Yellow solid (57.8 mg, 72%), m.p. = 130-132 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.35 (m, 1H), 7.31 (dd, *J* = 7.5, 1.6 Hz, 5H), 7.26 – 7.17 (m, 3H), 3.70 (s, 2H), 1.25 (s, 9H), 1.06 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.5, 138.5, 138.2, 135.9, 129.5, 128.6, 128.2, 128.0, 127.8, 126.6, 125.6, 117.9, 84.0, 34.6, 31.4, 24.7, 22.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.40. HRMS-ESI (m/z): calcd for C₂₆H₃₂BNO₂, [M+H]⁺: 402.2604, found, 402.2605.

(E)-2-(2-(2-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (13)

Light yellow solid (51.8 mg, 69%), m.p. = 167-169 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 7.0 Hz, 1H), 7.32 (td, *J* = 6.6, 1.8 Hz, 3H), 7.27 – 7.20 (m, 2H), 7.14 (s, 1H), 6.86 – 6.80 (m, 2H), 3.75 (s, 3H), 3.72 (s, 2H), 1.07 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.2, 138.5, 134.9, 133.8, 129.5, 128.6, 128.2, 128.0, 128.0, 127.8 118.0, 114.1, 84.0, 55.3, 24.7, 22.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.72. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺:376.2084, found, 376.2097.

(E)-2-(2-(2-(4-fluorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (14)

Light yellow solid (40.7 mg, 56%), m.p. = 145-147 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.33 (m, 3H), 7.29 (t, *J* = 6.4 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.17 (s, 1H), 6.97 (t, *J* = 8.5 Hz, 2H), 3.71 (s, 2H), 1.06 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.41 (d, *J* = 246.6 Hz), 138.1, 137.3 (d, *J* = 3.3 Hz), 136.9, 136.9, 129.5, 128.5,

128.46, 128.4, 128.1, 127.9, 117.8, 115.6, 115.4, 84.1, 77.4, 77.1, 76.8, 24.6, 22.1. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.50. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -115.00. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

(E)-2-(2-([1,1'-biphenyl]-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (15)

Yellow solid (54.8 mg, 65%), m.p. = 172-174 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.61 (m, 4H), 7.57 (d, J = 8.3 Hz, 2H), 7.53 – 7.42 (m, 4H), 7.42 – 7.30 (m, 4H), 3.85 (s, 2H), 1.19 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.8, 140.3, 140.2, 138.3, 136.7, 129.8, 128.8, 128.6, 128.4, 128.0, 127.8, 127.4, 127.3, 127.0, 117.9, 84.1, 24.7, 22.1. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.70. HRMS-ESI (m/z): calcd for $C_{28}H_{28}BNO_2$, [M+H]⁺: 422.2291, found, 422.2291.

(E)-2-(2-(2-(3-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (16)

Yellow solid (44.3 mg, 59%), m.p. = 92-94 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 7.1 Hz, 1H), 7.32 (d, J = 7.1 Hz, 1H), 7.25 – 7.17 (m, 4H), 6.99 – 6.93 (m, 2H), 6.77 (dd, J = 8.2, 2.4 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 2H), 1.06 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 142.6, 138.2, 136.8, 129.6, 129.4, 128.5, 128.4, 128.0, 127.8, 119.4, 117.9, 113.2, 112.3, 84.1, 55.3, 24.6, 22.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.53. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺: 376.2084, found, 376.2097.

(E)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(o-

tolyl)vinyl)phenyl)acetonitrile (17)

Yellow solid (51.0 mg, 71%), m.p. = 63-65 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 7.1 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.35 – 7.27 (m, 2H), 7.20 (q, *J* = 3.9 Hz, 4H), 7.01 (s, 1H), 3.78 (s, 2H), 2.37 (s, 3H), 1.09 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.3, 140.5, 138.2, 135.2, 130.1, 129.5, 128.7, 128.3, 128.3, 127.9, 127.7, 127.2, 126.1, 117.9, 83.8, 24.6, 22.1, 20.6. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.03. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₂, [M+H]⁺: 360.2135, found, 360.2140.

(E)-2-(2-(2-(2-(2-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (18)

Yellow solid (49.5 mg, 66%), m.p. = 144-146 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 7.3 Hz, 1H), 7.30 (dd, J = 7.5, 1.6 Hz, 1H), 7.28 – 7.18 (m, 4H), 7.11 (s, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 2H), 1.03 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.5, 138.3, 137.8, 131.8, 129.8, 129.0, 128.7, 128.2, 127.7, 127.5, 121.4, 118.1, 110.4, 83.5, 55.4, 24.9, 22.0. ¹¹B NMR (128 MHz, Chloroform-d) δ 30.11. HRMS-ESI (m/z): calcd for $C_{23}H_{26}BNO_3$, $[M+H]^+$: 376.2084, found, 376.2097.

(E)-2-(2-(2-(2-fluorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (19)

Light yellow solid (39.9 mg, 55%), m.p. = 114-116 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.49 – 7.43 (m, 2H), 7.38 – 7.27 (m, 5H), 7.16 (t, J = 7.5 Hz, 1H), 7.06 (dd, J = 10.5, 8.3 Hz, 1H), 3.80 (s, 2H), 1.12 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.14 (d, J = 246.0 Hz), 139.7 (d, J = 1.8 Hz), 137.9, 129.6, 129.3 (d, J = 8.3 Hz), 129.1 (d, J = 3.7 Hz), 128.6, 128.6, 128.0, 127.7, 124.6 (d, J = 3.4 Hz), 117.9, 115.5, 115.3, 84.0, 77.4, 77.1, 76.7, 24.6, 22.1. ¹¹B NMR (128 MHz, Chloroform-d) δ 30.53. ¹⁹F NMR (377 MHz, Chloroform-d) δ -113.41. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

(E)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-3-yl)vinyl)phenyl)acetonitrile (20)

Yellow solid (34.4 mg, 49%), m.p. = 104-106 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.0 Hz, 1H), 7.42 (s, 1H), 7.41 – 7.29 (m, 6H), 3.81 (s, 2H), 1.18 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.3, 138.3, 135.5, 129.5, 128.5, 128.2, 128.0, 127.8, 125.9, 125.6, 122.3, 117.9, 84.0, 24.7, 22.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.35. HRMS-ESI (m/z): calcd for C₂₀H₂₂BNO₂S, [M+H]⁺: 352.1543, found, 352.1544.

(E)-2-(2-(cyclohex-1-en-1-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (21)

Light yellow solid (35.6 mg, 51%), m.p. =105-107°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.39 (m, 1H), 7.31 – 7.24 (m, 3H), 6.89 (s, 1H), 5.88 (t, *J* = 4.0 Hz, 1H), 3.75 (s, 2H), 2.29 (ddd, *J* = 7.7, 4.0, 1.6 Hz, 2H), 2.22 – 2.16 (m, 2H), 1.74 (ddt, *J* = 8.4, 6.1, 2.5 Hz, 2H), 1.66 – 1.62 (m, 2H), 1.06 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.1, 138.1, 130.5, 129.9, 129.7, 128.6, 127.8, 127.8, 127.7, 118.1, 83.9, 26.4, 25.5, 24.7, 22.7, 22.3, 22.0. HRMS-ESI (m/z): calcd for C₂₂H₂₈BNO₂, [M+H]⁺: 350.2291, found, 350.2279.

(E)-2-(2-(2-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (22)

White solid (42.2 mg, 63%), m.p. =66-68°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.35 (m, 1H), 7.26 – 7.20 (m, 3H), 6.79 (s, 1H), 3.73 (s, 2H), 2.23 (m, 1H), 1.80 (dd, *J* = 16.1, 6.3 Hz, 4H), 1.74 – 1.66 (m, 1H), 1.37 – 1.21 (m, 5H), 1.07 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.0, 133.1, 129.6, 128.2, 127.7, 127.6, 127.6, 118.1, 83.5, 45.6, 33.0, 26.6, 26.2, 24.6, 21.9. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.70. HRMS-ESI (m/z): calcd for C₂₂H₃₀BNO₂, [M+H]⁺: 352.2448, found, 352.2443.

(E)-2-(2-(4-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)but-1-en-1-yl)phenyl)acetonitrile (23)

Yellow oil (47.0 mg, 63%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.33 (m, 3H), 7.29 – 7.20 (m, 6H), 6.72 (s, 1H), 3.38 (s, 2H), 2.87 (t, J = 7.4 Hz, 2H), 2.69 (t, J = 7.3 Hz, 2H), 1.16 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.6, 138.5, 138.4, 129.5, 128.9, 128.4, 128.0, 127.7, 127.5, 127.4, 125.9, 118.1, 83.5, 39.1, 35.7, 24.6, 21.5. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.62. HRMS-ESI (m/z): calcd for C₂₄H₂₈BNO₂, [M+H]⁺: 374.2291, found, 374.2288.

(E)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)phenyl)acetonitrile (24)

Yellow solid (41.6mg, 64%), m.p. = 146-148 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 7.2 Hz, 1H), 7.26 – 7.19 (m, 3H), 6.85 (s, 1H), 3.72 (s, 2H), 2.32 (t, J = 7.4 Hz, 2H), 1.50 – 1.43 (m, 2H), 1.37 (dd, J = 14.0, 6.3 Hz, 2H), 1.09 (s, 12H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.6, 136.2, 129.6, 127.8, 127.6, 127.6, 127.4, 118.0, 83.4, 36.9, 31.7, 24.4, 22.4, 21.8, 13.9. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.30. HRMS-ESI (m/z): calcd for C₂₀H₂₈BNO₂, [M+H]⁺: 326.2291, found, 326.2288.

(E)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)phenyl)acetonitrile (25)

Yellow oil (26.1 mg, 46%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.3 Hz, 1H), 7.26 (dt, J = 8.1, 4.3 Hz, 1H), 7.22 (d, J = 3.9 Hz, 2H), 6.92 (s, 1H), 3.73 (s, 2H), 1.99 (d, J = 1.7 Hz, 3H), 1.12 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.6, 137.7, 129.7, 127.8, 127.7, 127.5, 118.1, 83.5, 24.5, 22.8, 21.9. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.40. HRMS-ESI (m/z): calcd for C₁₇H₂₂BNO₂, [M+H]⁺: 284.1822, found, 284.1833.

(E)-2-(2-(4-((tert-butyldimethylsilyl)oxy)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-1-yl)phenyl)acetonitrile (26)

Yellow oil (58.1 mg, 68%)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 7.4 Hz, 1H), 7.20 – 7.08 (m, 3H), 6.87 (s, 1H), 3.69 – 3.61 (m, 4H), 2.47 – 2.42 (m, 2H), 1.00 (s, 12H), 0.83 (s, 9H), 0.00 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.7, 138.5, 129.6, 127.8, 127.6, 127.4, 118.1, 83.4, 63.0, 40.8, 26.0, 24.5, 21.9, 18.4, -5.2. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.41. HRMS-ESI (m/z): calcd for C₂₄H₃₈BNO₃Si, [M+H]⁺: 428.2792, found, 428.2817.

tert-butyl(E)-(3-(2-(cyanomethyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)carbamate (27)

Yellow solid (35.8 mg, 45%), m.p. = 95-97°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.5 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.19 (m, 2H), 7.04 (s, 1H), 4.85 (s, 1H), 3.97 (d, *J* = 5.7 Hz, 2H), 3.73 (s, 2H), 1.45 (s, 9H), 1.11 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.7, 138.4, 137.6, 129.6, 128.2, 128.0, 127.8, 127.5, 83.7, 28.4, 24.5, 21.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.81. HRMS-ESI (m/z): calcd for C₂₂H₃₁BN₂O₄, [M+H]⁺: 399.2455, found, 399.2478.

(E)-2-(2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)vinyl)phenyl)propanenitrile (28)

Light yellow oil (36.6 mg, 51%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (dd, J = 6.6, 1.9 Hz, 1H), 7.33 (d, J = 7.4 Hz, 2H), 7.28 – 7.21 (m, 5H), 7.15 (q, J = 8.7, 8.1 Hz, 2H), 4.07 (q, J = 7.2 Hz, 1H), 1.45 (d, J = 7.3 Hz, 3H), 0.98 (d, J = 10.9 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.1, 137.5, 136.6, 135.8, 129.9, 128.7, 128.5, 127.6, 127.5, 126.9, 126.4, 122.1, 84.0, 28.8, 24.7, 24.6, 20.7. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.66. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₂, [M+H]⁺: 360.2135, found, 360.2140.

(E)-2-(4-fluoro-2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (29)

Light yellow solid (42.1 mg, 58%), m.p. = 146-148 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.42 – 7.30 (m, 6H), 7.17 – 7.11 (m, 2H), 6.97 (td, J = 8.3, 2.7 Hz, 1H), 3.69 (s, 2H), 1.13 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 162.1 (d, J = 247.3 Hz), 140.9, 140.2 (d, J = 8.0 Hz), 135.5 (d, J = 1.8 Hz), 129.8 (d, J = 8.6 Hz), 128.7, 127.8, 126.9, 124.3 (d, J = 3.2 Hz), 117.7, 116.4 (d, J = 22.1 Hz), 114.9 (d, J = 21.5 Hz), 84.3, 77.4, 77.1, 76.8,

24.7, 21.4. ¹¹B NMR (128 MHz, Chloroform-d) δ 30.51. ¹⁹F NMR (377 MHz, Chloroform-d) δ - 114.49. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

(E)-2-(5-fluoro-2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2vl)vinyl)phenyl)acetonitrile (30)

Yellow solid (45.0 mg, 62%), m.p. = 118-120°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dt, J = 8.2, 1.8 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.25 – 7.20 (m, 1H), 7.16 – 7.11 (m, 2H), 6.93 (td, J = 8.3, 2.5 Hz, 1H), 3.71 (s, 2H), 1.08 (s, 12H).¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, J = 249.1 Hz), 141.0, 135.7, 134.3, 131.2 (d, J = 7.7 Hz), 130.8 (d, J = 7.7 Hz), 128.7, 127.6, 126.9, 117.3, 115.2 (d, J = 23.6 Hz), 114.6 (d, J = 20.8 Hz), 84.1, 24.6, 22.1. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.59. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -113.07. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

(E)-2-(5-methoxy-2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (31)

Yellow solid (53.3 mg, 71%), m.p. = 156-158 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 2H), 7.36 (dd, J = 8.2, 6.5 Hz, 3H), 7.30 – 7.27 (m, 1H), 7.20 (s, 1H), 7.02 (d, J = 2.5 Hz, 1H), 6.82 (dd, J = 8.4, 2.6 Hz, 1H), 3.85 (s, 3H), 3.77 (s, 2H), 1.18 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 141.5, 136.4, 130.6, 130.6, 129.8, 128.6, 127.3, 126.9, 117.8, 113.6, 113.1, 84.0, 55.5, 24.7, 22.2. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.69. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺: 376.2084, found, 376.2079.

3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (3)

Brown oil (49.7 mg, 72%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.31 (dtt, *J* = 8.0, 5.5, 2.6 Hz, 5H), 7.23 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.97 (s, 1H), 3.56 (s, 2H), 1.01 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7, 139.4, 135.6, 134.3, 130.5, 130.3,

128.5, 127.7, 127.6, 126.0, 125.8, 122.7, 110.2, 83.9, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.35. HRMS-ESI (m/z): calcd for C₂₂H₂₄BNO₂, [M+H]⁺: 346.1978, found, 346.2001.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(p-tolyl)naphthalen-2-amine (32)

Yellow solid (51.7 mg, 72%), m.p. = 108-110 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.31 (dd, *J* = 16.0, 7.6 Hz, 3H), 7.22 (dd, *J* = 14.4, 7.4 Hz, 3H), 7.04 (s, 1H), 3.56 (s, 2H), 2.40 (s, 3H), 1.12 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.9, 137.3, 136.3, 135.6, 134.2, 130.5, 130.2, 129.1, 127.6, 125.9, 125.7, 122.6, 110.1, 83.8, 24.8, 21.3. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.40. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₂, [M+H]⁺: 360.2135, found, 360.2140.

3-(4-butylphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (33) Dark yellow solid (41.7 mg, 52%), m.p. = 82-84 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.38 – 7.33 (m, 3H), 7.30 – 7.23 (m, 3H), 7.09 (s, 1H), 3.29 (s, 2H), 2.71 – 2.66 (m, 2H), 1.69 – 1.61 (m, 2H), 1.41 (dd, J = 14.8, 7.5 Hz, 2H), 1.15 (s, 12H), 0.97 (d, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.4, 141.8, 136.5, 135.7, 134.2, 130.5, 130.1, 128.6, 127.6, 126.0, 125.7, 122.6, 110.1, 83.8, 35.5, 34.0, 24.8, 22.3, 14.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.77. HRMS-ESI (m/z): calcd for C₂₆H₃₂BNO₂, [M+H]⁺: 402.2604, found, 402.2605.

3-(4-methoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (34)

Yellow solid (46.5 mg, 62%), m.p. = 139-141 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.3 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.33 (td, *J* = 6.4, 1.6 Hz, 3H), 7.21 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.05 (s, 1H), 7.00 – 6.96 (m, 2H), 3.85 (s, 3H), 3.67 (s, 2H), 1.14 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 142.1, 135.2, 134.2, 131.6, 131.5, 130.5, 127.6, 125.9, 125.7, 122.6, 113.9, 110.0, 83.8, 55.5, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.94. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺: 376.2084, found, 376.2097.

3-(4-(tert-butyl)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (35)

Dark yellow solid (36.9 mg, 46%), m.p. = 147-149 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.41 – 7.33 (m, 3H), 7.24 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.10 (s, 1H), 3.09 (s, 2H), 1.39 (s, 10H), 1.13 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.6, 141.7, 136.3, 135.7, 134.2, 130.5, 129.9, 127.6, 126.0, 125.7, 125.4, 122.7, 110.2, 83.8, 34.6, 31.4, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.77. HRMS-ESI (m/z): calcd for C₂₆H₃₂BNO₂, [M+H]⁺: 402.2604, found, 402.2605.

3-(4-fluorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (36) Dark yellow solid (42.9 mg, 59%), m.p. = 139-141 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.44 – 7.31 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H), 7.07 (s, 1H), 3.62 (s, 2H), 1.14 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ162.5 (d, J = 246.3 Hz), 141.7, 135.3 (d, J = 3.3 Hz), 134.4, 134.3, 132.1 (d, J = 8.0 Hz), 130.4, 127.7, 126.0, 122.8, 115.4 (d, J = 21.3 Hz), 110.3, 83.9, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.57. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -114.82. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(4-(trifluoromethyl)phenyl)naphthalen-2-amine (37)

Yellow solid (40.5 mg, %), m.p. = 175-177 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.40 – 7.33 (m, 1H), 7.27 – 7.22 (m, 1H), 7.10 (s, 1H), 3.61 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.5, 141.1, 134.4, 134.2, 130.9, 130.5, 130.0 (q, *J* = 32.5 Hz), 127.7, 126.2, 126.0, 125.4 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 272.1 Hz), 123.0, 110.7, 84.0, 24.6. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.62. ¹⁹F NMR (377 MHz,

Chloroform-*d*) δ -62.54. HRMS-ESI (m/z): calcd for C₂₃H₂₃BF₃NO₂, [M+H]⁺: 414.1852, found, 414.1861.

3-([1,1'-biphenyl]-4-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (38)

Yellow solid (43.0 mg, 51%), m.p. = 177-179 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.3 Hz, 1H), 7.68 – 7.59 (m, 5H), 7.49 (dd, *J* = 7.8, 2.7 Hz, 4H), 7.40 – 7.33 (m, 2H), 7.24 (ddd, *J* = 8.1, 6.0, 1.2 Hz, 1H), 7.09 (s, 1H), 3.72 (s, 2H), 1.12 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7, 141.0, 140.6, 138.4, 135.2, 134.3, 130.8, 130.5, 128.9, 127.7, 127.4, 127.3, 127.1, 126.0, 125.9, 122.8, 110.3, 83.9, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.95. HRMS-ESI (m/z): calcd for C₂₈H₂₈BNO₂, [M+H]⁺: 422.2291, found, 346.2001.

3-(3-fluorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (39) Yellow oil (38.5 mg, 53%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.44 – 7.33 (m, 2H), 7.25 – 7.19 (m, 2H), 7.15 (dt, J = 9.5, 2.0 Hz, 1H), 7.08 (q, J = 3.6, 3.1 Hz, 2H), 3.66 (s, 2H), 1.15 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.0, 161.5, 141.6 (d, J = 7.6 Hz), 141.3, 134.3, 134.2 (d, J = 1.8 Hz), 130.4, 130.1, 130.0, 127.7, 126.1 (d, J = 3.0 Hz), 126.0 (d, J = 6.7 Hz), 122.9, 117.5 (d, J = 21.0 Hz), 114.5 (d, J = 20.9 Hz), 110.5, 84.0, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.82. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -113.04. HRMS-ESI (m/z): calcd for C₂₃H₂₃BF₃NO₂, [M+H]⁺: 364.1884, found, 364.1881.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(o-tolyl)naphthalen-2-amine (40)

Yellow solid (48.9 mg, 68%), m.p. = 93-95 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.30 – 7.28 (m, 2H), 7.27 – 7.23 (m, 3H), 7.09 (s, 1H), 2.15 (s, 3H), 1.11 (s, 6H), 1.05 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7, 138.4, 138.2, 135.0, 134.3, 130.8, 130.4, 129.9, 128.0, 127.7, 126.0, 125.9, 125.7, 122.6, 109.8, 83.7, 24.7, 24.5, 19.8. ¹¹B NMR
(128 MHz, Chloroform-*d*) δ 32.19. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₂, [M+H]⁺: 360.2135, found, 360.2140.

3-(2-methoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (41)

Yellow oil (41.3 mg, 55%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 8.3 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.33 – 7.22 (m, 2H), 7.18 – 7.08 (m, 2H), 7.02 (s, 1H), 6.98 – 6.88 (m, 2H), 3.69 (s, 3H), 3.33 (s, 2H), 1.06 (s, 6H), 0.98 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.9, 142.2, 134.3, 132.9, 132.4, 130.7, 129.4, 128.4, 127.8, 126.0, 125.7, 122.5, 120.9, 111.4, 110.4, 83.6, 56.1, 24.9, 24.6. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.19. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺: 376.2084, found, 376.2097.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[2,2'-binaphthalen]-3-amine (42)

Yellow solid (50.6 mg, 64%), m.p. = 118-120 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.76 (m, 5H), 7.56 – 7.49 (m, 2H), 7.44 (dq, *J* = 6.7, 3.5 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.03 (s, 1H), 3.47 (s, 2H), 0.89 (d, *J* = 34.4 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.8, 137.1, 135.4, 134.4, 133.5, 132.8, 130.6, 129.4, 128.2, 128.0, 128.0, 127.7, 127.7, 126.3, 126.1, 126.0, 125.9, 122.8, 110.3, 83.8, 24.7, 24.6. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.89. HRMS-ESI (m/z): calcd for C₂₆H₂₆BNO₂, [M+H]⁺: 396.2135, found, 396.2124.

7-methoxy-3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (43) Dark yellow solid (30.0mg, 40%), m.p. = 155-157 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.8 Hz, 1H), 7.38 – 7.28 (m, 5H), 6.91 (s, 1H), 6.83 (d, *J* = 9.3 Hz, 2H), 3.82 (s, 3H), 3.32 (s, 2H), 1.03 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.6, 142.2, 139.5, 135.5, 133.2, 130.5, 129.2, 128.5, 127.5, 125.9, 115.2, 109.5, 104.18, 83.8, 55.2, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.50. HRMS-ESI (m/z): calcd for C₂₃H₂₆BNO₃, [M+H]⁺: 376.2084, found, 376.2097.

7-fluoro-3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (44) Yellow solid (37.8 mg, 52%), m.p. = 106-108 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, J = 9.1, 5.7 Hz, 1H), 7.46 – 7.36 (m, 5H), 7.19 (dd, J = 10.4, 2.7 Hz, 1H), 7.02 – 6.96 (m, 2H), 3.72 (s, 2H), 1.11 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0 (d, J = 244.2 Hz), 142.7, 139.1, 135.3 (d, J = 9.7 Hz), 134.8 (d, J = 2.8 Hz), 130.3, 130.0 (d, J = 9.4 Hz), 128.6, 127.8, 127.3, 112.6 (d, J = 25.1 Hz), 109.3 (d, J = 5.1 Hz), 108.8 (d, J = 20.6 Hz), 84.0, 24.7. ¹¹B NMR (128 MHz, Chloroform-d) δ 31.76. ¹⁹F NMR (377 MHz, Chloroform-d) δ -115.91. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

6-fluoro-3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-amine (45) Yellow solid (45.8 mg, 48%), m.p. = 116-118 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.51 (m, 2H), 7.43 (d, J = 6.1 Hz, 2H), 7.41 – 7.38 (m, 3H), 7.17 – 7.12 (m, 1H), 7.08 (s, 1H), 3.64 (s, 2H), 1.12 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.8 (d, J = 240.6 Hz), 141.2 (d, J = 2.4 Hz), 139.2, 136.9, 131.2, 130.6 (d, J = 8.6 Hz), 130.1, 128.6, 127.9 (d, J = 8.7 Hz), 127.8, 116.0 (d, J = 25.2 Hz), 111.0 (d, J = 20.8 Hz), 110.4, 84.0, 24.7. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.77. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -119.24. HRMS-ESI (m/z): calcd for C₂₂H₂₃BFNO₂, [M+H]⁺: 364.1884, found, 364.1881.

2-(2-(2-oxo-2-phenylethyl)phenyl)acetonitrile (46)

White solid (101 mg, 86%), m.p. = 81-83 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (dd, J = 8.4, 1.3 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.46 – 7.37 (m, 3H), 7.28 – 7.20 (m, 2H), 7.14 – 7.09 (m, 1H), 4.32 (s, 2H), 3.62 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.5, 136.3, 133.8, 133.1, 131.5, 129.7, 129.4, 128.9, 128.6, 128.4, 128.2, 117.8, 43.0, 22.0. HRMS-ESI (m/z): calcd for C₁₆H₁₃ON, [M+Na]⁺: 258.0895, found, 258.0910.

(E)-2-(2-(2-phenyl-2-(p-tolyl)vinyl)phenyl)acetonitrile (47)

White soild (103.5 mg, 67%), m.p. = 101-103 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 6.2 Hz, 8H), 7.12 (s, 1H), 7.05 (d, *J* = 7.7 Hz, 1H), 6.95 (dd, *J* = 16.4, 7.8 Hz, 3H), 6.84 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 1H), 3.48 (s, 2H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.9, 143.0, 137.6, 137.1, 136.3, 130.7, 130.4, 129.0, 128.6, 128.3, 128.3, 128.3, 128.1, 127.9, 127.5, 124.6, 118.0, 22.1, 21.3. HRMS-ESI (m/z): calcd for C₂₃H₁₉N, [M+H]⁺: 310.1596, found, 310.1593.

3-phenylisoquinoline (48)¹²

Light yellow oil (59.4 mg, 58%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.35 (s, 1H), 8.15 – 8.12 (m, 2H), 8.08 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.72 (dd, J = 6.9, 1.1 Hz, 1H), 7.59 (td, J = 8.0, 1.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.42 (tt, J = 6.7, 1.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.4, 151.3, 139.6, 136.7, 130.5, 128.8, 128.5, 127.8, 127.6, 127.1, 127.0, 126.9, 116.6.

2-amino-3-phenylnaphthalene (49)¹³

Brown oil (80.6 mg, 75%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.1 Hz, 1H), 7.53 (d, *J* = 6.4 Hz, 2H), 7.45 (dt, *J* = 7.8, 1.7 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.34 – 7.26 (m, 2H), 7.15 (ddd, *J* = 8.0, 5.1, 1.1 Hz, 1H), 6.99 (s, 1H), 3.82 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.2, 139.1, 134.4, 130.8, 129.5, 129.3, 128.9, 128.0, 127.8, 127.6, 126.3, 125.4, 122.7, 109.0.

(Z)-2-(2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (Z-2)

White solid (20.7mg, 30%), m.p. = 100-102 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.40 (dd, J = 8.2, 2.7 Hz, 2H), 7.28 – 7.21 (m, 2H), 7.13 –

7.00 (m, 4H), 6.85 (d, J = 7.7 Hz, 2H), 3.61 – 3.29 (m, 2H), 1.22 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 145.0, 140.1, 136.3, 129.6, 129.3, 128.6, 128.6, 128.3, 127.4, 127.1, 118.2, 84.1, 24.8, 21.7. ¹¹B NMR (128 MHz, Chloroform-d) δ 30.31.

(Z)-2-(2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)phenyl)acetonitrile (Z-24)

Yellow oil (40.3 mg, 62%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.46 (m, 1H), 7.30 (dt, *J* = 7.4, 3.7 Hz, 2H), 7.19 – 7.16 (m, 1H), 7.13 (s, 1H), 3.67 (s, 2H), 2.14 – 2.08 (m, 2H), 1.31 (s, 12H), 1.26 – 1.15 (m, 4H), 0.79 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.8, 137.2, 129.4, 128.1, 127.8, 127.8, 127.8, 117.9, 83.6, 32.0, 29.4, 24.8, 22.6, 21.7, 13.9. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.54.

(E)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (51)¹⁴

White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47-7.44 (m, 4H), 7.33-7.21 (m,7H), 1.29 (s,12H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.6, 140.7, 138.7, 128.4, 128.2, 128.1, 127.5, 126.9, 126.8, 84.0, 24.8. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.18.

(E)-1-(2-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)ethan-1-one (52)

Yellow oil (35.8 mg, 53%).

¹H NMR (400 MHz, Chloroform-d) δ 7.67 (d, J = 7.7 Hz, 1H), 7.61 (s, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.37 (dt, J = 14.7, 7.2 Hz, 3H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 – 7.14 (m, 1H), 2.50 (s, 3H), 1.07 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.0, 142.1, 141.35, 139.5, 137.4, 131.3, 130.5, 129.2, 128.5, 127.4, 127.1, 126.9, 83.8, 29.9, 24.7.¹¹B NMR (128 MHz, Chloroform-d) δ 30.88. HRMS-ESI (m/z): calcd for C₂₂H₂₅BO₃, [M+H]⁺: 349.1975, found, 349.1977.

2-(3-(phenylethynyl)phenyl)acetonitrile (53)

Yellow oil.¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (dd, J = 6.6, 2.8 Hz, 2H), 7.50 (d, J = 7.3 Hz, 2H), 7.37 (p, J = 4.4 Hz, 4H), 7.29 (d, J = 7.8 Hz, 1H), 3.74 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 131.7, 131.3, 131.0, 130.2, 129.2, 128.6, 128.5, 127.7, 124.3, 122.9, 117.6, 90.41, 88.5, 23.4.

3-(3-(phenylethynyl)phenyl)propanenitrile (54)

White oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.52 (m, 2H), 7.48 – 7.44 (m, 1H), 7.41 (s, 1H), 7.39 – 7.31 (m, 4H), 7.21 (d, *J* = 7.7 Hz, 1H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.63 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.3, 131.7, 131.4, 130.5, 129.0, 128.5, 128.4, 128.3, 123.9, 123.1, 119.0, 89.8, 89.0, 31.4, 19.2.

References

- [1] Zhang, N.; Zhang, C.; Hu, X.; Xie, X.; Liu, Y. Org. Lett. 2021, 23, 6004-6009.
- [2] Chen, X.; He, Q.; Xie, Y.; Yang, C. Org. Biomol. Chem. 2013, 11, 2582-2585.
- [3] Chen, L. L.; Zhang, J. W; Yang, W. W.; Fu, J. Y.; Zhu, J. Y.; Wang, Y. B. J. Org. Chem. 2019, 84, 8090-8099.
- [4] Sedelmeier, J.; Ley, S. V.; Lange, H.; Baxendale, I. R. Eur. J. Org. Chem. 2009, 26, 4412-4420.
- [5] Lin, H. S.; Pan, Y. Z.; Tian, Y. H.; Pan, Y. M.; Wang, X. Adv. Synth. Catal. 2022, 364, 1117-1121.
- [6] Song, L.; Tian, G.; He, Y.; Van der Eycken, E. V. Chem. Commun. 2017, 53, 12394-12397.
- [7] He, Y.; Zhang, X.; Fan, X. Chem. Commun. 2014, 50, 5641-5643.
- [8] Aronica, L. A.; Albano, G.; Giannotti, L.; Meucci, E. Eur. J. Org. Chem. 2017, 5, 955-963.
- [9] Chen, X.; Jin, J.; Wang, N.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2012, 4, 824-830.
- [10] Jongcharoenkamol, J.; Chuathong, P.; Amako, Y.; Kono, M.; Poonswat, K.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem. 2018, 83, 13184-13210.
- [11] Cai, J.; Wu, B.; Rong, G.; Zhang, C.; Qiu, L.; Xu, X. Org. Lett. 2018, 20, 2733-2736.
- [12] Zhu, Z.; Tang, X.; Li, X.; Wu, W.; Deng, G.; Jiang, H. J. Org. Chem. 2016, 81, 1401-1409.
- [13] Keene, C.; Kürti, L. Synthesis, 2013, 45, 1719-1729.
- [14] Org. Lett. 2021, 23, 8, 2904-2910.

NMR Spectra for all compounds

¹H NMR (400 MHz, Chloroform-*d*) of compound 1u

¹³C NMR (101 MHz, Chloroform-d) of compound 1x

¹⁹F NMR (377 MHz, Chloroform-d) of compound 14

¹¹B NMR (128 MHz, Chloroform-d) of compound 20

¹H NMR (400 MHz, Chloroform-*d*) of compound 21

¹¹B NMR (128 MHz, Chloroform-d) of compound 22

¹³C NMR (101 MHz, Chloroform-d) of compound 23

¹¹B NMR (128 MHz, Chloroform-d) of compound 23

¹¹B NMR (128 MHz, Chloroform-d) of compound 24

¹H NMR (400 MHz, Chloroform-*d*) of compound 25

¹¹B NMR (128 MHz, Chloroform-d) of compound 27

¹¹B NMR (128 MHz, Chloroform-d) of compound 28

¹¹B NMR (128 MHz, Chloroform-d) of compound 29

¹¹B NMR (128 MHz, Chloroform-d) of compound 30

¹¹B NMR (128 MHz, Chloroform-d) of compound 31

¹H NMR (400 MHz, Chloroform-*d*) of compound 34

¹¹B NMR (128 MHz, Chloroform-d) of compound 34

¹¹B NMR (128 MHz, Chloroform-d) of compound 37

¹¹B NMR (128 MHz, Chloroform-d) of compound 38

¹¹B NMR (128 MHz, Chloroform-d) of compound 39

¹⁹F NMR (377 MHz, Chloroform-d) of compound 39

.0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹¹B NMR (128 MHz, Chloroform-d) of compound 40

¹¹B NMR (128 MHz, Chloroform-d) of compound 42

¹⁹F NMR (377 MHz, Chloroform-d) of compound 44

¹⁹F NMR (377 MHz, Chloroform-d) of compound 45

¹H NMR (400 MHz, Chloroform-*d*) of compound 48

¹H NMR (400 MHz, Chloroform-*d*) of compound *d*-24 (from *d*-50)

¹¹B NMR (128 MHz, Chloroform-d) of compound Z-2

¹³C NMR (101 MHz, Chloroform-d) of compound Z-24

¹³C NMR (101 MHz, Chloroform-d) of compound 52

