Supporting Information

Enantioselective and Collective Total Synthesis of Pentacyclic 19-nor-Clerodanes

Zhi-Mao Zhang, Junliang Zhang and Quan Cai*
Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University, 220 Handan Rd., Shanghai 200433, China
E-mail: quan_cai@fudan.edu.cn

Table of Contents

1. General Methods 2
2. Synthesis of 1,3-Cyclohexadiene Silane Ether 11 3
3. Investigation of the Pivotal IEDDA Reaction 9
4. Total Synthesis of (+)-Teucvin 15
5. Total Synthesis of (+)-Cracroson A and (+)-Cracroson E 25
6. Total Synthesis of (+)-Montanin A and (+)-Teucvisin C 28
7. Total Synthesis of (+)-Teucrin A 29
8. Enantioselective Synthesis of (+)-2-Hydroxyteuscorolide 33
9. Comparison of Natural Products with Synthetic 19-nor-Clerodane Diterpenoids 44
10. X-ray Crystallographic Data of 25, (+)-Cracroson E (7) and 38 58
11. References 75
12. 2D NMR of (+)-Cracroson A, (+)-Teucvisin C, Compound $\mathbf{3 0}$ and (+)-Cracroson E 77
13. Copies of NMR Spectra 91

1. General Methods

Unless stated otherwise, all solvents and reagents were purified and dried according to standard methods prior to use. All reactions were carried out in flame-dried glassware under an atmosphere of argon with magnetic stirring. Reactions were monitored by thin-layer chromatography (TLC) carried out on Huanghai silica gel HSGF254 pre-coated plates ($0.2 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid, an aqueous solution of cerium sulfate or a basic aqueous solution of potassium permanganate as developing agents. Silica gel (300400 mesh) purchased from Yantai Xinnuo Chemical Co. LTD was used for flash chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III HD (400 MHz and 100 MHz , respectively) and internally referenced to residual portion solvent signals $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}\right.$ $=77.00 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{CN}, \delta_{\mathrm{H}}=1.94 \mathrm{ppm}, \delta_{\mathrm{C}}=118.26 \mathrm{ppm}$; acetone $-\mathrm{d}_{6}, \delta_{\mathrm{H}}=2.05 \mathrm{ppm}, \delta_{\mathrm{C}}=206.26 \mathrm{ppm}$ or pyridine- $\mathrm{d}_{5}, \delta_{\mathrm{H}}=7.20 \mathrm{ppm}, \delta_{\mathrm{C}}=123.44 \mathrm{ppm}$, DMSO-d $\left._{6}, \delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right)$. The following abbreviations were used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. High-resolution mass spectra (HRMS) were recorded on an Agilent Technologies 6224 TOF LC/MS using ESI (electrospray ionization) or an Agilent GCQTOF mass spectrometer using EI (electronic ionization). Optical Rotations were measured on a Rudolph Autopol III S2 polarimeter. ${ }^{13}$ C NMR spectra of teucrin A (6) was recorded on an Agilent DD2 (100 MHz).

2. Synthesis of 1,3-Cyclohexadiene Silane Ether 11

To a solution of $\mathbf{S}-\mathbf{1}(16.5 \mathrm{~g}, 110 \mathrm{mmol})$ in toluene $(500 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{PCHCHO}(33.5 \mathrm{~g}, 110$ mmol). After stirring at reflux for 1 h , the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether: ethyl acetate $=30: 1$ to 10: 1) to afford unsaturated aldehyde $12(15.6 \mathrm{~g}, 80 \%)$ as a colorless oil.

12: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{dt}, J=16.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,153.0,137.4,131.7,128.5,127.9,127.6,72.9,68.5$. The spectroscopic data were identical with those reported in the literature. ${ }^{1}$

To a mixture of (S)-cat. ($3.25 \mathrm{~g}, 5.43 \mathrm{mmol}$) and unsaturated aldehyde $12(14.36 \mathrm{~g}, 81.5 \mathrm{mmol})$ was added tert-butyl acetoacetate $\mathbf{1 3}(8.59 \mathrm{~g}, 54.3 \mathrm{mmol})$. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 18 h until 13 was consumed completely. Then, toluene $(76 \mathrm{~mL})$ and $p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(2.07 \mathrm{~g}, 10.9 \mathrm{mmol})$ were added. After stirring at $80^{\circ} \mathrm{C}$ for 6 h to remove the tert-butyl carboxylate group, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether: ethyl acetate $=20: 1$ to 5:1) to afford enone $(R)-\mathbf{1 4}$.
(R)-14: Pale yellow oil ($7.63 \mathrm{~g}, 65 \%$, 93% ee); the ee value was determined by CHIRALPAK AD-H column, hexane $/ \mathrm{iPrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}($ minor $)=20.86 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=22.25$ $\min ;[\alpha]_{\mathrm{D}}{ }^{29}=-52.23\left(c=1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{ddd}$, $J=10.0,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.87(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 3 \mathrm{H})$, 2.27-2.11 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 199.2,149.4,138.1,129.7,128.4,127.6,127.5$, $73.2,73.1,41.1,35.6,29.0$. The spectroscopic data were identical with those reported in the literature. ${ }^{2,3}$

To a mixture of (R)-cat. $(1.20 \mathrm{~g}, 8.0 \mathrm{mmol})$ and unsaturated aldehyde $\mathbf{1 2}(2.11 \mathrm{~g}, 12.0 \mathrm{mmol})$ was added tert-butyl acetoacetate $\mathbf{1 3}(1.20 \mathrm{~g}, 8.0 \mathrm{mmol})$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h until $\mathbf{1 3}$ was completely consumed. Then, toluene (11 mL) and $p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(304 \mathrm{mg}, 1.6 \mathrm{mmol})$ were added. After stirring at $80^{\circ} \mathrm{C}$ for 6 h to remove the tert-butyl carboxylate group, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether: ethyl acetate $=20: 1$ to 5:1) to afford enone (S)-14.
(S)-14: Pale yellow oil ($1.10 \mathrm{~g}, 64 \%, 92 \%$ ee); the ee value was determined by CHIRALPAK AD-H column, hexane $/ \mathrm{iPOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}$ (major) $=20.44 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.06$ $\mathrm{min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+51.15\left(c=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.97$ (ddd, $J=10.0,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.39$ (m, 3H), 2.35-2.22 (m, 2H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.3, 149.4, 138.1, 129.7, 128.4, 127.7, $127.5,73.2,73.1,41.1,35.6,29.0$. The spectroscopic data were identical with those reported in the literature. ${ }^{4}$

To a stirred solution of $\mathbf{1 2}(176 \mathrm{mg}, 1.0 \mathrm{mmol})$ and ethyl acetoacetate $\mathbf{S} \mathbf{- 2}(130 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $t \mathrm{BuOH}(1.0 \mathrm{~mL})$ was added a catalytic amount of $\mathrm{KO} t \mathrm{Bu}(5.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , to the reaction mixture was added the second batch of $\mathrm{KO} t \mathrm{Bu}(22.4 \mathrm{mg}, 0.20 \mathrm{mmol})$, and then heated at $90^{\circ} \mathrm{C}$ for 7 h . Upon cooling to room temperature, the reaction mixture was quenched with $\mathrm{HCl}(1.0 \mathrm{~mL}$, aq., 1.0 M$)$, diluted with a $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and benzene $(5.0 \mathrm{~mL})$, washed with $\mathrm{NaOH}(5.0 \mathrm{~mL}$, aq., 1.0 M) and then brine $(5.0 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=15: 1$ to 5: 1) to afford (rac)-14 ($52.1 \mathrm{mg}, 24 \%$ yield) as a pale yellow oil.
(rac)-14: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{ddd}, J=10.0,5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.03 (dd, $J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.23(\mathrm{~m}$,

2H); ${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 199.3,149.4,138.1,129.7,128.4,127.7,127.5,73.2,73.1,41.1$, 35.6, 29.0. The spectroscopic data were identical with those reported in the literature. ${ }^{5}$
(rac)-14: CHIRALPAK AD-H column, hexane $/ \mathrm{iPrOH}, 99: 1 \mathrm{v} / \mathrm{v}, v=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$. $\mathrm{t}_{\mathrm{R}}($ minor $)=20.18 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=21.72 \mathrm{~min}$.

	RT	Area	\% Area	Height
1	20.177	21332534	50.10	678194
2	21.717	21251075	49.90	642223

(R)-14: CHIRALPAK AD-H column, hexane $/ i \operatorname{PrOH}, 99: 1 \mathrm{v} / \mathrm{v}, v=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$. $\mathrm{t}_{\mathrm{R}}($ minor $)=20.86 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=22.25 \mathrm{~min}$.

	RT	Area	\% Area	Height
1	20.863	1954634	3.75	68148
2	22.245	50104590	96.25	1453990

(S)-14: CHIRALPAK AD-H column, hexane $/ i \operatorname{PrOH}, 99: 1 \mathrm{v} / \mathrm{v}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$. $\mathrm{t}_{\mathrm{R}}($ major $)=20.44 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.06 \mathrm{~min}$.

	RT	Area	\% Area	Height
1	20.437	22304743	95.76	589467
2	22.063	988245	4.24	30104

To a stirred solution of cyclohex-2-en-1-one (R) - $\mathbf{1 4}$ ($93 \% \mathrm{ee}, 8.65 \mathrm{~g}, 40.0 \mathrm{mmol}$) and HMPA (17.4 $\mathrm{mL}, 100 \mathrm{mmol}$) in THF (160 mL) was added LiHMDS ($48 \mathrm{~mL}, 48.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) dropwise at $-78^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 1 h , and then allowed to warm to $0{ }^{\circ} \mathrm{C}$ and maintained for another 1 h . After cooling to $-78^{\circ} \mathrm{C}$, the reaction mixture was added $\mathrm{TBSCl}(9.04 \mathrm{~g}$ in 80 mL THF, 60.0 mmol) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with NaHCO_{3} (200 mL, aq., sat.). The aqueous layer was extracted with petroleum ether ($200 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 100% petroleum ether) to afford $(S) \mathbf{- 1 1}(9.07 \mathrm{~g}, 69 \%$ yield) as a colorless oil.
(S)-11: $[\alpha]_{\mathrm{D}}{ }^{29}=-77.57\left(c=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.89$ (ddd, $J=9.2,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, 3.49-3.42 (m, 2H), 2.88-2.78 (m, 1H), 2.40-2.27 (m, 2H), $0.97(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,138.5,128.3,127.54,127.46,125.3,119.3,101.6,73.0,72.3,35.8$,
31.8, 25.6, 18.0, -4.4, -4.5; FT-IR (neat): $v_{\max }=2928,2857,1647,1585,1472,1362,1252,1219$, 1028, 899, 833, 779, $694 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 330.2010$, found: 330.2016 .

(S)-14

65\%
(R)-11

To a stirred solution of cyclohex-2-en-1-one (S)-14 (92% ee, $626 \mathrm{mg}, 2.89 \mathrm{mmol}$) and HMPA (1.26 $\mathrm{mL}, 7.23 \mathrm{mmol}$) in THF (12 mL) was added LiHMDS ($3.45 \mathrm{~mL}, 3.45 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) dropwise at $-78^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 1 h , and then allowed to warm to $0{ }^{\circ} \mathrm{C}$ and maintained for another 1 h . After cooling to $-78^{\circ} \mathrm{C}$, the reaction mixture was added $\mathrm{TBSCl}(654 \mathrm{mg}$ in 6.0 mL THF, 4.34 mmol) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with NaHCO_{3} (20 mL, aq., sat.). The aqueous layer was extracted with petroleum ether ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 100% petroleum ether) to afford $(R)-11(624 \mathrm{mg}, 65 \%$ yield) as a colorless oil.
$(R)-11:[\alpha]^{32}=+75.51\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 5.86$ (ddd, $J=9.2,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, 1 H), 4.52 ($\mathrm{s}, 2 \mathrm{H}$), 3.46-3.39 (m, 2H), 2.84-2.75 (m, 1H), 2.36-2.23 (m, 2H), 0.94 (s, 9H), 0.17 ($\mathrm{s}, 3 \mathrm{H}$), 0.16 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,138.5,128.4,127.6,127.5,125.3,119.4,101.7$, $73.0,72.4,35.8,31.8,25.3,18.1,-4.36,-4.41$; FT-IR (neat): $v_{\max }=2930,2857,1647,1585,1361$, 1252, 899, 833, 779, $696 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 330.2010$, found: 330.2011 .

To a stirred solution of cyclohex-2-en-1-one (rac)-14 (387 mg, 1.79 mmol) and HMPA ($780 \mu \mathrm{~L}$, $4.48 \mathrm{mmol})$ in THF (7.2 mL) was added LiHMDS ($2.15 \mathrm{~mL}, 2.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) dropwise at $-78^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 1 h , and then allowed to warm to $0{ }^{\circ} \mathrm{C}$ and maintained for another 1 h . After cooling to $-78^{\circ} \mathrm{C}$, the reaction mixture was added TBSCl (405 mg in 3.6 mL THF, 2.69 mmol) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with
$\mathrm{NaHCO}_{3}(10 \mathrm{~mL}$, aq., sat.). The aqueous layer was extracted with petroleum ether ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 100% petroleum ether) to afford (rac)-11 ($409 \mathrm{mg}, \mathbf{6 9 \%}$ yield) as a colorless oil.
(rac)-11: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.86$ (ddd, $J=8.8,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.74(\mathrm{~m}$, $1 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2$, $138.5,128.3,127.6,127.5,125.3,119.3,101.7,73.0,72.4,35.8,31.8,25.6,18.1,-4.37,-4.42$; FTIR (neat): $v_{\max }=2930,2857,1647,1583,1361,1250,899,833,779,694 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 330.2010$, found: 330.2010.

3. Investigation of the Pivotal IEDDA Reaction

${ }^{a}$ Reaction conditions: $\mathbf{1 0}(0.10 \mathrm{mmol}), \mathbf{1 1}(0.15 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(12 \mathrm{~mol} \%)$, DIPEA ($24 \mathrm{~mol} \%$), $4 \AA$ M.S. $(25.0 \mathrm{mg}), \mathrm{DCM}(0.25 \mathrm{~mL})$ at $25^{\circ} \mathrm{C} .{ }^{b}(S)-\mathrm{L} 1$ was not added. DCM $=$ dichloromethane, DIPEA $=N, N-$ diisopropylethylamine, M.S. $=$ molecular sieves.
(rac)-9: To a mixture of anhydrous $\mathrm{Yb}(\mathrm{OTf})_{3}(6.2 \mathrm{mg}, 0.010 \mathrm{~mol})$ and freshly activated $4 \AA$ molecular sieves (25.0 mg) in DCM (0.25 mL) was added 4-methyl-2-pyrone $\mathbf{1 0}$ ($16.8 \mathrm{mg}, 0.10 \mathrm{mmol}$). After the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , silyl cyclohexadienol ether (rac)-11 (49.6 $\mathrm{mg}, 0.15 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h until $\mathbf{1 0}$ was consumed completely (monitored by TLC). The crude mixture was purified directly by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=10: 1$) to afford lactone (rac) $\mathbf{9}$ $(41.6 \mathrm{mg}, 84 \%, 3.0: 1 \mathrm{dr})$ as a colorless oil. This compound was seperated by CHIRALPAK IC column, hexane $/ \mathrm{iPrOH}, 80: 20 \mathrm{v} / \mathrm{v}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{R}}($ anti- 9$)=24.29 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(\operatorname{syn}-9)=$ $29.22 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ ent-syn-9 $)=33.45 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ ent-anti-9 $)=39.55 \mathrm{~min}$.

	RT	Area	\% Area	Height
1	24.292	6857178	37.53	116055
2	29.221	2329160	12.75	33858
3	33.452	2326957	12.74	30534
4	39.552	6755590	36.98	74811

Entry 1: To a mixture of anhydrous $\mathrm{Yb}(\mathrm{OTf})_{3}(6.2 \mathrm{mg}, 0.010 \mathrm{~mol})$ and freshly activated $4 \AA$ molecular sieves (25.0 mg) in DCM (0.25 mL) was added 4-methyl-2-pyrone $\mathbf{1 0}(16.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and an orange color appeared immediately. After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 15 min , silyl cyclohexadienol ether $(S) \mathbf{- 1 1}(49.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h until $\mathbf{1 0}$ was consumed completely (monitored by TLC). The crude mixture was purified directly by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=10: 1)$ to afford anti-9 and ent-syn-9 $(38.9 \mathrm{mg}, 78 \%, 3.1: 1 \mathrm{dr}$, anti-9: 94% ee; ent-syn9: 94% ee) as a colorless mixture. The ee values of anti-9 and ent-syn-9 were determined by CHIRALPAK IC column, hexane $/ \mathrm{iPrOH}, 80: 20 \mathrm{v} / \mathrm{v}, v=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$; anti-9: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ major $)=23.62 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=39.22 \mathrm{~min}\right]$, ent-syn-9: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ minor $)=28.46 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=32.67$ $\mathrm{min}]$.

Entry 2: To a mixture of anhydrous $\mathrm{Yb}(\mathrm{OTf})_{3}(6.2 \mathrm{mg}, 0.010 \mathrm{~mol}),(S)-\mathrm{L} 1(7.4 \mathrm{mg}, 0.012 \mathrm{~mol})$ and freshly activated $4 \AA$ molecular sieves $(25.0 \mathrm{mg})$ in DCM $(0.25 \mathrm{~mL})$ was added DIPEA ($4.0 \mu \mathrm{~L}, 0.024$ mmol) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at this temperature for 30 min to afford a pale-yellow suspension. Then, 4-methyl-2-pyrone $\mathbf{1 0}(16.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and a dark-blue color appeared immediately. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for another 15 min , silyl cyclohexadienol ether (rac)-11 ($66.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h until 10 was consumed completely (monitored by TLC). The crude mixture was purified directly by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=10: 1$) to afford lactone anti-9 and syn-9 ($36.4 \mathrm{mg}, 73 \%, 1.2: 1 \mathrm{dr}$, anti-9: 78% ee, syn-9: 90% ee) as a colorless mixture. The ee values of anti-9 and syn-9 were determined by CHIRALPAK IC column, hexane $/ \mathrm{iPrOH}, 80: 20$ $\mathrm{v} / \mathrm{v}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$; anti-9: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ major $)=23.52 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=37.92 \mathrm{~min}\right]$, syn9: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ major $)=28.02 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=32.11 \mathrm{~min}\right]$.

	RT	Area	\% Area	Height
1	23.524	12239905	48.59	227656
2	28.019	10860385	43.11	169582
3	32.113	546170	2.17	8501
4	37.921	1545273	6.13	18840

Entry 3: To a mixture of anhydrous $\mathrm{Yb}(\mathrm{OTf})_{3}(6.2 \mathrm{mg}, 0.010 \mathrm{~mol})$, (S) $\mathbf{- L 1}(7.4 \mathrm{mg}, 0.012 \mathrm{~mol})$ and freshly activated $4 \AA$ molecular sieves $(25.0 \mathrm{mg})$ in $\operatorname{DCM}(0.25 \mathrm{~mL})$ was added DIPEA ($4.0 \mu \mathrm{~L}, 0.024$ mmol) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at this temperature for 30 min to afford a pale-yellow suspension. Then, 4-methyl-2-pyrone $10(16.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and a dark-blue color appeared immediately. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for another 15 min , silyl cyclohexadienol ether (R) - $\mathbf{1 1}(49.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h until $\mathbf{1 0}$ was consumed completely (monitored by TLC). The crude mixture was purified directly by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=10: 1$) to afford lactone syn-9 and ent-anti-9 ($37.2 \mathrm{mg}, 75 \%, 3.8: 1 \mathrm{dr}$, syn-9: 99\% ee, ent-anti-9: 72\% ee) as a colorless mixture. The ee values of syn-9 and ent-anti-9 were determined by CHIRALPAK IC column, hexane $/ \mathrm{iPrOH}, 80$: $20 \mathrm{v} / \mathrm{v}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$; syn-9: $\left[\mathrm{t}_{\mathrm{R}}\right.$ (major) $=29.24 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=33.91 \mathrm{~min}\right]$, ent-anti-9: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ minor $)=24.45 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=40.00 \mathrm{~min}\right]$.

	RT	Area	\% Area	Height
1	24.451	743957	2.94	13049
2	29.242	20051682	79.18	277943
3	33.911	44917	0.18	1161
4	39.998	4483845	17.71	49540

Entry 4: To a mixture of anhydrous $\mathrm{Yb}(\mathrm{OTf})_{3}(620 \mathrm{mg}, 1.0 \mathrm{mmol}),(S)-\mathrm{L} 1(742 \mathrm{mg}, 1.2 \mathrm{mmol})$ and freshly activated $4 \AA$ molecular sieves (2.50 g) in DCM (25 mL) was added DIPEA ($400 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at this temperature for 30 min to afford a pale-yellow suspension. Then, 4-methyl-2-pyrone $\mathbf{1 0}(1.68 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added and a dark-blue color appeared immediately. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for another 15 min , silyl cyclohexadienol ether (S) $11(4.96 \mathrm{~g}, 15.0 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h until 10 was consumed completely (monitored by TLC). The reaction mixture was diluted with DCM (25 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=10: 1$) to afford lactone anti-9 and ent-syn-9 ($4.34 \mathrm{~g}, 87 \%, 10: 1 \mathrm{dr}$, anti-9: 98% ee, ent-syn-9: 19% ee) as a colorless mixture. The ee values of anti-9 and ent-syn-9 were determined by CHIRALPAK IC column, hexane $/ \mathrm{iPrOH}, 80: 20 \mathrm{v} / \mathrm{v}, v=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$; major isomer: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ major $)=24.05 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $\left.)=39.51 \mathrm{~min}\right]$, minor isomer: $\left[\mathrm{t}_{\mathrm{R}}(\right.$ minor $)=29.07 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=33.18 \mathrm{~min}\right]$.
anti-9: $[\alpha]_{\mathrm{D}}{ }^{23}=-35.70\left(c=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.07-$ $6.05(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.46-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=10.2,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.93-1.82(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0$, 168.1, 153.1, 141.4, 138.0, 128.5, 127.8, 127.6, 124.6, 100.7, 76.9, 73.6, 73.3, 62.9, 52.5, 40.9, 36.5,
36.2, 30.5, 25.6, 20.7, $18.0,-4.35,-4.44$; FT-IR (neat): $v_{\max }=2957,2860,1740,1668,1364,1271$, 1207, 1082, 1003, 835, 779, 735, $698 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NaO}_{6} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 521.2335$, found: 521.2352.

4. Total Synthesis of (+)-Teucvin

To a solution of anti-9 ($4.61 \mathrm{~g}, 9.24 \mathrm{mmol})$ in THF $(92 \mathrm{~mL})$ was added $\mathrm{HCl}(4.62 \mathrm{~mL}, 4.62 \mathrm{mmol}$, aq., 1.0 M) dropwise at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 4 h . After the reaction was complete, the reaction mixture was diluted with water (200 mL) and extracted with DCM $(100 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 1)$ to afford $15(2.93 \mathrm{~g}, 83 \%$ yield $)$ as a white solid.

15: the m.p. could not be determined because this compound will undergo retro-Diels-Alder extrusion of CO_{2} before melting; $[\alpha]_{\mathrm{D}}{ }^{27}=+121.07\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.25-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=20.0,12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.86 (s, 3H), 3.51-3.44 (m, 2H), 2.93 (ddd, $J=13.6,9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52$ (m, 2H), 2.35 (dd, J $=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=18.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=15.2,13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.8,169.9,167.1,140.8,137.5,128.5$, $127.9,127.5,125.3,74.7,73.3,72.2,61.7,52.7,42.6,40.9,38.9,35.1,33.3,20.7$; FT-IR (neat): $v_{\max }$ $=2963,1759,1713,1443,1366,1327,1125,1098,1074,991,920,818,741,700 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 407.1465$, found: 407.1457.

To a solution of $\mathbf{1 5}(2.33 \mathrm{~g}, 6.06 \mathrm{mmol})$ in EtOAc $(303 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(1.29 \mathrm{~g}, 1.21 \mathrm{mmol}$, $10 \% \mathrm{w} / \mathrm{w}$ in carbon). The mixture was stirred at $25^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h . The reaction mixture was filtered through a short pad of Celite and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 2$) to afford $\mathbf{1 6}(1.77 \mathrm{~g}, 99 \%$ yield) as a white solid.

16: m.p. $164.8-166.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}=+80.16\left(c=1.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94$ (dd, $J=5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.69-3.63 (h, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96-2.89 (m, 1H), 2.75-2.57 $(\mathrm{m}, 3 \mathrm{H}), 2.54-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6,172.9,168.6,76.3,64.0,55.5,52.7,41.1,40.0,39.7,35.3$, 31.5, 30.0, 28.4, 19.3; FT-IR (neat): $v_{\max }=3541,2965,1734,1705,1435,1332,1260,1111,1057$, 991, $893 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 319.1152$, found: 319.1155.

To a suspension of tosylhydrazine ($512 \mathrm{mg}, 2.75 \mathrm{mmol}$) in EtOH (12 mL) was added ketone 16 (740 $\mathrm{mg}, 2.50 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred under reflux for 2 h , and then concentrated under reduced pressure to afford the corresponding tosylhydrazone intermediate as a crude mixture. The residue was dissolved in $\mathrm{CHCl}_{3}(42 \mathrm{~mL})$ and catecholborane ($2.75 \mathrm{~mL}, 2.75 \mathrm{mmol}$) was added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h . Then $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(680$ $\mathrm{mg}, 5.00 \mathrm{mmol}$) was added and the resulting mixture was stirred under $70^{\circ} \mathrm{C}$ for 50 min . After cooling to $25^{\circ} \mathrm{C}$, the reaction mixture was filtered. The solid was washed with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The combined filtrates were concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 1)$ to afford $\mathbf{1 7}(539 \mathrm{mg}, 76 \%$ yield) as a colorless oil.

17: $[\alpha]_{\mathrm{D}}{ }^{26}=-58.41\left(c=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.68(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.1,169.6,77.3,65.9,56.1,52.2,41.0,35.3,33.8,30.1,28.4,23.2,22.3,20.1,19.2$; FTIR (neat): $v_{\max }=3512,2940,2882,1732,1460,1381,1331,1256,1209,1099,1065,993,816,735$ $\mathrm{cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 305.1365$, found: 305.1358.

To a solution of lactone $\mathbf{1 7}(1.01 \mathrm{~g}, 3.59 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(36 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.24 \mathrm{~g}, 8.99 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 6 h , the reaction mixture was neutralized with $\mathrm{AcOH}(18 \mathrm{~mL}$, aq., 0.5 M). The mixture was extracted with $\operatorname{EtOAc}(20 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude $\mathbf{S}-\mathbf{3}$ was used directly in the next step without further purification.

To a solution of crude $\mathbf{S}-\mathbf{3}$ in DCM (90 mL) was added 2,6-lutidine ($2.51 \mathrm{~mL}, 21.6 \mathrm{mmol}$) and TBSOTf ($2.48 \mathrm{~mL}, 10.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then quenched with $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$, aq., sat.). The aqueous layer was extracted with $\mathrm{DCM}(50 \mathrm{~mL} \times 3)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=50: 1$) to afford $\mathbf{1 8}(1.50 \mathrm{~g}, 77 \%)$ as a colorless oil.

18: $[\alpha]_{\mathrm{D}}{ }^{24}=-24.00\left(c=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.04(\mathrm{td}, J=10.4,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{br}, 1 \mathrm{H}), 2.78$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{br}, 1 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.18(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.861(\mathrm{~s}, 9 \mathrm{H}), 0.855(\mathrm{~s}, 9 \mathrm{H}), 0.044(\mathrm{~s}, 3 \mathrm{H}), 0.037(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,170.5,64.6,64.4,62.3,52.8,52.1,43.2,39.8,38.1,35.1,32.3,26.1,25.9,25.8$, 22.6, 22.1, 18.4, 18.2, 18.0, -4.1, -4.7, $-5.29,-5.32$; FT-IR (neat): $v_{\max }=2928,2856,1734,1472$, 1431, 1256, 1219, 1200, 1084, 1040, 831, 772, $667 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{NaO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 565.3357$, found: 565.3350.

To a solution of $\mathbf{1 8}(496 \mathrm{mg}, 0.91 \mathrm{mmol})$ in $\mathrm{DMSO}(91 \mathrm{~mL})$ was added $\mathrm{LiCl}(388 \mathrm{mg}, 9.15 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(824 \mathrm{mg}, 45.7 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring at $130{ }^{\circ} \mathrm{C}$ for 18 h , the reaction mixture was cooled to $25^{\circ} \mathrm{C}$, and diluted with water (500 mL). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (200
$\mathrm{mL} \times 3$). The combined extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=50: 1)$ to afford $19(394 \mathrm{mg}$ for both isomers, 89% yield, $4: 1 \mathrm{dr})$ as a colorless oil.

19: $[\alpha]_{\mathrm{D}}{ }^{27}=-10.62\left(c=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.44$ $(\mathrm{m}, 5 \mathrm{H}), 2.52(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.59(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.03(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.87(\mathrm{~m}, 18 \mathrm{H}), 0.05-0.02(\mathrm{~m}, 12 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,67.3,66.7,51.1,51.0,49.9,49.4,46.3,46.2,37.0,36.6,35.1$, $32.6,30.5,29.5,28.9,26.0,25.9,21.7,20.7,20.5,18.5,18.3,18.0,-4.3,-4.7,-4.475,-4.478,-5.3$, $-5.4,-5.5$; FT-IR (neat): $v_{\max }=2928,2857,1734,1472,1387,1360,1252,1165,1088,1053,1005$, 974, 833, 772, $669 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{NaO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 507.3302$, found: 507.3299.

To a solution of $\mathbf{1 9}(382 \mathrm{mg}, 0.79 \mathrm{mmol})$ in THF (16 mL) was added LDA ($3.15 \mathrm{~mL}, 3.15 \mathrm{mmol}$, 1.0 M in THF) at $-78{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 5 h , the reaction mixture was added HMPA ($565 \mathrm{mg}, 3.15 \mathrm{mmol}$) and allyl iodide ($265 \mathrm{mg}, 1.58 \mathrm{mmol}$). After stirring at $0^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(16 \mathrm{~mL}$, aq., sat.). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=50: 1)$ to afford $\mathbf{S} \mathbf{- 4}(402 \mathrm{mg}, 97 \%$ yield $)$ as a colorless oil.

S-4: $[\alpha]_{\mathrm{D}}{ }^{29}=-26.29\left(c=0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.72-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.05-$ $5.01(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 5 \mathrm{H}), 2.52(\mathrm{ddd}, J=21.6,14.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.17$ $(\mathrm{m}, 2 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.33(\mathrm{~m}$, $2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.08-0.05(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.7,134.2,117.6,65.6,65.3,53.4,50.8,41.9,38.2,35.2,32.1,32.0,26.9,26.0,22.3,19.1,18.3$, 18.1, -4.1, -4.6, -5.3; FT-IR (neat): $v_{\max }=2928,2860,1734,1472,1252,1198,1092,1005,837$, $773,743 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{NaO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 547.3615$, found: 547.3609.

To a solution of S-4 ($468 \mathrm{mg}, 0.89 \mathrm{mmol}$) in DCM (89 mL) was bubbled with ozone at $-78^{\circ} \mathrm{C}$ until the solution turned blue. After the excess ozone was excluded by the argon stream, $\mathrm{Et}_{3} \mathrm{~N}(247 \mu \mathrm{~L}, 1.78$ mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h and then concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=20: 1)$ to afford aldehyde $\mathbf{2 0}(312 \mathrm{mg}, 67 \%$ yield $)$ as a colorless oil.

20: $[\alpha]_{\mathrm{D}}{ }^{28}=-25.52\left(c=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{br}, 1 \mathrm{H})$, 3.68 (s, 3H), 3.59-3.50 (m, 2H), 2.78 (dd, $J=15.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, $J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20$2.15(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{br}, 1 \mathrm{H}), 1.74-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05-0.03(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.7,175.1,65.7,65.3,51.5$, $51.4,50.3,38.4,37.4,35.1,32.6,26.8,25.9,25.8,21.9,18.2,18.0,-4.3,-4.7,-5.35,-5.36$; FT-IR (neat): $v_{\max }=2934,2855,1721,1472,1250,1194,1084,1061,833,772,667 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 549.3402$, found: 549.3403.

Table S1 1,2-Addition of 3-Furanyl Metal Reagent to Aldehyde 20

Entry	Conditions ${ }^{a}$	Yield ${ }^{b}$	$\mathrm{dr}^{\text {c }}$
1	3-bromofuran (3.0 equiv.), $n \mathrm{BuLi}$ (3.0 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$	72\%	1.5:1.0
2	3-bromofuran (3.0 equiv.), Mg (3.0 equiv.), THF, $25^{\circ} \mathrm{C}$; then $\mathbf{2 0}, 0^{\circ} \mathrm{C}$	68\%	1.8:1.0
3	3 -bromofuran (3.0 equiv.), $n \mathrm{BuLi}$ (3.0 equiv.), CuI (1.5 equiv.), THF, $-78^{\circ} \mathrm{C}$; then $\mathbf{2 0}, 0^{\circ} \mathrm{C}$	59\%	2.0:1.0
4	3-furanboronic acid (6.0 equiv.), ZnEt_{2} (18.0 equiv.), toluene $60^{\circ} \mathrm{C}$; then (R)-L2 ($20 \mathrm{~mol} \%$), 20, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	41\%	13:1.0
5	3-furanboronic acid (6.0 equiv.), ZnEt_{2} (18.0 equiv.), toluene $60^{\circ} \mathrm{C}$; then (S)-L2 (20 mol\%), 20, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	46\%	1.0:8.1
6	3 -furanboronic acid (6.0 equiv.), ZnEt_{2} (18.0 equiv.), toluene $60^{\circ} \mathrm{C}$; then (R)-L3 ($20 \mathrm{~mol} \%$), 20, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	55\%	1.9:1.0
7	(3-furyl)Ti(OiPr) ${ }_{3}$ (2.0 equiv.), toluene, $0^{\circ} \mathrm{C}$	85\%	5.3:1.0
8	$\begin{gathered} \text { (3-furyl) } \mathrm{Ti}(\mathrm{O} i \operatorname{Pr})_{3}(2.0 \text { equiv.), }(R)-\mathbf{L 4}(20 \mathrm{~mol} \%) \text {, toluene, } \\ 0^{\circ} \mathrm{C} \end{gathered}$	90\%	15:1.0
9	$\begin{gathered} \text { (3-furyl) } \mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{3} \text { (2.0 equiv.), (S)-L4 (20 mol\%), toluene, } \\ 0^{\circ} \mathrm{C} \end{gathered}$	80\%	2.2:1.0

[^0]Entry 8: To a solution of (3-furyl) $\mathrm{Ti}(\mathrm{OiPr})_{3}{ }^{6}(11.1 \mathrm{mg}, 0.038 \mathrm{mmol})$ and $(R)-\mathbf{L 3}(1.0 \mathrm{mg}, 20$ $\mathrm{mol} \%$) in toluene (0.38 mL)was added aldehyde $20(10.0 \mathrm{mg}$ in 0.10 mL toluene, 0.019 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NaOH}(1.0 \mathrm{~mL}$, aq., 1.0 M$)$. The aqueous layer was extracted with EtOAc $(2.0 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=30: 1$) to afford $22(9.6 \mathrm{mg}, 90 \%, 15: 1 \mathrm{dr})$ as a white foam.

22: m.p. $79.6-80.2{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+11.80\left(c=0.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}$, $1 \mathrm{H}), 7.424-7.420(\mathrm{~m}, 1 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{br}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=$ $10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}$, $1 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{br}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05-0.04(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,143.9$, $139.5,125.5,108.2,71.6,66.9,66.3,50.3,44.4,40.0,34.7,33.2,29.7,28.1,26.0,25.8,21.1,18.3$, 18.0, 16.4, -4.66, -4.70, -5.36, -5.40; FT-IR (neat): $v_{\max }=2951,2855,1761,1472,1252,1155,1084$, 833, $772 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 585.3402$, found: 585.3394 .

To a solution of $22(128 \mathrm{mg}, 0.23 \mathrm{mmol})$ in THF (9.1 ml) was added TBAF ($0.68 \mathrm{~mL}, 0.68 \mathrm{mmol}$, 1.0 M in THF) dropwise at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 12 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL}$, aq., sat.). The aqueous layer was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, dichloromethane: methanol = 30: 1) to afford diol $23(74.6 \mathrm{mg}, 98 \%$ yield) as a white foam.
23: m.p. $72.0-73.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+2.04\left(c=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}$, $1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.21$ (m, 5H), 2.09-2.02 (m, 3H), 1.93-1.88 (m, 1H), $1.77(\mathrm{dt}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.49$
$(\mathrm{m}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.1, 144.0, 139.7, 125.0, 108.2, 71.6, 66.0, 65.3, 50.4, 44.1, 44.0, 39.4, 35.0, 34.7, 33.2, 27.9, 27.8, 21.2, 16.4; FT-IR (neat): $v_{\text {max }}=3424,2924,1751,1323,1155,1022,874,731 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 357.1673$, found: 357.1668.

To a stirred solution of DCM (1.7 mL) and oxalyl chloride ($34.7 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$) was added DMSO $(58.3 \mu \mathrm{~L}, 0.82 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 10 min , the reaction mixture was added $23(56.9 \mathrm{mg}, 0.17 \mathrm{mmol})$ slowly and stirred at $-78^{\circ} \mathrm{C}$ for another 30 min . Then $\mathrm{Et}_{3} \mathrm{~N}(284 \mu \mathrm{~L}, 2.04 \mathrm{mmol})$ was added and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min . After warming to $25^{\circ} \mathrm{C}$ slowly and stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL}$, aq., sat.). The aqueous layer was extracted with $\mathrm{DCM}(5.0 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=4: 1)$ to afford ketoaldehyde $\mathbf{S}-5(47.2 \mathrm{mg}, 84 \%$ yield) as a white foam.

S-5: m.p. $59.0-60.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=-195.65\left(c=0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{~s}$, $1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=1.61 \mathrm{H}), 5.38(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=18.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}$, 2 H), 2.25-2.16 (m, 2H), 2.07 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.20$ $(\mathrm{m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{dt}, J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.7,204.6,175.8,144.0,140.0,123.4,108.2,71.1,51.0,46.1,44.5,43.9,42.8,40.3,32.5,30.2,23.7$, 21.2, 15.5; FT-IR (neat): $v_{\max }=2955,2919,1758,1704,1504,1457,1146,1021,871,751,725 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 353.1359$, found: 353.1356.

To a solution of ketoaldehyde $\mathbf{S}-5(20.4 \mathrm{mg}, 0.062 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(26.6 \mathrm{mg}, 0.222 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (v:v:v$=3: 3: 1,2.1 \mathrm{~mL}$) was added 2-methyl-2-butene ($98 \mu \mathrm{~L}, 1.167 \mathrm{mmol}$) and $\mathrm{NaClO}_{2}(26.8 \mathrm{mg}, 0.296 \mathrm{mmol})$ sequentially at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL}$, aq., sat.). The mixture was extracted with EtOAc $(2.0 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, dichloromethane: methanol = 30: 1) to afford carboxylic acid $24(19.6 \mathrm{mg}, 92 \%$ yield $)$ as a white solid.

24: m.p. $141.1-142.3^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-80.21\left(c=0.19\right.$, acetone); ${ }^{1} \mathbf{H}$ NMR (400 MHz , acetone- $\left.\mathrm{d}_{6}\right) \delta$ $7.76(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J$ $=18.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.47(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=18.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13}$ C NMR (100 MHz , acetone- d_{6}) $\delta 210.5,176.7,175.8,145.1,141.9,125.0$ 109.6, 71.5, 52.0, 47.7, $45.0,43.5,41.3,38.933 .2,31.2,24.0,23.9,15.9$; FT-IR (neat): $v_{\max }=2939,1763,1712,1676,1203$, 1164, 1145, 1009, 939, 876, $600 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 369.1309, found: 369.1300.

To a solution of $24(16.0 \mathrm{mg}, 0.046 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(0.35 \mathrm{~mL})$ was added $\mathrm{NaOAc}(1.9 \mathrm{mg}, 0.023$ mmol) at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 15 h . After cooling to $25^{\circ} \mathrm{C}$, the mixture was diluted with EtOAc (5.0 mL). The organic layer was washed with $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL}$, aq., sat.), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, petroleum ether: ethyl acetate $=1: 1$) to afford (+)-teucvin (1) (8.0 mg , 53%) as a white solid.
(+)-Teucvin (1): m.p. $199.5-201.4^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=+177.46\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.69 (br, 1H), 2.55 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.28-2.08 (m, 5H), 2.01-1.98 (m, 1H), 1.93-1.86 (m, 1H), $1.58-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,172.9,161.3$, 144.3 , 139.5, 126.6, 124.9, 107.9, 78.2, 71.7, 53.5, 42.1, 40.9, 36.0, 35.2, 24.8, 21.7, 19.6, 17.0; FTIR (neat): $v_{\max }=2934,1744,1694,1350,1207,1020,966,874,741 \mathrm{~cm}^{-1} ;$ HRMS (EI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}: 328.1305$, found: 328.1303 . The spectroscopic data were identical with those reported in the literature. ${ }^{7}$

5. Total Synthesis of (+)-Cracroson A and (+)-Cracroson E

Table S2 The Allylic Oxidation of (+)-Teucvin

Entry	Conditions ${ }^{\text {a }}$	Result
1	SeO_{2} (4.0 equiv.), DMSO, $120{ }^{\circ} \mathrm{C}$	7, trace
2	SeO_{2} (10.0 equiv.), 1,4-dioxane/ formic acid, $80{ }^{\circ} \mathrm{C}$	decomposed
3	SeO_{2} (5.0 equiv.), benzene, reflux	5, 4\%; 7, 9\%
4	SeO_{2} (0.5 equiv.), TBHP (2.5 equiv.), DCM, $25{ }^{\circ} \mathrm{C}$	N.R. ${ }^{\text {b }}$
5	$\begin{gathered} \mathrm{CrO}_{3} \text { (1.0 equiv.), } \mathrm{TBHP}(10 \text { equiv.), pyridine (2.0 equiv.), } \\ \mathrm{DCM}, 40^{\circ} \mathrm{C} \end{gathered}$	7, trace

${ }^{a}$ Reaction conditions: teucvin (1) (0.01 mmol), oxidant, solvent. ${ }^{b}$ N.R. $=$ No reaction. TBHP, tert-butyl hydroperoxide.

To a mixture of (+)-teucvin (1) ($24.3 \mathrm{mg}, 0.074 \mathrm{mmol}$) and NBS ($15.8 \mathrm{mg}, 0.089 \mathrm{mmol})$ in CCl_{4} $(7.4 \mathrm{~mL})$ was added dibenzoylperoxide [1.8 mg in $300 \mu \mathrm{LCCl}_{4}, 10 \mathrm{~mol} \%$, (degassed by freeze-pumpthaw cycles for three times)]. After stirring at $85^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 3: 1) to afford bromide $\mathbf{2 5}(16.3 \mathrm{mg}, 54 \%)$ as a white solid.
25: m.p. $174.5-175.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+61.06\left(c=0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.8,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 3 \mathrm{H})$,
$1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,171.9,160.0,144.3,139.5,126.2$, $124.6,107.9,76.4,71.6,66.4,59.9,39.6,36.3,34.8,34.6,19.6,19.3,17.3$. FT-IR (neat): $v_{\max }=2928$, 2859, 1755, 1462, 1159, 1045, 874, 791, 745, $602 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 429.0308$, found: 429.0304 .

Table 2. Investigations of the Hydrolysis Reaction of Allylic Bromide 25. ${ }^{a}$

Entry	silver salt	cracroson A^{b}	cracroson $\mathrm{E}^{\text {b }}$	ratio
1	AgOTf	66\%	28\%	2.4:1
2	AgNTf_{2}	49\%	33\%	1.5:1
3	AgSbF_{6}	47\%	15\%	3.1:1
4	AgBF_{4}	76\%	21\%	3.6:1
5	AgClO_{4}	70\%	17\%	4.1:1
6	AgNO_{3}	23\%	54\%	1:2.3
7	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	trace	trace	--

${ }^{a}$ Reaction conditions: $\mathbf{2 5}(0.01 \mathrm{mmol})$, silver salt $(0.03 \mathrm{mmol})$, acetone $/ \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=9: 1,0.7 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield.

Entry 4: To a solution of bromide $25(4.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=9: 1,0.7 \mathrm{~mL})$ was added $\mathrm{AgBF}_{4}(6.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 3 h , the reaction mixture was diluted with EtOAc (2.0 mL). The resulting mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and brine (2.0 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, dichloromethane: diethyl ether $=2: 1$) giving $(+)$-cracroson A (4) $(2.7 \mathrm{mg}, 76 \%)$ and (+)-cracroson E (7) $(0.8 \mathrm{mg}, 21 \%)$ as a white solid.

Entry 6: To a solution of bromide $25(4.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=9: 1,0.7 \mathrm{~mL})$ was added $\mathrm{AgNO}_{3}(5.3 \mathrm{mg}, 0.03 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 24 h , the reaction mixture was diluted with EtOAc (2.0 mL). The resulting mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and brine (2.0 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified
by column chromatography (silica gel, dichloromethane: diethyl ether $=2: 1$) giving (+)-cracroson A (4) $(0.8 \mathrm{mg}, 23 \%)$ and (+)-cracroson E (7) ($1.9 \mathrm{mg}, 54 \%$) as a white solid.
$(+)$-Cracroson A (4): m.p. $231.6-233.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}=+25.35(c=0.43, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74 (dd, $J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-1.95 (m, 6H), 1.87-1.78 (m, 1H), 1.53-1.46 (m, 1H), $1.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,175.9,144.3,139.7,137.4,132.8,124.4,108.0,76.9,72.5,69.1,52.5,39.5$, 34.9, 32.5, 29.8, 24.9 17.2, 16.1; FT-IR (neat): $v_{\max }=3472,2943,1755,1335,1169,1146,974,947$, $874,741,604 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 367.1152$, found: 367.1147. The spectroscopic data were identical with those reported in the literature. ${ }^{11}$
(+)-Cracroson E (7): m.p. 187.6-189.1 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{23}=+95.79(c=0.20, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=$ $14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (br, 1H), 2.35-2.29 (m, 1H), 2.27-2.17 (m, 4H), 2.14-2.03 (m, 2H), 1.98-1.93 $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,172.8$, $160.9,144.2,139.5,128.6,125.0,108.0,77.1,72.2,69.4,58.9,35.3,34.8,33.8,32.5,20.0,19.4,17.2$; FT-IR (neat): $v_{\max }=3397,2926,1746,1215,1175,1018,951,802,658 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 367.1152$, found: 367.1147 . The spectroscopic data were identical with those reported in the literature. ${ }^{15}$

6. Total Synthesis of (+)-Montanin A and (+)-Teucvisin C

To a solution of (+)-teucvin (1) ($5.7 \mathrm{mg}, 0.017 \mathrm{mmol}$) in THF (0.43 mL) was added DIBAL-H (52 $\mu \mathrm{L}, 0.052 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexane) dropwise at $-20^{\circ} \mathrm{C}$. After stirring at this temperature for 30 min , the reaction was quenched with $\mathrm{HCl}(50 \mu \mathrm{~L}$, aq., 2.0 M) slowly to adjust the pH value to $1 \sim 2$. Then the resulting mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and extracted with EtOAc ($2.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=4: 1)$ to afford $(+)$-montanin $\mathrm{A}(\mathbf{3})(4.4 \mathrm{mg}, 81 \%)$ as a white solid.
(+)-Montanin A (3): m.p. 126.1-127.7 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{16}=+103.26\left(c=0.31, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{br}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{dd}, J=16.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,147.9,144.1,139.6,136.2,125.5,119.7,116.9,108.1$, $71.6,50.7,43.2,39.7,36.1,30.0,25.6,23.9,19.1,17.8 ;$ FT-IR (neat): $v_{\max }=2963,1748,1175,1152$, 1013, 874, 806, 727, $600 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 335.1254, found: 335.1252. The spectroscopic data were identical with those reported in the literature. ${ }^{9,10}$

To a solution of (+)-montanin A (3) ($9.6 \mathrm{mg}, 0.031 \mathrm{mmol}$) in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v}=5: 1,1.0 \mathrm{~mL})$ was added $\mathrm{NaH}_{2} \mathrm{PO}_{4}\left(7.4 \mathrm{mg}, 0.061 \mathrm{mmol}\right.$), 2-methyl-2-butene ($25.8 \mu \mathrm{~L}, 0.307 \mathrm{mmol}$), and NaClO_{2} (8.9
$\mathrm{mg}, 0.098 \mathrm{mmol}$) sequentially at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($3.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 2)$ to afford $(+)$-teucvisin C $(\mathbf{5})(8.8 \mathrm{mg}, 83 \%)$ as a white solid.
(+)-Teucvisin C (5): m.p. 212.3-213.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=+176.92(c=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 5 \mathrm{H}), 2.01-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,170.8,159.8$, $144.3,139.6,128.4,124.8,108.0,102.2,72.0,54.0,40.6,40.2,39.8,35.8,24.5,21.4,19.4,16.6$; FTIR (neat): $v_{\max }=3360,2949,1757,1717,1236,1155,1090,907,847,737 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 367.1152$, found: 367.1143 . The spectroscopic data were identical with those reported in the literature. ${ }^{12}$

7. Total Synthesis of (+)-Teucrin A

To a solution of (+)-teucvisin C (6) ($30.5 \mathrm{mg}, 0.089 \mathrm{mmol}$) in DCM (11 mL) and $\mathrm{MeOH}(3.7 \mathrm{~mL})$ was added $\mathrm{TMSCH}_{2} \mathrm{~N}_{2}\left(0.71 \mathrm{~mL}, 1.42 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in hexane) at $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{AcOH}(0.1 \mathrm{~mL})$ until no bubbles emerged. The resulting mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=1: 1$) to afford $29(29.8 \mathrm{mg}, 94 \%)$ as a white solid.

29: m.p. $155.5-156.8^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}=+184.09\left(c=0.69, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48$ $(\mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J$ $=16.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.96 (m, 1H), 1.62-1.51 (m, 1H), 1.46-1.40(m, 1H), $1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.9,175.9,170.3,144.3,139.6,138.8,137.3,124.9,108.0,72.0,52.4,52.2,46.0$, $44.3,39.4,37.0,27.1,25.1,21.0,17.8 ;$ FT-IR (neat): $v_{\max }=2947,1746,1721,1697,1223,1074,1018$,

943, 874, 808, $601 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1039$, found: 381.1309.

To a solution of $29(21.1 \mathrm{mg}, 0.059 \mathrm{mmol})$ in THF (1.2 mL) was added LiHMDS ($68 \mu \mathrm{~L}, 0.088$ mmol, 1.3 M in THF) dropwise at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 50 min , the reaction mixture was added $\operatorname{TESCl}(11.8 \mu \mathrm{~L}, 0.071 \mathrm{mmol})$ and stirred for another 30 min . The reaction mixture was quenched with NaHCO_{3} (1.0 mL , aq., sat.). The resulting mixture was extracted with EtOAc (5.0 $\mathrm{mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=4: 1)$ to afford enol ether $\mathbf{S}-6(22.8 \mathrm{mg}, 82 \%)$ as a colorless oil.

S-6: $[\alpha]_{\mathrm{D}}{ }^{26}=+89.01\left(c=0.89, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.43$ (dd, $J=18.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.74-0.67(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,172.7,146.5,144.1,139.6,129.9,129.0,125.3,110.1,108.1,71.2$, $52.0,51.9,43.8,40.7,38.0,28.6,25.6,21.6,16.7,6.7,4.6$; FT-IR (neat): $v_{\max }=2953,2876,1765$, $1719,1229,1163,1142,1016,806,725 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{NaSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 495.2173$, found: 495.2177.

To a solution of S-6 ($11.3 \mathrm{mg}, 0.024 \mathrm{mmol}$) in $\mathrm{DCM}(0.96 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(3.0 \mathrm{mg}, 0.036$ $\mathrm{mmol})$ and $m \mathrm{CPBA}(7.3 \mathrm{mg}, 0.036 \mathrm{mmol}, 85 \% \mathrm{w} / \mathrm{w})$ at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.0 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with EtOAc ($2.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was used in the next step without further purification.

To a solution of the above residue in THF $(0.96 \mathrm{~mL})$ was added $\mathrm{HCl}(190 \mu \mathrm{~L}$, aq., 1.0 M$)$ at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with EtOAc ($2.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=1: 1$) to afford 30 ($5.8 \mathrm{mg}, 64 \%$) as a white solid.

30: m.p. $170.3-171.8{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{27}=+193.40\left(c=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ ($\mathrm{s}, 1 \mathrm{H}$), $7.47(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.00-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 203.6,176.1,168.0,144.4,140.3,139.7,136.8,124.7,107.9,75.7,72.6,54.0,52.4,47.0$, 45.9, 39.6, 26.1, 25.0, 20.7, 14.4; FT-IR (neat): $v_{\max }=3470,2920,1738,1697,1279,1254,1163$, 1018, 991, 872, $793 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 397.1258$, found: 397.1257.

To a solution of $\mathbf{3 0}(14.8 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{DCM}(0.8 \mathrm{~mL})$ was added Dess-Martin periodinane ($25.1 \mathrm{mg}, 0.06 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (0.5 mL , aq., sat.) and $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with $\mathrm{EtOAc}(2.0 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=1: 1)$ to afford $\mathbf{3 1}(10.1 \mathrm{mg}, 69 \%)$ as a white solid.

31: m.p. $64.4-65.2{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{32}=-50.27\left(c=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}$, $1 \mathrm{H}), 7.49(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.95-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.1,174.8$, $171.0,146.8,144.5,143.5,139.8,128.3,126.9,124.8,107.9,72.5,54.3,52.6,44.1,38.8,28.0,24.8$, 20.6, 14.5; FT-IR (neat): $v_{\max }=3393,2951,1761,1724,1653,1614,1281,1253,1159,873,729 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 395.1101$, found: 395.1105.

To a solution of $\mathbf{3 1}(3.8 \mathrm{mg}, 0.010 \mathrm{mmol})$ in $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was added $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(2.6 \mathrm{mg}$, 0.031 mmol) at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 10 h , the reaction mixture was quenched with $\mathrm{HCl}(20 \mu \mathrm{~L}$, aq., 2.0 M). The resulting mixture was extracted with EtOAc ($1.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, dichloromethane: acetone $=5: 1)$ to afford $(+)$-teucrin $\mathrm{A}(6)(1.7 \mathrm{mg}, 50 \%)$ as a white solid.
(+)-Teucrin A (6): m.p. 222.0-222.9 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{32}=+91.03\left(c=0.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.00$ (m, 1H), 4.54 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (ddd, $J=10.8,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.73$ (dd, $J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=14.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 180.5,172.6,159.3,144.7,141.3,126.6,123.8,108.7,80.2,74.4,71.4$, $56.2,41.0,40.9,37.5,24.1,21.2,19.2,13.4{ }^{1}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (ddd, J $=11.6,4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,172.6,156.2,144.6,139.9,129.4$, 124.0, 107.8, 80.4, 74.2, 72.1, 56.3, 42.9, 42.4, 39.1, 24.7, 21.7, 19.6, 13.7; FT-IR (neat): $v_{\max }=3366$, 2924, 1740, 1697, 1204, 1161, 1020, 908, 800, $727 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for:
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 367.1152$, found: 367.1154 . The spectroscopic data were identical with those reported in the literature. ${ }^{14}$

8. Enantioselective Synthesis of (+)-2-Hydroxyteuscorolide

To a solution of ketone $16(1.77 \mathrm{~g}, 5.97 \mathrm{mmol})$ in 2-methyl-2-ethyl-1,3-dioxolane (6.0 mL) was added $p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(56.8 \mathrm{mg}, 0.30 \mathrm{mmol})$ and ethylene glycol $(50 \mu \mathrm{~L}, 0.90 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 8 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with NaHCO_{3} (10 mL , aq., sat.), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 2$) to afford ketal 32 $(1.71 \mathrm{~g}, 84 \%)$ as a white foam.

32: m.p. $49.1-50.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-20.18\left(c=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{dd}$, $J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H})$, 2.66-2.56 (m, 1H), 2.37-2.30 (m, 2H), 2.13-2.07 (m, 1H), 2.03 (dd, $J=14.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.82$ $(\mathrm{m}, 3 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,169.2$, 109.0, 76.8, 65.1, 64.0, 63.9, 55.6, 52.4, 40.4, 38.0, 34.9, 32.6, 31.5, 30.1, 28.2, 19.0; FT-IR (neat): $v_{\text {max }}=3549,2957,2887,1732,1435,1333,1258,1098,1065,1032,947,908 \mathrm{~cm}^{-1} ;$ HRMS (EI): exact mass calculated for: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7}[\mathrm{M}]^{+}: 340.1517$, found: 340.1516 .

To a solution of lactone $32(1.82 \mathrm{~g}, 5.35 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(54 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.85 \mathrm{~g}, 13.37 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 16 h , the reaction mixture was neutralized with dilute $\mathrm{AcOH}(30 \mathrm{~mL}$, aq., 0.5 M). The resulting mixture was extracted with EtOAc
$(50 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was used directly in the next step without further purification.

To a solution of the above crude product in DCM $(139 \mathrm{~mL})$ was added 2,6-lutidine ($3.74 \mathrm{~mL}, 32.08$ mmol) and TBSOTf ($3.69 \mathrm{~mL}, 16.04 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with $\mathrm{DCM}(100 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=25: 1)$ to afford $33(2.26 \mathrm{~g}, 70 \%)$ as a colorless liquid.

33: $[\alpha]_{\mathrm{D}}{ }^{20}=-33.96\left(c=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.04-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=18.8,9.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.06(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-$ $2.93(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.47$ $(\mathrm{m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.05-0.01(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.2,170.1,109.0,64.8,64.663 .9,63.7,61.7,53.0,52.3,41.6,39.8,35.62,35.56,33.7,32.4,31.3$, $25.9,25.8,18.6,18.2,18.0,-4.0,-4.7,-5.25,-5.32$; FT-IR (neat): $v_{\max }=2928,2855,1735,1472$, 1256, 1213, 1084, 1024, 980, $835 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{NaSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 623.3406$, found: 623.3407.

To a mixture of diester $33(1.01 \mathrm{~g}, 1.68 \mathrm{mmol})$ in DMSO (4.2 ml) was added anhydrous LiCl (214 $\mathrm{mg}, 5.04 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(91 \mu \mathrm{~L}, 5.04 \mathrm{mmol})$ and pyridine ($133 \mathrm{mg}, 1.68 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and extracted with $\mathrm{EtOAc}(50 \mathrm{~mL} \times 4)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=30: 1)$ to afford $34(652 \mathrm{mg}, 71 \%$, single isomer) as a colorless oil.

34: $[\alpha]_{\mathrm{D}}{ }^{21}=-29.93\left(c=1.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.99-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.84$ $(\mathrm{m}, 2 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 5 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}$, $3 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}$, 6H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,109.1,65.1,64.4,64.1,63.6,51.3,48.7,44.6,42.2,35.6$,
$34.8,32.4,31.8,29.9,25.9,25.8,18.3,18.2,18.0,-4.1,-4.7,-5.2,-5.4 ;$ FT-IR (neat): $v_{\max }=2930$, 2855, 1736, 1472, 1360, 1250, 1202, 1076, 970, 833, $772 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 565.3351$, found: 565.3344 .

To a solution of $\mathbf{3 4}(968 \mathrm{mg}, 1.78 \mathrm{mmol})$ in THF (18 mL) was added LDA ($8.92 \mathrm{~mL}, 8.92 \mathrm{mmol}$, 1.0 M in THF) at $-78{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 6 h , the reaction mixture was added HMPA ($1.60 \mathrm{~g}, 8.92 \mathrm{mmol}$) and allyl iodide ($449 \mathrm{mg}, 2.67 \mathrm{mmol}$) sequentially. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~mL}\right.$, aq., sat.). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=25: 1)$ to afford allylation product $\mathbf{S}-7(932 \mathrm{mg}, 90 \%$ yield $)$ as a colorless oil.

S-7: $[\alpha]_{\mathrm{D}}{ }^{20}=-27.03\left(c=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.68-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.33$ (m, 2H), 2.20 (br, 1H), 1.93-1.83 (m, 2H), 1.77-1.62 (m, 5H), 1.12 (d, J=7.2 Hz, 3H), 0.88 (s, 18H), 0.06 ($\mathrm{s}, 3 \mathrm{H}$), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,133.7,118.0,109.3,65.0,64.6,64.5$, $63.6,53.2,51.0,42.7,39.0,38.5,35.6,35.5,34.8,33.3,31.5,25.89,25.86,19.7,18.2,18.0,-4.0,-4.7$, $-5.25,-5.31 ;$ FT-IR (neat): $v_{\max }=2926,2855,1732,1472,1256,1088,835,773 \mathrm{~cm}^{-1} ;$ HRMS (ESI): exact mass calculated for: $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 605.3664$, found: 605.3671 .

35

To a solution of S-7 ($885 \mathrm{mg}, 1.52 \mathrm{mmol}$) in DCM $(152 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was bubbled with ozone at $-78{ }^{\circ} \mathrm{C}$ until the solution turned blue. After the excess ozone was excluded by the argon stream, $\mathrm{Et}_{3} \mathrm{~N}$ $(422 \mu \mathrm{~L}, 3.03 \mathrm{mmol})$ was added. After stirring at $25^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=8: 1$) to afford aldehyde $\mathbf{3 5}(772 \mathrm{mg}, 87 \%$ yield) as a colorless oil.

35: $[\alpha]_{\mathrm{D}}{ }^{22}=-34.19\left(c=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.18-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}$, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02-0.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.7, 174.1 108.9, 64.7, 64.6, $64.5,63.7,51.5,50.7,39.1,38.4,36.8,35.6,35.3,33.6,31.7,25.9,25.9,19.0,18.1,17.9,-4.1,-4.7$, $-5.32,-5.34$; FT-IR (neat): $v_{\max }=2953,2859,1722,1472,1250,1086,976,835,773,669 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{7} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 607.3457$, found: 607.3463.

35
 $\xrightarrow{(R)-L 3, \text { toluene }, 0^{\circ} \mathrm{C}}$
$88 \%, d r=10: 1$

To a solution of (3-furyl) $\mathrm{Ti}(\mathrm{OiPr})_{3}{ }^{[6]}(99.9 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $(R)-\mathbf{L 3}(9.8 \mathrm{mg}, 20 \mathrm{~mol} \%)$ in toluene (3.4 mL) was added aldehyde $35\left(100 \mathrm{mg}\right.$ in 0.3 mL toluene, 0.17 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NaOH}(5.0 \mathrm{~mL}$, aq., 1.0 M). The resulting mixture was extracted with EtOAc ($5.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=20: 1$) to afford S-8 ($93.7 \mathrm{mg}, 88 \%, 10: 1 \mathrm{dr}$) as a white foam.

S-8: m.p. $50.1-51.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-12.57\left(c=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}$, 1 H), $7.42(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 4 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 2 \mathrm{H})$, 2.60 (dd, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (br s, 1H), 2.21-2.16 (m, 1H), 2.05-1.97 (m, 2H), 1.90-1.78 (m, 3H), $1.72(\mathrm{dd}, J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06-0.04(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.1,143.9,139.6,124.6,108.9,108.2,70.6,65.2,64.6,64.5,64.1,50.1,44.8,36.2,35.4$, $35.1,25.9,25.8,18.2,17.9,16.8,-4.3,-4.7,-5.3,-5.4$; FT-IR (neat): $v_{\max }=2928,2857,1763,1472$,

1252, 1086, 1024, 874, 835, $773 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{7} \mathrm{NaSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 643.3457$, found: 643.3462.

To a solution of S-8 ($5.6 \mathrm{mg}, 0.009 \mathrm{mmol}$) in THF (0.3 ml) was added TBAF ($27 \mu \mathrm{~L}, 0.027 \mathrm{mmol}$, 1.0 M in THF) dropwise at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 12 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (1.0 mL , aq., sat.). The resulting mixture was extracted with EtOAc ($1.0 \mathrm{~mL} \times$ 3). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, dichloromethane: methanol $=25: 1)$ to afford $\operatorname{diol} \mathbf{3 6}(3.1 \mathrm{mg}, 89 \%$ yield $)$ as a white foam.

36: m.p. 61.3-62.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=-11.68\left(c=1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=$ $9.2,7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (s, 4H), 3.75 (dd, $J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, $J=11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.67 (dd, $J=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{dd}, J=13.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (ddd, $J=$ $13.2,6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (ddd, J $=13.6,7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9,144.0,139.8$, 124.3, 108.6, 108.2, 70.7, 66.4, 64.63, 64.61, 64.1, 50.1, 44.6, 41.0, 38.2, 36.6, 35.9, 35.7, 34.8, 33.8, 16.7; FT-IR (neat): $v_{\max }=3468,2934,1757,1506,1269,1182,1157,1022,968,874,795,734 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 415.1727$, found: 415.1721.

To a stirred solution of DCM (5.2 mL) and oxalyl chloride ($105 \mu \mathrm{~L}, 1.24 \mathrm{mmol}$) was added DMSO $(177 \mu \mathrm{~L}, 2.49 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 10 min , the reaction
mixture was added 36 ($203 \mathrm{mg}, 0.52 \mathrm{mmol}$) slowly and stirred for another 30 min . Then $\mathrm{Et}_{3} \mathrm{~N}(865 \mu \mathrm{~L}$, 6.22 mmol) was added and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min . After warming to $25^{\circ} \mathrm{C}$ slowly and stirring at this temperature for 2 h , the reaction mixture was quenched with NaHCO_{3} $(5.0 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with $\mathrm{DCM}(5.0 \mathrm{~mL} \times 3)$. The combined extracts were washed brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=2: 1$) to afford ketoaldehyde S-9 ($176 \mathrm{mg}, 87 \%$ yield) as a colorless oil.

S-9: $[\alpha]_{\mathrm{D}}{ }^{30}=-156.77\left(c=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 4 \mathrm{H})$, $3.43(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=18.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.8,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.96(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3,202.7,175.6,144.1,140.1,123.4,108.2,107.5,71.3,64.8,64.7$, 50.3, 45.3, 44.6, 42.9, 42.6, $39.237 .4,33.0,31.3,15.6$; FT-IR (neat): $v_{\max }=2962,1755,1707,1506$, $1354,1157,1117,1026,874,812,733 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7}[\mathrm{M}]^{+}$: 388.1517, found: 388.1520 .

To a mixture of ketoaldehyde $\mathbf{S - 9}(354 \mathrm{mg}, 0.91 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(394 \mathrm{mg}, 3.28 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v}: \mathrm{v}=3: 3: 1,30.3 \mathrm{~mL})$ was added 2-methyl-2-butene ($1.45 \mathrm{~mL}, 17.2 \mathrm{mmol}$) and NaClO_{2} ($346 \mathrm{mg}, 3.83 \mathrm{mmol}$) sequentially at $25{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, dichloromethane: methanol =20:1) to afford carboxylic acid $37(338 \mathrm{mg}, 92 \%$ yield) as a white solid.

37: m.p. 215.0-215.9 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-2.49\left(c=0.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.66(\mathrm{~s}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.80(\mathrm{~m}$,
$4 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dt}, J=13.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=18.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J$ $=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=12.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.61(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 210.9,177.1,175.5,145.2,142.1,124.8,109.5,108.4,72.1,65.2,65.1,51.4,46.0,45.0$, 43.3, 40.4, 38.7, 37.6, 33.5, 32.4, 15.9; FT-IR (neat): $v_{\max }=2965,1765,1717,1686,1506,1159,1142$, 1016, 874, 791, 781, 735, $683 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8}[\mathrm{M}]^{+}: 404.1466$, found: 404.1469.

37

S-10

To a solution of $\mathbf{3 7}(209 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ was added $\mathrm{NaOAc}(19.0 \mathrm{mg}, 0.23 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring at $150^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and diluted with EtOAc (50 mL). The resulting mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, dichloromethane: methanol =20:1) to afford $\mathbf{S - 1 0}(150 \mathrm{mg}, 75 \%)$ as a white solid.

S-10: the m.p. could not be determined because this compound will be decomposed at $270^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}$ $=+96.18\left(c=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.83-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.14-3.90(\mathrm{~m}, 4 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-$ 2.38 (m, 2H), 2.31 (dd, $J=24.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15$ (m, 2H), 1.96-1.87 (m, 1H), 1.76 (dd, $J=$ $12.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,172.2,160.8,144.3$, 139.6, 124.7, 124.3, 108.7, 107.9, 78.0, 71.7, 65.0, 64.7, 53.4, 41.6, 40.6, 36.0, 34.9, 34.4, 30.6, 17.0; FT-IR (neat): $v_{\max }=1761,1740,1694,1344,1292,1180,1042,1013,962,872,754 \mathrm{~cm}^{-1} ;$ HRMS (EI): exact mass calculated for: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}[\mathrm{M}]^{+}: 386.1360$, found: 386.1360.

To a solution of $\mathbf{S}-\mathbf{1 0}(176 \mathrm{mg}, 0.45 \mathrm{mmol})$ in THF $(4.6 \mathrm{~mL})$ was added $\mathrm{HCl}(0.91 \mathrm{~mL}$, aq., 2.0 M$)$. After stirring under reflux for 20 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL}$, aq., sat.) at $25^{\circ} \mathrm{C}$. The resulting mixture was extracted with EtOAc ($5.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate $=1: 2$) to afford ketone 38 ($131 \mathrm{mg}, 84 \%$) as a white solid.

38: m.p. 207.5-209.3 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}=+127.73\left(c=0.90, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.03-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=$ $23.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.8$, $175.1,171.1,159.6,144.4,139.5,124.6,123.4,107.8,78.0,72.0,53.8,42.7,40.0,39.4,36.5,36.0$, 34.9, 17.1; FT-IR (neat): $v_{\max }=2930,1736,1701,1510,1175,1148,1015,874,806 \mathrm{~cm}^{-1}$; HRMS (EI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{+}: 342.1098$, found: 342.1101 .

To a solution of compound $\mathbf{3 8}(13.4 \mathrm{mg}, 0.039 \mathrm{mmol})$ in THF (1.0 mL) was added DIBAL-H (117 $\mu \mathrm{L}, 0.117 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexane) dropwise at $-20^{\circ} \mathrm{C}$. After stirring at this temperature for 30 min , the reaction mixture was quenched with $\mathrm{HCl}(60 \mu \mathrm{~L}$, aq., 2.0 M$)$ to adjust the pH value to $1 \sim 2$. The resulting mixture was extracted with EtOAc ($1.0 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=1: 1$) to afford $\mathbf{S} \mathbf{- 1 1}(10.3 \mathrm{mg}$, 80%) as a colorless oil.

S-11: $[\alpha]_{D}{ }^{25}=+86.05\left(c=0.44, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.401-6.395(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.07(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=23.6,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3$, 148.1, 144.1, 139.7, 136.4, 125.2, $118.5,116.0,108.0,71.6,70.0,50.5,41.4,39.5,36.4,35.5,29.9,29.8,17.7$; FT-IR (neat): $v_{\max }=3445$,

2969, 1754, 1502, 1266, 1177, 1151, 1014, 871, 807, $732 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 351.1203$, found: 351.1197.

To a solution of $\mathbf{S}-\mathbf{1 1}(8.7 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{DCM}(0.54 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(7.4 \mu \mathrm{~L}, 0.053$ mmol) and TBSOTf $(9.2 \mu \mathrm{~L}, 0.040 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL}$, aq., sat.). The resulting mixture was extracted with $\mathrm{EtOAc}\left(1.0 \mathrm{~mL} \times 3\right.$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=10: 1)$ to afford $39(9.9 \mathrm{mg}, 85 \%)$ as a colorless oil.

39: $[\alpha]_{\mathrm{D}}{ }^{22}=+61.15\left(c=0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.0,6.0$ Hz, 1H), 2.89-2.85 (m, 1H), 2.84-2.73 (m, 2H), 2.62 (dd, $J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=13.6$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.49$ (q, J=11.6 Hz, 1H), 1.15 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.121(\mathrm{~s}, 3 \mathrm{H}), 0.116(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1$, 148.0, 144.1, 139.7, 136.2, 125.4, 119.0, 116.1, 108.1, 71.4, 70.6, 50.5, 41.5, 39.4, 36.6, 35.9, 30.1, $30.0,25.9,18.1,17.7,-4.4,-4.6$; FT-IR (neat): $v_{\max }=2929,2854,1763,1471,1255,1087,1012,871$, $776,741 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O} 5 \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 465.2068$, found: 465.2062.

To a solution of $\mathbf{3 9}(7.9 \mathrm{mg}, 0.018 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v}=5: 1,0.6 \mathrm{~mL})$ was added $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($8.5 \mathrm{mg}, 0.071 \mathrm{mmol}$), 2-methyl-2-butene ($30 \mu \mathrm{~L}, 0.357 \mathrm{mmol}$), and $\mathrm{NaClO}_{2}(10.3 \mathrm{mg}, 0.114 \mathrm{mmol}$)
sequentially at $25^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and extracted with EtOAc $(2.0 \mathrm{~mL} \times 3)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, petroleum ether: ethyl acetate $=3: 2)$ to afford $\mathbf{4 0}(6.7 \mathrm{mg}, 79 \%)$ as a white solid.

40: m.p. $252.8-253.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}=+89.24\left(c=0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.45$ (br s, 1H), 6.404-6.400 (m, 1H), 5.44 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94-3.87 (m, 1H), 3.65 (br s, $1 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{dd}, J=23.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.04$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,170.2,159.4$, 144.3, 139.6, 126.4, 124.8, 108.0, 102.0, 71.8, 68.2, 54.2, 40.21, 40.19, 39.8, 35.9, 34.4, 29.4, 25.8, 18.0, 16.7, -4.5, -4.7; FT-IR (neat): $v_{\max }=3393,2934,2865,1761,1469,1259,1182,1101,1043$, 915, 835, $736 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 497.1966, found: 497.1958.

To a solution of $40(4.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ in benzene $(2.5 \mathrm{~mL})$ was added p TSA ($3.5 \mathrm{mg}, 0.021$ mmol) at $25^{\circ} \mathrm{C}$. After stirring under reflux for 2 h , the reaction mixture was cooled to $25{ }^{\circ} \mathrm{C}$, and concentrated under reduced pressure. The residue was purified by flash chromatography column (silica gel, petroleum ether: ethyl acetate $=1: 3)$ to afford $(+)$-2-hydroxyteuscorolide $(\mathbf{8})(2.4 \mathrm{mg}, 69 \%)$ as a white solid.
(+)-2-Hydroxyteuscorolide (8): m.p. $249.2-250.3{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+10.40\left(c=0.20, \mathrm{CHCl}_{3}: \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=\right.$ 9:1); ${ }^{1}$ H NMR (400 MHz , pyridine- d_{5}) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{t}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.86-2.79 (m, 2H), 2.69 (dd, $J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (ddd, $J=16.8$, $9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=22.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , pyridine-ds) $\delta 175.1,169.1,151.3,147.2,144.7,140.6,125.5,122.8,109.1,108.8,71.7,67.5,53.7$, 40.1, 39.0, 37.7, 34.6, 30.1, 16.7; FT-IR (neat): $v_{\max }=3488,2929,1753,1736,1663,1181,1154$,

1026, 958, 769, $742 \mathrm{~cm}^{-1}$; HRMS (ESI): exact mass calculated for: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 365.0996$, found: 365.0987. The spectroscopic data were identical with those reported in the literature. ${ }^{16}$

9. Comparison of Natural Products with Synthetic 19-nor-Clerodane Diterpenoids

1) (+)-Teucvin (1)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{25}=+68\left(c=0.15, \mathrm{CHCl}_{3}\right) ;{ }^{7}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{23}=+177.46\left(c=1.05, \mathrm{CHCl}_{3}\right)$.
Table S3 ${ }^{1} \mathrm{H}$ NMR Data of (+)-Teucvin (1)

(+)-teucvin (1)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Natural (ref. 7) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$
1 a	$2.28-2.08(\mathrm{~m})$	$2.20(\mathrm{~m})$	
1 b	$1.58-1.39(\mathrm{~m})$	$1.45(\mathrm{~m})$	
2 a	$2.01-1.98(\mathrm{~m})$	$1.98(\mathrm{~m})$	
2 b	$1.58-1.39(\mathrm{~m})$	$1.54(\mathrm{~m})$	
3 a	$2.28-2.08(\mathrm{~m})$	$2.20(\mathrm{~m})$	
3 b	$2.28-2.08(\mathrm{~m})$	$2.15(\mathrm{~m})$	
6	$4.76(\mathrm{t}, 8.8 \mathrm{~Hz})$	$4.74(\mathrm{dd}, 9.8,8.0 \mathrm{~Hz})$	+0.02
7	$2.28-2.08(\mathrm{~m})$	$2.20(\mathrm{~m})$	
8	$1.93-1.86(\mathrm{~m})$	$1.86(\mathrm{~m})$	
10	$2.69(\mathrm{br})$	$2.66(\mathrm{~m})$	+0.03
11	$2.55(\mathrm{~d}, 8.8 \mathrm{~Hz})$	$2.53(\mathrm{~d}, 8.5 \mathrm{~Hz})$	+0.02
12	$5.44(\mathrm{t}, 8.4 \mathrm{~Hz})$	$5.43(\mathrm{dd}, 8.5,8.5 \mathrm{~Hz})$	+0.01
14	$6.38(\mathrm{~s})$	$6.37(\mathrm{br} \mathrm{s})$	+0.01
15	$7.45(\mathrm{~s})$	$7.44(\mathrm{br} \mathrm{s})$	+0.01
16	$7.44(\mathrm{~s})$	$7.44(\mathrm{br} \mathrm{s})$	0.00
17	$1.05(\mathrm{~d}, 6.8 \mathrm{~Hz})$	$1.05(\mathrm{~d}, 6.7 \mathrm{~Hz})$	0.00

Table S4 ${ }^{13}$ C NMR Data of (+)-Teucvin (1)

(+)-teucvin (1)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Natural (ref. 7) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$
1	24.8	24.8	0.0
2	21.7	21.7	0.0
3	19.6	19.6	0.0
4	126.6	126.6	0.0
5	161.3	161.3	0.0
6	78.2	78.2	0.0
7	35.2	35.3	-0.1
8	36.0	36.0	0.0
9	53.5	53.5	0.0
10	42.1	42.1	0.0
11	40.9	40.9	0.0
12	71.7	71.8	-0.1
13	124.9	125.0	-0.1
14	107.9	107.9	0.0
15	144.3	144.3	0.0
16	139.5	139.5	0.0
17	17.0	17.0	0.0
18	172.9	172.9	0.0
20	175.5	175.5	0.0

2) (+)-Montanin A (3)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{21}=+120.2\left(c=0.32, \mathrm{CHCl}_{3}\right) ;{ }^{8}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{16}=+103.26\left(c=0.31, \mathrm{CHCl}_{3}\right)$.
Table S5 ${ }^{1} \mathrm{H}$ NMR Data of (+)-Montanin A (3)

(+)-montanin A (3)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Liu (ref. 9) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Natural (ref. 10) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$ (our synthetic- natural)
1 a	$1.30-1.24(\mathrm{~m})$		$1.23(\mathrm{dddd})$	
1 b	$2.15-2.05(\mathrm{~m})$	$2.17-2.05(\mathrm{~m})$	$2.10(\mathrm{~m})$	
2 a	$2.15-2.05(\mathrm{~m})$	$2.17-2.05(\mathrm{~m})$	$2.08(\mathrm{~m})$	
2 b	$1.71-1.58(\mathrm{~m})$		$1.63(\mathrm{ddddd})$	
3 a	$2.52-2.39(\mathrm{~m})$	$2.69-2.38(\mathrm{~m})$	$2.42(\mathrm{dddd})$	
3 b	$2.69(\mathrm{dd}, 16.4,6.0)$	$2.69-2.38(\mathrm{~m})$	$2.68(\mathrm{br} \mathrm{dd})$	+0.01
7	$2.88-2.75(\mathrm{~m})$	$2.78(\mathrm{~m})$	$2.80(\mathrm{~m})$	
8	$2.31-2.21(\mathrm{~m})$	$2.28-2.21(\mathrm{~m})$	$2.25(\mathrm{ddq})$	
10	$2.88-2.75(\mathrm{~m})$	$2.78(\mathrm{~m})$	$2.76(\mathrm{~m})$	
11 a	$2.49(\mathrm{dd}, 8.4,13.6 \mathrm{~Hz})$	$2.69-2.38(\mathrm{~m})$	$2.48(\mathrm{dd})$	+0.01
11 b	$2.62(\mathrm{dd}, 8.8,13.6 \mathrm{~Hz})$	$2.69-2.38(\mathrm{~m})$	$2.61(\mathrm{dd})$	+0.01
12	$5.44(\mathrm{t}, 8.8 \mathrm{~Hz})$	$5.42(\mathrm{t}, 8.5 \mathrm{~Hz})$	$5.43(\mathrm{br} \mathrm{t})$	+0.01
14	$6.41(\mathrm{br})$	$6.39(\mathrm{~m})$	$6.40(\mathrm{dd})$	+0.01
15	$7.44(\mathrm{t}, 2.0 \mathrm{~Hz})$	$7.42(\mathrm{~m})$	$7.43(\mathrm{t})$	+0.01
16	$7.47(\mathrm{~s})$	$7.45(\mathrm{~s})$	$7.46(\mathrm{dt})$	+0.01
17	$1.15(\mathrm{~d}, 6.8 \mathrm{~Hz})$	$1.13(\mathrm{~d}, 6.8 \mathrm{~Hz})$	$1.14(\mathrm{~d})$	+0.01
18	$7.06(\mathrm{~s})$	$7.04(\mathrm{br} \mathrm{s})$	$7.05(\mathrm{td})$	+0.01

Table S6 ${ }^{13} \mathrm{C}$ NMR Data of (+)-Montanin A (3)

(+)-montanin A (3)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Liu (ref. 9) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Natural (ref. 10) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$ (our synthetic- natural)
1	25.6	25.6	25.6	0.0
2	23.9	23.9	23.9	0.0
3	19.1	19.1	19.1	0.0
4	119.7	119.7	119.7	0.0
5	116.9	116.9	116.9	0.0
6	147.9	147.9	147.9	0.0
7	30.0	30.0	30.0	0.0
8	36.1	36.1	36.1	0.0
9	50.7	50.7	50.7	0.0
10	43.2	43.2	43.2	0.0
11	39.7	39.7	39.7	0.0
12	71.6	71.6	71.6	0.0
13	125.5	125.5	125.5	0.0
14	108.1	108.1	108.1	0.0
15	144.1	144.1	144.1	0.0
16	139.6	139.6	139.6	0.0
17	17.8	17.7	17.7	+0.1
18	136.2	136.2	136.1	+0.1
20	175.5	175.5	175.5	0.0

3) (+)-Cracroson A (4)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{25}=+27(c=1.0, \mathrm{MeOH}) ;{ }^{11}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{28}=+25.35(c=0.43, \mathrm{MeOH})$.
Table S7 ${ }^{1} \mathrm{H}$ NMR Data of (+)-Cracroson A (4)

(+)-cracroson A (4)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Natural (ref. 11) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$
1a	$2.19-1.95(\mathrm{~m})$	$2.00(\mathrm{~m})$	
1 b	$2.41-2.37(\mathrm{~m})$	$2.37(\mathrm{dd}, 14.0,9.2 \mathrm{~Hz})$	
2 a	$1.53-1.46(\mathrm{~m})$	$1.48(\mathrm{dt}, 14.0,2.8 \mathrm{~Hz})$	
2 b	$2.19-1.95(\mathrm{~m})$	$2.08(\mathrm{~m})$	
3 a	$2.19-1.95(\mathrm{~m})$	$1.95(\mathrm{~m})$	
3 b	$2.19-1.95(\mathrm{~m})$	$2.21(\mathrm{~m})$	
6	$5.14(\mathrm{t}, 8.0 \mathrm{~Hz})$	$5.14(\mathrm{t}, 7.6 \mathrm{~Hz})$	0.00
7	$2.19-1.95(\mathrm{~m})$	$2.12(\mathrm{~m})$	
8	$1.87-1.78(\mathrm{~m})$	$1.82(\mathrm{~m})$	
11 a	$2.30(\mathrm{dd}, 14.0,9.2 \mathrm{~Hz})$	$2.29(\mathrm{dd}, 14.0,9.2 \mathrm{~Hz})$	+0.01
11 b	$2.74(\mathrm{dd}, 14.0,8.4 \mathrm{~Hz})$	$2.73(\mathrm{dd}, 14.0,8.4 \mathrm{~Hz})$	+0.01
12	$5.50(\mathrm{t}, 8.8 \mathrm{~Hz})$	$5.49(\mathrm{t}, 8.4 \mathrm{~Hz})$	+0.01
14	$6.42(\mathrm{~s})$	$6.42(\mathrm{~s})$	0.00
15	$7.47(\mathrm{~s})$	$7.46(\mathrm{~s})$	+0.01
16	$7.50(\mathrm{~s})$	$7.49(\mathrm{~s})$	+0.01
17	$1.14(\mathrm{~d}, 6.8 \mathrm{~Hz})$	$1.14(\mathrm{~d}, 7.6 \mathrm{~Hz})$	0.00
OH	$2.59(\mathrm{br} s)$	$3.48(\mathrm{~s})$	-0.89

Table S8 ${ }^{13} \mathrm{C}$ NMR Data of (+)-Cracroson A (4)

(+)-cracroson A (4)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Natural (ref. 11) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$
1	24.9	25.1	-0.2
2	29.8	29.9	-0.1
3	17.2	17.3	-0.1
4	69.1	69.2	-0.1
5	137.4	137.4	0.0
6	76.9	77.0	-0.1
7	32.5	32.6	-0.1
8	34.9	35.1	-0.2
9	52.5	52.7	-0.2
10	132.8	133.1	-0.3
11	39.5	39.7	-0.2
12	72.5	72.7	-0.2
13	124.4	124.6	-0.2
14	108.0	108.1	-0.1
15	144.3	144.5	-0.2
16	139.7	139.9	-0.2
17	16.1	16.2	-0.1
18	175.9	176.1	-0.2
20	176.0	176.2	-0.2

4) (+)-Teucvisin C (5)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{25}=+176.4(c=0.11, \mathrm{MeOH}) ;{ }^{12}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{23}=+176.92(c=0.10, \mathrm{MeOH})$.
Table S9 ${ }^{1} \mathrm{H}$ NMR Data of (+)-Teucvisin C (5)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Natural (ref. 12) $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$	$\Delta \delta$ (ppm)
1 a	$2.27-2.09(\mathrm{~m})$	$2.33(\mathrm{~m})$	
1 b	$1.50-1.41(\mathrm{~m})$	$1.48(\mathrm{~m})$	
2 a	$2.01-1.96(\mathrm{~m})$	$1.98(\mathrm{~m})$	
2 b	$1.59-1.51(\mathrm{~m})$	$1.54(\mathrm{~m})$	
3 a	$2.27-2.09(\mathrm{~m})$	$2.19(\mathrm{~m})$	
3 b	$2.27-2.09(\mathrm{~m})$	$2.27(\mathrm{~m})$	
7 a	$2.47(\mathrm{t}, 12.4 \mathrm{~Hz})$	$2.50(\mathrm{t}, 13.0 \mathrm{~Hz})$	-0.03
7 b	$2.27-2.09(\mathrm{~m})$	$2.15(\mathrm{dd}, 13.0,4.0 \mathrm{~Hz})$	
8	$2.27-2.09(\mathrm{~m})$	$2.22(\mathrm{~m})$	
10	$2.87-2.82(\mathrm{~m})$	$2.83(\mathrm{~m})$	
11 a	$2.59-2.53(\mathrm{~m})$	$2.58(\mathrm{dd}, 14.0,8.5 \mathrm{~Hz})$	
11 b	$2.59-2.53(\mathrm{~m})$	$2.54(\mathrm{dd}, 14.0,8.5 \mathrm{~Hz})$	
12	$5.45(\mathrm{t}, 8.4 \mathrm{~Hz})$	$5.44(\mathrm{t}, 8.5 \mathrm{~Hz})$	+0.01
14	$6.40(\mathrm{~s})$	$6.39(\mathrm{~s})$	+0.01
15	$7.46(\mathrm{~s})$	$7.46(\mathrm{~s})$	0.00
16	$7.45(\mathrm{t}, 1.6 \mathrm{~Hz})$	$7.45(\mathrm{~s})$	0.00
17	$1.04(\mathrm{~d}, 6.4 \mathrm{~Hz})$	$1.04(\mathrm{~d}, 7.0 \mathrm{~Hz})$	0.00
OH	$3.71(\mathrm{br} \mathrm{s})$	$3.37(\mathrm{br} \mathrm{s})$	+0.34

Table S10 ${ }^{13} \mathrm{C}$ NMR Data of (+)-Teucvisin C (5)

(+)-teucvisin C (5)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Natural (ref. 12) $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$	$\Delta \delta(\mathrm{ppm})$
1	24.5	24.7	-0.2
2	21.4	21.6	-0.2
3	19.4	19.6	-0.2
4	128.4	128.7	-0.3
5	159.8	159.7	+0.1
6	102.2	102.1	+0.1
7	39.8	40.1	-0.3
8	35.8	36.0	-0.2
9	54.0	54.2	-0.2
10	40.2	40.4	-0.2
11	40.6	40.8	-0.2
12	72.0	72.1	-0.1
13	124.8	125.1	-0.3
14	108.0	108.1	-0.1
15	144.3	144.4	-0.1
16	139.6	139.7	-0.1
17	16.6	16.8	-0.2
18	170.8	170.5	+0.3
20	175.8	175.8	0.0

5) (+)-Teucrin A (6)

Natural product: $[\alpha]_{D}{ }^{20}=+190.0(c=0.38$, pyridine $) ;{ }^{13}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{31}=+91.03\left(c=0.11, \mathrm{CHCl}_{3}\right)$.
Table S11 ${ }^{1}$ H NMR Data of (+)-Teucrin A (6)

(+)-teucrin A (6)

Carben No.	This work (DMSO, 400 MHz)	Natural (ref. 14) (DMSO, 400 MHz)	$\Delta \delta(\mathrm{ppm})$
1 a	$1.56-1.45(\mathrm{~m})$		
1 b	$2.03-1.86(\mathrm{~m})$	$1.90-1.88(\mathrm{~m})$	
2 a	$2.03-1.86(\mathrm{~m})$	$1.98-1.93(\mathrm{~m})$	
2 b	$2.12-2.08(\mathrm{~m})$	$2.16-2.12(\mathrm{~m})$	
3 a	$1.31-1.27(\mathrm{~m})$		-0.01
3 b	$2.37-2.30(\mathrm{~m})$	$2.34-2.33(\mathrm{~m})$	
6	$5.01-5.00(\mathrm{~m})$	$5.02(\mathrm{~m})$	-0.01
7	$4.02(\mathrm{ddd}, 10.8,4.4$,	$4.03(\mathrm{dd}, 10.8,2.4)$	$-0.4)$
8	$2.24-2.16(\mathrm{~m})$	$2.26-2.19(\mathrm{~m})$	
10	$3.09-3.05(\mathrm{~m})$	$3.08(\mathrm{~m})$	
11 a	$2.73(\mathrm{dd}, 14.0,8.0)$	$2.73(\mathrm{dd}, 14.0,8.0)$	0.00
11 b	$2.63(\mathrm{dd}, 14.0,9.6)$	$2.64(\mathrm{dd}, 14.0,9.6)$	-0.01
12	$5.78(\mathrm{t}, 8.4)$	$5.79(\mathrm{t}, 8.4)$	-0.01
14	$6.59(\mathrm{~d}, 0.8)$	$6.60(\mathrm{~d}, 0.8)$	-0.01
15	$7.75(\mathrm{~s})$	$7.76(\mathrm{~s})$	-0.01
16	$7.90(\mathrm{~s})$	$7.92(\mathrm{~s})$	-0.02
17	$1.12(\mathrm{~d}, 7.8)$		
-OH	$4.54(\mathrm{~d}, 10.8)$	$4.57(\mathrm{~d}, 10.8)$	-0.03

Table S12 ${ }^{13}$ C NMR Data of (+)-Teucrin A (6)

(+)-teucrin A (6)

Carben No.	This work (DMSO, 100 MHz$)$	Natural (ref. 14) (DMSO, 100 MHz)	$\Delta \delta$ (ppm)
1	21.2	21.7	-0.5
2	19.2	19.6	-0.4
3	24.1	24.6	-0.5
4	126.6	127.1	-0.5
5	159.3	159.8	-0.5
6	80.2	80.7	-0.5
7	71.4	71.9	-0.5
8	37.5	38.0	-0.5
9	56.2	56.7	-0.5
10	40.9	41.3	-0.4
11	41.0	41.4	-0.4
12	74.4	74.9	-0.5
13	123.8	124.3	-0.5
14	108.7	109.2	-0.5
15	144.7	145.2	-0.5
16	141.3	141.8	-0.5
17	13.4	13.9	-0.5
18	172.6	173.2	-0.6
20	180.5	181.1	-0.6

6) (+)-Cracroson E (7)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{25}=+112(c=1.0, \mathrm{MeOH}) ;{ }^{15}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{23}=+95.79(c=0.20, \mathrm{MeOH})$.
Table S13 ${ }^{1} \mathrm{H}$ NMR Data of (+)-Cracroson E (7)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	Natural (ref. 15) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\Delta \delta$ (ppm)
1 a	$2.14-2.03(\mathrm{~m})$	$2.08(\mathrm{~m})$	
1 b	$1.68-1.62(\mathrm{~m})$	$1.67(\mathrm{~m})$	
2 a	$2.35-2.29(\mathrm{~m})$	$2.25(\mathrm{~m})$	
2 b	$2.14-2.03(\mathrm{~m})$	$2.06(\mathrm{~m})$	
3 a	$1.98-1.93(\mathrm{~m})$	$1.94(\mathrm{~m})$	
3 b	$1.76-1.62(\mathrm{~m})$	$1.68(\mathrm{~m})$	
6	$5.09-5.03(\mathrm{~m})$	$5.07(\mathrm{~m})$	
7 a	$2.27-2.17(\mathrm{~m})$	$2.20(\mathrm{~m})$	
7 b	$2.27-2.17(\mathrm{~m})$	$2.24(\mathrm{~m})$	
8	$2.27-2.17(\mathrm{~m})$	$2.18(\mathrm{~m})$	
11 a	$3.23(\mathrm{dd}, 14.8,8.8 \mathrm{~Hz})$	$3.24(\mathrm{dd}, 14.8,8.6 \mathrm{~Hz})$	-0.01
11 b	$2.26(\mathrm{dd}, 14.8,8.4 \mathrm{~Hz})$	$2.28(\mathrm{~m})$	-0.02
12	$5.44(\mathrm{t}, 8.4 \mathrm{~Hz})$	$5.44(\mathrm{t}, 8.6 \mathrm{~Hz})$	0.00
14	$6.40(\mathrm{~s})$	$6.40(\mathrm{dd}, 1.7,0.8 \mathrm{~Hz})$	0.00
15	$7.45(\mathrm{t}, 1.6 \mathrm{~Hz})$	$7.45(\mathrm{t}, 1.7 \mathrm{~Hz})$	0.00
16	$7.46(\mathrm{~s})$	$7.46(\mathrm{~m})$	0.00
17	$1.02(\mathrm{~d}, 6.0 \mathrm{~Hz})$	$1.01(\mathrm{~d}, 6.5 \mathrm{~Hz})$	+0.01
OH	$2.59(\mathrm{br} \mathrm{s})$		

Table S14 ${ }^{13} \mathrm{C}$ NMR Data of (+)-Cracroson E (7)

Carbon No.	This work $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	Natural (ref. 15) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$\Delta \delta$ (ppm)
1	33.8	33.6	+0.2
2	20.0	19.8	+0.2
3	19.4	19.2	+0.2
4	128.6	128.1	+0.5
5	160.9	161.4	-0.5
6	77.1	77.3	-0.2
7	35.3	35.3	0.0
8	32.5	32.3	+0.2
9	58.9	58.9	0.0
10	69.4	69.2	+0.2
11	34.8	72.6	+0.2
12	72.2	124.9	0.0
13	125.0	107.9	+0.1
14	108.0	144.1	+0.1
15	144.2	139.4	+0.1
16	139.5	17.1	+0.1
17	17.2	173.2	+0.1
18	172.8	175.7	-0.4
20	175.5		-0.2

7) (+)-2-Hydroxyteuscorolide A (8)

Natural product: $[\alpha]_{\mathrm{D}}{ }^{25}=+20.8\left(c=0.260, \mathrm{CHCl}_{3}: \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=9: 1\right) ;{ }^{16}$
Synthetic product: $[\alpha]_{\mathrm{D}}{ }^{25}=+10.40\left(c=0.20, \mathrm{CHCl}_{3}: \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=9: 1\right)$.
Table S15 ${ }^{1} \mathrm{H}$ NMR Data of (+)-2-Hydroxyteuscorolide A (8)

(+)-2-hydroxyteuscorolide A (8)

Carbon No.	This work (pyridine- $\left.\mathrm{d}_{5}, 400 \mathrm{MHz}\right)$	Natural (ref. 16) (pyridine-d $\left.\mathrm{D}_{5}, 90 \mathrm{MHz}\right)$	$\Delta \delta$ (ppm)
1 a	$1.86(\mathrm{dd}, 22.8,11.6 \mathrm{~Hz})$	$1.77(\mathrm{t}, 10.0 \mathrm{~Hz})$	+0.09
1 b			
2	$4.43-4.34(\mathrm{~m})$	$4.33(\mathrm{~m})$	
3 a			
3 b		$5.40(\mathrm{~d}, 1.5 \mathrm{~Hz})$	+0.06
7	$5.46(\mathrm{~d}, 2.0 \mathrm{~Hz})$		
8		$2.70(\mathrm{dd}, 13.5,8.5 \mathrm{~Hz})$	-0.01
10		$2.50(\mathrm{dd}, 13.5,8.5 \mathrm{~Hz})$	+0.05
11 a	$2.69(\mathrm{dd}, 14.0,8.0 \mathrm{~Hz})$	$5.53(\mathrm{t}, 8.5 \mathrm{~Hz})$	+0.09
11 b	$2.55(\mathrm{dd}, 14.0,9.2 \mathrm{~Hz})$	$6.55(\mathrm{~m})$	+0.06
12	$5.62(\mathrm{t}, 8.4 \mathrm{~Hz})$	$7.63(\mathrm{t}, 1.5 \mathrm{~Hz})$	+0.08
14	$6.61(\mathrm{~s})$	$7.73(\mathrm{~m})$	+0.08
15	$7.71(\mathrm{t}, 2.0 \mathrm{~Hz})$	$1.23(\mathrm{~d}, 7.5 \mathrm{~Hz})$	0.00
16	$7.81(\mathrm{~s})$		
17	$1.23(\mathrm{~d}, 7.2 \mathrm{~Hz})$		

Table S16 ${ }^{13} \mathrm{C}$ NMR Data of (+)-2-Hydroxyteuscorolide A (8)

(+)-2-hydroxyteuscorolide A (8)

Carbon No.	This work (pyridine-d $5,100 \mathrm{MHz}$)	Natural (ref. 16) (pyridine-d $5,20.15 \mathrm{MHz})$	$\Delta \delta$ (ppm)
1	34.6	34.7	-0.1
2	67.5	67.7	-0.2
3	30.1	30.3	-0.2
4	122.8	123.0	-0.2
5	151.3	151.4	-0.1
6	147.2	147.3	-0.1
7	109.1	109.2	-0.1
8	37.7	37.9	-0.2
9	53.7	53.9	-0.2
10	40.1	40.3	-0.2
11	39.0	39.2	-0.2
12	71.7	72.0	-0.3
13	125.5	125.7	-0.2
14	108.8	108.9	-0.1
15	144.7	144.8	-0.1
16	140.6	140.7	-0.1
17	16.7	16.9	-0.2
18	169.1	1769.1	0.0
20	175.1	175.2	-0.1

10. X-ray Crystallographic Data of 25, (+)-Cracroson E (7) and 38

1) X-ray structure of $\mathbf{2 5}$ (CCDC 2274928)

The sample of $\mathbf{2 5}$ was prepared by recrystallization in petroleum ether/ethyl acetate.

Table 1. Crystal data and structure refinement for 25.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
mo_d8v23026_0m
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{5}$
407.25

213(2) K
$0.71073 \AA$
Monoclinic
P 21
$\mathrm{a}=6.7480(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=13.0022(13) \AA \quad \beta=96.872(3)^{\circ}$.
$\mathrm{c}=10.0405(11) \AA$
$\gamma=90^{\circ}$.
874.61(16) \AA^{3}

2
$1.546 \mathrm{Mg} / \mathrm{m}^{3}$
$2.377 \mathrm{~mm}^{-1}$
416
$0.200 \times 0.150 \times 0.100 \mathrm{~mm}^{3}$
2.575 to 25.999°
$-8<=\mathrm{h}<=8,-16<=\mathrm{k}<=16,-12<=\mathrm{l}<=12$
15392
$3412[\mathrm{R}(\mathrm{int})=0.0553]$
99.90\%

Semi-empirical from equivalents
0.7456 and 0.4722

Full-matrix least-squares on F^{2}
3412 / 1/228
1.017
$\mathrm{R} 1=0.0314, \mathrm{wR} 2=0.0782$
$R 1=0.0366, w R 2=0.0816$
0.076 (6)
0.015(3)
0.505 and $-0.319 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\mathbf{A} 2 \times 10^{3}$) for 26. $\mathbf{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{Br}(1)$	$7396(1)$	$6761(1)$	$4032(1)$	$46(1)$
$\mathrm{O}(1)$	$7846(6)$	$3179(3)$	$7616(4)$	$62(1)$
$\mathrm{O}(2)$	$8837(5)$	$3494(3)$	$5598(4)$	$50(1)$
$\mathrm{O}(3)$	$3237(5)$	$3574(3)$	$3245(3)$	$45(1)$
$\mathrm{O}(4)$	$1603(5)$	$4719(3)$	$1913(3)$	$42(1)$
$\mathrm{O}(5)$	$-400(7)$	$5573(4)$	$-2042(4)$	$75(1)$
$\mathrm{C}(1)$	$7650(7)$	$3673(4)$	$6583(5)$	$45(1)$
$\mathrm{C}(2)$	$6239(7)$	$4502(4)$	$6157(5)$	$39(1)$
$\mathrm{C}(3)$	$4628(9)$	$4930(4)$	$6871(5)$	$50(1)$
$\mathrm{C}(4)$	$4061(9)$	$5986(4)$	$6270(5)$	$50(1)$
$\mathrm{C}(5)$	$3679(7)$	$5945(4)$	$4740(5)$	$42(1)$
$\mathrm{C}(6)$	$5499(6)$	$5575(3)$	$4099(4)$	$31(1)$
$\mathrm{C}(7)$	$6645(6)$	$4813(3)$	$4960(4)$	$33(1)$
$\mathrm{C}(8)$	$8336(6)$	$4238(4)$	$4525(5)$	$40(1)$
$\mathrm{C}(9)$	$7725(7)$	$3751(4)$	$3182(5)$	$45(1)$
$\mathrm{C}(10)$	$6786(7)$	$4542(4)$	$2163(5)$	$41(1)$
$\mathrm{C}(11)$	$4990(6)$	$5137(3)$	$2657(4)$	$32(1)$
$\mathrm{C}(12)$	$3251(6)$	$4381(3)$	$2671(4)$	$35(1)$
$\mathrm{C}(13)$	$4102(7)$	$5960(4)$	$1643(5)$	$40(1)$
$\mathrm{C}(14)$	$1848(6)$	$5784(4)$	$1472(5)$	$38(1)$
$\mathrm{C}(15)$	$817(7)$	$5890(4)$	$91(5)$	$45(1)$
$\mathrm{C}(16)$	$579(10)$	$5176(5)$	$-882(6)$	$64(2)$
$\mathrm{C}(17)$	$-765(9)$	$6559(5)$	$-1771(6)$	$70(2)$
$\mathrm{C}(18)$	$-40(8)$	$6783(6)$	$-499(6)$	$71(2)$
$\mathrm{C}(19)$	$6195(11)$	$3993(6)$	$808(5)$	$66(2)$

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for 25.

$\mathrm{Br}(1)-\mathrm{C}(6)$	$2.010(4)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.214(6)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.365(7)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.458(5)$
$\mathrm{O}(3)-\mathrm{C}(12)$	$1.197(6)$
$\mathrm{O}(4)-\mathrm{C}(12)$	$1.344(5)$
$\mathrm{O}(4)-\mathrm{C}(14)$	$1.470(5)$
$\mathrm{O}(5)-\mathrm{C}(17)$	$1.338(8)$
$\mathrm{O}(5)-\mathrm{C}(16)$	$1.369(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.468(7)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.327(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.481(7)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.529(7)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.98
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.98
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.529(7)$

$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.98
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.98
$\mathrm{C}(5)-\mathrm{C}(6)$	1.530(6)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.98
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.98
$\mathrm{C}(6)-\mathrm{C}(7)$	1.472(6)
$\mathrm{C}(6)-\mathrm{C}(11)$	1.556(6)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.473(6)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.502(7)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.99
$\mathrm{C}(9)-\mathrm{C}(10)$	1.534(7)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.98
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.98
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.546(7)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.567(6)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.99
$\mathrm{C}(11)-\mathrm{C}(12)$	1.532(6)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.547(6)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.527(6)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.98
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.98
$\mathrm{C}(14)-\mathrm{C}(15)$	1.482(7)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.99
$\mathrm{C}(15)-\mathrm{C}(16)$	1.343(8)
$\mathrm{C}(15)-\mathrm{C}(18)$	1.397(9)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.94
$\mathrm{C}(17)-\mathrm{C}(18)$	1.344(8)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.94
$\mathrm{C}(18)-\mathrm{H}(18)$	0.94
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.97
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.97
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.97
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(8)$	108.5(3)
$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(14)$	111.3(3)
$\mathrm{C}(17)-\mathrm{O}(5)-\mathrm{C}(16)$	105.6(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	121.1(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	129.6(5)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	109.3(4)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	106.9(4)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	124.5(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	128.6(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.1(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.1
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.4
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.7(4)

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.3
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.7(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.1
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.1
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.8
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	110.9(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	110.0(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	114.0(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Br}(1)$	104.2(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Br}(1)$	108.6(3)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{Br}(1)$	108.7(3)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	125.9(4)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	111.4(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.5(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	103.7(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	113.4(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	109.9(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8)$	109.9
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	109.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	109.9
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.2(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.4
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	108.6(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	113.2(4)
C(19)-C(10)-C(11)	112.2(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	102.3(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(6)$	108.1(3)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(6)$	112.6(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	108.0(4)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(10)$	112.7(4)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	112.5(3)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(4)$	120.3(4)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	128.1(4)
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	111.6(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(11)$	105.9(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.6

$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	110.6
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	110.6
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.7
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	$108.2(4)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	$104.7(4)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$116.2(4)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{H}(14)$	109.2
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	109.2
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	109.2
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)$	$105.0(5)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$128.2(5)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(14)$	$126.7(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(5)$	$111.2(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	124.4
$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{H}(16)$	124.4
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	$110.3(6)$
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{H}(17)$	124.9
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	124.9
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(15)$	$107.9(7)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	126.1
$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18)$	126.1
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 25. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{*} 2 \mathbf{U}^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	$\mathbf{U}^{\mathbf{1 1}}$	$\mathbf{U}^{\mathbf{2 2}}$	$\mathbf{U}^{\mathbf{3 3}}$	$\mathbf{U}^{\mathbf{2 3}}$	$\mathbf{U}^{\mathbf{1 3}}$	$\mathbf{U}^{\mathbf{1 2}}$
$\mathrm{Br}(1)$	$46(1)$	$35(1)$	$54(1)$	$5(1)$	$-8(1)$	$-13(1)$
$\mathrm{O}(1)$	$90(3)$	$44(2)$	$46(2)$	$12(2)$	$-14(2)$	$5(2)$
$\mathrm{O}(2)$	$45(2)$	$43(2)$	$58(2)$	$11(2)$	$-8(2)$	$12(2)$
$\mathrm{O}(3)$	$46(2)$	$39(2)$	$46(2)$	$9(2)$	$-3(1)$	$-13(1)$
$\mathrm{O}(4)$	$33(2)$	$48(2)$	$44(2)$	$13(2)$	$-5(1)$	$-12(1)$
$\mathrm{O}(5)$	$81(3)$	$74(3)$	$60(2)$	$16(2)$	$-30(2)$	$-20(2)$
$\mathrm{C}(1)$	$54(3)$	$33(2)$	$45(3)$	$5(2)$	$-10(2)$	$-1(2)$
$\mathrm{C}(2)$	$46(2)$	$34(2)$	$36(2)$	$3(2)$	$-4(2)$	$-2(2)$
$\mathrm{C}(3)$	$71(3)$	$46(3)$	$34(3)$	$-1(2)$	$11(2)$	$4(2)$
$\mathrm{C}(4)$	$60(3)$	$43(3)$	$45(3)$	$-4(2)$	$7(2)$	$6(2)$
$\mathrm{C}(5)$	$39(2)$	$41(3)$	$44(3)$	$0(2)$	$4(2)$	$6(2)$
$\mathrm{C}(6)$	$31(2)$	$28(2)$	$32(2)$	$2(2)$	$-3(2)$	$-5(2)$
$\mathrm{C}(7)$	$29(2)$	$30(2)$	$40(2)$	$-2(2)$	$-4(2)$	$-3(2)$
$\mathrm{C}(8)$	$31(2)$	$36(2)$	$49(3)$	$8(2)$	$-1(2)$	$1(2)$
$\mathrm{C}(9)$	$39(2)$	$46(3)$	$52(3)$	$-4(2)$	$11(2)$	$6(2)$
$\mathrm{C}(10)$	$37(2)$	$44(3)$	$43(3)$	$-2(2)$	$12(2)$	$-1(2)$

$\mathrm{C}(11)$	$30(2)$	$34(2)$	$31(2)$	$2(2)$	$-1(2)$	$-4(2)$
$\mathrm{C}(12)$	$32(2)$	$36(2)$	$34(2)$	$1(2)$	$-1(2)$	$-7(2)$
$\mathrm{C}(13)$	$38(2)$	$41(2)$	$38(2)$	$9(2)$	$-5(2)$	$-10(2)$
$\mathrm{C}(14)$	$33(2)$	$40(2)$	$41(3)$	$3(2)$	$-1(2)$	$-6(2)$
$\mathrm{C}(15)$	$34(2)$	$46(3)$	$51(3)$	$13(2)$	$-8(2)$	$-7(2)$
$\mathrm{C}(16)$	$75(4)$	$60(4)$	$50(3)$	$6(3)$	$-23(3)$	$-3(3)$
$\mathrm{C}(17)$	$63(3)$	$57(4)$	$81(4)$	$29(3)$	$-35(3)$	$-11(3)$
$\mathrm{C}(18)$	$71(3)$	$49(3)$	$84(4)$	$17(4)$	$-29(3)$	$-7(4)$
$\mathrm{C}(19)$	$82(4)$	$78(4)$	$41(3)$	$-8(3)$	$12(3)$	$11(3)$

Table 5. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 25.

	\mathbf{y}	\mathbf{y}	$\mathbf{U (e q)}$	
$\mathrm{H}(3 \mathrm{~A})$	5089	4997	7830	60
$\mathrm{H}(3 B)$	3466	4472	6765	60
$\mathrm{H}(4 \mathrm{~A})$	2857	6234	6626	60
H(4B)	5141	6474	6539	60
H(5A)	3302	6632	4397	50
H(5B)	2556	5481	4475	50
H(8)	9477	4708	4467	47
H(9A)	6761	3200	3281	54
H(9B)	8897	3443	2849	54
H(10)	7828	5055	2026	49
H(13A)	4422	6652	1988	47
H(13B)	4636	5879	784	47
H(14)	1226	6256	-780	46
H(16)	1026	4493	-2382	77
H(17)	-1432	7026	-80	84
H(18)	-99	7427	921	85
H(19A)	5220	3462	504	100
H(19B)	7370	3684	149	100
H(19C)	5625	4489	100	

Table 6. Torsion angles [${ }^{\circ}$] for 25.

$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$-176.7(5)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$3.4(5)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$178.5(5)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$-1.6(5)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-2.3(9)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$177.6(5)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-19.7(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$161.2(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$49.9(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-59.6(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$33.6(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	$158.4(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Br}(1)$	$-80.3(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$174.7(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$-4.5(7)$

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.9(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	179.8(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	-2.5(6)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	-129.5(4)
$\mathrm{Br}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	114.2(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	172.7(4)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	45.7(5)
$\mathrm{Br}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-70.6(4)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	-3.7(4)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	-123.0(4)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(2)$	2.9(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(2)$	-173.0(4)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.4(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-51.4(5)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	167.6(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	52.1(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	179.9(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-54.7(5)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	77.4(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	-47.8(5)
$\mathrm{Br}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	-169.2(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(13)$	-170.4(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(13)$	64.4(5)
$\mathrm{Br}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(13)$	-56.9(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	-41.7(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	-166.9(4)
$\mathrm{Br}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	71.8(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-69.7(5)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	53.6(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	178.0(4)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	-58.6(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	49.4(5)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	172.8(4)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{O}(3)$	171.3(4)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	-9.3(5)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	175.0(5)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	-66.0(6)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	55.9(6)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(4)$	-4.3(5)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(4)$	114.7(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(4)$	-123.4(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	15.4(5)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	-100.4(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$	131.1(4)
$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	143.5(4)
$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	19.0(5)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)$	-20.7(5)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-140.0(4)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-31.9(7)

$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$85.3(7)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	$151.4(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	$-91.3(6)$
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(5)$	$-0.7(7)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(5)$	$-177.9(5)$
$\mathrm{C}(17)-\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(15)$	$0.2(7)$
$\mathrm{C}(16)-\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	$0.4(7)$
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(15)$	$-0.8(7)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(17)$	$0.9(7)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(17)$	$178.1(5)$

2) X-ray structure of (+)-Cracroson E (7) (CCDC 2279407)

The sample of (+)-cracroson E(7) was prepared by recrystallization in methanol/water.

Table 1 Crystal data and structure refinement for (+)-cracroson E (7).
Identification code
exp_3388
Empirical formula
Formula weight
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$
344.35

Temperature/K
Crystal system
172.95(13)

Space group
orthorhombic
a/Å
P2 ${ }_{1} 2_{1} 2_{1}$
b/Å
6.68840(10)
c/Å
7.0394(2)
35.4914(7)
$\alpha{ }^{\circ}$
90
$\beta /{ }^{\circ} \quad 90$
$\gamma^{\circ} \quad 90$
Volume $/ \AA^{3}$
1671.02(6)

Z
4
$\rho_{\text {calcg }} / \mathrm{cm}^{3} \quad 1.369$
$\mu / \mathrm{mm}^{-1} \quad 0.849$
F(000)
728.0

Crystal size $/ \mathrm{mm}^{3}$
$0.36 \times 0.14 \times 0.12$
Radiation
$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$
9.968 to 134.136

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
$-7 \leq \mathrm{h} \leq 7,-8 \leq \mathrm{k} \leq 8,-42 \leq 1 \leq 42$
35120
$2978\left[\mathrm{R}_{\text {int }}=0.1301, \mathrm{R}_{\text {sigma }}=0.0474\right]$
Goodness-of-fit on F^{2}
2978/0/228
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
1.047

Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.0340, \mathrm{wR}_{2}=0.0857$
$\mathrm{R}_{1}=0.0358, \mathrm{wR}_{2}=0.0870$
0.13/-0.13

Flack parameter
-0.05(12)

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(+)$-cracroson $E(7)$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised UIJ tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
O1	4030(3)	3649(3)	4569.9(5)	43.8(5)
O2	6230(2)	5611(3)	5699.7(4)	35.8(4)
O3	6817(2)	7431(3)	6198.1(4)	38.1(4)
O4	2828(2)	2705(2)	6594.0(4)	27.1(4)
O5	7610(2)	6635(3)	7637.4(4)	38.2(4)
O6	4748(2)	7251(2)	7329.6(4)	31.1(4)
C1	3289(4)	5415(4)	4633.5(7)	42.6(6)
C2	3469(4)	5889(4)	4996.8(7)	38.7(6)
C3	4390(3)	4306(4)	5179.3(6)	31.1(5)
C4	4697(4)	3001(4)	4908.6(6)	39.4(6)
C5	4895(4)	4068(3)	5586.4(6)	31.3(5)
C6	3133(3)	4186(3)	5860.3(6)	29.1(5)
C7	3930(3)	5269(3)	6206.3(6)	24.4(5)
C8	5797(3)	6240(3)	6049.9(6)	28.7(5)
C9	2421(3)	6790(3)	6353.0(6)	28.3(5)
C10	3108(4)	7829(3)	6713.7(6)	31.2(5)
C11	3645(3)	6417(3)	7017.6(6)	25.7(5)
C12	6495(3)	6276(3)	7376.0(6)	28.8(5)
C13	6685(3)	4869(3)	7074.6(6)	25.3(5)
C14	5036(3)	4961(3)	6870.0(5)	22.5(4)
C15	4570(3)	3849(3)	6525.7(6)	23.0(5)
C16	6391(3)	2591(3)	6424.8(6)	28.9(5)
C17	7462(4)	1833(3)	6776.0(6)	32.1(5)
C18	8313(3)	3453(4)	7014.6(6)	31.2(5)
C19	1932(4)	8300(4)	6056.5(7)	38.6(6)

Table 3 Anisotropic Displacement Parameters ($\left(\AA^{2} \times 10^{3}\right)$ for (+)-cracroson E (7). The
Anisotropic displacement factor exponent takes the form: $-\mathbf{2} \pi^{2}\left[h^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+\mathbf{2 h k a} \mathbf{h}^{*} \mathbf{b}^{*} \mathbf{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$44.0(10)$	$61.1(12)$	$26.3(8)$	$-1.4(8)$	$-1.1(7)$	$2.4(9)$
O2	$33.1(9)$	$47.3(11)$	$27.0(8)$	$-0.6(7)$	$1.8(7)$	$-9.7(8)$
O3	$37.7(9)$	$39.8(10)$	$36.7(9)$	$0.5(8)$	$-2.0(7)$	$-14.7(8)$
O4	$29.6(8)$	$26.0(8)$	$25.6(7)$	$0.3(6)$	$-0.3(6)$	$-6.6(7)$
O5	$33.4(8)$	$49.4(11)$	$31.8(8)$	$-9.1(8)$	$-7.8(7)$	$-5.9(8)$
O6	$32.4(8)$	$32.9(8)$	$28.0(8)$	$-10.2(6)$	$-4.7(7)$	$1.3(7)$
C1	$39.5(14)$	$51.6(17)$	$36.6(13)$	$13.0(12)$	$-1.0(11)$	$-2.2(13)$
C2	$42.5(14)$	$36.4(14)$	$37.3(13)$	$5.5(10)$	$1.4(11)$	$-1.2(11)$
C3	$29.2(11)$	$37.9(14)$	$26.3(11)$	$1.5(10)$	$2.3(9)$	$-0.4(10)$
C4	$37.1(13)$	$50.6(16)$	$30.7(13)$	$-1.0(11)$	$-1.9(10)$	$7.7(12)$
C5	$33.0(12)$	$33.1(13)$	$27.8(11)$	$0.2(9)$	$-2.3(9)$	$-1.2(10)$

C6	$32.2(12)$	$30.8(12)$	$24.4(11)$	$-0.8(9)$	$-3.4(9)$	$-5.3(10)$
C7	$25.8(10)$	$22.8(11)$	$24.5(11)$	$-0.4(9)$	$-3.1(8)$	$-3.4(9)$
C8	$29.4(11)$	$29.8(12)$	$27.0(11)$	$2.3(9)$	$-1.9(9)$	$-3.1(9)$
C9	$28.0(11)$	$26.2(12)$	$30.6(11)$	$0.3(9)$	$-3.9(9)$	$1.8(9)$
C10	$36.3(13)$	$22.9(11)$	$34.3(12)$	$-2.6(9)$	$-3.3(10)$	$4.6(10)$
C11	$27.0(10)$	$25.5(11)$	$24.6(10)$	$-6.4(8)$	$-3.4(8)$	$0.7(9)$
C12	$28.2(11)$	$31.3(12)$	$26.9(11)$	$0.0(9)$	$-0.7(9)$	$-5.0(9)$
C13	$24.8(10)$	$25.9(11)$	$25.2(10)$	$2.3(9)$	$1.2(8)$	$-3.6(9)$
C14	$23.6(10)$	$20.8(11)$	$23.2(10)$	$2.1(8)$	$2.6(8)$	$-3.5(9)$
C15	$24.1(10)$	$18.9(10)$	$26.2(11)$	$0.0(8)$	$0.2(8)$	$-1.4(8)$
C16	$33.0(12)$	$26.1(11)$	$27.7(11)$	$-2.1(9)$	$1.8(9)$	$5.7(10)$
C17	$31.7(11)$	$30.1(12)$	$34.4(12)$	$-0.5(10)$	$-0.9(9)$	$8.9(10)$
C18	$24.2(10)$	$37.7(13)$	$31.7(11)$	$-0.3(10)$	$-1.3(9)$	$3.1(10)$
C19	$45.3(14)$	$32.8(13)$	$37.7(13)$	$5.9(11)$	$-8.3(11)$	$6.0(11)$

Table 4 Bond Lengths for (+)-cracroson E (7).

Atom Atom		Length/Å	Atom	Atom	Length/Å
O1	C1	1.357(3)	C7	C8	1.528(3)
O1	C4	1.361(3)	C7	C9	1.561(3)
O2	C5	1.462(3)	C 7	C15	1.571(3)
O2	C8	1.351(3)	C9	C10	1.544(3)
O3	C8	1.202(3)	C9	C19	1.531(3)
O4	C15	1.436(2)	C 10	C11	1.510(3)
O5	C12	1.217(3)	C 11	C14	1.480(3)
O6	C11	1.454(2)	C 12	C13	1.464(3)
O6	C12	1.365(3)	C 13	C14	1.322(3)
C1	C2	1.337(4)	C 13	C18	1.491(3)
C2	C3	1.429(3)	C 14	C15	1.484(3)
C3	C4	1.345(3)	C15	C16	1.548(3)
C3	C5	1.493(3)	C 16	C17	1.533(3)
C5	C6	1.530(3)	C 17	C18	1.530 (3)
C6	C7	1.540(3)			

Table 5 Bond Angles for (+)-cracroson E (7).

Atom Atom Atom		
C 1	O 1	C 4
C 8	O 2	C 5
C 12	O 6	C 11
C 2	C 1	O 1
C 1	C 2	C 3
C 2	C 3	C 5
C 4	C 3	C 2

Angle $/^{\circ} \quad$ Atom Atom Atom 106.26(19) C19 C9 C10 111.43(17) C11 C10 C9
108.88(16) O6 C11 C10 110.8(2) O6 C11 C14 106.3(2) C14 C11 C10 128.6(2) O5 C12 O6 105.9(2) O5 C12 C13

C4	C3	C5	125.5(2)	O6	C12	C13	109.04(17)
C3	C4	O1	110.6(2)	C 12	C13	C18	128.33(19)
O2	C5	C3	108.72(19)	C 14	C13	C12	107.20(19)
O2	C5	C6	104.82(17)	C 14	C13	C18	124.3(2)
C3	C5	C6	115.8(2)	C11	C14	C15	121.65(18)
C5	C6	C7	105.45(18)	C 13	C14	C11	111.34(19)
C6	C7	C9	112.42(17)	C 13	C14	C15	127.0(2)
C6	C7	C15	110.78(17)	O 4	C15	C7	104.93(16)
C8	C7	C6	102.41(17)	O 4	C15	C14	109.10(16)
C8	C7	C9	110.01(17)	O 4	C15	C16	110.88(16)
C8	C7	C15	108.94(17)	C 14	C15	C7	108.41(16)
C9	C7	C15	111.83(17)	C 14	C15	C16	109.08(18)
O2	C8	C7	111.26(18)	C16	C15	C7	114.28(17)
O3	C8	O2	120.6(2)	C 17	C16	C15	112.25(17)
O3	C8	C7	128.1(2)	C18	C17	C16	111.37(19)
C10	C9	C7	114.14(17)	C 13	C18	C17	107.80(18)
C19	C9	C7	112.65(18)				

Table 6 Torsion Angles for (+)-cracroson E (7).

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
O1	C1	C2	C3	-0.2(3)	C8	C7	C9	C19	53.3(2)
O2	C5	C6	C7	-21.6(2)	C8	C7	C15	O4	-167.16(16)
O4	C15	C16	C17	-84.2(2)	C8	C7	C15	C14	76.4(2)
O5	C12	C13	C14	176.8(2)	C8	C7	C15	C16	-45.5(2)
O5	C12	C13	C18	1.5(4)	C9	C7	C8	O2	-128.61(19)
O6	C11	C14	C13	2.8(2)	C9	C7	C8	O3	50.7(3)
O6	C11	C14	C15	-175.15(17)	C9	C7	C15	O4	71.02(19)
O6	C12	C13	C14	-3.1(2)	C9	C7	C15	C14	-45.4(2)
O6	C12	C13	C18	-178.4(2)	C9	C7	C15	C16	-167.32(18)
C1	O1	C4	C3	0.1(3)	C9	C10	C11	O6	166.00(17)
C1	C2	C3	C4	0.2(3)	C9	C10	C11	C14	50.4(2)
C1	C2	C3	C5	-178.6(2)	C10	C11	C14	C13	124.6(2)
C2	C3	C4	O1	-0.2(3)	C10	C11	C14	C15	-53.3(2)
C2	C3	C5	O2	-58.1(3)	C11	O6	C12	O5	-175.0(2)
C2	C3	C5	C6	59.5(3)	C11	O6	C12	C13	4.9(2)
C3	C5	C6	C7	-141.4(2)	C11	C14	C15	O4	-64.0(2)
C4	O1	C1	C2	0.1(3)	C11	C14	C15	C7	49.8(2)
C4	C3	C5	O2	123.3(3)	C11	C14	C15	C16	174.76(18)
C4	C3	C5	C6	-119.1(3)	C12	O6	C11	C10	-124.52(19)
C5	O2	C8	O3	175.6(2)	C12	O6	C11	C14	-4.7(2)
C5	O2	C8	C7	-5.0(2)	C12	C13	C14	C11	0.0(2)
C5	C3	C4	O1	178.7(2)	C12	C13	C14	C15	177.84(19)
C5	C6	C7	C8	18.4(2)	C12	C13	C18	C17	156.9(2)

C5	C6	C7	C9	$136.42(19)$	C13	C14	C15	O4	$118.4(2)$
C5	C6	C7	C15	$-97.7(2)$	C13	C14	C15	C7	$-127.8(2)$
C6	C7	C8	O2	$-8.9(2)$	C13	C14	C15	C16	$-2.8(3)$
C6	C7	C8	O3	$170.4(2)$	C14	C13	C18	C17	$-17.6(3)$
C6	C7	C9	C10	$176.60(18)$	C14	C15	C16	C17	$36.0(2)$
C6	C7	C9	C19	$-60.1(2)$	C15	C7	C8	O2	$108.5(2)$
C6	C7	C15	O4	$-55.2(2)$	C15	C7	C8	O3	$-72.2(3)$
C6	C7	C15	C14	$-171.70(17)$	C15	C7	C9	C10	$51.2(2)$
C6	C7	C15	C16	$66.4(2)$	C15	C7	C9	C19	$174.54(18)$
C7	C9	C10	C11	$-53.3(2)$	C15	C16	C17	C18	$-62.4(2)$
C7	C15	C16	C17	$157.52(19)$	C16	C17	C18	C13	$50.1(2)$
C8	O2	C5	C3	$141.3(2)$	C18	C13	C14	C11	$175.55(19)$
C8	O2	C5	C6	$16.9(2)$	C18	C13	C14	C15	$-6.7(3)$
C8	C7	C9	C10	$-70.0(2)$	C19	C9	C10	C11	$-179.19(19)$

Table $\mathbf{7}$ Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for (+)-cracroson E (7).

Atom	\boldsymbol{x}	y	z	U(eq)
H4	2825.36	2341.84	6819.39	41
H1	2718.04	6207.23	4445.33	51
H2	3065.24	7048.15	5110.79	46
H4A	5297.05	1793.97	4948.3	47
H5	5595.75	2826.98	5622.42	38
H6A	2676.92	2898.6	5932.69	35
H6B	1999.49	4877.14	5744.56	35
H9	1146.55	6115.12	6414.39	34
H10A	4284.24	8630.91	6655.88	37
H10B	2021.93	8667.82	6804.63	37
H11	2404.42	5791.3	7114.23	31
H16A	5935.68	1506.08	6269.41	35
H16B	7345.97	3342.95	6272.56	35
H17A	6509.4	1084.95	6929.42	38
H17B	8562.21	978.22	6697.97	38
H18A	8789.6	2958.42	7259.78	37
H18B	9454.37	4054.15	6883.01	37
H19A	3162.35	8956.54	5982.04	58
H19B	986.57	9220.06	6162.22	58
H19C	1334.58	7689.62	5835.3	58

3) X-ray structure of 38 (CCDC 2275140)

The sample of $\mathbf{3 8}$ was prepared by recrystallization in chloroform.

Table 1 Crystal data and structure refinement for 38.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta{ }^{\circ}$
γ°
Volume/A ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
exp_2245
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$
342.33
173.00(10)
orthorhombic
P2 ${ }_{1} 2_{1} 2_{1}$
6.95740(10)
10.4076(2)
22.6105(4)

90
90
90
1637.22(5)

4
1.389
0.866
720.0
$0.36 \times 0.28 \times 0.04$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
7.82 to 134.144
$-8 \leq \mathrm{h} \leq 8,-12 \leq \mathrm{k} \leq 12,-27 \leq 1 \leq 27$
34372
$2918\left[\mathrm{R}_{\text {int }}=0.0935, \mathrm{R}_{\text {sigma }}=0.0373\right]$
2918/0/227
1.063
$\mathrm{R}_{1}=0.0328, \mathrm{wR}_{2}=0.0835$
$\mathrm{R}_{1}=0.0351, \mathrm{wR}_{2}=0.0847$
0.11/-0.15
-0.15(14)

Table 2 Fractional Atomic Coordinates ($\times 1 \mathbf{0}^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 38 . $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised UIJ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}		\boldsymbol{z}		$\mathbf{U (e q)}$
O1	$8793(4)$	$6175(2)$	$5549.6(8)$	$55.3(6)$		
O2	$6376(2)$	$4321.9(17)$	$3980.1(7)$	$37.4(4)$		
O3	$5083(2)$	$2860.3(16)$	$3387.3(7)$	$37.1(4)$		
O4	$-316(2)$	$2686.3(17)$	$2447.1(7)$	$37.9(4)$		
O5	$914(3)$	$2344.3(19)$	$1541.1(8)$	$47.9(5)$		
O6	$6935(3)$	$5167.6(19)$	$2219.5(8)$	$45.5(5)$		
C1	$7278(5)$	$5533(3)$	$5784.3(13)$	$56.4(8)$		
C2	$5992(5)$	$5227(3)$	$5367.0(12)$	$50.0(7)$		
C3	$6739(4)$	$5710(2)$	$4823.3(11)$	$37.1(6)$		
C4	$8417(5)$	$6278(3)$	$4960.2(12)$	$47.9(7)$		
C5	$5925(4)$	$5604(2)$	$4216.0(10)$	$34.0(5)$		
C6	$3739(3)$	$5718(2)$	$4160.9(10)$	$30.5(5)$		
C7	$4905(3)$	$3836(2)$	$3666.7(9)$	$28.5(5)$		
C8	$3116(3)$	$4674(2)$	$3721.2(9)$	$25.7(5)$		
C9	$1355(3)$	$3884(2)$	$3948.9(9)$	$31.8(5)$		
C10	$601(3)$	$2892(2)$	$3501.8(10)$	$34.2(5)$		
C11	$33(3)$	$3567(2)$	$2933.1(9)$	$32.0(5)$		
C12	$923(4)$	$2952(3)$	$1999.8(10)$	$35.6(5)$		
C13	$2184(3)$	$4008(2)$	$2181.2(10)$	$31.8(5)$		
C14	$1657(3)$	$4358(2)$	$2724.5(9)$	$28.9(5)$		
C15	$2615(3)$	$5303(2)$	$3112.6(10)$	$28.3(5)$		
C16	$4295(4)$	$5959(2)$	$2780.1(10)$	$33.5(5)$		
C17	$5207(4)$	$5196(2)$	$2285.2(10)$	$32.2(5)$		
C18	$3877(4)$	$4528(3)$	$1857.3(10)$	$38.6(6)$		
C19	$1752(5)$	$3205(3)$	$4534.7(11)$	$49.1(8)$		

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 38. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$63.5(14)$	$51.4(11)$	$50.9(11)$	$-12.8(9)$	$-26.1(10)$	$-3.2(11)$
O2	$25.5(8)$	$47.2(10)$	$39.6(9)$	$-14.6(8)$	$-5.0(7)$	$5.4(8)$
O3	$35.8(9)$	$34.7(8)$	$40.9(9)$	$-12.1(7)$	$-0.1(8)$	$6.7(8)$
O4	$28.6(9)$	$50.2(10)$	$34.7(9)$	$-10.6(8)$	$1.0(7)$	$-8.9(8)$
O5	$47.1(11)$	$59.5(12)$	$37.1(9)$	$-15.9(9)$	$2.1(8)$	$-12.7(10)$
O6	$33.6(10)$	$63.3(12)$	$39.6(10)$	$6.4(9)$	$4.1(8)$	$-1.4(9)$
C1	$79(2)$	$51.0(16)$	$39.2(15)$	$0.4(13)$	$-23.8(15)$	$1.8(17)$
C2	$57.2(18)$	$52.7(16)$	$40.0(14)$	$5.7(12)$	$-12.4(13)$	$-7.2(15)$
C3	$40.5(14)$	$33.4(12)$	$37.3(13)$	$-7.4(10)$	$-9.0(11)$	$4.6(11)$
C4	$50.5(17)$	$49.9(16)$	$43.5(15)$	$-13.5(13)$	$-14.0(13)$	$-0.6(14)$
C5	$34.6(13)$	$35.0(12)$	$32.4(12)$	$-5.5(10)$	$-0.2(10)$	$-1.8(11)$
C6	$32.6(13)$	$31.8(11)$	$27.2(11)$	$-5.6(9)$	$0.1(10)$	$2.5(10)$
C7	$26.8(12)$	$33.7(11)$	$24.9(10)$	$0.1(9)$	$-0.2(9)$	$-0.1(10)$

C8	$24.6(11)$	$28.4(11)$	$24.2(10)$	$-2.0(8)$	$1.1(9)$	$2.9(9)$
C9	$28.1(12)$	$39.1(12)$	$28.1(11)$	$-1.4(10)$	$4.4(9)$	$0.3(10)$
C10	$28.2(12)$	$39.4(12)$	$34.9(12)$	$-0.9(10)$	$3.3(9)$	$-6.6(10)$
C11	$22.7(12)$	$43.2(13)$	$30.2(11)$	$-7.3(9)$	$1.0(10)$	$-0.9(11)$
C12	$30.4(12)$	$43.4(13)$	$32.9(12)$	$-7.0(11)$	$-1.8(10)$	$-1.7(11)$
C13	$28.2(12)$	$40.1(13)$	$27.0(11)$	$-3.2(10)$	$-1.4(9)$	$1.7(10)$
C14	$23.9(11)$	$34.1(12)$	$28.9(11)$	$-0.8(9)$	$-1.0(9)$	$5.1(10)$
C15	$27.9(12)$	$29.6(11)$	$27.5(11)$	$-0.7(9)$	$-1.1(9)$	$2.9(9)$
C16	$38.2(14)$	$33.8(12)$	$28.6(11)$	$1.2(10)$	$-1.1(10)$	$-3.8(10)$
C17	$33.0(13)$	$35.0(11)$	$28.7(11)$	$9.5(9)$	$2.6(10)$	$-1.7(10)$
C18	$42.1(14)$	$47.0(14)$	$26.7(11)$	$-3.2(10)$	$3.9(11)$	$-5.9(12)$
C19	$57.8(19)$	$59.4(18)$	$30.1(13)$	$6.6(12)$	$2.5(12)$	$-17.8(15)$

Table 4 Bond Lengths for 38.
Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$

$\left.\begin{array}{lllll}\text { O1 } & \text { C1 } & 1.356(4) & \mathrm{C} 7 & \text { C8 }\end{array}\right]$| $1.525(3)$ |
| :--- |
| O1 |
| C4 |

Table 5 Bond Angles for 38.

Atom Atom Atom		
C1	O1	C4
C7	O2	C5
C12	O4	C 11
C2	C 1	O1
C1	C 2	C 3
C 2	C 3	C 5
C 4	C 3	C 2
C 4	C 3	C 5
C 3	C 4	O 1

O2	C5	C3	$108.7(2)$	C12	C13	C18	$127.5(2)$
O2	C5	C6	$104.65(19)$	C14	C13	C12	$107.3(2)$
C3	C5	C6	$116.6(2)$	C14	C13	C18	$124.9(2)$
C5	C6	C8	$106.17(19)$	C11	C14	C15	$121.81(19)$
O2	C7	C8	$111.37(17)$	C13	C14	C11	$110.7(2)$
O3	C7	O2	$121.1(2)$	C13	C14	C15	$127.3(2)$
O3	C7	C8	$127.5(2)$	C14	C15	C8	$110.15(18)$
C6	C8	C9	$112.37(17)$	C14	C15	C16	$110.24(18)$
C6	C8	C15	$109.65(18)$	C16	C15	C8	$116.34(19)$
C7	C8	C6	$103.09(17)$	C17	C16	C15	$116.37(19)$
C7	C8	C9	$111.46(18)$	O6	C17	C16	$121.3(2)$
C7	C8	C15	$110.50(17)$	O6	C17	C18	$121.2(2)$
C9	C8	C15	$109.62(18)$	C18	C17	C16	$117.4(2)$
C10	C9	C8	$113.84(17)$	C13	C18	C17	$109.70(19)$

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 38.

Atom	x	y	z	U(eq)
H1	7149.88	5332.15	6183.06	68
H2	4840.96	4787.68	5420.86	60
H4	9213.71	6686.67	4688.85	58
H5	6527.44	6254.82	3963.25	41
H6A	3384.78	6562.71	4015.46	37
H6B	3130.5	5584.7	4541.93	37
H9	311.58	4496.89	4020.27	38
H10A	1590.81	2260.04	3420.34	41
H10B	-503.43	2449.11	3665.99	41
H11	-1099.64	4108.1	2999.84	38
H15	1666.08	5976.4	3194.06	34
H16A	3828.38	6763.09	2617.04	40
H16B	5286.59	6167.97	3065.9	40
H18A	3452.06	5130.22	1557.29	46
H18B	4555.27	3832.43	1662.17	46
H19A	2788.81	2606.56	4484.32	74
H19B	619.77	2753.43	4659.5	74
H19C	2097.53	3829.43	4828.76	74

11. References

1. J. Peed, I. R. Davies, L. R. Peacock, J. E. Taylor, G. Kociok-Köhn and S. D. Bull, Dihydroxylation-based approach for the asymmetric syntheses of hydroxy- γ-butyrolactones, J. Org. Chem., 2012, 77, 543-555.
2. M. Carda and J. A. Marco, Total synthesis of the (-)-mintlactone and (+)-isomintlactone, Tetrahedron, 1992, 48, 9789-9800.
3. B. Hong, D. Hu, J. Wu, J. Zhang, H. Li, Y. Pan and X. Lei, Divergent total syntheses of (-)huperzine Q, (+)-lycopladine B, (+)-lycopladine C, and (-)-4-epi-lycopladine D, Chem. Asian J., 2017, 12, 1557-1567.
4. D. F. Taber, K. Kanai, Q. Jiang and G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc., 2000, 122, 6807-6808.
5. P. C. Roest, N. W. Michel and R. A. Batey, DABO boronate promoted conjugate allylation of $\alpha, \beta-$ unsaturated aldehydes using copper(II) catalysis, J. Org. Chem., 2016, 81, 6774-6778.
6. S. Zhou, C.-R. Chen and H.-M. Gau, Highly enantioselective 3-furylation of ketones using (3furyl)titanium nucleophile, Org. Lett., 2010, 12, 48-51.
7. Z. H. Mbwambo, K. Foubert, M. Chacha, M. C. Kapingu, J. J. Magadula, M. M. Moshi, F. Lemiere, K. Goubitz, J. Fraanje, R. Peschar, A. Vlietinck, S. Apers and L. Pieters, New furanoditerpenoids from Croton jatrophoides, Planta Med., 2009, 75, 262-267.
8. M. Bruno, C. Fazio, F. Piozzi, B. Rodriguez and M. C. de la Torre, Neo-clerodane diterpenoids from Teucrium corymbosum, Phytochemistry, 1995, 40, 1481-1483.
9. I.-C. Chen, Y.-K. Wu, H.-J. Liu and J.-L. Zhu, Total syntheses of (\pm)-montanin A and (\pm)teuscorolide, Chem. Commun., 2008, 4720-4722.
10. B. Rodriguez and M. L. Jimeno, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral assignments and conformational analysis of 14 19-nor-neoclerodane diterpenoids, Magn. Reson. Chem., 2004, 42, 605-616.
11. M. Qiu, D. Cao, Y. Gao, S. Li, J. Zhu, B. Yang, L. Zhou, Y. Zhou, J. Jin and Z. Zhao, New clerodane diterpenoids from Croton crassifolius, Fitoterapia, 2016, 108, 81-86.
12. H.-W. Lv, J.-G. Luo, M.-D. Zhu, S.-M. Shan and L.-Y. Kong, Teucvisins A-E, five new neoclerodane diterpenes from Teucrium viscidum, Chem. Pharm. Bull., 2014, 62, 472-476.
13. G. Savona, M. C. García-Alvarez and B. Rodríguez, Dihydroteugin, a neo-clerodane diterpenoid from Teucrium chamaedrys, Phytochemistry, 1982, 21, 721-723.
14. M. Elmastas, R. Erenler, B. Isnac, H. Aksit, O. Sen, N. Genc and I. Demirtas, Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L. Nat. Prod. Res., 2016, 30, 299-304.
15. M. Qiu, J. Jin, L. Zhou, W. Zhou, Y. Liu, Q. Tan, D. Cao and Z. Zhao, Diterpenoids from Croton crassifolius include a novel skeleton possibly generated via an intramolecular [2+2]photocycloaddition reaction, Phytochemistry, 2018, 145, 103-110.
16. J. L. Marco, B. Rodriguez, C. Pascual, G. Savona and F. Piozzi, Teuscorodin, teuscorodonin and 2-hydroxyteuscorolide, neo-clerodane diterpenoids from Teucrium scorodonia, Phytochemistry, 1983, 22, 727-731.
17. 2D NMR of (+)-Cracroson A, (+)-Teucvisin C, Compound 30 and (+)-Cracroson E
1) (+)-Cracroson A (4) COSY

HSQC

2) (+)-Teucvisin C (5) COSY

HSQC

HMBC

NOESY

HSQC

NOESY

4) (+)-Cracroson E (7) COSY

13. Copies of NMR Spectra

BnO
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllllllllllllll}1 \\ 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$ f1 (ppm)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$ f1 (ppm)

(s)-11
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

(rac)-11
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

T	1		1	1				1	1			1	,	1	1		1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1	pm)										

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

[^1]

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |

H NMR (CDCl $3,400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

:10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												ppm)										

H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

[^2]
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

f1 (ppm)

$\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

$\begin{array}{llllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

[^3]

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

10	200	190	180	170	160	150	140	130	120	110	10	90	80	70	60	50	40	30	20	10	0	-1
											(p											

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

[^4]

t	\%	$\stackrel{1}{2}$	\bigcirc	$\bigcirc{ }_{0}$	
$\stackrel{\otimes}{\otimes}$	®	-	ます	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\infty}{\circ}$
-	-	।	11	11	

${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										1 (

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

-

									$\begin{gathered} \underset{\sim}{m} \\ \underset{\sim}{c} \stackrel{M}{i} \\ \hline \end{gathered}$				$\begin{aligned} & \text { - } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{1}{n} \\ & i \end{aligned}$				
8. 5	8. 0	7. 5	7. 0	6. 5	6. 0	5.5	5. 0	$\text { 4. } 5$	$\text { 4. } 0$	3. 5	3. 0	2.5	2.0	1. 5	1.0	0.5	0. 0	-0. 5

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,400 \mathrm{MHz}\right)$

S-10
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

S-11
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

[^0]: ${ }^{a}$ reaction conditions: $\mathbf{2 0}(0.019 \mathrm{mmol}), 3$-furyl nucleophile (x equiv.), Ligand ($20 \mathrm{~mol} \%$), solvent. ${ }^{b}$ Isolated yield. ${ }^{c}$ The dr value was determined by crude ${ }^{1} \mathrm{H}$ NMR.

[^1]: $\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^2]: $\begin{array}{llllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]:

[^4]: $\begin{array}{lllllllllllllllllllllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & - \\ (\mathrm{ppm})\end{array}$

