An orbitally adapted push-pull template for N₂ activation and reduction to diazene-diide

David Specklin,^a Marie-Christine Boegli,^a Anaïs Coffinet,^a Léon Escomel,^a Laure Vendier,^a Mary Grellier^a and Antoine Simonneau^{*a}

a LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.

E-mail: antoine.simonneau@lcc-toulouse.fr

Abstract: A Lewis superacidic bis(borane) $C_6F_4[B(C_6F_5)_2]_2$ was reacted with tungsten N_2 -complexes $[W(N_2)_2(R_2PCH_2CH_2PR_2)_2]$ (R = Ph or Et), affording zwitterionic boryldiazenido W(II) complexes *trans*-[W(L)($R_2PCH_2CH_2PR_2)_2(N_2\{B(C_6F_5)_2(C_6F_4B(C_6F_5)_3)\})]$ ($L = \emptyset$, N_2 or THF). Those compounds feature only one N-B linkage of covalent type, as a result of intramolecular boron-to-boron C_6F_5 transfer. Complex *trans*-[W(THF)(Et_2PCH_2CH_2PEt_2)_2(N_2\{B(C_6F_5)_2C_6F_4B(C_6F_5)_3\})] (**5**) was shown to split H_2 , leading to a seven-coordinate complex $[W(H)_2(Et_2PCH_2CH_2PEt_2)_2(N_2\{B(C_6F_5)_2C_6F_4B(C_6F_5)_3\})]$ (**7**). Interestingly, hydride storage at the metal triggers backward C_6F_5 transfer. This reverts the bis(boron) moiety to its bis(borane) state, now doubly binding the distal N, with structural parameters and DFT computations pointing to dative $N \rightarrow B$ bonding. By comparison with an N_2 complex $[W(H)_2(Et_2PCH_2CH_2PEt_2)_2(N_2\{B(C_6F_5)_3\}]$ (**10**) differing only by the Lewis acid (LA), namely $B(C_6F_5)_3$, coordinated to the distal N, we demonstrate that two-fold LA coordination imparts strong N_2 activation up to the diazene-diide ($N_2^{2^-}$) state. To the best of our knowledge, this is the first example of a neutral LA coordination that induces reduction of N_2 .

1 Table of Contents

2	EXPE	RIMENTAL PROCEDURES	4
	2.1	GENERAL CONSIDERATIONS	4
	2.2	PREPARATION AND CHARACTERIZATION OF NEW COMPOUNDS	4
	2.2.1	Preparation of $[W(dppe)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (3)	4
	2.2.2	Preparation of $[W(N_2)(depe)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (4)	
	2.2.3	Preparation of $[W(THF)(depe)_2(\mu-N_2)B(C_6F_5)(C_6F_4[B(C_6F_5)_3])]$ (5)	5
	2.2.4	Spectroscopic characterization of $[W(depe)_2(H)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (6)	5
	2.2.5	Preparation of $[W(depe)_2(H)_2(\mu-N_2)(1,2-\{B(C_6F_5)_2\}_2C_6F_4)]$ (7) from 5	6
	2.2.6	Preparation of $[W(depe)_2(H)_2(\mu-N_2)B(C_6F_5)_3]$ (10)	6
	2.2.7	Preparation of $[W(depe)_2(H)_2(\mu-N_2)(1,2-\{B(C_6F_5)_2\}_2C_6F_4)]$ (7) from 10	7
3	SPEC	TROSCOPIC DATA OF NEW COMPOUNDS	8
	3.1	[W(DPPE)2(M-N2)B(C6F5)(C6F4{B(C6F5)3}]](3)	8
	3.1.1	Figure S1. FT-IR (ATR) of 3	
	3.2	$[W(N_2)(DEPE)_2(M-N_2)B(C_6F_5)(C_6F_4]B(C_6F_5)_3]](4)$	9
	3.2.1	Figure S2. FT-IR (ATR) of 4	9
	3.2.2	Figure S3. FT-IR (ATR) of ¹⁵ N-4.	
	3.3	$[W(THF)(DEPE)_2(M-N_2)B(C_6F_5)(C_6F_4{B(C_6F_5)_3})]$ (5)	
	3.3.1	Figure S4 . ¹ H NMR (400 MHz, THF-d ₈) of 5	
	3.3.2	Figure S5. ³¹ P{ ¹ H} NMR (162 MHz, THF-d ₈) of 5	
	3.3.3	Figure S6. ¹¹ B NMR (128 MHz, THF-d ₈) of 5 .	
	3.3.4	Figure S7. ¹⁵ N INVGATED ¹ H NMR (41 MHz, C ₆ D ₆) of 5	14
	3.3.5	Figure S8. ¹⁹ F NMR (376 MHz, THF-d ₈) of 5 .	15
	3.3.6	Figure S9. FT-IR (ATR) of 5.	
	3.3.7	Figure S10. FT-IR (ATR) of ¹⁵ N-5	
	3.3.8	Figure S11. Raman spectrum of 5	
	3.3.9	Figure S12. Raman spectrum of ¹⁵ N-5.	
	3.4	$[W(DEPE)_2(H)_2(M-N_2)B(C_6F_5)(C_6F_4[B(C_6F_5)_3])]$ (6)	
	3.4.1	Figure S13. ¹ H NMR (400 MHz, THF-d ₈) of 6 isomers	
	3.4.2	Figure S14. ³¹ P{ ¹ H} NMR (162 MHz, THF-d ₈) of 6 isomers	21
	3.4.3	Figure S15. ¹¹ B NMR (128 MHz, THF-d ₈) of 6 isomers	
	3.4.4	Figure S16. ¹⁹ F NMR (376 MHz, THF-d ₈) of 6 isomers.	
	3.4.5	Figure S17. ¹⁵ N INVGATED ¹ H NMR (41 MHz, THF-d ₈) of 6 isomers	24
	3.5	II. 6. [W(DEPE) ₂ (H) ₂ (M-N ₂)(1,2-{B(C ₆ F ₅) ₂ } ₂ C ₆ F ₄)] (7)	25
	3.5.1	Figure S18 . ¹ H NMR (400 MHz, THF-d ₈) of 7	25
	3.5.2	Figure S19. ³¹ P{ ¹ H} NMR (162 MHz, THF-d ₈) of 7	
	3.5.3	Figure S20. ¹¹ B NMR (128 MHz, THF-d ₈) of 7	27
	3.5.4	Figure S21. ¹⁹ F NMR (376 MHz, THF-d ₈) of 7	
	3.5.5	Figure S22. FT-IR (ATR) of 7	29
	3.5.6	Figure S23. FT-IR (ATR) of ¹⁵ N-7	
	3.5.7	Figure S24. Raman spectrum of 7	
	3.5.8	Figure S25. Raman spectrum of ¹⁵ N-7.	
	3.6	[W(DEPE) ₂ (H) ₂ (M-N ₂)B(C ₆ F ₅) ₃] (10)	
	3.6.1	Figure S26. ¹ H NMR (400 MHz, C ₆ D ₆) of 10	
	3.6.2	Figure S27. ¹¹ B NMR (128 MHz, C₅D₅) of 10	
	3.6.3	Figure S28. ¹⁹ F NMR (376 MHz, C₀D₀) of 10	
	3.6.4	Figure S29. ¹⁵ N INVGATED ¹ H NMR (41 MHz, C ₆ D ₆) of 10	
	3.6.5	Figure S30. ³¹ P{ ¹ H} NMR (162 MHz, C ₆ D ₆) of 10	
	3.6.6	Figure S31. FT-IR (ATR) of 10.	
	3.6.7	Figure S32. FT-IR (ATR) of ¹⁵ N-10	
	3.6.8	Figure S33. Raman spectra of 10	40
	3.6.9	Figure S34. Raman spectra of ¹⁵ N-10	41
4	CRYS	TALLOGRAPHIC DATA	42
	4.1	DATA COLLECTION AND REFINEMENT	42

	4.2	X-RAY DIFFRACTION ANALYSIS OF 3.	43
	4.3	X-RAY DIFFRACTION ANALYSIS OF 4.	44
	4.4	X-RAY DIFFRACTION ANALYSIS OF 5.	45
	4.5	X-RAY DIFFRACTION ANALYSIS OF 7.	46
	4.6	X-RAY DIFFRACTION ANALYSIS OF 10.	47
5	DFT (CALCULATIONS	48
	5.1	METHODS	48
	5.1.1	Thermodynamics of H ₂ oxidative addition and NMR chemical shifts	48
	5.1.2	IR frequencies calculations, Kohn-Sham orbitals and NBO analysis of 7 and 10	48
	5.2	THERMODYNAMICS OF H2 OXIDATIVE ADDITION	48
	5.3	CHEMICAL SHIFT ESTIMATIONS	49
	5.4	COORDINATES OF OPTIMIZED GEOMETRIES USED FOR CHEMICAL SHIFT ESTIMATIONS (B3PW91, 6-31G)	50
	5.4.1	Compound 8 (E = -4582.518956 Ha)	50
	5.4.2	Compound 6 (E = -4582.521840 Ha)	51
	5.4.3	Compound 6' (E = -4582.521326 Ha)	52
	5.4.4	Compound 7 (E = -4582.545643 Ha)	53
	5.4.5	Compound A (E = -1345.722637 Ha)	55
	5.4.6	Compound B (E = -1466.741397 Ha)	56
	5.4.7	Compound C (E = -1704.654681 Ha)	57
	5.4.8	Compound D (E = -1252.420032 Ha)	58
	5.4.9	Compound E (E = -1409.587756 Ha)	59
	5.4.1	0 Compound F (E = -2219.506031 Ha)	60
	5.5	FRONTIER KOHN-SHAM ORBITALS OF 7 AND 10	61
	5.6	COORDINATES OF OPTIMIZED GEOMETRIES OF 7 AND 10 WITH DISPERSION (6-31G(D,P)-D3BJ)	63
	5.6.1	Compound 7	63
	5.6.2	Compound 10	64
	5.7	VISUALIZATION OF PERTINENT PRE-ORTHOGONAL NATURAL LOCALIZED MOLECULAR ORBITALS AND NATURAL BOND ORBITALS	
	(PNLMC	s and PNBOs)	65
6	REFE	RENCES	68
-			

2 Experimental Procedures

2.1 General Considerations

All reactions were performed in flame- or oven-dried glassware with rigorous exclusion of air and moisture, using a nitrogen filled Jacomex glove box ($O_2 < 0.5$ ppm, $H_2O < 1$ ppm). Solvents used were pre-dried (*n*-pentane and tetrahydrofuran by passing through a Puresolv MD 7 solvent purification machine; benzene, fluorobenzene, hexamethyldisiloxane (HMDSO) and tetrahydropyran by distillation over CaH₂), degassed by freeze-pump-thaw cycles, dried over molecular sieves and stored in the glove box. C₆D₆, C₆D₅Cl and THF-d₈ (purchased from Eurisotop) were degassed by freeze-pump-thaw cycles, dried over molecular sieves and stored in the glove box. The W-dinitrogen complexes 1^{R} , 9 and the isotopomer ¹⁵N- 1^{Et} , ^{S1} and 1,2-[B(C₆F₅)₂]₂C₆F₄ (2) ^{S2} were prepared according to reported procedures from unpurified commercially available chemicals and stored in the glove box. ¹H, ¹¹B, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded using NMR tubes equipped with J. Young valves on a Bruker Avance III 400 spectrometer. Chemical shifts are in parts per million (ppm) downfield from tetramethylsilane and are referenced to the most upfield residual solvent resonance as the internal standard in ¹H NMR (C₆HD₅: δ reported = 7.16 ppm, C₆HD₄Cl: δ reported = 6.96 ppm, THF-d₈: δ reported = 1.72 ppm). ¹¹B, ¹⁵N, ¹⁹F and ³¹P NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of tetramethylsilane as primary reference.^{S3} Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = heptuplet, m = multiplet), coupling constant (Hz), and integration. Infrared (IR) spectra were recorded in the glove box ($O_2 < 0.5$ ppm, $H_2O < 1$ ppm) on an Agilent Cary 630 FT-IR spectrophotometer equipped with ATR or transmission modules and are reported in wavenumbers (cm⁻¹) with (s) indicating strong absorption. Raman spectra were measured on XploRA Raman microspectrometer (Horiba). Excitation was achieved with a 785 nm laser line focused on the sample with a microscope objective (x100, numerical aperture = 0.5). Elemental analyses were performed on samples sealed in tin capsules under Ar or N₂ by the Analytical Service of the Laboratoire de Chimie de Coordination; results are the average of two independent measurements.

2.2 Preparation and Characterization of New Compounds

2.2.1 Preparation of [W(dppe)₂(µ-N₂)B(C₆F₅)(C₆F₄{B(C₆F₅)₃})] (**3**)

A solution of 1,2-[B(C₆F₅)₂]₂C₆F₄ (**2**, 25 mg, 30 μ mol) in C₆H₆ (1 mL) was added to a deep orange solution of W(N₂)₂(dppe)₂ (**1**^{Ph}, 31 mg, 30 μ mol, 1 equiv.) in C₆H₆ (3.5 mL) at room temperature, causing immediate gas (N₂) evolution and color change of the solution to dark red. The mixture was left standing for two days while dark red crystals of **2** precipitated out of the solution, the crystals were then recovered by decantation, washed with pentane (3 x 1.5 mL) and dried under vacuum (21 mg, 11 μ mol, 37% yield). Crystals obtained in this manner were of sufficient quality for X-ray diffraction analyses (see section 4.2). The insolubility of **3** in non-polar deuterated solvents and its instability in polar ones precluded the collection of meaningful NMR data. **IR** (ATR) v/cm⁻¹ = 3056, 1642, 1552, 1511, 1458 (s), 1437, 1390, 1375, 1309, 1293, 1273, 1254, 1187, 1087(s), 1045, 1027, 976(s), 962, 911, 866, 845, 813, 787, 771, 749, 740(s), 692(s), 661. **Elem. Anal.** no satisfying elemental analyses could be obtained for this compound, probably due to its extreme sensitivity.

2.2.2 Preparation of $[W(N_2)(depe)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (4)

A solution of 1,2-[B(C₆F₅)₂]₂C₆F₄ (**2**, 101 mg, 120 µmol) in PhF (1 mL) was added to a deep red solution of W(N₂)₂(depe)₂ (1^{Et}, 78 mg, 120 µmol) in PhF (1 mL) at room temperature to observe immediately a darkening of the solution. C₆H₆ (1 mL) was then added and the mixture was left standing 18 h while dark brown crystals of **4**•PhF precipitated out of the solution. The crystals were then recovered by decantation, washed with pentane (3 x 1.5 mL) and dried under vacuum (163 mg, 105 mmol, 88%). Crystals obtained in this manner were of sufficient quality for X-ray diffraction analyses (see section 4.3). The insolubility of **4** in apolar deuterated solvents and its instability in polar ones precluded the collection of meaningful NMR data. ¹⁵N-4 was obtained similarly from ¹⁵N-1^{Et}. IR (ATR) v/cm⁻¹ = 2978, 2944, 2913, 2885, 2220, 1641, 1628, 1595, 1513, 1495, 1454(s), 1387, 1375, 1310, 1294, 1271, 1254, 1219, 1189, 1156, 1111, 1083(s), 1039, 1029, 973(s), 897, 869, 842, 806, 771, 749(s), 739, 729, 683(s), 662; ¹⁵N-4 v/cm⁻¹ = 2974, 2942, 2914, 2882, 2220, 1667, 1641, 1595, 1513, 1493, 1454, 1375, 1307, 1293, 1271, 1218, 1109, 1083, 1039, 973, 867, 841, 806, 755, 687. Elem. Anal. calcd. for C₅₀H₄₈B₂F₂₄N₂P₄W•1.5C₆H₅F (%): C, 43.36; H, 3.42; N, 3.43. Found: C, 43.19; H, 3.29; N, 2.00.

2.2.3 Preparation of [W(THF)(depe)₂(μ-N₂)B(C₆F₅)(C₆F₄{B(C₆F₅)₃)] (5)

Solubilisation of 3-PhF (37 mg, 23 µmol) in THF (1 mL) led to immediate gas (N₂) evolution. After 5 min at RT the solvent was removed under vacuum and the resulting oily residue triturated with pentane to yield 5 as a dark yellow powder recovered by decantation and dried under vacuum (35 mg, 23 µmol, 98%). Crystals suitable for analysis of 5 by X-ray diffraction were grown from a THF solution layered with HMDSO, but despite several attempts, the obtained structures were of too low resolution (see section 4.4). ¹⁵N-5 was obtained similarly from ¹⁵N-4. ¹H NMR (400 MHz, THF-*d*₈): δ 2.34–2.19 (m, 2H, PC*H*₂CH₃), 2.16–1.95 (m, 8H, PC*H*₂CH₃; PC*H*₂C*H*₂P), 1.91-1.65 (m, 10H, PCH₂CH₃; PCH₂CH₂P), 1.64-1.46 (m, 4H, PCH₂CH₂P), 1.38-1.10 (m, 21H, PCH₂CH₃), 0.88-0.75 (m, 3H, PCH₂CH₃) ppm. ¹¹B NMR (128 MHz, THF-d₈): δ -15.05 (s, 1B, -B(C₆F₅)₃) ppm. ¹⁵N-NMR (41 MHz, C₆D₆): δ - 55.7, - 80.7. ¹⁹F NMR $(376 \text{ MHz}, \text{THF}-d_8): \delta - 122.40 \text{ (dd}, J = 27.5, 14.7 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 1\text{ F}, o-C_6\text{F}_5 - B(C_6\text{F}_5)_3), -124.39 \text{ (dd}, J = 23.1, 18.2 \text{ Hz}, 18.2 \text{ Hz},$ -126.44 (dd, J = 27.2, 18.5 Hz, 1F, $-(C_6F_4B_2)$.), -130.76 (dd, J = 27.0, 7.8 Hz, 1F, $o-C_6F_5$ $-B(C_6F_5)N-$), -131.33 (ddd, J = 27.4, 16.5, 10.4 Hz, 1F, $-(C_6F_4B_2)$.), -132.02 (d, J = 24.8 Hz, 1F, $o-C_6F_5 - B(C_6F_5)_3$), -132.31 - -132.71 (m, 1F, $o-C_6F_5 - B(C_6F_5)_3$), -133.36 (td, J = 24.8 Hz, 1F, $o-C_6F_5 - B(C_6F_5)_3$), -132.31 - -132.71 (m, 1F, $o-C_6F_5 - B(C_6F_5)_3$), -133.36 (td, J = 24.8 Hz, 1F, -132.71 (m, 1F, -125.3, 7.0 Hz, 1F, o-C₆F₅ -B(C₆F₅)₃), -133.87 - -134.22 (m, 2F, o-C₆F₅ -B(C₆F₅)₃; -B(C₆F₅)N-), -158.92 (t, J = 20.3 Hz, 1F, p-C₆F₅ - $B(C_6F_5)N$ -), -164.39 (t, J = 20.1 Hz, 1F, p- C_6F_5 - $B(C_6F_5)_3$), -164.65 (t, J = 21.0 Hz, 1F, - $(C_6F_4B_2)$ -), -164.93 (td, J = 22.8, 8.8 Hz, 1F, - $(C_6F_4B_2)$ -), -164.93 (td, J = 22.8, -164.93 (td, J = 22.8m-C₆F₅ -B(C₆F₅)N-), -165.42 (ddd, J = 29.9, 20.5, 9.3 Hz, 1F, m-C₆F₅ -B(C₆F₅)N-), -166.12 (t, J = 20.4 Hz, 1F, p-C₆F₅ -B(C₆F₅)₃), -166.36 (t, J = 20.2 Hz, 1F, $p-C_6F_5 - B(C_6F_5)_3$), -167.17 (td, J = 21.8, 8.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5 - B(C_6F_5)_3$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5$), -167.69 (dd, J = 27.0, 19.7 Hz, 1F, $m-C_6F_5$), -167.69 (dd, J = 27.0, 19.7 Hz, 100), -167.69 (dd, J = 27.0), -167.69 (dd, J = 27.0), -167.69 (dd, J = 27.0), -167. $1F, m-C_{6}F_{5} - B(C_{6}F_{5})_{3}), -169.74 - -169.97 (m, 1F, m-C_{6}F_{5} - B(C_{6}F_{5})_{3}), -169.95 - -170.15 (m, 1F, m-C_{6}F_{5} - B(C_{6}F_{5})_{3}) ppm.$ (162 MHz, THF-*d*₈): δ 38.6 (s, 2P, *J*_{WP} = 284.2 Hz), 33.8 (s, 2P, *J*_{WP} = 283.2 Hz). **IR** (ATR) v/cm⁻¹ = 2963, 2941, 2883, 1641, 1512, 1455, 1377, 1297, 1271, 1253, 1109, 1079, 1039, 973, 867, 841, 810, 771, 758, 739, 730, 685, 662; ¹⁵N-5 v/cm⁻¹ = 2964, 2922, 2884, 1642, 1512, 1455, 1377, 1298, 1271, 1183, 1107, 1081, 1038, 973, 867, 825, 810, 771, 755, 749, 729, 686, 665. Raman cm⁻¹ = 1648, 1486, 1461, 1419, 1364, 1318, 1239, 1218, 1201, 1136, 1047, 984, 950, 916, 850, 816, 775, 733, 678; ¹⁵N-5 cm⁻¹ = 1647, 1468, 1419, 1343, 1319, 1299, 1242, 1202, 1133, 1048, 996, 955, 915, 848, 819, 774, 732, 672. Elem. Anal. calcd. for C₅₄H₅₆B₂F₂₄N₂OP₄W (%): C, 42.27; H, 3.68; N, 1.83. Found: C, 41.98; H, 3.69; N, 1.97.

2.2.4 Spectroscopic characterization of $[W(depe)_2(H)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (6)

Complex **5** (12.2 mg, 8.0 μ mol) was solubilized in THF-*d*₈ (0.5 mL) and transferred in a high pressure Young NMR tube. After 5 min at RT, H₂ was added (2.5 atm) and the mixture rapidly turned yellow from dark brown upon conversion to a mixture of two isomers of H₂ complex **6**. ¹H NMR (400 MHz, THF-*d*₈): Owing to signal superposition, the two isomers could not be differentiated; δ 2.43 – 1.7 (m, PCH₂CH₃, PCH₂CH₂P), 1.70 – 1.42 (m, PCH₂CH₃), PCH₂CH₃), 1.34 – 1.03 (m, PCH₂CH₃), 1.03 – 0.91 (m, PCH₂CH₃), 0.90 – 0.78 (m, PCH₂CH₃); hydride signals are hidden under the phosphine's substituents (see section 5.4.2 and 5.4.3). ¹¹B NMR (128 MHz, THF-*d*₈):

Both isomers = δ -15.09 (s, 1B, -*B*(C₆F₅)₃) ppm. ¹⁵N-NMR (41 MHz, C₆D₆): Min = δ - 60.5, -97.3; Maj = δ - 63.1, -100.4. ¹⁹F NMR (376 MHz, THF-*d*₆): Maj = δ -123.21 (br, 1F), -123.92 - -124.30 (m, 1F), -126.77 (br, 1F), -132.24 - -132.90 (m, 3F), -133.27 (dt, *J* = 24.2, 11.9 Hz, 1F), -133.43 - -133.65 (m, 1F), -134.24 - -134.46 (m, 1F), -134.51 - -134.78 (m, 1F), -156.62 (t, *J* = 19.7 Hz, 1F), -163.54 - -163.81 (m, 2F), -164.04 - -164.42 (m, 1F), -165.74 - -166.00 (m, 2F), -166.34 - -166.53 (m, 1F), -166.75 - -166.97 (m, 1F), -167.78 - -167.47 (td, *J* = 22.4, 21.8, 9.5 Hz, 1F), -168.45 (q, *J* = 25.8, 23.9 Hz, 2F), -168.89 (t, *J* = 22.0 Hz, 1F), -169.73 - -169.93 (m, 1F); Min = δ -123.89 - -124.44 (m, 1F), -125.76 (br, 1F), -128.37 (br, 1F), -131.87 (d, *J* = 23.7 Hz, 1F), -132.26 - -132.89 (m, 3F), -133.43 - -133.65 (m, 1F), -133.77 (dd, *J* = 26.1, 7.9 Hz, 1F), -135.25 - -135.67 (m, 1F), -156.67 (t, *J* = 20.1 Hz, 1F), -162.81 (t, *J* = 21.2 Hz, 1F), -163.54 - -163.76 (m, 1F), -164.06 - -164.41 (m, 1F), -165.51 - -165.73 (m, 2F), -165.75 - -166.02 (m, 1F), -169.56 - -169.74 (m, 1F), -166.77 - -166.99 (m, 1F), -167.92 - -168.21 (m, 1F), -169.17 (t, *J* = 21.6 Hz, 1F), -169.31 - -169.54 (m, 1F), -169.56 - -169.74 (m, 1F), -170.44 - -170.71 (m, 1F). ³¹P{'H} NMR (162 MHz, THF-*d*₈): Maj = δ 49.02 - 47.97 (m, 2P), 46.53 - 45.80 (m, 1P), 7.24 (t, *J* = 22.2 Hz, 1P) ppm; Min = δ 50.93 (t, *J* = 20.7 Hz, 1P), 48.06 - 47.68 (m, 1P), 45.91 - 45.35 (m, 1P), 8.73 (t, *J* = 22.5 Hz, 1P) ppm.

2.2.5 Preparation of [W(depe)₂(H)₂(µ-N₂)(1,2-{B(C₆F₅)₂}₂C₆F₄)] (7) from 5

Complex **5** (46 mg, 30 μ mol) was solubilized in THF-*d*₈ (0.65 mL) and transferred in a high pressure Young NMR tube. After 5 min at RT, H₂ was added (2.5 atm) and the mixture rapidly turned yellow from dark brown upon conversion to complex **6**. After 6 days at 60 °C, NMR monitoring shows that **7** is the major component of the reaction mixture. Slow diffusion of HMDSO in the THF solution allowed for the deposition of **7** as bright yellow crystals (21 mg, 48%) that were suitable for an XRD analysis (see section 4.8). ¹⁵N-**7** was obtained by another approach, see 2.2.7.

¹**H** NMR (400 MHz, THF-*d*₈): δ 2.41 – 2.25 (m, 4H, PCH₂CH₃), 2.20 – 2.06 (m, 4H, PCH₂CH₃), 2.03 – 1.80 (m, 8H, PCH₂CH₂P), 1.68 – 1.54 (m, 7H, PCH₂CH₃, PCH₂CH₃), 1.38 – 1.14 (m, 15H, PCH₂CH₃), 1.05 (t, J = 7.5 Hz, 3H, PCH₂CH₃), 1.01 (t, J = 7.5 Hz, 3H, PCH₂CH₃); hydride signals are hidden under the phosphine's substituents (see section 5.4.4). ¹¹**B** NMR (128 MHz, THF-*d*₈): δ – 3.36 (br, 2B) ppm. ¹⁹**F** NMR (376 MHz, THF-*d*₈): –116.38 (s br, 1F, o-C₆F₅), –119.07 (s br, 1F, o-C₆F₅), –126.64 (s br, 1F, o-C₆F₅), –128.17 (s br, 1F, o-C₆F₅), –129.03 (s br, 2F, o-C₆F₅), –129.73 (s br, 1F, o-C₆F₅), –130.78 (s br, 1F, o-C₆F₅), –138.33 (d br, *J* = 36.3 Hz, 1F, o-C₆F₅), –139.60 (s br, 1F, o-C₆F₅), –162.36 (s br, 1F, p-C₆F₅), –163.52 (s br, 1F, p-C₆F₅), –166.75 (s br, 1F, p-C₆F₅), –166.14 (s br, 1F, m-C₆F₅), –166.58 (s br, 1F, m-C₆F₅), –166.75 (s br, 1F, m-C₆F₅), –166.97 (s br, 2F, *m*-C₆F₅), –167.40 (s br, 2F, *m*-C₆F₅), –167.75 (s br, 1F, *m*-C₆F₅), –168.82 (s br, 1F, *m*-C₆F₅) ppm. ³¹P{¹H} NMR (162 MHz, THF-d8): δ 44.24 (t, *J* = 13.7 Hz, *J*_{PW} = 76.5 Hz, 1P), 37.85 (br, 1P), 35.51 (br, 1P), -3.89 (t, *J* = 20.8 Hz, 1P). IR (ATR) v/cm⁻¹ = 2978, 2943, 2885, 1850, 1640, 1513, 1446, 1399, 1360, 1327, 1274, 1252, 1082, 1031, 971, 959, 860, 823, 795, 751, 734, 677. **Elem. Anal.** calcd. for C₅₀H₅₀B₂F₂₄N₂P₄W (%): C, 41.01; H, 3.44; N, 1.91. Found: C, 41.35; H, 3.54; N, 1.96.

2.2.6 Preparation of $[W(depe)_2(H)_2(\mu-N_2)B(C_6F_5)_3]$ (10)

Toluene (2 mL) was added at room temperature to a vial containing $\mathbf{1}^{Et}$ (150 mg, 230 µmol) and B(C₆F₅)₃ (118 mg, 230 µmol, 1 equiv.). The reaction mixture was transferred to a Fisher-Porter vessel and placed under an H₂ atmosphere (2.5 bar). The dark maroon-purple solution was stirred for 30 min, time during which the mixture turned to a deep orange solution. This was concentrated under vacuum to 1 mL and layered with pentane. After 3 days at -30 °C, dark red-orange crystals of **10** precipitated. They were recovered by filtration, washed with pentane and dried under vacuum (212 mg, 81% yield, toluene solvate). ¹⁵N-10 was obtained similarly from ¹⁵N-1^{Et}. ¹H NMR (400 MHz, C₆D₆): δ 1.88 - 1.73 (m, 2H), 1.73 - 1.53 (m, 4H), 1.53 - 1.32 (m, 5H), 1.32 - 1.08 (m, 6H), 1.08 - 0.86 (m, 16H),

0.86 - 0.76 (m, 3H), 0.76 - 0.57 (m, 6H), 0.40 (dt, J = 14.3, 7.5 Hz, 6H), -1.38 - -2.04 (m, 2H) ppm. ¹¹B NMR (128 MHz, C₆D₆): $\delta - 9.7$

ppm. ¹⁵N-NMR (41 MHz, C_6D_6): $\delta - 35.5$, -130.3. ¹⁹F NMR (376 MHz, C_6D_6): $\delta - 131.3$ (dd, J = 25.7, 7.9 Hz, $2F_{ortho}$), -160.3 (t, J = 20.7 Hz, $1F_{para}$), -165.2 (m, $2F_{meta}$) ppm. ³¹P{¹H} NMR (162 MHz, C_6D_6): $\delta 49.9$ (br s, 1P, ¹ $J_{P-W} = 182.7$ Hz), 49.8 (br s, 2P, ¹ $J_{P-W} = 180.7$ Hz), 15.7 (m, 1P) ppm. IR (ATR) v/cm⁻¹ = 2967, 2940, 1712(s), 1641, 1513(s), 1452(s), 1375, 1274, 1082(s), 1038, 973(s), 884, 872, 806, 755, 730, 703, 676, 660; ¹⁵N-10 v/cm⁻¹ = 2967, 2939, 2906, 2879, 1778, 1659(s), 1640(s), 1513(s), 1452(s), 1425, 1374, 1273, 1245, 1125, 1098, 1083(s), 1037, 1026, 973(s), 882, 871, 817, 803, 768, 756, 730, 704, 675, 665. Raman cm⁻¹ = 1827, 1714, 1641, 1513, 1464, 1418, 1374, 1322, 1277, 1236, 1191, 1132, 1083, 1041, 1002, 981, 956, 884, 833, 816, 806, 761, 740, 707, 675, 667; ¹⁵N-10 cm⁻¹ = 1826, 1664, 1640, 1514, 1463, 1416, 1374, 1347, 1276, 1258, 1235, 1131, 1082, 1041, 1004, 980, 900, 881, 837, 817, 804, 760, 739, 707, 676, 666. Elem. Anal. calcd. for $C_{38}H_{50}BF_{15}N_2P_4W$ ·0.4 C_7H_8 (%): C, 41.46; H, 4.58; N, 2.39. Found: C, 41.41; H, 4.68; N, 2.33.

2.2.7 Preparation of $[W(depe)_2(H)_2(\mu-N_2)(1,2-\{B(C_6F_5)_2\}_2C_6F_4)]$ (7) from 10

 C_6D_6 (0.6 mL) was added to a J. Young-valved NMR tube containing $[W(depe)_2(H)_2(\mu-N_2)B(C_6F_5)_3]$ (**10**, 23 mg, 20 µmol) and 1,2- $[B(C_6F_5)_2]_2C_6F_4$ (**2**, 17 mg, 20 µmol, 1 equiv). The precipitation of a dense orange oil was observed and NMR analysis revealed the total consumption of **10** after 30 hours at room temperature. The light-yellow supernatant was separated by filtration, the oil washed with C_6D_6 (3 x 0.1 mL) and dissolved in $C_6D_4Cl_2$ (0.5 mL). The orange solution was then heated at 50 °C for 2 days, leading to the deposition of $[W(depe)_2(H)_2(\mu-N_2)(1,2-\{B(C_6F_5)_2\}_2C_6F_4)]$ as bright yellow crystals (18 mg, 63% yield). ¹⁵N-7 was obtained similarly from ¹⁵N-10. Despite several hours of acquisition, no nitrogen resonances could be detected in the ¹⁵N NMR spectra. **IR (ATR)** ¹⁵N-7 v/cm⁻¹ = 2965, 2940, 2883, 1849, 1640, 1513, 1484, 1446, 1383, 1338, 1323, 1274, 1252, 1083, 1038, 971, 960, 859, 789, 750, 734, 712, 693, 678. **Raman** cm⁻¹ = 1899, 1855, 1645, 1466, 1417, 1387, 1328, 1276, 1258, 1244, 1153, 1086, 1068, 1041, 984, 887, 863, 826, 794, 775, 733, 693, 675; ¹⁵N-7 cm⁻¹ = 1899, 1854, 1645, 1466, 1417, 1388, 1326, 1275, 1258, 1241, 1154, 1087, 1068, 1040, 991, 888, 863, 827, 794, 775, 733, 693, 674.

3 Spectroscopic Data of New Compounds

- 3.1 $[W(dppe)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (3)
- 3.1.1 Figure S1. FT-IR (ATR) of 3.

3.2 $[W(N_2)(depe)_2(\mu-N_2)B(C_6F_5)(C_6F_4\{B(C_6F_5)_3\})]$ (4)

3.2.1 Figure S2. FT-IR (ATR) of 4.

3.3 [W(THF)(depe)₂(µ-N₂)B(C₆F₅)(C₆F₄{B(C₆F₅)₃)] (5)

3.3.1 **Figure S4**. ¹H NMR (400 MHz, THF-d₈) of **5**.

3.3.2 Figure S5. ³¹P{¹H} NMR (162 MHz, THF-d₈) of 5.

3.3.3 Figure S6. ¹¹B NMR (128 MHz, THF-d₈) of 5.

3.4 [W(depe)₂(H)₂(μ -N₂)B(C₆F₅)(C₆F₄{B(C₆F₅)₃})] (6)

3.4.1 **Figure S13.** ¹H NMR (400 MHz, THF-d₈) of **6** isomers.

3.4.3 **Figure S15.** ¹¹B NMR (128 MHz, THF-d₈) of **6** isomers.

3.5 II. 6. $[W(depe)_2(H)_2(\mu-N_2)(1,2-\{B(C_6F_5)_2\}_2C_6F_4)]$ (7)

3.5.1 Figure S18. ¹H NMR (400 MHz, THF-d₈) of **7**.

3.5.2 Figure S19. ³¹P{¹H} NMR (162 MHz, THF-d₈) of 7.

3.5.3 **Figure S20**. ¹¹B NMR (128 MHz, THF-d₈) of **7**.

3.5.4 **Figure S21.** ¹⁹F NMR (376 MHz, THF-d₈) of **7**.

3.5.7 Figure S24. Raman spectrum of 7.

3.6 [W(depe)₂(H)₂(µ-N₂)B(C₆F₅)₃] (10)

3.6.1 Figure S26. ¹H NMR (400 MHz, C₆D₆) of 10.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

3.6.3 Figure S28. ¹⁹F NMR (376 MHz, C₆D₆) of **10**.

4 Crystallographic data

4.1 Data collection and refinement

Data for compounds **3**, **4**, **5**, **7** and **10** were collected at low temperature (100 K) on a Bruker Kappa Apex II diffractometer using a Mo-K α radiation (I = 0.71073Å) micro-source and equipped with an Oxford Cryosystems Cryostream Cooler Device. The structures have been solved by Direct Methods and refined by means of least-squares procedures using the SHELXS97^{S4} program included in the softwares package WinGX version 1.63^{S5} or with the aid of the software package Crystal.^{S6} The Atomic Scattering Factors were taken from International tables for X-Ray Crystallography.^{S7} Hydrogen atoms were placed geometrically and refined using a riding model. All non-hydrogens atoms were anisotropically refined. Drawing of molecules in the following figures were performed with the program Mercury^{S8} with 30% probability displacement ellipsoids for non-hydrogen atoms. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 2115061-2115063, 2115066 and 2285830.

4.2 X-Ray diffraction analysis of 3.

Figure S35. X-ray crystal structure of 3, hydrogen atoms omitted for clarity. Ellipsoids at the 30% probability level.

Table S1. Crystallographic data for 3.

Chemical formula	$C_{82}H_{48}B_2F_{24}N_2P_4W$
Mr	1846.57
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	200 K
a, b, c (Å)	13.6255 (5), 28.1927 (11), 22.8261 (9)
β (°)	101.761 (1)
V (Å ³)	8584.3 (6)
Z	4
Radiation type	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
μ (mm ⁻¹)	1.51
Crystal size (mm)	0.15 × 0.12 × 0.02
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)
T _{min} , T _{max}	0.652, 0.746
No. of measured, independent and	192193, 14618, 12352
observed $[l > 2\sigma(l)]$ reflections	
R _{int}	0.067
θ _{max} (°)	24.7
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.093, 1.12
No. of reflections	14618
No. of parameters	1036
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ Å^{-3})$	1.87, –0.85

4.3 X-Ray diffraction analysis of 4.

Figure S36. X-ray crystal structure of 4, hydrogen atoms omitted for clarity. Ellipsoids at the 30% probability level.

Table S2. Crystallographic data for 4.

Chemical formula	$C_{50}H_{48}B_2F_{24}N_4P_4W \cdot C_7H_8 \cdot 0.5(C_6H_6)$
Mr	1621.46
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	110 K
a, b, c (Å)	12.833 (3), 24.785 (5), 19.899 (4)
β (°)	91.015 (7)
V (Å ³)	6328 (2)
Z	4
Radiation type	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
µ (mm ⁻¹)	2.04
Crystal size (mm)	0.17 × 0.12 × 0.04
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)
T _{min} , T _{max}	0.669, 0.746
No. of measured, independent and	123400, 12924, 10277
observed $[l > 2\sigma(l)]$ reflections	
R _{int}	0.100
θ _{max} (°)	26.4
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.144, 1.13
No. of reflections	12923
No. of parameters	829
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	2.12, -1.83

4.4 X-Ray diffraction analysis of 5.

Figure S37. X-ray crystal structure of 5, hydrogen atoms omitted for clarity. Ellipsoids at the 30% probability level.

Table S3. Crystallographic data for 4.

Chemical formula	C54H56B2F24N2OP4W
Mr	1534.27
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	133 K
a, b, c (Å)	15.1504(9), 23.4318(15), 19.2226(11)
β (°)	93.953(2)
V (Å ³)	6807.8(7)
Z	4
Radiation type	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
μ (mm ⁻¹)	1.91
Crystal size (mm)	
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)
T _{min} , T _{max}	
No. of measured, independent and	99634, 7122, 5695
observed $[l > 2\sigma(l)]$ reflections	
Rint	0.107
θ _{max} (°)	20.8
Refinement	
$R[P^2 > 2\sigma(P^2)], wR(P^2), S$	0.082, 0.220, 1.10
No. of reflections	7122
No. of parameters	796
H-atom treatement	H atoms parameters constrained
Δρ _{max} (e Å ⁻³)	0.032

4.5 X-Ray diffraction analysis of 7.

Figure S38. X-ray crystal structure of 7, hydrogen atoms except those bound to tungsten omitted for clarity. Ellipsoids at the 30% probability level.

Table S4. Crystallographic data for 7.

Chemical formula	$C_{50}H_{50}B_2F_{24}N_2P_4W$
Mr	1464.27
Crystal system, space group	Monoclinic, P2 ₁ /c
Temperature (K)	133 K
a, b, c (Å)	20.1462 (11), 11.8225 (6), 22.9963 (12)
β (°)	92.163 (2)
V (Å ³)	5473.3 (5)
Z	4
Radiation type	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
µ (mm⁻¹)	2.35
Crystal size (mm)	0.18 × 0.15 × 0.03
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)
T _{min} , T _{max}	0.633, 0.747
No. of measured, independent and	235655, 11190, 10270
observed $[l > 2\sigma(l)]$ reflections	
Rint	0.064
θ _{max} (°)	26.4
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.054, 1.09
No. of reflections	11190
No. of parameters	764
H-atom treatement	mixture of independent and constrained refinement
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ Å^{-3})$	1.45, -0.58

4.6 X-Ray diffraction analysis of 10.

Figure S39. X-ray crystal structure of 10, hydrogen atoms except those bound to tungsten omitted for clarity. Ellipsoids at the 30% probability level.

 Table S5. Crystallographic data for 7.

$C_{38}H_{50}BF_{15}N_2P_4W$	
<i>M</i> _r = 1138.35	$D_{\rm x} = 1.712 {\rm Mg}{\rm m}^{-3}$
Monoclinic, P21/c	
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>a</i> = 10.96920 (3) Å	Cell parameters from 9782 reflections
<i>b</i> = 20.06390 (4) Å	$\theta = 3-28^{\circ}$
c = 20.47910 (4) Å	$\mu = 2.86 \text{ mm}^{-1}$
$\beta = 101.510 (3)^{\circ}$	<i>T</i> = 110 K
V = 4416.50 (5) Å ³	Block, yellow
Z=4	0.15 × 0.10 × 0.04 mm
<i>F</i> (000) = 2264	
Data Collection	
Bruker Kappa Apex2 diffractometer	9836 reflections with $I > 2.0\sigma(I)$
Radiation source: Mo micro focus	$R_{\text{int}} = 0.056$
Graphite monochromator	$\theta_{max} = 28.4^\circ, \ \theta_{min} = 1.4^\circ$
φ & ω scans	h = -14 14
Absorption correction: multi-scan SADABS (Siemens, 1996)	k = -26 26
$T_{min} = 0.83, \ T_{max} = 0.89$	<i>l</i> = -27 26
95890 measured reflections	Standard reflections: 0
11037 independent reflections	
Refinement	
Refinement on F ²	
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047	Method = Modified Sheldrick $w = 1/[\sigma^2(P^2) + (0.01P)^2 + 5.38P]$, where $P = (max(F_0^2, 0) + 2F_0^2)/3$
S = 0.99	$(\Delta/\sigma)_{max} = 0.005$
11030 reflections	$\Delta \rho_{max} = 0.67 \text{ e} \text{ Å}-3$
557 parameters	$\Delta \rho_{min} = -0.54 \text{ e} \text{ \AA} - 3$
0 restraints	Extinction correction: None

5 DFT Calculations

5.1 Methods

5.1.1 Thermodynamics of H₂ oxidative addition and NMR chemical shifts

DFT calculations employing the B3PW91 functional^{S9} were performed with the Gaussian16 series of programs, B.01 version.^{S10} The tungsten atoms were represented by the relativistic effective core potential (RECP) from the Stuttgart group and their associated basis set,^{S11,12} augmented by polarization functions (af = 0.823, W; $\alpha d = 0.387 P$).^{S13} The remaining atoms (C, B, N, F, Si, O, H) were represented by 6-31G(d,p) basis sets.^{S14} Full optimizations of geometry without any constraint were performed. Calculations of harmonic vibrational frequencies were performed to determine the nature of each extremum. The contributions to the Gibbs free energy were taken at T = 298 K and with P = 1 atm within the harmonic oscillator and rigid rotator approximations. To compute chemical shielding tensors, the gauge including atomic orbital (GIAO) method has been adopted. Chemical shifts are calculated as $\delta = \sigma^{TMS} - \sigma^{complex}$ where σ^{TMS} and $\sigma^{complex}$ are the isotropic chemical shieldings of H atoms in tetramethylsilane (TMS) and in a transition metal complex, respectively. The average calculated isotropic shielding in TMS is 31.7 ppm for ¹H.^{S15}

5.1.2 IR frequencies calculations, Kohn-Sham orbitals and NBO analysis of 7 and 10

The DFT calculations were carried out with the Gaussian16 series of programs, B.01 version, ^{S10} using the B3PW91 functional in combination with the 6-31G(d,p) basis set and Grimme's DFT-D3 London-dispersion correction with Becke-Johnson damping (D3BJ).^{S16} Calculated Infra-red values were corrected with a scaling factor = 0.958. Natural Bond Orbital^{S17} analyses – NBO – (Wiberg indexes, NPA charges, pNBO, and pNLMO) were performed with the NBO program version 6.0.^{S18}

5.2 Thermodynamics of H₂ oxidative addition

Figure S40. Possible intermediates in the 5 + $H_2 \rightarrow$ 7 reaction and their relative energies.

5.3 Chemical shift estimations

The structures of the literature-known tungsten-hydride complexes **A-F**^[S19] have been optimized using their X-ray diffraction structures as the starting point.

Chart S1. Known W-H species used as basis for ¹H-NMR chemical shift prediction of the W-bound protons in 6 and 7.

Plot S1. Red series: computed W–H chemical shifts plotted against the experimental values for complexes A–F. Blue dotted line: linear regression of the red series. Blue series: computed W–H chemical shifts plotted against the estimated values (extracted from the linear regression curve equation 1.8013 × ∂_{calc} + 4.3307) for complexes 6–7.

Table S6. Isotropic chemical shieldings tensor (σ) and chemical shift (∂) values: ∂_{est} (ppm) are calculated using the equation $\partial_{est} = 1.8013 \times \partial_{calc} + 4.3307$; $\partial_{calc} = \sigma^{TMS} - \sigma^{complex} = 31.7 - \sigma^{complex}$.

	σ^{complex} (Ha)	δ _{calc} (ppm)	δ _{est} (ppm)	σ^{complex} (Hb)	δ _{calc} (ppm)	δ _{est} (ppm)	
6	33.16 (H84)	-1.46	1.70	34.08 (H85)	-2.38	0.04	
6'	33.74 (H85)	-2.04	0.66	34.11 (H84)	-2.41	-0.01	
7	32.89 (H71)	-1.19	2.19	33.21 (H85)	-1.51	1.61	
	σ ^{complex} (Ha)	δ_{calc} (ppm)	δ _{exp} (ppm)				
Α	35.51 (H52)	-3.81	-2.42				
В	28.65 (H65)	+3.05	+9.8				
С	36.18 (H2)	-4.48	-4.83				
D	36.76 (H4)	-5.06	-4.16				
E	36.27 (H4)	-4.57	-3.43]			
F	36.84 (H80)	-5.14	-5.02				

5.4 Coordinates of optimized geometries used for chemical shift estimations (B3PW91, 6-31G)

5.4.1 Compound **8** (*E* = -4582.518956 Ha)

Figure S41. Optimized structure for 8, hydrogen atoms except those bound to tungsten omitted for clarity.

С	7.438127	1.220960	-0.901398	С	-2.775888	2.641389	-3.878797	F	5.482309	-5.135809	-0.202034
С	6.788351	0.380421	-1.797758	С	-5.612969	0.412994	-2.882283	F	5.702278	-2.524824	-0.121150
С	5.544109	-0.135820	-1.459346	С	-6.046824	1.285915	-4.057163	С	2.509657	0.252405	-1.253477
С	4.884115	0.120737	-0.255087	Р	-2.878722	-2.630745	-1.496978	С	1.899707	-0.345483	-2.359072
С	5.570493	0.982625	0.598529	С	-1.288970	-2.431845	-2.447807	С	1.289838	0.363670	-3.390781
С	6.822040	1.523097	0.304465	С	-0.761764	-3.626019	-3.238756	С	1.302717	1.751087	-3.381133
в	3.361695	-0.489513	-0.033375	С	-4.044772	-3.280937	-2.810288	С	1.931785	2.403099	-2.330782
С	2.702335	-0.194951	1.459420	С	-5.478914	-3.540586	-2.357580	С	2.513896	1.651691	-1.312852
С	1.470296	0.437584	1.767346	С	-2.631957	-4.162831	-0.435767	F	0.685243	-0.286449	-4.397861
С	1.022552	0.442256	3.088413	С	-2.038941	-3.788126	0.915082	F	1.869793	-1.681455	-2.512372
С	1.705803	-0.141650	4.140306	Р	-2.954941	-2.353254	1.697874	F	0.715096	2.444260	-4.362824
С	2.919569	-0.750698	3.857844	С	-1.798861	-1.966503	3.110554	F	1.958619	3.740870	-2.296129
С	3.380361	-0.758826	2.546023	С	-2.392626	-1.137003	4.244096	F	3.123639	2.362950	-0.349563
F	-0.155719	1.059288	3.392337	С	-4.421467	-3.172379	2.534176	Н	-6.983586	0.909090	-4.481957
В	0.440014	1.216527	0.841216	С	-4.138610	-4.335593	3.481986	Н	-5.353146	-0.933871	-0.204456
Ν	-0.668024	0.520371	0.342958	С	0.424359	2.796854	0.703615	н	-6.073834	-3.944894	-3.183083
Ν	-1.738200	0.045514	0.123635	С	-0.429436	3.471904	-0.174641	н	-6.416758	0.346525	-2.137791
W	-3.453187	-0.650986	-0.061625	С	-0.508025	4.851694	-0.283970	н	-5.432098	-0.612541	-3.221878
Р	-4.484499	1.205278	1.241024	С	0.312311	5.639803	0.515422	н	-6.220553	2.324893	-3.761529
С	-3.244869	2.304914	2.099503	С	1.189386	5.025787	1.402299	Н	-5.302892	1.284191	-4.858322
С	-3.749364	3.421566	3.008811	С	1.238694	3.635613	1.481819	н	-5.971455	-2.625326	-2.016149
F	1.210477	-0.126914	5.385633	F	-1.250154	2.777165	-0.989308	н	-4.024261	-2.550972	-3.628093
F	3.622245	-1.326780	4.836817	F	-1.364530	5.417366	-1.141382	Н	-7.558025	1.465749	3.595258
F	4.563862	-1.369130	2.360174	F	0.253493	6.965040	0.435530	н	-5.090875	-3.491992	1.725699
F	4.971514	-0.945755	-2.372323	F	2.102622	3.136030	2.359849	Н	-5.069222	-4.688341	3.939296
F	5.043874	1.370497	1.771678	F	1.975672	5.773889	2.173896	н	-7.482073	2.085759	1.948251
F	7.363631	0.079376	-2.968789	С	3.339195	-2.154409	-0.126307	н	-3.690547	-5.187789	2.963043
F	7.427332	2.344086	1.171543	С	2.127400	-2.842350	-0.075186	Н	-4.945889	-2.365236	3.058655
F	8.635275	1.733868	-1.199955	С	1.994804	-4.222741	-0.119114	н	-5.525475	-4.269419	-1.541897
С	-5.805064	0.804043	2.514478	С	3.131883	-5.017016	-0.169216	н	-6.344591	1.953414	-0.149491
С	-6.876662	1.848644	2.827854	С	4.370410	-4.394699	-0.175062	н	-3.616668	-4.630164	-0.314571
С	-5.362130	2.390426	0.068446	С	4.451782	-3.001221	-0.144782	н	-3.603357	-4.203703	-3.202877
С	-4.556664	2.569053	-1.215720	F	0.777725	-4.803540	-0.116335	н	-6.278486	-0.117252	2.155715
Ρ	-4.074225	0.891646	-1.916632	F	3.029287	-6.348435	-0.206042	Н	-6.453152	2.782833	3.202291
С	-2.799010	1.253390	-3.238359	F	0.962028	-2.148656	0.002936	н	-3.464649	-4.048670	4.294353

н	-2.941688	0.473745	-3.997166	н	-3.621829	3.100625	-1.016880	н	-0.546029	-2.112112	-1.714310
Н	-5.112279	3.157098	-1.953370	н	-1.836378	1.047327	-2.763717	н	0.153055	-3.322470	-3.755017
Н	-1.995124	-4.880259	-0.961829	Н	-1.456693	-1.573993	-3.107035	Н	-2.575335	1.635151	2.645724
Н	-5.255171	0.523481	3.420663	Н	-4.263345	3.028637	3.890629	Н	-0.955349	-1.439880	2.653977
Н	-3.714175	2.893763	-4.378820	Н	-0.499112	-4.463428	-2.586915	Н	-2.640306	2.713794	1.283899
Н	-5.543331	3.352195	0.559931	н	-2.560594	3.417693	-3.141389	н	-4.430327	4.106969	2.494377
Н	-1.975420	2.681090	-4.623267	Н	-1.407514	-2.917113	3.491092	Н	-2.902197	4.015025	3.367938
Н	-2.015101	-4.646669	1.594274	Н	-2.859179	-0.222221	3.868602	Н	-5.084936	-1.659919	0.103990
Н	-3.148322	-1.693830	4.807356	Н	-1.006527	-3.449907	0.790872				
н	-1.467189	-3.980670	-3.996267	н	-1.605007	-0.837654	4.940753				

5.4.2 Compound **6** (*E* = -4582.521840 Ha)

Figure S42. Optimized structure for 6, hydrogen atoms except those bound to tungsten omitted for clarity.

С	-4.352476	-2.498304	1.920065	F	-2.382684	6.793010	-0.243421	F	-8.269133	-1.224943	-1.219088
С	-3.508313	-2.288254	0.824785	F	-1.143514	5.620995	1.884796	F	-8.436909	1.433382	-1.821938
С	-2.755111	-3.406159	0.480252	F	-0.387495	3.067611	1.764906	F	-6.243978	3.032397	-1.438351
С	-2.830932	-4.634515	1.133072	F	-1.862151	-3.362724	-0.531924	F	-3.985722	2.004338	-0.485915
С	-3.696177	-4.789323	2.205247	F	-2.062231	-5.661245	0.736714	Ν	0.590831	1.073145	-0.045493
С	-4.467147	-3.703094	2.603736	F	-3.782568	-5.957930	2.848465	Ν	1.617637	0.450322	0.038959
В	-3.390445	-0.758964	0.180058	F	-5.304878	-3.827669	3.639806	W	3.252837	-0.366597	0.199665
С	-2.479910	-0.667367	-1.207660	F	-5.122695	-1.492729	2.370259	Р	5.321256	-1.950257	0.395625
С	-2.887764	-1.488547	-2.264954	С	-2.691227	0.046277	1.454715	С	7.106787	-1.381237	0.454429
С	-2.275874	-1.537029	-3.512574	С	-3.308167	0.966838	2.309892	С	8.192457	-2.455675	0.436371
С	-1.189929	-0.710927	-3.759705	С	-2.723580	1.448918	3.480839	Р	3.970639	1.490686	1.736143
С	-0.775159	0.127476	-2.739625	С	-1.468246	0.998279	3.864302	С	5.294520	1.124501	3.016315
С	-1.381424	0.192962	-1.485004	С	-0.823311	0.063035	3.069734	С	6.242659	2.250179	3.423752
F	-3.921064	-2.332276	-2.108084	С	-1.434739	-0.379246	1.902983	Р	4.445944	1.278599	-1.437609
F	-2.709781	-2.371470	-4.461871	F	-3.366192	2.338807	4.244297	С	5.657115	0.742924	-2.772289
F	-0.554128	-0.738347	-4.942102	F	-4.541358	1.427436	2.070522	С	6.825379	1.674742	-3.096213
F	0.287410	0.937797	-3.022064	F	-0.751854	-1.309824	1.206167	Р	2.691311	-2.088262	-1.593853
В	-0.699762	1.300275	-0.570261	F	0.392046	-0.389326	3.427936	С	2.797560	-1.598388	-3.397153
С	-1.213641	2.794082	-0.449110	F	-0.884140	1.461279	4.974399	С	2.355297	-2.602043	-4.460107
С	-1.857879	3.441252	-1.510170	С	-4.872748	-0.183007	-0.295116	С	2.556246	2.167657	2.724087
С	-2.251312	4.774812	-1.459429	С	-6.017972	-0.949910	-0.526324	С	2.828623	3.334619	3.669526
С	-2.014463	5.516037	-0.307737	С	-7.210597	-0.428245	-1.027572	С	4.597432	2.971967	0.777990
С	-1.379549	4.916342	0.775047	С	-7.301621	0.920368	-1.339113	С	5.419822	2.510940	-0.419318
С	-0.992756	3.585462	0.681519	С	-6.188211	1.726988	-1.143240	С	3.201533	2.334925	-2.338723
F	-2.104082	2.796715	-2.653339	С	-5.023672	1.159075	-0.642895	С	3.705318	3.470130	-3.225279
F	-2.845831	5.348092	-2.506021	F	-6.044515	-2.270261	-0.286688	С	1.018980	-2.885539	-1.393497

С	0.859535	-4.343527	-1.825276	н	1.527272	-5.012962	-1.274497	Н	4.563201	-1.928528	3.382672
С	3.893548	-3.516595	-1.446070	н	3.510222	-4.158141	-0.646121	н	4.313537	4.195382	-2.675579
С	5.309664	-3.054800	-1.119384	н	6.037355	-0.238888	-2.473243	н	5.728077	3.354273	-1.045357
С	5.205457	-3.220700	1.760412	н	5.046931	0.574236	-3.666619	н	2.527674	2.710378	-1.560848
С	5.342254	-2.666610	3.174848	н	-0.162178	-4.657734	-1.600190	н	5.862417	0.272574	2.636385
Н	2.595549	-1.859047	0.762750	н	5.955243	-3.996474	1.567038	н	3.708882	3.523812	0.450344
Н	3.070156	-0.711198	1.871589	н	2.195588	-0.687024	-3.478684	н	4.738951	0.750435	3.884500
Н	2.878858	-3.559701	-4.378511	н	7.496543	1.802350	-2.242002	н	6.878816	2.568414	2.591439
Н	2.562793	-2.201077	-5.457808	н	6.491444	2.666481	-3.409917	н	5.173178	3.645542	1.419054
Н	3.876330	-4.112584	-2.364030	н	7.225481	-0.699598	-0.396334	н	6.907108	1.907740	4.224261
Н	8.150983	-3.067147	-0.469545	н	0.312058	-2.240052	-1.924063	н	5.712256	3.130615	3.794875
Н	5.970849	-3.913655	-0.958073	н	4.219171	-3.679679	1.638431	н	1.795703	2.437695	1.986544
Н	1.281234	-2.790688	-4.410087	н	7.204108	-0.759469	1.351102	н	2.142510	1.310114	3.263356
Н	1.033904	-4.496260	-2.892761	н	4.294856	3.101718	-4.069891	н	3.256211	4.200754	3.153903
Н	5.731520	-2.473518	-1.948178	Н	0.776290	-2.774693	-0.335135	Н	3.500847	3.056987	4.486812
Н	8.117931	-3.125247	1.297993	Н	6.318254	-2.198918	3.342357	Н	1.886409	3.659306	4.121683
Н	7.418630	1.254287	-3.914990	Н	2.593103	1.633306	-2.915897	Н	5.238354	-3.474151	3.906289
Н	9.184177	-1.992640	0.470776	Н	2.852129	4.014973	-3.642172				
Н	3.841289	-1.305365	-3.558607	н	6.331681	2.000391	-0.087478				

5.4.3 Compound **6'** (*E* = -4582.521326 Ha)

Figure S43. Optimized structure for 6', hydrogen atoms except those bound to tungsten omitted for clarity.

С	-3.753430	-3.503948	-0.580303	F	-0.069835	0.937388	3.369331	F	-4.198933	-5.823541	-0.805333
С	-2.896810	-2.401387	-0.528238	В	-0.792252	1.299298	0.857179	F	-5.079528	-3.373493	-0.446168
С	-1.547300	-2.740913	-0.632178	С	-1.030939	2.862974	0.940550	С	-4.958329	-0.582698	-0.348413
С	-1.067357	-4.030347	-0.814271	С	-2.025645	3.430230	1.754748	С	-5.584980	-0.874296	-1.562445
С	-1.962615	-5.089786	-0.877532	С	-2.210714	4.804624	1.883888	С	-6.929057	-0.642383	-1.826117
С	-3.317385	-4.818335	-0.760142	С	-1.385695	5.680157	1.188914	С	-7.723730	-0.071910	-0.838657
В	-3.327802	-0.824333	-0.213180	С	-0.379618	5.169410	0.375634	С	-7.149806	0.253552	0.381870
С	-2.710678	-0.587136	1.312592	С	-0.223491	3.794802	0.272909	С	-5.795207	0.003769	0.599394
С	-3.225737	-1.411512	2.319451	F	-2.844554	2.666948	2.471588	F	-7.462744	-0.958387	-3.012994
С	-2.737551	-1.471774	3.620480	F	-3.167541	5.287362	2.674721	F	-4.871970	-1.425412	-2.563910
С	-1.659186	-0.673956	3.975069	F	-1.546682	6.994362	1.307049	F	-5.329841	0.387861	1.799731
С	-1.138394	0.162859	3.003998	F	0.432752	5.999575	-0.286017	F	-7.898722	0.817185	1.338233
С	-1.625588	0.242470	1.700210	F	0.788931	3.390002	-0.521350	F	-9.019742	0.164293	-1.064526
F	-4.258128	-2.231484	2.059894	F	-0.609857	-1.773395	-0.565262	С	-2.724034	0.259579	-1.316629
F	-3.277232	-2.300712	4.519538	F	0.256879	-4.269024	-0.911409	С	-2.079252	-0.022987	-2.525409
F	-1.133041	-0.729322	5.206807	F	-1.524110	-6.341990	-1.043017	С	-1.693138	0.953826	-3.439174

С	-1.962080	2.292138	-3.189701	С	1.908661	1.591784	-3.125113	н	7.013409	-1.021622	0.149658
С	-2.643313	2.628367	-2.029550	С	2.044177	1.885994	-4.618990	н	1.413326	2.416840	-2.604741
С	-3.013987	1.618150	-1.144730	С	4.644570	0.480676	-3.372677	н	4.076287	-2.646648	-3.142193
F	-1.789804	-1.276955	-2.899901	С	5.807360	-0.207469	-2.662784	н	6.544186	-2.706238	0.183646
F	-1.042978	0.611431	-4.563101	С	4.894136	-2.942379	-2.476907	н	4.437274	3.971822	2.760701
F	-1.561981	3.234963	-4.050654	С	4.511774	-4.212619	-1.724378	н	1.274517	0.714305	-2.973581
F	-2.925020	3.909910	-1.763477	н	2.616305	-0.988670	-1.872199	н	5.304408	-4.544282	-1.045351
F	-3.709570	2.022449	-0.067965	н	2.415271	-2.009256	-0.577295	н	2.806392	2.937587	1.120141
Ν	0.390584	0.869839	0.236332	н	4.840814	3.553881	-3.784341	н	2.774502	4.132168	3.321483
Ν	1.420950	0.291740	0.059217	н	4.832816	4.824756	-2.562964	н	5.250985	-0.597793	3.021787
W	3.066539	-0.453661	-0.287379	н	5.005967	1.245410	-4.067729	н	3.597861	-4.060525	-1.144711
Ρ	5.201392	-1.451498	-1.393214	н	8.314030	-1.423479	-1.994552	н	3.820910	2.916284	4.044175
С	6.789922	-1.881040	-0.493102	н	6.464882	-0.704279	-3.384761	н	4.501817	0.688053	3.968981
С	8.005223	-2.246325	-1.343565	н	3.308847	4.251997	-3.235708	н	2.148152	1.929775	2.372056
Ρ	2.837593	-1.894316	1.773286	Н	2.675698	2.751922	-4.829966	Н	4.894837	-3.111087	1.380817
С	4.006911	-3.351624	1.969903	Н	6.417203	0.526214	-2.120414	Н	2.212431	-0.254174	3.438170
С	4.418275	-3.772201	3.380101	Н	7.815297	-3.120518	-1.972921	н	3.512573	-4.177758	1.446064
Ρ	4.201142	1.020657	1.540641	Н	7.705985	2.475544	2.302212	н	5.005752	-2.996755	3.881870
С	5.893910	1.808559	1.329842	н	8.857353	-2.489620	-0.700242	н	3.215482	-1.489772	4.191594
С	6.770200	1.974465	2.571633	Н	5.219437	2.682375	-1.395204	Н	5.043793	-4.670139	3.333191
Ρ	3.451903	1.230168	-2.142452	Н	2.448782	1.030088	-5.167150	н	3.561707	-4.004393	4.016786
С	4.218896	2.902393	-1.785486	Н	4.069238	-0.242934	-3.959506	н	0.453822	-1.788035	1.840547
С	4.301626	3.931985	-2.910340	Н	6.416922	1.205912	0.580093	н	1.009538	-3.277577	1.131655
С	1.145770	-2.621105	1.995786	Н	5.706784	2.781532	0.862172	н	0.955622	-2.706360	4.177888
С	0.837202	-3.349716	3.300950	Н	1.050208	2.087505	-5.026593	н	1.456265	-4.241202	3.436388
С	3.116125	-0.858578	3.303607	Н	5.781852	-3.103469	-3.099476	н	-0.205360	-3.682084	3.288715
С	4.349436	0.019362	3.115629	Н	3.642753	3.314419	-0.950382	Н	4.324559	-5.027508	-2.430558
С	3.072061	2.419151	2.045942	Н	7.035258	1.010998	3.016039				
С	3.564022	3.406758	3.100223	н	6.286440	2.576866	3.343796				

5.4.4 Compound **7** (E = -4582.545643 Ha)

Figure S44. Optimized structure for 7, hydrogen atoms except those bound to tungsten omitted for clarity.

С	-1.568056	3.314417	-4.324488	С	-1.284327	1.433622	-2.861180	С	-0.514413	3.309173	1.058737
С	-1.897149	4.076270	-3.211160	С	-1.596417	2.145395	-1.704652	С	-1.182333	4.331648	3.116987
С	2.412791	3.516536	-3.629310	С	4.100248	3.011996	-0.928967	С	-1.598038	2.435963	1.017150
С	-1.255046	1.974746	-4.142063	С	-4.499982	1.479184	-0.550259	С	-2.286122	3.489646	3.133332
С	-1.909842	3.488991	-1.946684	С	-5.714580	0.834279	-0.742180	С	-3.317745	0.775761	-0.357400
С	1.799425	2.521121	-2.646410	С	-0.288551	4.245299	2.058569	С	-2.474736	2.572947	2.098738
С	3.395646	4.132769	-0.172029	С	4.067060	0.756391	-2.818435	С	-5.747599	-0.557265	-0.752977

C	1 082868	-2 130162	-1 127717	н	5 50/073	0 246780	3 3176/2
ĉ	1.502000	1 601925	2 220152	. н Ц	4 566724	4 902077	1 001250
Č	1.57 1640	-1.001035	-3.220152	п 	4.3007.34	-4.092977	-1.991350
C	4.281692	-0.727425	-2.541520	н	3.454672	-3.330913	-0.388242
С	-3.349589	-0.627100	-0.365716	Н	5.362839	-2.513237	0.415942
С	-4.568591	-1.265667	-0.559725	н	3.407711	0.155735	4.606058
С	7.096782	1.289139	1.162655	н	7.260212	-1.790790	1.966858
С	6.229170	0.357331	0.317203	н	0.174227	-1.951944	2.782107
С	1 872852	2 436742	3 867314	н	4 281463	-2 620566	1 785394
c	-1 941331	-2 612355	-2 365796	н	3 732137	-1 346487	3 756106
ĉ	1.041001	1 107707	2.0007.00	. н Ц	6 171767	1.040407	2 246047
	1.000917	1.19/707	3.000334		0.171707	-1.909700	3.340947
C	-1.408570	-2.453296	-1.081619	н	1.792783	-2.548056	3.000855
С	-1.596740	-3.660247	-3.221139	н	0.024286	-1.269538	5.187823
С	4.627585	0.388118	2.826697	Н	6.614755	-3.381802	2.363344
С	4.422401	-3.841735	-2.261534	Н	1.732667	-1.669886	5.447402
С	3.255119	-3.267497	-1.459003	н	0.561580	-2.939670	5.094775
С	-2.186562	-1.993784	1.487198	Ν	-0.966978	0.020219	-0.038206
С	-2.141979	-1.258635	2,669583	N	0.279249	0.002686	0.034801
c	3 508937	-0 284281	3 609248	B	-1 845686	1 411715	-0 241407
ĉ	0.492076	2 422601	0.702610	Б	1.029044	1.205117	0.241407
	-0.462076	-3.433001	-0.723012		-1.930941	-1.325117	-0.016296
C	-0.682326	-4.617075	-2.803156	F	-1.527228	3.864329	-5.540724
С	5.164127	-2.094529	1.408696	F	-2.196063	5.370308	-3.360196
С	-2.578481	-1.711938	3.910120	F	-2.239607	4.319261	-0.946897
С	-2.708808	-3.283208	1.662167	F	-0.876500	1.223894	-5.187004
С	-0.128095	-4.505541	-1.534696	F	-4.510148	2.828175	-0.547673
С	1.088736	-1.784744	3.352748	F	-6.845042	1.528504	-0.921142
Ċ.	6 367657	-2 315963	2 321399	F	0 794346	5 038847	2 027777
ĉ	-3 004807	-2.010000	4 022820	, E	0.308706	3 301085	0.061242
č	-3.094007	2.334330	4.022023		0.390790	5.301903	4 116062
0	-3.154060	-3.765010	2.003304	г -	-0.903062	5.190695	4.110002
С	0.843775	-1.909672	4.853814	F	-0.912462	0.140187	-2.785603
Н	1.631488	3.892705	-4.296905	F	-3.151822	3.556033	4.148170
Н	2.849437	4.381575	-3.122901	F	-6.909581	-1.193352	-0.946294
Н	3.187698	3.068694	-4.260126	F	-3.563838	1.807501	2.216371
Н	2.659895	4.651344	-0.790743	F	-2.839050	-1.756819	-2.861117
н	1.052437	2.997445	-2.011239	F	-2.135758	-3.748651	-4.440115
н	4 131525	4 872861	0 159371	F	-4 651693	-2 611706	-0.582703
н	1 276419	1 724299	-3 180829	F	-1 604298	-0.021358	2 673936
Ц	1.270413	2 406227	1 912644	, E	2 467052	0.021000	4 006212
	4.015752	3.400227	-1.012044	г г	-2.407952	-0.932770	4.990313
н	3.549514	0.880931	-3.774715	F	-0.325710	-5.619501	-3.609728
н	5.021579	1.285241	-2.911860	F	0.101971	-3.408728	0.491852
Н	2.868517	3.758438	0.706403	F	-2.810666	-4.141919	0.636784
Н	4.861674	2.556466	-0.291812	F	0.764259	-5.421268	-1.118074
Н	1.351483	-0.572675	-3.514845	F	-3.508727	-3.462287	5.201729
Н	1.206805	-2.369786	-5.196603	F	-3.634488	-5.029561	2.967126
н	2.919395	-2.098925	-4.881891	Р	2.990476	1.628542	-1.528971
н	4.558434	-1.257551	-3.458266	Р	2,755098	-1,492555	-1.787938
н	5 947058	0.859966	-0 610472	P	4 641293	-0.320013	1 102713
Ц	7.062261	1 620526	0.570562	, D	1 940620	0.105496	2 740505
	7.902301	1.020000	0.079002		1.040020	-0.195460	2.740505
н	6.554884	2.185362	1.479328	VV	2.108203	-0.053506	0.250495
н	2.227764	2.845605	2.917389				
Н	2.426899	1.477861	1.014863				
Н	0.641919	-1.976272	-2.785610				
Н	5.093645	-0.883382	-1.826036				
н	1.286609	3.220593	4.355474				
н	2.089137	-3,498137	-4,175827				
н	0 112185	1 447737	3 080284				
ц	6 811606	-0.521662	0.010/10				
	0.011020		0.010412				
Н	4.449589	1.463277	2.731848				
Н	2.740278	2.240920	4.505746				
Н	4.249644	-3.804695	-3.339736				
Н	7.477860	0.795979	2.060684				
Н	5.364361	-3.322009	-2.058101				
Н	0.678635	0.796732	4.624498				
н	2.355747	-3.865121	-1.619867				
Н	2.275296	-1.686632	0.784943				
•••							

Figure S45. Optimized structure for A, hydrogen atoms except those bound to tungsten omitted for clarity.

С	0.104573	-0.844891	2.929469	н	-1.807525	-1.782887	-3.125401
Ν	0.253344	-0.473940	1.645194	н	1.588242	4.568454	-1.132473
Ν	1.589756	-0.401463	1.395688	Н	4.095675	3.614664	-0.899375
С	2.288941	-0.722677	2.508781	н	4.213247	2.345344	0.327073
С	1.370059	-1.010810	3.505701	Н	4.212909	1.917806	-1.385340
W	-1.212302	0.000536	-0.000405	Н	-1.061296	4.678368	-1.168292
С	-2.130340	0.488019	-1.697321	Н	-1.815155	3.163558	-1.683327
0	-2.653813	0.774886	-2.696609	Н	-1.802377	3.604343	0.025478
В	2.107269	-0.000383	0.000112	Н	1.585733	-1.304132	4.522843
Ν	1.590739	1.409044	-0.350305	н	4.093580	-1.031080	3.580973
Ν	0.254479	1.661917	-0.412415	н	4.212251	-1.455070	1.867683
С	0.106319	2.959686	-0.733397	Н	4.211240	0.240691	2.357074
С	1.372069	3.541012	-0.877978	Н	-1.064010	-1.325526	4.635325
С	2.290492	2.533174	-0.628934	Н	-1.817465	-0.123737	3.578794
С	3.781464	2.599791	-0.645964	Н	-1.803987	-1.824709	3.108560
С	-1.216620	3.631283	-0.897247	Н	3.303658	-0.000885	0.000283
С	3.779882	-0.741179	2.575755	Н	-2.919256	0.002813	-0.001919
С	-1.218737	-1.038207	3.592488				
Ν	0.253655	-1.188585	-1.232417				
Ν	1.590008	-1.008311	-1.045163				
С	2.289306	-1.812488	-1.879013				
С	1.370510	-2.532817	-2.626113				
С	0.104982	-2.116504	-2.194684				
С	3.780240	-1.860848	-1.928730				
С	-1.218281	-2.595527	-2.692327				
С	-2.131332	1.226665	1.269380				
0	-2.655369	1.948618	2.017093				
С	-2.133388	-1.711360	0.425746				
0	-2.658816	-2.719236	0.676674				
Н	1.586281	-3.267678	-3.388058				
Н	4.094041	-2.586572	-2.682239				
Н	4.212236	-0.890633	-2.193305				
Н	4.211845	-2.161988	-0.969041				
Н	-1.063414	-3.350537	-3.466900				

H -1.813164 -3.047063 -1.894059

Figure S46. Optimized structure for B, hydrogen atoms except those bound to tungsten omitted for clarity.

С	5.638583	0.874023	-0.286406	Н	2.207541	-3.971907	0.618449
С	4.584531	-0.027890	-0.397519	н	3.651483	-2.947315	0.857442
С	3.281189	0.340788	-0.017110	н	2.064556	1.924291	0.776780
С	3.069914	1.636050	0.486002	н	3.951833	3.522818	1.014969
С	4.130396	2.528160	0.615226	н	6.241539	2.853739	0.318490
С	5.416313	2.153046	0.225059	н	6.637804	0.576561	-0.593433
С	2.174846	-0.600588	-0.116741	н	4.760585	-1.023878	-0.794004
С	1.989710	-1.918830	-0.004411	н	-5.062439	-1.424275	-1.855466
С	2.793903	-3.147086	0.204592	н	-1.505094	-2.746756	-2.597231
W	0.198982	-0.976411	-0.325719	н	-3.223856	-3.139303	-2.862975
С	-0.114560	-2.875404	0.032701	н	-2.390872	-3.697112	-1.404648
0	-0.263778	-4.021039	0.232587	н	-5.195402	1.282085	0.745553
Ν	-0.027435	1.159573	-1.038828	н	-6.056058	0.810079	-0.726803
Ν	-0.963186	1.990981	-0.499443	н	-4.876059	2.127305	-0.770400
С	-0.940689	3.189803	-1.130238	н	-0.766148	0.281242	4.857634
С	0.042472	3.126608	-2.103395	н	1.729789	-1.480475	2.910875
С	0.582875	1.833964	-2.027281	н	0.396678	-2.609313	2.660692
В	-2.038813	1.413551	0.439614	н	0.673951	-1.904515	4.268249
Ν	-1.386360	0.857904	1.715726	н	-2.433484	2.386304	4.543333
Ν	-0.553201	-0.211078	1.622624	н	-3.510666	2.138981	3.161294
С	-0.214539	-0.566483	2.877365	н	-2.156926	3.263071	3.031117
С	-0.839931	0.302331	3.779920	н	0.329032	3.910895	-2.789283
С	-1.584431	1.185976	3.011808	н	1.450813	0.182100	-3.060757
С	1.640753	1.245923	-2.897669	н	2.634587	1.345497	-2.450674
С	0.695765	-1.703280	3.194274	н	1.651718	1.760975	-3.862332
С	-1.851857	4.322157	-0.788885	н	-1.801044	4.581591	0.273043
С	-2.468960	2.303415	3.454835	н	-1.567515	5.204295	-1.367058
Ν	-2.035920	-0.815010	-0.752179	н	-2.897119	4.091513	-1.019560
Ν	-2.749392	0.252158	-0.293149	н	0.109647	-1.295785	-2.022433
С	-4.042172	0.141669	-0.672942				
С	-4.163979	-1.032104	-1.401213				
С	-2.885735	-1.603356	-1.434110				
С	-2.477416	-2.866782	-2.112365				
С	-5.093352	1.146527	-0.335613				

Н

Н

-2.832262

2.263813

3.189675 -3.485030 -0.761070

0.726096

W e

О . Н .

Н

С

н

5.355191

-4.718280 -0.877272

4.139586 -3.656703 0.547548

4.159956 -4.455768 1.282572

Figure S47. Optimized structure for C, hydrogen atoms except those bound to tungsten omitted for clarity.

W	-0.032459	0.030146	-0.380804	С	3.436373	-2.485000	0.821571
Н	-1.012298	-0.201844	-1.793931	н	2.908177	-2.380969	1.764982
Ρ	2.420158	0.069181	0.170277	С	-3.508809	-1.486976	-0.314018
Ρ	-2.454855	-0.054189	0.137777	С	-3.082551	-2.424658	-1.259553
Ν	-0.046503	0.056315	1.895049	н	-2.119495	-2.311123	-1.745814
Ν	2.292594	0.170491	1.898336	С	-3.900912	-3.505108	-1.588978
Н	3.134127	0.284583	2.447701	н	-3.565074	-4.227949	-2.326206
Ν	-2.384803	-0.075976	1.873570	С	-5.140896	-3.655201	-0.973437
Н	-3.234978	-0.134982	2.417446	н	-5.774590	-4.499668	-1.227530
С	1.113447	0.133496	2.602012	С	-5.576474	-2.715169	-0.037224
С	1.139105	0.167146	3.999444	н	-6.548809	-2.823985	0.433713
Н	2.086563	0.233610	4.521732	С	-4.770344	-1.628834	0.284716
С	-0.062841	0.103216	4.686302	н	-5.138861	-0.885036	0.987284
Н	-0.069146	0.122860	5.771649	С	-3.533216	1.388215	-0.223178
С	-1.256591	0.010682	3.988289	С	-4.279878	1.405267	-1.408599
Н	-2.209377	-0.043658	4.502218	н	-4.275616	0.546950	-2.074740
С	-1.215429	-0.005983	2.590987	С	-5.046005	2.523099	-1.729495
С	3.577904	1.421175	-0.276824	н	-5.624559	2.532202	-2.648311
С	3.129060	2.547295	-0.974640	С	-5.077535	3.621003	-0.869911
Н	2.096980	2.616195	-1.297884	н	-5.680612	4.488677	-1.120135
С	4.012375	3.585759	-1.265697	С	-4.337556	3.604371	0.311446
Н	3.659114	4.453583	-1.814167	н	-4.362321	4.457128	0.983270
С	5.341777	3.506857	-0.856873	С	-3.559925	2.494261	0.634213
Н	6.028130	4.317330	-1.083616	н	-2.980222	2.491183	1.552815
С	5.796563	2.382988	-0.164947	С	-0.247813	2.058859	-0.388206
Н	6.835109	2.316233	0.145103	0	-0.388898	3.205314	-0.404570
С	4.923148	1.337524	0.117256	С	0.120410	-2.008802	-0.321590
Н	5.294616	0.452135	0.626820	0	0.207235	-3.158762	-0.289319
С	3.416347	-1.447770	-0.117240	С	0.613840	0.142845	-2.274909
С	4.093075	-1.595683	-1.336003	0	0.984290	0.214522	-3.368718
Н	4.093735	-0.793090	-2.068643				
С	4.784512	-2.773841	-1.606611				
н	5.308337	-2.884193	-2.551316				
С	4.810636	-3.803028	-0.665330				

Figure S48. Optimized structure for D, hydrogen atoms except those bound to tungsten omitted for clarity.

W	0.026768	-0.592057	0.045141	Н	-4.602101	0.034138	-0.862736
С	-0.015080	-0.553676	2.081171	С	-3.363880	0.773442	-2.461248
0	-0.069260	-0.601795	3.236249	С	-3.559118	-1.638452	-1.729548
Н	0.961843	-2.046897	0.195158	н	-5.027528	0.666742	2.840222
С	-0.673141	-2.469459	0.094120	н	-4.202940	1.900845	1.904213
0	-1.054544	-3.562935	0.109808	н	-5.302179	0.749843	1.105712
С	0.018961	-0.706133	-1.991942	н	-4.263528	-1.724712	2.852957
0	-0.024995	-0.800839	-3.143713	н	-4.646625	-1.817561	1.137248
Ρ	-2.397098	0.131666	0.127263	н	-3.042511	-2.302766	1.722102
Ν	-2.130765	1.849687	0.148751	н	-4.350790	-1.819098	-2.463873
Н	-2.928841	2.469602	0.175039	н	-2.605940	-1.871512	-2.211914
С	-0.933850	2.457104	-0.146627	н	-3.707424	-2.345428	-0.909894
Ν	0.175803	1.673733	-0.212159	н	-4.077592	0.543934	-3.259224
С	1.364454	2.273636	-0.506389	н	-3.496379	1.825041	-2.195019
С	1.472863	3.648091	-0.732362	н	-2.360419	0.650105	-2.878428
С	0.328980	4.427398	-0.651757	н	5.287884	0.137044	2.653439
С	-0.889942	3.839302	-0.355289	н	5.317535	-0.898454	1.230996
Н	-1.799139	4.426085	-0.290653	н	5.251242	0.866319	1.054088
Н	0.388188	5.497840	-0.822186	н	3.155513	1.152730	3.521361
Н	2.438189	4.084269	-0.962588	н	3.245104	2.134817	2.056783
Ν	2.480838	1.471610	-0.582976	н	1.747086	1.292941	2.471718
Н	3.354809	1.962074	-0.721076	н	4.560252	-3.027601	-1.192137
Ρ	2.475417	-0.151433	0.048103	н	4.012128	-2.645125	0.440144
С	-3.379303	-0.127966	1.708176	н	2.836274	-3.064198	-0.817404
С	-3.609943	-0.172204	-1.284283	н	4.176400	-1.338682	-3.132975
С	3.669097	-1.065242	-1.063743	н	2.454548	-1.529738	-2.814237
С	3.356386	-0.013738	1.714904	н	3.171409	0.089701	-2.860978
С	4.885529	0.016467	1.642237				
С	2.835978	1.210572	2.476501				
н	3.037913	-0.922546	2.242383				
Н	4.632491	-0.572586	-0.879436				

С

С

С

С

3.770906

3.337476

-4.536555

-3.851276

H -2.632471

-2.529185

-0.944928

0.859246

-1.578301

0.075048

-0.620893

-2.549780

1.880671

1.849714

2.484373

Figure S49. Optimized structure for E, hydrogen atoms except those bound to tungsten omitted for clarity.

W	0.027166	-0.578715	-0.020168	н	-5.601983	0.080088	1.095110
С	0.119785	-0.805201	1.996541	н	-4.071097	-1.415702	3.046999
0	0.151272	-1.086101	3.121035	н	-4.127407	-2.004974	1.387181
Н	0.997245	-1.992877	-0.252902	н	-2.571295	-1.843034	2.224656
С	-0.597310	-2.477652	0.062642	н	-3.903279	-2.286138	-2.658554
0	-0.925935	-3.584570	0.151600	н	-2.230026	-2.134882	-2.132433
С	-0.020039	-0.708672	-2.051506	н	-3.492458	-2.583158	-0.971672
0	-0.020124	-0.945347	-3.185824	н	-3.567293	-0.055321	-3.675012
Ρ	-2.472896	0.079734	-0.053649	н	-3.515162	1.413095	-2.696368
Ν	-2.233655	1.784035	-0.323875	н	-2.055912	0.446273	-2.923343
Н	-3.045330	2.382161	-0.402496	н	5.647193	-1.327007	1.867452
С	-1.063800	2.445550	-0.040098	н	5.398824	-1.380928	0.128069
Ν	0.066178	1.704591	0.131894	н	5.517592	0.181237	0.973189
С	1.219805	2.369396	0.427474	н	3.885536	-0.821913	3.463927
С	1.273664	3.760650	0.556780	н	3.849408	0.783690	2.735220
С	0.112877	4.492812	0.364690	н	2.348957	-0.118223	2.972629
С	-1.070598	3.841250	0.059562	н	3.957917	-0.987670	-3.352510
н	-1.994221	4.388937	-0.089835	н	4.119389	-1.828203	-1.812270
н	0.130920	5.574587	0.454260	н	2.515731	-1.572080	-2.522948
Н	2.213832	4.245289	0.794478	н	2.899381	1.226713	-3.511246
Ν	2.364001	1.626829	0.603106	н	1.491482	1.002118	-2.480168
Н	3.200163	2.174171	0.758088	н	2.672982	2.256587	-2.095672
Ρ	2.507578	-0.010459	0.019519	н	3.863240	-2.890012	2.092256
С	-3.451286	0.072651	1.609926	н	2.178263	-2.497133	1.747166
С	-3.549584	-0.464854	-1.567335	н	3.297045	-2.864794	0.422579
С	3.410705	0.243204	-1.664480	н	5.089732	1.231189	-2.560655
С	3.624036	-0.888940	1.335549	н	4.835686	1.750273	-0.904444
С	5.128081	-0.837298	1.035850	н	5.581920	0.177032	-1.245233
С	3.397391	-0.211276	2.695906	н	-3.016980	0.745059	3.607857
С	3.201756	-2.366519	1.393129	н	-1.568866	0.669202	2.613389
С	4.810116	0.874707	-1.562811	н	-2.725334	1.985179	2.385423
С	3.497249	-1.118634	-2.366822	н	-5.541942	-0.545534	-2.336063
С	2.555010	1.235986	-2.471264	н	-5.470842	-0.992043	-0.637904
С	-4.848716	0.712091	1.560696	н	-5.362249	0.716746	-1.124295
С	-3.552926	-1.383686	2.081919				
С	-2.628739	0.916549	2.597809				
С	-5.063681	-0.302542	-1.380333				
С	-3.133143	0.391528	-2.773533				
С	-3.262935	-1.951097	-1.834966				
н	-5.171242	0.889381	2.592970				

H -4.853702

1.688313

1.063186

с . N p 0 Si н

Figure S50. Optimized structure for F, hydrogen atoms except those bound to tungsten omitted for clarity.

С	2.930421	2.992758	-0.517042	С	-5.072401	-1.987932	3.222363	н	3.984078	-0.916434	4.409274
С	3.521928	1.766505	-0.195206	С	-5.635950	-1.732458	1.971299	н	2.770650	0.383244	2.710851
С	4.902795	1.709988	0.041966	С	-4.879950	-1.120476	0.976394	н	5.375963	0.769449	0.307737
С	5.675533	2.864460	-0.050775	С	-1.767452	-2.978946	-3.534563	н	6.743873	2.811493	0.137187
С	5.080613	4.083327	-0.375799	С	1.604340	-2.058980	-4.152653	н	5.685181	4.983083	-0.441416
С	3.708527	4.145825	-0.608476	С	1.822482	-3.497699	-1.420347	н	3.237247	5.092977	-0.853453
Р	2.522719	0.210442	-0.165417	н	-2.584169	2.532437	1.520140	н	1.862841	3.058759	-0.691104
С	3.441342	-0.831741	1.048100	н	-3.806872	4.662173	1.376789	н	-0.981808	0.968499	1.416958
С	4.225890	-1.929320	0.678698	н	-5.398061	5.070484	-0.488702				
С	4.910498	-2.664770	1.647410	н	-5.765768	3.312190	-2.203305				
С	4.823660	-2.305894	2.989731	н	-4.566062	1.173599	-2.065791				
С	4.050954	-1.206196	3.364883	н	-1.968627	-0.720708	2.691576				
С	3.361677	-0.474714	2.402864	н	-3.312620	-1.806132	4.452048				
W	-0.036703	0.307704	0.137555	н	-5.664908	-2.464137	3.997888				
Ν	-0.059745	-1.141445	-1.785437	н	-6.668716	-2.003351	1.772629				
Si	1.545537	-1.862306	-2.285036	н	-5.346057	-0.901018	0.019539				
С	2.807293	-0.533448	-1.833717	н	-2.839852	-0.154165	-2.486771				
С	0.520195	1.623390	1.512519	н	-3.919989	-1.278863	-1.648468				
0	0.826034	2.399833	2.320607	н	-1.638159	-2.275878	-4.363417				
Р	-2.571067	0.098390	-0.093163	н	-2.778606	-3.394948	-3.613475				
С	-2.912681	-0.852278	-1.643576	н	-1.070779	-3.810483	-3.679418				
Si	-1.576802	-2.170459	-1.849682	н	-0.803969	-4.138068	-0.501848				
С	-1.659633	-3.458998	-0.499099	н	-2.555415	-4.065059	-0.680271				
С	0.208496	-1.292584	1.380931	н	-1.755058	-3.032500	0.501139				
0	0.368089	-2.182971	2.100842	н	-0.234062	-0.433152	-2.504820				
С	-0.300795	1.850357	-1.159919	н	0.954213	-2.856188	-4.521505				
0	-0.475185	2.711611	-1.915117	н	2.628180	-2.308994	-4.454183				
С	-3.478001	1.699474	-0.267523	н	1.335725	-1.133330	-4.673915				
С	-3.278236	2.693998	0.699809	н	1.729980	-3.435794	-0.332945				
С	-3.969692	3.899424	0.621174	н	2.833634	-3.853482	-1.647342				
С	-4.863378	4.127514	-0.425406	н	1.132424	-4.264043	-1.786954				
С	-5.068797	3.142410	-1.387897	н	3.845255	-0.862952	-1.951295				
С	-4.382560	1.930484	-1.309479	н	2.669873	0.300358	-2.534417				
С	-3.544476	-0.767470	1.219021	н	4.319386	-2.220659	-0.361966				
С	-2.991964	-1.011226	2.479959	н	5.516119	-3.514924	1.347318				
С	-3.753707	-1.621031	3.477156	н	5.358823	-2.877558	3.742001				

5.5 Frontier Kohn-Sham Orbitals of 7 and 10

Table S7. Comparison of the frontier orbitals of 7 and 10, rendered with Avogadro.^{S20}

5.6 Coordinates of optimized geometries of 7 and 10 with dispersion (6-31G(d,p)-D3BJ)

5.6.1 Compound **7**

С	-1.001058000	3.358179000	-4.303759000	Н	3.019532000	3.451223000	0.906373000
С	-1.368699000	4.143055000	-3.218124000	Н	4.954855000	2.326621000	-0.253721000
С	2.558598000	3.350059000	-3.518530000	Н	1.435252000	-0.622585000	-3.436478000
С	-0.860666000	1.990960000	-4.121463000	Н	1.144965000	-2.518285000	-5.017076000
С	-1.578994000	3.549196000	-1.976008000	Н	2.870304000	-2.334035000	-4.689797000
С	1.904023000	2.334391000	-2.591098000	Н	4.544261000	-1.500263000	-3.248287000
С	3.488050000	3.881350000	0.020541000	н	5.866312000	0.549417000	-0.465142000
С	-1.074080000	1.445327000	-2.861983000	н	7.620261000	1.668203000	0.842760000
С	-1.413581000	2.182542000	-1.734079000	Н	6.073571000	2.137734000	1.550888000
С	4.159824000	2.808961000	-0.821839000	Н	2.272828000	2.619813000	2.988518000
С	-4.403820000	1.709982000	-0.698098000	н	2.399398000	1.377341000	1.097715000
С	-5.639935000	1.128053000	-0.945949000	н	0.569367000	-1.910039000	-2.666104000
С	-0.026061000	4.102133000	2.069639000	н	5.046680000	-1.128436000	-1.604843000
С	4.134170000	0.544480000	-2.648526000	Н	1.289165000	3.094353000	4.367893000
С	-0.326068000	3.230797000	1.033772000	н	1.941487000	-3.630903000	-3.914776000
Ĉ	-0.907717000	4.207294000	3.136116000	Н	0.028340000	1.452558000	3.004404000
c	-1.481242000	2.460948000	0.963476000	Н	6.744780000	-0.660462000	0.440104000
c	-2.079813000	3.462862000	3.121481000	Н	4.271001000	1.209340000	2.945060000
c	-3 274558000	0.940366000	-0 469275000	н	2 617216000	1 963403000	4 601614000
c	-2 351486000	2 624033000	2 041835000	н	4 162503000	-3,936316000	-3 099555000
c	-5 742273000	-0.260968000	-0.978666000	н	7 070603000	0.916512000	2 341554000
c	1 906930000	-2 586462000	-4 234858000	н	5 208622000	-3 513119000	-1 741501000
c	1 540628000	-1 653170000	-3.090171000	н	0.414987000	0 734211000	4 565884000
c	4 269223000	-0.940992000	-2 349800000	н	2 165285000	-3 943126000	-1 529021000
c	-3 374594000	-0.457426000	-0.502353000	н	2 110503000	-1 771408000	0.838148000
c	-4 610715000	-1 034121000	-0 751609000	н	5 347251000	-0.083766000	3 500386000
c	6 739235000	1 288835000	1 369288000	н	4 352737000	-5.055525000	-1 751134000
c	6.067592000	0 193062000	0.546913000	н	3 182530000	-3 473128000	-0 206395000
c	1 818203000	2 253706000	3 912959000	н	5 167455000	-2 642060000	0.461090000
c	-1 922014000	-2 467493000	-2 445379000	н	3 102056000	-0 166506000	4 700234000
c	0.847926000	1 113386000	3 635918000	н	6 945201000	-1 985436000	2 212042000
c	-1 467104000	-2 342080000	-1 131165000	н	-0 129787000	-1 967121000	2 610508000
c	-1 516395000	-3 491887000	-3 300775000	н	3 995010000	-2 797030000	1 751621000
c	4 404860000	0 125730000	2 987362000	н	3 397104000	-1 622588000	3 759786000
ĉ	4 265135000	-3 996811000	-2 013582000	Ц	5 750823000	-2 322124000	3 469933000
ĉ	3 070435000	-3 389173000	-1 286873000	Ц	1 /31891000	-2 656771000	2 928813000
c	-2 3/3270000	-1.856444000	1 378157000	н	-0.374840000	-1 277/63000	5 021/69000
c	-2.343270000	-1.000444000	2 556634000	н	6 311210000	-3 618318000	2 /15876000
c	3 230709000	-0.5/3230000	3 681768000	н	1 26/15/000	-1.851588000	5 373/27000
c	-0.581966000	-3 337380000	-0 722008000	н	-0.006174000	-2 992026000	1 9231/7000
c	-0.501500000	-3.337300000	-2 835007000	N	-1.007777000	0.066988000	-0.079016000
c	4 911424000	-2 275907000	1 460704000	N	0.228870000	-0.000300000	0.027311000
c	-2 804217000	-1 547536000	3 778324000	B	-1 779856000	1 480953000	-0.299993000
c	-2 925965000	-3 119465000	1 527013000	B	-2 013718000	-1 209821000	-0 101152000
c	-2.923903000	-4 406214000	-1 523540000	F	-0.737551000	3 916220000	-5.489006000
c	0.746068000	-4.400214000	3 2/0556000	F	-1 505496000	5.462913000	-3.409000000
c	6.041335000	-7.558203000	2 442674000	F	-1.000490000	4 301028000	-0.002/12000
c	-3 376217000	-2.330293000	2.442074000	F	-1.924290000	4.391020000	-0.992413000
c	-3.430559000	-2.007022000	2 732646000	F	-0.420330000	3.056/12000	-0.680704000
c	-3.430333000	-1.003033000	2.732040000 4724348000	F	-6.727500000	1 878244000	-0.000704000
с ц	1 830506000	3 682857000	-4.724340000	F	-0.727500000	1.070244000	2 07272000
ц	2 806804000	4 235605000	-4.2037 13000	F	0.577243000	4.000922000	2.072729000
ц	2.090094000	4.233003000	-2.974373000	F	-0.608688000	4 087003000	4 17040000
н	2 705452000	4 406970000	-4.001002000	F	-0.816236000	0.128666000	-2 765861000
н	1 106381000	2 786220000	-0.029170000	г Е	-0.010230000	3 550106000	-2.100001000 1117221000
н	1.100301000	2.100000000 1610522000	-2.000172000 0.344588000	г Е	-2.3231 14000	-0.831624000	-1 22621000
н	1 115076000	1 526601000	-3 16/6/5000	г 5	-0.921099000	1 051712000	-1.220210000 2.11//20000
н	1.440370000	3 240700000	-3.104040000	г 5	-3.303420000	-1 506962000	2.114403000
н	3 670502000	0.683/83000	-3 620381000	r E	-2.100409000	-3 5371//000	-4 56/12/000
н	5 110834000	1 036622000	-2 600064000	г Е	-1.340333000	-2 373722000	-0.706107000
	0.110004000	1.000022000	2.030304000	Ľ	-4.7 34030000	2.010120000	0.100101000

F F F F F	-1.678930000 -2.696232000 -0.236111000 -0.080439000 -3.023642000 0.619196000 -3.849021000	0.073881000 -0.771510000 -5.453974000 -3.336838000 -3.967642000 -5.364219000 -3.255559000	2.581431000 4.866606000 -3.639001000 0.528037000 0.493219000 -1.057889000 5.036492000	F P P W	-3.965004000 3.033300000 2.683704000 4.449432000 1.623568000 2.033069000	-4.822083000 1.456206000 -1.602331000 -0.483963000 -0.316353000 -0.132595000	2.803803000 -1.419171000 -1.638540000 1.233358000 2.743659000 0.313006000
5.6.2	2 Compound	10					
W	-2.061879000	0.189679000	0.179400000	С	-4.825848000	1.304112000	3.131531000
Р	-2.254204000	-1.592453000	-1.555225000	С	-5.741370000	0.508657000	-0.961199000
Р	-1.673648000	2.590973000	0.484699000	С	5.873636000	-0.133747000	1.685361000
Р	-4.445663000	0.974864000	0.294911000	С	-6.312650000	-0.886745000	-0.725884000
Р	-2.196637000	-1.861593000	1.554763000	С	4.309583000	-0.352250000	3.487855000
F	6.634024000	-0.441785000	3.903308000	С	2.885744000	2.634137000	-0.301580000
F	3.409038000	4.941115000	-0.474529000	С	4.800637000	-0.004282000	0.813728000
F	7.132880000	-0.090256000	1.239775000	Н	-3.494082000	-2.477369000	-3.446391000
F	3.488210000	-2.709087000	-4.036136000	н	-4.504794000	-1.476453000	-2.417647000
	2.030475000	-0.257075000	3.119326000	н	-3.447038000	3.491331000	1.865835000
r c	4.000743000	-0.521811000	4.791006000		-3.158873000	4.002654000	0.484631000
F	2 422319000	-4.027692000	-0.362016000	п	0.1000000	-1.902054000	-1.70000000
F	1 181273000	2 766114000	-4.017075000	н	-2 322530000	-0.092744000	-3.041230000
F	5 094751000	0 169224000	-0 486816000	н	-3 673084000	-3 324758000	-0 625055000
F	3.556487000	-0.418095000	-2.705555000	н	-4.159210000	-0.296456000	-4.579009000
N	-0.204444000	0.057798000	0.376838000	Н	-2.406200000	-0.440256000	-4.422814000
F	3.418277000	2.691332000	0.928899000	н	-3.293874000	0.594652000	-3.307646000
F	1.114077000	0.521352000	-2.605562000	н	-4.326639000	2.980984000	-1.029521000
F	2.312397000	5.021369000	-2.974706000	н	-5.395317000	3.253038000	0.355645000
F	1.485156000	-2.555275000	0.997398000	Н	0.286885000	-2.999336000	-4.055790000
Ν	0.918447000	0.071805000	0.751200000	н	-0.694087000	-3.978051000	-2.975078000
С	-3.530384000	-1.525071000	-2.905828000	Н	-1.467097000	-2.987843000	-4.223752000
С	-3.273721000	3.506205000	0.787635000	Н	-0.751853000	-3.371596000	0.355311000
С	-0.695464000	-1.841529000	-2.526428000	Н	-2.078884000	-4.284630000	1.066678000
С	-2.591293000	-3.261974000	-0.792880000	н	-0.443852000	-1.109170000	4.831993000
C	3.465470000	-0.034381000	1.212339000	н	-2.188293000	-1.282425000	4.588577000
C	2.461424000	-3.804592000	-2.223921000	н	-1.292325000	-0.006558000	3.745532000
C	1.978723000	-2.524807000	-0.257442000	н	-0.905164000	4.074999000	-2.951060000
C	-3.330030000	-0.330203000	-3.037200000	п	-1.015300000	2.501220000	-2.556665000
C C	5 623030000	-0.312134000	3 041409000	н	-2.303703000	-3 714916000	3 690511000
c	2 996975000	-2 657310000	-2 794541000	н	-3 084154000	-3 504560000	4 050074000
C	-0.651842000	-3.015955000	-3.494195000	н	-3.585208000	-4.456196000	2.649105000
С	2.999891000	-1.461581000	-2.079773000	н	-0.882178000	-3.014934000	3.239331000
С	3.262304000	-0.214988000	2.578076000	н	0.005047000	-1.698669000	2.465874000
С	2.889482000	3.833391000	-1.012294000	Н	-4.063822000	-1.424169000	2.984987000
С	1.953509000	-3.738255000	-0.934182000	н	-4.548498000	-2.355677000	1.582486000
С	-1.832216000	-3.368324000	0.522109000	Н	0.262389000	2.292049000	1.830937000
С	-1.243751000	-1.041836000	4.089433000	Н	-0.116769000	4.010230000	1.711629000
С	-1.510600000	3.534442000	-2.218497000	Н	-5.692485000	-0.268134000	1.938639000
С	-3.813632000	-3.563024000	3.237595000	н	-6.424459000	1.308181000	1.663995000
C	-0.950216000	-1.969603000	2.918720000	н	-0.427719000	3.012663000	4.060585000
C	-3.803926000	-2.300500000	2.384445000	н	-1.754830000	2.041641000	3.415879000
	2 214122000	2.728318000	-2.813722000		-1.878572000	3.808053000	3.444508000
с С	2.314132000	3 870122000	0.000021000	п Ц	0.102034000	J. 103/12000	-0.091912000
c	-0 551192000	3 023144000	-2.20040000 1.902791000	н	-5.431366000	1 028768000	4 001088000
č	1.759622000	1.564643000	-2.056138000	н	-3.824882000	0.883870000	3,260228000
c	-5.470389000	0.798526000	1.848046000	Н	-4.729339000	2,392824000	3.133979000
C	-1.193975000	2,969951000	3,281152000	Н	-5.250363000	0.577788000	-1.936079000
С	2.353155000	1.445062000	-0.800551000	Н	-6.539511000	1.260134000	-0.943210000
С	2.441406000	-1.330817000	-0.808636000	Н	-6.878607000	-1.236944000	-1.594696000
С	-0.854535000	3.579746000	-0.849172000	н	-5.516053000	-1.612877000	-0.528593000

н	-6.988804000	-0.901819000	0.133089000
Н	-2.288557000	0.632026000	1.857420000

H -2.199343000 0.928562000 -1.407519000

5.7 Visualization of pertinent pre-orthogonal Natural Localized Molecular Orbitals and Natural Bond Orbitals (pNLMOs and pNBOs)

Figure S51. Depiction of key pNLMOs involved in the bonding of the N_2 unit of 7.

Figure S52. Depiction of key pNLMOs involved in the bonding of the $N_{\rm 2}$ unit of 10.

Figure S53. Depiction of key pNBOs for 7 and 10 involved in the stabilization of the lone pairs according to second-order perturbation theory.

Table S7. Key parameters issued by NBO analysis on 7 to explain the W–N–N–B bonding. LP = one-center valence lone pair, BD = two-center bond (Lewis NBO), BD* = two-center antibond (non-Lewis NBO), NHO = Natural Hybrid Orbital.

NBO Atom A(–Atom B)			NHO atom A						NHO atom B						
Number	e ⁻ occupancy	Туре	Localization P–W–N _α –N _β –B	% of NBO on NHO (atom A)	%s	%р	%d	%f	NHO	% of NBO on NHO (atom B)	%s	%р	%d	%f	NHO
84	1.61460	LP	Να	100 (N _α)	55	45	0	n.a.	sp ^{0.81}	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
303	1.98579	BD	N_{α} – N_{β}	50 (N _α)	44	56	0	n.a.	sp ^{1.25}	50 (N _β)	29	71	0	n.a.	sp ^{2.42}
304	1.96622	BD	N_{α} – N_{β}	41 (N _α)	0	100	0	n.a.	р	59 (N _β)	0	100	0	n.a.	р
305	1.91295	BD	N _β –Β	77 (N _β)	35	65	0	n.a.	sp ^{1.85}	23 (B)	20	80	0	n.a.	sp ^{3.98}
306	1.91926	BD	Ν _β –Β'	77 (N _β)	36	64	0	n.a.	sp ^{1.80}	23 (B')	21	79	0	n.a.	sp ^{3.87}
307	1.94215	BD	W–N _α	39 (W)	2	0	98	0	d	61 (N _α)	0	100	0	n.a.	р
465	0.44703	BD*	P–W	25 (P)	39	60	0	n.a.	sp ^{1.54}	75	24	0	76	0	sd ^{3.16}

Table S8. Key parameters issued by NBO analysis on 10 to explain the W–N–N–B bonding. LP = one-center valence lone pair, BD = two-center bond (Lewis NBO), BD* = two-center antibond (non-Lewis NBO), NHO = Natural Hybrid Orbital.

NBO Atom A(–Atom B)			NHO atom A						NHO atom B						
Number	e ⁻ occupancy	Туре	Localization P–W–Nα–Nβ–B	% of NBO on NHO (atom A)	%s	%р	%d	%f	NHO	% of NBO on NHO (atom B)	%s	%р	%d	%f	NHO
61	1.40277	LP	W	100 (W)	1	0	99	0	d	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
118	1.93903	BD	W–N _α	22 (W)	28	0	72	0	sd ^{2.55}	78 (N _α)	59	41	0	n.a.	sp ^{0.69}
144	1.96622	BD	N_{α} – N_{β}	51 (N _α)	39	61	0	n.a.	sp ^{1.54}	49 (N _β)	37	63	0	n.a.	sp ^{1.70}
145	1.97116	BD	$N_{\alpha}-N_{\beta}$	44 (N _α)	0	100	0	n.a.	р	56 (N _β)	2	98	0	n.a.	р
146	1.96743	BD	N_{α} – N_{β}	40 (N _α)	1	99	0	n.a.	р	60 (N _β)	3	97	0	n.a.	р
151	1.97095	BD	N _β –Β	76 (N _β)	58	42	0	n.a.	sp ^{0.72}	24 (B)	21	79	0	n.a.	sp ^{3.79}
268	0.52117	BD*	N_{α} - N_{β}	56 (N _α)	0	100	0	n.a.	р	44	2	98	0	n.a.	р

6 References

- S1. trans-W(dppe)₂(N₂)₂ prepared from WCl₄(PPh₃)₂: (a) J. R. Dilworth, R. L. Richards, G. J.-J. Chen and J. W. Mcdonald, in *Inorganic Syntheses*, John Wiley & Sons, Inc., 1980, pp. 119–127. trans-W(depe)₂(N₂)₂ prepared from WCl₆: (b) A. Coffinet, D. Specklin, L. Vendier, M. Etienne and A. Simonneau, *Chem. Eur. J.*, 2019, **25**, 14300–14303. trans-W(depe)₂(¹⁵N₂)₂ prepared from trans-WCl₂(depe)₂: (c) A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos and N. Weidemann, *Angew. Chem. Int. Ed.*, 2005, **44**, 5979–5985.
- S2. V. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood, S. Collins and T. B. Marder, J. Am. Chem. Soc., 1999, 121, 3244–3245.
- S3. (a) R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, 73, 1795–1818;
 (b) R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, *Pure Appl. Chem.*, 2008, 80, 59–84.
- S4. SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.
- S5. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
- S6. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Cryst., 2003, 36, 1487–1487.
- S7. International Tables for X-Ray Crystallography Vol. IV, Kynoch press, Birmingham, England, 1974.
- S8. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J Appl Cryst, 2020, 53, 226–235.
- S9. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
- S10. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- S11. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 77, 123–141.
- S12. A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuß, Mol. Phys., 1993, 80, 1431-1441.
- S13. (a) A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 111–114. (b) A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 237–240.
- S14. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213–222.
- S15. I. del Rosal, L. Maron, R. Poteau and F. Jolibois, Dalton Trans., 2008, 3959-3970.
- S16. (a) L. Goerigk and S. Grimme, *Phys. Chem. Chem. Phys.*, 2011, **13**, 6670–6688; (b) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456–1465.
- S17. (a) J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211–7218; (b) A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83, 1736–1740; (c) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899–926.
- S18. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, NBO (version 6.0) Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 2013.
- S19 (a) Ö. Öztopcu, C. Holzhacker, M. Puchberger, M. Weil, K. Mereiter, L. F. Veiros and K. Kirchner, Organometallics, 2013, 32, 3042–3052; (b) L. A. Wingard, P. S. White and J. L. Templeton, Dalton Trans., 2012, 41, 11438–11448; (c) A. J. M. Caffyn, S. G. Feng, A. Dierdorf, A. S. Gamble, P. A. Eldredge, M. R. Vossen, P. S. White and J. L. Templeton, Organometallics, 1991, 10, 2842–2848.
- S20 (a) Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. <u>http://avogadro.cc/;</u> (b) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminform.*, 2012, **4**, 17.