A General Approach to Stereospecific Pd-Catalyzed Cross-Coupling Reactions of Benzylic Stereocenters

Meruyert Binayeva, Xinghua Ma, Pejman Ghaemimohammadi, Mark R. Biscoe*

Supporting Information

Table of Contents

1. General Reagent and Analytical Information S2
2. Optimization of Asymmetric Borylstannylation S3
3. Procedural Information S4
Procedure for preparation of sulfinylphosphine ligand 7 S4
Procedure for preparation of enantioenriched $\mathbf{3 b}$ S6
General procedure for preparation of enantioenriched 1,2-borylstannanes $\boldsymbol{8}$ S8
General procedure for oxidation of $C-B$ bond. S11
General procedure for Suzuki cross-couplings of 1,2-borylstannanes S14
General procedures for Stille cross-couplings of alkylstannanes. S16
4. Cross-Coupling Product Characterization Data. S18
5. X-ray Crystal Structure of 8a S33
6. References S33
7. Chiral-Phase HPLC Data S35
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}$ NMR Spectra S69

1. General Reagent and Analytical Information

Commercially available reagents were purchased from Sigma-Aldrich, Alfa-Aesar, or Acros, and used as received unless otherwise noted. BDH brand ethyl ether was purchased from VWR. EMD brand Omnisolv THF (unstabilized) was purchased from Fisher. These solvents were transferred to separate 20 L solvent-delivery kegs and vigorously purged with argon for 2 h . The solvents were further purified by passing them under argon pressure through two packed columns of neutral alumina. Other anhydrous solvents (Sigma-Aldrich, SureSeal) were purged with argon prior to use. Water used for Suzuki reactions was degassed prior to use. Tricyclohexyltin chloride was purchased from Gelest Inc., or prepared from tricyclohexyltin hydroxide (SageChem) according to reference. ${ }^{1}$ Raney Ni (W.R. Grace and Co. Raney® 2400) was purchased from Sigma-Aldrich. Flash chromatography was performed using Silicycle silica gel (ultra-pure grade). Solvents used for flash chromatography (ACS grade) were purchased from Fisher Scientific, and used as received. All reactions were performed in oven-dried glassware under Ar atmosphere, unless otherwise noted. Reaction mixtures were monitored by thin layer chromatography (TLC) with visualization by fluorescence quenching at 254 nm , or by gas chromatography (GC). TLC plates were stained using potassium permanganate solution or I_{2}.

Compounds are characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{119} \mathrm{Sn}$ NMR. All NMR spectra were obtained on a Bruker $300\left(300 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 112 MHz for ${ }^{19} \mathrm{Sn}$). Calibrated ${ }^{1} \mathrm{H}$ NMR yields were obtained using mesitylene as an internal standard. All ${ }^{1} \mathrm{H}$ NMR experiments are reported in δ units, parts per million (ppm), and are measured relative to the signals for residual chloroform (7.26 ppm), unless otherwise noted. The following abbreviations are used to express the multiplicities: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad, app $=$ apparent. All ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to deuterochloroform (77.23 ppm), and were obtained with ${ }^{1} \mathrm{H}$ decoupling. All previously unreported compounds are additionally characterized by high resolution MS. High resolution MS analyses were performed on a Bruker Maxis-II ETD ESI-QTOF instrument. All GC analyses were performed on a Shimadzu GC-2030 gas chromatograph. GC yields were obtained using dodecane as an internal standard. Chiral-phase HPLC analyses were performed using a Shimadzu Prominence HPLC system with binary mobile phase pumps and UV-vis detector (LC-20AB, SPD-20A) using an OD-RH (dimensions: 4.6 mm
x 150 mm ; particle size: $5 \mu \mathrm{~m}$) chiral-phase column (Daicel), an IA (dimensions: $4.6 \mathrm{~mm} \times 150$ mm ; particle size: $5 \mu \mathrm{~m}$) chiral-phase column (Daicel), IC3 (dimensions: $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$; particle size: $3 \mu \mathrm{~m}$) chiral-phase column (Daicel), or OJ-RH (dimensions: $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$; particle size: $5 \mu \mathrm{~m}$) chiral-phase column (Daicel).

2. Optimization of Asymmetric Borylstannylation

Entry	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	CuCl (equiv)	7 (equiv)	Cy3SnOMe (equiv)	Yield (\%)	\% ee
1	t-BuOH	25	0.5	0.1	1.5	51%	93
2	dibutyl ether	25	0.5	0.1	1.5	61%	74
3	N, N-dimethyl acetamide	25	0.5	0.1	1.5	4%	n / a
4	t-BuOH	25	0.7	0.1	1.5	19%	88.3
5	t-BuOH	25	0.2	0.1	1.5	48%	91.7
6	t-BuOH	25	0.1	0.1	1.5	30%	87.4
7	t-BuOH	25	0.1	0.05	1.5	54%	88.5
8	MeCN	25	0.5	0.1	1.5	15%	78
9	sec-BuOH	25	0.5	0.1	1.5	39%	91.5
10	2 -propanol	25	0.5	0.1	1.5	49%	89.8
11	EtOH	25	0.5	0.1	1.5	25%	89.5
12	sec-BuOH	4	0.5	0.1	1.5	43%	93.7
13	$s e c$-BuOH	4	0.5	0.1	3	56%	93.2
14	$s e c$-BuOH	-78	0.5	0.1	1.5	35%	91.2
15	toluene	25	0.5	0.1	1.5	37%	90.1
16	MTBE	25	0.5	0.1	1.5	35%	88.2
17	1 -propanol	25	0.5	0.1	1.5	>5	n / a
18	DMSO	25	0.5	0.1	1.5	13%	14.4
19	t-amyl	25	0.5	0.1	1.5	56%	98.5
20	alcohol						
20	THF	25	0.1	0.1	1.5	70%	91

Figure S1. Effect of solvent, temperature and CuCl equivalents on 1,2-borylstannane synthesis. Enantiomeric excess was determined using product of B-selective Suzuki reaction (see page S16).

3. Procedural Information

Procedure for preparation of sulfinylphosphine ligand 7. ${ }^{2}$

Figure S2. Reaction scheme for preparation of 7.

To an oven-dried round bottom flask equipped with a stirbar under atmosphere of Argon, catechol (100 mmol), cyclopentanone (100 mmol) and $\mathrm{TsOH}(0.1 \mathrm{mmol})$ werer added. Toluene (150 mL) was then added and the resulting mixture was refluxed using a Dean-Stark trap at $130^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was poured into a separatory funnel and washed with aqueous $\mathrm{NaOH}(2 \times 50$ $\mathrm{mL}, 4 \mathrm{M})$. The organic layer was separated, washed with water (50 mL) and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. Solvent was removed under reduced pressure, $\mathbf{S 1}(6.6 \mathrm{~g}, 38 \%$ yield $)$ was isolated by flash column chromatography (10:90 ethyl acetate:hexanes). On the bench top, S1 $(30.8 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Br}(33.8 \mathrm{mmol})$ and $\mathrm{AcOH}(49 \mathrm{~mL})$ were added to an oven-dried round bottom flask equipped with a stirbar. After stirring for 10 min at $\mathrm{rt}, \mathrm{H}_{2} \mathrm{O}_{2}(5.5 \mathrm{~mL}, 30 \mathrm{wt} \%)$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ to the reaction vessel. The reaction mixture was allowed to stir for 12 h . The resulting solution was poured into separatory funnel containing saturated aqueous $\mathrm{NaHCO}_{3}(100$ mL). The organic layer was extracted with DCM, washed sequentially with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent was removed under reduced pressure, $\mathbf{S 2}$ was isolated by flash column chromatography (10:90 ethyl acetate:hexanes) as a bright yellow oil ($4.33 \mathrm{~g}, 55 \%$ yield).

S3
(S)-5-(tert-Butylsulfinyl) spiro[benzo[d][1,3]dioxole-2,1'cyclopentane] (S3). S2 (4 mmol) was added to the oven-dried two-neck round bottom flask equipped with a stirbar. The round bottom flask was sealed with a septum and electrical tape. Using a needle attached to a vacuum manifold, the reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. THF (8 mL) was then added via syringe. After stirring for 10 min at rt , reaction mixture was cooled to $-78^{\circ} \mathrm{C} . n \mathrm{BuLi}(4.8 \mathrm{mmol}, 2.5 \mathrm{M})$ was added dropwise, and stirred for 30 min at $60^{\circ} \mathrm{C}$. The reaction was cooled to $-78^{\circ} \mathrm{C}$, and a solution of (S)-S-tert-butyl 2-methylpropane-2sulfinothioate (4.4 mmol) in THF (2 mL) was added slowly. The reaction mixture was stirred for 12 h at rt , and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. After extraction with ethyl acetate (3×30 mL), combined organic phases were washed sequentially with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered, concentrated under reduced pressure, and purified by column chromatography ($30: 70$ ethyl acetate:hexanes) to afford $\mathbf{S 3}$ as a white solid ($0.585 \mathrm{~g}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H})$, 1.16 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.4,148.2,132.3,129.1,120.8,107.7,106.0$, $55.9,37.4(\mathrm{~d}, J=9.75 \mathrm{~Hz}), 23.4,23.0 \mathrm{ppm}$. HRMS (ES ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}$ 281.1206; Found 281.1210.

7
(S)-(5-(tert-Butylsulfinyl)spiro[benzo[d][1,3]dioxole-2,1'-cyclopentan]-4-yl) diphenyl phosphane (7): To the oven-dried twoneck round bottom flask equipped with a stirbar $\mathbf{S 3}$ (3.1 mmol) was added. The round bottom flask was sealed with a septum and electrical tape. Using a needle attached to a vacuum manifold, the reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. THF (6 mL) was then added via syringe. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$, LDA ($4.6 \mathrm{mmol}, 2 \mathrm{M}$ in THF/heptane/ethylbenzene) was added dropwise via syringe. The mixture was allowed to stir for 30 min at $-40^{\circ} \mathrm{C}$, and was cooled to $78^{\circ} \mathrm{C}$. To the cooled vessel, chlorodiphenylphosphine (5.5 mmol) in THF (2 mL) was added slowly. The mixture was allowed to slowly warm to rt, and stirred overnight. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and poured into separatory funnel. The organic layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), washed sequentially with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent was removed under reduced pressure, and 7 was isolated via flash
column chromatography ($40: 60$ ethyl acetate:hexanes) as a white solid ($0.945 \mathrm{~g}, 66 \%$ yield). Enantiomeric excess $(99.0 \%$ ee) was determined by HPLC analysis (IA column, 65:35 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{dd}, J=5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}$, $7 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.6(\mathrm{~d}, J=2.25 \mathrm{~Hz}), 149.8,139.0(\mathrm{~d}, J=$ $27 \mathrm{~Hz}), 136.4(\mathrm{~d}, J=11.25 \mathrm{~Hz}), 134.4(\mathrm{~d}, J=12 \mathrm{~Hz}), 133.2,133.0,132.8,128.5,128.4,128.1$, 127.9, 121.2 (d, $J=7.5 \mathrm{~Hz}$), 117.0 (d, $J=23.25 \mathrm{~Hz}$), 109.9, $58.0,36.8,23.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 22.9$ (d, $J=2.25 \mathrm{~Hz}$) ppm. ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-22.60 \mathrm{ppm}$. HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$ PS 465.1648; Found 465.1648.

Procedure for preparation of enantioenriched $\mathbf{3 b}$

Figure S3. Synthetic sequence for preparation of enantiomerically enriched (S)-tricyclohexyl (1-phenylethyl)stannane 3b.

S4
(S)-1-Ethyl-2-(p-tolylsulfinyl)benzene (S4). On the bench top, Mg turnings (128 $\mathrm{mmol}, 12.8$ equiv) were added to a 100 mL oven-dried round bottom flask, equipped with a stir bar. The flask was sealed with a rubber septum and backfilled 3 times with argon (ca. 100 mtorr). Freshly distilled THF (40 mL) and catalytic amount of I_{2} was added to the reaction flask. The reaction flask was cooled to $0^{\circ} \mathrm{C}$ and allowed to stir for 10 min . 1-Bromo-2-ethylbenzene (16 mmol) was added dropwise to the reaction solution. The reaction mixture was stirred for 30 min , removed from the ice bath, and allowed to stir at rt for another 2 h . Grignard reagent formation was confirmed by quenching a sample of the reaction
mixture with water and analyzing using gas chromatography. ($1 R, 2 S, 5 R$)-(-)-Menthyl $(S)-p-$ toluenesulfinate (10 mmol) was added to an oven-dried 200 mL round bottom flask with a stirbar. The flask was sealed with a rubber septum and backfilled 3 times with argon (ca. 100 mtorr). Freshly distilled THF (20 mL) was added to the flask, and the reaction mixture was stirred for 5 min . The reaction flask was cooled to $-78^{\circ} \mathrm{C}$. Generated Grignard reagent was added dropwise to the reaction mixture. The flask was kept at $-78^{\circ} \mathrm{C}$ for 3 h , and slowly warmed to rt overnight. The reaction solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$, and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent was removed under reduced pressure, and the crude product was purified by column chromatography (15:85 ethyl acetate:hexanes) to afford a pure product ($1.99 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 3 \mathrm{H})$, $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.8,142.1,141.9,141.7,131.2,130.0,129.0,127.2,126.2,124.8,24.9,21.5,14.9 \mathrm{ppm}$.

S5 Tricyclohexyl((S)-1-(2-((S)-p-tolylsulfinyl)phenyl)ethyl)stannane (S5). ${ }^{3}$ An oven-dried round bottom flask with a stir bar was sealed with a septum and backfilled with argon 3 times. Diisopropylamine ($1.7 \mathrm{~mL}, 12 \mathrm{mmol}$) was added to the reaction flask followed by freshly distilled THF (24 mL). The reaction was cooled to $-78^{\circ} \mathrm{C} . n \mathrm{BuLi}$ solution ($4.3 \mathrm{~mL}, 10.8 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise to the reaction mixture. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 15 min to complete formation of LDA (10.8 mmol). (S)-1-Ethyl-2-(p-tolylsulfinyl)benzene ($\mathbf{S 4}$) $(8.1 \mathrm{mmol}$) was $(8.1 \mathrm{mmol})$ was dissolved in THF (5 mL). This solution was added dropwise to the reaction flask containing LDA over 5 min . The reaction turns deep purple upon formation of benzylic anion. The reaction solution was stirred for another 30 min at $-78^{\circ} \mathrm{C} . \mathrm{Cy}_{3} \mathrm{SnCl}(10.5 \mathrm{mmol})$ was dissolved in THF (10 mL), and this solution was added dropwise to the benzylic anion over 5 min . The reaction mixture turned dark orange, and was allowed to stir for another 30 min . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added to the reaction mixture, and the resulting solution was then extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic washes were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The product was purified by recrystallization from $\mathrm{MeCN} / \mathrm{MeOH}$ to afford a white powder ($3.95 \mathrm{~g}, 60 \% ; 85: 15$ d.r.). Diastereomers were further separated using a silica column (2:98 ethyl acetate:toluene). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (dd, $J=6.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (d,
$J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 3 \mathrm{H})$, $1.69(\mathrm{~m}, 12 \mathrm{H}), 1.53(\mathrm{~m}, 9 \mathrm{H}), 1.33(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5,143.0$, $141.8,139.8,130.9,130.2,127.7,126.5,124.7,123.9,32.5,29.5,28.3,27.4,23.7,21.6,18.4 \mathrm{ppm}$.

3b
(S)-Tricyclohexyl(1-phenylethyl)stannane (3b). Raney Ni (3.3 g, W.R. Grace and Co. Raney® 2400) was transferred to a round bottom flask and slurried in THF (8 mL). The mixture was cooled $0^{\circ} \mathrm{C}$. Raney Ni was allowed to settle and THF was removed with a syringe. This THF wash sequence was performed two more times to remove water from Raney Ni. Finally, THF (8 mL) was added to the Raney Ni. p-Tolyl (S)-2-((S)-1-(tricyclohexylstannyl) ethyl)benzenesulfinate (S5) (0.5 mmol) was dissolved in THF (6 mL) and added dropwise over 10 min to the RBF containing Raney Ni. The reaction was allowed to stir overnight. The reaction mixture was filtered through wet celite, and celite was washed 4 times with DCM. The organic layers were combined, and solvent removed under reduced pressure. The crude product was purified by column chromatography (100% hexanes). Enantiomeric excess (97.6% ee) was determined by HPLC analysis (OD-RH column, 75:25 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). Over several preparations of $\mathbf{3 b}$, the enantiomeric excess ranged from 96% ee to 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~m}, 11 \mathrm{H}), 1.53(\mathrm{~m}, 9 \mathrm{H}), 1.31$ (m, 10H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7,128.3,126.4,123.4,32.5,29.6,27.6,27.4$, $26.8,18.6 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-100.19 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$) m/z: $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Sn} 391.1446$; Found 391.1447. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)=+14.5^{\circ}$.

General procedure for preparation of enantioenriched 1,2-borylstannanes $\boldsymbol{8}$.

Figure S4. Reaction scheme for the preparation of 1,2-borylstannanes 8.

On the benchtop, $\mathrm{Cy}_{3} \mathrm{SnCl}(0.5 \mathrm{mmol})$ was added to an oven-dried 8 mL screw-top test tube equipped with a stirbar. The test tube was sealed with a screw-top septum and electrical tape. The reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. NaOMe (5 mmol , $25 \mathrm{wt} . \%$ in MeOH) was added via syringe at this point. The septum was covered with electrical tape, and the reaction vessel was heated for 12 h at $90^{\circ} \mathrm{C}$ using a heating block. After cooling to rt , the reaction mixture was extracted with hexanes ($3 \times 10 \mathrm{~mL}$), and the combined hexane layers were concentrated under reduced pressure. The product (white solid) was analyzed by ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ to confirm formation of $\mathrm{Cy}_{3} \mathrm{SnOMe}(-4.52 \mathrm{ppm})$, and disappearance of $\mathrm{Cy}_{3} \mathrm{SnCl}(60.88$ $\mathrm{ppm}) . \mathrm{Cy}_{3} \mathrm{SnOMe}$ was used directly in the next step. In the glove box, $\mathrm{CuCl}(0.16 \mathrm{mmol})$ and 7 (0.03 mmol) was added to an oven-dried test tube equipped with a stirbar, followed by t-amyl alcohol (1.6 mL). The resulting solution was allowed to stir for 30 min at rt inside glove box. After indicated time, $(\text { Bpin })_{2}(0.5 \mathrm{mmol})$ and $\mathrm{Cy}_{3} \mathrm{SnOMe}(0.5 \mathrm{mmol})$ in t-amyl alcohol $(1.6 \mathrm{~mL})$ was added, the test tube was sealed with septum and parafilm, and taken out of glove box. Styrene derivative (0.33 mmol) was added to the reaction vessel via syringe. The septum was covered with parafilm, and the vessel was allowed to stir at rt for 12 h . The reaction mixture was filtered through celite, and concentrated under reduced pressure. The crude reaction was purified by flash column chromatography (5:95 ethyl acetate:hexanes) to afford pure product.

8a
(S)-Tricyclohexyl-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)ethyl)stannane (8a). The general procedure for the synthesis of enantioselective 1,2-borylstannane compounds was employed using styrene $(0.33 \mathrm{mmol}),(\mathrm{Bpin})_{2}(0.5 \mathrm{mmol}), \mathrm{Cy}_{3} \mathrm{SnOMe}(0.5 \mathrm{mmol}), \mathrm{CuCl}(0.16 \mathrm{mmol})$ and $7(0.03 \mathrm{mmol})$ in t-amyl alcohol (3.3 mL) at rt for 12 h . A white solid ($110.6 \mathrm{mg}, 56 \%$) was isolated via column chromatography (5:95 ethyl acetate:hexanes) as a product. Enantiomeric excess (98.7% ee) was determined by HPLC analysis of β-hydroxystannane (11c) obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched 8a (see page S12 below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(\mathrm{~m}$, $4 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 6 \mathrm{H}), 1.69(\mathrm{~m}, 10 \mathrm{H}), 1.53(\mathrm{~m}, 9 \mathrm{H}), 1.27(\mathrm{~m}, 10 \mathrm{H}), 1.06$ (s, 6H), 0.98 ($\mathrm{s}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,128.0,126,9,123.3,83.2,32.5$, 29.7, 27.9, 27.5, 25.1, 24.6. ${ }^{11} \mathrm{~B} \operatorname{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 32.67 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -101.53 ppm . HRMS (ES ${ }^{+}$) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{BO}_{2} \mathrm{NSn} 618.3510$ Found 618.3517. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)=-8.5^{\circ}$.

8b
(S)-Tricyclohexyl-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(4-(trifluoromethyl)phenyl)ethyl)stannane (8b). The general procedure for the synthesis of enantioselective 1,2-borylstannane compounds was employed using 4-(trifluoromethyl)styrene (0.33 mmol), (Bpin) $2_{2}(0.5$ $\mathrm{mmol}), \mathrm{Cy}_{3} \mathrm{SnOMe}(0.5 \mathrm{mmol}), \mathrm{CuCl}(0.16 \mathrm{mmol})$ and $7(0.03 \mathrm{mmol})$ in t-amyl alcohol (3.3 mL) at rt for 12 h . A white solid ($91.3 \mathrm{mg}, 41 \%$ yield) was isolated via column chromatography (5:95 ethyl acetate:hexanes) as a product. Enantiomeric excess (89.8% ee) determined by HPLC analysis of β-hydroxystannane ($\mathbf{S 6}$) obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched $\mathbf{8 b}$ (see page S 12 below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~m}, 10 \mathrm{H}), 1.48(\mathrm{~m}, 10 \mathrm{H}), 1.29(\mathrm{~m}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H})$, 0.99 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.30,130.30(\mathrm{q}, J=269 \mathrm{~Hz}$), 126.78, 126.00 $(\mathrm{q}, ~ J=30.75 \mathrm{~Hz}), 125.08(\mathrm{q}, J=4 \mathrm{~Hz}), 83.34,32.56(\mathrm{~d}, J=3 \mathrm{~Hz}), 29.59,28.21,27.37,25.05$, $24.55 \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.59 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-99.77 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$) m/z: [M $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BF}_{3} \mathrm{O}_{2} \mathrm{Sn} 585.2178$; Found 585.2184. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right)=+8.8^{\circ}$.

8c
(S)-Tricyclohexyl-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(o-tolyl)ethyl)stannane (8c). The general procedure for the synthesis of enantioselective 1,2-borylstannane compounds was employed using 2methylstyrene (0.33 mmol), (Bpin) $)_{2}(0.5 \mathrm{mmol}), \mathrm{Cy}_{3} \mathrm{SnOMe}(0.5 \mathrm{mmol}), \mathrm{CuCl}$ $(0.16 \mathrm{mmol})$ and $7(0.03 \mathrm{mmol})$ in t-amyl alcohol $(3.3 \mathrm{~mL})$ at rt for 12 h . A white solid $(85.4 \mathrm{mg}$, 42% yield) was isolated via column chromatography (5:95 ethyl acetate:hexanes) as a product. Enantiomeric excess (91.0\% ee) determined by HPLC analysis of β-hydroxystannane (S7) obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched $\mathbf{8 c}$ (see page S 13 below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.78(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~m}, 9 \mathrm{H}), 1.51(\mathrm{~m}, 10 \mathrm{H}), 1.28(\mathrm{~m}, 10 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.6,133.6,129.7,126.9,126.1,123.2,83.0,32.5,29.7,28.2,27.4$,
25.0, 24.5, $20.7 \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.50 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-97.80$ ppm. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$m/z: [M $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{BO}_{2} \mathrm{Sn}$ 531.2460; Found:531.2461. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)=-14.2^{\circ}$.

(S)-(1-(4-(tert-Butyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl) tricyclohexylstannane (8d). The general procedure for the synthesis of enantioselective 1,2-borylstannane compounds was employed using 4-tert-butylstyrene (0.33 mmol), (Bpin) $)_{2}(0.5 \mathrm{mmol}), \mathrm{Cy}_{3} \mathrm{SnOMe}$ (0.5 mmol), $\mathrm{CuCl}(0.16 \mathrm{mmol})$ and $7(0.03 \mathrm{mmol})$ in t-amyl alcohol $(3.3 \mathrm{~mL})$ at rt for 12 h . A white solid ($71.5 \mathrm{mg}, 33 \%$ yield) was isolated via column chromatography (5:95 ethyl acetate:hexanes) as a product. Enantiomeric excess (92.9% ee) determined by HPLC analysis of β-hydroxystannane ($\mathbf{S 8}$) obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched $\mathbf{8 d}$ (see page S13 below). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~d}, J=8.4$ Hz, 2H), $2.90(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 6 \mathrm{H}), 1.66(\mathrm{~m}, 10 \mathrm{H}), 1.51(\mathrm{~m}, 11 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~m}, 8 \mathrm{H})$, $1.06(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.2,146.1,126.6,124.8,83.1$, 34.3, 32.4, 31.7, 29.7, 27.9, 27.4, 24.9, $24.6 \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.26 \mathrm{ppm} .{ }^{119} \mathrm{Sn}$ (111 MHz, CDCl_{3}): -102.79 ppm . HRMS: Masses for charged ions were not observed under ESIMS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES^{+}) m/z: $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{BO}_{2} \mathrm{Sn}$ 573.2931; Found: 573.2941. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)=-26.2^{\circ}$.

General procedure for oxidation of $C-B$ bond.

Figure S5. Reaction scheme for oxidation of $\mathrm{C}-\mathrm{B}$ bond.

On the benchtop, 1,2-borylstannane $\mathbf{8}(0.2 \mathrm{mmol})$ was dissolved in THF (1 mL). After stirring at rt for $10 \mathrm{~min}, \mathrm{NaOH}(1 \mathrm{~mL}, 4 \mathrm{M})$ was added via syringe. The reaction vessel was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL}, 30 \mathrm{wt} \%)$ was added dropwise using syringe. The reaction mixture was stirred for 2 h at rt , and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous) at $0^{\circ} \mathrm{C}$. The mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, concentration, and column chromatography (10:90 ethyl acetate:hexanes), pure product was isolated as a bright yellow or transparent oil.

11c
(S)-2-Phenyl-2-(tricyclohexylstannyl)ethan-1-ol (11c). General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(1.6 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6$ $\mathrm{mL}, 30 \mathrm{wt} \%$), borylstannane $\mathbf{8 a}(0.27 \mathrm{mmol})$ in THF (1.6 mL). A bright yellow oil 11c (116 mg, 88\% yield) was isolated by column chromatography (10:90 ethyl acetate:hexanes). Enantiomeric excess (98.7% ee) was determined by HPLC analysis (IA column, $75: 25 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 6 \mathrm{H}), 1.66(\mathrm{~m}, 9 \mathrm{H}), 1.48(\mathrm{~m}, 8 \mathrm{H})$, $1.29(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,128.9,127.6,124.6,64.9,38.8,32.5$, 29.6, 27.9, $27.3 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-103.83 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$) m/z: $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{OSn} 407.1395$; Found: 407.1370.

S6
(S)-2-(Tricyclohexylstannyl)-2-(4-(trifluoromethyl)phenyl)ethan-1-ol (S6). General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(1.6 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6 \mathrm{~mL}, 30 \mathrm{wt} \%$), borylstannane 8b (0.27 $\mathrm{mmol})$ in THF (1.6 mL). A light yellow oil S6 ($77.9 \mathrm{mg}, 52 \%$ yield) was isolated by column chromatography (10:90 ethyl acetate:hexanes). Enantiomeric excess (89.8\% ee) was determined by HPLC analysis (OD-RH column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~m}, 9 \mathrm{H}), 1.52(\mathrm{~m}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.82,130.03(\mathrm{q}, J=270.75 \mathrm{~Hz}), 127.32,127.15(\mathrm{q}, J=32 \mathrm{~Hz}), 125.79(\mathrm{q}, J=$ $4.5 \mathrm{~Hz}, 3 \mathrm{~Hz}), 64.26,38.95,32.47,29.46,28.18,27.24 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-101.94$
ppm. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$) m/z: [M $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{OSn} 476.1347$; Found: 476.1468.

S7
(S)-2-(o-Tolyl)-2-(tricyclohexylstannyl)ethan-1-ol (S7). General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(1.6 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(1.6$ $\mathrm{mL}, 30 \mathrm{wt} \%$), borylstannane $\mathbf{8 c}(0.28 \mathrm{mmol})$ in THF (1.6 mL). A light yellow oil S7 (70 mg, 50\% yield) was isolated by column chromatography (10:90 ethyl acetate:hexanes). Enantiomeric excess (91.0% ee) was determined by HPLC analysis (OD-RH column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H})$, $4.48(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~m}, 10 \mathrm{H}), 1.54(\mathrm{~m}$, 10 H), 1.29 (m, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.6,135.4,130.8,126.6,126.3,124.4$, $65.5,34.6,32.5,29.6,28.1,27.4,20.8 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-101.22 \mathrm{ppm}$. HRMS (ES') $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{nNa}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{OSnNa} 527.2311$; Found 527.2429. Optical rotation of enantioenriched product $[\alpha]^{25}\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right)=+9.2^{\circ}$.
(S)-2-(4-(tert-Butyl)phenyl)-2-(tricyclohexylstannyl)ethan-1-ol (S8).

$\mathbf{S 8} \quad$ THF $(0.6 \mathrm{~mL})$. A light yellow oil $\mathbf{S 8}(27 \mathrm{mg}, 50 \%$ yield) was isolated by column chromatography ($5: 95$ ethyl acetate:hexanes). Enantiomeric excess (92.9% ee) was determined by HPLC analysis (OJ-RH column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~m}, 11 \mathrm{H}), 1.49(\mathrm{~m}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5,139.9,127.1,125.7,64.8,38.2,34.4,32.3,31.6,29.6,27.8,27.3 \mathrm{ppm}$. ${ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-104.57 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{OSn} 463.2022$; Found: 463.2080 . Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)=-4.0^{\circ}$.

General procedure for Suzuki cross-couplings of 1,2-borylstannanes.

8

$100^{\circ} \mathrm{C}$

Figure S6. Reaction scheme for Suzuki cross-coupling reactions of 8.

In an inert-atmosphere glovebox, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$ and rac - $\mathrm{BINAP}(0.01 \mathrm{mmol})$ were added to an oven-dried Schlenk tube equipped with a stirbar. Solvent (toluene, 0.5 mL) was then added via syringe. The resulting solution was allowed to stir for 30 min at rt inside the glovebox. 1,2borylstannane $8(0.1 \mathrm{mmol}), \mathrm{NaOH}(1.5 \mathrm{mmol})$ and toluene $(1.3 \mathrm{~mL})$ were then added. The Schlenk tube was sealed with a screw-top Teflon valve and removed from the glovebox. With the sidearm of the Schlenk tube connected to a Schlenk line under a positive pressure of argon, the screw-top Teflon valve was replaced with a rubber septum. Bromobenzene (0.15 mmol) was added to the reaction vessel via a microsyringe at this point, followed by degassed $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$. The rubber septum was again replaced with a screw-top Teflon valve and the reaction vessel sealed. The reaction vessel was heated for 12 h at $100^{\circ} \mathrm{C}$ using an oil bath. The reaction mixture was cooled to rt, transferred to a separatory funnel, diluted with water, and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and concentrated to provide the crude product. Pure Suzuki cross-coupled product was isolated by column chromatography.

11a
(S)-Tricyclohexyl(1,2-diphenylethyl)stannane (11a). The general procedure for Suzuki cross-coupling reactions of 1,2-borylstannanes (8) was employed using $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, rac-BINAP $(0.01 \mathrm{mmol})$, bromobenzene (0.15 mmol), borylstannane $\mathbf{8 a}(0.1 \mathrm{mmol}), \mathrm{NaOH}(1.5 \mathrm{mmol})$ in toluene: $\mathrm{H}_{2} \mathrm{O}(1.8: 0.2 \mathrm{~mL})$. A white solid 11 a ($44 \mathrm{mg}, 80 \%$ yield) was isolated by column chromatography (1:99 ethyl acetate:hexanes). Enantiomeric excess $(94.1 \%$ ee) was determined by HPLC analysis (OJ-RH column, 75:25 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.29 (dd, $J=9.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 11 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $(\mathrm{m}, 7 \mathrm{H}), 1.31(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.6,143.0,128.6,128.4,128.2$,
127.7, 125.7, 123.6, 39.3, 35.6, 32.6, 29.7, 28.1, $27.4 \mathrm{ppm} .{ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -101.32 ppm . HRMS (ES ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{SnK} 589.2258$; Found 589.2275. Optical rotation of enantioenriched product $[\alpha]^{25}$ D $\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)=-15.5^{\circ}$.

11b
(S)-Tricyclohexyl(2-phenyl-1-(4-(trifluoromethyl)phenyl)ethyl)stannane (11b). The general procedure for Suzuki cross-coupling reactions of 1,2-borylstannanes (8) was employed using $\operatorname{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, racBINAP (0.01 mmol), bromobenzene (0.15 mmol), borylstannane $\mathbf{8 b}(0.1 \mathrm{mmol}), \mathrm{NaOH}(1.5 \mathrm{mmol})$ in toluene: $\mathrm{H}_{2} \mathrm{O}(1.8: 0.2 \mathrm{~mL})$. A white solid $\mathbf{1 1 b}(49 \mathrm{mg}, 80 \%$ yield) was isolated by column chromatography ($0.5: 99.5$ ethyl acetate:hexanes). Enantiomeric excess $(90.5 \%$ ee) was determined by HPLC analysis (OD-RH column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 7 \mathrm{H}), 3.49(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=10.2 \mathrm{~Hz}$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 15 \mathrm{H}), 1.55(\mathrm{~m}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.27,142.34,130.18(\mathrm{q}, J=269.25 \mathrm{~Hz}$), 128.43, $127.38,126.34$ ($q, J=32 \mathrm{~Hz}), 126.08,125.33(\mathrm{q}, ~ J=3.75 \mathrm{~Hz}), 38.47,35.60,32.58(\mathrm{~m}), 29.55,28.32,27.33 \mathrm{ppm}$. ${ }^{119} \mathrm{Sn}\left(111 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -99.76 ppm . HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a single cyclohexyl group were observed. HRMS (ES ${ }^{+}$) m/z: $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{Sn}$ 535.1634; Found: 535.1631. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{D}\left(\mathrm{c} 0.42, \mathrm{CHCl}_{3}\right)=-14.1^{\circ}$.

For characterization data of 11c, see page S12 above.

General procedures for Stille cross-coupling reactions of alkylstannanes.
A)

3b

4

6

$\mathrm{Z}=\mathrm{Ph}$ or OH

Figure S7. A) Stereospecific Pd-catalyzed Stille cross-coupling reactions using 3b. B) Stereospecific Pd-catalyzed Stille cross-coupling reactions using 1,2-borylstannanes (8). C) Stereospecific Pd-catalyzed Stille cross-coupling reactions of B-derivatized organostannanes (11).

General Cross-Coupling Procedure \boldsymbol{A} - for cross-coupling reactions using 3b: On the benchtop, the electrophile ($0.10-0.15 \mathrm{mmol}$) (if solid), 1,2-borylstannane ($0.12-0.18 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dba})_{2}$ ($0.0050-0.0075 \mathrm{mmol}$), JackiePhos (2) ($0.010-0.015 \mathrm{mmol}$), $\mathrm{CuCl}(0.20-0.30 \mathrm{mmol}$), and anhydrous KF ($0.20-0.30 \mathrm{mmol}$) (only for aryl electrophiles) were added to an oven-dried 8 mL screw-top test tube equipped with a stirbar. The test tube was sealed with a screw-top septum and electrical tape. Using a needle attached to a vacuum manifold, the reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. If the electrophile was liquid, it was added to the reaction vessel using a microsyringe at this point. t-Butanol or 1,4 -dioxane ($1.0-1.5 \mathrm{~mL}$) was then added via syringe. The septum was covered with electrical tape, and the reaction vessel was heated at $110^{\circ} \mathrm{C}$ for 18 h using a heating block. Following completion of the reaction, the cooled reaction mixture was diluted with water $(5 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution
was filtered, analyzed by GC (if applicable), concentrated under reduced pressure, and purified by column chromatography.

General Cross-Coupling Procedure \boldsymbol{B} - for cross-coupling reactions using 1,2-borylstannanes (8): On the benchtop, the aryl electrophile (0.13 mmol) (if solid), 1,2-borylstannane $8(0.15 \mathrm{mmol})$, $\operatorname{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol})$, JackiePhos (2) (0.013 mmol), $\mathrm{CuCl}(0.26 \mathrm{mmol})$, and anhydrous KF (0.26 mmol) were added to an oven-dried Schlenk tube equipped with a stirbar. The Schlenk tube was sealed with a rubber septum, and the sidearm was connected to Schlenk line. The reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. If the electrophile was liquid, it was added to the reaction vessel via a microsyringe at this point. t-Butanol or 1,4-dioxane $(1.3 \mathrm{~mL})$ was then added using syringe. Under a positive pressure of argon, the rubber septum was replaced with a screw-top Teflon valve, and the Schlenk tube was sealed. The reaction vessel was heated for 12 h at $110^{\circ} \mathrm{C}$ using an oil bath. The reaction mixture was cooled to rt and transferred to a separatory funnel. The reaction mixture was diluted with water and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organics layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. If the organoborane product was desired, the solution was filtered, concentrated, and purified using column chromatography to provide the desired product. If the alcohol from oxidation of the $\mathrm{C}-\mathrm{B}$ bond was desired, an ${ }^{1} \mathrm{H}$ NMR yield of the crude 1,2-borylstannane cross-coupled product was obtained at this point using mesitylene as internal standard. This was followed by the general procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond, and purification of the compound.

General Cross-Coupling Procedure \boldsymbol{C} - for cross-coupling reactions using B-derivatized organostannanes (11): On the benchtop, the electrophile (aryl bromide/acyl chloride 0.13 mmol) (if solid), enantioenriched benzylic 1,2-borylstannane (11) (0.15 mmol), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.0065 mmol), JackiePhos (2) (0.013 mmol$), \mathrm{CuCl}(0.26 \mathrm{mmol})$, and anhydrous $\mathrm{KF}(0.26 \mathrm{mmol})$ (only for aryl electrophiles) were added to an oven-dried Schlenk tube equipped with a stirbar. The Schlenk tube was sealed with a rubber septum, and the sidearm was connected to Schlenk line. The reaction vessel was evacuated (ca. 100 mtorr) and backfilled with argon 3 times. If the electrophile was liquid, it was added to the reaction vessel via microsyringe at this point. 1,4-Dioxane (1.3 mL) was then added via syringe. Under a positive pressure of argon, the rubber septum was replaced with a screw-top Teflon valve, and the Schlenk tube was sealed. The reaction vessel was heated for 12 h
at $110^{\circ} \mathrm{C}$ using an oil bath. The reaction mixture was cooled to rt and transferred to a separatory funnel. The reaction mixture was diluted with water and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered, concentrated, and purified using column chromatography to provide the desired product.

4. Cross-Coupling Product Characterization Data

(S)-1-(4-(1-Phenylethyl)phenyl)ethan-1-one (4a). ${ }^{4}$ General crosscoupling procedure \mathbf{A} was employed using 4-bromoacetophenone (0.15 $\mathrm{mmol})$, benzylic tricyclohexylstannane 3b ($0.18 \mathrm{mmol}, 91 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.0075 mmol), JackiePhos (0.015 mmol), CuCl (0.3 mmol), KF (0.3 mmol)
in t - $\mathrm{BuOH}(1.5 \mathrm{~mL})$. A transparent oil $4 \mathrm{a}(26.5 \mathrm{mg}, 80 \%$ yield) was isolated by column chromatography (5:95 ethyl acetate:hexanes). Enantiomeric excess ($88.3 \% \mathrm{ee} ; 97 \%$ es) was determined by HPLC analysis [OJ-RH column, $90: 10\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.57 (s, 3H), 1.68 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,152.2$, $145.5,135.4,128.8,128.7,128.0,127.8,126.6,45.0,26.8,21.8 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)=-3.0^{\circ}$.

4b (S)-1-Methoxy-4-(1-phenylethyl)benzene (4b). ${ }^{5}$ General crosscoupling procedure A was employed using 4-bromoanisole (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 99 \%$ ee), $\operatorname{Pd}(\mathrm{dba})_{2}$ (0.005 mmol), JackiePhos (0.01 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in 1,4-dioxane (1 mL). A transparent oil $\mathbf{4 b}$ ($16 \mathrm{mg}, 78 \%$ yield) was isolated by column chromatography ($1: 99$ ethyl acetate:hexanes). Enantiomeric excess (97% ee; 98% es) was determined by HPLC analysis [IA column, 85:15 $\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1$, $146.9,138.8,128.7,128.5,127.7,126.1,113.9,55.5,44.1,22.3 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)=-21.8^{\circ}$.

Ethyl (S)-4-(1-phenylethyl)benzoate (4c). ${ }^{6}$ General cross-coupling procedure \mathbf{A} was employed using ethyl 4-bromobenzoate (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 99 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.005 mmol), JackiePhos (0.01 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in 1,4-dioxane (1 mL). A transparent oil $\mathbf{4 c}$ ($21.7 \mathrm{mg}, 84 \%$ yield) was isolated by column chromatography (2:98 ethyl acetate:hexanes). Enantiomeric excess (98% ee; 99% es) was determined by HPLC [OJ-RH column, 80:20 (5\% $\mathrm{CH}_{3} \mathrm{CN}$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{q}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.8,151.8,145.7$, $129.9,128.7,127.8,127.8,126.5,60.9,45.1,21.9,14.6 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)=-12.1^{\mathrm{o}}$.

(S)-6-(1-Phenylethyl)quinoline (4d).? General cross-coupling procedure A was employed using 5-quinolyl trifluoromethanesulfonate (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 96 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}(0.005$ mmol), JackiePhos (0.01 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in $1,4-$ dioxane (1 mL). A transparent oil $4 \mathrm{~d}(16.3 \mathrm{mg}, 70 \%$ yield) was isolated by column chromatography ($25: 75$ ethyl acetate:hexanes). Enantiomeric excess ($94 \% \mathrm{ee} ; 98 \%$ es) was determined by HPLC analysis [OJ-RH column, $80: 20\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (s, 1H), $8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ ($\mathrm{s}, 1 \mathrm{H}$), $7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1,147.4,145.9,144.9$, 136.1, 130.6, 129.6, 129.0, 128.7, 127.9, 126.5, 125.3, 121.3, 44.9, 21.9 ppm . Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)=+22.6^{\circ}$.

$4 e$
(S)-3-(1-Phenylethyl)benzo[b]thiophene (4e). ${ }^{8}$ General cross-coupling procedure \mathbf{A} was employed using 3-bromobenzothiophene (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 99 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}(0.005$ mmol), JackiePhos (0.01 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in t - $\mathrm{BuOH}(1 \mathrm{~mL}) . \mathrm{A}$ transparent oil $\mathbf{4 e}(16.9 \mathrm{mg}, 71 \%$ yield) was isolated by column chromatography ($0.5: 99.5$ ethyl acetate:hexanes). Enantiomeric excess (99% ee; $>99 \%$ es) was determined by HPLC analysis [OJ-

RH column, 85:15 ($5 \% \mathrm{CH}_{3} \mathrm{CN}$ in MeOH): $\mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 8 \mathrm{H}), 4.50(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6,140.8,140.6,138.7,128.7,127.5,126.4,124.3$, $123.9,122.9,122.7,121.6,39.7,22.6 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}(\mathrm{c}$ $\left.0.4, \mathrm{CHCl}_{3}\right)=+48.6^{\circ}$.

(S)-2,4-Dimethyl-1-(1-phenylethyl)benzene (4f). ${ }^{9}$ General crosscoupling procedure \mathbf{A} was employed using 1-bromo-2,4-dimethylbenzene (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 99 \%$ ee), $\operatorname{Pd}(\mathrm{dba})_{2}(0.005 \mathrm{mmol})$, JackiePhos (0.01 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}$ (0.2 mmol) in 1,4-dioxane (1 mL). A transparent oil $\mathbf{4 f}(10.5 \mathrm{mg}, 50 \%$ yield) was isolated by column chromatography ($1: 99$ ethyl acetate:hexanes). Enantiomeric excess ($98 \% \mathrm{ee} ; 98 \%$ es) was determined by HPLC analysis [IA column, $75: 25\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.7$, $141.2,136.1,135.7,131.5,128.5,127.8,126.9,125.9,40.9,22.4,21.1,19.9 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)=+17.3^{\circ}$.

(S)-2-Methoxy-6-(1-phenylethyl)pyridine ($\mathbf{4 g}$). ${ }^{10}$ General crosscoupling procedure A was employed using 2-bromo-6-methoxypyridine (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}(0.005 \mathrm{mmol})$, JackiePhos (0.01 mmol), CuCl (0.2 mmol), KF (0.2 mmol) in t-BuOH (1 mL). A transparent oil $\mathbf{4 g}(17 \mathrm{mg}, 80 \%$ yield) was isolated by column chromatography ($40: 60$ ethyl acetate:hexanes). Enantiomeric excess ($93 \% \mathrm{ee} ; 95 \%$ es) was determined by HPLC analysis [OJ-RH column, 85:15 ($5 \% \mathrm{CH}_{3} \mathrm{CN}$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=6.9 \mathrm{~Hz} 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7,162.8,145.6,138.9,128.4,127.9,126.4,114.6$,
$107.8,53.3,47.3,21.0 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)=$ $+23.8^{\circ}$.

6a
(S)-1-Morpholino-2-phenylpropan-1-one (6a). ${ }^{11}$ General cross-coupling procedure \mathbf{A} was employed using 4-morpholinecarbonyl chloride (0.1 mmol), benzylic tricyclohexylstannane 3b ($0.12 \mathrm{mmol}, 99 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.005 mmol), JackiePhos (0.01 mmol), CuCl (0.2 mmol) in 1,4-dioxane (1 mL). A transparent oil $\mathbf{6 a}(11.38 \mathrm{mg}, 52 \%$ yield) was isolated by column chromatography ($40: 60$ ethyl acetate:hexanes). Enantiomeric excess (97.5% ee; 98% es) was determined by HPLC analysis [IA column, $70: 30\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH): $\mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 5 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,142.0,129.2,127.3,127.1,67.0,66.4$, $46.1,43.5,42.5,20.9 \mathrm{ppm}$. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)=$ $+69.8^{\circ}$.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl
(S)-2phenylpropanoate ($\mathbf{6 b}$). General Stille cross-coupling procedure A was employed using ($1 R$)-(-)-menthyl chloroformate (0.15 mmol), benzylic tricyclohexylstannane 3b ($0.18 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ $(0.0075 \mathrm{mmol})$, JackiePhos $(0.015 \mathrm{mmol}), \mathrm{CuCl}(0.3 \mathrm{mmol})$ in toluene $(1.5 \mathrm{~mL})$. This reaction was heated to $130^{\circ} \mathrm{C}$ instead of $110^{\circ} \mathrm{C}$. A transparent oil $\mathbf{6 b}(26.5 \mathrm{mg}, 80 \%$ yield) was isolated by column chromatography (15:85 ethyl acetate:hexanes). The dr value was determined using ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 4.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=3 \mathrm{~Hz}, 0.02 \mathrm{H}$ from other diastereomer), $3.59(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 5 \mathrm{H}), 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.71$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 173.6, 141.7, $128.8,127.9,127.2,74.2,47.6,46.3,41.4,34.6,31.5,25.9,23.6,22.1,20.9,18.7,16.2 \mathrm{ppm}$. HRMS (ES ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ 289.2162; Found 289.2162.

(S)-1-(Benzofuran-2-yl)-2-phenylpropan-1-one (6c). General Stille cross-coupling procedure \mathbf{A} was employed using phenyl benzofuran-2carbothioate (0.15 mmol), benzylic tricyclohexylstannane 3b (0.18 mmol , 97% ee $), \operatorname{Pd}(\mathrm{dba})_{2}$ (0.0075 mmol), JackiePhos (0.015 mmol), CuCl (0.3 $\mathrm{mmol}, \mathrm{KF}(0.3 \mathrm{mmol})$ in $t-\mathrm{BuOH}(1.5 \mathrm{~mL})$. A transparent oil $\mathbf{6 c}(17.6 \mathrm{mg}, 47 \%$ yield $)$ was isolated by column chromatography ($5: 95$ ethyl acetate:hexanes). Enantiomeric excess ($96 \% \mathrm{ee} ; 99 \%$ es) was determined by HPLC analysis [OJ-RH column, $85: 15\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in MeOH$): \mathrm{H}_{2} \mathrm{O}$ as eluent]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 8 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.5,155.7,152.3$, $140.8,135.3,129.1,128.4,128.2,127.4,124.0,123.4,113.8,112.6,48.6,18.6$ ppm. HRMS (ES') $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$ 251.1067; Found 251.1071. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right)=-28.0^{\circ}$.

6d
(2R,4S)-2,4-diphenylhexan-3-one (6d). General cross-coupling procedure B was employed using (S)-S-phenyl-2-phenylbutanethioate $(0.2 \mathrm{mmol})$, benzylic tricyclohexylstannane $(R) \mathbf{- 3 b}(0.3 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($10 \mathrm{~mol} \%$), JackiePhos ($24 \mathrm{~mol} \%$), CuCl (0.4 mmol), KF (0.4 mmol) in toluene (1 mL). A colorless oil $\mathbf{6 d}(41.9 \mathrm{mg}, 83 \%$ yield) was isolated by column chromatography (5:95 ethyl acetate:hexanes). Diastereomeric ratio ($19: 1 \mathrm{dr}$) was determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.8,140.7,139.5,129.10,129.05,128.9,128.6,128.3,127.3,58.7$, 51.5, 25.6, 18.1, 11.9 ppm. HRMS (ES ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ 253.1592; Found 253.1593.

(2R,4R)-2,4-diphenylhexan-3-one (6e). General cross-coupling procedure B was employed using (R)-S-phenyl-2-phenylbutane thioate $(0.2 \mathrm{mmol})$, benzylic tricyclohexylstannane $(R)-\mathbf{3 b}(0.3 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($10 \mathrm{~mol} \%$), JackiePhos ($24 \mathrm{~mol} \%$), $\mathrm{CuCl}(0.4 \mathrm{mmol})$, KF (0.4 mmol) in toluene (1 mL). A colorless oil $\mathbf{6 e}(42.4 \mathrm{mg}, 84 \%$ yield) was isolated by column chromatography (5:95 ethyl acetate:hexanes). Diastereomeric ratio (18:1 d.r.) was determined by ${ }^{1} \mathrm{H}$ NMR analysis.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{~m}, 6 \mathrm{H}), 6.96(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.4,140.0,138.9,128.57,128.53,128.45,128.35,127.0,126.9,59.5$, 53.0, 26.6, 18.0, 12.4 ppm .

(S)-1-(4-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-phenyl)ethan-1-one (10a). General cross-coupling procedure \mathbf{B} was employed using 4-bromoacetophenone (0.1 mmol), 1,2-borylstannane $8 \mathbf{~ (~} 0.12 \mathrm{mmol}, 98 \%$ ee), $\operatorname{Pd}(\mathrm{dba})_{2}(0.005 \mathrm{mmol})$, JackiePhos (0.015 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}$ $(0.2 \mathrm{mmol})$ in 1,4-dioxane $(1 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. A bright yellow oil (10a) (25 mg , 73% yield) was isolated by column chromatography (10:90 to 20:80 ethyl acetate:hexanes). Enantiomeric excess (95.6% ee, 97% es) determined by HPLC analysis of alcohol 10b obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched $\mathbf{1 0 a}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: d 7.87 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): d 198.1, $152.6,145.8,135.3,128.7,128.6,128.1,127.9,126.5,83.5,46.7,26.8,24.8 \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR (96 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ d 32.09 ppm . Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)=$ $+15.0^{\circ}$.

(S)-1-(4-(2-Hydroxy-1-phenylethyl)phenyl)ethan-1-one (10b). General Stille cross-coupling procedure \mathbf{B} was employed using 4-bromoacetophenone (0.13 mmol), 1,2-borylstannane 8a ($0.15 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol})$, JackiePhos (0.019 mmol$), \mathrm{CuCl}(0.26 \mathrm{mmol}), \mathrm{KF}(0.26 \mathrm{mmol})$ in 1,4-dioxane $(1.3 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [82\% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}$ ($0.65 \mathrm{~mL}, 30 \mathrm{wt} \%$) in THF (0.65 mL) . A transparent oil 10 b ($27.3 \mathrm{mg}, 87 \%$ yield) was isolated by column chromatography (20:80 to 50:50 ethyl acetate:hexanes). Enantiomeric excess ($95.6 \% \mathrm{ee}$; 97% es) was determined by HPLC analysis (IA column, 55:45 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,147.3,140.8,135.9,129.1,128.9$, $128.8,128.5,127.4,65.9,53.7,26.8 \mathrm{ppm} . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2}$
241.1223; Found: 241.1223. Optical rotation of enantioenriched product $[\alpha]^{25}\left(c 0.1, \mathrm{CHCl}_{3}\right)=$ $+6^{\circ}$.

(S)-2-(4-(tert-Butyl)phenyl)-2-phenylethan-1-ol (10c). General Stille crosscoupling procedure \mathbf{B} was employed using 1-bromo-4-tert-butylbenzene (0.1 mmol), 1,2-borylstannane 8a ($0.12 \mathrm{mmol}, 98 \%$ ee), $\operatorname{Pd}(\mathrm{dba})_{2}(0.005 \mathrm{mmol})$, JackiePhos (0.015 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in 1,4-dioxane (1 mL) at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [72% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}$, $30 \mathrm{wt} \%$) in THF (0.65 mL). A white solid $\mathbf{1 0 c}(15.1 \mathrm{mg}, 52 \%$ yield) was isolated by column chromatography ($30: 70$ ethyl acetate:hexanes). Enantiomeric excess (91.9% ee; 94% es) was determined by HPLC analysis (OJ-RH column, $60: 40 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.9,141.8,138.4,128.9,128.5,128.1,127.0,125.9,66.4,53.5,34.6,31.5$ ppm. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$) m/z: [M-OH] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21}$ 237.1638; Found: 237.1638. Optical rotation of enantioenriched product [$\left.\alpha\right]^{25} \mathrm{D}(\mathrm{c} 0.2$, $\left.\mathrm{CHCl}_{3}\right)=+12.0^{\circ}$.

(S)-2-(4-Nitrophenyl)-2-phenylethan-1-ol (10d). General Stille crosscoupling procedure \mathbf{B} was employed using 1-bromo-4-nitrobenzene (0.14 mmol), 1,2-borylstannane 8 a ($0.17 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.007 mmol), JackiePhos (0.021 mmol), $\mathrm{CuCl}(0.28 \mathrm{mmol})$, $\mathrm{KF}(0.28 \mathrm{mmol})$ in 1,4-dioxane $(1.4 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [61\% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}$ $(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A reddish yellow oil $10 \mathrm{~d}(17.6 \mathrm{mg}, 52 \%$ yield) was isolated by column chromatography (15:85 to 40:60 ethyl acetate:hexanes). Enantiomeric excess (91.3\% ee; 93% es) was determined by HPLC analysis (OJ-RH column, $40: 60 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 0.1% phosphoric acid as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 149.6,147.0,140.1,129.5,129.3,128.5,127.7,124.0,65.8,53.5 \mathrm{ppm}$. HRMS (ES ${ }^{+}$)
$\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}$ 244.0968; Found: 244.0968. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)=+8.0^{\circ}$.

10e

Ethyl (S)-4-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2$\mathbf{y l})$ ethyl)benzoate (10e). General Stille cross-coupling procedure \mathbf{C} was employed using ethyl 4-bromobenzoate (0.1 mmol), 1,2-borylstannane 8a ($0.12 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.005 mmol), JackiePhos (0.015 mmol), CuCl (0.2 mmol), KF (0.2 mmol) in 1,4-dioxane (1 mL) at $110^{\circ} \mathrm{C}$. A transparent oil $\mathbf{1 0 e}$ ($27 \mathrm{mg}, 71 \%$ yield) was isolated by column chromatography (10:90 ethyl acetate:hexanes). Enantiomeric excess (96.3% ee; 98% es) determined by HPLC analysis of alcohol $\mathbf{1 0 f}$ obtained by oxidation $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ of enantiomerically enriched $\mathbf{1 0 e} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{~m}, 3 \mathrm{H})$, $1.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,152.1,145.9,129.8,128.6,128.4,127.9,126.4,83.5,60.9,46.7,24.8,14.5 \mathrm{ppm}$. HRMS $\left(E S^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BO}_{4}$ 381.2236; Found: 381.2237. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)=+13.3^{\circ}$.

Ethyl (S)-4-(2-hydroxy-1-phenylethyl)benzoate (10f). General Stille crosscoupling procedure \mathbf{B} was employed using ethyl 4-bromobenzoate (0.13 mmol), 1,2-borylstannane 8a ($0.15 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol})$, JackiePhos (0.019 mmol), $\mathrm{CuCl}(0.26 \mathrm{mmol}), \mathrm{KF}(0.26 \mathrm{mmol})$ in 1,4-dioxane $(1.3 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [75% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}$ $(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A transparent oil $\mathbf{1 0 f}(23 \mathrm{mg}, 65 \%$ yield) was isolated by column chromatography (15:85 to 40:60 ethyl acetate:hexanes). Enantiomeric excess ($96.3 \% \mathrm{ee}$; 98% es) was determined by HPLC analysis (OJ-RH column, $35: 65 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (m, 4H), 7.27 (m, 3H), 4.40 (q, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,146.9,140.8,130.1,129.2,129.0,128.5,127.2,66.0,61.1,53.7,14.5 \mathrm{ppm}$. HRMS $^{\left(E^{+}\right)}$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}$ 271.1329; Found: 271.1330.

10 g
(S)-2-Phenyl-2-(o-tolyl)ethan-1-ol (10g). General Stille cross-coupling procedure \mathbf{B} was employed using 2-bromotoluene (0.14 mmol), 1,2borylstannane 8a ($0.17 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.007 mmol), JackiePhos (0.021 mmol), $\mathrm{CuCl}(0.28 \mathrm{mmol}), \mathrm{KF}(0.28 \mathrm{mmol})$ in 1,4-dioxane $(1.4 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [70% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}$, $30 \mathrm{wt} \%$) in THF (0.65 mL). A bright yellow oil $\mathbf{1 0 g}(16.3 \mathrm{mg}, 55 \%$ yield) was isolated by column chromatography ($20: 80$ ethyl acetate:hexanes). Enantiomeric excess (92.4% ee; $94 \% \mathrm{es}$) was determined by HPLC analysis (OJ-RH column, $75: 25 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 0.1% phosphoric acid as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H}), 4.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.2,139.4,137.4$, 131.2, $128.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 126.9(\mathrm{~d}, ~ J=3.8 \mathrm{~Hz}), 126.7,126.4,66.3,49.9,20.0 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$) m/z: [M-OH] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15}$ 195.1168; Found: 195.117. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.28, \mathrm{CHCl}_{3}\right)=$ $+59.6^{\circ}$.

10h
(S)-2-(2-Methoxyphenyl)-2-phenylethan-1-ol (10h). General Stille crosscoupling procedure \mathbf{B} was employed using 2-bromoanisole (0.13 mmol), 1,2borylstannane $8 \mathbf{8 a}(0.15 \mathrm{mmol}, 98 \%$ ee $), \mathrm{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol})$, JackiePhos (0.019 mmol), $\mathrm{CuCl}(0.26 \mathrm{mmol}), \mathrm{KF}(0.26 \mathrm{mmol})$ in 1,4 -dioxane $(1.3 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [67% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}$, $30 \mathrm{wt} \%$) in THF (0.65 mL). A dark red oil $\mathbf{1 0 h}(27 \mathrm{mg}, 85 \%$ yield) was isolated by column chromatography ($20: 80$ ethyl acetate:hexanes). Enantiomeric excess (91.6% ee; 93% es) was determined by HPLC analysis (OJ-RH column, 50:50 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,141.7,129.9,128.8$, 128.7, 128.5, 128.0, 126.7, 120.9, 111.1, 65.6, 55.7, 46.8 ppm . HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl
group were observed. HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}-\mathrm{OH}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}$ 211.1117; Found: 211.1116. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)=-32.0^{\circ}$.

$10 i$
(S)-2-(4-(1H-Pyrrol-1-yl)phenyl)-2-phenylethan-1-ol (10i). General Stille cross-coupling procedure \mathbf{B} was employed using 1-(4-bromophenyl)-1Hpyrrole (0.1 mmol), 1,2-borylstannane $\mathbf{8 a}$ ($0.12 \mathrm{mmol}, 98 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}(0.005$ mmol), JackiePhos (0.015 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in $1,4-$ dioxane (1 mL) at $110^{\circ} \mathrm{C}$. Crude product was obtained [58% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65$ $\mathrm{mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A white solid $\mathbf{1 0 i}(14 \mathrm{mg}, 54 \%$ yield) was isolated by column chromatography (30:70 ethyl acetate:hexanes). Enantiomeric excess (95.5\% ee; 97% es) was determined by HPLC analysis (OJ-RH column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~m}, 9 \mathrm{H}), 7.07(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ $(\mathrm{m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.4,139.7,139.2,129.6,129.0$, $128.5,127.2,120.9,119.5,110.6,66.3,53.2 \mathrm{ppm}$. HRMS (ES ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}$ 264.1383; Found: 264.1384. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)=$ $+7.8^{\circ}$.

10j
(S)-2-(4-Methoxyphenyl)-2-phenylethan-1-ol (10j). General Stille crosscoupling procedure \mathbf{B} was employed using 4-bromoanisole (0.14 mmol), 1,2borylstannane 8a ($0.17 \mathrm{mmol}, 98 \%$ ee), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.007 mmol), JackiePhos (0.021 mmol), $\mathrm{CuCl}(0.28 \mathrm{mmol}), \mathrm{KF}(0.28 \mathrm{mmol})$ in 1,4-dioxane $(1.4 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. Crude product was obtained [52% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%$) in THF (0.65 mL). A bright yellow oil $\mathbf{1 0 j}(12.9 \mathrm{mg}, 40 \%$ yield) was isolated by column chromatography ($20: 80$ ethyl acetate:hexanes). Enantiomeric excess (92.9% ee; 95% es) was determined by HPLC analysis (OJ-RH column, $60: 40 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.34(\mathrm{~m}, 7 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,141.9,133.6,129.5,128.9,128.4,126.9,114.3,66.5$, 55.5, 53.0 ppm . HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$m/z: [M-
$\mathrm{OH}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}$ 211.1117; Found: 211.1115. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)=+16.7^{\circ}$.

(S)-2-(4-(2-Hydroxyethyl)phenyl)-2-phenylethan-1-ol (10k). General Stille cross-coupling procedure \mathbf{B} was employed using 2-(4-bromophenyl)ethanol (0.1 mmol), 1,2-borylstannane 8a ($0.12 \mathrm{mmol}, 98 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}(0.005 \mathrm{mmol})$, JackiePhos (0.015 mmol), $\mathrm{CuCl}(0.2 \mathrm{mmol}), \mathrm{KF}(0.2 \mathrm{mmol})$ in 1,4-dioxane (1 mL) at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [62% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4$ $\mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A transparent oil 10k ($14.1 \mathrm{mg}, 51 \%$ yield) was isolated by column chromatography (30:70 ethyl acetate:hexanes). Enantiomeric excess (92.3\% ee; 94% es) was determined by HPLC analysis (OJ-RH column, $30: 70 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1.3 \mathrm{H}), 7.23(\mathrm{~m}, 5.6 \mathrm{H}), 4.22(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 141.6, 139.8, 137.2, 129.6, 128.9, 128.7, 128.5, 127.0, 66.4, 63.8, 53.6, 38.9 ppm. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$) m/z: $[\mathrm{M}-\mathrm{OH}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}$ 225.1274; Found: 225.1273. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)=2.0^{\circ}$.

(S)-2-(4-Methoxyphenyl)-2-(o-tolyl)ethan-1-ol (101). General Stille crosscoupling procedure \mathbf{B} was employed using 4-bromoanisole (0.13 mmol), 1,2borylstannane 8c ($0.15 \mathrm{mmol}, 92 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.0065 mmol), JackiePhos (0.019 mmol), $\mathrm{CuCl}(0.26 \mathrm{mmol}), \mathrm{KF}(0.26 \mathrm{mmol})$ in 1,4-dioxane $(1.3 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. Crude product was obtained [60% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of C-B bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A transparent oil $\mathbf{1 0 1}(15.7 \mathrm{mg}, 50 \%$ yield) was isolated by column chromatography ($15: 85$ ethyl acetate:hexanes). Enantiomeric excess (91.2% ee; 99% es) was determined by HPLC analysis (OJ-RH column, $45: 55 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $158.5,139.7,137.4,133.2,131.2,129.7,126.9,126.6,126.4,114.3,66.4,55.5,49.0,19.9 \mathrm{ppm}$.

HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$m/z: [M-OH] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}$ 225.1274; Found: 225.1272. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}(\mathrm{c} 1.0$, $\left.\mathrm{CHCl}_{3}\right)=-18.4^{\mathrm{o}}$.

(S)-2-Phenyl-2-(4-(trifluoromethyl)phenyl)ethan-1-ol (10m). General Stille cross-coupling procedure B was employed using bromobenzene (0.21 mmol), 1,2-borylstannane $\mathbf{8 b}$ ($0.25 \mathrm{mmol}, 90.5 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.01 $\mathrm{mmol}), \mathrm{JackiePhos}(0.03 \mathrm{mmol}), \mathrm{CuCl}(0.42 \mathrm{mmol}), \mathrm{KF}(0.42 \mathrm{mmol})$ in 1,4-dioxane (2.1 mL) at $110^{\circ} \mathrm{C}$. Crude product was obtained [70\% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(1 \mathrm{~mL}, 4$ M), $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (1 mL). A transparent oil $10 \mathrm{~m}(35 \mathrm{mg}, 65 \%$ yield) was isolated by column chromatography (15:85 ethyl acetate:hexanes). Enantiomeric excess (89.6% ee; 99\% es) was determined by HPLC analysis (IA column, 55:45 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 7 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.96,140.74,129.97(\mathrm{q}, J=32 \mathrm{~Hz}), 129.82(\mathrm{q}, J=270 \mathrm{~Hz}), 129.17$, $128.94,128.57,127.43,125.90(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 66.06,53.60 \mathrm{ppm}$. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$m/z: [M-OH] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3}$ 249.0886; Found: 249.0885. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right)=+6.9^{\circ}$.

(S)-2-Phenyl-2-(thiophen-3-yl)ethan-1-ol (10n). General Stille cross-coupling procedure \mathbf{B} was employed using 3-bromothiophene (0.13 mmol), 1,2borylstannane 8a ($0.15 \mathrm{mmol}, 98 \% \mathrm{ee}), \mathrm{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol})$, JackiePhos (0.019 mmol), $\mathrm{CuCl}(0.26 \mathrm{mmol}), \mathrm{KF}(0.26 \mathrm{mmol})$ in 1,4-dioxane $(1.3 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. Crude product was obtained [58% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of C-B bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%$) in THF (0.65 mL). A bright yellow oil $\mathbf{1 0 n}(11.7 \mathrm{mg}, 45 \%$ yield) was isolated by column chromatography ($20: 80$ ethyl acetate:hexanes). Enantiomeric excess $(96.1 \% \mathrm{ee} ; 98 \% \mathrm{es}$) was determined by HPLC analysis (IA column, $65: 35 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.36(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}$,
$2 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.2,141.3,128.9,128.5,127.9,127.2$, 126.1, 121.6, 66.7, 49.7 ppm. HRMS: Masses for charged ions were not observed under ESI-MS. However, characteristic fragment ions with a loss of a hydroxyl group were observed. HRMS (ES ${ }^{+}$) $\mathrm{m} / \mathrm{z}:[\mathrm{M}-\mathrm{OH}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~S}$ 187.0576; Found: 187.0579. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 1.6, \mathrm{CHCl}_{3}\right)=+20.6^{\circ}$.

(S)-1-(4-(1-(4-(tert-Butyl)phenyl)-2-hydroxyethyl)phenyl)ethan-1-one (100). General Stille cross-coupling procedure \mathbf{B} was employed using 4bromoacetophenone (0.13 mmol), 1,2-borylstannane $\mathbf{8 d}$ ($0.15 \mathrm{mmol}, 93 \%$ ee), $\operatorname{Pd}(\mathrm{dba})_{2}(0.0065 \mathrm{mmol}), \mathrm{JackiePhos}(0.019 \mathrm{mmol}), \mathrm{CuCl}(0.26 \mathrm{mmol})$, KF (0.26 mmol) in 1,4 -dioxane $(1.3 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. Crude product was obtained [$70 \%{ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of the $\mathrm{C}-\mathrm{B}$ bond was employed using $\mathrm{NaOH}(0.65 \mathrm{~mL}, 4 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.65 mL). A transparent oil $\mathbf{1 0 0}$ ($25.9 \mathrm{mg}, 67 \%$ yield) was isolated by column chromatography (30:70 ethyl acetate:hexanes). Enantiomeric excess ($91.2 \% \mathrm{ee} ; 98 \% \mathrm{es}$) was determined by HPLC analysis (OJRH column, $50: 50 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H), 7.40 (dd, $J=8.4 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (s, 1H, OH), $1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,150.2,147.6,137.6,135.9$, $128.9,128.8,128.1,125.9,66.1,53.4,34.7,31.5,26.8 \mathrm{ppm} . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2}$ 297.1849; Found: 297.1850. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}(\mathrm{c} 0.12$, $\left.\mathrm{CHCl}_{3}\right)=+17.5^{\circ}$.

(S)-2-(4-(tert-Butyl)phenyl)-2-(thiophen-3-yl)ethan-1-ol (10p). General Stille cross-coupling procedure \mathbf{B} was employed using 3-bromothiophene (0.07 mmol), 1,2-borylstannane 8d ($0.084 \mathrm{mmol}, 95 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.0035 mmol), JackiePhos (0.010 mmol), $\mathrm{CuCl}(0.14 \mathrm{mmol}), \mathrm{KF}(0.14$ mmol) in 1,4-dioxane $(0.7 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. Crude product was obtained [46\% yield by ${ }^{1} \mathrm{H}$ NMR]. General procedure for oxidation of the $\mathrm{C}-\mathrm{B}$ bond was employed using NaOH ($0.38 \mathrm{~mL}, 4 \mathrm{M}$), $\mathrm{H}_{2} \mathrm{O}_{2}(0.38 \mathrm{~mL}, 30 \mathrm{wt} \%)$ in THF (0.38 mL). A transparent oil $\mathbf{1 0 p}(7 \mathrm{mg}, 35 \%$ yield) was isolated by column chromatography (30:70 ethyl acetate:hexanes). Enantiomeric excess (93.0% ee; 98% es) was determined by HPLC analysis ($\mathrm{OJ}-\mathrm{RH}$ column, $80: 20 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as
eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ $(\mathrm{m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=3.9 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 1 \mathrm{H}$, OH), 1.31 ($\mathrm{s}, 9 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0,142.5,138.1,128.1,128.0,126.1$, $125.9,121.5,66.8,49.3,34.6,31.5 \mathrm{ppm}$. HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{OS} 261.1308$; Found: 261.1314. Optical rotation of enantioenriched product $[\alpha]^{25} \mathrm{D}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)=+25.5^{\circ}$.

12a
Ethyl (S)-4-(1,2-diphenylethyl)benzoate (12a). General Stille cross-coupling procedure \mathbf{C} was employed using ethyl 4-bromobenzoate (0.23 mmol), organostannane 11a ($0.27 \mathrm{mmol}, 97 \%$ ee $), \operatorname{Pd}(\mathrm{dba})_{2}(0.011 \mathrm{mmol})$, JackiePhos (0.034 mmol$), \mathrm{CuCl}(0.46 \mathrm{mmol}), \mathrm{KF}(0.46 \mathrm{mmol})$ in 1,4-dioxane $(2.3 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$. A transparent oil $\mathbf{1 2 a}(63.7 \mathrm{mg}, 84 \%$ yield) was isolated by column chromatography (5:95 ethyl acetate:hexanes). Enantiomeric excess (93.1% ee; 96% es) was determined by HPLC analysis (OJ-RH column, 55:45 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 1.40$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,149.7,143.9,139.9,129.8,129.2$, $128.7,128.3,128.3,128.2,126.7,126.2,60.9,53.3,41.9,14.5 \mathrm{ppm} . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2}$ 331.1693; Found: 331.1692. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)=-53.0^{\circ}$.

12b ${ }^{\circ} \mathrm{C}$. A transparent oil 12b ($7.4 \mathrm{mg}, 58 \%$ yield) was isolated by column chromatography ($30: 70$ ethyl acetate:hexanes). Enantiomeric excess (89.6% ee; 95% es) was determined by HPLC analysis. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 4.40$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,146.9,140.8,130.1,129.2,129.0,128.5,127.2,66.0,61.1,53.7,14.5 \mathrm{ppm}$. HRMS (ES ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}$ 271.1329; Found: 271.1330.

13a
(S)-1,2,3-triphenylpropan-1-one (13a). General cross-coupling procedure \mathbf{C} was employed using S-phenyl benzothioate (0.2 mmol), organostannane 11a ($0.24 \mathrm{mmol}, 97 \% \mathrm{ee}$), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.01 mmol), JackiePhos (0.03 mmol), CuCl (0.4 $\mathrm{mmol}), \mathrm{KF}(0.4 \mathrm{mmol})$ in 1,4-dioxane $(2 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. A white solid 13a (41 $\mathrm{mg}, 75 \%$ yield) was isolated by column chromatography (1:99 ethyl acetate:hexanes). Enantiomeric excess (95.3% ee; 98% es) was determined by HPLC analysis (OJ-RH column, $50: 50 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 10 \mathrm{H}), 4.83(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.4,140.0,139.3,136.9,133.1,129.3,129.1,128.9,128.7,128.5$, 128.5, 127.4, 126.3, 56.2, 40.3 ppm . HRMS (ES ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}$ 287.1430; Found: 287.1433. Optical rotation of enantioenriched product $[\alpha]^{25}\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)=+9.6^{\circ}$.

dioxane (1 mL) at $110{ }^{\circ} \mathrm{C}$. A white solid $\mathbf{1 3 b}(16.6 \mathrm{mg}, 40 \%$ yield) was isolated by column chromatography (3:97 ethyl acetate:hexanes). Enantiomeric excess ($89.0 \% \mathrm{ee} ; 98 \%$ es) was determined by HPLC analysis (OD-RH column, 75:25 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ as eluent). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 7 \mathrm{H}), 7.30(\mathrm{~m}, 6 \mathrm{H}), 4.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.65,155.86,152.11,142.48,138.94$, $130.50(\mathrm{q}, J=30 \mathrm{~Hz}), 129.62(\mathrm{q}, J=269 \mathrm{~Hz}), 129.25,129.03,128.73,128.67,127.11,126.74$, $126.04(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 124.23,123.56,114.15,112.67,56.15,39.28 \mathrm{ppm} . \mathrm{HRMS}^{\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}: ~}$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ 395.1253; Found: 395.1254. Optical rotation of enantioenriched product $[\alpha]^{25}{ }_{\mathrm{D}}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)=+8.8^{\circ}$.

5. Single Crystal X-Ray Structure of Compound 8a

Experimental Description

X-ray diffraction data were collected on a Bruker D8 VENTURE diffractometer. The structure was solved using a dual-space method and standard difference map techniques, and was refined by full-matrix least-squares procedures on F^{2} with SHELXTL (Version 2018/3). All hydrogen atoms were placed in calculated positions and refined with a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.2-\right.$ $\left.1.5 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Figure S8. Single crystal X-ray structure of 8a.

6. References

1. S. Aalla, G. Gilla, Y. Bojja, R. R. Anumula, P. R. Vummenthala, P. R. Padi, Org. Process Res. Dev. 2012, 16, 682.
2. T. Jia, P. Cao, D. Wang, Y. Lou, J. Liao, Chem. Eur. J. 2015, 21, 4918.
3. J. L. García Ruano, J. Alemán, M. T. Aranda, M. J. Arévalo, A. Padwa, Org. Lett. 2005, 7, 19.
4. V. Saini, L. Liao, Q. Wang, R. Jana, M. S. Sigman, Org. Lett. 2013, 15, 5008.
5. A. López-Pérez, J. Adrio, J. C. Carretero, Org. Lett. 2009, 11, 5514.
6. M. Amatore, C. Gosmini, Chem. Comm. 2008, 5019.
7. X. Cheng, H. Lu, Z. Lu, Nat. Commun. 2019, 10, 3549.
8. C. Cazorla, E. Métay, M. Lemaire, Tetrahedron 2011, 67, 8615.
9. H.-B. Sun, B. Li, R. Hua, Y. Yin, Eur. J. Org. Chem. 2006, 2006, 4231.
10. C. Dong, X. Wang, Z. Pei, R. Shen, Org. Lett. 2019, 21, 4148.
11. A. M. Vasquez, J. A., Gurak, C. L. Joe, E. C. Cherney, K. M. Engle, J. Am. Chem. Soc. 2020, 142, 10477.

7. Chiral-Phase HPLC Data

Conditions and results:

Column	IA
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S9. HPLC traces of racemic and enantioenriched 7.

Conditions and results:

Column	OD-RH
Mobile phase	$75: 25=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.4 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S10. HPLC traces of racemic and enantioenriched 3b.

Conditions and results:

Column	IA
Mobile phase	$75: 25=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S11. HPLC traces of racemic and enantioenriched 11c.

Conditions and results:

Column	OD-RH
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S12. HPLC traces of racemic and enantioenriched S6.

Conditions and results:

Column	OD-RH
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S13. HPLC traces of racemic and enantioenriched S7.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S14. HPLC traces of racemic and enantioenriched S8.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$75: 25=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1.4 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S15. HPLC traces of racemic and enantioenriched 11a.

Conditions and results:

Column	OD-RH
Mobile phase	$85: 15=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S16. HPLC traces of racemic and enantioenriched 11b.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$90: 10=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S17. HPLC traces of racemic and enantioenriched 4a.

Conditions and results:

Column	IA
Mobile phase	$85: 15=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S18. HPLC traces of racemic and enantioenriched 4b.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$80: 20=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S19. HPLC traces of racemic and enantioenriched $\mathbf{4 c}$.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$80: 20=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.6 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S20. HPLC traces of racemic and enantioenriched 4d.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$85: 15=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S21. HPLC traces of racemic and enantioenriched $\mathbf{4 e}$.

Conditions and results:

Column	IA
Mobile phase	$75: 25=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S22. HPLC traces of racemic and enantioenriched $\mathbf{4 f}$.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$85: 15=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S23. HPLC traces of racemic and enantioenriched $\mathbf{4 g}$.

Conditions and results:

Column	IA
Mobile phase	$70: 30=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S24. HPLC traces of racemic and enantioenriched 6a.

Conditions and results:

Column	OD-RH
Mobile phase	$85: 15=\left(5 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S25. HPLC traces of racemic and enantioenriched $\mathbf{6 c}$.

$\frac{2}{3}$

Conditions and results:

Column	IA
Mobile phase	$55: 45=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1.4 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S26. HPLC traces of racemic and enantioenriched 10b.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$60: 40=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S27. HPLC traces of racemic and enantioenriched 10c.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$40: 60=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(0.1 \%$ phosphoric acid buffer $\mathrm{pH}=3)$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S28. HPLC traces of racemic and enantioenriched 10d.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$35: 65=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S29. HPLC traces of racemic and enantioenriched 10f.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$75: 25=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(0.1 \%$ phosphoric acid buffer $\mathrm{pH}=3)$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S30. HPLC traces of racemic and enantioenriched $\mathbf{1 0 g}$.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$50: 50=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S31. HPLC traces of racemic and enantioenriched $\mathbf{1 0 h}$.

Conditions and results:

Column	OJ-RH
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S32. HPLC traces of racemic and enantioenriched 10i.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$60: 40=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S33. HPLC traces of racemic and enantioenriched $\mathbf{1 0 j}$.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$30: 70=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S34. HPLC traces of racemic and enantioenriched 10k.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$45: 55=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S35. HPLC traces of racemic and enantioenriched 101.

$\frac{\pi}{3}$

Conditions and results:

Column	IA
Mobile phase	$55: 45=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S36. HPLC traces of racemic and enantioenriched 10m.

Conditions and results:

Column	IA
Mobile phase	$65: 35=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S37. HPLC traces of racemic and enantioenriched 10n.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$50: 50=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S38. HPLC traces of racemic and enantioenriched $\mathbf{1 0 0}$.

Conditions and results:

Column	IA
Mobile phase	$80: 20=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S39. HPLC traces of racemic and enantioenriched 10p.

Conditions and results:

Column	OJ-RH
Mobile phase	$55: 45=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S40. HPLC traces of racemic and enantioenriched 12a.

Conditions and results:

Column	$\mathrm{OJ}-\mathrm{RH}$
Mobile phase	$50: 50=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$0.8 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S41. HPLC traces of racemic and enantioenriched 13a.

Conditions and results:

Column	OD-RH
Mobile phase	$75: 25=\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$
Flow	$1 \mathrm{~mL} / \mathrm{min}$
Detector	220 nm
Temp	$25^{\circ} \mathrm{C}$

Figure S42. HPLC traces of racemic and enantioenriched 13b.
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119}$ Sn NMR Spectra

S3

3b

1	1	1	1	1	1	1	
150	100	50	0	-50	-100	-150	ppm

8a

8b

8c

150	100	50	0	-5	-10	-150

ع6. 20 I-—

11c

11c
. wnw

1	1	1	1	1	,		
150	100	50	0	-50	-100	-150	ppm

S6

1	,	,	,	1	1	1	
150	100	50	0	-50	-100	-150	ppm

S7

LS.bOL--
S8

1	1	1	1	1	1	1	
150	100	50	0	-50	-100	-150	ppm

$\stackrel{\sim}{\sim}$

 N_{3}

シ

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | $p p m$ |
| :--- |

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | pDm |
| :--- |

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | ppm |
| :--- |

11a

1	1	1	1	1	1	1	
150	100	50	0	-50	-100	-150	ppm

11b

1	1	1	1	1	,		
150	100	50	0	-50	-100	-150	ppm

