Enabling Al Sacrificial Anode in Tetrahydrofuran Electrolytes for Reductive Electrosynthesis

Wendy Zhang,[†] Weiyang Guan,[‡] Yi Wang,[‡] Song Lin,[‡] and

Kimberly A. See*,†

†Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

‡Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853,

United States

E-mail: ksee@caltech.edu

Supporting Information

Linear sweep voltammograms of Al stripping

Figure S1: Linear sweep voltammograms of Al stripping in THF with 0.1 M TBA⁺ supporting electrolyte or 0.05 M TBA⁺ supporting electrolyte of interest + 0.05 M TBABr . All voltammograms were collected at a scan rate of 5 mV s⁻¹ with 85% iR compensation. For each electrolyte, five LSVs were collected with a 10 min OCV between scans.

Figure S2: Linear sweep voltammograms of Al stripping in THF with 0.05 M TBABF₄ + 0.05 M TBACl or TBAI. All voltammograms were collected at a scan rate of 5 mV s⁻¹ with 85% iR compensation. For each electrolyte, five LSVs were collected with a 10 min OCV between scans.

Figure S3: Linear sweep voltammograms of Al stripping in DMF with 0.1 M TBABF₄. All voltammograms were collected at a scan rate of 5 mV s⁻¹. Five LSVs were collected with a 10 min OCV between scans.

Figure S4: Cyclic voltammograms of Fc in 0.1 M TBAPF₆/THF. WE: Pt disk, CE: Pt wire, RE: Ag/Ag(cryptand)⁺. The voltammograms are collected at 200, 100, 50, and 20 mV s⁻¹ scan rate without iR compensation.

EIS data

Figure S5: EIS of the Al working electrodes before and after galvanostatic Al stripping in the presence of 0.5 M tBuBr in 0.5 M TBABF₄ electrolyte.

XPS data

Figure S6: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with $TBABF_4$ as the supporting electrolyte.

Ta	ble	S1:	Peal	c ass	ignme	ents	of the	X-ray	photoe	lectron	spectra	of .	Al	electrode	s after	the	LSV
ex	peri	men	ts in	THF	with	TBA	ClO_4	as the	supporti	ing elec	trolyte.						

Figure	Peak binding energy (eV)	Assignment
Figure 3a. Al 2p	72.5	Al ⁰
	75.1	Al_2O_3
	76.7	AlF_x
Figure S6a. C 1s	282.5	C–O
	285.1	adventitious C
	288.9	C=O
Figure S6b. O 1s	529.1	Al_2O_3
	531.8	C–O
Figure S6c. F 1s	683.1, 686.2	AlF_x

Figure S7: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBAClO₄ as the supporting electrolyte.

Table S2: Peak assignments of the X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with $TBABF_4$ as the supporting electrolyte.

Figure	Peak binding energy (eV)	Assignment
Figure 3b. Al 2p	72.5	Al^0
	75.0	Al_2O_3
Figure S7a. C 1s	284.1	C–O
	285.4	adventitious C
	288.9	C=O
Figure S7b. O 1s	529.2	Al_2O_3
	531.9	C–O
Figure S7c. Cl 2p	199.2	$AlCl_x$

Figure S8: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBATFSI as the supporting electrolyte.

Table S3: Peak assignments of the X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBATFSI as the supporting electrolyte.

Figure	Peak binding energy (eV)	Assignment
Figure S8a. Al 2p	72.5	Al^0
	75.0	Al_2O_3
Figure S8b. C 1s	282.9	C–O
	285.0	adventitious C
	288.3	C=O
Figure S8c. O 1s	529.3	Al_2O_3
	531.8	C–O
Figure S8d. F 1s	682.4, 685.9	AlF_x

Figure S9: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBABF₄/TBABr as the supporting electrolyte.

Table S4: Peak assignments of the X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with $TBABF_4/TBABr$ as the supporting electrolyte.

Figure	Peak binding energy (eV)	Assignment
Figure 3c. Al 2p	72.5	Al^0
	73.9	AlBr ₃
	75.0	Al_2O_3
Figure 3c. Br 3d	68.4	AlBr ₃
Figure S9a. C 1s	283.1	С–О
	285.2	adventitious C
Figure S9b. O 1s	529.7	Al_2O_3
	532.2	C–O
Figure S9c. Br 3p	181.9	AlBr ₃
Figure S9d. F 1s	683.0, 685.9	AlF_x

Figure S10: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBAClO₄/TBABr as the supporting electrolyte.

Table S5: Peak assignments of the X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBAClO₄/TBABr as the supporting electrolyte.

Figure	Peak binding energy (eV)	Assignment
Figure 3d. Al 2p	72.5	Al^0
	73.8	AlBr ₃
	75.1	Al_2O_3
Figure 3d. Br 3d	68.8	AlBr ₃
Figure S10a. C 1s	282.2	C–O
	285.1	adventitious C
	289.4	C=O
Figure S10b. O 1s	529.7	Al_2O_3
	532.2	C–O
Figure S10c. Br 3p	182.3	AlBr ₃

Figure S11: X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBATFSI/TBABr as the supporting electrolyte.

Table S6: Peak assignments of the X-ray photoelectron spectra of Al electrodes after the LSV experiments in THF with TBATFSI/TBABr as the supporting electrolyte.

Figure	Peak binding energy (eV)	Assignment
Figure S13a. Al 2p	72.5	Al^0
	73.7	AlBr ₃
	75.4	Al_2O_3
Figure S13a. Br 3d	68.9	AlBr ₃
Figure S13b. C 1s	283.6	C–O
	285.8	adventitious C
	289.6	C=O
Figure S13c. O 1s	529.2	Al_2O_3
	532.4	C–O
Figure S13d. F 1s	683.8, 686.7	AlF_x

Figure S12: An example of the ¹H-NMR spectra of the borylation reaction crude mixture.

Figure S13: An example of the ¹H-NMR spectra of the silvlation reaction crude mixture.