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1 Figures Referenced in the Main Text
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Figure S1: Overview of the different architectures developed in this work. (A) A sample spectrum
to structure (StS) transformer. StS models with multiple spectral sources can be compared with
the Reactant+Spectra models shown in (C), excluding the reactant transformer. (B) The reactant
to product (RtP) model architecture. The use of four attention cells in the reactant encoder
and decoder was found to significantly increase accuracy for this input. (C) The R+Spectra
deductive architecture. The final linear layer projects to a token probability space using the token
probabilities of the individual transformers. The input length dg.cgseq varies by input source (src),
as described in the main text. The target (tgt) sequence length digseq is 64 and shared across
models. The batch dimension of each model is omitted for clarity.
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Figure S2: Overview of the attention cells used in the encoder and decoder of each transformer.
(a) Encoder attention cell diagram. Each cell consists of typical multi-head attention, layer norm,
residual connections, and feed-forward layers. (b) Decoder attention cell diagram. These cells are
nearly-identical to the encoder attention cells, except that masking is used for the self-attention
layer to limit information exchange to later tokens and there is a cross-attention layer inserted,
whose key and value inputs are obtained as linear projections of the embedding dimension of the
encoder output and the queries are obtained as linear projections of the embedding dimension of
the output of the masked self-attention layer.
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Figure S3: Results from decisiveness testing on the R+IR+NMR+MS model resolved by number
of decisive transformers per product. A transformer was considered decisive for a product if it was
decisive in decoding at least one token. Multiple transformers can be decisive for a given product,
and cases with no decisive transformers mean that all tokens were governed by a consensus.
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Figure S4: Results from decisiveness testing on the R+IR4+NMR+MS model resolved on a per
prediction and fraction of tokens basis. (A) Distribution of decisive tokens and consensus tokens
across all testing samples corresponding to real product identification. (B) Distribution of decisive
tokens and consensus tokens across all testing samples corresponding to starting material identifi-
cation. A token was classified as a consensus prediction if no individual transformer was decisive
in its prediction (i.e., at least two transformers supplied sufficient evidence to overrule the others
in the top-1 prediction).

S4



2 Illustrative Inference

We have provided an example to illustrate how the transformers act as deductive constraints upon
each other through the recursive graph decomposition that occurs during inference (Fig. S5). The
example, 1,4-dibromo-cyclohexane, is a molecule selected at random from the NIST chemistry
WebBook and we have used the StS model for the illustration because the reactant-based models
show less individual spectral decisiveness. The graph components are shaded based on the different

information sources that were decisive in the inference.

Br Br

Figure S5: Inference of the MS+IR+NMR model on BrC1CCC(Br)CCl1, a structure from the
NIST WebBook. Each portion of the graph is shaded by transformer decisiveness: Green (MS
decisive), Purple (NMR decisive), Cyan (NMR and MS decisive), Magenta (IR+NMR decisive).

The canonical SMILES for this species is BrC1CCC(Br)CC1. During inference, the starting
“Br” is the first token that is decoded and this is almost entirely driven by the MS transformer.
The other spectral transformers are not decisive for this token. However, the recursive manner
in which inference occurs means that Br is now accepted by all transformers when decoding the
rest of the molecular graph. Thus, the presence of the “Br” token is a constraint asserted by the

MS that the rest of the transformers condition their inference on. The H-NMR and IR provide
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other evidence for inference on the remainder of the graph (e.g., the joint IR/NMR decisiveness

for the ring closure).Other notable behaviors include the order of the SMILES inference and the

manner in which different spectral sources map to distinct molecular features.

Although it is

beyond the current scope to analyze in further detail here, we note that the inference patterns

often map to typical expert heuristics associated with particular spectral sources. The inference

order in this example matched the canonical SMILES, however more generally the model often

prefers a non-canonical decoding if it has stronger confidence beginning on another portion of the

graph. Similarly, the models often decode distinct SMILES associated with the same molecule in

the top-n.

3 Learning Curves
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Figure S6: Learning curves for the models trained and tested in this work. Dotted lines correspond
to the loss over training data and solid lines correspond to loss over validation data. (A) Composite
of the reactant+spectra learning curves. (B) Composite of the StS and RtP learning curves.
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4 MULTI Dataset

Table S1: Performance of the R+IR+NMR+MS model in identifying the products of reactions
with unintended side-products. None of these examples were present in the USPTO dataset.

Reactants SMILES Products SMILES Prediction
CCC(C)Br.CCJ[O] > ccoc(c)cc Top-1
CCC(C)Br.CCJ[O] > cCC=CC Top-1
0=C1CCCCC1.|[N|=[N+]=C> 0O=C1CCcCCCC1 Not in Top-5
0=C1CCCCC1. [N |]=[N+]=C> C1CCC2(CC1)CO2 Not in Top-5
ccoCci1CcCcCCO1.CO > COC1CCCCO1 Top-1
ccCoC1CCcCCO1.CO > cCO Top-1
O=C(00)clcccccl. CC=CC> O=C(O)clcccccl Top-5
O=C(00)clcccccl. CC=CC> cCC10C1C Not in Top-5
CS(=0)(=0)Cl.CN.CNC > CNS(C)(=0)=0 Top-5
CS(=0)(=0)Cl.CN.CNC > CN(C)S(C)(=0)=0 Top-1
Clclcccccl. CN.CNC > CNclcccccl Top-1
Clclcccccl. CN.CNC > CN(C)clcccccl Top-1
CN=C=0.CN.CNC > CNC(=0)N(C)C Top-1
CN=C=0.CN.CNC> CNC(=0)NC Top-5
CC=0.CCC(C)=0.CCNC.CN > CCC(C)NC Top-1
CC=0.CCC(C)=0.CCNC.CN > CCN(C)CC Top-1
CC=0.CCC(C)=0.CCNC.CN > CCC(C)N(C)CC Not in Top-5
CC=0.CCC(C)=0.CCNC.CN > CCNC Top-1
CC(=0)O.CN.CNC > CNC(C)=0 Top-1
CC(=0)O0O.CN.CNC > CC(=0)N(C)C Top-1
COclccccclI.N|[Na]> COclccccclN Top-1
COclccccclI.N|[Na]> COclcccc(N)c1 Not in Top-5
Clclcccccl.Nclcccccl . CN.CNC> | CNclcccccl Top-1
Clclcccccl. Nclcccccl. CN.CNC> | CN(C)clcccccl Top-1
Clclcccccl. Nclccceccl. CN.CNC> |clccc(Nc2ccccc2)ccl Top-1
cCcCC(=0)CC(C)=0.CNN > CCclcc(C)nnlC Not in Top-5
cCcCC(=0)CC(C)=0.CNN > CCclcc(C)n(C)nl Not in Top-5
CC(C)=0.CC=0.CCCl> cCC=CC Top-5
CC(C)=0.CC=0.CCCl> CC=C(C)C Top-5
CC=CC.[0][0+]=0 > CC100C(C)O1 Not in Top-5
CC=CC.[O][0+]=0>CCO CCOC(C)0OO0 Not in Top-5
CC=CC.[O][0+]=0>CCO CC=0 Top-1
C=Pclcccccl.CC(C)=0> O=Pclccccecl Not in Top-5
C=Pclcccccl. CC(C)=0> C=C(C)C Top-1
CC=CC(0)COC(=0)clcccccl. cCCoC(=0)CcC(C)C= Not in ton-5
ccoc(c)y(occ)yocc> CCOC(=0)clcccccl P
CC=CC(0)COC(=0)clcccccl.

CCOC((S)()OCC)(OCC)> cCo Top-1
cC=CCcCC> cCC=CC Top-5
cCcC=CCcCC> ccCcCc=CcCCC Not in Top-5
CCclcccccl. BrBr> Br Not in Top-5
CCclcccccl. BrBr> CC(Br)clcccccl Top-1
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