Covalent-organic framework nanobionics for robust cytoprotection

Jieying Liang,*^{*a} Qianfan Chen,^{*b} Joel Yong^a, Hiroki Suyama,^c Joanna Biazik,^d Bosiljka Njegic,^e Aditya Rawal,^e Kang Liang^{*a,b} ^aSchool of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia ^bGraduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia ^cUNSW RNA Institute, The University of New South Wales, Sydney, NSW 2052, Australia ^dElectron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, NSW 2052, Australia

⁺The authors contributed equally in this work

*Email: jieying.liang@unsw.edu.au; kang.liang@unsw.edu.au

Samples	BET surface area (m ² /g)	Total pore volume (cm ³ /g)	pore size (nm)
COF ^[1]	73.5	0.42	1.89
Yeast	3.2	0.03	8.3
Yeast-COF	22.5	0.13	12.6

Table S1. The N₂ physisorption isotherms yeast and yeast-COF, and their pore sizes.

Table S2. The downregulated and upregulated genes of yeast-COF compared to native yeast and their

Downregulated genesFunctional analysisYPR170CYER067C-AYKL136WUnknown or predicted nonfunctionallyYGR039WYGL118CYOL058W	sis.
YER067C-A YKL136W Unknown or predicted nonfunctionally YGR039W YGL118C	
YKL136W Unknown or predicted nonfunctionally YGR039W YGL118C	
YGR039W YGL118C	
YGL118C	
YOL058W	
snR39B Ribosome and amino acid biosynthesis	
TL(CAA)L	
YHR136C kinase inhibitor	
Upregulated genes	
YIL053W	
YDR044W A possible disruption to the oxygen availability	
YBR085W	
YBR054W	
YGL008C Stress responses	
YLL024C	
Links the tricarboxylic acid (TCA) cycle and the electron transport chain	
Involved in the glyoxylate bypass of the full	
YNL117W TCA cycle	
Others Related to amino acid biosynthesis	

Nanoshell composition	Properties	Ref.
COF	Induced a superior protection against high temperature	This
	(100 °C) and acid condition (pH 2). Furth catalase	work
	coating enables yeast fermentation and ethanol	
	production even under strong oxidative stress.	
ZIF-8	Induced the yeast cell hibernation state.	[2]
ZIF-8	Nanocoating with β -galactosidase allowed yeast to	[3]
	survive in nutrient-depleted environments.	
MOF	Enhanced the lifetime of anaerobes in the presence of	[4]
$[Zr_6O_4(OH)_4(BTB)_2(OH)_6(H_2O)_6]$	O ₂ , and maintains the continuous production of acetic	
	acid from CO ₂ .	
ZIF-8	Allow mass and energy exchange between chloroplasts	[5]
	and the environment, and protect chloroplasts from	
	microbiological degradation.	
Metal–Polyphenol Nanoshell	Enabled controllably degraded on-demand, while	[6]
	protected the yeast from multiple external aggressors,	
	including UV irradiation, lytic enzymes, and silver	
	nanoparticles.	
Alginate/Polydopamine	Prevented gel swelling and cell leakage, and increased	[7]
Core/Shell Microcapsules	resistance against enzymatic attack and UV irradiation.	
SiO ₂	Enhanced defense against high temperature (49 to	[8]
	53 °C).	
SiO ₂ -TiO ₂	Controlled the cell division and effectively dissipated	[9]
	heat energy.	
Polyelectrolytes/Multiwalled	Affected the electron mediation between the	[10]
Carbon Nanotubes	encapsulated yeast cells and the artificial electron	
	acceptor.	

 Table S3. Comparison of yeast-COF system to the other reported system.

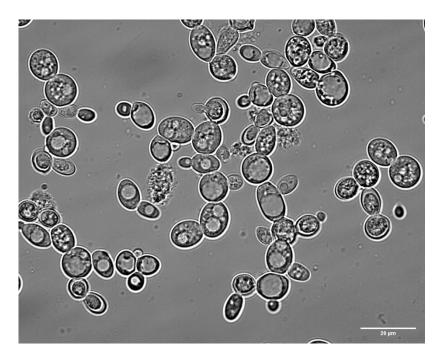
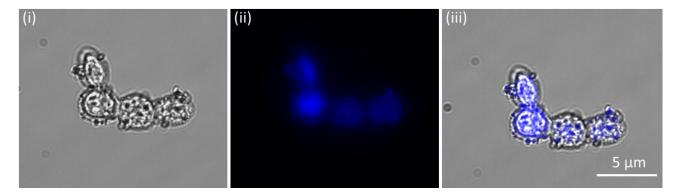



Figure S1. Optical micrograph of native yeast.

Figure S2. The homogeneous formation of the COF-LZU1-based exoskeleton around yeast. (i) Bright field image; (ii) Fluorescent image of Alexa Fluor 350-labelled COF-LZU1 (blue); (iii) The overlay of image of (i) and (ii).

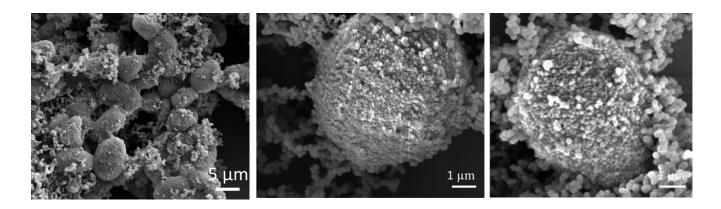


Figure S3. SEM images of yeast-COF.

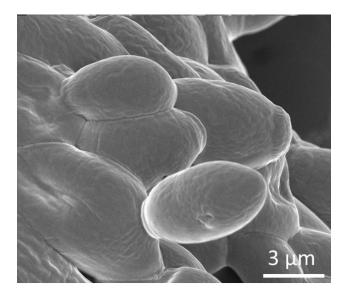


Figure S4. SEM image of native yeast cells.

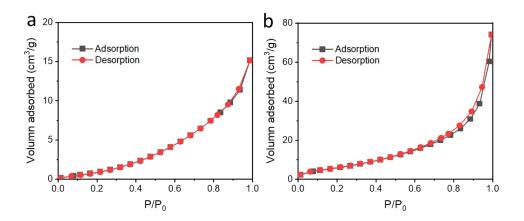


Figure S5. N_2 adsorption isotherm at 77 K of (a) yeast, (b) yeast-COF.

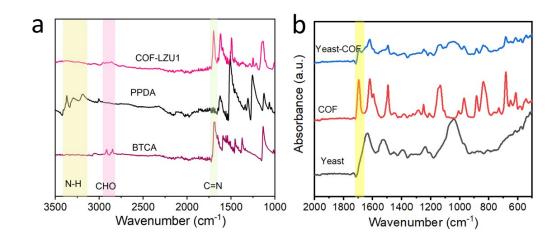


Figure S6. (a) FTIR spectra of BTCA, PDDA and COF-LZU1; (b) FTIR spectra of native yeast, COF, and yeast-COF.

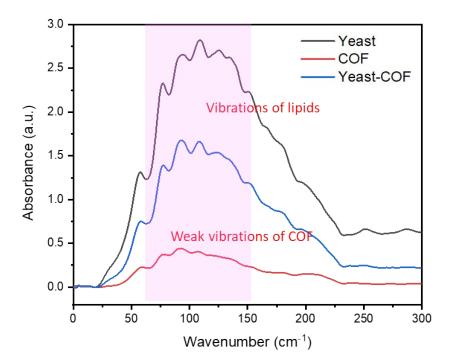


Figure S7. Synchrotron THz/Far-IR spectra of native yeast, COF, and yeast-COF.

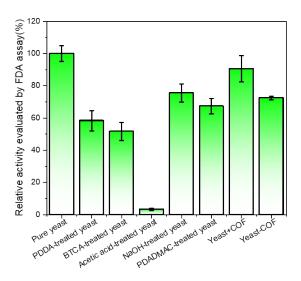


Figure S8. Cell activity evaluated by FDA assay upon different precursors treatment.

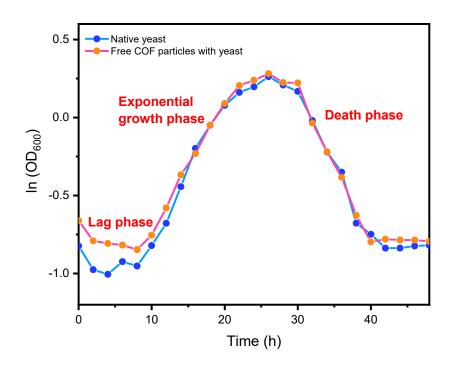


Figure S9. Yeast growth measurement (OD_{600}) for native yeasts and yeasts in the presence of free COF-LZU1 particles.

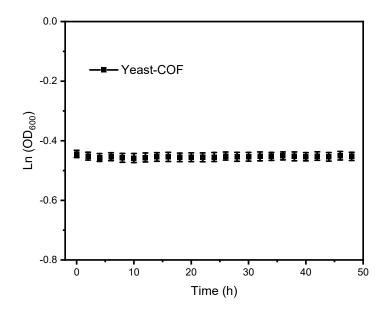


Figure S10. Yeast growth measurement (OD_{600}) for yeast-COF.

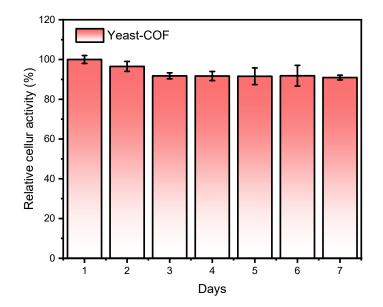
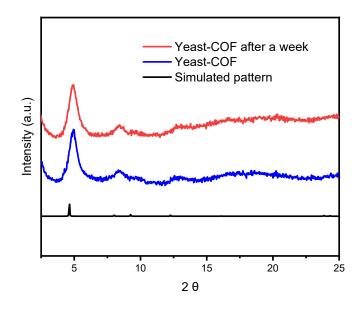
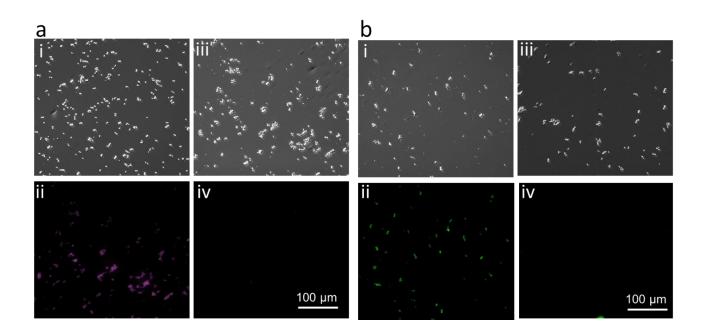
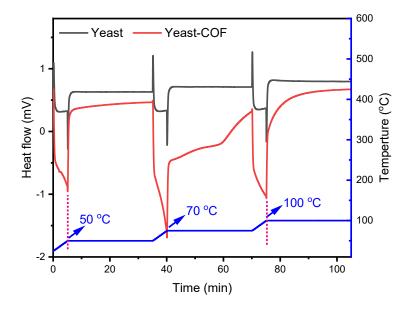
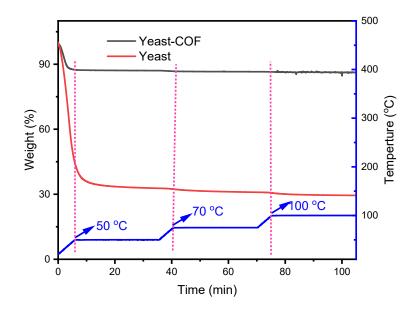
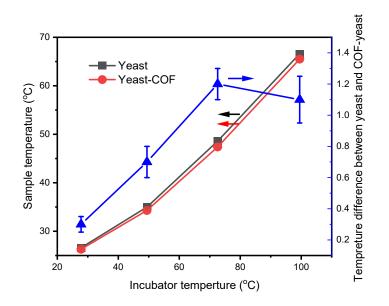


Figure S11. The relative cellular activity of yeast-COF after incubation in a cell medium for a week.


Figure S12. XRD spectra after incubation in the cell medium for a week.


Figure S13. Cell activity evaluated by (a) resazurin assay and (b) FDA assay on (i, ii) yeast-COF and (iii, iv) native yeast cells upon high temperature treatment at 75 °C for 30 min.

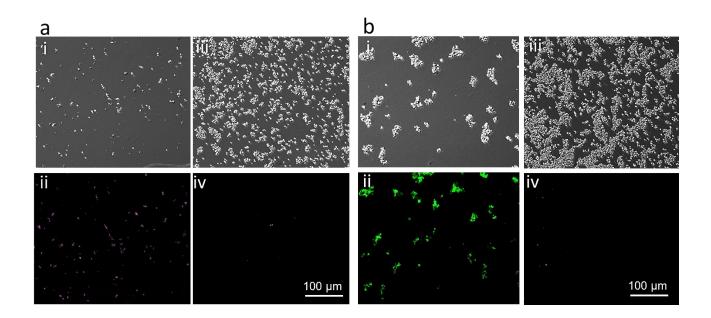

Figure S14. DSC analysis of native yeast and yeast-COF cells at 50 °C, 75 °C and 100 °C. Yeast-COF exhibited the greater heat flow, indicating that the COF shells effectively reradiate incident heat energy. The blue curve is the increased temperature with time.

Figure S15. TGA analysis of native yeast and yeast-COF cells at 50 °C, 75 °C and 100 °C. The blue curve is the increased temperature with time.

Figure S16. Sample surface temperatures and temperature difference obtained from native yeast and yeast-COF exposed to a range of temperatures (~30 to 100 °C).

Figure S17. Cell activity evaluated by (a) resazurin assay and (b) FDA assay on (i, ii) yeast-COFand (iii, iv) native yeast cells upon pH 2 treatment for one hour.

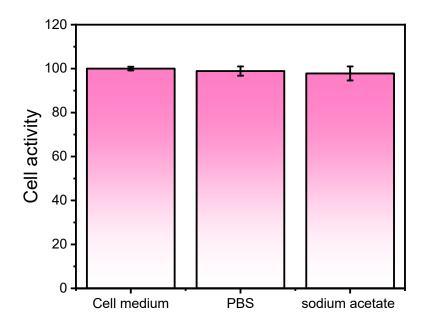
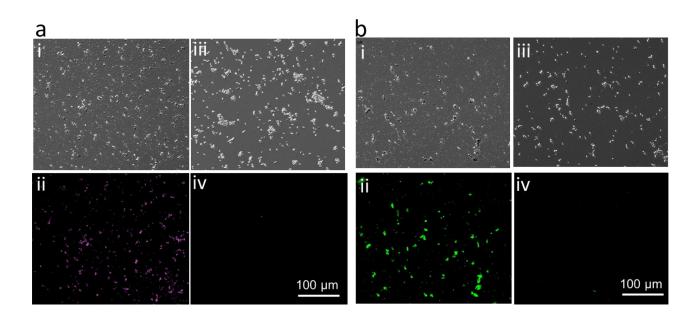
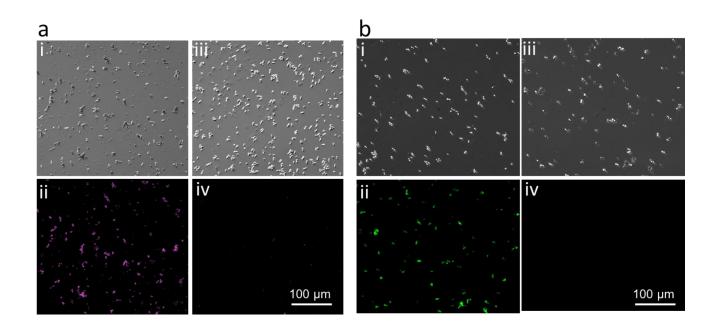




Figure S18. Cell activity evaluated by resazurin assay upon different buffer salt.

Figure S19. Cell activity evaluated by (a) resazurin assay and (b) FDA assay on (i, ii) yeast-COF and (iii, iv) native yeast cells upon UV irradiation (254 nm) for four hours.

Figure S20. Cell activity evaluated by (a) resazurin assay and (b) FDA assay on (i, ii) yeast-COF and (iii, iv) native yeast cells upon 1M CuCl₂ treatment for one hour.

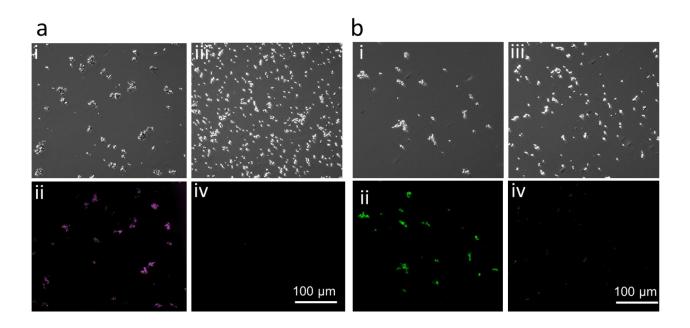


Figure S21. Cell activity evaluated by (a) resazurin assay and (b) FDA assay on (i, ii) yeast-COF and (iii, iv) native yeast cells upon 500 mM H_2O_2 treatment for one hour.

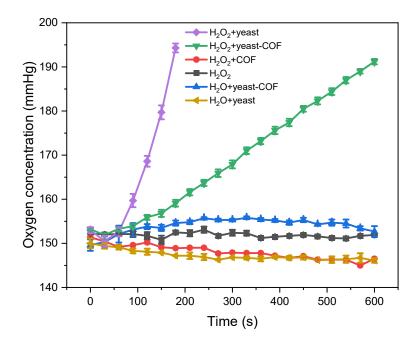


Figure S22. Oxygen concentration under different conditions in the condition of $100 \text{ mM H}_2\text{O}_2$.

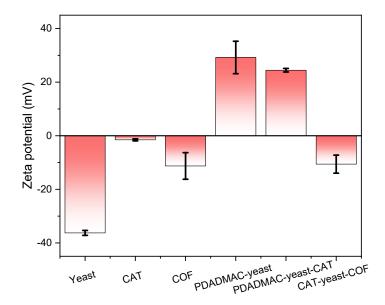


Figure S23. The zeta potential of the samples during the CAT-yeast-COF synthetic process.

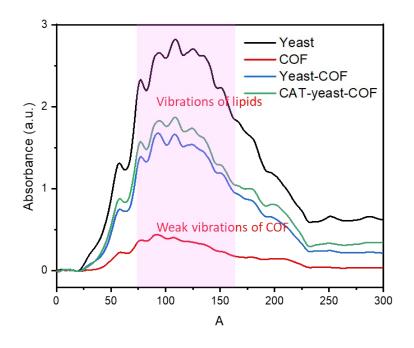
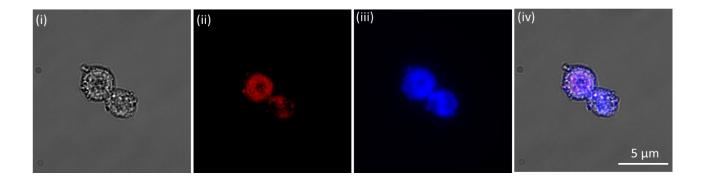



Figure S24. Synchrotron THz/Far-IR spectra of CAT-yeast-COF in comparison with other samples.

Figure S25. The homogeneous formation of the CAT-COF-based exoskeleton around yeast. (i) bright filed image; (ii) Fluorescent image of Atto 647N NHS ester-labelled CAT (red); (iii) Fluorescent image of Alexa Fluor 350-labelled COF-LZU1 (blue); (iv) The mixture image of (i), (ii) and (iii). The enzyme loading efficiency is 50.0%, which is calculated by subtracting the Alexa Fluor 350 in the supernatant after synthesis.

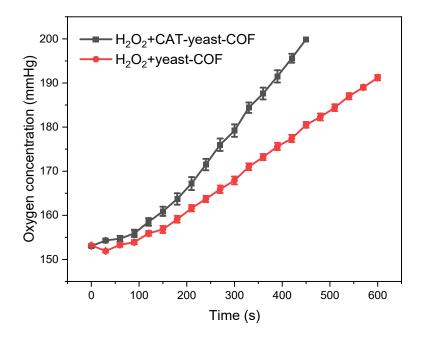


Figure S26. Oxygen concentration produced by CAT-yeast-COF and yeast-COF in the condition of $100 \text{ mM H}_2\text{O}_2$.

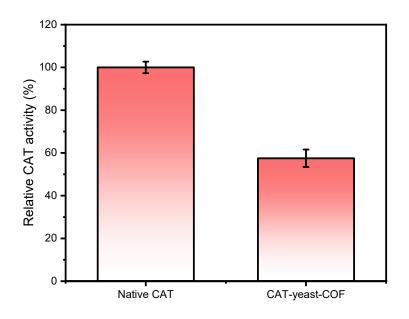


Figure S27. Relative CAT activity upon immobilization on the yeast-COF.

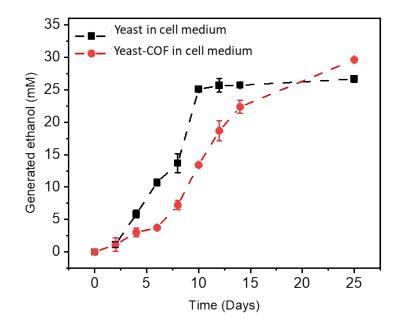


Figure S28. Ethanol production of bare yeast and yeast-COF under the cell media for 25 days.

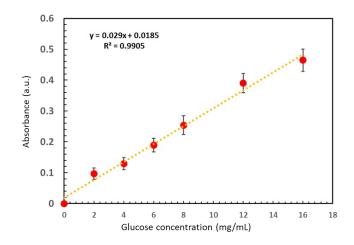


Figure S29. Glucose standard curves in the range of 0-16 mg/mL.

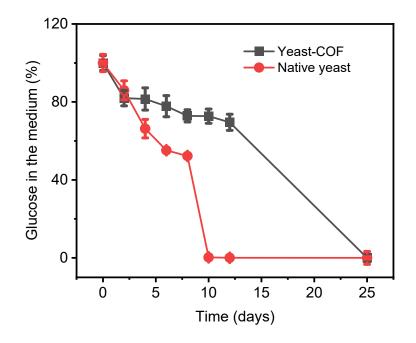


Figure S30. Retention of glucose in the culture medium during fermentation for 25 days.

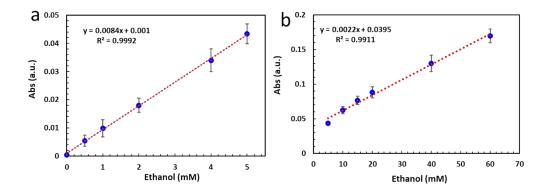


Figure S31. Ethanol standard curves in the range of (a) 0-5 mM and (b) 5-60 mM.

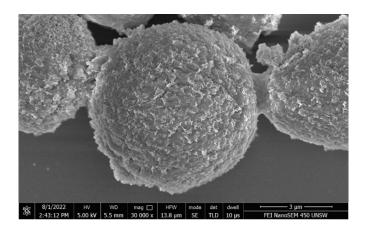


Figure S32. SEM image of yeast-ZIF-8.

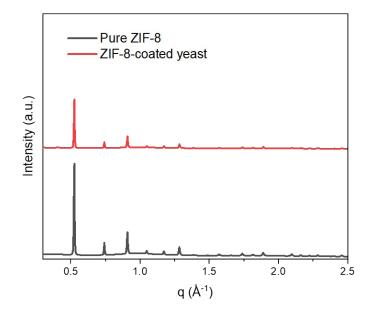
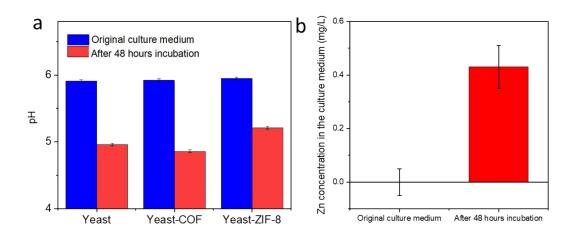



Figure S33. SAXS spectra of pure ZIF-8 and yeast-ZIF-8.

Figure S34. (a) pH of yeast, yeast-COF and yeast-ZIF-8 in cell medium before and after incubation for 48 hours. (b) ICP result of cell medium after incubation with the yeast-ZIF-8 for 48 hours.

References:

[1] J. Liang, J. Ruan, B. Njegic, A. Rawal, J. Scott, J. Xu, C. Boyer and K. Liang, Insight into Bioactivity of In-situ Trapped Enzyme-Covalent-organic Frameworks, *Angew. Chem. Int. Ed.*, 2023, e202303001.

[2] K. Liang, J. J. Richardson, J. Cui, F. Caruso, C. J. Doonan and P. Falcaro, Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells, *Adv. Mater.*, 2016, **28**, 7910-7914.

[3] K. Liang, J. J. Richardson, C. J. Doonan, X. Mulet, Y. Ju, J. Cui, F. Caruso and P. Falcaro, An Enzyme-Coated Metal–Organic Framework Shell for Synthetically Adaptive Cell Survival, *Angew. Chem. Int. Ed.*, 2017, **56**, 8510-8515.

[4] Z. Ji, H. Zhang, H. Liu, O. M. Yaghi and P. Yang, Cytoprotective metal-organic frameworks for anaerobic bacteria, *PNAS*, 2018, **115**, 10582-10587.

[5] L. Shi, A. Li, W. Zhang, H. Wu and Y. Chi, Endowing chloroplasts with artificial "cell walls" using metal–organic frameworks, *Nanoscale*, 2020, **12**, 11582-11592.

[6] J. H. Park, K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee and I. S. Choi, A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Single-Cell Encapsulation, *Angew. Chem. Int. Ed.*, 2014, **53**, 12420-12425.

[7] B.J. Kim, T. Park, H.C. Moon, S.Y. Park, D. Hong, E.H. Ko, J.Y. Kim, J.W. Hong, S.W. Han, Y.G. Kim, I.S. Choi. Cytoprotective Alginate/Polydopamine Core/Shell Microcapsules in Microbial Encapsulation, *Angew. Chem. Int. Ed*, 2014, **53**, 14443-14446.

[8] G. Wang, L. Wang, P. Liu, Y. Yan, X. Xu and R. Tang Extracellular Silica Nanocoat Confers Thermotolerance on Individual Cells: A Case Study of Material-Based Functionalization of Living Cells, *ChemBioChem*, 2010, **11**, 2368-2373. [9] E. H. Ko, Y. Yoon, J. H. Park, S. H. Yang, D. Hong, K.-B. Lee, H. K. Shon, T. G. Lee and I. S. Choi, Bioinspired, Cytocompatible Mineralization of Silica–Titania Composites: Thermoprotective Nanoshell Formation for Individual Chlorella Cells, *Angew. Chem. Int. Ed.*, 2013, 52, 12279-12282.
[10] A. I. Zamaleeva, I. R. Sharipova, A. V. Porfireva, G. A. Evtugyn, R. F. Fakhrullin. Polyelectrolyte-Mediated Assembly of Multiwalled Carbon Nanotubes on Living Yeast Cells. *Langmuir.*, 2010, 26, 4, 2671–2679.