Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels

Léa N. C. Rochet, ${ }^{\text {a }}$ Calise Bahou, ${ }^{\text {a }}$ Jonathan P. Wojciechowski, ${ }^{\text {b }}$ Ilias Koutsopetras, ${ }^{\text {c }}$ Phyllida Britton, ${ }^{\text {a }}$ Richard J. Spears, ${ }^{\text {a }}$ Ioanna A. Thanasi, ${ }^{\text {a }}$ Baihao Shao, ${ }^{\text {b }}$ Lisha Zhong, ${ }^{\text {b }}$ Dejan-Krešimir Bučar, ${ }^{\text {a }}$ Abil E. Aliev, ${ }^{\text {a }}$ Michael J. Porter, ${ }^{\text {a }}$ Molly M. Stevens, ${ }^{\text {b }}$ James R. Baker, ${ }^{\text {a* }}$ and Vijay Chudasama ${ }^{\text {a* }}$
a: Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK.
b: Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
c: Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
*: Correspondence: v.chudasama@ucl.ac.uk, j.r.baker@ucl.ac.uk

Contents

1. General experimental 3
2. Small molecules and peptide synthesis 10
2.1 Library of PD synthesis 10
2.2 PD-cysteine small molecule model conjugates 29
2.3 Peptides and peptide-PD conjugates 40
2.4 Regioisomers study 48
2.5 Clickable and functionalised model PDs 61
2.6 Disulfide rebridging reagents 81
3. Kinetic assays on a peptide model 86
3.1 Extinction coefficients calculation 86
3.2 Peptide oxidation study 87
3.3 Michael Addition kinetic assay 88
3.4 Equilibrium constant kinetic assay 90
3.5 Retro Michael kinetic assay 92
3.6 Stability study of $\mathrm{N}-\mathrm{Et}, \mathrm{N}^{\prime}-\mathrm{F}_{5}$ Ph PD 6 under kinetic assays conditions 94
4. Protein/material experiments 97
4.1 GFPS147C experiments 97
4.2 Fab experiments 183
4.3 Hydrogel experiments 204
5. DFT calculations 211
6. SCXRD experiment 234
7. References 237

Experimental section

1. General experimental

All chemical reagents were purchased from Sigma Aldrich, Alfa Aesar, Fluorochem, Iris Biotech, AGTC Bioproducts, Chem-Impex International, JenKem Technology or Acros. Compounds and solvents were used as received. Petrol refers to petroleum ether (b.p. 40-60 ${ }^{\circ} \mathrm{C}$). All reactions were carried out under air, unless stated otherwise, and were monitored using thin layer chromatography (TLC) on pre-coated silica gel plates ($254 \mu \mathrm{~m}$). Flash column chromatography was carried out with pre-loaded GraceResolv ${ }^{\text {TM }}$ Silica Flash cartridges (Grace ${ }^{\text {M }}$) or FlashPure EcoFlex catridges (Büchi) on a Biotage ${ }^{\circledR}$ Isolera Spektra One flash chromatography system (Biotage ${ }^{\circledR}$). ${ }^{1} \mathrm{H}$ NMR spectra were obtained at $300 \mathrm{MHz}, 400 \mathrm{MHz}$, $500 \mathrm{MHz}, 600 \mathrm{MHz}$ or $700 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were obtained at $125 \mathrm{MHz}, 150 \mathrm{MHz}$ or 175 MHz . All results were obtained using Bruker NMR instruments, the models are as follows: Avance 300, Avance III 400, Avance Neo 500, Avance III 600 and Avance Neo 700. Unless otherwise specified, all samples were run at $25{ }^{\circ} \mathrm{C}$. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are quoted on a parts per million (ppm) scale relative to tetramethylsilane (TMS), calibrated using residual signals of the solvent. Chemical shift (δ) for ${ }^{15} \mathrm{~N}$ NMR are quoted relative to liquid NH_{3}, referenced using the unified scale. ${ }^{1}$ Coupling constants (J values) are reported in Hertz (Hz) and are reported as J couplings between protons. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FTIR spectrometer operating in ATR mode. Mass spectra were obtained, for synthetic products, from the UCL mass spectroscopy service on a Waters LCT Premier XE (ES) mass spectrometer. For sections 2.3 and 4.3 characterisation data, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JOEL 400 NMR spectrometer, with working frequencies of 400 MHz for ${ }^{1} \mathrm{H}$ nuclei, and 101 MHz for ${ }^{13} \mathrm{C}$ nuclei, respectively; high resolution ESI mass spectra were obtained on a Waters Quattro II ESI mass spectrometer; melting points were measured on a Cole-Parmer MP80 series Stuart automatic digital melting point apparatus. High X-Ray data were obtained from grown single crystals and then analysed on a four-circle Agilent SuperNova (Dual Source) single crystal X-ray diffractometer. All Density Functional Theory calculations were carried out using Gaussian 16, revision C.01. ${ }^{2}$

UV-Vis spectroscopy

UV-Vis spectroscopy was used to determine PDs, peptides, proteins and peptide/protein conjugates concentrations using a NanoDrop OneC spectrophotometer (ThermoScientific) operating at $21{ }^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$. Sample buffer was used as a blank for baseline correction with extinction coefficient $\varepsilon_{280}=1,490 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for GCY $14, \varepsilon_{280}=68,590 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for Trastuzumab Fab 22, $\varepsilon_{280}=20,500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for GFPS147C 32.

LCMS analysis - Method 1

Molecular masses of proteins (<40 kDa) were measured at first using an Agilent 6510 QTOF LC-MS system (Agilent, UK). Agilent 1200 HPLC system was equipped with an Agilent PLRP-S, 1000A, $8 \mu \mathrm{M}, 150 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ column. $10 \mu \mathrm{~L}$ of a protein sample (diluted to $0.2 \mathrm{mg} / \mathrm{mL}$ in LCMS grade water) was separated on the column using mobile phase A (water- 0.1% formic acid) and B (acetonitrile- 0.1% formic acid) with an eluting gradient (as shown below) at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$. The oven temperature was maintained at $60^{\circ} \mathrm{C}$.

Time $(\mathbf{m i n})$	Solvent A (\%)	Solvent B (\%)
0	85	15
2	85	15
2.1	68	32
3.0	68	32
8.0	54	48
8.1	5	95
9.0	5	95
9.1	85	15
10	85	15

Agilent 6510 QTOF mass spectrometer was operated in a positive polarity mode, coupled with an ESI ion source. The ion source parameters were set up with a VCap of 4000 V , a gas temperature at $350^{\circ} \mathrm{C}$, a dry gas flow rate at $10 \mathrm{~L} / \mathrm{min}$ and a nebulizer of 35 psig . MS Tof was acquired under conditions of a fragmentor at 175 V , a skimmer at 65 V and an acquisition rate at 1 spectra/s in a profile mode, within a scan range between 100 and $3100 \mathrm{~m} / \mathrm{z}$. The data was then analysed by deconvoluting a spectrum to a zero-charge mass spectrum using a maximum entropy deconvolution algorithm within the MassHunter software version B.07.00.

Molecular masses of proteins ($<40 \mathrm{kDa}$) were then measured in a very similar way using an Agilent 6530 QTOF LCMS system (Agilent, UK). Agilent 1290 Infinity II UHPLC system was equipped with an Agilent PLRP-S, $1000 \mathrm{~A}, 8 \mu \mathrm{M}, 50 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ column. $5 \mu \mathrm{~L}$ of a protein sample (diluted to $0.2 \mathrm{mg} / \mathrm{mL}$ in LCMS grade water) was separated on the column using mobile phase A (water-0.1\% formic acid) and B (acetonitrile-0.1\% formic acid) with an eluting gradient (as shown below) at a flow rate of $800 \mu \mathrm{~L} / \mathrm{min}$. The oven temperature was maintained at $60^{\circ} \mathrm{C}$.

LCMS mobile phase gradient for A / B elution:

Time $(\mathbf{m i n})$	Solvent A (\%)	Solvent B (\%)
0	80	20
1	80	20
6.5	40	60
7.5	40	60
7.6	80	20
8.5	80	20

Agilent 6530 QTOF mass spectrometer was operated in a positive polarity mode, coupled with an ESI ion source. The ion source parameters were set up with a VCap of 4000 V , a gas temperature at $350^{\circ} \mathrm{C}$, a dry gas flow rate at $10 \mathrm{~L} / \mathrm{min}$ and a nebulizer of 35 psig . MS TOF was acquired under conditions of a fragmentor at 175 V , a skimmer at 65 V and an acquisition rate at 1 spectra/s in a profile mode, within a scan range between 100 and $7000 \mathrm{~m} / \mathrm{z}$. The data were then analysed by deconvoluting a spectrum to a zero-charge mass spectrum using a maximum entropy deconvolution algorithm within the MassHunter software version B.07.00. Deconvoluted spectra were avoided where possible in the quantification of conjugates due to differing ionisation tendencies between species with significantly different masses.

Some PEG contaminations coming from the resin of the purification columns have been sometimes observed on the HPLC spectra (peak eluting at 5.2 min). This does not impact the experimental observations.

When analysis was run on Agilent 6510 instead of Agilent 6530, it would be stated. No significant differences between the analysis ran on the two different instruments were observed, except a higher amount of sodium adducts being visible on Agilent 6530. This does not impact the experimental observations, as both instruments gave similar results overall.

LCMS analyses are shown as mentioned here: TIC LCMS trace (top), non-deconvoluted LC-MS trace (upper middle), wide range deconvoluted MS data (lower middle) and zoom in deconvoluted data (bottom) for each species.

LCMS analysis - Method 2

Molecular masses of proteins (<40 kDa) were measured at first using an Agilent 6510 QTOF LC-MS system (Agilent, UK). Agilent 1200 HPLC system was equipped with an Agilent PLRP-S, $1000 \mathrm{~A}, 8 \mu \mathrm{M}, 150 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ column. $10 \mu \mathrm{~L}$ of a protein sample (diluted to $0.2 \mathrm{mg} / \mathrm{mL}$ in LCMS grade water) was separated on the column using mobile phase A (water-0.1\% formic acid) and B (acetonitrile- 0.1% formic acid) with an eluting gradient (as shown below) at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$. The oven temperature was maintained at $60^{\circ} \mathrm{C}$.

Time $(\mathbf{m i n})$	Solvent A (\%)	Solvent B (\%)
0	85	15
2	85	15
2.1	68	32
3.0	68	32
8.0	54	48
8.1	5	95
9.0	5	95
9.1	85	15
10	85	15

Agilent 6510 QTOF mass spectrometer was operated in a positive polarity mode, coupled with an ESI ion source. The ion source parameters were set up with a VCap of 3500 V , a gas temperature at $350^{\circ} \mathrm{C}$, a dry gas flow rate at $10 \mathrm{~L} / \mathrm{min}$ and a nebulizer of 35 psig . MS Tof was acquired under conditions of a fragmentor at 350 V , a skimmer at 65 V and an acquisition rate at 0.5 spectra/s in a profile mode, within a scan range between 100 and $7000 \mathrm{~m} / \mathrm{z}$. The data was then analysed by deconvoluting a spectrum to a zero-charge mass spectrum using a maximum entropy deconvolution algorithm within the MassHunter software version B.07.00.

Molecular masses of proteins (>40 kDa) were then measured using an Agilent 6530 QTOF LCMS system (Agilent, UK). Agilent 1290 Infinity II UHPLC system was equipped with an Agilent PLRP-S, $1000 \mathrm{~A}, 8 \mu \mathrm{M}, 50 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ column. $10 \mu \mathrm{~L}$ of a protein sample (diluted to $5 \mu \mathrm{M}$ in LCMS grade water) was separated on the column using mobile phase A (water-0.1\% formic acid) and B (acetonitrile- 0.1% formic acid) with an eluting gradient (as shown below) at a flow rate of $300 \mu \mathrm{~L} / \mathrm{min}$. The oven temperature was maintained at $60^{\circ} \mathrm{C}$.

LCMS mobile phase gradient for A / B elution:

Time $(\mathbf{m i n})$	Solvent A (\%)	Solvent B (\%)
0	80	20
1	80	20
6.5	40	60
7.5	40	60
7.6	80	20
8.5	80	20

Agilent 6530 QTOF mass spectrometer was operated in a positive polarity mode, coupled with an ESI ion source. The ion source parameters were set up with a VCap of 3500 V , a gas
temperature at $350^{\circ} \mathrm{C}$, a dry gas flow rate at $10 \mathrm{~L} / \mathrm{min}$ and a nebulizer of 35 psig . MS TOF was acquired under conditions of a fragmentor at 350 V , a skimmer at 65 V and an acquisition rate at 1 spectra/s in a profile mode, within a scan range between 100 and $7000 \mathrm{~m} / \mathrm{z}$. The data were then analysed by deconvoluting a spectrum to a zero-charge mass spectrum using a maximum entropy deconvolution algorithm within the MassHunter software version B.07.00.

General sample preparation was carried out by removing the salts of the sample using Zeba ${ }^{\text {TM }}$ Spin Desalting column (in LCMS grade water) and diluted the sample to $5 \mu \mathrm{M}$ in LCMS grade water.
Some PEG contaminations coming from the resin of the purification columns have been sometimes observed on the HPLC spectra (peak eluting at 5.2 min). This does not impact the experimental observations.

When analysis was run on Agilent 6510 instead of Agilent 6530, it would be stated. No significant differences between the analysis ran on the two different instruments were observed, except a higher amount of sodium adducts being visible on Agilent 6530. This does not impact the experimental observations, as both instruments gave similar results overall.

LCMS analyses data are displayed as mentioned here: TIC LCMS trace (top), non-deconvoluted LC-MS trace (upper middle), wide range deconvoluted MS data (lower middle) and zoom in deconvoluted data (bottom) for each species.

LCMS analysis - Method 3

Peptide-PD conjugates for the stability studies were analysed using a Waters Acquity UPLC connected to Waters ACQUITY Single Quad Detector 2 (SQD2). All samples were diluted to a final concentration of $0.1 \mathrm{mg} / \mathrm{mL}$ in deionised water and run with the following parameters. Column: Hypersil Gold C4, $1.9 \mu \mathrm{~m}, 2.1 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$. Wavelength: 254 nm . Mobile Phase: 95:5 Water (0.1\% Formic Acid): MeCN (0.1\% Formic Acid) Gradient over 4 min (to 5:95 Water (0.1\% Formic Acid): MeCN (0.1% Formic Acid). Flow Rate: $0.6 \mathrm{~mL} / \mathrm{min}$. MS Mode: ES+. Scan Range: $\mathrm{m} / \mathrm{z}=100-1000$. Scan time: 0.25 s . Data obtained in continuum mode. The electrospray source of the MS was operated with a capillary voltage of 3.5 kV and a cone voltage of 50 V . Nitrogen was used as the nebulizer and desolvation gas at a total flow of $600 \mathrm{~L} / \mathrm{h}$. Ion series were generated by integration of the total ion chromatogram (TIC) over the appropriate range.

Preparative HPLC

The CGY and GCY peptides were purified using a Shimadzu Prominence LC-20A Preparative HPLC equipped with a Phenomenex Gemini C18 column ($5 \mu \mathrm{~m}, 110 \AA \AA, 150 \times 21.2 \mathrm{~mm}$). Mobile phases: $A=$ milliQ water with $0.1 \%(v / v)$ formic acid, $B=$ HPLC grade acetonitrile with 0.1% $(\mathrm{v} / \mathrm{v})$ formic acid. Flow rate $=10 \mathrm{~mL} / \mathrm{min}$, detection wavelengths $=220$ and 280 nm .

Prep-HPLC mobile phase gradient for A/B elution:

Time $(\mathbf{m i n})$	Solvent A (\%)	Solvent B (\%)
0	95	5
5	95	5
20	5	95
25	5	95
25.5	95	5
30	95	5

MALDI

MALDI spectra were obtained using a MALDI-8020 benchtop linear MALDI-TOF mass spectrometer tuned in positive mode. The matrix was $10 \mathrm{mg} / \mathrm{mL} \alpha$-cyano-4-hydroxy-cinnamic acid (CHCA) dissolved in 50% acetonitrile in water (v / v) with 0.1% trifluoroacetic acid. To prepare samples for MALDI, $0.5 \mu \mathrm{~L}$ of the polymer and $0.5 \mu \mathrm{~L}$ of matrix were deposited onto the MALDI target, mixed thoroughly, and allowed to dry at room temperature for 3 minutes. Samples were measured starting at low laser power (15) and increasing until signal was maximised without broadening. Molecular weights were determine based on comparison to Cytochrome c molecular weight standards.

Gel Permeation Chromatography (GPC)

The molecular weight of the PEG-PD-Peptide conjugates (Mn, GPC) and dispersity ($Đ$) were measured using a 1260 Infinity II GPC MDS system (refractive index detection only) equipped with a PSS GRAM guard column ($8 \times 50 \mathrm{~mm}, 10 \mu \mathrm{~m}$) and two PSS GRAM linear columns $(8 \times 300 \mathrm{~mm}, \quad 10 \mu \mathrm{~m}, 500-1,000,000 \mathrm{Da})$. The mobile phase was HPLC-grade N, N dimethylformamide with $0.075 \%(\mathrm{w} / \mathrm{v}) \mathrm{LiBr}$. Samples were eluted at $40^{\circ} \mathrm{C}$ as eluent with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Molecular-weight calibration was performed using near-monodisperse poly(methyl methacrylate) standards (EasiVial, Agilent).

SDS-PAGE

Non-reducing glycine-SDS-PAGE at 12% acrylamide running were performed following standard lab procedures. A 4\% stacking gel was used and a broad-range MW marker (10-250 kDa, Prestained PageRuler Plus Protein Standards, ThermoScientific) was co-run to estimate protein weights. Samples ($8 \mu \mathrm{~L}$ at $12.5 \mu \mathrm{M}$) were mixed with loading buffer ($2 \mu \mathrm{~L}$, composition for $5 \times$ SDS: 1 g SDS, 3 mL glycerol, 6 mL 0.5 M Tris buffer $\mathrm{pH}=6.8,2 \mathrm{mg}$ bromophenol blue in 10 mL), heated at $75^{\circ} \mathrm{C}$ for 5 min , and centrifuged at 16,000 RPM for 5 min . Samples were subsequently loaded into the wells in a volume of $6 \mu \mathrm{~L}$. All gels were run at constant 150 V for

15 min , then constant 200 V until complete. Gels were stained using a Coomassie stain for 1 h at $21^{\circ} \mathrm{C}$ and left to destain for 16 h .

DFT calculations

All DFT calculations were carried out using Gaussian 16, revision C.01. ${ }^{2}$ Structures were optimized at the M06-2X/6-311+G(d,p)/CPCM($\left.\mathrm{H}_{2} \mathrm{O}\right)$ level (as recommended by Houk et al. ${ }^{3}$). Structures were confirmed as minima or transition states by the presence of zero or one imaginary vibrational frequencies respectively. Transition states were shown to link with the relevant minima by means of intrinsic reaction coordinate (IRC) calculations. ${ }^{4}$ Calculated coordinates of all structures are provided in section 5, and electronically as zipped .xyz files.

Single Crystal X-Ray Diffraction

SCXRD data were obtained using a four-circle Agilent SuperNova (Dual Source) single crystal X-ray diffractometer using a microfocus CuK x-ray beam ($\lambda=1.54184 \AA \AA$) and a HyPix-Arc 100° hybrid pixel array detector. The sample temperatures were controlled with an Oxford Instruments cryojet. All data were processed using the CrysAlis ${ }^{\text {Pro }}$ programme package from Rigaku Oxford Diffraction. ${ }^{5}$ The crystal structures were solved with the SHELXT programme, ${ }^{6}$ used within the Olex2 software suite, ${ }^{7}$ and refined by least squares on the basis of F^{2} with the SHELXL ${ }^{8}$ programme using the ShelXle graphical user interface. ${ }^{9}$ All non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method. Hydrogen atoms associated with carbon atoms were refined isotropically $\left[U_{\text {iso }}(H)=1.2 U \mathrm{U}(\mathrm{C})\right]$ in geometrically constrained positions.
The crystallographic and refinement parameters of $\mathbf{3}$ are given in Table S9. The asymmetric unit of the crystal structure of 3 is shown in Figure S11.
2. Small molecules and peptide synthesis
2.1 Library of PD synthesis

Scheme S1. Synthesis of the library of PDs 2-6 starting from commercially available hydrazines.

1,2-Diethyl-1,2-dihydropyridazine-3,6-dione $\mathbf{1}^{10}$

1
To a solution of maleic anhydride ($0.51 \mathrm{~g}, 5.20 \mathrm{mmol}$) in glacial AcOH (20 mL) was added di-tert-butyl 1,2-diethylhydrazine-1,2-dicarboxylate obtained as previously described ${ }^{11}$ (1.00 g , 3.46 mmol). The reaction mixture was then heated under reflux with stirring for 16 h . After this time, the reaction mixture was allowed to cool to $21^{\circ} \mathrm{C}$, and the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). The crude residue was then purified by flash column chromatography (20% to 80% EtOAc/petrol), yielding 1,2-diethyl-1,2-dihydropyridazine-3,6-dione 1 ($0.32 \mathrm{~g}, 1.90 \mathrm{mmol}$, 55%) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6$ (C), $134.7(\mathrm{CH}), 40.3\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right)$; IR (solid) 2981, 1620, $1452 \mathrm{~cm}^{-1}$.

1-Ethyl-2-phenylhydrazine S1

S1
To a solution of phenylhydrazine ($1.00 \mathrm{~mL}, 10.2 \mathrm{mmol}$) in THF (10 mL) was added a solution of acetaldehyde ($2.50 \mathrm{~mL}, 12.2 \mathrm{mmol}, 5 \mathrm{M}$ stock solution in THF) and the reaction was stirred for 30 min at $21^{\circ} \mathrm{C}$. After this time, solvent and excess acetaldehyde were removed in vacuo. The reaction mixture was then diluted in THF (60 mL). To this solution was added acetic acid (7 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. To this cooled solution was added, in small portions, sodium cyanoborohydride ($0.96 \mathrm{~g}, 15.3 \mathrm{mmol}$). Following this, the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$, then warmed to $21^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, THF and AcOH were removed in vacuo with toluene co-evaporation (3×20 mL , as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to 40% EtOAc/cyclohexane) afforded 1-ethyl-2phenylhydrazine $\mathbf{S 1}$ as a yellow solid ($551 \mathrm{mg}, 3.97 \mathrm{mmol}, 39 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.31(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, J=7.5 Hz, 2H), $6.90(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 143.2$ (C), $129.9(\mathrm{CH}), 124.1(\mathrm{CH}), 117.4(\mathrm{CH}), 50.2\left(\mathrm{CH}_{2}\right), 9.8$ $\left(\mathrm{CH}_{3}\right)$; IR (solid) $3313,3106,2969,2846,1610,1468,688 \mathrm{~cm}^{-1}$; LRMS (ESI) $137\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$137.1073, observed 137.1071.

1-Ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione 3

3
To a solution of 1-ethyl-2-phenylhydrazine S1 ($255 \mathrm{mg}, 1.87 \mathrm{mmol}$) in AcOH (10 mL) was added maleic anhydride ($219 \mathrm{mg}, 2.24 \mathrm{mmol}$). The reaction mixture was then heated under reflux with stirring for 16 h . After this time, the reaction mixture was allowed to cool to 21 ${ }^{\circ} \mathrm{C}$, and the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform coevaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to 60% EtOAc/cyclohexane) afforded 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione $\mathbf{3}$ as a yellow solid ($283 \mathrm{mg}, 1.31 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9$ (C), 157.4 (C), 136.1 (C), 135,9 (CH), 135.0 (CH), 129.9 (CH), 129.9 (CH), 128.5 (CH), $42.1\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$; IR (solid) 3054, 2930, 1627, 1571, $1419 \mathrm{~cm}^{-1}$; LRMS (ESI) 217 ($100,[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 217.0972$, observed 217.0971.

1-Ethyl-2-(4-fluorophenyl)hydrazine S2

S2
4-Fluorophenylhydrazine hydrochloride ($1.00 \mathrm{~g}, 6.17 \mathrm{mmol}$) was dissolved in a solution of $\mathrm{NaOH}\left(30 \mathrm{~mL}, 1 \mathrm{M}\right.$ aq.) and left to stir at $21{ }^{\circ} \mathrm{C}$ for 30 min . The neutralized product was extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$, dried over MgSO_{4} and the EtOAc was removed in vacuo to afford (4-fluorophenyl)hydrazine. To a solution of (4-fluorophenyl)hydrazine (690 mg , $5.48 \mathrm{mmol})$ in THF (7 mL) was added a solution of acetaldehyde ($1.32 \mathrm{~mL}, 6.58 \mathrm{mmol}, 5 \mathrm{M}$ solution in THF) and the reaction was stirred for 30 min at $21^{\circ} \mathrm{C}$. After this time, the solvent and excess acetaldehyde were removed in vacuo and the reaction mixture was re-dissolved in THF (30 mL). To this solution was added acetic acid (5 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. To this cooled solution was added, in small portions, sodium cyanoborohydride ($413 \mathrm{mg}, 6.58 \mathrm{mmol}$). Following this, the reaction was stirred for 15 min at $0^{\circ} \mathrm{C}$, then warmed to $21^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, THF and AcOH were removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to 40% EtOAc/cyclohexane) afforded 1-ethyl-2-(4-fluorophenyl)hydrazine S2 as a white solid (199 $\mathrm{mg}, 1.29 \mathrm{mmol}, 21 \%$ over two steps).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.01-6.97(\mathrm{~m}, 4 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.06$ ($\mathrm{m}, 2 \mathrm{H}$), 1.29-1.26 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6$ (C), 158.9 (C), 139.0 (CH), 120.8 (CH), 116.7 (CH), 116.5 (CH), $49.7\left(\mathrm{CH}_{2}\right), 9.6\left(\mathrm{CH}_{3}\right)$; IR (solid) 3323, 3098, 2932, 1654, $1328 \mathrm{~cm}^{-1}$; LRMS (ESI) 155 (100, [M+H] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$155.0979, observed 155.0977.

1-Ethyl-2-(4-fluorophenyl)-1,2-dihydropyridazine-3,6-dione 4

4
To a solution of 1-ethyl-2-(4-fluorophenyl)hydrazine S2 ($85 \mathrm{mg}, 0.55 \mathrm{mmol}$) in AcOH (5 mL) was added maleic anhydride ($63 \mathrm{mg}, 0.64 \mathrm{mmol}$). The reaction mixture was then heated under reflux with stirring for 16 h . After this time, the reaction mixture was allowed to cool to $21^{\circ} \mathrm{C}$, and the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform coevaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to $60 \% \mathrm{EtOAc} / \mathrm{cyclohexane)}$ afforded 1-ethyl-2-(4-fluorophenyl)-1,2-dihydropyridazine-3,6-dione 4 as a yellow powder ($75 \mathrm{mg}, 0.32 \mathrm{mmol}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, \mathrm{J}=4.8,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7$ (C), 162.0 (C), 158.1 (C), 157.4 (C), 136.0 (CH), 134.9 (CH), $130.5(\mathrm{CH}), 130.5(\mathrm{CH}), 117.1(\mathrm{CH}), 117.0(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$; IR (solid) 3049, 2972, 2904, 1639, 1591, $1215 \mathrm{~cm}^{-1}$; LRMS (ESI) $235\left(100,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 235.0877$, observed 235.0872 .

1-Ethyl-2-(perfluorophenyl)hydrazine S3

S3
To a solution of pentafluorophenylhydrazine ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$) in THF (5 mL) was added a solution of acetaldehyde ($0.606 \mathrm{~mL}, 3.02 \mathrm{mmol}, 5 \mathrm{M}$ stock solution in THF) and the reaction was stirred for 30 min at $21^{\circ} \mathrm{C}$. After this time, the solvent and excess acetaldehyde were removed in vacuo. The reaction mixture was re-dissolved in THF (10 mL). To this solution was added acetic acid (2 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. To this cooled solution was added, in small portions, sodium cyanoborohydride ($238 \mathrm{mg}, 3.79 \mathrm{mmol}$). Following this, the reaction was stirred for 15 min at $0^{\circ} \mathrm{C}$, then warmed to $21^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, THF and AcOH were removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to 50% EtOAc/cyclohexane) afforded 1-ethyl-2(perfluorophenyl)hydrazine as a white powder S3 ($228 \mathrm{mg}, 1.01 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 3.21-3.15 (m, 2H), $1.38\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 145.2(\mathrm{C}), 143.2(\mathrm{C}), 140.2(\mathrm{C}), 138.1(\mathrm{C}), 120.0(\mathrm{C}), 52.4\left(\mathrm{CH}_{2}\right), 10.3\left(\mathrm{CH}_{3}\right)$; IR (solid) $3325,3074,2961,2841,1518,1168 \mathrm{~cm}^{-1}$; LRMS (ESI) 227 (100, [M+H] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$227.0598, observed 227.0602.

1-Ethyl-2-(perfluorophenyl)-1,2-dihydropyridazine-3,6-dione 6

6
To a solution of 1-ethyl-2-(perfluorophenyl)hydrazine $\mathbf{S 3}(80 \mathrm{mg}, 0.35 \mathrm{mmol})$ in AcOH (5 mL) was added maleic anhydride ($42 \mathrm{mg}, 0.42 \mathrm{mmol}$). The reaction mixture was then heated under reflux with stirring for 16 h . After this time, the reaction mixture was allowed to cool to $21^{\circ} \mathrm{C}$, and the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform coevaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0 to 50% EtOAc/cyclohexane) afforded 1-ethyl-2-(perfluorophenyl)-1,2-dihydropyridazine-3,6-dione 6 as a beige powder ($74 \mathrm{mg}, 0.24 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3(\mathrm{C}), 156.6(\mathrm{C}), 146.1$ (C), 144.1 (C), 142.2 (C), 139.2 (C), 137.4 (CH), 133.5 (CH), 111.1 (C), 42.3 ($\left.\mathrm{CH}_{2}\right), 12.5$ ($\left.\mathrm{CH}_{3}\right)$; IR (solid) 3095, 2988, 1649, 1513, $1117 \mathrm{~cm}^{-1}$; LRMS (ESI) 307 (100, [M+H] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 307.5001$, observed 307.4995 .

1-Ethyl-2-(4-nitrophenyl)-1,2-dihydropyridazine-3,6-dione 5

5
To a solution of 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione 3 ($400 \mathrm{mg}, 0.35 \mathrm{mmol}$) in sulfuric acid (2 mL), cooled to $0^{\circ} \mathrm{C}$, was added a solution of sodium nitrate ($29.8 \mathrm{mg}, 0.35$ mmol) in sulfuric acid (1 mL). The reaction mixture was then stirred for 16 h at $0^{\circ} \mathrm{C}$. After this time, the reaction mixture was diluted by the slow addition of water (70 mL). The product was then extracted into EtOAc ($3 \times 10 \mathrm{~mL}$), the organics combined and dried over MgSO_{4}, and the EtOAc was removed in vacuo. Purification of the crude residue by silica gel chromatography (50 to 70% EtOAc/cyclohexane) afforded 1-ethyl-2-(4-nitrophenyl)-1,2-dihydropyridazine-3,6-dione 5 as a yellow solid ($230 \mathrm{mg}, 0.88 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3$ (C), 158.0 (C), 147.4 (C), 141.6 (C), 136.5 (CH), 134.8 (CH), 128.5 (CH), 125.0 (CH), $43.0\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (solid) 3047, 2952, 1638, 1591, $1523 \mathrm{~cm}^{-1}$; LRMS (ESI) 262 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 262.0822$, observed 262.0816.

1-(4-Aminophenyl)-2-ethyl-1,2-dihydropyridazine-3,6-dione 2

2

To a solution of 1-ethyl-2-(4-nitrophenyl)-1,2-dihydropyridazine-3,6-dione 5 (100 mg, $0.383 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v}, 8 \mathrm{~mL})$ was added iron powder ($107 \mathrm{mg}, 1.91 \mathrm{mmol}$) and ammonium chloride ($61.4 \mathrm{mg}, 1.15 \mathrm{mmol}$). The reaction mixture was then heated under reflux for 4 h . After this time, the iron was removed by filtering through celite and the filter cake washed with water (20 mL). The product was then extracted from the filtrate into EtOAc ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and the EtOAc was removed in vacuo. Purification of the crude residue by flash column chromatography (80 to 100% EtOAc/cyclohexane) afforded 1-(4-aminophenyl)-2-ethyl-1,2-dihydropyridazine-3,6-dione $\mathbf{2}$ as a brown powder ($74 \mathrm{mg}, 0.32 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1$ (C), 157.0 (C), 148.0 (C), 135.6 (CH), 135.0 (CH), 129.9 (CH), 125.8 (C), 115.6 (CH), 41.6 (CH2), 12.9 (CH_{3}); IR (solid) 3448, 3364, 3063, 2921, 1618, $1600,1581 \mathrm{~cm}^{-1}$; LRMS (ESI) 232 (100, [M+H] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 232.1081, observed 232.1078.

Methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-3,6-dioxo-1-phenylhexahydropyridazin-4-yl)-Lcysteinate 10/ Methyl N-(tert-butoxycarbonyl)-S-(1-ethyl-3,6-dioxo-2-phenylhexahydropyridazin-4-yl)-L-cysteinate 10'

10/10'

To a solution of N -(tert-butoxycarbonyl)-L-cysteine methyl ester $\mathbf{7}(19 \mu \mathrm{~L}, 22 \mathrm{mg}, 0.093 \mathrm{mmol})$ in MeOH (0.5 mL) was added 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione 3 (20 mg , 0.093 mmol) and sodium acetate ($23 \mathrm{mg}, 0.28 \mathrm{mmol}$). The reaction mixture was then stirred at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 100% EtOAc/cyclohexane) to give methyl N -(tert-butoxycarbonyl)-S-(2-ethyl-3,6-dioxo-1-phenylhexahydropyridazin-4-yl)-L-cysteinate 10 and methyl N-(tert-butoxycarbonyl)-S-(1-ethyl-3,6-dioxo-2-phenylhexahydropyridazin-4-yl)-L-cysteinate $\mathbf{1 0}^{\prime}$ as a colourless oil ($22 \mathrm{mg}, 0.048 \mathrm{mmol}, 52 \%$) as a mixture of regioisomers and diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, regioisomers, diastereomers, rotamers) δ 7.45-7.42 ($\mathrm{m}, 2 \mathrm{H}$), 7.39$7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H})$, 3.88-3.81 (m, 1H), 3.78-3.74 (m, 3H), 3.33-3.30 (m, 0.5H), 3.22-3.20 (m, 1H), 3.16-3.12 (dt, J= $16.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.07-3.02(\mathrm{~m}, 1.3 \mathrm{H}), 2.80-2.75(\mathrm{dt}, \mathrm{J}=16.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 9 \mathrm{H}), 1.08-$ $1.06(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, regioisomers, diastereomers, rotamers) δ 171.4 (C), 167.1 (C), 165.9 (C), 155.4 (C), 136.5 (C), 129.3 (CH), 128.0 (CH), 125.5 (CH), 80.5 $(\mathrm{C}), 53.8(\mathrm{CH}), 53.0(\mathrm{CH}), 41.4(\mathrm{CH}), 41.3(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{3}\right), 12.1\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3351, 2977, 2933, 1667, $1594 \mathrm{~cm}^{-1}$; LRMS (ESI) 450 (100, [M-H] ${ }^{-}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-4} 450.1704$, observed 450.1702.

[^0]Methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-1-(4-fluorophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 11/ Methyl N-(tert-butoxycarbonyl)-S-(1-ethyl-2-(4-fluorophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 11'

11/11'

To a solution of N-(tert-butoxycarbonyl)-L-cysteine methyl ester 7 (18 $\mu \mathrm{L}, 21 \mathrm{mg}, 0.085$ mmol) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added 1-ethyl-2-(4-fluorophenyl)-1,2-dihydropyridazine-3,6dione $4(20 \mathrm{mg}, 0.085 \mathrm{mmol})$ and sodium acetate ($21 \mathrm{mg}, 0.26 \mathrm{mmol}$). The reaction mixture was then stirred at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 100% EtOAc/cyclohexane) to give methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-1-(4-fluorophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 11 and methyl N-(tert-butoxycarbonyl)-S-(1-ethyl-2-(4-fluorophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 11' as a colourless oil ($13 \mathrm{mg}, 0.027 \mathrm{mmol}, 32 \%$) as a mixture of regioisomers and diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers, regioisomers) $\delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.85(\mathrm{~m}, 0.4 \mathrm{H})$, $3.82-3.80(\mathrm{~m}, 0.5 \mathrm{H}), 3.77-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 0.4 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.16-3.11(\mathrm{dt}, \mathrm{J}=$ $16.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-3.01(\mathrm{~m}, 0.4 \mathrm{H}), 2.99-2.95,(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.74(\mathrm{dt}, \mathrm{J}=16.1,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44-1.43(\mathrm{~m}, 9 \mathrm{H}), 1.07-1.05(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.11(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers, regioisomers) $\delta 171.3$ (C), 171.3 (C), 167.0 (C), 166.9 (C), 166.1 (C), 165.9 (C), 162.6 (C), 160.9 (C), 155.4 (C), 155.3 (C), 132.5 (CH), 132.4 (CH), 127.7 (CH), $127.6(\mathrm{CH}), 127.6(\mathrm{CH}), 116.4(\mathrm{CH}), 116.2(\mathrm{CH}), 80.6(\mathrm{C}), 53.8(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right)$, $52.9\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 41.2(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 34.1$ $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 12.1\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3349, 2976, 2927, 1699, 1595, $1152 \mathrm{~cm}^{-1}$; LRMS (ESI) $492\left(20,[\mathrm{M}+\mathrm{Na}]^{+}, 370\left(80,[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}\right) ;\right.$HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 470.1761, observed 470.1748.

Methyl N -(tert-butoxycarbonyl)-S-(2-ethyl-3,6-dioxo-1-(perfluorophenyl)hexahydropyridazin-4-yl)-L-cysteinate 13

13
To a solution of N-(tert-butoxycarbonyl)-L-cysteine methyl ester $7(13.4 \mu \mathrm{~L}, 15 \mathrm{mg}, 0.065$ mmol) in $\mathrm{MeOH}(0.5 \mathrm{~mL}$) was added 1-ethyl-2-(perfluorophenyl)-1,2-dihydropyridazine-3,6dione $6(20 \mathrm{mg}, 0.065 \mathrm{mmol})$ and sodium acetate ($16 \mathrm{mg}, 0.195 \mathrm{mmol}$). The reaction mixture was then stirred at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 100% EtOAc/cyclohexane) to give methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-3,6-dioxo-1-(perfluorophenyl)hexahydropyridazin-4-yl)-L-cysteinate 13 as a colourless oil ($8 \mathrm{mg}, 0.014$ $\mathrm{mmol}, 21 \%$) as a mixture of diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers) δ 5.57-5.44 (m, 1H), 4.62-4.55 (m, 1H), 4.10-4.09 ($\mathrm{m}, 2 \mathrm{H}$), 3.77-3.75 ($\mathrm{m}, 3 \mathrm{H}$), 3.74-3.73 ($\mathrm{m}, 0.5 \mathrm{H}$), 3.71-3.69 (m, 0.5 H) 3.40-3.39 (m, $2 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 0.5 \mathrm{H}), 3.14-3.07,(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.96$, (m, 0.5 H$), 2.93-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.62-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.44(\mathrm{~m}, 9 \mathrm{H}), 1.16-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.11(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers) $\delta 171.4$ (C), 171.3 (C), 167.5 (C), 167.3 (C), 166.4 (C), $166.3(\mathrm{C}), 155.4(\mathrm{C}), 155.3(\mathrm{C}), 80.4(\mathrm{C}), 53.7(\mathrm{CH}), 52.9(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 41.3(\mathrm{CH})$, $38.7\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$, $12.2\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3352, 2979, 2934, 1709, 1692, 1515, $1162 \mathrm{~cm}^{-}$ ${ }^{1}$; LRMS (ESI) 442 (100, $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{5} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 542.1379$, observed 542.1372.

Methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-1-(4-nitrophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 12

12

To a solution of N-(tert-butoxycarbonyl)-L-cysteine methyl ester $\mathbf{7}(16 \mu \mathrm{~L}, 18 \mathrm{mg}, 0.077 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL}$) was added 1-ethyl-2-(4-nitrophenyl)-1,2-dihydropyridazine-3,6-dione 5 (20 $\mathrm{mg}, 0.077 \mathrm{mmol}$) and sodium acetate ($19 \mathrm{mg}, 0.23 \mathrm{mmol}$). The reaction mixture was then stirred at $21{ }^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 100% EtOAc/cyclohexane) to give methyl N-(tert-butoxycarbonyl)-S-(2-ethyl-1-(4-nitrophenyl)-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate 12 as a yellow oil ($11 \mathrm{mg}, 0.021 \mathrm{mmol}, 28 \%$) as a mixture of diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, diastereomers, rotamers) $\delta 8.29-8.27$ (d, J = 9.3 Hz, 2H), 7.65-7.63 (d, J = 9.3 Hz, 2H), 5.99-5.84 (br d, J = ~8 Hz, 1H), 4.49-4.40 (td, J = 8.0, 4.6 Hz, 1H), 3.98-3.97 $(\mathrm{m}, 1 \mathrm{H}), 3.92-3.91(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.31(\mathrm{dd}, J=4.2,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ 3.15 (dd, $J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08-2.93 (dd, $J=14.0,8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.67 (dd, J = 4.6, 16.3 $\mathrm{Hz}, 1 \mathrm{H}), \quad 1.41-1.40(\mathrm{~m}, 9 \mathrm{H}), 1.06-1.03(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, diastereomers, rotamers) $\delta 172.2$ (C), 168.7 (C), 167.8 (C), 146.8 (C), 143.4 (C), 125.8 (CH), $125.3(\mathrm{CH}), 80.4(\mathrm{C}), 54.8(\mathrm{CH}), 53.8(\mathrm{CH}), 53.2\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{2}\right), 42.2(\mathrm{CH}), 41.6(\mathrm{CH}), 41.5$ $\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3337, 2921, 2851, 1678, 1592, 1518, $1327 \mathrm{~cm}^{-1}$; LRMS (ESI) 495 (100, [M-H]); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-} 495.1555$, observed 495.1551.

Methyl S-(2-(4-aminophenyl)-1-ethyl-3,6-dioxohexahydropyridazin-4-yl)-N-(tert-butoxycarbonyl)-L-cysteinate 9/ Methyl S-(1-(4-aminophenyl)-2-ethyl-3,6-dioxohexahydropyridazin-4-yl)-N-(tert-butoxycarbonyl)-L-cysteinate 9'

9/9'

To a solution of N -(tert-butoxycarbonyl)-L-cysteine methyl ester $\mathbf{7}(18 \mu \mathrm{~L}, 21 \mathrm{mg}, 0.087 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL}$) was added 1-(4-aminophenyl)-2-ethyl-1,2-dihydropyridazine-3,6-dione $\mathbf{2}$ $(20 \mathrm{mg}, 0.087 \mathrm{mmol})$ and sodium acetate $(21 \mathrm{mg}, 0.195 \mathrm{mmol})$. The reaction mixture was then stirred at $21{ }^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 100% EtOAc/cyclohexane) to give methyl S-(2-(4-aminophenyl)-1-ethyl-3,6-dioxohexahydropyridazin-4-yl)-N-(tert-butoxycarbonyl)-L-cysteinate 9 and methyl S-(1-(4-aminophenyl)-2-ethyl-3,6-dioxohexahydropyridazin-4-yl)-N-(tert-butoxycarbonyl)-L-cysteinate 9 ' as a yellow oil (19 mg , $0.041 \mathrm{mmol}, 47 \%$) as a mixture of regioisomers and diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers, regioisomers) $\delta 7.16-7.1(\mathrm{~m}, 2 \mathrm{H}), 6.73-$ $6.72(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{br} \mathrm{d}, \mathrm{J}=\sim 8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{br} . \mathrm{td}, \mathrm{J}=\sim 8, \sim 5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.84-$ $3.80(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.27(\mathrm{dd}, \mathrm{J}=13.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.21-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13-$ 3.09 (dd, $J=4.5,16.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08-3.03 (dd, $J=13.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.71(\mathrm{dd}, J=4.5,16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.45-1.44(\mathrm{~m}, 9 \mathrm{H}), 1.07-1.04(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers, regioisomers) $\delta 171.4$ (C), 166.6 (C), 165.8 (C), 155.4 (C), 145.9 (C), $127.6(\mathrm{CH}), 115.8(\mathrm{CH}), 80.5(\mathrm{C}), 53.9(\mathrm{CH}), 53.1(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 41.6(\mathrm{CH}) 41.4(\mathrm{CH}), 39.5$ $\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$; $\mathbf{I R}$ (thin film) 3458, 3365, 2977, 2927, 1664, 1513, 1350, $1159 \mathrm{~cm}^{-1}$; LRMS (ESI) 467 (17, [M+H] ${ }^{+}$), 411 (17, [M-tBu+H]+ $), 367$ (66, $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 467.1959$, observed 467.1962.

Methyl N-(tert-butoxycarbonyl)-S-(1,2-diethyl-3,6-dioxohexahydropyridazin-4-yl)-L-

 cysteinate $\mathbf{8}^{12}$

8
To a solution of N -(tert-butoxycarbonyl)-L-cysteine methyl ester 7 ($122 \mu \mathrm{~L}, 140 \mathrm{mg}, 0.594$ mmol) in $\mathrm{MeOH}(6 \mathrm{~mL})$ was added 1,2-diethyl-1,2-dihydropyridazine-3,6-dione $1(100 \mathrm{mg}$, 0.594 mmol) and sodium acetate ($146 \mathrm{mg}, 1.78 \mathrm{mmol}$). The reaction mixture was then stirred at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo, and the crude residue was purified by flash column chromatography (20% to 80% EtOAc/petrol) to give methyl N -(tert-butoxycarbonyl)-(1,2-diethyl-3,6-dioxohexahydropyridazin-4-yl)-L-cysteinate $\mathbf{8}$ as a colourless oil ($128 \mathrm{mg}, 0.317 \mathrm{mmol}, 54 \%$) as a mixture of diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers) δ 5.57-5.44 (m, 1H), 4.62-4.55 (m, 1H), 4.10-4.09 (m, 2H), 3.77-3.75 (m, 3H), 3.74-3.73 (m, 0.5 H), 3.71-3.69 (m, 0.5 H) 3.40-3.39 (m, $2 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 0.5 \mathrm{H}), 3.14-3.07,(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.96,(\mathrm{~m}, 0.5 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.62-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.44(\mathrm{~m}, 9 \mathrm{H}), 1.16-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.11(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers, rotamers) $\delta 171.4$ (C), 171.3 (C), 167.5 (C), $167.3(\mathrm{C}), 166.4(\mathrm{C})$, 166.3 (C), $155.4(\mathrm{C}), 155.3(\mathrm{C}), 80.4(\mathrm{C}), 53.7(\mathrm{CH}), 52.9(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 41.3(\mathrm{CH})$, $38.7\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$, $12.2\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3018, 2979, 2937, $1743 \mathrm{~cm}^{-1}$.

2.3

2.3.1 Peptide synthesis

The tripeptides 14 and 45 were synthesised using standard Fmoc solid phase peptide conditions.

Fmoc amino acids used were: Fmoc-Gly-OH, Fmoc-Cys(Trt)-OH and Fmoc-Tyr(tBu)-OH.

First Coupling

To a 10 mL syringe fitted with a polypropylene frit was added 500 mg of 2-chlorotrityl chloride resin ($1.1 \mathrm{mmol} / \mathrm{g}$ loading, $200-400$ mesh, 1% DVB). The resin was washed with dichloromethane ($5 \times 5 \mathrm{~mL}$), then allowed to swell in dichloromethane (5 mL) on a shaker for 15 minutes. Meanwhile, a coupling solution containing the first protected Fmoc-amino acid (3 equiv to resin loading) and N, N-diisopropylethylamine (6 equiv. to resin loading) was prepared in 1:1 (v/v) N,N-dimethylformamide/dichloromethane (3 mL). The dichloromethane solution was expelled from the syringe, then the coupling solution was added to the resin which was allowed to shake for 16 hours at room temperature. The coupling solution was expelled, then the resin was washed with dichloromethane ($5 \times 5 \mathrm{~mL}$). A capping solution containing 0.5:1:9.5 (v/v) N, N-diisopropylethylamine/methanol/dichloromethane (5 mL) was added to the resin, which was allowed to shake at room temperature for 30 minutes. The resin was then washed with dichloromethane ($3 \times 5 \mathrm{~mL}$) and N, N-dimethylformamide ($3 \times 5 \mathrm{~mL}$).

Fmoc deprotections

To the resin was added $20 \%(\mathrm{v} / \mathrm{v})$ piperidine in N, N-dimethylformamide, which was allowed react under shaking for 1 minute at room temperature. The piperidine solution was expelled, then $20 \%(\mathrm{v} / \mathrm{v})$ piperidine in N, N-dimethylformamide was added to the resin which was allowed to react under shaking for 15 minutes at room temperature. The piperidine solution was expelled, then the resin was washed with N, N-dimethylformamide ($5 \times 5 \mathrm{~mL}$).

Fmoc-amino acid couplings

A coupling solution containing the protected Fmoc-amino acid (3 equiv. to resin loading) and ethyl cyanohydroxyiminoacetate (oxyma), (3 equiv. to resin loading) was prepared in N, N-dimethylformamide (3 mL). The coupling solution was added to the resin, followed by N, N^{\prime}-diisopropylcarbodiimide (3 equiv. to resin loading). The resin was allowed to react under shaking for 30 minutes at room temperature, then the coupling solution was expelled, and the resin washed with N, N-dimethylformamide ($5 \times 5 \mathrm{~mL}$).

Peptide cleavage

The resin was washed with dichloromethane ($5 \times 5 \mathrm{~mL}$), then dried with a gentle stream of nitrogen before being dried under vacuum overnight. To the dried resin was added a solution containing 2.5:2.5:1:94 (v/v) 1,2-ethanedithiol/ $\mathrm{H}_{2} \mathrm{O} /$ triisopropylsilane/trifluoroacetic acid
(5 mL), which was allowed to react under shaking for 3 hours at room temperature. A needle was fitted to the syringe, then the solution was then distributed dropwise into two falcon tubes containing cold diethyl ether (45 mL) to give an off-white precipitate. The precipitate was collected via centrifugation ($5000 \mathrm{rcf}, 5$ minutes, $4^{\circ} \mathrm{C}$), the supernatant removed, and the precipitate washed with cold diethyl ether (45 mL). The precipitate was collected via centrifugation ($5000 \mathrm{rcf}, 5$ minutes, $4^{\circ} \mathrm{C}$), the supernatant removed, and the remaining diethyl ether dried with a gentle stream of N_{2}. The resulting crude solid was dissolved in 5% (v / v) acetonitrile in $\mathrm{H}_{2} \mathrm{O}$ containing 0.1% formic acid (40 mL), filtered through a $0.2 \mu \mathrm{~m}$ filter and purified via preparative-HPLC.

Fractions containing the desired peptide were identified using LC-MS, with the fractions pooled and lyophilised to give the CGY and GCY peptides as fluffy white powders.

Cys-Gly-Tyr 45

CGY

LRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 342.10$ observed 342.10 . HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$342.1118, observed 342.1115.

Gly-Cys-Tyr 14

GCY

LRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 342.10$ observed 342.10. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 342.1118$, observed 342.1115.

2.3.2 Peptide-PD conjugates

S-(1-Ethyl-3,6-dioxo-2-phenylhexahydropyridazin-4-yl)-N-glycyl-L-cysteinyl-L-tyrosine S14/ S-(2-ethyl-3,6-dioxo-1-phenylhexahydropyridazin-4-yl)-N-glycyl-L-cysteinyl-L-tyrosine S14'

S14/S14'

To a solution of GCY peptide $14(15 \mathrm{mg}, 0.044 \mathrm{mmol})$ in PB buffer (100 mM phosphate, 5 mM EDTA, pH 7.4, 1 mL) was added 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione 3 (10 mg, 0.044 mmol) in MeCN (1 mL). The reaction mixture was then stirred at $21^{\circ} \mathrm{C}$ for 3 h . After this time, the organic solvent was removed in vacuo, and the crude residue was purified by reverse phase flash column chromatography (0% to 50% water/MeCN) to give an inseparable mixture S-(1-Ethyl-3,6-dioxo-2-phenylhexahydropyridazin-4-yl)-N-glycyl-L-cysteinyl-L-tyrosine S14/ S-(2-ethyl-3,6-dioxo-1-phenylhexahydropyridazin-4-yl)-N-glycyl-L-cysteinyl-L-tyrosine S14' as a white powder ($12 \mathrm{mg}, 0.022 \mathrm{mmol}, 51 \%$).
IR (thin film) 3286, 2951, 2854, 1682, 1644, 1593, 1512, 1416, $1244 \mathrm{~cm}^{-1}$; LRMS (ESI) 558 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 558.2017$ observed 558.2005.

To a solution of CGY peptide ($13.5 \mathrm{mg}, 0.039 \mathrm{mmol}$) in phosphate buffer ($100 \mathrm{mM}, 1 \mathrm{mM}$ EDTA, $\mathrm{pH}=7.4,136 \mu \mathrm{~L}$) was added the MePD-BCN derivative, $27(10 \mathrm{mg}, 0.019 \mathrm{mmol})$ in acetonitrile ($305 \mu \mathrm{~L}$). The reaction was stirred at $20^{\circ} \mathrm{C}$ for 16 hours then purified via preparative-HPLC. Fractions containing the title compound were identified using LC-MS, pooled, and lyophilized to give the title compound as a white solid $(3.0 \mathrm{mg}, 0.0035 \mathrm{mmol}$, 19\%).

LRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$846.36, observed 846.2. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 846.3702$, observed 846.3695. An impurity was found upon storage of the compound at $-21{ }^{\circ} \mathrm{C}$, observed 847.3761.

To a solution of CGY peptide ($6.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) in phosphate buffer ($100 \mathrm{mM}, 1 \mathrm{mM}$ EDTA, $\mathrm{pH}=7.4,62 \mu \mathrm{~L}$) was added the PhPD-BCN derivative, $\mathbf{2 7}(5.1 \mathrm{mg}, 0.009 \mathrm{mmol})$ in acetonitrile $(400 \mu \mathrm{~L})$. The reaction was stirred at $20^{\circ} \mathrm{C}$ for 16 hours then purified via preparative-HPLC. Fractions containing the title compound were identified using LC-MS, pooled, and lyophilized to give the title compound 48 as a white solid ($5.5 \mathrm{mg}, 0.0035 \mathrm{mmol}, 39 \%$).

LRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 908.38$, observed 908.1. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 908.3859$, observed 908.3852. An impurity was found upon storage of the compound at $-21{ }^{\circ} \mathrm{C}$, observed 909.3913 .

2-Ethyl-4-(hexylthio)-1-phenyltetrahydropyridazine-3,6-dione 19 and 2-ethyl-4-(hexylthio)-2-phenyltetrahydropyridazine-3,6-dione 18

19

18

To a solution of n-hexanethiol $17(33 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ were added 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione $3(50 \mathrm{mg}, 0.23 \mathrm{mmol}$) and sodium acetate (57 mg , $0.69 \mathrm{mmol})$. The reaction mixture was left to stir at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo. The crude residue was then purified by flash column chromatography (20 to 80\% EtOAc/cyclohexane) to afford an inseparable mixture of 2-ethyl-4-(hexylthio)-1-phenyltetrahydropyridazine-3,6-dione 19 and 1-ethyl-4-(hexylthio)-2-phenyltetrahydropyridazine-3,6-dione 18 in a $4: 1$ ratio (73 mg) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of regioisomers) $\delta 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 0.18 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 0.8 \mathrm{H}), 2.80-2.68$ $(\mathrm{m}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 2.5 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 0.5 \mathrm{H})$, $1.05(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2.4 \mathrm{H}), 0.88-0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(150 \mathrm{MHz}, \mathrm{CDCl} 3$, mixture of regioisomers) $\delta 167.5$ (C), 166.8 (C), 166.2 (C), 166.2 (C), 136.7 (C), 136.4 (C), 129.3 (CH), 129.2 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 125.6(\mathrm{CH}), 125.4(\mathrm{CH}), 42.1(\mathrm{CH}), 41.2(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 39.8$ $\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.0$ $\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 12.1\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3074, 2918, 1639, $1407 \mathrm{~cm}^{-}$ ${ }^{1}$; LRMS (ESI) $335\left(80,[\mathrm{M}+\mathrm{H}]^{+}\right), 217\left(20,\left[\mathrm{MC}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ [$\mathrm{M}+\mathrm{H}]^{+} 335.1786$, observed 335.1788.

Table S1. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR chemical shift assignments for 18 (the minor form in the mixture analysed, ~20\%) and 19 (major form in the mixture analysed, ~80\%). The two 7-CH2 protons distinguished based on their cis-(7c) and trans-orientation (7t) relative to the 6-CO group. For some of ${ }^{13} \mathrm{C}$ peaks, J couplings with protons were measured using proton-coupled ${ }^{13} \mathrm{C}$ NMR spectra. Where available, the assignments of the coupled protons are included in brackets in columns under "Multiplicity and ...". The assignments of the protons coupled to ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ sites in HMBC spectra are also included in brackets in columns under "Multiplicity and ...". ${ }^{15} \mathrm{~N}$ NMR chemical shifts were measured from ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ spectra.

	Major (19)	Multiplicity and J couplings (in Hz) or HMBC cross-peaks with ${ }^{1} \mathrm{H}$ signals (19)	Minor (18)	Multiplicity and J couplings (in Hz) or HMBC cross-peaks with ${ }^{1} \mathrm{H}$ signals (18)	Major (19)	Minor (18)
1-N	156.3	$\begin{aligned} & (10-\mathrm{oPh}, \\ & 5 \mathrm{e}, 7 \mathrm{c}, 7 \mathrm{t}) \end{aligned}$	156.6	(8-Me, 5e)	156.3	156.6
2-N	156.0	(8-Me, 4e)	154.8	(10-oPh, 4e, 7c)	156.0	154.8
3-CO	-	$\begin{aligned} & \text { ddtd } 9.4(5 \mathrm{e}), \\ & 5.1(4 \mathrm{e}), 3.3 \\ & (5 \mathrm{a}), 3.3(7 \mathrm{t}), \\ & 1.7(7 \mathrm{c}) \end{aligned}$	-	$\begin{aligned} & \text { ddd } 9.5(5 \mathrm{e}), 5.1 \\ & (4 \mathrm{e}), 3.7 \text { (5a) } \end{aligned}$	167.55	166.83
$4 \mathrm{e}-\mathrm{CH}$	3.714	dd 4.3, 3.7	3.716	Overlapping	41.23	42.14
$5 \mathrm{a}^{\text {a }}$	3.150	dd -15.9, 4.3	3.160	dd -16.0, 4.5	36.06	35.07
$5 \mathrm{e}^{\text {a }}$	2.761	dd -15.9, 3.7	2.739	dd -16.0, 3.9	-	-
6-CO	-	dt 9.4, 6.2	-	Overlapping	166.20	166.16
$\begin{aligned} & \text { 7c-CH to } \\ & \text { CO } \end{aligned}$	4.066	dq -14.2, 7.1	4.078	dq -14.2, 7.1	39.83	39.79
$\begin{aligned} & \text { 7t-CH2 to } \\ & \mathrm{CO} \end{aligned}$	2.931	dq -14.2, 7.1	3.002	dq -14.2, 7.1	-	-
8-Me	1.064	t 7.1	1.101	t 7.1	12.09	11.41
9-Cq	-				136.71	136.43
10-oPh	7.394		7.353		125.63	125.36
$11-\mathrm{mPh}$	7.425		7.425		129.22	129.27
12-pPh	7.310		7.308		127.93	127.80
$13-\mathrm{CH}_{2}$	2.789		2.801		32.12	32.13
$13-\mathrm{CH}_{2}$	2.704		2.712		-	-
$14-\mathrm{CH}_{2}$	1.643		1.643		29.36	29.40
$15-\mathrm{CH}_{2}$	1.386		1.386		28.55	28.55
$16-\mathrm{CH}_{2}$	1.280		1.280		31.44	31.45
$17-\mathrm{CH}_{2}$	1.283		1.283		22.67	22.67
$18-\mathrm{Me}$	0.873		0.879		14.17	14.17

${ }^{\text {a Assigned using }}{ }^{13} \mathrm{C}$ satellites in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1}{ }_{\mathrm{CH}}$ couplings measured from the protoncoupled ${ }^{13} \mathrm{C}$ NMR spectrum are different for 5 a and 5 e protons, ${ }^{1}(\mathrm{C} 5, \mathrm{H} 5 \mathrm{a})=129.7 \mathrm{~Hz}$ and ${ }^{1}$ (C5, H5e) $=140.7 \mathrm{~Hz}$.

Di-tert-butyl 1-ethyl-2-methylhydrazine-1,2-dicarboxylate S4

S4

To a solution of di-tert-butyl-1-methylhydrazine-1,2-dicarboxylate ($500 \mathrm{mg}, 2.03 \mathrm{mmol}$) in DMF, was added bromoethane ($758 \mu \mathrm{~L}, 10.1 \mathrm{mmol}$) and caesium carbonate ($3.31 \mathrm{~g}, 10.1$ mmol). The reaction mixture was then left to stir at $21^{\circ} \mathrm{C}$ for 16 h . After this time, the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (50 to 100\% EtOAc/cyclohexane) afforded di-tert-butyl 1-ethyl-2-methylhydrazine-1,2dicarboxylate $\mathbf{S 4}$ ($311 \mathrm{mg}, 1.13 \mathrm{mmol}, 56 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 3.51-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 18 \mathrm{H})$, $1.15(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5(\mathrm{C}), 80.8(\mathrm{C}), 80.6(\mathrm{C}), 43.0\left(\mathrm{CH}_{2}\right)$, $36.8\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right)$; IR (thin film) 2977, 2932, 1677, 1367, $1169 \mathrm{~cm}^{-1}$; LRMS (ESI) 275 (15, [M+H] ${ }^{+}$), $219\left(20,[\mathrm{M}-t \mathrm{Bu}+\mathrm{H}]^{+}\right)$, $163\left(65,[\mathrm{M}-2 t \mathrm{Bu}+\mathrm{H}]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 275.1965$, observed 275.1965.

1-Ethyl-2-methyl-1,2-dihydropyridazine-3,6-dione 16

16

To a solution of di-tert-butyl 1-ethyl-2-methylhydrazine-1,2-dicarboxylate S4 (275 mg, 1.00 mmol) in $\mathrm{AcOH}(10 \mathrm{~mL})$ was added maleic anhydride ($147 \mathrm{mg}, 1.50 \mathrm{mmol}$). The reaction mixture was then heated under reflux with stirring for 16 h . After this time, the reaction mixture was allowed to cool to $21^{\circ} \mathrm{C}$, and the solvent was removed in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Residual toluene was subsequently removed in vacuo with chloroform co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (50 to 100% EtOAc/cyclohexane) afforded 1-ethyl-2-methyl-1,2-dihydropyridazine-3,6-dione 16 ($130 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$) as a beige solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$ (C), 156.9 (C), 134.7 (CH), 134.5 (CH), 40.9 (CH_{2}), 32.7 (CH_{3}), 13.4 (CH_{3}); IR (solid) 2920, 1632, $1582 \mathrm{~cm}^{-1}$; LRMS (ESI) 155 (100, [M] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 155.0815$, observed 155.0815.

2-Ethyl-4-(hexylthio)-1-methyltetrahydropyridazine-3,6-dione 20

20

To a solution of n -hexanethiol $17(38 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ were added 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione $\mathbf{1 6}(50 \mathrm{mg}, 0.32 \mathrm{mmol})$ and sodium acetate (80 mg , $0.97 \mathrm{mmol})$. The reaction mixture was left to stir at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo and a crude ${ }^{1} \mathrm{H}$ NMR of the reaction was taken ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, see below).)Purification of the crude residue by flash column chromatography (20 to 80% EtOAc/cyclohexane) enabled the separation of both regioisomers obtained in a 1:1 ratio and yielded 2-ethyl-4-(hexylthio)-1-phenyltetrahydropyridazine-3,6-dione 20 ($35 \mathrm{mg}, 0.13 \mathrm{mmol}$, 41\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.20$ $(\mathrm{s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{J}=16.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=16.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.32(\mathrm{p}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 169,8(\mathrm{C}), 169.3(\mathrm{C}), 42.2(\mathrm{CH}), 40.4\left(\mathrm{CH}_{2}\right), 35.7$ $\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{3}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right), 12.3$ (CH_{3}); IR (thin film) 2954, 2926, 2870, 2856, 1664, $1376 \mathrm{~cm}^{-1}$; LRMS (ESI) 273 (100, [M] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$273.1631, observed 273.1628.

Abstract

$\left.\begin{array}{llllllllllllllllllllllllllll}\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 \\ f 1(\mathrm{ppm})\end{array}\right)$

Table S2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR chemical shift assignments for 20. The two 7-CH2 protons distinguished based on their cis(7c) and trans-orientation (7t) relative to the 6-CO group. For some of ${ }^{13} \mathrm{C}$ peaks, J couplings with protons were measured using proton-coupled ${ }^{13} \mathrm{C}$ NMR spectra. The assignments of the protons coupled to ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ sites in HMBC spectra are included in brackets in columns under "Multiplicity and ...". ${ }^{15} \mathrm{~N}$ NMR chemical shifts were measured from ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ spectra.

	$\delta_{\text {H }} / \mathrm{ppm}$	Multiplicity and J couplings (in Hz) or HMBC cross-peaks with ${ }^{1} \mathrm{H}$ signals (in brackets)	$\delta_{\text {c }} / \mathrm{ppm}$	${ }^{1} \mathrm{~J} \mathrm{CH} / \mathrm{Hz}$	Multiplicity of ${ }^{13} \mathrm{C}$ signals in protoncoupled ${ }^{13} \mathrm{C}$ spectra and ${ }^{n}{ }^{\text {CH }}$ values (in Hz)
1-N	-	(7c, 7t, 9, 5e)	140.1	-	
2-N	-	(4e, 7t, 9, 8)	156.3	-	
3-CO	-		169.24	-	
4-CH	3.657	dd 4.3, 3.6	42.09	152.1	quintet 3.8
$5 \mathrm{a}^{\text {a }}$	3.122	dd -16.3, 4.3	35.68	130.9	d 2.8
$5 \mathrm{e}^{\text {a }}$	2.545	dd -16.3, 3.6	-	140.3	
6-CO	-	dt 9.4, 6.2	169.80		
$7 \mathrm{c}-\mathrm{CH}$ to CO	4.104	dq -14.5, 7.1	40.32	141.2	q 4.4
$7 \mathrm{t}-\mathrm{CH}_{2}$ to CO	3.440	dq -14.5, 7.1	-	141.2	
$8-\mathrm{Me}$	1.140	t 7.1	12.26	127.6	dd 3.6, 2.5
$9-\mathrm{Me}$	3.195		33.47	140.9	-
$13-\mathrm{CH}_{2}$	2.709	ddd -12.8, 8.1, 6.5	32.45	139.4	
$13-\mathrm{CH}_{2}$	2.638	ddd -12.8, 8.1, 6.7	-		
$14-\mathrm{CH}_{2}$	1.610		30.41	127.1	
$15-\mathrm{CH}_{2}$	1.390		29.38	124.2	
$16-\mathrm{CH}_{2}$	1.303		32.48	124.1	
$17-\mathrm{CH}_{2}$	1.312		23.58	125.9	
$18-\mathrm{Me}$	0.900		14.36	124.5	

${ }^{\text {a }}$ Assigned using ${ }^{13} \mathrm{C}$ satellites in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} J_{\mathrm{CH}}$ couplings measured from the protoncoupled ${ }^{13} \mathrm{C}$ NMR spectrum are different for 5 a and 5 e protons, ${ }^{1} \mathrm{~J}(\mathrm{C} 5, \mathrm{H} 5 \mathrm{a})=130.9 \mathrm{~Hz}$ and ${ }^{1}(\mathrm{C} 5, \mathrm{H} 5 \mathrm{e})=140.3 \mathrm{~Hz}$.
${ }^{1} \mathrm{H}$ NMR of the crude product (top: unzoomed version of the spectra shown in Figure 4B of the manuscript, bottom: zoomed version between 4.5 and 0.5 ppm), displaying a regioisomer ratio of about 1:1.2:

1-Ethyl-4-(hexylthio)-2-methyltetrahydropyridazine-3,6-dione 21

21

To a solution of n-hexanethiol $\mathbf{1 7}(38 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ were added 1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione $16(50 \mathrm{mg}, 0.32 \mathrm{mmol})$ and sodium acetate (80 mg , 0.97 mmol). The reaction mixture was left to stir at $21^{\circ} \mathrm{C}$ for 1 h . After this time, the solvent was removed in vacuo and a crude ${ }^{1} \mathrm{H}$ NMR of the reaction was taken ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, see above). A flash column chromatography (20 to $80 \% \mathrm{EtOAc} / \mathrm{cyclohexane)} \mathrm{enabled} \mathrm{the}$ separation of both regioisomers obtained in a 1:1 ratio and yielded 1-ethyl-4-(hexylthio)-2-phenyltetrahydropyridazine-3,6-dione $21(38 \mathrm{mg}, 0.14 \mathrm{mmol}, 44 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.23$ ($\mathrm{s}, 3 \mathrm{H}$), $2.99(\mathrm{dd}, \mathrm{J}=4.6,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H})$, 1.37-1.32 (m, 2H), 1.29-1.24 (m, 4H), $1.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167,7(\mathrm{C}), 166.7(\mathrm{C}), 41.0(\mathrm{CH}), 39.1\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$; IR (thin film) 2954, 2926, 2870, 2856, 1664, $1376 \mathrm{~cm}^{-1}$; LRMS (ESI) 273 (100, [M] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ [$\mathrm{M}+\mathrm{H}]^{+}$273.1631, observed 273.1628 .

Scheme S2. Synthesis of $N-M e, N^{\prime}-B C N P D 27$

3-(2-Methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl)propanoic acid S5

S5
Maleic anhydride ($0.68 \mathrm{~g}, 6.89 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(65 \mathrm{~mL}$) and the reaction mixture heated under reflux for 30 min . After this time, to this solution, was added di-tert-butyl-1-(3-(tert-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2- dicarboxylate obtained according to the procedure previously reported ${ }^{11}(2.15 \mathrm{~g}, 5.74 \mathrm{mmol})$ and the reaction was heated under reflux for 16 h . After this, the reaction mixture was concentrated in vacuo with toluene coevaporation ($3 \times 30 \mathrm{~mL}$, as an azeotrope) and the crude residue purified by flash column chromatography (0 to $20 \% \mathrm{MeOH} / E t O A c(1 \% \mathrm{AcOH}$)) to afford 3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoic acid $\mathbf{S 5}(330 \mathrm{mg}, 1.67 \mathrm{mmol}, 29 \%)$ as a beige solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.44(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{q}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 171.9$ (C), 156.6 (C), 156.5 (C), 134.5 (CH), 134.2 (CH), $41.2\left(\mathrm{CH}_{3}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right)$; IR (solid) 3077, 2918, 1715, 1594, $1560 \mathrm{~cm}^{-1}$; LRMS (ESI) 199 ($100,[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 199.0719$ observed 199.0715.

((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl)carbamate 27

27
To a solution of 3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl)propanoic acid S5 (28 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in THF (5 mL), was added 1-ethyl-3-carbodiimide hydrochloride ($31 \mathrm{mg}, 0.16$ $\mathrm{mmol})$. The heterogeneous reaction mixture was left to stir at $0^{\circ} \mathrm{C}$ for 30 min . After this time, N-[(1R,8S,9S)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), pre-dissolved in THF (1 mL), was added, followed by the dropwise addition of N, N-diisopropylethylamine ($27 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$). The flask was then flushed with argon and the reaction mixture was stirred at $21{ }^{\circ} \mathrm{C}$ for 16 h . Following this, the THF was removed in vacuo and the crude residue partitioned between $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and water (30 $\mathrm{mL})$. The organic layer was washed with water $(2 \times 30 \mathrm{~mL})$ and saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. Purification of the crude residue by flash column chromatography (0% to $20 \% \mathrm{MeOH} / E t O A c$) afforded ($(1 R, 8 S, 9 S$)-bicyclo[6.1.0]non-4-yn-9-yl)methyl(2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H) yl)propanamido)ethoxy)ethoxy)ethyl)carbamate $\mathbf{2 7}$ ($43 \mathrm{mg}, 0.085 \mathrm{mmol}, 64 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (s, 0.2 H), 6.88 ($\mathrm{q}, \mathrm{J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.36 ($\left.\mathrm{s}, 0.7 \mathrm{H}\right), 5.79$ (s , $0.3 \mathrm{H}), 5.33(\mathrm{~s}, 0.7 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.29(\mathrm{~m}, 16 \mathrm{H}), 2.59$ (t, J = 7.1 Hz, 2H), 2.35-2.13 (m, 6H), 1.24 (s, 5H), 0.94 (d, J=9.2 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 169.3$ (C), 157.3 (C), 157.2 (C), 157.0 (C), 135.0 (C), 134.3 (C), 99.0 (CH), 96.3 (CH), $70.4(\mathrm{CH}), 70.3(\mathrm{CH}), 69.7(\mathrm{CH}), 63.0\left(\mathrm{CH}_{2}\right), 42.7\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 32.1$ $\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 20.2$ $\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{2}\right)$; IR (thin film) 3311, 3073, 2917, 2850, 1708, 1629, 1537, 1247 cm^{-1}; LRMS (ESI) 505 (100, $[\mathrm{M}+\mathrm{H}]^{+}$). HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}, 505.2657$ observed 502.2652.

Scheme S3. Synthesis of $N-P h, N^{\prime}-B C N$ PD 28
Di-tert-butyl 1-phenylhydrazine-1,2-dicarboxylate S6

S6
To a solution of phenylhydrazine ($0.99 \mathrm{~mL}, 10 \mathrm{mmol}$) in $\mathrm{MeCN}(27 \mathrm{~mL}$), was added di-tertbutyl dicarbonate ($9.2 \mathrm{~g}, 42 \mathrm{mmol}$) and 4-dimethylaminopyridine ($5 \mathrm{mg}, 0.042 \mathrm{mmol}$), and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 2 h . After this time, the reaction temperature was reduced to $50^{\circ} \mathrm{C}$, and to the solution was added magnesium perchlorate ($0.45 \mathrm{~g}, 2 \mathrm{mmol}$), and the reaction was left to stir at $50^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was then cooled to $21^{\circ} \mathrm{C}$ and then quenched by the addition of a $1: 3$ mixture $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ (sat. aq.)/brine (100 mL). The resulting biphasic solution was extracted into EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organics were washed with sat. aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was slurried in EtOH at $-10^{\circ} \mathrm{C}$ and then filtered to afford di-tert-butyl 1-phenylhydrazine-1,2-dicarboxylate as a white solid $\mathbf{S 6}$ ($2.9 \mathrm{~g}, 9.4 \mathrm{mmol}$, 94\%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.41(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 1H), 6.76 ($\mathrm{s}, 1 \mathrm{H}$), $1.49(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5$ (C), 153.8 (C), 142.3 (C), 128.6 (CH), 125.7 (CH), 123.8 (CH), 82.4 (C), 81.7 (C), 28.3 (CH3); IR (solid) 3283, 2980, 1713, 1509, 1249, $1148 \mathrm{~cm}^{-1}$; LRMS (ESI) 153 (83, [M-tBu-Boc+H] ${ }^{+}$), 197 (17, $[\mathrm{M}-2 t \mathrm{Bu}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 309.1809$ observed 309.1801.

Di-tert-butyl 1-(3-(tert-butoxy)-3-oxopropyl)-2-phenylhydrazine-1,2-dicarboxylate S7

S7
To a solution of di-tert-butyl-1-phenylhydrazine-1,2-dicarboxylate $\mathbf{S 6}$ ($500 \mathrm{mg}, 1.62 \mathrm{mmol}$) in tert-butanol (2.6 mL), was added $2 \mathrm{M} \mathrm{NaOH}(0.05 \mathrm{~mL})$ and the reaction mixture was stirred at $21^{\circ} \mathrm{C}$ for 10 min . After this time, to the solution, was added tert-butyl acrylate $(0.706 \mathrm{~mL}, 4.86$ mmol) and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 72 h . After this time, the solvent was removed in vacuo. The crude residue was then dissolved in EtOAc (100 mL), washed with water ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford di-tert-butyl 1-(3-(tert-butoxy)-3-oxopropyl)-2-phenylhydrazine-1,2-dicarboxylate $\mathbf{S 7}$ (549 mg, 1.26 mmol , 78%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{dt}, J=15.1,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}$, 2H), 2.59-2.44 (m, 2H), 1.53 (d, 9H), 1.47 (d, 9H), 1.38 (d, J = 7.3 Hz, 9H); ${ }^{13}$ C NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9$ (C), $153.0(\mathrm{C}), 141.1(\mathrm{C}), 128.6(\mathrm{CH}), 125.5(\mathrm{CH}), 122.5(\mathrm{CH}), 82.3$ (C), 81.9 (C), 46.7 (C), $45.5(\mathrm{C}), 33.9(\mathrm{C}), 28.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$; IR (thin film) 3370, 2977, 2931, 1722, 1368, $1152 \mathrm{~cm}^{-1}$; LRMS (ESI) 437 (100, [M+H ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 437.2646$ observed 437.2640.

3-(3,6-Dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanoic acid S8

S8

Maleic anhydride ($76 \mathrm{mg}, 0.78 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(5 \mathrm{~mL})$ and heated under reflux for 30 min . After this time, to this solution, was added di-tert-butyl-1-(3-(tert-butoxy)-3-oxopropyl)-2-phenylhydrazine-1,2-dicarboxylate $\mathbf{S 7}$ ($200 \mathrm{mg}, 0.46 \mathrm{mmol}$) and the reaction heated under reflux for 16 h . Following this, the reaction mixture was concentrated in vacuo with toluene co-evaporation ($3 \times 30 \mathrm{~mL}$, as an azeotrope) and the crude residue purified by flash column chromatography (0 to $20 \% \mathrm{MeOH} / \mathrm{EtOAc}(1 \% \mathrm{AcOH}$)) to afford 3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanoic acid $\mathbf{S 8}(50 \mathrm{mg}, 0.19 \mathrm{mmol}, 42 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, 2 \mathrm{H}), 7.50(\mathrm{t}, 3 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d d_{6}) 171.6 (C), 157.3 (C), 157.0 (C), 136.1 (C), 135.6 (CH), 135.0 (CH), 129.5 (CH), 129.4 (CH), 128.8 (CH), 42.2 (CH_{2}), $31.2\left(\mathrm{CH}_{2}\right)$; IR (solid) 3174, 2969, 1704, 1620, $1414 \mathrm{~cm}^{-1}$. LRMS (ESI) 259 (100, [M-H] $)$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-} 259.0724$ observed 259.0724.

2,5-Dioxopyrrolidin-1-yl 3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanoate S9

S9
To a solution of 3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanoic acid $\mathbf{S 8}$ (45 $\mathrm{mg}, 0.27 \mathrm{mmol}$) in THF (6.2 mL), pre-cooled to $0{ }^{\circ} \mathrm{C}$, was added 1-ethyl-3-carbodiimide hydrochloride ($36.46 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.1$ equiv.). The homogenous solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Following this, to the solution, was added N -hydroxysuccinimide (30 mg , 0.26 mmol) and the reaction stirred at $21^{\circ} \mathrm{C}$ for 16 h . The newly formed heterogenous mixture was then filtered through a celite pad, washed with EtOAc ($3 \times 10 \mathrm{~mL}$) and the filtrate was concentrated in vacuo. Purification of the crude residue by flash column chromatography (50% to 100% EtOAc/cHex) afforded 2,5-dioxopyrrolidin-1-yl 3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanoate $\mathbf{S 9}(45 \mathrm{mg}, 0.13 \mathrm{mmol}, 73 \%)$ as a beige solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97(\mathrm{dd}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8(\mathrm{C}), 165.7$ (C), 158.0 (C), 157.8 (C), 135.8 (CH), 135.7 (CH), 135.4 (CH), $130.2(\mathrm{CH}), 130.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right)$; IR (solid) 3359, 3069, 2978, 1702, 1618, $1508 \mathrm{~cm}^{-1}$; LRMS (ESI) 358 (6, [M+H] ${ }^{+} 283$ (30, $\left[\mathrm{MC}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$), $261\left(64,\left[\mathrm{MC}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 358.1034, observed 358.1030.

((1R,8S,9S)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(2-(3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl)carbamate 28

To a solution of 2,5-dioxopyrrolidin-1-yl-3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)yl)propanoate $\mathbf{S 9}(33.92 \mathrm{mg}, 0.095 \mathrm{mmol})$ in $\mathrm{MeCN}(6.2 \mathrm{~mL})$, was added $\mathrm{N}-[(1 R, 8 \mathrm{~S}, 9 \mathrm{~S})$ -bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane ($30.8 \mathrm{mg}, 0.095$ mmol), and the reaction was stirred at $21^{\circ} \mathrm{C}$ for 16 h . After this time, the MeCN was removed in vacuo and the crude residue was partitioned between $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and water (30 mL). The organic layer was washed with water (30 mL) and sat. aq. K2CO3 (30 mL), dried over MgSO 4 and concentrated in vacuo. Purification of the crude residue via flash column chromatography (0% to $15 \% \mathrm{MeOH} / E t O A c$) afforded ($(1 R, 8 S, 9 S$)-bicyclo[6.1.0]non-4-yn-9-yl)phenyl(2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)yl)propanamido)ethoxy) ethoxy)ethyl)carbamate $\mathbf{2 8}(24 \mathrm{mg}, 0.042 \mathrm{mmol}, 45 \%)$ as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97$ (dd, J = 10.1, $10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.33$ ($\mathrm{s}, 0.6 \mathrm{H}$), 5.35 ($\mathrm{s}, 0.6 \mathrm{H}$), $4.22-4.10$ (m, 2H), 3.97 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3-58(\mathrm{~m}, 6 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.8$ (C), 169.2 (C), 157.9 (C), 157.0 (C), 135.8 (CH), 135.4 (CH), 130.1 (C), 128.4 (CH), $99.0(\mathrm{C}), 70.3(\mathrm{CH}), 69.8(\mathrm{CH}), 63.0(\mathrm{CH}), 43.9(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{2}\right), 14.3(\mathrm{CH})$; IR (thin film) $3318,3068,2918,1640,1528,1248 \mathrm{~cm}^{-1}$; LRMS (ESI) 567 (100, [M+H] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 567.2813$ observed 567.2810 .

Scheme S4. Synthesis of functionalised model PDs 30 and 31

N-(2-(2-(2-(2-Azidoethoxy)ethoxy)ethoxy)ethyl)acetamide 29

29
To a solution of 11-azido-3,6,9-trioxaundecan-1-amine ($200 \mathrm{mg}, 182 \mu \mathrm{~L}, 0.917 \mathrm{mmol}$) in DCM $(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(143 \mu \mathrm{~L}, 1.01 \mathrm{mmol})$ and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Following this, to the solution, was added acetyl chloride ($73 \mu \mathrm{~L}, 1.01 \mathrm{mmol}$), and the reaction mixture was left to stir at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then allowed to warm to $21^{\circ} \mathrm{C}$ and left to stir for 20 h . After this time, the crude mixture was diluted by the addition of DCM (10 mL) and quenched with the addition of a solution of sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The product was then extracted into DCM $(3 \times 10 \mathrm{~mL})$. The organics were then combined, washed with brine (30 mL) and dried over MgSO_{4}. Solvent was removed in vacuo before purification. Purification of the crude product via flash column chromatography (0% to $20 \% \mathrm{MeOH} / \mathrm{EtOAc}$, dry load using DCM and celate, product eluted around 10\%) afforded N -(2-(2-(2-(2azidoethoxy)ethoxy) ethoxy)ethyl)acetamide 29 ($74 \mathrm{mg}, 0.284 \mathrm{mmol}, 31 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.68-3.65(\mathrm{~m}, 8 \mathrm{H}), 3.62-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.3$ (C), $71.6\left(\mathrm{CH}_{2}\right), 71.6\left(\mathrm{CH}_{2}\right), 71.5\left(\mathrm{CH}_{2}\right), 71.3\left(\mathrm{CH}_{2}\right), 71.1\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right)$, 22.5 (CH_{3}); IR (thin film) 3298, 2916, 2864, 2100, 1654, 1451, $1105 \mathrm{~cm}^{-1}$; LRMS (ESI) 261 (100, $[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$261.1557, observed 261.1557.

((5aR,6S,6aS)-1-(2-Oxo-6,9,12-trioxa-3-azatetradecan-14-yl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)yl)propanamido)ethoxy)ethoxy)ethyl)carbamate 30

To a solution of N -(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)acetamide 29 ($10 \mathrm{mg}, 0.038$ $\mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$, was added ($(1 R, 85,9 S)$-bicyclo[6.1.0]non-4-yn-9-yl)methyl(2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-
yl)propanamido)ethoxy)ethoxy)ethyl)carbamate $\mathbf{2 7}$ ($20 \mathrm{mg}, 0.038 \mathrm{mmol}$) in MeCN (1 mL). The reaction mixture was left to stir at $21^{\circ} \mathrm{C}$ for 2 h under air. After this time, solvent was removed in vacuo and the crude product was purified using flash chromatography (reverse phase column, 0 to 100% acetonitrile/water) to afford ((5aR,6S,6aS)-1-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl(2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin$1(2 \mathrm{H}) \mathrm{yl}$) propanamido)ethoxy)ethoxy)ethyl)carbamate $\mathbf{3 0}$ ($21 \mathrm{mg}, 0.028 \mathrm{mmol}, 72 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right) \delta 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~m}, 0.6 \mathrm{H}), 6.43(\mathrm{~m}, 0.8 \mathrm{H}), 5.43(\mathrm{~m}, 0.6 \mathrm{H})$, 4.40-4.35 (m, 4H), 4.15-4.09 (m, 2H), 3.86 (t, J = 5.2 Hz, 2H), 3.63(m, 3H), 3.59-3.51 (m, 17H), $3.42(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) 1.57-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.03-1.01(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right) \delta 170.5(\mathrm{C})$, $169.4(\mathrm{C}), 157.3(\mathrm{C}), 157.0(\mathrm{C}), 144.5(\mathrm{C}), 135.0(\mathrm{C}), 134.3(\mathrm{CH}), 70.7\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 70.6$ $\left(\mathrm{CH}_{2}\right), 70.3\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right), 70.0\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{2}\right), 47.9(\mathrm{CH}), 42.7\left(\mathrm{CH}_{2}\right), 40.9$ $\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.3$ $\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{CH})$; IR (thin film) 3311, 3069, 2918, 2867, 1640, $1250 \mathrm{~cm}^{-}$ ${ }^{1}$; LRMS (ESI) 765 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 765.4141$, observed 765.4141.

((5aR,6S,6aS)-1-(2-Oxo-6,9,12-trioxa-3-azatetradecan-14-yl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (2-(2-(2-(3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl)carbamate 31

31
To a solution of N -(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)acetamide 29 ($10 \mathrm{mg}, 0.038$ $\mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$, was added ($(1 R, 8 S, 9 S)$-bicyclo[6.1.0]non-4-yn-9-yl)phenyl(2-(2-(2-(3-(2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)yl)propanamido)ethoxy)
ethoxy)ethyl)carbamate $\mathbf{2 8}(22 \mathrm{mg}, 0.038 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$. The reaction mixture was left to stir at $21^{\circ} \mathrm{C}$ for 2 h . After this time, the solvent was removed in vacuo and the crude residue was purified using flash chromatography (reverse phase column, 0 to 100% acetonitrile/water) to afford ((5aR,6S,6aS)-1-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl(2-(2-(2-(3-(3,6-dioxo-2-phenyl-3,6-dihydropyridazin-1(2H)yl)propanamido)ethoxy)ethoxy)ethyl)carbamate 31 ($26 \mathrm{mg}, 0.031 \mathrm{mmol}, 81 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right) \delta$ 7.54-7.52 (m, 2H), 7.49-7.46 (m, 1H), 7.36-7.35 (m, 2H), 6.99-6.94 $(\mathrm{m}, 2 \mathrm{H}), 6.60(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.96$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 16 \mathrm{H}), 3.48(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{q}, J$ $=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.71-$ $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.02(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}$) $\delta 171.2$ (C), 135.4 (C), 130.0 (C), 128.3 (C), $70.7\left(\mathrm{CH}_{2}\right), 70.5$ $\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right), 70.1\left(\mathrm{CH}_{2}\right), 70.0\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 53.5\left(\mathrm{CH}_{2}\right), 50.9(\mathrm{CH}), 47.9(\mathrm{CH}), 43.8\left(\mathrm{CH}_{2}\right)$, $40.9\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 39.3(\mathrm{CH}), 29.7\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 21.1$ (CH_{2}), 14.2 (CH). IR (thin film) 3325, 3064, 2921, 1646, 1542, $1257 \mathrm{~cm}^{-1}$; LRMS (ESI) 827 (100, $[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{59} \mathrm{~N}_{8} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 827.4294$, observed 827.4298.

2.6

4,5-Dibromo-1,2-diethyl-1,2-dihydropyridazine-3,6-dione 23 ${ }^{10,11}$

23

Dibromomaleic acid ($274 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(10 \mathrm{~mL})$ and heated under reflux for 30 min . After this time, di-tert-butyl 1,2-diethylhydrazine-1,2-dicarboxylate obtained as previously described ${ }^{11}(347 \mathrm{mg}, 1.20 \mathrm{mmol})$ was added and the resultant mixture was heated under reflux for a further 4 h . After this time, the reaction mixture was concentrated in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (30% to 70% EtOAc/petrol) yielded 4,5-dibromo-1,2-diethyl-1,2-dihydropyridazine-3,6-dione 23 ($267 \mathrm{mg}, 0.819 \mathrm{mmol}, 82 \%$) as a yellow solid.
m.p. $110-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.17(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2$ (C), 136.1 (C), 42.4 (CH2), 13.1 (CH3); IR (solid) 2979, 2937, 2873, 1629, $1574 \mathrm{~cm}^{-1}$.

24
Dibromomaleic acid ($274 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(10 \mathrm{~mL})$ and heated under reflux for 30 min . After this time, 1-ethyl-2-phenylhydrazine $\mathbf{S 1}(163 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added, and the resultant mixture was heated under reflux for a further 5 h . After this time, the reaction mixture was concentrated in vacuo with toluene co-evaporation ($3 \times 20 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (30% to 70\% EtOAc/petrol) yielded 4,5-Dibromo-1-ethyl-2-phenyl-1,2-dihydropyridazine-3,6-dione 24 ($267 \mathrm{mg}, 0.819 \mathrm{mmol}, 82 \%$) as a beige solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4$ (C), 152.9 (C), 137.2 (C), 136.2 (C), 135.9 (C), 130.2 (CH), 129.4 (CH), 129.9 (CH), 128.2 (CH), 44.1 ($\left.\mathrm{CH}_{2}\right), 12.6$ (CH3); IR (solid) 3067, 2986, 2912, 2875, 1630, 1573, $699 \mathrm{~cm}^{-1}$. LRMS (ESI) $377\left(25,\left[\mathrm{M}^{81} \mathrm{Br}^{81} \mathrm{Br}+\mathrm{H}\right]^{+}\right) 375$ (50, $\left.\left[M^{79} \mathrm{Br}^{81} \mathrm{Br}+\mathrm{H}\right]^{+}\right)$, $373\left(25,\left[\mathrm{M}^{79} \mathrm{Br}{ }^{79} \mathrm{Br}+\mathrm{H}\right]^{+}\right)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{79} \mathrm{Br}^{79}+\mathrm{H}\right]^{+}$ 372.9182, observed 372.9181.

4,5-Dibromo-1-ethyl-2-(perfluorophenyl)-1,2-dihydropyridazine-3,6-dione 42

42
Dibromomaleic acid ($78 \mathrm{mg}, 0.28 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(4 \mathrm{~mL})$ and heated under reflux for 30 min . After this time, 1-ethyl-2-(perfluorophenyl)hydrazine $\mathbf{S 3}$ ($77 \mathrm{mg}, 0.34 \mathrm{mmol}$) was added, and the resultant mixture was heated under reflux for a further 16 h . After this time, the reaction mixture was concentrated in vacuo with toluene co-evaporation ($3 \times 30 \mathrm{~mL}$, as an azeotrope). Purification of the crude residue by flash column chromatography (0\% to 50\% EtOAc/cyclohexane) afforded 4,5-dibromo-1-ethyl-2-(perfluorophenyl)-1,2-dihydropyridazine-3,6-dione 42 ($76 \mathrm{mg}, 0.17 \mathrm{mmol}, 51 \%$) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 4.43(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, MeOD) $\delta 152.9$ (C), 152.2 (C), 145.7 (C), 144.0 (C), 139.0 (C), 134.3 (C), 110.9 (C), $44.2\left(\mathrm{CH}_{2}\right), 12.4\left(\mathrm{CH}_{3}\right)$; IR (solid) 2917, 1649, 1512, $1280 \mathrm{~cm}^{-1}$; LRMS (ESI) 467 (25, $\left.\left[\mathrm{M}^{81} \mathrm{Br}^{81} \mathrm{Br}+\mathrm{H}\right]^{+}\right) 465\left(50,\left[\mathrm{M}^{79} \mathrm{Br} r^{81} \mathrm{Br}+\mathrm{H}\right]^{+}\right), 463\left(25,\left[\mathrm{M}^{79} \mathrm{Br}{ }^{79} \mathrm{Br}+\mathrm{H}\right]^{+}\right)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{79} \mathrm{Br}^{81}+\mathrm{H}\right]^{+} 464.8638$, observed 464.8684.

3. Kinetic assays on a peptide model

3.1 Extinction coefficients calculation

A series of dilution for each PD 1-6, 30, $\mathbf{3 1}$ and each PD-cys 8-13 were carried out in MeCN to obtain the corresponding extinction coefficient following Beer-Lambert law. The correction factor of each PD at 280 nm was calculated, by estimating the average ratio of $\varepsilon_{280 \mathrm{~nm}} / \varepsilon_{330 \mathrm{~nm}}$ at each concentration that the absorbances were measured at (see Table S3).

7

8-13

Table S3. Yield of conjugation reaction, extinction coefficients of PD alone 1-6 as well as the correction factor at 280 nm , and extinction coefficients of PD conjugated 8-13. *This extinction coefficient prevented this PD kinetics to be studied using UV-Vis. ** CGY-PD 47 and 48 absorbances assessed in this case.

R, \mathbf{R}^{\prime}	$\begin{gathered} \varepsilon_{280 \mathrm{~nm}} \\ {[\mathrm{PD}]} \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{330 \mathrm{~mm}} \\ {[\mathrm{PDD}]} \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Correction } \\ & \text { factor } \\ & 280 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \text { Cys-PD } \\ & \text { conjugate } \end{aligned}$	$\begin{gathered} \varepsilon_{280 \mathrm{~nm}} \\ {[\mathrm{cys}-\mathrm{PD}]} \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{330 \mathrm{~mm}} \\ {[\mathrm{cys}-\mathrm{PD}]} \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$
Et, Et (1)	516	2262	0.228	Et, Et (8)	345	7
Et, Ph (3)	769	2481	0.245	Et, Ph (10)	1211	57
$\mathrm{Et}, p-\mathrm{PhNO}_{2}$ (5)	3341	5427	0.616	$\mathrm{Et}, p-\mathrm{PhNO}_{2}$ (12)	2817	8059*
$\mathrm{Et}, p-\mathrm{PhNH}_{2}$ (2)	1508	2433	0.616	$\mathrm{Et}, p-\mathrm{PhNH} 2$ (9)	4578	51
Et, p-PhF (4)	822	3013	0.274	Et, p-PhF (11)	504	38
$\mathrm{Et}, \mathrm{PhF}_{5}(6)$	1036	2874	0.365	$\mathrm{Et}, \mathrm{PhF}_{5}(13)$	1081	41
$\begin{aligned} & \mathrm{Me}, \mathrm{BCN} \\ & \text { clicked (30) } \end{aligned}$	490	1754	0.228	$\begin{aligned} & \mathrm{Me}, \mathrm{BCN} \\ & \text { clicked (47) } \end{aligned}$	1699**	ca. $0^{* *}$
$\begin{aligned} & \text { Ph, BCN } \\ & \text { clicked (31) } \end{aligned}$	682	2427	0.260	$\begin{gathered} \text { Ph, BCN } \\ \text { clicked (48) } \end{gathered}$	2328**	Ca. 0**

A solution of GCY 14 was prepared ($1 \mathrm{mM}, \mathrm{PB} 100 \mathrm{mM}, 5 \mathrm{mM}$ EDTA, 3 mL) and was incubated at $37^{\circ} \mathrm{C}$ for 90 min . Aliquots ($50 \mu \mathrm{~L}$) were taken at 15 min intervals, treated with DTNB solution ($50 \mu \mathrm{~L}, 20 \mathrm{mM}, \mathrm{MeCN}, 20$ equiv.) and left at $21^{\circ} \mathrm{C}$ for 5 additional minutes before UV-Vis analysis. Absorbances A_{412} were obtained and used to calculate the free thiol concentration ([S-H]). For the qualitative analysis, percentage change in thiol concentration was plot against time, and significant oxidation was highlighted.

Compound	ε_{412}
TNB (from DTNB)	14150

	Free Thiol Concentration $[\mathrm{S}-\mathrm{H}](\mathrm{M})$
Time	CGY
$\mathbf{0}$	$5.94 \mathrm{E}-04$
$\mathbf{1 5}$	$5.30 \mathrm{E}-04$
$\mathbf{3 0}$	$4.95 \mathrm{E}-04$
$\mathbf{4 5}$	$4.73 \mathrm{E}-04$
$\mathbf{6 0}$	$4.81 \mathrm{E}-04$
$\mathbf{7 5}$	$4.73 \mathrm{E}-04$
$\mathbf{9 0}$	$4.31 \mathrm{E}-04$

Oxidation of GCY over 90 min

[^1]
3.3

$14 \quad 1-4,6,30$ and 31

Kinetic assays were performed using Nanodrop ${ }^{\text {TM }}$ One ${ }^{C}$. Fresh stocks of peptide GCY 14 and PD 1-4, 6, 30 and 31 were prepared at respectively 25 mM in PB buffer (100 mM , pH 7.4, 5 mM EDTA) and 50 mM in MeCN , and were mixed together to a final concentration of 5 mM each in 7:3 PB buffer:MeCN solution (1 mL). An initial timepoint, $\mathrm{t}=0$ (in triplicate), was taken and the reaction was then left to incubated at $37{ }^{\circ} \mathrm{C}$ under constant agitation (300 rpm). Timepoints were measured in triplicate at 4-15 min time intervals depending on the PD tested. To obtain an optimal UV output, for each timepoint, samples were first diluted (1:10) before measurement in a 7:3 PB/MeCN solution. After blanking with 7:3 PB/MeCN solution, the absorbance was taken at 280 and 330 nm , and concentrations of PD ([PD] ${ }_{0}$ and $[P D]_{t}$) and peptide ([pep] $]_{0}$ and $[p e p]_{t}$) were obtained using the absorbance measured at $t=0$ and subsequently. PD concentration was determined using the absorbance at 330 nm and the extinction coefficients reported in Table S3. The absorbance at 280 nm was first corrected by using the correction factors reported in Table S3 and the corrected absorbance at 280 nm was used to assess concentration of the peptide at $t=0$, using an extinction coefficient of $\varepsilon=1490 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. Assuming a closed system, hence a $1: 1$ reaction between PD and peptide, $\left[p e p_{\mathrm{t}}\right.$ was calculated by subtracting the change in PD concentration from [pep] ${ }_{0}$ ([pep] ${ }_{\mathrm{t}}=$ $[p e p]_{0}-\left([P D]_{0}-[P D]_{t}\right) . ~ P D ~ a n d ~ p e p t i d e ~ c o n c e n t r a t i o n s ~ w e r e ~ t h e n ~ a p p l i e d ~ i n ~ t h e ~ i n t e g r a t e d ~$ rate law and graphs were plotted to determine k_{MA}, as shown below.

$$
\frac{\ln \frac{[p e p]_{o}[P D]_{t}}{[\text { pep }]_{t}[P D]_{0}}}{[P D]_{0}-[p e p]_{0}}=k_{M A} t, \text { where } k_{M A}=\text { slope }
$$

Equation S1. Integrated rate law of second order Michael Addition reaction, used to determine kMA.

Table S4. Summary table of $k_{M A}$ values found for the library of PD synthesised 1-4, 6, 30 and 31.

R, \mathbf{R}^{\prime}	$\mathrm{K}_{\mathrm{MA}}\left(\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}\right)$	Standard deviation
Et, Et (1)	$1.59 \mathrm{E}-02$	3.62E-03
Et, PhNH_{2} (2)	3.00E-02	7.58E-03
Et, Ph (3)	1.18E-01	1.11E-02
Et, PhF (4)	$1.40 \mathrm{E}-01$	2.63E-02
$\mathrm{Et}, \mathrm{PhF}_{5}(6)$	$6.32 \mathrm{E}-01$	3.68E-03
$\begin{aligned} & \mathrm{Me}, \mathrm{BCN} \\ & \text { clicked (30) } \end{aligned}$	$2.64 \mathrm{E}-02$	9.47E-04
Ph, BCN clicked (31)	1.70E-01	1.13E-02

Summary

Graph S2. Summary of Michael-Addition rate constant for the library of PDs synthesised 1-4, 6, 30 and 31 with the standard deviation obtained over 3 repeats.

Kinetic assays were performed using Nanodrop ${ }^{T M}$ One ${ }^{C}$. For each replicate, fresh stocks of peptide GCY 14 and PD 1-4, 30 and 31 were made at a respective concentration of 25 mM in PB buffer ($100 \mathrm{mM}, \mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA) for the peptide and 50 mM in MeCN for the PD. PB buffer was used as blank. After the cuvette reached $37^{\circ} \mathrm{C}$, a solution (3 mL) of peptide 14 and PD 1-4, 30 and 31 for each PD was prepared at a desired final concentration of 0.5 mM , concentration necessary for an optimal absorbance output. The solution was then stirred in a cuvette for about 16 h at $37^{\circ} \mathrm{C}$. Initial UV-Vis measurements at 280 and 330 nm were taken after 1 min , then every 5 min during an average time of 16 h . Concentrations of PD ([PD $]_{0}$ and $[P D]_{e q}$), peptide ([pep] $]_{0}$ and $[p e p]_{e q}$) and peptide-PD conjugate at equilibrium ([PD-pep] $]_{\text {eq }}$) were then obtained at each timepoint.

PD concentration was determined using the absorbance at 330 nm and the extinction coefficients reported in Table S3. It was corrected with a correction factor due to evaporation. PD concentration at equilibrium was assessed by plotting corrected PD concentration against time, extrapolated using a one phase decay equation (GraphPad Prism) and taking the value of the plateau.
The absorbance at 280 nm was first corrected by using the correction factor reported in Table S3 to remove PD absorption at 280 nm and the corrected absorbance at 280 nm was used to determine concentration of the peptide at $t=0$, using an extinction coefficient of $\varepsilon=1490 \mathrm{M}^{-}$ ${ }^{1} \mathrm{Cm}^{-1}$.
Assuming a closed system, hence a 1:1 reaction between PD and peptide, [pep-PD] eq was calculated by subtracting [PD] $]_{0}$ to the concentration of PD at equilibrium ([PD-pep] $]_{\text {eq }}=[P D]_{0}$ $\left.-[P D]_{\text {eq }}\right)$. The concentration of peptide at equilibrium was obtained by removing [pep-PD] ${ }_{\text {eq }}$ to the concentration of peptide at $t=0$ ([pep] $\left.]_{e q}=[p e p]_{0}-[p e p-P D]_{e q}\right)$. Having in-hands each compound concentrations at equilibrium, Kc could be determined using the equilibrium equation (Equation S2).

$$
K_{c}=\frac{[P D-c y s]_{e q}}{[P D]_{e q}[c y s]_{e q}}=\frac{\left([P D]_{0}-[P D]_{e q}\right)}{[P D]_{e q}\left([p e p]_{0}-\left([P D]_{0}-[P D]_{e q}\right)\right)}
$$

Summary

Table S5. Summary table of Kc found for the library of PD synthesised 1-4, 30 and 31.

R, \mathbf{R}^{\prime}	Kc average (M^{-1})	Standard deviation
Et, Et (1)	10483	165
$\mathrm{Et}, \mathrm{PhNH}_{2}$ (2)	12698	2282
Et, Ph (3)	9514	1261
Et, PhF (4)	10800	512
$\begin{aligned} & \text { Me, BCN } \\ & \text { clicked (30) } \end{aligned}$	9893	870
Ph, BCN clicked (31)	13014	1638

Graph S3. Normalised and extrapolated equation found for [PD] concentration overtime for each PD 1-4, 30 and 31 synthesised.

Kinetic assays were performed using Nanodrop ${ }^{\text {TM }}$ One $^{\text {C }}$. For each replicate, fresh stock of peptide GCY-PD conjugate S14/S14' was prepared at a concentration of 1.5 mM in PB buffer (100 mM , pH 7.4, 5 mM EDTA). The reaction was left to incubate at $37^{\circ} \mathrm{C}$ under constant agitation (300 rpm). Timepoints were measured in triplicate every 15-20 min over 2 h . To obtain an optimal UV output, samples were first diluted (1:4) before measurement in PB buffer. After blanking with PB buffer, the absorbance was monitored at 280 and 330 nm , and concentrations of GCY-PD 14 ([PD-pep] $]_{0}$) and PD ([PD] $]_{t}$) were assessed at each timepoint. GCYPD concentration at $\mathrm{t}=0$ was determined using the absorbance at 280 nm and corrected with the absorbance at 330 nm and the correction factor reported in Table S3. Assuming a closed system, the concentration of PD released over time was calculated using the absorbance at 330 nm subtracted with the absorbance at 330 nm at $\mathrm{t}=0$. [PD-pep]t was determined by subtracting [PD]t to [PD-pep]o. Having in-hands [PD-pep] over time, kRM was obtained by plotting the integrated rate law of the reaction.

$$
\ln \left(\frac{[P D-p e p]_{t}}{[P D-p e p]_{0}}\right)=-k_{R M} t, \text { where } k_{R M}=\text { slope }
$$

Equation S3. Integrated rate law of pseudo first order Retro-Michael reaction, used to determine kRM.

Summary

Table S6. Summary table of $k_{R M}$ found for EtPhPD-GCY conjugate S14, with standard deviation, compared to $k_{R M}$ calculated.

$\mathbf{R}, \mathbf{R}^{\prime}$	\mathbf{k}_{RM} experimental average $\left(\mathbf{s}^{-1}\right)$	Standard deviation	Repeats	$\mathbf{k}_{\mathbf{R M}}$ calculated $\left(\mathbf{s}^{-1}\right)$
$\mathrm{Et}, \mathrm{Ph}(\mathbf{3})$	$1.82 \mathrm{E}-05$	$1.43 \mathrm{E}-06$	3	$1.24 \mathrm{E}-05 \pm 0.88 \mathrm{E}-05$

Graph S4. RM integrated rate law plotted with $k_{\text {RM }}$ found for each repeat for GCY-PD S14/S14'..

3.6.1 $N-E t, N^{\prime}-F_{5} P h$ PD 6 stability under $k_{M A}$ kinetic assay conditions

Fresh stocks of peptide GCY 14 and PD 6 were made at a respective concentration of 25 mM in PB buffer ($100 \mathrm{mM}, \mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA) for the peptide and 50 mM in MeCN for the PD. To a solution of PB buffer ($500 \mu \mathrm{~L}$) and $\mathrm{MeCN}(200 \mu \mathrm{~L})$ were added $200 \mu \mathrm{~L}$ of peptide and 100 $\mu \mathrm{L}$ of PD for a final concentration of 5 mM of both. The reaction mixture was mixed and incubated for 1 h at $37^{\circ} \mathrm{C}$. LCMS analysis was quickly (i.e., in the 10 minutes following LC-MS sample preparation) carried out after 1 h .

Expected masses: 341 Da (GCY); 307 Da (PD); 648 Da (GCY + PD)
Observed masses: $648 \mathrm{Da} ; 307 \mathrm{Da} ; 348 \mathrm{Da}$

1.52-1.75 min:

2.07-2.25 min:

Figure S1. LCMS analysis of GCY peptide $14+P D 6$ after 1 h in PB buffer and acetonitrile at $37^{\circ} \mathrm{C}$, under $k_{M A}$ kinetic assay conditions.

3.6.2 $N-E t, N^{\prime}-F_{5} P h$ PD 6 stability under Kc kinetic assay conditions

Fresh stocks of peptide GCY 14 and PD 6 were made at a respective concentration of 25 mM in PB buffer ($100 \mathrm{mM}, \mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA) for the peptide and 50 mM in MeCN for the PD. To 1.358 mL of PB buffer were added $28 \mu \mathrm{~L}$ of peptide and $14 \mu \mathrm{~L}$ of PD for a final concentration of 0.5 mM of both. The reaction mixture was mixed and incubated for 16 h at $37^{\circ} \mathrm{C}$. LCMS analysis was quickly (i.e., in the 10 minutes following LC-MS sample preparation) carried out after 16 h .

Expected masses: 341 Da (GCY); 307 Da (PD); 648 Da (GCY + PD); 666 Da (GCY + PD hydrolysed); 325 Da (hydrolysed PD)
Observed masses: 648 Da; 666 Da; 307 Da; 325 Da; 348 Da

1.57-1.83 min:

2.08-2.45 min:

Figure S2. LCMS analysis of GCY peptide $14+$ PD 6 after 16 h in PB buffer at $37{ }^{\circ} \mathrm{C}$, under Kc kinetic assay conditions.

4. Protein/material experiments

4.1 GFPS147C experiments

4.1.1 GFPS147C reduction

S10

32

To a solution of dimer GFPS147C S10 obtained as previously described ${ }^{13}$ ($300 \mu \mathrm{~L}, 100 \mu \mathrm{M}$ in BBS buffer (25 mM sodium borate, $25 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, pH 8.0), $0.030 \mu \mathrm{~mol}$) was added TCEP. $\mathrm{HCl}(18 \mu \mathrm{~L}, 50 \mathrm{mM}$ in BBS buffer (pH 8), 50 equiv., $1.5 \mu \mathrm{~mol})$. The mixture was incubated for 120 min at $37^{\circ} \mathrm{C}$ under constant agitation (300 rpm). Excess TCEP was removed by bufferexchange in BBS EDTA buffer using $2 \times$ Zeba $^{\text {TM }}$ Spin Desalting columns to yield GFPS147C monomer 32 ($0.024 \mu \mathrm{~mol}, 80 \%$). Expected masses: 29,342 Da. Observed masses: 29,343 Da; 29,525 Da (GFP artifact).

4.1.2 GFPS147C conjugation to PDs (general procedure)

(1-6, 30, 31)
(50-80 eq)
BBS, 2 mM EDTA, pH 8.0 $16 \mathrm{~h}, 37^{\circ} \mathrm{C}$

$$
\left.\begin{array}{l}
\text { Conjugate } 33\left(\mathrm{R}=\mathrm{Et} ; \mathrm{R}^{\prime}=\mathrm{Et}\right) \\
\text { Conjugate } 34\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{BCN}\right. \text { clicked) } \\
\text { Conjugate } 35\left(\mathrm{R}=\mathrm{Et} ; \mathrm{R}^{\prime}=p-\mathrm{PhNH}\right.
\end{array}\right)
$$

Procedure: To a solution of reduced GFPS147C 32 ($80 \mu \mathrm{~L}, 60 \mu \mathrm{M}$ in BBS EDTA, $0.0048 \mu \mathrm{~mol}$) was added a PD derivative ($4.8 \mu \mathrm{~L}, 50 \mathrm{mM}$ in MeCN, 50 equiv., $0.24 \mu \mathrm{~mol}$ for $3-6$ and 31 or 7.7 $\mu \mathrm{L}, 50 \mathrm{mM}$ in MeCN, 80 equiv., $0.38 \mu \mathrm{~mol}$ for $\mathbf{1 , 2} 2$ and $\mathbf{3 0}$) and the reaction was incubated at $37^{\circ} \mathrm{C}$ for 16 h .

Analysis: After this time, the volume was adjusted to $100 \mu \mathrm{~L}$ and excess of small molecules was removed using Zeba ${ }^{\text {TM }}$ Spin Desalting column in LCMS grade water. LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the PD from the GFPS147C-PD conjugate during analysis.

Conjugates 34-38 were analysed using Agilent 6510. Conjugates 33, S11 and $\mathbf{3 9}$ were run on Agilent 6530.

Conjugate 33, $t=0 \mathrm{~h}$

33

Expected mass: 29,511 Da. Observed mass: 29,510 Da.

 Counts vs. Deconvoluted Mass (amu)

[^2]Conjugate 34, $t=0 h$

34

Expected mass: 30,108 Da. Observed mass: 30,107 Da.

Conjugate 35, $t=0 h$

35

Expected mass: 29,574 Da. Observed mass: 29,574 Da

Conjugate 36, $t=0 h$

36
Expected mass: 29,559 Da. Observed mass: 29,559 Da.

29050291002915029200292502930029350294002945029500295502960029650297002975029880029850299002995030000300503010030150302003025030300303503040030450

Conjugate S11, $t=0 \mathrm{~h}$

S11
Expected mass: 29,577 Da. Observed mass: 29,576 Da.

Conjugate 37, $t=0 h$

Expected mass: 30,170 Da. Observed mass: 30,170 Da.

Conjugate 38, $t=0 \mathrm{~h}$

38

Expected mass: 29,604 Da. Observed mass: 29,604 Da.
 Counts vs. Acquisition Time (inin)

Conjugate 39, $t=0 \mathrm{~h}$

39

Expected mass: 29,649 Da. Observed mass: 29,648 Da.

4.1.3 Release study of PD from PD-GFPS147C conjugates

Following the formation of GFPS147C-PD conjugates 33-39 and S11 described in the procedure in section 4.1.2, the complete removal of the excess of small molecule was carried out by using $2 \times$ Zeba $^{\text {TM }}$ Spin Desalting column in PBS pH 7.4, 2 mM EDTA. The concentration of the conjugates 33-39 and S11 was adjusted to $35 \mu \mathrm{M}$ and the solution left to incubate under constant agitation (300 rpm) at $37^{\circ} \mathrm{C}$. LC-MS analysis was taken after $2.5 \mathrm{~h}, 6.5 \mathrm{~h}, 24 \mathrm{~h}$, 48 h and 72 h . LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the PD from the GFPS147C-PD conjugate during analysis.

- Timepoint 2.5 h

Conjugate 33, $t=2.5 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 29,511 Da (GFPS147C-PD 33)
Observed mass: 29510 Da

Conjugate 34, $t=2.5 h$

Expected masses: 29,342 Da (GFPS147C 32); 30,108 Da (GFPS147C-PD 34)
Observed masses: 29,343 Da; 30,108 Da

Conjugate 35, $t=2.5 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,574 Da (GFPS147C-PD 35)
Observed masses: 29,342 Da; 29,574 Da

Conjugate 36, $t=2.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,559 Da (GFPS147C-PD 36)
Observed masses: 29,343 Da; 29,559 Da

Conjugate S11, $t=2.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,577 Da (GFPS147C-PD S11)
Observed masses: 29,342 Da; 29,576 Da

Conjugate 37, $t=2.5 h$

Expected masses: 29,342 Da (GFPS147C 32); 30,170 Da (GFPS147C-PD 37)
Observed masses: 29,343 Da; 30,169 Da

Conjugate 38, $t=2.5 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,604 Da (GFPS147C-PD 38)
Observed masses: 29,342 Da; 29,603 Da; 29,621 Da

Conjugate 39, $t=2.5 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,649 Da (GFPS147C-PD 39)
Observed masses: 29,342 Da; 29,438 Da; 29,648 Da

- Timepoint 6.5 h

Conjugate 33, $t=6.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,511 Da (GFPS147C-PD 33)
Observed masses: 29,510 Da

Conjugate 34, $t=6.5 h$

Expected masses: 29,342 Da (GFPS147C 32); 30,108 Da (GFPS147C-PD 34)
Observed masses: 29,342 Da; \quad 30,107 \quad Da

Counts vs. Acquisition Time (min)

Conjugate 35, $t=6.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,574 Da (GFPS147C-PD 35)
Observed masses: 29,342 Da; 29,574 Da

Conjugate 36, $t=6.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,559 Da (GFPS147C-PD 36)
Observed masses: 29,343 Da; 29,559 Da

Conjugate S11, $t=6.5 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 29,577 Da (GFPS147C-PD S11)
Observed masses: 29,342 Da; 29,576 Da

Conjugate 37, $t=6.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 30,170 Da (GFPS147C-PD 37)
Observed masses: 29,343 Da; 30,169 Da

Conjugate 38, $t=6.5 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,604 Da (GFPS147C-PD 38)
Observed masses: 29,343 Da; 29,603 Da; 29,621 Da

Conjugate 39, $t=6.5 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,649 Da (GFPS147C-PD 39)
Observed masses: 29,342 Da; 29,455 Da; 29,648 Da

- Timepoint 24 h

Conjugate 33, $t=24 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,511 Da (GFPS147C-PD 33)
Observed masses: 29,342 Da; 29,510 Da

Conjugate 34, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 30,108 Da (GFPS147C-PD 34)
Observed masses: $29342 \mathrm{Da;} \mathrm{30,107} \mathrm{Da}$

Conjugate 35, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,574 Da (GFPS147C-PD 35)
Observed masses: 29,342 Da; 29,573 Da

Conjugate 36, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,559 Da (GFPS147C-PD 36)
Observed masses : 29,342 Da; 29,558 Da

Conjugate S11, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,577 Da (GFPS147C-PD S11)
Observed masses: 29,342 Da; 29,576 Da

Conjugate 37, $t=24 h$
Expected masses: 29,342 Da (GFPS147C 32); 30,170 Da (GFPS147C-PD 37)
Observed masses : 29,342 Da; 30,169 Da

Conjugate 38, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,604 Da (GFPS147C-PD 38)
Observed masses: 29,342 Da; 29,603 Da; 29,621 Da

Conjugate 39, $t=24 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,649 Da (GFPS147C-PD 39)
Observed masses: 29,342 Da; 29,457 Da; 29,648 Da; 26,667 Da

- Timepoint 48 h

Conjugate 33, $t=48 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,511 Da (GFPS147C-PD 33)
Observed masses: 29,342 Da; 29,510 Da

 Counts vs. Mass to -Charge finde)

Conjugate 34, $t=48 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 30,108 Da (GFPS147C-PD 34)
Observed masses: 29,342 Da; 30,107 Da

Conjugate 35, $t=48 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 29,574 Da (GFPS147C-PD 35)
Observed masses: 29,342 Da; 29,574 Da

Conjugate 36, $t=48 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 29,559 Da (GFPS147C 36)
Observed masses: 29,342 Da; 29,559 Da; 58,685 Da

Conjugate S11, $t=48 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,577 Da (GFPS147C-PD S11)
Observed masses: 29,342 Da; 29,576 Da

Conjugate 37, $t=48 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 30,170 Da (GFPS147C-PD 37)
Observed masses: 29,342 Da; 30,169 Da.

Conjugate 38, $t=48 \mathrm{~h}$
Expected masses: 29,342 Da (GFPS147C 32); 29,604 Da (GFPS147C-PD 38)
Observed masses: 29,342 Da; 29,603 Da; 29622 Da

Conjugate 39, $t=48 \mathrm{~h}$

Expected masses: 29,342 Da (GFPS147C 32); 29,649 Da (GFPS147C-PD 39)
Observed masses: 29,342 Da; 29,457 Da; 29,648 Da; 29,667 Da

- Timepoint 72 h

Conjugate 33, $t=72 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,511 Da (GFPS147C-PD 33)
Observed masses: 29,342 Da; 29,510 Da

Conjugate 34, $t=72 h$
Expected masses: 29,342 Da (GFPS147C 32); 30,108 Da (GFPS147C-PD 34)
Observed masses: 29,342 Da; 30,108 Da

Counts vs. Acquisition Time (min)

Conjugate 35, $t=72 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,574 Da (GFPS147C-PD 35)
Observed masses: 29,342 Da; 29,574 Da

(10.4

Conjugate 36, $t=72 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,559 Da (GFPS147C-PD 36)
Observed masses: 29,342 Da; 29,559 Da

Conjugate S11, $t=72 h$
Expected masses: 29,342 Da (GFPS147C 32); 29,577 Da (GFPS147C-PD S11)
Observed masses: 29,342 Da; 29,576 Da

Conjugate 37, $t=72 h$

Expected masses: 29,342 Da (GFPS147C 32); 30,170 Da (GFPS147C-PD 37)
Observed masses: 29,342 Da; 30,169 Da

Conjugate 38, $t=72 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,604 Da (GFPS147C-PD 38)
Observed masses: 29,342 Da; 29,603 Da; 29,622 Da

Conjugate 39, $t=72 h$

Expected masses: 29,342 Da (GFPS147C 32); 29,649 Da (GFPS147C-PD 39)
Observed masses: 29,343 Da; 29,458 Da; 29,647 Da; 29,666 Da

- Summary

Figure S3. Summary of deconjugation study from GFPS147C 32 at each timepoint for each PD 1-6, 30 and 31 synthesised.

- SDS-PAGE gel

Figure S4. SDS-PAGE gel representing each timepoint for $N-E t, N^{\prime}-P h$ PD-GFP 36 conjugate, enabling to monitor the formation of GFPS147C dimer S10 slowly overtime. Expected masses: ~29 kDa (GFPS147C/GFPS147C-conjugate) and/or ~58 kDa (GFPS147C dimer). Lanes 1-6: respectively timepoint 0, $6.5 h, 24 h, 48 h$ and 72 h.

4.1.4 Hydrolysis study

To a solution of reduced GFPS147C 32 ($100 \mu \mathrm{~L}, 70 \mu \mathrm{M}$ in PBS EDTA, $0.007 \mu \mathrm{~mol}$) was added PD 5 ($2.8 \mu \mathrm{~L}, 50 \mathrm{mM}$ in MeCN, 20 equiv., $0.14 \mu \mathrm{~mol}$) and the reaction was incubated at $37^{\circ} \mathrm{C}$ for 2 h . Excess of small molecules was removed using Zeba ${ }^{\text {TM }}$ Spin Desalting column in LCMS grade water. LCMS analysis had to be carried out quickly after removal of the small molecules to avoid premature deconjugation of the PD. Conjugated GFPS147C 38 was then split in 3 batches and each one was buffer exchanged respectively in BBS pH 9.0 (2 mM EDTA), PBS pH 7.4 (2 mM EDTA), CP buffer pH 6.0 (2 mM EDTA) using Zeba ${ }^{\text {TM }}$ Spin Desalting column. Concentration was adjusted to $35 \mu \mathrm{M}$ and LC-MS analyses were taken after $2.5 \mathrm{~h}, 6.5 \mathrm{~h}, 21 \mathrm{~h}$, $30 \mathrm{~h}, 2$ days, 3 days, 5 days and 9 days. LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the PD from the GFPS147CPD conjugate $\mathbf{3 8}$ during analysis.

Expected masses: 29,342 Da (GFPS147C); 29,603 Da (GFPS147C-PD 38); 29,622 Da (GFPS147C-PD hydrolysed).

- Timepoint 2.5 h
pH 9.0
Observed masses: 29,342; 29,603 Da

Observed masses: 29,342; 29,603 Da

pH 6.0

Observed masses: 29,342; 29,603 Da

- Timepoint 6.5 h
pH 9.0
Observed masses: 29,342; 29,603; 29,622 Da

Observed masses: 29,342; 29,603 Da

pH 6.0
Observed masses: 29,342; 29,603 Da

- Timepoint 21 h
pH 9.0
Observed masses: 29,342; 29,603; 29,622 Da

Observed masses: 29,342; 29,603 Da

pH 6.0
Observed masses: 29,342; 29,603 Da

- Timepoint day 2
pH 9.0
Observed masses: 29,342; 29,603; 29,622 Da

Observed masses: 29,342; 29,603; 29,622 Da

pH 6.0
Observed masses: 29,342; 29,603 Da

- Timepoint day 3
pH 9.0
Observed masses: 29,342; 29,622; 58,685 Da

Observed masses: 29,342; 29,603; 29,622; 58,684 Da

pH 6.0
Observed masses: 29,342; 29,603

- Timepoint day 5
pH 9.0
Observed masses: 29,342; 29,622; 58,684 Da

Observed masses: 29,342; 29,603; 29,622; 58,685 Da

pH 6.0
Observed masses: 29,342; 29,603; 58,683 Da

- Timepoint day 9
pH 9.0
Observed masses: 29,622; 58,683 Da

Observed masses: 29,343; 29,603; 29,622; 58,691 Da

pH 6.0
Observed masses: 29,603; 58,682 Da

Figure S5. Summary of stability study of GFPS147C-PD conjugate 38 overtime under different pHs tested.
Please note that GFPS147C dimer S10 formation was happening slowly throughout the course of the study, especially as time increased, which is why the GFPS147C peak spikes and then decreases over time.

4.1.5 Dynamic study

To a solution of GFPS147C-PD conjugate 36 ($40 \mu \mathrm{~L}, 35 \mu \mathrm{M}$ in BBS EDTA pH 8.0, $0.0014 \mu \mathrm{~mol}$) was added PD 1 ($2.8 \mu \mathrm{~L}, 50 \mathrm{mM}$ in $\mathrm{MeCN}, 100$ equiv., $0.14 \mu \mathrm{~mol}$) and the reaction was incubated in BBS 2 mM EDTA pH 8.0, at $37^{\circ} \mathrm{C}$ for 24 h . LC-MS analyses were taken at $\mathrm{t}=0 \mathrm{~h}$, 6 h and 24 h .

Expected masses: 29,557 Da (GFPS147C-PD 36); 29,509 Da (GFPS147C + PD 33).

- Timepoint $t=0 h$

Observed masses: 29,558 Da.

- Timepoint $t=6 \mathrm{~h}$

Observed masses: 29,510 Da; 29,557 Da.

Observed masses: 29,510; 58,683 Da.

4.1.6 Control: stability study of GFPS147C-maleimide conjugates

To a solution of reduced GFPS147C 32 ($80 \mu \mathrm{~L}, 60 \mu \mathrm{M}$ in BBS EDTA, $0.0048 \mu \mathrm{~mol}$) was added maleimide derivative $\mathbf{S 2 2}$ or $\mathbf{S 2 4}(2.4 \mu \mathrm{~L}, 20 \mathrm{mM}$ in DMSO, 10 equiv.) and the reaction was incubated at $21^{\circ} \mathrm{C}$ for 15 min . After this time, the volume was adjusted to $100 \mu \mathrm{~L}$ and excess of small molecules was removed using Zeba ${ }^{\text {TM }}$ Spin Desalting column in LCMS grade water. LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the maleimide from the GFPS147C-maleimide conjugate during analysis. The complete removal of the excess of small molecule was carried out by using $2 \times$ Zeba ${ }^{\text {TM }}$ Spin Desalting column in PBS pH 7.4, 2 mM EDTA. The concentration of the conjugates $\mathbf{S 2 3}$ and $\mathbf{S 2 5}$ was adjusted to $\mathbf{3 5 ~} \mu \mathrm{M}$ and the solution left to incubate under constant agitation (300 rpm) at $37^{\circ} \mathrm{C}$. LC-MS analysis was taken after 6 h and 24 h . LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the maleimide from the GFPS147C-maleimide conjugate during analysis.

Expected mass upon deconjugation: 29,342 Da (GFPS147C 32).

GFP S147C-NMM S23, timepoint $t=0$

Expected mass: 29,453 Da (S23). Observed mass: 29,453 Da.

GFP S147C-NMM S23, timepoint $t=6 h$

Observed mass: 29,453 Da.

GFP S147C-NMM S23, timepoint $t=24 h$

Observed masses: 29,453 Da; 29,472 Da.

GFPS147C-NPM S25, timepoint $t=0$

Expected mass: 29,515 Da (S25). Observed mass: 29,515 Da.

GFP S147C-NPM S25, timepoint $t=6 h$

Observed masses: 29,515 Da; 29,533 Da.

GFP S147C-NPM S25, timepoint $t=24 h$

Observed mass: 29,533 Da.

SDS-PAGE gel

Figure S6. SDS-PAGE gel of GFPS147C-NMM S23 and GFPS47C-NPM S25 after incubation in PBS pH 7.4 at $37{ }^{\circ} \mathrm{C}$ for 6 h and 24 h. Lane L: ladder; Lane 1: GFPS147C non reduced; Lane 2: GFPS147C reduced 32; Lane 3: GFPS147C-NMM S23 $t=0$ h; Lane 4: GFPS147C-NMM S23 $t=6 h$; Lane 5: GFPS147C-NMM S23 $t=24 h$; Lane 6: GFPS147C-NPM S25 $t=0 h$; Lane 7: GFPS147C-NPM S25 $t=6 h$; Lane 8: GFPS147C-NPM S25 $t=24 h$

4.2.1 Trastuzumab Fab

22

Trastuzumab Fab 22 was obtained through pepsin/papain digestion of Trastuzumab as described previously. ${ }^{14}$ Expected mass: 47,639 Da. Observed mass: 47,639 Da (tailing due to Na^{+}adducts).

4.2.2 Release study on Fab Trastuzumab

To a solution of Trastuzumab Fab $22(60 \mu \mathrm{M}, 100 \mu \mathrm{~L})$ in BBS (25 mM sodium borate, 25 mM $\mathrm{NaCl}, 2 \mathrm{mM}$ EDTA pH 8.0) was added TCEP•HCl ($3 \mu \mathrm{~L}, 20 \mathrm{mM}$ in d.d. $\mathrm{H}_{2} \mathrm{O}, 10$ equiv.). The mixture was incubated for 120 min at $37^{\circ} \mathrm{C}$ under constant agitation (300 rpm). The excess of TCEP was removed by buffer-exchange in BBS (25 mM sodium borate, $25 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, pH 8.0) using Zeba ${ }^{\text {TM }}$ Spin Desalting column. PD-BCN 30 or 31 ($3 \mu \mathrm{~L}, 20 \mathrm{mM}$ in MeCN, 50 equiv. for $\mathbf{3 0}$ and $4.8 \mu \mathrm{~L}, 20 \mathrm{mM}$ in $\mathrm{MeCN}, 80$ equiv. for 31) was then added and both reactions were incubated at $37^{\circ} \mathrm{C}$ for 16 h . The excess of small molecules was removed by buffer-exchange in LCMS grade water using Zeba ${ }^{\text {TM }}$ Spin Desalting column for LCMS analysis. 2 supplementary Zeba ${ }^{\text {TM }}$ Spin Desalting columns were used to remove all the excess small molecules and buffer-swapped in PBS pH 7.4. The concentration of the Fab conjugates 40 and 41 were adjusted to $35 \mu \mathrm{M}$. Deconjugation of $\mathbf{3 0}$ and $\mathbf{3 1}$ was followed by LCMS by taking timepoints after $2.5 \mathrm{~h}, 6.5 \mathrm{~h}, 24 \mathrm{~h}, 48 \mathrm{~h}$ and 72 h . LCMS analysis was carried out quickly after removal of the small molecules (within 10 min) to avoid deconjugation of the PD from the Fab-PD conjugate during analysis.

Expected masses after deconjugation: 23,439 Da (LC), 24,202 Da (HC), 47,639 Da (Fab)

4.2.2.1. Fab conjugation

Conjugate 40

40

Expected masses: 24,206 Da (LC + PD); 24,967 Da (HC + PD)
Observed masses: 24,205; 24,966 Da

Conjugate 41

Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD)
Observed masses: 24,267; 25,028 Da

4.2.2.2. Release study

- Timepoint 2.5 h

Conjugate 40

Expected masses: 24,206; 24,967; 47,639 Da
Observed masses: 24,205; 24,966; 47,639 Da

Conjugate 41

Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD), 47,639 Da (Fab) Observed masses: 24,267; 25,029; 47,639 Da

- Timepoint 6.5 h

Conjugate 40

Expected masses: 24,206; 24,967; 47,639 Da
Observed masses: 24,205; 24,966; 47,639 Da

Conjugate 41

Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD), 47,639 Da (Fab)
Observed masses: 24,267; 25,029; 47,639 Da

- Timepoint 24 h

Conjugate 40

Expected masses: 24,206; 24,967; 47,639 Da
Observed masses: 24,205; 24,966; 47,639 Da

Conjugate 41

Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD), 47,639 Da (Fab)
Observed masses: 24,267; 47,639 Da

- Timepoint 48 h

Conjugate 40

Expected masses: 24,206; 24,967; 47,639 Da
Observed masses: 24,205; 24,966; 47,639 Da

Conjugate 41
Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD), 47,639 Da (Fab)
Observed masses: 24,267; 47,639 Da

- Timepoint $72 h$

Conjugate 40
Expected masses: 24,206; 24,967; 47,639 Da
Observed masses: 24,205; 24,966; 47,639 Da

Conjugate 41

Expected masses: 24,268 Da (LC + PD), 25,029 Da (HC + PD), 47,639 Da (Fab) Observed masses: 47,639 Da

- Summary

LC

HC/Fab

Figure S7. Summary of deconjugation study from Fab fragment 22, displaying HPLC spectra for both clicked PDs at each timepoint.

- SDS-PAGE gel

Figure S8. SDS-PAGE gel of the release study of PDs from Fab-PD conjugates 40 and 41, expected masses: ~29 kDa (LC/HC conjugates of Fab-PD) and/or ~50 kDa for re-oxidised Fab fragment 22. Shows timepoints at $6.5 \mathrm{~h}, 24 \mathrm{~h}, 48 \mathrm{~h}$ and 72 h respectively for incubation of Fab-PD conjugates 40 and 41 at pH 7.4 at $37{ }^{\circ} \mathrm{C}$.
4.2.3 Competitive reaction between DiBrPD 23 and DiBrPD 24: tuning of DiBrPDs reactivity

22

$330 \mu \mathrm{M} \quad 300 \mu \mathrm{M}$
BBS pH 8.0, 2 mM EDTA, $2 \mathrm{~h}, 37^{\circ} \mathrm{C}$

To a solution of Trastuzumab Fab $22(20 \mu \mathrm{M}, 40 \mu \mathrm{~L}$) in BBS (25 mM sodium borate, 25 mM $\mathrm{NaCl}, 2 \mathrm{mM}$ EDTA pH 8.0) was added $\mathrm{TCEP} \cdot \mathrm{HCl}\left(0.4 \mu \mathrm{~L}, 20 \mathrm{mM}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 10$ equiv.). The mixture was incubated for 120 min at $37^{\circ} \mathrm{C}$ under constant agitation (300 rpm). The excess of TCEP was removed by buffer-exchange in BBS (25 mM sodium borate, $25 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, pH 8.0) using Zeba ${ }^{\text {TM }}$ Spin Desalting column. PDs 23 and 24 ($0.8 \mu \mathrm{~L}, 1.1: 1$ ratio of 23:24 in $\mathrm{CD}_{3} \mathrm{CN}, 20$ equiv. of 24) were then added and the reaction was incubated at $37^{\circ} \mathrm{C}$ for 2 h . The excess of small molecules was removed by buffer-exchange in LCMS grade water using Zeba ${ }^{\text {TM }}$ Spin Desalting column for LCMS analysis.

LCMS analysis was carried out using Agilent 6510.
Expected masses: 47,805 Da (Fab + PD 23); 47,853 Da (Fab + PD 24)
Observed masses: 47,805 Da; 47,853; 23,733 (LC + PD $24-1 \times \operatorname{Br}) ; 23684$ (LC + PD 23-1 x Br) Da

4.2.4 Stability of hydrolysed PD to excess thiols

To a solution of TrastuzumabFab $22(50 \mu \mathrm{M}, 150 \mu \mathrm{~L}$) in BBS (25 mM sodium borate, 25 mM $\mathrm{NaCl}, 2 \mathrm{mM}$ EDTA pH 8.0) was added TCEP•HCl ($3.8 \mu \mathrm{~L}, 20 \mathrm{mM}$ in d.d. $\mathrm{H}_{2} \mathrm{O}, 10$ equiv.). The mixture was incubated for 120 min at $37^{\circ} \mathrm{C}$ under constant agitation (300 rpm). The excess of TCEP was removed by buffer-exchange in BBS (25 mM sodium borate, $25 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, pH 8.0) using Zeba ${ }^{\text {TM }}$ Spin Desalting column. Reduced Fab was then split in two batches ($\sim 45 \mu \mathrm{M}, 75 \mu \mathrm{~L}$). To the first one, diBr N-Et, $N^{\prime}-\mathrm{F}_{5} P \mathrm{PhPD} 42$ ($0.68 \mu \mathrm{~L}, 50 \mathrm{mM}$ in MeCN, 10 equiv.) was added and to the second one, $\operatorname{diBr} \mathrm{N}, \mathrm{N}^{\prime}-\operatorname{diEt} 23$ ($0.68 \mu \mathrm{~L}, 50 \mathrm{mM}$ in MeCN, 10 equiv.) was added. Both reactions were incubated at $37^{\circ} \mathrm{C}$ for 1 h or 16 h . After this, the excess of small molecules was removed by buffer-exchange in LCMS grade water using Zeba ${ }^{\text {TM }}$ Spin Desalting column and LCMS analysis were run. A supplementary Zeba ${ }^{\text {TM }}$ Spin Desalting columns was used to remove all the excess small molecules and buffer-swapped in BBS pH 8.0, 2 mM EDTA. Both reactions were incubated at $37^{\circ} \mathrm{C}$ for 24 h and LCMS analyses were run in LCMS grade water after this. DTT ($9.8 \mu \mathrm{~L}, 50 \mathrm{mM}$ in MeCN, 175 equiv.) was then added to both reactions and they were incubated at $37^{\circ} \mathrm{C}$. LCMS analysis were taken after 2 h , and additional 48 h for Fab-PD conjugate 43.

LCMS analyses were carried out on Agilent 6510.

Conjugate 43

Expected mass: 47,943 Da (Conjugate 43)
Observed masses: 47,942 Da, 47,962 Da (small hydrolysis observed due to LCMS analysis running after a couple of hours)

Conjugate 44

Expected mass: 47,961 Da (Conjugate 44)
Observed masses: 47,962 Da

Conjugate 44 after 4)

$$
t=2 h
$$

Expected mass: 47,961 Da (Conjugate 44) Observed masses: 47,961 Da

$t=48 h$

Expected mass: 47,961 Da (Conjugate 44)
Observed masses: 47,961 Da

1200014000	16000

Conjugate 25

Expected mass: 47,806 Da (Conjugate 25)
Observed mass: 47,805 Da

Conjugate $\mathbf{2 5}$ after 3)

Expected mass: 47,806 Da (Conjugate 25)
Observed mass: 47,806 Da

Conjugate $\mathbf{2 5}$ after 4)

$t=2 h$

Expected masses: 23,439 Da (LC of 22); 24,201 Da (HC of 22); 47,639 Da (22)
Observed masses: 23,440 Da; 24,201 Da

Counts vs. Acquisition Time (min)

4.3.1 Synthesis of 4-Arm PEG 51 and 46

Synthesis of 4-Arm PEG 51

Scheme S5. Synthesis of 4-arm PEG-exo-BCN 51
S12: This compound was synthesized following reported procedures. ${ }^{15,16}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.55(\mathrm{dd}, \mathrm{J}=6.3,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{ddd}, J=13.7,3.5,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.46-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.60(\mathrm{~m}, 3 \mathrm{H})$.

S13: To a stirred solution of $\mathbf{S 1 2}$ ($170 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.0$ equiv.) in acetonitrile (5 ml) at $21{ }^{\circ} \mathrm{C}$, triethylamine ($470 \mu \mathrm{l}, 3.3 \mathrm{mmol}, 3.0$ equiv.) and NHS carbonate ($570 \mathrm{mg}, 1.6 \mathrm{mmol}, 1.5$ equiv.) were added sequentially. The reaction mixture was stirred at $21^{\circ} \mathrm{C}$ under nitrogen for 16 h . Upon completion, solvent was removed, and the crude product was subject to column chromatography (30% to $50 \% \mathrm{EtOAc} / \mathrm{cHex}$) to yield $\mathbf{S 1 3}$ as a pale white solid ($224 \mathrm{mg}, 68 \%$).
m.p. $127.1-129.1^{\circ}{ }^{\circ}{ }^{\circ}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}), 2.44$ (dq, $J=13.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.37-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.91-$ 0.75 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.81, 151.81, $98.78,77.46,77.34,77.14,76.82$, 76.12, 33.15, 25.61, 23.56, 22.99, 21.36; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$292.1179, observed 292.1180, calcd for [$2 \mathrm{M}+\mathrm{H}]^{+} 583.2286$, observed 583.2289 .

4-Arm PEG-exo-BCN 51: 20 k 4 -arm PEG-NH2 hydrochloride S15 ($400 \mathrm{mg}, 0.08 \mathrm{mmol}$ amine, 1.0 equiv.) and $\mathbf{S 1 3}$ ($42 \mathrm{mg}, 0.14 \mathrm{mmol}, 7.0$ equiv.) were dissolved in dimethylformamide (2.2
mL). N, N-Diisopropylethylamine ($137.5 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 10.0$ equiv.) was added to the mixture, and the reaction was stirred for 48 h . The crude mixture was diluted with water and dialyzed using 2 K MWCO dialysis tube (Spectra/Por ${ }^{\circledR}$ 6) against water for 48 h , followed by lyophilization to yield 51 a white powder ($360 \mathrm{mg}, 85 \%$).

Functionalization of the 4-Arm PEG amine with NHS ester BCN was confirmed to be $>90 \%$ converted by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ by comparing integral values for characteristic BCN peaks (δ $2.39,2.27,2.14$) with those from the PEG backbone ($\delta 3.63$).

Synthesis of 4-Arm PEG-azide 46

10 kDa 4-arm PEG-NH2 hydrochloride S15 ($201.6 \mathrm{mg}, 0.020 \mathrm{mmol}$ amine, 1.0 equiv.) and azido-acetic acid ($6.2 \mathrm{mg}, 0.103 \mathrm{mmol}, 5.2$ equiv.) were dissolved in dimethylformamide (1 mL). N, N-Diisopropylethylamine ($50 \mu \mathrm{~L}$) was added to the mixture, and the reaction was stirred for 24 h at $21^{\circ} \mathrm{C}$. The crude mixture was precipitated into cold diethyl ether (10 mL) then centrifuged ($5000 \mathrm{rcf}, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The supernatant was removed, the precipitate dissolved with water (2 mL) and dialyzed using 2 kDa MWCO dialysis tube (Spectra/Por ${ }^{\circledR}$ 6) against water for two days, followed by lyophilization to yield a white powder (199.9 mg , 97\%).

Functionalization of the 4-Arm PEG amine with azido acetic acid was confirmed to be >90\% converted by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ by comparing integral values for characteristic alpha- CH_{2} protons to the azide group ($\delta 4.06$) with those from the PEG backbone ($\delta 3.74$). Trace amounts of DMF ($\delta 7.96,3.04$ and 2.89) and suspected N, N^{\prime}-diisopropylurea (${ }^{*}, \mathrm{CH}_{3}$) are found in the ${ }^{1} \mathrm{H}$ NMR spectra.

4.3.2 Synthesis of 4-Arm PEG- \mathbf{N}_{3}

Synthesis of 4-Arm PEG MePD-CGY 49

To a solution of BCN-MePD-CGY 47 ($0.97 \mathrm{mg}, 0.0011 \mathrm{mmol}, 172.4 \mu \mathrm{~L}$) in 30% acetonitrile in acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=5,1 \mathrm{mM}$ EDTA) was added a solution of $10 \mathrm{kDa} 4-\mathrm{Arm}$ PEG-azide $(12 \mathrm{mg}, 0.0011 \mathrm{mmol}, 324 \mu \mathrm{~L}$) dissolved in 30% acetonitrile in acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=$ $5,1 \mathrm{mM}$ EDTA). The reaction was allowed to occur at $20^{\circ} \mathrm{C}$ for 2 h . The reaction was then frozen at $-80^{\circ} \mathrm{C}$ and lyophilised to give compound 49 as a white solid which was used for hydrogel formation.

Synthesis of 4-Arm PEG-PhPD-CGY 50

To a solution of BCN-PhPD-CGY 48 ($1.04 \mathrm{mg}, 0.0011 \mathrm{mmol}, 124.2 \mu \mathrm{~L}$) in 30% acetonitrile in acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=5,1 \mathrm{mM}$ EDTA) was added a solution of 10 kDa 4 -Arm PEG-azide $(12 \mathrm{mg}, 0.0011 \mathrm{mmol}, 324 \mu \mathrm{~L})$ dissolved in 30% acetonitrile in acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=$ $5,1 \mathrm{mM}$ EDTA). The reaction was allowed to occur at $20^{\circ} \mathrm{C}$ for 2 hours. The reaction was then frozen at $-80^{\circ} \mathrm{C}$ and lyophilised to give the title compound 50 as a white solid which was used for hydrogel formation.

Figure S9. MALDI-ToF spectra of the 4-Arm PEG-PD-peptides 49 and 50 showing an increase in molecular weight after reaction of 4-Arm-PEG-azide 46.

4.3.3 Hydrogels 52 and 53 formation

A stock solution of 4-Arm PEG-exo-BCN (53.84 mg) was prepared at a concentration of 180 $\mathrm{mg} / \mathrm{mL}$ by dissolving in $299 \mu \mathrm{~L}$ of acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=5,1 \mathrm{mM}$ EDTA). A stock solution of 4-Arm-PEG-PD-peptide was prepared at a concentration of $120 \mathrm{mg} / \mathrm{mL}$ by reconstituting the 4-Arm-PEG-PD peptides in acetate buffer ($100 \mathrm{mM}, \mathrm{pH}=5,1 \mathrm{mM}$ EDTA). To make the hydrogels, 28μ L of PEG-N3-PD-Peptide and $28 \mu \mathrm{~L}$ of PEG-BCN was mixed briefly and then transferred into the PDMS mould. A coverslip was placed on top of the mould and the samples were allowed to cure for 2.5 hours at room temperature. After curing, the hydrogels were transferred to a 12 well plate and washed with 100 mM acetate buffer ($\mathrm{pH}=$ 5) with 1 mM EDTA five times, then the hydrogels $\mathbf{5 2}$ and $\mathbf{5 3}$ were stored at $4{ }^{\circ} \mathrm{C}$ in 100 mM acetate buffer ($\mathrm{pH}=5$) with 1 mM EDTA overnight.
$\mathrm{n}=3$ hydrogels were prepared for each PD-peptide combination for a total of 9 hydrogels.

4.3.4 Peptide Release from the Hydrogels

The gels were transferred to 7 mL glass vials. Each hydrogel was blotted with a Kimwipe ${ }^{\circledR}$ to remove excess buffer. Timepoint zero was defined to be the time at which $500 \mu \mathrm{~L}$ of $1 \times$ PBS was added to the hydrogels. Hydrogels were sampled at $30 \mathrm{~m}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h . Each hydrogel was sampled by removing $400 \mu \mathrm{~L}$ of supernatant and transferring to a HPLC vial, followed by the addition of $400 \mu \mathrm{~L}$ of 1 xPBS to the hydrogel sample. A $5 \mu \mathrm{~L}$ aliquot of a 20
mM TCEP solution was added to the HPLC vials to prevent oxidation of the peptides during the HPLC measurement. The concentration of peptide released was determined using LC-MS operating in selective ion monitoring mass spectrometry (SIMS) based on the area under the curve, with the target mass being $342 \mathrm{~m} / \mathrm{z}$, corresponding to the $[\mathrm{M}+\mathrm{H}]^{+}$for the released CGY peptide. Standards of CGY were prepared to generate a calibration curve to determine the concentration of the CGY peptide released.

5. DFT calculations

Summary of Calculated Gibbs Free Energies for Pyridazinediones and Adducts ${ }^{a}$

	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\boldsymbol{G}(\mathbf{a}) /$ Hartree	$\boldsymbol{G}(\mathbf{b}) /$ Hartree	$\boldsymbol{G}(\mathbf{c}) /$ Hartree	$\boldsymbol{G}(\mathbf{d}) /$ Hartree	$\boldsymbol{G}(\mathbf{e}) /$ Hartree
$\mathbf{3}$	Et	Ph	-724.156855	n.c.	n.c.	n.c.	n.c.
$\mathbf{S 1 6}$	Me	Me	-493.215354	-931.393746	-931.398275	n.a.	n.a.
$\mathbf{S 1 7}$	Me	Ph	-684.877029	-1123.057143	-1123.061005	-1123.058371	-1123.065669
$\mathbf{S 1 8}$	Me	$4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	-740.223096	-1178.400572	-1178.406836	-1178.402938	-1178.404563
$\mathbf{S 1 9}$	Me	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	-784.12805	-1222.308609	-1222.316856	-1222.309796	-1222.312406
$\mathbf{S 2 0}$	Me	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	-889.370319	-1327.553827	-1327.569029	-1327.555698	-1327.558824
$\mathbf{S 2 1}$	Me	$\mathrm{C}_{6} \mathrm{~F}_{5}$	-1181.085565	-1619.268578	-1222.316856	-1619.268115	-1222.312406

Table S7. Calculated Gibbs free energies for pyridazinediones and adducts. All energies calculated using M06-2X/6$311+G(d, p) / C P C M\left(H_{2} O\right)$. n.c. $=$ not calculated. n.a. $=$ not applicable.

Calculated Activation Energies, Predicted Regioselectivities and Predicted Rates for Michael Addition

PD	$\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}(\mathbf{b e t a}$ to $\mathbf{A r}) / \mathbf{k J}$ $\mathbf{m o l}^{-\mathbf{1}}$	$\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}(\mathbf{g a m m a}$ to $\mathbf{A r}) / \mathbf{k J ~ m o l}^{-\mathbf{1}}$	$\boldsymbol{\Delta} \mathbf{\Delta \boldsymbol { G } ^ { \ddagger } / \mathbf { k J }}$ $\mathbf{m o l}^{-\mathbf{1}}$	Predicted Ratio (beta-to- Ar:gamma-to-Ar)	Predicted Relative Rate of Addition
S16a	n.a.	44.3	n.a.	n.a.	1
S17a	39.7	36.5	3.2	$1: 3.7$	14.5
S18a	46.7	40.5	6.2	$1: 12.3$	2.5
S19a	38.6	35.5	3.1	$1: 3.5$	22.4
S20a	30.8	25.9	4.9	$1: 7.3$	931
S21a	32.1	33.3	-1.2	$1.6: 1$	107

Table S8. Calculated activation energies, predicted regioselectivities and predicted rates for Michael Addition for PD S16aS21a. ${ }^{a}$ Ratio predicted as $\exp (-\Delta \Delta G / R T)$ with $T=298.15 K$. ${ }^{b}$ Rate predicted as $k=A\left[\exp \left(-\Delta G \not \ddagger_{\text {syn-to-Ar }} / R T\right)+\exp \left(-\Delta G \ddagger_{\text {syn-to- }}\right.\right.$ $\mathrm{me} / R T$)] at $T=298.15 \mathrm{~K}$, normalised to $\mathrm{k}_{\mathrm{S} 16 a}=1$.

Graph S5. Experimental $k_{M A}$ found in kinetic assays in section 3.3 for PD 1-5 vs predicted rate of Michael Addition found by DFT calculations for S16a-S19a and S21a.

Coordinates and Energies (M06-2X/6-311+G(d,p)/CPCM($\left.\mathrm{H}_{2} \mathrm{O}\right)$)
 Methanethiol

$E=-438.678993$
$G=-438.656895$

C	-1.15754	0.01928	0.00000
H	-1.52461	-1.00516	-0.00000
H	-1.51512	0.52622	-0.89303
H	-1.51512	0.52622	0.89303
S	0.66195	-0.08712	0.00000
H	0.90884	1.23092	0.00000

Methanethiolate

$E=-438.209580$

$G=-438.195249$

S	-0.00000	0.00000	0.71011
C	0.00000	-0.00000	-1.13071
H	-0.00000	1.01785	-1.52582
H	0.88148	-0.50892	-1.52582
H	-0.88148	-0.50892	-1.52582

Ethyl phenyl PD (3)
$E=-724.339266$
$G=-724.156855$

C	-0.70406	1.70936	0.32781
C	-2.12968	1.95428	0.06393
C	-2.92017	0.99473	-0.41351
C	-2.45576	-0.39679	-0.52838
H	-2.46642	2.97214	0.21459
H	-3.95955	1.16369	-0.66518
O	0.07167	2.60658	0.62053
O	-3.22683	-1.31456	-0.78248
N	-1.12923	-0.62113	-0.27184
N	-0.27739	0.41379	0.14933
C	-0.71901	-1.97650	0.13696
H	-1.37407	-2.65298	-0.40450
H	0.29980	-2.14870	-0.20492
C	1.12883	0.17715	-0.04813
C	1.98956	0.23591	1.03936
C	1.59773	-0.10132	-1.32773
C	3.34904	0.01502	0.83985
H	1.59557	0.45966	2.02318
C	2.95525	-0.33421	-1.51581
H	0.90049	-0.14390	-2.15692
C	3.83080	-0.27400	-0.43373
H	4.02891	0.06266	1.68154
H	3.32901	-0.55729	-2.50756
H	4.88851	-0.45298	-0.58403
C	-0.84439	-2.16147	1.64305
H	-0.54200	-3.17382	1.91447
H	-0.20442	-1.45692	2.17773
H	-1.87711	-2.00929	1.96275

Figure S10. Structure depiction of $\mathbf{3}$ generated using CYLview20. ${ }^{17}$ Hydrogen atoms are omitted for clarity. The angle between the planes is defined by $C_{1}-N_{9}-N_{10}$ and $C_{14}-C_{15}-C_{16}$ was calculated to be 67.4° using their 3D coordinates.

Dimethyl PD (S16a)

$E=-493.324861$
$G=-493.215354$

C	-0.02674	1.43492	-0.57002
C	-0.04177	0.66479	-1.82085
C	0.04177	-0.66479	-1.82085
C	0.02674	-1.43492	-0.57002
H	-0.07222	1.24957	-2.73136
H	0.07222	-1.24957	-2.73136
O	0.00576	2.66186	-0.56028
O	-0.00576	-2.66186	-0.56028
N	0.00576	-0.69930	0.58083
N	-0.00576	0.69930	0.58083
C	-0.34820	-1.34433	1.84365
H	-0.41876	-2.40744	1.64058
H	0.41517	-1.17098	2.59983
H	-1.31222	-0.96919	2.19072
C	0.34820	1.34433	1.84365
H	1.31222	0.96919	2.19072
H	0.41876	2.40744	1.64058
H	-0.41517	1.17098	2.59983

TS for addition to dimethyl PD (S16b)
$E=-931.533727$
$G=-931.393746$

C	0.38401	-1.40734	0.46378
C	-0.74696	-0.71795	1.13281
C	-0.51254	0.58325	1.58630
C	0.35119	1.43573	0.84392
H	-1.13434	1.04278	2.34287
O	0.52886	-2.63012	0.49346
O	0.40503	2.67450	0.92818
N	1.17989	0.80563	-0.09882

N	1.29582	-0.58892	-0.11827
C	1.39261	1.43532	-1.39794
H	1.10199	2.47825	-1.30449
H	2.44212	1.38720	-1.69271
H	0.78119	0.94155	-2.16071
C	2.57631	-1.09195	-0.59149
H	3.37573	-0.49099	-0.15501
H	2.66872	-2.12573	-0.27086
H	2.64268	-1.04725	-1.68059
H	-1.32291	-1.39332	1.75067
S	-2.17983	-0.84932	-0.64727
C	-2.33837	0.93078	-0.93585
H	-2.02132	1.45955	-0.02861
H	-1.71817	1.26635	-1.76820
H	-3.37704	1.19164	-1.13868

Enolate from addition to dimethyl PD (S16c)
$E=-931.538986$
$G=-931.398275$

C	-0.43880	0.96578	-0.61387
C	-0.83255	-0.46691	-0.87311
C	0.33279	-1.33465	-1.15182
C	1.53015	-1.13935	-0.50177
H	0.19092	-2.24133	-1.72609
O	-1.18085	1.91043	-0.89303
O	2.52400	-1.91413	-0.43463
N	1.69641	0.11764	0.21250
N	0.79331	1.15418	-0.09700
C	1.84295	-0.04455	1.66227
H	2.55923	-0.84532	1.83199
H	2.23590	0.87484	2.10001
H	0.88590	-0.29292	2.13779
C	1.30490	2.49925	0.11796
H	2.38697	2.46807	0.00153
H	0.86763	3.16812	-0.62062
H	1.05768	2.86860	1.11693
H	-1.56629	-0.45444	-1.68031
S	-1.78584	-1.07411	0.62625
C	-3.30273	-0.07487	0.53584
H	-3.08162	0.98066	0.68349
H	-3.78843	-0.21759	-0.43013
H	-3.96801	-0.42426	1.32505

Methyl phenyl PD (S17a)

$E=-685.032397$
$G=-684.877029$

C	-0.83578	1.59724	-0.02404
C	-2.28410	1.68735	-0.25687

C	-3.04199	0.59540	-0.34942
C	-2.50129	-0.74585	-0.07862
H	-2.67254	2.68553	-0.41438
H	-4.10015	0.63656	-0.57463
O	-0.09548	2.56749	-0.08896
O	-3.21089	-1.74609	-0.05650
N	-1.17141	-0.80296	0.21846
N	-0.34966	0.33175	0.20580
C	-0.62001	-1.99196	0.86905
H	-1.46171	-2.59327	1.20013
H	-0.00402	-2.57163	0.18186
H	-0.02208	-1.67935	1.72423
C	1.05817	0.08383	0.04612
C	1.94649	0.55258	1.00520
C	1.50190	-0.61587	-1.07077
C	3.30740	0.31922	0.83830
H	1.56928	1.09284	1.86464
C	2.86300	-0.85717	-1.22219
H	0.78514	-0.96812	-1.80440
C	3.76512	-0.38788	-0.27069
H	4.00842	0.68337	1.57919
H	3.21747	-1.40574	-2.08610
H	4.82514	-0.57428	-0.39313

TS for addition to methyl phenyl PD, beta to phenyl (S17b)
$E=-1123.244146$
$G=-1123.057143$

C	0.39083	-1.03828	-0.88142
C	1.78049	-0.68850	-1.25446
C	2.07445	0.66240	-1.42319
C	1.43439	1.62180	-0.58492
H	2.92850	0.99386	-1.99802
O	-0.15039	-2.07747	-1.23631
O	1.81277	2.78601	-0.38932
N	0.31554	1.16365	0.12888
N	-0.28503	-0.05942	-0.19368
C	0.14194	1.55601	1.52427
H	0.78875	2.41045	1.70513
H	-0.89220	1.84287	1.72370
H	0.41955	0.72573	2.18125
H	2.21347	-1.41432	-1.92884
S	2.70935	-1.63383	0.65247
C	3.46250	-0.11539	1.28773
H	3.49455	0.62344	0.47693
H	2.89306	0.30561	2.11740
H	4.48433	-0.30410	1.61705
C	-1.70459	-0.09214	-0.04479
C	-2.45844	1.02524	-0.40137
C	-2.32664	-1.22092	0.48507
C	-3.83916	1.00443	-0.23961

H	-1.95590	1.90196	-0.79238
C	-3.70989	-1.23578	0.63181
H	-1.72780	-2.07392	0.77427
C	-4.47059	-0.12666	0.27149
H	-4.42172	1.87484	-0.51704
H	-4.19200	-2.11564	1.04099
H	-5.54668	-0.14067	0.39508

Enolate from addition to methyl phenyl PD, beta to phenyl (S17c)

$E=-1123.249825$
$G=-1123.061005$

C	0.60346	-0.69501	-0.80251
C	2.03348	-0.22618	-0.87754
C	2.12364	1.24246	-1.02939
C	1.27153	2.06462	-0.32695
H	2.97134	1.67378	-1.54561
O	0.22995	-1.73753	-1.32790
O	1.35349	3.30806	-0.13572
N	0.12100	1.43313	0.29577
N	-0.25073	0.14736	-0.14611
C	0.08253	1.53172	1.75594
H	0.34287	2.55427	2.02007
H	-0.92905	1.32279	2.11028
H	0.78514	0.83314	2.22548
H	2.49863	-0.77240	-1.69836
S	2.91499	-0.82342	0.66633
C	2.83719	-2.62694	0.44454
H	1.80718	-2.97927	0.48033
H	3.28941	-2.90812	-0.50712
H	3.40433	-3.07947	1.25739
C	-1.65288	-0.11352	-0.08052
C	-2.55847	0.90087	-0.38835
C	-2.11546	-1.36267	0.33232
C	-3.92485	0.65656	-0.29989
H	-2.18160	1.87221	-0.68225
C	-3.48361	-1.59943	0.41084
H	-1.40465	-2.13744	0.58758
C	-4.39358	-0.59376	0.09473
H	-4.62447	1.44786	-0.54204
H	-3.83791	-2.57192	0.73174
H	-5.45845	-0.78065	0.16323

TS for addition to methyl phenyl PD, gamma to phenyl (S17d)
$E=-1123.246588$
$G=-1123.058371$

C	-1.97212	-1.11135	-0.35749
C	-2.49439	-0.04360	0.52314
C	-1.83405	0.19705	1.71302
C	-0.42058	-0.01195	1.80199

H	-2.29812	0.73563	2.52841
O	-2.68468	-1.75564	-1.12474
O	0.31719	0.42146	2.68868
N	0.15524	-0.71377	0.71658
N	-0.66007	-1.41648	-0.17697
H	-3.56718	0.07156	0.46259
S	-2.10120	1.65803	-1.14110
C	-0.91479	2.59465	-0.14345
H	-1.02158	2.29483	0.90719
H	0.11428	2.40110	-0.45187
H	-1.11232	3.66491	-0.21028
C	1.41222	-0.29862	0.17897
C	2.55778	-0.32186	0.97313
C	1.48921	0.11316	-1.15308
C	3.77326	0.09236	0.43562
H	2.48613	-0.65830	1.99767
C	2.71144	0.50765	-1.68400
H	0.58422	0.13727	-1.75145
C	3.85736	0.50386	-0.89143
H	4.66113	0.07814	1.05673
H	2.76549	0.82831	-2.71775
H	4.80837	0.81453	-1.30692
C	-0.08168	-2.63544	-0.72606
H	0.53605	-3.10046	0.04237
H	-0.89694	-3.29842	-1.00413
H	0.53133	-2.42777	-1.60575

Enolate from addition to methyl phenyl PD, gamma to phenyl (S17e)

$E=-1123.254754$
$G=-1123.065669$

C	1.91780	-0.24072	0.74654
C	2.03270	-0.15159	-0.76094
C	1.40602	-1.34510	-1.39066
C	0.22424	-1.84248	-0.89971
H	1.88080	-1.81754	-2.24007
O	2.85213	0.00798	1.50148
O	-0.49510	-2.78440	-1.31243
N	-0.25726	-1.12831	0.30623
N	0.72031	-0.69194	1.20217
H	3.09664	-0.07803	-0.98488
S	1.27882	1.43820	-1.36571
C	2.28564	2.65163	-0.46080
H	2.10746	2.58208	0.61203
H	3.34467	2.49616	-0.66944
H	1.99287	3.64099	-0.81057
C	-1.40507	-0.31301	0.22612
C	-2.40152	-0.57547	-0.72849
C	-1.59101	0.76119	1.10944
C	-3.53654	0.22362	-0.79236
H	-2.27439	-1.40510	-1.40975

C	-2.73749	1.54540	1.03545
H	-0.82672	1.00349	1.83600
C	-3.72228	1.28763	0.08756
H	-4.28793	0.00505	-1.54311
H	-2.85160	2.37278	1.72693
H	-4.61257	1.90192	0.03347
C	0.57315	-1.15915	2.57436
H	0.90869	-2.19582	2.66732
H	1.16623	-0.52298	3.22753
H	-0.47693	-1.09272	2.85574

Methyl 4-aminophenyl PD (S18a)

$E=-740.393229$
$G=-740.223096$

C	-1.29180	1.57475	0.03213
C	-2.74621	1.61624	-0.17075
C	-3.46279	0.49935	-0.29087
C	-2.86092	-0.83072	-0.11503
H	-3.17996	2.60345	-0.26772
H	-4.52852	0.50771	-0.48142
O	-0.59666	2.58254	0.02847
O	-3.53291	-1.85857	-0.14272
N	-1.51983	-0.84818	0.12768
N	-0.74892	0.32481	0.17977
C	-0.87400	-2.06625	0.61162
H	-1.65691	-2.80962	0.72255
H	-0.12575	-2.42074	-0.09627
H	-0.40406	-1.86871	1.57518
C	0.67567	0.16158	0.07877
C	1.47805	0.34383	1.19786
C	1.24480	-0.17264	-1.14555
C	2.85203	0.19054	1.09736
H	1.02195	0.60453	2.14594
C	2.61671	-0.33754	-1.24878
H	0.60879	-0.31215	-2.01299
C	3.44189	-0.15704	-0.12758
H	3.47828	0.33512	1.97034
H	3.06096	-0.60323	-2.20127
N	4.81823	-0.26167	-0.24338
H	5.32027	-0.44808	0.61284
H	5.15455	-0.81740	-1.01667

TS for addition to methyl 4-aminophenyl PD, beta to aryl (S18b)
$E=-1178.603091$
$G=-1178.400572$

C	0.74877	-0.96931	-0.95295
C	2.16408	-0.64355	-1.24826

C	2.49647	0.70938	-1.33630
C	1.83855	1.64705	-0.49062
H	3.38442	1.04526	-1.85476
O	0.19740	-1.98144	-1.37356
O	2.23149	2.79589	-0.23102
N	0.67089	1.19301	0.14345
N	0.07146	-0.01206	-0.24993
C	0.43582	1.53604	1.54274
H	1.07307	2.38355	1.78068
H	-0.60684	1.81442	1.70483
H	0.68446	0.68420	2.18417
H	2.60012	-1.33950	-1.95177
S	3.01106	-1.71226	0.60641
C	3.74016	-0.25022	1.38587
H	3.80922	0.54582	0.63378
H	3.13659	0.11111	2.21941
H	4.74604	-0.46985	1.74372
C	-1.35199	-0.05106	-0.11613
C	-2.12516	1.00619	-0.58714
C	-1.96872	-1.12873	0.51075
C	-3.50456	0.98389	-0.43919
H	-1.63858	1.85182	-1.05993
C	-3.34975	-1.16244	0.64416
H	-1.36234	-1.94406	0.88590
C	-4.13931	-0.10591	0.17165
H	-4.10001	1.81384	-0.80335
H	-3.82439	-2.00886	1.12831
N	-5.51955	-0.10621	0.36784
H	-5.93388	-1.02239	0.46932
H	-6.04176	0.46401	-0.28306

Enolate from addition to methyl 4-aminophenyl PD, beta to aryl (S18c)

$E=-1178.610452$
$G=-1178.406836$

C	2.22552	0.00977	0.78587
C	2.38848	0.02815	-0.71808
C	1.94548	-1.26435	-1.30116
C	0.81418	-1.88578	-0.82946
H	2.48691	-1.69425	-2.13327
O	3.07777	0.45437	1.55119
O	0.22216	-2.90768	-1.25811
N	0.21781	-1.24118	0.35724
N	1.09892	-0.59820	1.23064
H	3.44080	0.23419	-0.91269
S	1.45244	1.47112	-1.43537
C	2.23708	2.86054	-0.56375
H	2.01475	2.82545	0.50249
H	3.31688	2.84272	-0.71542
H	1.83101	3.77914	-0.98606
C	-1.05273	-0.60777	0.23428

C	-2.06750	-1.18662	-0.53858
C	-1.34201	0.58316	0.90794
C	-3.31216	-0.57869	-0.64694
H	-1.86938	-2.11424	-1.05654
C	-2.59614	1.17684	0.80903
H	-0.57788	1.06750	1.50278
C	-3.60407	0.60935	0.02866
H	-4.07688	-1.04431	-1.26062
H	-2.78849	2.10226	1.34235
C	0.92793	-0.93408	2.63634
H	1.32746	-1.93036	2.84388
H	1.45069	-0.19557	3.23931
H	-0.13503	-0.91413	2.87646
N	-4.84994	1.24464	-0.12570
H	-5.10748	1.82421	0.66248
H	-5.60363	0.60600	-0.34397

TS for addition to methyl 4-aminophenyl PD, gamma to phenyl (S18d)
$E=-1178.605151$
$G=-1178.402938$

C	-2.28611	-0.89104	-0.74052
C	-2.82881	-0.00852	0.31875
C	-2.27764	-0.11894	1.59065
C	-0.89864	-0.45021	1.74006
H	-2.79400	0.24277	2.46986
O	-2.95816	-1.27511	-1.69770
O	-0.21988	-0.29770	2.76169
N	-0.25890	-0.93850	0.57724
N	-1.01897	-1.32980	-0.53250
H	-3.89070	0.16257	0.21097
S	-2.25271	1.97012	-0.79652
C	-1.13348	2.60426	0.47645
H	-1.29428	2.03075	1.39884
H	-0.08737	2.49807	0.18471
H	-1.34298	3.65318	0.68705
C	1.06895	-0.50067	0.26149
C	2.15064	-0.91190	1.03414
C	1.28850	0.32710	-0.83869
C	3.43441	-0.47678	0.72901
H	1.97972	-1.56766	1.87766
C	2.57250	0.74360	-1.15889
H	0.44013	0.64464	-1.43816
C	3.66601	0.35279	-0.37456
H	4.27065	-0.79479	1.34231
H	2.73347	1.38535	-2.01857
C	-0.44370	-2.40571	-1.32626
H	0.00189	-3.13700	-0.65094
H	-1.24478	-2.86311	-1.90052
H	0.32287	-2.03035	-2.00762
N	4.94875	0.82839	-0.65402

H	5.10201	1.08553	-1.61945
H	5.69910	0.24592	-0.30842

Enolate from addition to methyl 4-aminophenyl PD, gamma to phenyl (S18e)
$E=-1178.608554$
$G=-1178.404563$

C	0.91152	-0.66458	-0.82022
C	2.36963	-0.28560	-0.87025
C	2.55892	1.17859	-0.96345
C	1.74552	2.03411	-0.25490
H	3.44638	1.57055	-1.44338
O	0.48198	-1.67932	-1.36286
O	1.90674	3.26400	-0.02458
N	0.53877	1.46612	0.32073
N	0.10363	0.21508	-0.16675
C	0.48543	1.51540	1.78345
H	0.79027	2.51400	2.08831
H	-0.53952	1.34050	2.11645
H	1.14798	0.76762	2.23586
H	2.80734	-0.82977	-1.70756
S	3.20054	-0.99627	0.65449
C	3.02119	-2.78251	0.36255
H	1.97240	-3.07536	0.37940
H	3.46285	-3.05217	-0.59740
H	3.55627	-3.29777	1.15971
C	-1.31242	0.02339	-0.11207
C	-2.16972	1.01825	-0.57311
C	-1.84580	-1.13896	0.43697
C	-3.54529	0.84922	-0.49698
H	-1.75042	1.93073	-0.97963
C	-3.22075	-1.31727	0.50294
H	-1.17782	-1.90657	0.80911
C	-4.09222	-0.32383	0.03887
H	-4.20603	1.62986	-0.85815
H	-3.62723	-2.22856	0.92801
N	-5.47336	-0.52250	0.05644
H	-5.79786	-1.17460	0.75723
H	-6.02228	0.32613	0.06400

4-Fluorophenyl methyl PD (S19a)

$E=-784.273709$
$G=-784.128050$

C	-1.25467	1.58700	-0.03104
C	-2.70052	1.62088	-0.29059
C	-3.41371	0.49998	-0.39125
C	-2.82732	-0.81945	-0.10755
H	-3.12453	2.60273	-0.45858
H	-4.46873	0.49957	-0.63436

O	-0.54946	2.58350	-0.08223
O	-3.49945	-1.84516	-0.09629
N	-1.50066	-0.82615	0.21003
N	-0.72487	0.34134	0.21213
C	-0.91064	-1.99309	0.86592
H	-1.73082	-2.64581	1.14970
H	-0.23457	-2.52529	0.19702
H	-0.36875	-1.66413	1.75200
C	0.69386	0.15295	0.08941
C	1.53419	0.62248	1.09095
C	1.20100	-0.48744	-1.03615
C	2.90770	0.45465	0.96810
H	1.11273	1.11629	1.95736
C	2.57183	-0.67402	-1.16037
H	0.52506	-0.84226	-1.80572
C	3.39251	-0.19409	-0.15430
H	3.59340	0.80932	1.72653
H	3.00205	-1.17298	-2.01896
F	4.72208	-0.36774	-0.27232

TS for addition to 4-fluorophenyl methyl PD, betato aryl (S19b)
$E=-1222.485775$
$G=-1222.308609$

C	0.72886	-1.01985	-0.90512
C	2.12792	-0.68102	-1.24885
C	2.44264	0.66695	-1.39177
C	1.79465	1.62559	-0.55782
H	3.31332	0.99502	-1.94313
O	0.18242	-2.05040	-1.27673
O	2.18293	2.78206	-0.34174
N	0.65225	1.17576	0.12553
N	0.05008	-0.04012	-0.22190
C	0.46848	1.54129	1.52778
H	1.10281	2.40117	1.72581
H	-0.57031	1.81126	1.72606
H	0.75384	0.70355	2.17190
H	2.56914	-1.40505	-1.91965
S	3.00296	-1.66483	0.67573
C	3.78491	-0.16927	1.32995
H	3.82161	0.58285	0.53130
H	3.22852	0.24657	2.17096
H	4.80652	-0.37768	1.64791
C	-1.37086	-0.06527	-0.09794
C	-2.11358	1.05400	-0.46973
C	-2.00719	-1.19040	0.42232
C	-3.49663	1.04813	-0.33618
H	-1.60321	1.92906	-0.85305
C	-3.39161	-1.20958	0.54509
H	-1.41968	-2.04625	0.72486
C	-4.10601	-0.08873	0.16297

H	-4.09529	1.90543	-0.61635
H	-3.91091	-2.07232	0.94247
F	-5.45025	-0.10112	0.29082

Enolate from addition to 4-fluorophenyl methyl PD, beta to aryl (S19c)
$E=-1222.496209$
$G=-1222.316856$

C	2.22858	0.01898	0.75208
C	2.33896	0.08363	-0.75614
C	1.91216	-1.20974	-1.35416
C	0.81335	-1.86773	-0.85983
H	2.45646	-1.62211	-2.19298
O	3.10520	0.43360	1.50338
O	0.24167	-2.91010	-1.26235
N	0.22307	-1.21863	0.33380
N	1.11190	-0.60046	1.21490
H	3.37852	0.32081	-0.98069
S	1.34003	1.51483	-1.40302
C	2.11900	2.89925	-0.51870
H	1.93806	2.82678	0.55352
H	3.19217	2.91704	-0.71139
H	1.67157	3.81774	-0.89699
C	-1.04460	-0.60219	0.23542
C	-2.01246	-1.10575	-0.64794
C	-1.37421	0.50252	1.03271
C	-3.26503	-0.51097	-0.73749
H	-1.77276	-1.96346	-1.26008
C	-2.63243	1.09065	0.95172
H	-0.63914	0.92685	1.70327
C	-3.55691	0.57481	0.06658
H	-4.01299	-0.89192	-1.42223
H	-2.88667	1.94733	1.56374
C	1.01174	-1.02531	2.60457
H	1.47008	-2.00858	2.74070
H	1.51746	-0.29482	3.23170
H	-0.04091	-1.07645	2.88118
F	-4.78454	1.14670	-0.01593

TS for addition to 4-fluorophenyl methyl PD, gamma to phenyl (S19d)
$E=-1222.488450$
$G=-1222.309796$

C	-2.29886	-0.87478	-0.70427
C	-2.82268	0.01928	0.35165
C	-2.26366	-0.06558	1.61277
C	-0.88434	-0.41729	1.75950
H	-2.76337	0.32328	2.48988
O	-2.98016	-1.26647	-1.64949
O	-0.20092	-0.25591	2.77172
N	-0.26107	-0.91906	0.59175

N	-1.03549	-1.33168	-0.49764
H	-3.87315	0.24483	0.23598
S	-2.14177	1.99499	-0.85556
C	-1.01423	2.59749	0.42723
H	-1.23178	2.07008	1.36539
H	0.02996	2.41497	0.16649
H	-1.15701	3.66466	0.59932
C	1.06303	-0.50015	0.25771
C	2.12907	-0.81085	1.10004
C	1.28500	0.20910	-0.92379
C	3.41480	-0.38969	0.77625
H	1.94655	-1.37390	2.00402
C	2.56945	0.61444	-1.26366
H	0.44165	0.45466	-1.56099
C	3.60701	0.30996	-0.40033
H	4.25916	-0.61328	1.41591
H	2.76618	1.16680	-2.17385
C	-0.49320	-2.44508	-1.26420
H	0.00650	-3.12709	-0.57604
H	-1.32114	-2.94883	-1.75629
H	0.22071	-2.10375	-2.01713
F	4.85780	0.70676	-0.72375

Enolate from addition to 4-fluorophenyl methyl PD, gamma to phenyl (S19e)
 $E=-1222.491666$
 $G=-1222.312406$

C	0.89827	-0.69253	-0.79934
C	2.35052	-0.29821	-0.87043
C	2.51886	1.16463	-1.01216
C	1.70675	2.02916	-0.31372
H	3.39186	1.55278	-1.52041
O	0.47224	-1.71711	-1.32002
O	1.85255	3.26592	-0.11860
N	0.51878	1.45857	0.30075
N	0.08597	0.19423	-0.14875
C	0.48704	1.54619	1.76249
H	0.79623	2.55275	2.03512
H	-0.53291	1.38224	2.11640
H	1.15627	0.81098	2.22457
H	2.78738	-0.86273	-1.69447
S	3.19811	-0.95170	0.66939
C	3.03522	-2.74735	0.43061
H	1.98961	-3.05054	0.46144
H	3.47562	-3.04076	-0.52289
H	3.57868	-3.23355	1.24020
C	-1.32736	0.00634	-0.09676
C	-2.17601	1.06131	-0.42753
C	-1.85826	-1.21285	0.32239
C	-3.55445	0.89742	-0.35682
H	-1.74901	2.00928	-0.72747

C	-3.23543	-1.38854	0.38616
H	-1.19366	-2.02133	0.59535
C	-4.05432	-0.32801	0.04373
H	-4.23288	1.70249	-0.60927
H	-3.67059	-2.32618	0.70795
F	-5.39367	-0.49263	0.11294

Methyl 4-nitrophenyl PD (S20a)

$E=-889.524556$
$G=-889.370319$

C	-1.92224	1.58205	-0.15270
C	-3.33890	1.50554	-0.53904
C	-3.97955	0.33996	-0.60810
C	-3.36394	-0.90608	-0.12126
H	-3.79137	2.44311	-0.83584
H	-5.00242	0.25469	-0.95223
O	-1.26978	2.60616	-0.24211
O	-3.98893	-1.95374	-0.02801
N	-2.07285	-0.80796	0.31526
N	-1.34360	0.38363	0.23310
C	-1.54700	-1.82452	1.23149
H	-2.39749	-2.34186	1.66807
H	-0.91403	-2.54355	0.71161
H	-0.97343	-1.32450	2.01040
C	0.07280	0.22918	0.13460
C	0.90511	1.05809	0.88318
C	0.59485	-0.74797	-0.71189
C	2.27975	0.91562	0.77850
H	0.47630	1.80137	1.54016
C	1.96794	-0.90368	-0.81162
H	-0.07159	-1.37422	-1.29209
C	2.78284	-0.06529	-0.06433
H	2.95122	1.54208	1.34857
H	2.40061	-1.65028	-1.46248
N	4.24224	-0.22473	-0.16867
O	4.66830	-1.11142	-0.87992
O	4.94438	0.53890	0.46166

TS for addition to methyl 4-nitrophenyl PD, beta to aryl (S20b)
$E=-1327.739889$
$G=-1327.553827$

C	1.32446	-1.07407	-0.87840
C	2.70882	-0.71228	-1.24456
C	3.00807	0.62874	-1.42516
C	2.35517	1.59862	-0.60286
H	3.87160	0.95280	-1.98952
O	0.79856	-2.12204	-1.21362
O	2.73346	2.75800	-0.40860

N	1.23026	1.14248	0.10971
N	0.61971	-0.06945	-0.23087
C	1.09824	1.48737	1.52495
H	1.73909	2.34499	1.71236
H	0.06791	1.75567	1.76577
H	1.40877	0.63870	2.14201
H	3.17769	-1.46042	-1.86820
S	3.54216	-1.60736	0.79016
C	4.38047	-0.09413	1.32236
H	4.41396	0.60470	0.47611
H	3.85867	0.39089	2.14844
H	5.40550	-0.30743	1.62601
C	-0.79030	-0.07552	-0.13875
C	-1.49366	1.11799	-0.34472
C	-1.47957	-1.24840	0.19347
C	-2.87341	1.13757	-0.24968
H	-0.94947	2.02222	-0.58290
C	-2.86109	-1.23319	0.28412
H	-0.93418	-2.15944	0.38388
C	-3.53858	-0.04242	0.05758
H	-3.42940	2.04934	-0.41798
H	-3.40826	-2.12895	0.54322
N	-4.99902	-0.02699	0.15805
O	-5.57341	1.03386	0.00437
O	-5.56921	-1.07598	0.38908

Enolate from addition to methyl 4-nitrophenyl PD, beta to aryl (S20c)

$E=-1327.756608$
$G=-1327.569029$

C	2.75950	0.29207	0.70667
C	2.82638	0.25622	-0.80621
C	2.56817	-1.13339	-1.28115
C	1.56454	-1.87237	-0.71057
H	3.17790	-1.55885	-2.06616
O	3.61209	0.82142	1.40494
O	1.13062	-3.01948	-0.95820
N	0.88679	-1.12746	0.39166
N	1.69910	-0.38028	1.24320
H	3.82050	0.60622	-1.08142
S	1.62580	1.47642	-1.52731
C	2.21009	3.01203	-0.74927
H	2.05465	2.98563	0.32921
H	3.26670	3.16964	-0.96760
H	1.63013	3.83029	-1.17445
C	-0.43043	-0.72999	0.28979
C	-1.29368	-1.34716	-0.64432
C	-0.94679	0.29046	1.11827
C	-2.61119	-0.95463	-0.74239
H	-0.91129	-2.13330	-1.27866
C	-2.26815	0.67548	1.02002

H	-0.29857	0.79788	1.81865
C	-3.09709	0.05034	0.09294
H	-3.26966	-1.42176	-1.46215
H	-2.65854	1.46326	1.64986
C	1.72001	-0.80530	2.63908
H	2.30416	-1.72234	2.75382
H	2.16141	-0.01094	3.23623
H	0.69738	-0.98355	2.96882
N	-4.48331	0.45580	-0.01034
O	-4.88992	1.33598	0.73139
O	-5.19201	-0.09837	-0.83537

TS for addition to methyl 4-nitrophenyl PD, gamma to phenyl (S20d)
$E=-1327.743139$
$G=-1327.555698$

C	2.86127	0.03768	1.06304
C	3.39075	0.00962	-0.31422
C	2.93329	-0.93689	-1.18405
C	1.60224	-1.47563	-1.03655
H	3.44421	-1.17393	-2.10760
O	3.49485	0.47049	2.01943
O	1.00623	-2.12592	-1.88457
N	0.93461	-1.08799	0.15234
N	1.66864	-0.60088	1.23472
H	4.36734	0.45761	-0.42792
S	2.18952	2.27435	-0.69398
C	1.19416	1.61639	-2.06177
H	1.63959	0.67817	-2.41812
H	0.16733	1.40864	-1.75170
H	1.17154	2.31183	-2.90179
C	-0.43008	-0.71972	0.13250
C	-1.38705	-1.55759	-0.45298
C	-0.81773	0.49262	0.71999
C	-2.71732	-1.17162	-0.47256
H	-1.08537	-2.50019	-0.88179
C	-2.14658	0.87399	0.71098
H	-0.06153	1.14569	1.13749
C	-3.07857	0.03551	0.11067
H	-3.47074	-1.80675	-0.91743
H	-2.45844	1.81414	1.14446
C	1.21405	-1.01201	2.55814
H	0.73125	-1.98434	2.46662
H	2.08468	-1.08791	3.20558
H	0.50987	-0.29597	2.98705
N	-4.48610	0.43623	0.09705
O	-5.28242	-0.28219	-0.47669
O	-4.79399	1.46985	0.65943

Enolate from addition to methyl 4-nitrophenyl PD, gamma to phenyl (S20e)
$E=-1327.746368$

C	1.46285	-0.73356	-0.79075
C	2.92178	-0.36981	-0.85466
C	3.11562	1.08333	-1.05334
C	2.32775	1.98220	-0.37164
H	3.98521	1.43640	-1.59127
O	1.01550	-1.74486	-1.30776
O	2.49049	3.22023	-0.21246
N	1.14131	1.44173	0.27605
N	0.66011	0.18947	-0.15011
C	1.11369	1.56906	1.73445
H	1.49219	2.55940	1.97803
H	0.08525	1.48931	2.09386
H	1.73041	0.80293	2.21715
H	3.35656	-0.97254	-1.65192
S	3.73061	-0.98000	0.72112
C	3.53705	-2.77930	0.54042
H	2.48521	-3.06186	0.55671
H	3.99511	-3.11477	-0.39051
H	4.04996	-3.24653	1.38044
C	-0.74743	0.06193	-0.11431
C	-1.54236	1.20850	-0.23811
C	-1.35016	-1.18556	0.09787
C	-2.92144	1.11011	-0.18556
H	-1.06364	2.16823	-0.37341
C	-2.72923	-1.28795	0.15118
H	-0.74013	-2.06613	0.22754
C	-3.49696	-0.13973	0.00277
H	-3.54525	1.98659	-0.29323
H	-3.20678	-2.24304	0.32047
N	-4.95474	-0.24832	0.06098
O	-5.61073	0.77241	-0.02571
O	-5.44371	-1.35446	0.19217

Methyl pentafluorophenyl PD (S21a)

$E=-1181.195543$
$G=-1181.085565$

C	-1.67877	1.28118	-0.96981
C	-3.12884	1.20811	-1.18106
C	-3.86959	0.28260	-0.57283
C	-3.31199	-0.62798	0.44311
H	-3.53555	1.90791	-1.89966
H	-4.93220	0.17985	-0.75253
O	-0.93590	2.01329	-1.59616
O	-4.01175	-1.40961	1.07331
N	-1.97574	-0.50087	0.69149
N	-1.17555	0.39586	-0.03117
C	-1.37742	-1.09294	1.88482

H	-2.19658	-1.44379	2.50543
H	-0.73295	-1.93544	1.63015
H	-0.80814	-0.33107	2.41720
C	0.21946	0.15957	-0.01642
C	1.09364	1.13651	0.44346
C	0.74657	-1.03615	-0.49055
C	2.46148	0.92582	0.43296
C	2.11034	-1.26755	-0.48411
C	2.96761	-0.27933	-0.02707
F	4.27454	-0.48821	-0.02809
F	0.62271	2.28364	0.90826
F	3.28887	1.86548	0.87157
F	2.60032	-2.41754	-0.92754
F	-0.06970	-1.97790	-0.94808

TS for addition to methyl pentafluorophenyl PD, beta to aryl (S21b)
$E=-1619.410233$
$G=-1619.268578$

C	1.23329	-0.45185	-1.27630
C	2.62533	0.00467	-1.44928
C	2.96305	1.25333	-0.95095
C	2.32998	1.74378	0.23596
H	3.84486	1.78020	-1.28928
O	0.65148	-1.21223	-2.03261
O	2.75058	2.65753	0.95153
N	1.16664	1.06604	0.64929
N	0.56916	0.15165	-0.22904
C	1.03040	0.69010	2.05705
H	1.61377	1.39770	2.64009
H	-0.01403	0.75226	2.36739
H	1.40010	-0.32857	2.21300
H	3.07840	-0.35637	-2.36166
S	3.44209	-1.80145	-0.12539
C	4.33130	-0.76468	1.06201
H	4.34228	0.26752	0.68686
H	3.85358	-0.76841	2.04256
H	5.36433	-1.09582	1.16982
C	-0.83134	0.04035	-0.12384
C	-1.65775	1.14200	-0.32243
C	-1.42460	-1.17455	0.19918
C	-3.03148	1.04091	-0.18807
C	-2.79928	-1.29438	0.31135
C	-3.60263	-0.18227	0.12324
F	-4.91934	-0.28742	0.24154
F	-3.80637	2.10337	-0.37911
F	-3.35002	-2.46418	0.61796
F	-0.67034	-2.24352	0.42216
F	-1.13409	2.31440	-0.66068

Enolate from addition to methyl pentafluorophenyl PD, beta to aryl (S21c)

$G=-1619.276037$

C	-2.51273	0.41190	1.03583
C	-3.06034	0.69366	-0.34240
C	-2.24604	1.65337	-1.11976
C	-0.88080	1.72832	-0.98431
H	-2.69823	2.15867	-1.96328
O	-3.24404	0.06198	1.96064
O	-0.02249	2.26549	-1.72366
N	-0.33348	1.09710	0.21721
N	-1.18503	0.61118	1.22256
H	-4.08844	1.02913	-0.19339
S	-3.23633	-0.93425	-1.25480
C	-4.55400	-1.75096	-0.30561
H	-4.21511	-1.99667	0.69894
H	-5.43101	-1.10482	-0.24984
H	-4.81653	-2.66409	-0.83935
C	0.88002	0.39360	0.08596
C	2.08533	1.09469	0.05335
C	0.95503	-0.99715	0.02195
C	3.30006	0.44361	-0.08048
C	2.16598	-1.66157	-0.07812
C	3.34333	-0.93848	-0.14369
C	-0.59285	0.56932	2.55195
H	0.02395	1.45911	2.68520
H	-1.39717	0.55493	3.28201
H	0.02526	-0.32303	2.68205
F	4.50892	-1.56634	-0.25566
F	-0.15631	-1.72793	0.06141
F	2.10688	2.41361	0.20201
F	4.43437	1.14017	-0.11335
F	2.19973	-2.99114	-0.13530

TS for addition to methyl pentafluorophenyl PD, gamma to aryl (S21d)
$E=-1619.411035$
$G=-1619.268115$

C	2.66947	-0.56507	1.20880
C	3.28590	-0.82852	-0.10780
C	2.55898	-1.46596	-1.08214
C	1.12702	-1.38635	-1.08835
H	3.02257	-1.89027	-1.96230
O	3.32803	-0.41667	2.23377
O	0.38178	-1.67030	-2.02349
N	0.55893	-0.86366	0.08618
N	1.30509	-0.60631	1.24555
H	4.35972	-0.93322	-0.06394
S	3.54529	1.61233	-0.57214
C	2.41044	1.58811	-1.98541
H	2.27530	0.55079	-2.32000

H	1.43189	1.99234	-1.72216
H	2.81569	2.15610	-2.82365
C	-0.74932	-0.34481	0.05364
C	-1.84047	-1.19015	-0.12676
C	-0.99961	1.01534	0.21313
C	-3.13162	-0.69412	-0.17947
C	-2.28860	1.51940	0.19092
C	-3.35631	0.66265	-0.01642
C	0.58131	-0.73752	2.50316
H	1.32115	-0.82833	3.29298
H	-0.04356	0.13693	2.69598
H	-0.04136	-1.63347	2.46901
F	-4.59324	1.13947	-0.05132
F	-2.50412	2.82098	0.34957
F	0.01018	1.85740	0.39995
F	-1.66358	-2.50096	-0.21938
F	-4.15988	-1.51695	-0.35836

Enolate from addition to methyl pentafluorophenyl PD, gamma to aryl (S21e)
$E=-1619.417591$
$G=-1619.275042$

C	1.37675	-0.36647	-0.96765
C	2.82723	0.02858	-0.95336
C	3.01028	1.45774	-0.60755
C	2.22395	2.07261	0.34060
H	3.88392	1.97745	-0.97836
O	0.90249	-1.19388	-1.73067
O	2.39297	3.18175	0.91005
N	1.02828	1.35347	0.77471
N	0.59133	0.31139	-0.07092
C	1.07492	0.91540	2.17476
H	1.39564	1.76859	2.76875
H	0.07468	0.61988	2.49883
H	1.76852	0.07859	2.31422
H	3.23807	-0.23279	-1.92902
S	3.69661	-1.10242	0.26268
C	3.52313	-2.71482	-0.55990
H	2.47803	-3.01726	-0.60691
H	3.94070	-2.66981	-1.56621
H	4.08548	-3.43891	0.02881
C	-0.80103	0.09611	-0.06090
C	-1.68795	1.09219	-0.45617
C	-1.32800	-1.11722	0.36507
C	-3.05668	0.89113	-0.41175
C	-2.69419	-1.33873	0.39565
C	-3.55955	-0.32877	0.01081
F	-4.87077	-0.52876	0.04587
F	-3.17953	-2.50633	0.80605
F	-0.51353	-2.08754	0.76648
F	-1.22995	2.25519	-0.90350

$\begin{array}{llll}F & -3.89121 & 1.85295 & -0.79402\end{array}$

6. SCXRD experiment

The angles between the least-square planes defining the PD and phenyl ring planes in $\mathbf{3}$ were calculated using the MPLA command in SHELXL for each molecule in the asymmetric unit:

Plane 1 (P1): N1-N2-C1-C2-C3-C4 (rms deviation of fitted atoms $=0.0109$ Å)
Plane 2 (P2): C5-C6-C7-C8-C9-C10 (rms deviation of fitted atoms $=0.0058 \AA$)
$\phi(P 1, P 2)=74.15(3)^{\circ}$

Plane 2 (P3): N3-N4-C13-C14-C15-C16 (rms deviation of fitted atoms $=0.0151$ Å)
Plane 3 (P4): C17-C18-C19-C20-C21-C22 (rms deviation of fitted atoms $=0.0079$ Å)
$\phi(P 3, P 4)=87.79(3)^{\circ}$

Table S9. Crystallographic and refinement parameters of 3

	3
empirical formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$\mathrm{Mr}_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	216.24
crystal system	monoclinic
space group	P2 ${ }_{1} / \mathrm{c}$
a / \AA	12.96490(10)
b / \AA	8.25850(10)
c / \AA	20.8574(2)
$\alpha /{ }^{\circ}$	90
$6 /^{\circ}$	106.9280(10)
$v /{ }^{\circ}$	90
V / \AA^{3}	2136.45(4)
z	8
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.345
T/K	150.0(1)
μ / mm^{-1}	0.763
F(000)	912
crystal size / mm ${ }^{3}$	$0.18 \times 0.12 \times 0.08$
radiation	$\mathrm{CuK}_{\alpha}(\lambda=1.54184 \AA)$
2ϑ range for data collection $/^{\circ}$	7.128-133.202
index ranges	$\begin{aligned} -15 & \leq h \leq 15 \\ -9 & \leq k \leq 9 \\ -24 & \leq I \leq 24 \end{aligned}$
number of collected reflections	49635
unique reflections	3775
number of unique reflections	3373 [$1>2 \sigma(/)]$
$R_{\text {int }}$	0.0286
$R(F), F>2 \sigma(F)$	0.0334
$w R\left(F^{2}\right), F>2 \sigma(\mathrm{~F})$	0.0372
$R(F)$, all data	0.0909
$w R\left(F^{2}\right)$, all data	0.0936
Δ_{r} (max., min.) e \AA^{-3}	0.123/-0.223
CCDC deposition number	2296018

Figure S11. The asymmetric unit of compound 3. The thermal ellipsoids are drawn at the 50\% probability level. Colour scheme: carbon - dark grey, nitrogen - blue, oxygen - red. The hydrogen atoms are omitted to enhance the clarity of the figure.

7. References

1. R. K. Harris, E. D. Becker, S. M. De Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, Magn. Reson. Chem., 2008, 46, 582-598.
2. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
3. E. H. Krenske, R. C. Petter and K. N. Houk, J. Org. Chem., 2016, 81, 11726-11733.
4. K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
5. CrysAllisPro, Agilent Technologies Inc., 2022.
6. G. M. Sheldrick, Acta Crystallogr. A Found. Adv., 2015, 71, 3-8.
7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
8. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
9. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
10. V. Chudasama, M. E. Smith, F. F. Schumacher, D. Papaioannou, G. Waksman, J. R. Baker and S. Caddick, Chem. Commun., 2011, 47, 8781-8783.
11. C. Bahou, D. A. Richards, A. Maruani, E. A. Love, F. Javaid, S. Caddick, J. R. Baker and V. Chudasama, Org. Biomol. Chem., 2018, 16, 1359-1366.
12. C. Bahou, R. J. Spears, A. E. Aliev, A. Maruani, M. Fernandez, F. Javaid, P. A. Szijj, J. R. Baker and V. Chudasama, Chem. Commun., 2019, 55, 14829-14832.
13. P. Moody, M. E. Smith, C. P. Ryan, V. Chudasama, J. R. Baker, J. Molloy and S. Caddick, Chembiochem, 2012, 13, 39-41.
14. M. K. Greene, D. A. Richards, J. C. F. Nogueira, K. Campbell, P. Smyth, M. Fernandez, C. J. Scott and V. Chudasama, Chem. Sci., 2018, 9, 79-87.
15. J. Dommerholt, S. Schmidt, R. Temming, L. J. Hendriks, F. P. Rutjes, J. C. van Hest, D. J. Lefeber, P. Friedl and F. L. van Delft, Angew. Chem. Int. Ed. Engl., 2010, 49, 9422-9425.
16. J. Meinecke and U. Koert, Org. Lett., 2019, 21, 7609-7612.
17. C. Y. Legault, CYLview20, Université de Sherbrooke, 2020, http://www.cylview.org.

[^0]:

[^1]: Graph S1. Percentage of oxidation of GCY 14 after 90 min .

[^2]: 290502910029150292002925029300293502940029450295002955029600296502970029750298002985029

