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1 Experimental

2 Materials: Potassium phthalimide (Sigma-Aldrich, 98.0%), Tetrachloro-p-

3 benzoquinone (Aladdin, 98%), dimethyl sulfoxide (DMSO, Aladdin, 99.5%), 

4 N,N-Dimethylformamide (DMF, Aladdin, 99.5%), hydrazine hydrate (Heowns, 

5 80.0wt%), Cu(NO3)2·3H2O (Aladdin, 99%), acetonitrile (Macklin, 99.5%), and 

6 ammonia solution (Damao, 25%) were purchased and used without further 

7 purification. Tetramino-benzoquinone (TABQ) was synthesized through two-

8 step reactions according to the literature.S1

9 Synthesis of Cu-TABQ: Cu-TABQ was synthesized by a simple solution method 

10 (Fig. S1). Cu(NO3)2·3H2O (1mmol) was dissolved in 30 mL DMSO and 3 mL of 

11 concentrated aqueous ammonia (~14 M), after that, it was added to DMSO 

12 solution with 1mmol TABQ under vigorous stirring. The reaction was kept with 

13 stirring for 3 h under ambient air at 30℃, 60℃, and 90℃, respectively. The solid 

14 was thoroughly washed with deionized H2O, DMSO, and acetone several times, 

15 and then dried at 90 °C in an oven for 12 h. Finally, Cu-TABQ with different 

16 morphologies was obtained. 

17 Material Characterization: Powder X-ray diffraction (XRD, Rigaku 

18 MiniFlex600 X-ray generator, Cu Kα radiation, λ = 1.5406 Å) and high-

19 resolution transmission electron microscopy (HRTEM) (Taols F200X G2, 

20 AEMC) were applied to investigate the crystallinity of the Cu-TABQ powder. 

21 The spectroscopic characteristics of Cu-TABQ were revealed with Fourier 

22 transform infrared spectroscopy (FTIR, ThermoFisher Scientific Nicolet iS10), 

23 Raman spectroscopy (Raman, HORIBA, LabRAM HR Evolution) with a laser 

24 wavelength of 532 nm, X-ray photoelectron spectroscopy (XPS, Perkin Elmer 

25 PHI 1600 ESCA, Perkin-Elmer) and solid-state 1H NMR with Inova 400MHz 

26 Spectrometer (Varian Inc., USA). In XPS spectra of materials, all binding 

27 energies were corrected using carbon element with a binding energy of C 1s = 

28 284.6 eV as an internal standard. X-band electron paramagnetic resonance (EPR) 

29 spectra were obtained on a Bruker EMS nano spectrometer at room temperature. 
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1 Scanning electron microscopy (SEM, JEOL JSM-7500F) and transmission 

2 electron microscope (TEM, FEI TECNAI G2) were used to observe the crystal 

3 morphologies and microstructures with elemental mapping, and N2 

4 adsorption/desorption measurement (Quantachrome Autosorb-iQ-MP). 

5 Thermogravimetric analysis (TGA) was evaluated on TG/DTA STA449C 

6 thermal analyzer in airflow at a heating rate of 10 °C min-1 from ambient 

7 temperature to 800 °C.

8 Electrochemical measurements: The electrochemical performance of Cu-TABQ 

9 electrode was tested by Galvanostatic charge/discharge, cyclic voltammetry 

10 (CV), and rate, which were proved by CR2032-type coin cells at room 

11 temperature. The glass microfiber membrane (Whatman GF/D, Aldrich), 1.0 M 

12 NaPF6/DEGDME solution, and sodium foil were used as the separator, the 

13 electrolyte, and the anode, respectively. The preparation of Cu-TABQ working 

14 electrode was mixing Cu-TABQ, conductive carbon (Super P), and 

15 polyvinylidene fluoride (PVDF) at the weight ratio of 8: 1: 1 with anhydrous N-

16 methyl-2-pyrrolidinone (NMP) solvent, the following pasted onto Al foil and 

17 drying at 80 °C in a vacuum oven for 12 h. The batteries were assembled in a 

18 glove box filled with an argon atmosphere (water and oxygen level under 1.0 

19 ppm). Galvanostatic charge/discharge was performed on the LAND-CT2001A 

20 battery instrument (LAND Electronic Co., Wuhan China) between a voltage 

21 range of 1.0-3.0 V (vs. Na+/Na) at room temperature. Cyclic voltammetry (CV) 

22 was conducted on the CHI 760E electrochemical workstation. 

23 Computational details and Calculation of diffusion kinetics: 

24 DFT calculations were performed using the Vienna Ab-initio Simulation Package 

25 (VASP).S2, S3 The generalized gradient approximation (GGA) with the Perdew-Burke-

26 Ernzerhof (PBE) functional was adopted to describe the electronic exchange and 

27 correlation effects.S4, S5 The cutoff energy was set to 450 eV for both geometry 

28 optimization and self-consistent field computation. The convergence criterion of the 

29 total energy and force was set to 10-5 eV and 0.02 eV Å-1, respectively. In the GITT 

30 test, the current pulse lasted for 20 min at 50 mA g-1 and then the cell was relaxed for 
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1 80 min to make the voltage reach the equilibrium. These procedures were repeatedly 

2 applied to the cell during the entire discharge/charge process. The Na+ diffusion 

3 coefficients in the Cu-TABQ cathode were calculated from the GITT data by following 

4 formula S6:

5       
     𝐷𝐺𝐼𝑇𝑇 =

4
𝜋( 𝑚𝐵𝑉𝑚

 𝑀𝐵𝑆 )2(  ∆𝐸𝑠

𝜏(𝑑𝐸𝜏/𝑑 𝜏 ))2 ≈
4

𝜋𝜏( 𝑚𝐵𝑉𝑚

 𝑀𝐵𝑆 )2( ∆𝐸𝑠

∆𝐸𝜏
)2(𝜏 ≪

𝐿2

𝐷𝐺𝐼𝑇𝑇
)

6 Where DNa+ (cm2 s-1) means the chemical diffusion coefficient, τ is the constant current 

7 duration time (20 min), mB is the mass of active material, MB is the molecular weight 

8 (g mol-1) and Vm is its molar volume (cm3 mol-1), S is the total contacting area of 

9 electrode with electrolyte (1.1304 cm2), and ΔEs and ΔEτ are the change in the steady 

10 state voltage and overall cell voltage after the application of a current pulse in a single 

11 step GITT experiment, respectively. 
12
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1

2

3 Fig. S1 (a) Schematic diagram of possible formation of Cu-TABQ; (b) the calculated 
4 binding energies of Cu2+-TABQ, Cu2+-2NH3, and Cu2+-NH3; (c) HOMO/LUMO 
5 energy levels and orbits distributions of Cu-TABQ and TABQ. 

6 The dissociated Cu2+ from [Cu(NH3)4]2+ coordinated with the amidogen of the TABQ 
7 molecule and then stabilized by oxidative dehydrogenation under the assistance of O2 
8 and OH-. Then, the coordination chains extend to grow with the slow release of Cu2+ 
9 from [Cu(NH3)4]2+ to form Cu-TABQ. Density functional theory (DFT) is employed to 

10 analyse the lowest unoccupied molecular orbital (LUMO) and highest occupied 
11 molecular orbital (HOMO) energy levels of Cu-TABQ and TABQ in Figure S1c. A 
12 higher HOMO value represents a lower ionization potential and better reducibility. The 
13 lower LUMO value expresses better electron acceptance and excellent oxidation 
14 capability. Meanwhile, the smaller LUMO-HOMO gap (∆Eg) means an enhanced 
15 electronic delocalization. Compared with TABQ, Cu-TABQ presents lower LUMO 
16 energy level and narrow HOMO-LUMO energy gap (∆Eg), indicating the increased 
17 electron-accepting capability, thus resulting in the desirable electrochemical 
18 performance.

19
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1

2

3 Fig. S2 Optical pictures of Cu-TABQ powders.

4
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1

2

3 Fig. S3 N 1s XPS spectra of Cu-TABQ and TABQ.

4
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1

2

3 Fig. S4 O 1s XPS spectra of Cu-TABQ and TABQ.

4
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1

2 Fig. S5 Cu 2p XPS spectra of Cu-TABQ. 

3
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1

2

3 Fig. S6 EPR spectra of Cu-TABQ.

4
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1

2

3 Fig. S7 XRD patterns of Cu-TABQ prepared at different reaction conditions.

4
5
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1

2

3 Fig. S8 (a,b) SEM and (c,d) TEM images of Cu-TABQ obtained at room temperature 
4 (30 ℃). 

5
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1

2

3 Fig. S9 (a,b) SEM and (c,d) TEM images of Cu-TABQ obtained via reaction at 60 ℃. 

4
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1

2

3 Fig. S10 (a,b) SEM and (c,d) TEM images of Cu-TABQ obtained at 90 ℃.

4
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1

2 Fig. S11 HRTEM image of Cu-TABQ.

3
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1

2

3 Fig. S12 (a) N2 adsorption isotherm and (b) pore size distribution analysis of the Cu-
4 TABQ. 

5
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1

2

3 Fig. S13 TGA characterization of Cu-TABQ and TABQ.

4
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1

2 Fig. S14. UV-vis spectrum of Cu-TABQ.
3
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1

2 Fig. S15. Linear I-V curves of Cu-TABQ.

3 The electric conductivity was measured by using I-V curves, where the Cu-TABQ 

4 powder was pressed into pellets as the electrode. Based on R = U/I = 1/σ × L/A, where 

5 R is resistance of Cu-TABQ pellet (the slope in I-V curves), σ is electric conductance, 

6 L = 0.069 cm is thickness of the pellet, A = 0.5024 cm2 is cross-sectional area of the 

7 pellet. The resistance of the Cu-TABQ pellet is 13506 Ω. Thus, the electric conductivity 

8 of Cu-TABQ is calculated to be 1.02×10-3 S m-1. 
9
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1

2

3 Fig. S16 Charge/discharge curves at different current densities.

4
5
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1

2

3 Fig. S17 Digital photos of the disassembled Na//Cu-TABQ after 200 cycles.

4
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1
2
3 Fig. S18 Full XPS spectra of Cu-TABQ in the first discharge and charge processes.
4
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1

2 Fig. S19 Ex-situ O 1s XPS spectra of Cu-TABQ in the first discharge and charge 
3 processes.

4
5
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1

2
3
4 Fig. S20 Ex-situ Raman spectra of the Cu-TABQ electrode in the first discharge and 
5 charge process.
6
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1

2
3 Fig. S21. XRD patterns of the Cu-TABQ electrode during the first cycle.
4
5
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1

2
3
4 Fig. S22 Discharge/charge curves of the first cycle at 50 mA g-1 in the voltage range 
5 from 0.1 to 3.9 V.
6  
7
8
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1
2

3
4
5 Fig. S23 Schematic diagram of insertion/extraction of Na+ in Cu-TABQ in the voltage 
6 range from 0.1 to 3.9 V.
7
8
9

10
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1

2
3 Fig. S24 EIS spectrum of Cu-TABQ at open-circuit voltage before test; (b) Relationship 
4 between Z' and ω−1/2 in the low-frequency of EIS of Cu-TABQ at open-circuit voltage 
5 before test. 
6
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1 Table S1. Atomic coordinates of Cu-TABQ.
2

atom occ. site x y z

C1 1 1a 0.28329 0.60239 0.89772

C2 1 1a 0.71671 0.39761 0.10228

C3 1 1a 0.39761 0.71671 0.10228

C4 1 1a 0.60239 0.28329 0.89772

C5 1 1a 0.38332 0.38332 0.78098

C6 1 1a 0.61668 0.61668 0.21902

H1 1 1a 0.99471 0.64473 0.67734

H2 1 1a 0.00529 0.35527 0.32266

H3 1 1a 0.35527 0.00529 0.32266

H4 1 1a 0.64473 0.99471 0.67734

N1 1 1a 0.08552 0.71179 0.83319

N2 1 1a 0.91448 0.28821 0.16681

N3 1 1a 0.28821 0.91448 0.16681

N4 1 1a 0.71179 0.08552 0.83319

O1 1 1a 0.28606 0.28606 0.59362

O2 1 1a 0.71394 0.71394 0.40638

Cu1 1 1a 0 0 0

Triclinic, a=6.98253 Å, b=6.98253 Å, c=3.22703 Å, α=γ=92.2166°, β=67.5636°, 
V=145.2689 Å3 (Rwp = 1.63%, Rp = 1.08%, χ2 = 1.89 ).

3
4
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1
2 Table S2. Elemental analysis (EA) results of Cu-TABQ. 

3
4
5

Weight ratio C% N% H% (Cu+O)%
Theoretical results 31.64 24.61 1.76 41.99

30℃-2h 31.56 23.23 2.44 42.77
60℃-2h 31.49 23.42 2.10 42.99

Experimental 
results

90℃-2h 31.38 23.71 2.31 42.6
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1 Table S3. Comparison of electrochemical performance of Cu-TABQ sample with 

2 reported Metal-organic cathodes in SIBs.

Sample
Voltage 
range [V 

vs.Na+/Na]

Discharge 
capacity[mAh 
g-1]/Current 
denstity[mA 

g-1]

Rate 
capability 
(mAh g-1)

Capacity 
retention

Refer
ence

Zn-HHTP 0.5-3.5 150/100 60/8.0 A g-1
90% (1000 

cycles)
0.1 A g-1

S6

Co-bqdc 0.01-2.5 264/100 178/1.0 A g-1
79% (1000 

cycles)
0.1 A g-1

S7

Ni-TTO 1.2-3.2 140/100 118/5.0 A g-1 83% (100 cycles)
0.1 A g-1 S8

Cu-TAPT 1.0-3.8 313.4/100 152/5.0 A g-1 97% (250 cycles)
1.0 A g-1 S9

CuTCNQ 2.0-4.1 255/20 / 89% (200 cycles)
0.05 A g-1 S10

Mn-DHBQ 0.01-2.5 261/100 129/2.0 A g-1 67% (500 cycles)
1.0 A g-1 S11

NiQAP 1.0-3.5 225.6/50 99.6/5.0 A g-1
91% (1000 

cycles)
1.0 A g-1

S12

HATN-SCu 0.01-3.0 231/100 82/5.0 A g-1 100% (10000 
cycles) 2.0 A g-1 S13

Co-HAB 0.5-3.0 291/50 152/12.0 A g-

1
95% (150 cycles)

4.0 A g-1 S14

O-pNaPC 0.01-2.0 140.7/100 56.9/2.0 A g-1 87% (200 cycles)
0.2 A g-1 S15

Cu-TABQ 1.0-3.0 322.9/50 198.8/4.0 A 
g-1

100% (700 
cycles)

2.0 A g-1

This 
work

3
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