Supporting Information

Controlling Primary Chain Dispersity in Network Polymers: Elucidating the Effect of Dispersity on Degradation

Takanori Shimizu^{a,c}, Richard Whitfield^{*a}, Glen R. Jones^a, Ibrahim O. Raji^b, Dominik Konkolewicz^b, Nghia P. Truong^a, Athina Anastasaki^{*a}.

^aLaboratory of Polymeric Materials, Department of Materials, Vladimir Prelog Weg 5, ETH Zurich, 8093 Zurich, Switzerland.

^bDepartment of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA.

^cScience & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan.

Contents

Materials and Instrumentation	3
General Procedures: Degradable crosslinker synthesis (N,N'-Cystaminebis(acrylamide))	4
General Procedures: PET RAFT Polymerisation	4
Linear Polymer Synthesis	4
General Procedures: Purification and Degradation	5
Purification of PDMA/PCBA gels	5
Equilibrium Water Content	5
Gel Cleavage using DTT	5
Gel Degradation Test with Glutathione	5
Additional Characterization Data	6
Dispersity Control in Linear Polymers	6
Crosslinker Concentration Optimisation	10
Dispersity Controlled Network Degradation	13
Gel Degradation Simulation with Datasets from SEC	20

Materials and Instrumentation

All materials were purchased from Sigma Aldrich or Fischer Scientific and used as received unless otherwise stated. All monomers were filtered through a column of basic alumina prior to usage.

Light irradiation was performed using a handmade photoreactor. RGB photodiode tape was coated around the inside of a glass cylinder (F 110 mm, H 180 mm). Reactions were irradiated with blue light (Light intensity 4.8 mW/cm²).

¹**H NMR** spectra were recorded on a Bruker DPX-300 spectrometer in deuterated chloroform (CDCl₃). Chemical shifts are given in ppm downfield from tetramethylsilane referenced to residual CHCl₃ protons. Monomer conversions were determined via ¹H NMR spectroscopy by comparing the integrals of monomeric vinyl protons to monomer and polymer signals.

Size exclusion chromatography (SEC) analysis of polymer samples was performed using a Shimadzu modular system comprising of a CBM-20A system controller, an SIL-20A automatic injector, a 10.0 μ m beadsize guard column (50 × 7.5 mm) followed by three KF-805L columns (300 × 8 mm, bead size: 10 μ m, pore size maximum: 5000 Å), an SPD-20A ultraviolet detector, and an RID-20A differential refractive-index detector. The temperature of the columns was maintained at 40 °C using a CTO-20A oven. The eluent was N,N-dimethylacetamide (HPLC grade, with 0.03% w/v LiBr) and the flow rate was kept at 1 mL/minute using an LC-20AD pump. A molecular weight calibration curve was produced using commercial narrow molecular weight distribution poly(methyl methacrylate) standards with molecular weights ranging from 5000 to 1.5 × 10⁶ Da.

UV-Vis spectrometry was performed on a JASCO V-730 spectrophotometer equipped with STR-773 water thermostated cell holder and stirrer. Spectra were typically recorded from 400 to 1000 nm at a rate of 400 nm min⁻¹ at 25 °C.

General Procedures: Degradable crosslinker synthesis (N,N'-Cystaminebis(acrylamide))

In a 500 mL three-neck round bottomed flask, 11.3 g of cystamine dihydrochloride (50 mmol), 80 mL of water and 40 mL of 5M NaOH aq. 40 mL were added. The flask was placed under a continuous nitrogen atmosphere and cooled in an ice bath. Into a 100 mL dropping funnel, 10 mL of DCM and 16.2 mL of acryloyl chloride was added. This mixture was then added dropwise to the round bottom flask over 30 minutes. The reaction was stirred at 200 rpm overnight. A white solid formed which was collected via filtration. This solid was then dissolved in 200 mL of DCM and washed three times in water, before being dried with magnesium sulfate. The DCM was then removed under vacuum yielding 3.8g (29% yield) of white solid. ¹H NMR (300 MHz, DMSO-d6) d 8.51 (2H), 6.18 (4H), 5.62 (2H), 3.44 (4H), 2.85 (4H).

General Procedures: PET RAFT Polymerisation

Linear Polymer Synthesis

To a foil-wrapped 5 mL glass vial, 8.33 mg (1 eq.), 0.40 mL of dimethylacrylamide (120 eq.), 0.32 mL of DMF and 0.96 mL of water (80 vol% solvent) were added. A stock solution of eosin Y (EY) was prepared at 0.325 mg/ml and 0.32 mL (0.1046 mg, 0.005 eq.) was added to the glass vial. Various amounts of sulfuric acid (0, 0.43 μ L, 0.86 μ L and 5.16 μ L) were then added, depending on the desired target dispersity. The vial was then capped with a septum and was then deoxygenated via nitrogen bubbling for 15 minutes. Then foil was removed and the vial was put into the photoreactor on a stirrer. The reaction was irradiated with blue light for 18 hours with 200 rpm stirring. The reaction was then sampled for ¹H NMR and SEC, with SEC samples passed through a basic alumina column prior to analysis.

Synthesis of PDMA/PCBA networks

A glove bag was inflated and flushed with nitrogen for 30 minutes prior to the experiment and a double glass plated mould (8 x 8 x 0.3 cm) was prepared after pretreatment with SigmaCote. In parallel, to a 5 mL foil wrapped glass vial, 8.75 mg of CTA (1 eq.), 50.5 mg of CBA (6 eq.), 0.40 mL of dimethylacrylamide (120 eq.), 0.32 mL of DMF and 0.96 mL of water were added. A stock solution of eosin Y (EY) was prepared at 0.325 mg/ml and 0.32 mL (0.1046 mg, 0.005 eq.) was added to the glass vial. Various amounts of sulfuric acid (0, 0.43 μ L, 0.86 μ L and 5.16 μ L) were then added, depending on the desired target dispersity. The vial was then capped with a septum and deoxygenated by nitrogen bubbling for 15 minutes. The mixture was then transferred to the double glass plated mould with a silicone rubber spacer (1 or 3 mm in thickness) under a nitrogen atmosphere and sealed. The mould was then placed into the photoreactor and irradiated with blue light for 18 hours for gelation to occur.

General Procedures: Purification and Degradation

Purification of PDMA/PCBA gels

180 mg of gel was collected for DTT cleavage and equilibrium water content measurements. The remaining gel was placed into a petri dish containing 30 mL of distilled water and a lid was placed on it, allowing any eosin Y, sulfuric acid and DMF to diffuse out. After 24 hours, the water was replaced and this process was repeated twice. 0.3 mL of the extracted solutions were mixed with 0.3 mL of deuterated water, and this was analysed by ¹H NMR to determine the extent of monomer and polymer incorporation.

Equilibrium Water Content

150 mg of unpurified gel was extracted for 24 hours, 3 times in 3 mL of water to remove any unreacted species and swell the gel to its maximum. The gel was then freeze-dried to remove all water. By weighing before and after drying, EWC was calculated using the following equation. EWC (%) = $(W_s-W_d)/W_s \times 100$, where W_s and W_d are the weights of the swollen and dried gel, respectively.

Swelling Ratio

Swelling ratio (SR) was calculated using the following equations: $SR = (W_s/W_d)-1$ or SR = (1/(1-EWC)-1), where EWC is the equilibrium water content given as a decimal, rather than a percentage.

Gel Cleavage using DTT

In a 5 mL glass vial, 10 mg of DTT was dissolved in 2 mL of dimethylacetamide. The vial was then sealed with a septum and deoxygenated by bubbling with nitrogen for 15 minutes before the addition of 9.1 μ L of trimethylamine. In parallel, 30 mg of unpurified gel (1 equiv. of disulfide) and a stirrer bar was placed into a second vial. The vial was sealed with a septum and put under a nitrogen atmosphere for 15 minutes. 1.5 mL of the solution of DTT (16 equiv.) and TEA (16 equiv.) was then transferred into the vial containing the gel and the reaction commenced at 60°C for 24 hours. The solution was then passed through a column of alumina prior to size exclusion chromatography (SEC) analysis.

Gel Degradation Test with Glutathione

Three discs of 1 mm thickness and 10 mm diameter were punched out of the purified gel and each placed in a separate glass vial. In a separate vial, a 10 mM glutathione solution was prepared with 123 mg of glutathione dissolved in 40 mL of 0.1M PBS solution. 3 mL of this solution was added to each of the gels and the vials were stored at room temperature under full dissolution had occurred. The diameters of the gels were recorded periodically using a Vernier Calliper.

Additional Characterization Data

Dispersity Control in Linear Polymers

Entry ^[a]	[EY]	Time (h)	Conversion (%) ^[b]	М _{п (Theo.)} (Da) ^[с]	M _{n (SEC)}	M _{w (SEC)}	М_{Р (SEC)}	$\boldsymbol{ ilde{ heta}}^{[d]}$
1	None	4	0	-	-	-	-	-
2	0.005	4	95	9700	10500	16400	16100	1.56
3	0.02	4	94	9600	10100	15800	15400	1.58
4	0.04	4	75	7700	8400	14200	14000	1.69

Table S1: ¹H NMR and SEC data illustrating the polymerization of DMA with various amounts of Eosin Y (EY).

^[a] Reactions were performed with a target DP of 100. The volume ratio of H₂O:DMF (4:1) to DMA was maintained at 4:1 for all entries. ^[b] Conversion was measured by ¹H NMR. ^[c] Theoretical *M_n* was calculated based on conversion and the target DP. ^[d] Molecular weight and dispersity values were determined by SEC.

Figure S1: SEC data illustrating the polymerization of DMA with various amounts of Eosin Y. This data corresponds to entries 2, 3 and 4 in Table 1.

Figure S2: UV detector for high dispersity PDMA (Đ=1.60) demonstrating that all raft agent was consumed. **Table S2**: ¹H NMR and SEC data illustrating the chain extension of PDMA with DMA at various time points.

Entry ^[a]	Polymer	Time (h)	Conversion (%) ^[b]	<i>М</i> _n (Theo.) (Da) ^[С]	M _n (SEC)	M _w (sec)	M _P (SEC)	Đ ^[d]
1	PDMA macroCTA	-	98	10000	10100	15800	15400	1.57
2		2	13	11300	11400	17300	16800	1.51
3	P(DMA- <i>b</i> -	5	36	13600	14400	20000	18900	1.40
4	DMA)	12	82	18100	18800	24500	22900	1.30
5		27	>99	20100	20900	26700	24600	1.28

^[a] Reaction was performed with a target DP of 100. The volume ratio of H₂O:DMF (4:1) to DMA was maintained at 4:1 for all entries. ^[b] Conversion was measured by ¹H NMR. ^[c] Theoretical *M_n* was calculated based on conversion and the target DP. ^[d] Molecular weight and dispersity values were determined by SEC.

Entry	[EY]	Time (h)	Conversion (%)	<i>М</i> _n ^(Theo.) (Da)	M _n (SEC)	M _w (SEC)	M _P (SEC)	Ð
1		2	11	1400	-	-	-	-
2	0.005	4	17	2000	-	-	-	-
3		24	99	10100	10800	12700	12400	1.18
4		2	9	1200	-	-	-	-
5	0.02	4	11	1400	-	-	-	-
6		19	60	6200	6100	7700	7700	1.26
7		44	99	10200	11000	13300	12900	1.20
8		2	13	1600	-	-	-	-
9	0.04	4	14	1700	-	-	-	-
10		21	22	2500	-	-	-	-

Table S3: ¹H NMR and SEC data illustrating the polymerization of DMA with 3 equivalents of acid and various amounts of Eosin Y (EY).

^[a] Reactions were performed with a target DP of 100. The volume ratio of H₂O:DMF (4:1) to DMA was maintained at 4:1 for all entries. ^[b] Conversion was measured by ¹H NMR. ^[c] Theoretical *M_n* was calculated based on conversion and the target DP. ^[d] Molecular weight and dispersity values were determined by SEC.

Figure S3: SEC data illustrating the polymerization of DMA with 3 equivalents of acid and various amounts of Eosin Y. This data corresponds to entries 3 and 7 in Table 2.

Figure S4: UV-Vis Spectrometry showing a reduced absorption of EY in the presence of sulphuric acid (150 equiv.)

Table S4:	¹ H NMR	and SEC	data illustra	ating dispe	ersity cont	rol for the	e polyme	erization of	DMA	with	various
amounts o	f acid.										

Entry ^[a]	[H2SO4]	Conversion (%) ^[b]	М _{п (Theo.)} (Da) ^[с]	M _{n (SEC)}	M _{w (SEC)}	M _P (SEC)	Đ ^[d]
1	0	>99	12700	13200	20900	19800	1.58
2	0.5	97	12300	13300	17900	17100	1.34
3	1.0	97	12300	13200	15900	15400	1.20
4	1.5	97	12300	12700	14900	14500	1.18
5	3.0	97	12300	12500	14800	14400	1.18

^[a] Reactions were performed with a target DP of 125 and 0.005 equivalents of EY. The volume ratio of H₂O:DMF (4:1) to DMA was maintained at 4:1 for all entries. ^[b] Conversion was measured by ¹H NMR. ^[c] Theoretical M_n was calculated based on conversion and the target DP. ^[d] Molecular weight and dispersity values were determined by SEC.

Crosslinker Concentration Optimisation

Figure S5: Full ¹H NMR spectra of the extracted solutions obtained from the gels prepared with various amounts of crosslinker (CL). These are compared to a linear homopolymer of PDMA. This data corresponds to Figure 2 and demonstrates that all monomer or crosslinker had reacted.

Scheme S1: The synthesis of the degradable crosslinker.

Figure S6: 1H NMR illustrating the synthesis of the degradable crosslinker (CBA)

Figure S7: Photos illustrating the double-plated glass mould and the reaction set-up within the glove bag.

Figure S8: Full ¹H NMR spectra of the extracted solutions obtained from the high primary dispersity gel. 6 equivalents of crosslinker were used for the synthesis.

Figure S9: A photo of a purified gel, illustrating an absence of acid or photocatalyst.

Dispersity Controlled Network Degradation

Scheme S2: A scheme illustrating how DTT degrades a disulphide bond.

Figure S10: Full ¹H NMR spectra of the extracted solutions obtained from the low primary dispersity gel. 6 equivalents of crosslinker and 3 equivalents of acid were used for the synthesis.

Figure S11: A comparison between a directly synthesised linear homopolymer (DP120, D = 1.20) and the corresponding linear polymer obtained after network degradation (DP120 +DP6 Crosslinker, D = 1.28).

Table S5: Data obtained from the degradation of high primary chain dispersity (D = 1.60) network polymer in glutathione. The target DP was 120.

D = 1.60,	Target DP120				
Day	Run 1	Run 2	Run 3	Average	Standard deviation
0	9.40	9.70	9.66	9.59	0.16
1	9.62	9.80	9.80	9.74	0.10
2	9.80	9.82	9.84	9.82	0.02
3	10.10	10.28	10.12	10.17	0.10
4	10.42	10.40	10.30	10.37	0.06
7	11.02	11.00	11.00	11.01	0.01
8	11.32	11.40	11.32	11.35	0.05
9	11.60	11.74	11.60	11.65	0.08
10	11.88	11.80	11.88	11.85	0.05
11	12.12	12.00	12.10	12.07	0.06
14	12.90	13.06	12.96	12.97	0.08
15	13.34	13.30	13.28	13.31	0.03
16	13.74	13.62	13.80	13.72	0.09

Đ = 1.60, Target DP120

Table S6: Data obtained from the degradation of medium primary chain dispersity (D = 1.55) network polymer in glutathione. The target DP was 120.

D = 1.55, Target DP120								
Day	Run 1	Run 2	Run 3	Average	Standard deviation			
0	9.60	9.60	9.60	9.60	0.00			
1	10.02	9.82	9.90	9.91	0.10			
2	10.20	10.12	10.18	10.17	0.04			
3	10.60	10.40	10.44	10.48	0.11			
6	11.20	11.28	11.12	11.20	0.08			
7	11.40	11.40	11.28	11.36	0.07			
8	11.52	11.56	11.60	11.56	0.04			
9	11.70	11.88	11.76	11.78	0.09			
10	11.98	12.26	11.98	12.07	0.16			
13	12.92	13.30	12.90	13.04	0.23			
14	13.42	13.90	13.38	13.57	0.29			

Table S7: Data obtained from the degradation of medium primary chain dispersity (D = 1.40) network polymer in glutathione. The target DP was 120.

<i>Ð</i> = 1.40, ⁻	Target DP120	1			
Day	Run 1	Run 2	Run 3	Average	Standard deviation
0	9.60	9.64	9.62	9.62	0.02
1	9.72	9.72	9.78	9.74	0.03
2	9.90	10.00	10.08	9.99	0.09
3	10.20	10.38	10.30	10.29	0.09
4	10.46	10.68	10.70	10.61	0.13
7	11.30	11.80	11.70	11.60	0.26
8	11.70	11.90	12.08	11.89	0.19
9	12.16	12.34	12.56	12.35	0.20
10	12.70	12.88	12.96	12.85	0.13
11	13.50	13.68	13.70	13.63	0.11

Table S8: Data obtained from the degradation of low primary chain dispersity (D = 1.28) network polymer in glutathione. The target DP was 120.

<i>Ð</i> = 1.28, Ta	arget DP120				
Day	Run 1	Run 2	Run 3	Average	Standard deviation
0	9.38	9.50	9.24	9.37	0.13
3	10.26	10.42	10.40	10.36	0.09
4	10.60	10.70	10.80	10.70	0.10
5	10.98	11.10	11.02	11.03	0.06
6	11.24	11.60	11.32	11.39	0.19
7	11.48	12.02	11.80	11.77	0.27
10	13.20	13.41	13.60	13.41	0.20

Table S9: Data obtained from the degradation of low primary chain dispersity (D = 1.28) network polymer in glutathione. The target DP was 132.

<i>Đ</i> = 1	.28, Target D	P132			
Day	Run 1	Run 2	Run 3	Average	Standard deviation
0	9.54	9.52	9.44	9.50	0.05
3	10.34	10.40	10.48	10.41	0.07
4	10.60	10.80	10.80	10.73	0.12
5	10.96	11.00	11.06	11.01	0.05
6	11.22	11.44	11.46	11.37	0.13
7	11.68	12.02	11.96	11.89	0.18
10	13.30	13.80	13.78	13.63	0.28

Table S10: Data obtained from the degradation of low primary chain dispersity (D = 1.28) network polymer in glutathione. The target DP was 140.

<i>Đ</i> = 1.28, Target DP140								
Day	Run 1	Run 2	Run 3	Average	Standard deviation			
0	9.54	9.52	9.56	9.54	0.02			
3	10.30	10.40	10.50	10.40	0.10			
4	10.62	10.70	10.80	10.71	0.09			
5	10.94	10.94	11.02	10.97	0.05			
6	11.12	11.42	11.56	11.37	0.22			
7	11.56	11.96	12.04	11.85	0.26			
10	12.94	13.50	13.60	13.35	0.36			

Figure S12: Line graphs showing the degradation of network polymers with consistent dispersity (D = 1.28) and various DPs (120 is green, 132 is black and 144 is red)

Table S11: Data obtained from the degradation of medium primary chain dispersity (D = 1.40) network polymer in glutathione. The target DP was 132.

<i>Ð</i> = 1.40, Ta	<i>D</i> = 1.40, Target DP132														
Day	Run 1	Run 2	Run 3	Average	Standard deviation										
0	9.52	9.70	9.64	9.62	0.09										
1	9.80	9.70	9.70	9.73	0.06										
2	9.92	10.10	10.08	10.03	0.10										
3	10.38	10.42	10.52	10.44	0.07										
4	10.90	10.78	10.90	10.86	0.07										
7	11.30	11.66	11.94	11.63	0.32										
8	11.70	12.12	12.38	12.07	0.34										
9	12.10	12.86	12.66	12.54	0.39										
10	12.70	13.46	13.24	13.13	0.39										
11	13.20	Dissolved	Dissolved												

Table S12: Data obtained from the degradation of medium primary chain dispersity (D = 1.40) network polymer in glutathione. The target DP was 140.

<i>Ð</i> = 1.40, T	<i>Đ</i> = 1.40, Target DP140														
Day	Run 1	Run 2	Run 3	Average	Standard deviation										
0	9.52	9.46	9.80	9.59	0.18										
1	9.76	9.84	9.84	9.81	0.05										
2	9.84	10.08	10.04	9.99	0.13										
3	10.50	10.72	10.62	10.61	0.11										
4	10.60	10.80	10.86	10.75	0.14										
7	11.62	11.98	11.96	11.85	0.20										
8	12.14	12.20	12.34	12.23	0.10										
9	12.42	12.96	12.88	12.75	0.29										
10	13.32	13.98	13.90	13.73	0.36										
11	13.4	Dissolved	Dissolved												

Figure S13: Line graphs showing the degradation of network polymers with consistent dispersity (D = 1.28) and various DPs (120 is green, 132 is red and 144 is black)

Table S13: Anova analysis comparing days 8, 9 and 10 of various primary chain dispersity networks (D = 1.28, 1.40, 1.55 and 1.60). All target DP of 120. P Values are less than 0.01, suggesting a negligible chance of this variation being due to chance.

ANOVA, Day 8						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.455467	2	0.227733333	3 17.13712375	0.003307	5.143253
Within Groups	0.079733	6	0.013288889)		
Total	0.5352	8				
ANOVA, Day 9						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.845867	2	0.422933	23.04116	0.001528913	5.14325285
Within Groups	0.110133	6	0.018356			
Total	0.956	8				

ANOVA, Day 10

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	4.603033	3	1.534344	71.25438596	4.11E-06	4.066181
Within Groups	0.172267	8	0.021533			
Total	4.7753	11				

Table S14: Anova analysis comparing days 6, 7 and 10 of various primary molecular weight networks of D = 1.28. P Values are high, suggesting a high chance of this variation being due to chance.

ANOVA, Day 6						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.000622	2	0.000311	0.008974	0.991079	5.143253
Within Groups	0.208	6	0.034667			
Total	0.208622	8				
ANOVA, Day 7						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.023022	2	0.011511	0.199846	0.824094	5.143253
Within Groups	0.3456	6	0.0576			
Total	0.368622	8				
ANOVA, Day 10						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.1304	2	0.0652	0.792545	0.494962	5.143253
Within Groups	0.4936	6	0.082267			
Total	0.624	8				

Table S15: Anova analysis comparing days 6, 7 and 10 of various primary molecular weight networks of D = 1.40. P Values are high, suggesting a high chance of this variation being due to chance.

ANOVA, Day 8						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.166756	2	0.083378	1.521492	0.292091	5.143253
Within Groups	0.3288	6	0.0548			
Total	0.495556	8				
ANOVA, Day 9						
Source of Variation	SS	df	MS	F	P-value	F crit
Determent Oregona						
Between Groups	0.240356	2	0.120178	1.286394	0.342837	5.143253
Within Groups	0.240356 0.560533	2 6	0.120178 0.093422	1.286394	0.342837	5.143253
Within Groups Total	0.240356 0.560533 0.800889	2 6 8	0.120178 0.093422	1.286394	0.342837	5.143253
Within Groups Total ANOVA, Day 10	0.240356 0.560533 0.800889	2 6 8	0.120178 0.093422	1.286394	0.342837	5.143253

Potwoon Croups	1.228356	2	0.614178	6.1336	0.035435	5.143253	
Within Groups	0.6008	6	0.100133				
Total	1.829156	8					

Gel Degradation Simulation with Datasets from SEC

3 datasets were considered: a high dispersity system, a low dispersity system, and a monodisperse system. The high and low dispersity data sets were obtained directly from SEC files, before being directly unweighted and rounded. This generated frequency tables with molecular weight vs. frequency. The data was then weighted based on an average of 6 crosslinkers per chain, in each case, to give a total of ~1000000 chains. The monodisperse data set was generated by setting the number of crosslinkers per chain as 6 and the frequency as 1000000.

Gel degradation was simulated using a simple Python program, whereby crosslinks in the sample are chosen at random and 'broken'. The frequency table was imported into Python and converted into a list where each individual chain was represented by an integer denoting its number of crosslinks. Degradation was simulated in an iterative manner as follows:

- 1. A random index in the list is chosen (one chain is selected)
- 2. If the integer value at this index is below 1, a new index is selected (if a chain has no crosslinks, another is chosen)
- 3. 1 is subtracted from the integer value at this index (one crosslink is broken)
- 4. A new index is chosen and the process iterates until all crosslinks are broken.

As the total number of crosslinks in the data decreases, a 'snapshot' of the distribution of crosslinks in the sample is taken at increments of 5%.

Figure S14: SEC traces of high and low dispersity PDMA (1.18 and 1.60) obtained from PET-RAFT polymerization that were subsequently used for the simulations.

Table S16: Data obtained from the simulated degradation of high dispersity PDMA. Rows in the table give the number of chains with more than x crosslinkers, for various degradation percentages.

11 99907 9700 970		0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%
12 10000 1	≥1	999997	970871	937985	902088	863199	822049	778091	732683	684759	635448	584520	532034	477966	422303	365119	306492	247034	186154	124378
1 1	≥2	909948	870333	830439	789855	748036	705792	662871	619155	574866	529726	483748	437504	390647	342903	295039	246599	197707	148248	98503
i 68508 6804 6804 6804 6808 5808 5808 580	≥3	780648	742642	704506	666535	628135	589540	550740	511623	472829	433725	394416	354901	315415	275887	236334	196993	157329	117745	78082
b 59877 59848 69878 5988 5988 5988 598	≥4	655306	620915	586419	551747	517646	483870	450541	417180	383993	350932	318295	285335	252803	220567	188478	156526	124706	93313	61868
int 47300 4700 4900 4900 1000 <th< td=""><td>≥5</td><td>539777</td><td>509404</td><td>479389</td><td>449693</td><td>420800</td><td>392130</td><td>364173</td><td>336119</td><td>308772</td><td>281687</td><td>254597</td><td>227743</td><td>201392</td><td>175379</td><td>149631</td><td>123961</td><td>98744</td><td>73796</td><td>48801</td></th<>	≥5	539777	509404	479389	449693	420800	392130	364173	336119	308772	281687	254597	227743	201392	175379	149631	123961	98744	73796	48801
17 3078 5078 5	26	437909	412060	386821	362301	338145	314647	291527	268681	246335	224018	202323	180896	159844	138901	118305	98171	78236	58163	38592
bit 20202 20203 40202 20202 12522 11560 1	≥7	350784	329756	309196	289326	269982	250787	232203	213974	195759	178071	160621	143478	126584	109967	93646	77688	61766	46131	30739
bit 22110 00000 16500 16700 1	≥8	280320	263338	246725	230545	214847	199402	184263	169532	155100	140943	127046	113487	99969	87010	74177	61459	49000	36602	24633
int int <td>≥9</td> <td>223143</td> <td>209009</td> <td>195502</td> <td>182562</td> <td>170018</td> <td>157643</td> <td>145710</td> <td>134100</td> <td>122615</td> <td>111355</td> <td>100523</td> <td>89685</td> <td>79158</td> <td>68840</td> <td>58639</td> <td>48592</td> <td>38769</td> <td>29170</td> <td>19647</td>	≥9	223143	209009	195502	182562	170018	157643	145710	134100	122615	111355	100523	89685	79158	68840	58639	48592	38769	29170	19647
11 19868 10708 6870 6770 6870 6770 6870 6770 6770 6	≥10	175239	164626	154263	144070	134206	124508	115048	105786	96617	87956	79353	71034	62736	54487	46417	38546	30806	23214	15682
11 10882 10884 1888 7884 7884 7885 7895 7895 7	≥11	139558	130745	122381	114251	106400	98683	91077	83698	76633	69677	62857	56195	49623	43227	36844	30607	24480	18491	12479
11 8885 8186 7136 7237 2347 1686 1692 1695 8333 8335 8735 2345 1245 1	≥12	109862	103083	96424	89994	83920	77845	71851	66215	60597	55111	49737	44590	39354	34284	29329	24390	19556	14737	10021
int B333 B436 B530 4168 3912 3469 2733 2734 2734 180 1744 1803 1404 000 7516 1760 4070 0730 3819 5776 3322 3105 2107 2733 2130 1740 1224 1108 1962 7848 673 7848 784 785 7848 7850 1744 1129 1750 1750 1751 1750 1751 1750 1751 1750 1751 1750 1751 1750 1751 <td>≥13</td> <td>86856</td> <td>81388</td> <td>76186</td> <td>71206</td> <td>66401</td> <td>61674</td> <td>57055</td> <td>52397</td> <td>47940</td> <td>43644</td> <td>39396</td> <td>35325</td> <td>31306</td> <td>27337</td> <td>23447</td> <td>19566</td> <td>15602</td> <td>11805</td> <td>8031</td>	≥13	86856	81388	76186	71206	66401	61674	57055	52397	47940	43644	39396	35325	31306	27337	23447	19566	15602	11805	8031
bit 54/79 51/70 48/74 48/74 48/74 48/74 48/74 48/74 48/74 48/74 48/74 48/74 48/74 48/74 2274 2071 1794 18/25 18/84 18/85 18/8	≥14	68338	64263	60355	56414	52543	48861	45139	41568	38112	34687	31415	28205	25018	21881	18711	15535	12410	9462	6393
infe 4307 4308 3238 9319 3332 9310 3273 2473 2139 2307 1780 1682 1984 1984 1984 1984 1987 9784 6781	≥15	54479	51201	48114	44951	41843	38921	36017	33190	30414	27733	25137	22574	19961	17482	14933	12464	10005	7515	5127
111 34288 2294 2333 2841 2820 24107 21200 2115 1153 1546 1123 1123 1173 9717 6831 4783 2488 219 21972 20641 14302 1153 <t< td=""><td>≥16</td><td>43507</td><td>40793</td><td>38198</td><td>35716</td><td>33332</td><td>31035</td><td>28723</td><td>26478</td><td>24345</td><td>22243</td><td>20077</td><td>17940</td><td>15925</td><td>13964</td><td>11908</td><td>9962</td><td>7934</td><td>5978</td><td>4022</td></t<>	≥16	43507	40793	38198	35716	33332	31035	28723	26478	24345	22243	20077	17940	15925	13964	11908	9962	7934	5978	4022
11 27002 2681 1942 1972 1824 1946 1949 1723 1142 1014 1979 1975 6754 4750 2773 1942 17025 1654 15473 1533 1533 1533 1535 1656 466 566 566 465 303 312 225 190 123 1717 1715 1733 1767 1070 607 614 576 454 466 356 356 352 220 1	≥17	34268	32297	30333	28413	26520	24707	22900	21159	19376	17655	15948	14300	12734	11129	9517	7870	6343	4798	3138
110 1107 1108 11082 11083 11084 11020 11020 11020 11020 11070 10707 1070 10707 1070 1070 10707 1070 1070 10707 1070 1070 10707 1070 1070 1070 1070 1070 1070 <	≥18	27602	25943	24330	22789	21285	19752	18264	16818	15456	14089	12733	11426	10119	8789	7596	6315	4998	3783	2498
120 17825 1683 15473 11448 1238 1125 11057 1313 1233 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1117 1044 903 8238 8071 8071 6314 6514 6454 6454 5464 5454 3232 2203 1524 1107 224 8701 6838 9667 6281 6314 624 510 4684 344 324 327 218 127 218 1444 122 914 128 1413 128 1414 122 914 4164 323 227 218 453 328 2067 1800 1825 1413 928 544 466 323 123 1414 120 918 125 148 1315 1414 120 918 123 1416 124 124 124 124 124 124 124	≥19	21972	20681	19402	18158	16930	15693	14550	13470	12369	11299	10203	9149	8107	7070	6067	5041	4005	2975	1994
221 1997 1938 1233 1123	≥20	17625	16534	15473	14463	13454	12536	11655	10826	9967	9078	8198	7340	6501	5686	4827	4001	3177	2372	1595
11197 10140 9030 6271 677 740 6740 5740 5740 4534 4056 3541 2201 1220 1620 1220 1620 1220 1620 1220 1620 1220 1620 1620 1620 2827 2861 2221 1660 6286 4341 4310 2877 2370 2361 3160 2861 2221 1651 1632 1614 1231 1646 4314 228 560 5310 4886 4841 213 2977 2547 2306 2081 1480 1313 1434 688 486 327 228 2827 2867 3570 2570 1261 1461 1328 1188 1032 144 468 337 345 345 232 246 745 643 433 345 345 345 345 345 345 345 345 345 345 345 345	≥21	13977	13132	12333	11529	10767	10039	9343	8637	7925	7190	6544	5863	5166	4505	3806	3182	2535	1909	1293
b23 8870 8830 7898 7493 6024 5444 5965 5474 5070 4548 4089 3881 3231 2827 2411 2000 1624 121 6400 575 225 5660 5510 4886 4656 4314 4018 3732 3452 3187 2500 2681 1231 1031 1231 1034 663 544 566 226 4457 2500 2270 2214 2372 2379 2179 1366 1680 1518 1435 143 662 546 433 312 216 223 2157 2364 1530 1245 1141 1336 126 1660 158 662 546 433 322 246 170 230 1497 1330 1562 158 456 459 357 353 352 150 451 450 451 450 451 450	≥22	11197	10549	9903	9293	8671	8077	7460	6907	6314	5749	5184	4634	4086	3545	3043	2532	2003	1524	1040
AA PA BAP SA/A	≥23	8870	8338	7896	7403	6924	6444	5965	5474	5017	4548	4068	3661	3231	2827	2411	2020	1624	1219	842
bed bed <td>224</td> <td>7121</td> <td>6690</td> <td>6289</td> <td>58/7</td> <td>54/2</td> <td>5060</td> <td>4682</td> <td>4321</td> <td>3987</td> <td>3614</td> <td>3264</td> <td>2940</td> <td>2601</td> <td>2282</td> <td>1954</td> <td>1614</td> <td>1292</td> <td>991</td> <td>6/5</td>	224	7121	6690	6289	58/7	54/2	5060	4682	4321	3987	3614	3264	2940	2601	2282	1954	1614	1292	991	6/5
4482 4487 4487 3568 3608 273 253 273 2508 2508 1632 1632 1639 1632 1639 1632 1639 1634 670 670 683 480 3774 228 2827 2667 2520 2370 2211 2026 1049 1755 1165 1135 1143 633 634 644 406 2772 228 2157 2261 1026 1146 1032 1465 1086 646 646 643 433 32 216 1845 1742 1630 124 1326 660 544 478 425 436 322 226 120 233 919 667 661 662 570 521 477 426 436 437 331 265 153 146 133 131 135 136 136 107 135 148 133 <t< td=""><td>≤25 >00</td><td>5660</td><td>5310</td><td>4900</td><td>4050</td><td>4341</td><td>4016</td><td>3732</td><td>3452</td><td>3100</td><td>2907</td><td>2041</td><td>2360</td><td>2063</td><td>1/0/</td><td>1537</td><td>1295</td><td>1063</td><td>010</td><td>551</td></t<>	≤25 >00	5660	5310	4900	4050	4341	4016	3732	3452	3100	2907	2041	2360	2063	1/0/	1537	1295	1063	010	551
Lat Lat <thlat< th=""> <thlat< th=""> <thlat< th=""></thlat<></thlat<></thlat<>	>27	3564	3374	3150	2065	2748	2573	2370	2100	1008	1823	1649	1488	1315	1143	003	834	688	408	323
223 2157 2036 1988 1768 1634 1521 1985 1185 1099 942 646 746 646 548 433 312 216 330 1144 11302 1146 1301 1205 1114 1030 944 860 758 633 602 518 436 332 246 1707 331 1477 1386 1000 1244 1012 051 652 670 534 439 433 342 246 170 339 987 591 672 777 660 591 526 439 439 331 265 199 140 108 108 108 108 108 108 141 174 130 133 105 661 53 105 661 53 105 661 53 40 131 113 101 93 62 65 54 43 <td< td=""><td>≥28</td><td>2827</td><td>2687</td><td>2520</td><td>2370</td><td>2211</td><td>2058</td><td>1904</td><td>1755</td><td>1590</td><td>1461</td><td>1328</td><td>1188</td><td>1052</td><td>925</td><td>785</td><td>663</td><td>544</td><td>406</td><td>272</td></td<>	≥28	2827	2687	2520	2370	2211	2058	1904	1755	1590	1461	1328	1188	1052	925	785	663	544	406	272
1846 1742 1635 1526 1466 1216 1144 103 934 860 768 663 662 518 436 332 246 170 131 1475 1360 1300 124 110 1049 984 908 681 626 666 449 345 345 249 149 100 333 919 687 819 766 715 682 622 570 521 477 429 381 361 301 257 205 163 153 667 587 567 561 521 682 620 570 521 473 311 314 316 316 130 163 16	≥29	2293	2157	2036	1898	1768	1634	1521	1395	1286	1165	1059	942	846	745	646	548	433	312	216
13.1 14.75 13.86 10.00 12.14 11.12 10.15 981 680 78 662 666 6.44 4.76 4.25 4.56 2.99 14.9 14.9 23.2 11170 1100 10.49 984 908 87 77 620 526 439 387 331 255 199 14.9 14.9 23.4 742 701 662 67.6 51 432 341 314 272 234 138 105 135 105 662 67.6 51 48.5 34.7 37.8 341 314 272 234 138 107 135 105 136 136 137 137 135 106 137 137 138 130 316 317 138 130 136 137 138 130 138 131 131 131 136 137 140 132 131 131 131	≥30	1845	1742	1635	1526	1406	1301	1205	1114	1030	934	860	758	683	602	518	436	332	246	170
1170 1110 1040 964 908 845 752 777 650 591 526 430 430 337 231 265 199 140 108 233 919 667 819 766 715 662 622 570 521 477 420 331 225 163 <td>≥31</td> <td>1475</td> <td>1386</td> <td>1300</td> <td>1214</td> <td>1132</td> <td>1051</td> <td>981</td> <td>895</td> <td>818</td> <td>736</td> <td>662</td> <td>606</td> <td>544</td> <td>478</td> <td>425</td> <td>345</td> <td>259</td> <td>192</td> <td>129</td>	≥31	1475	1386	1300	1214	1132	1051	981	895	818	736	662	606	544	478	425	345	259	192	129
333 919 867 819 766 715 662 622 670 621 477 429 331 331 331 237 236 153 123 861 234 742 701 662 624 539 561 521 486 446 339 349 322 266 270 248 275 190 166 133 106 661 561 238 477 484 420 390 356 304 272 226 270 248 174 163 103 108 67 49 222 288 297 280 282 241 202 185 132 147 148 133 101 69 65 34 222 288 297 230 221 140 132 161 161 161 161 161 161 161 161 161 161 <td< td=""><td>≥32</td><td>1170</td><td>1110</td><td>1049</td><td>984</td><td>908</td><td>845</td><td>782</td><td>717</td><td>660</td><td>591</td><td>526</td><td>485</td><td>439</td><td>387</td><td>331</td><td>265</td><td>199</td><td>149</td><td>108</td></td<>	≥32	1170	1110	1049	984	908	845	782	717	660	591	526	485	439	387	331	265	199	149	108
b24 742 701 662 624 576 500 452 440 373 341 341 272 234 188 170 135 105 666 555 567 551 521 486 470 386 304 222 226 20 245 100 166 138 107 13 37 378 330 300 366 281 262 212 230 17 147 131 117 98 79 67 49 327 378 378 230 262 214 228 213 130 131	≥33	919	867	819	766	715	662	622	570	521	477	429	391	351	301	257	205	163	123	88
bit 597 691 521 486 448 447 386 349 322 296 270 286 215 190 166 136 107 81 507 586 477 486 420 300 366 326 326 259 216 173 147 131 117 98 79 67 49 327 378 353 300 306 281 282 259 214 133 117 191 193 163 65 55 34 227 388 247 228 242 228 241 202 185 169 140 92 65 61 53 34 101 98 92 65 64 38 34 28 25 18 11 93 93 21 16 66 66 66 66 66 66 66 66 67 68	≥34	742	701	662	624	578	539	500	452	404	373	341	314	272	234	198	170	135	105	66
288 477 448 420 390 356 304 272 280 241 216 144 174 153 133 108 85 61 383 377 378 330 300 281 251 223 29 147 147 111 117 18 79 853 304 306 281 226 282 241 228 221 228 18 170 183 117 18 75 61 53 30 21 121 242 228 231 169 157 148 138 166 92 67 61 53 40 21 16 11 11 101 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 11 11 11 11 11 11	≥35	597	561	521	486	458	417	386	349	322	296	270	248	215	190	166	136	107	81	50
378 378 333 330 306 281 173 181 113 117 98 79 67 49 32 283 242 228 213 198 181 170 169 121 106 92 65 61 53 40 31 13 401 150 169 161 162 113 166 65 66 67 68 50 67 98 63 40 31 16 16 16 66 66 66 67 68 50 47 38 36 38 38 38 38 38 38 38 36 36 36 36 36 36 36 38 36 25 11 68 37 38 36 31 3	≥36	477	448	420	390	356	326	304	272	259	241	218	194	174	153	133	108	85	61	38
base 297 280 282 241 282 242 282 243 196 140 133 101 901 92 65 65 34 22 289 242 228 228 228 228 238 198 181 170 106 147 129 121 106 92 85 75 61 53 40 31 19 400 167 148 170 105 147 129 121 105 85 75 61 53 47 39 30 21 12 410 132 132 147 105 86 61 55 36 47 43 38 29 27 22 17 13 8 5 443 94 94 80 77 72 68 61 55 34 47 43 38 29 27 22 17 </td <td>≥37</td> <td>378</td> <td>353</td> <td>330</td> <td>306</td> <td>281</td> <td>265</td> <td>251</td> <td>233</td> <td>219</td> <td>196</td> <td>173</td> <td>147</td> <td>131</td> <td>117</td> <td>98</td> <td>79</td> <td>67</td> <td>49</td> <td>32</td>	≥37	378	353	330	306	281	265	251	233	219	196	173	147	131	117	98	79	67	49	32
S39 242 228 213 199 181 170 160 147 120 121 106 92 85 75 61 53 40 31 199 440 187 175 169 157 148 136 136 166 65 86 77 68 59 47 39 30 21 12 k11 150 140 132 121 117 105 66 89 66 48 38 34 28 25 16 11 66 53 47 43 38 24 24 12 13 8 5 53 47 43 38 24 24 12 13 8 5 53 47 43 38 24 24 21 16 13 12 6 38 34 28 24 21 13 48 5 11 8 5 13 14 13 28 24 24 24 24 24 24	≥38	297	280	262	241	228	214	202	185	169	148	133	113	101	93	82	65	55	34	22
Add 187 1175 169 157 143 128 113 106 165 166 167 168 50 47 39 30 21 127 441 150 140 132 121 117 105 66 86 72 67 61 54 46 38 34 28 25 18 11 66 61 56 53 47 43 38 24 28 25 18 11 66 53 34 38 28 24 21 16 13 12 6 3 244 74 69 64 61 55 53 44 11 38 36 34 28 21 16 13 12 6 3 245 57 53 52 47 42 41 36 32 28 21 10 13 12 14 18 3 22 21 16 13 12 6 3 3 0 <t< td=""><td>≥39</td><td>242</td><td>228</td><td>213</td><td>198</td><td>181</td><td>170</td><td>160</td><td>147</td><td>129</td><td>121</td><td>106</td><td>92</td><td>85</td><td>75</td><td>61</td><td>53</td><td>40</td><td>31</td><td>19</td></t<>	≥39	242	228	213	198	181	170	160	147	129	121	106	92	85	75	61	53	40	31	19
A41 150 140 122 121 117 110 46 80 81 62 61 54 64 54 64 54 64 58 56 48 38 31 20 16 1 6 842 191 111 102 94 90 82 73 68 64 65 66 48 38 28 22 17 13 8 5 844 74 69 64 61 55 53 44 41 38 38 24 21 16 13 12 6 3 34 5 14 14 38 36 24 24 21 16 13 12 6 3 3 20 13 14 12 14 8 5 1 14 12 14 18 17 15 11 11 9 13 9 8 7 7 5 3 0 0 0 0 0 0 0	≥40	187	175	169	157	148	136	128	113	106	95	86	77	68	59	47	39	30	21	12
ava: 119 111 102 94 80 61 56 50 90 50 50 50 50 20 20 20 10 11 60 43 94 80 80 77 72 68 61 55 53 47 43 38 29 27 22 17 13 8 5 b44 74 68 61 55 53 44 41 38 26 24 21 16 13 12 6 3 b45 57 53 52 47 42 41 36 32 28 24 21 16 13 12 6 3	241	150	140	132	121	117	105	96	89	81	72	67	61	54	46	38	31	26	16	6
basis basis <th< td=""><td>>42</td><td>04</td><td>90</td><td>102</td><td>94 77</td><td>90</td><td>62</td><td>73 61</td><td>60 EE</td><td>64 E2</td><td>30</td><td>42</td><td>40</td><td>20</td><td>34</td><td>20</td><td>20</td><td>10</td><td></td><td>6</td></th<>	>42	04	90	102	94 77	90	62	73 61	60 EE	64 E2	30	42	40	20	34	20	20	10		6
Arr Br Br <t< td=""><td>544</td><td>74</td><td>60</td><td>64</td><td>61</td><td>55</td><td>60 E2</td><td>44</td><td>41</td><td>29</td><td></td><td>43</td><td>20</td><td>2.5</td><td>21</td><td>16</td><td>12</td><td>13</td><td>6</td><td>3</td></t<>	544	74	60	64	61	55	60 E2	44	41	29		43	20	2.5	21	16	12	13	6	3
Add A	>45	57	53	52	47	42	41	36	32	28	25	21	20	19	15	12	11	8	5	1
Air Air Air Bit Company Company <thcompany< th=""> Company <thcompany< <="" td=""><td>>46</td><td>45</td><td>45</td><td>38</td><td>34</td><td>30</td><td>27</td><td>26</td><td>23</td><td>20</td><td>18</td><td>18</td><td>13</td><td>12</td><td>0</td><td>9</td><td>6</td><td>4</td><td>2</td><td>0</td></thcompany<></thcompany<>	>46	45	45	38	34	30	27	26	23	20	18	18	13	12	0	9	6	4	2	0
x48 2 21 19 18 17 17 17 15 11 11 19 9 9 6 6 4 2 1 0 0 x49 19 17 17 17 15 14 11 9 9 9 6 6 4 2 1 0 </td <td>≥47</td> <td>35</td> <td>33</td> <td>28</td> <td>28</td> <td>27</td> <td>23</td> <td>20</td> <td>17</td> <td>15</td> <td>15</td> <td>13</td> <td>9</td> <td>8</td> <td>7</td> <td>7</td> <td>5</td> <td>3</td> <td>0</td> <td>0</td>	≥47	35	33	28	28	27	23	20	17	15	15	13	9	8	7	7	5	3	0	0
x49 19 17 17 17 15 14 11 9 8 8 7 7 5 3 3 0 0 0 0 250 15 14 12 11 11 9 8 7 6 2 2 1 1 0	≥48	27	23	21	19	18	17	15	11	11	9	9	9	6	6	4	2	1	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≥49	19	17	17	17	15	14	11	9	8	8	7	7	5	3	3	0	0	0	0
251 11 10 9 8 5 4 4 3 2 2 1 1 0 0 0 0 0 0 252 7 7 7 5 4 3 2 1 0 0 0 0 0 0 0 0 0 253 3 2 2 1 1 0 0 0 0 0 0 0 0 0	≥50	15	14	12	11	11	9	8	8	7	6	2	2	1	1	0	0	0	0	0
352 7 7 7 5 4 3 2 1 0	≥51	11	10	9	8	5	4	4	3	2	2	1	1	0	0	0	0	0	0	0
	≥52	7	7	7	5	4	3	2	1	0	0	0	0	0	0	0	0	0	0	0
	≥53	3	2	2	2	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0

Table S18: Data obtained from the simulated degradation of low dispersity PDMA. Rows in the table give the number of chains with more than x crosslinkers, for various degradation percentages.

	0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%
≥1	999991	993288	983391	969854	952185	930271	903701	872648	836778	796298	750407	700012	644401	584145	518672	447972	371716	289599	201588
≥2	982796	966454	945436	919786	889523	855156	817149	775239	730196	681878	630652	577005	520679	461944	401350	338677	274128	208286	140164
≥3	936261	904499	868748	829792	787908	743191	696997	649343	599978	550050	499493	448345	397340	346105	294844	244028	193486	143469	94103
≥4	838502	792968	746301	698587	650688	602919	555623	508730	462744	417254	373280	330005	287634	246270	206532	168429	131116	95556	61440
≥5	690055	640372	591818	544542	499147	455526	413792	373611	335288	298484	263492	230075	198354	168085	139183	111796	86105	61692	39195
≥6	522440	477568	435312	395585	358417	323623	290625	259630	230778	203739	178077	154010	131396	110417	90759	72186	55140	39379	24870
≥7	367989	333243	300919	271393	243903	218539	194755	172873	152458	133501	116277	99954	84853	70933	58052	45779	34906	24630	15275
≥8	248210	223026	200090	179158	160043	142617	126514	111781	98221	85698	74144	63511	53744	44734	36278	28585	21551	15170	9482
≥9	161821	144589	129054	114977	102303	90692	80257	70615	61861	53839	46381	39629	33396	27745	22479	17676	13273	9304	5836
≥10	100808	90351	80721	71930	63872	56680	49978	44054	38570	33564	28768	24522	20671	17083	13828	10785	8087	5685	3562
≥11	63719	56727	50442	44874	39792	35152	30976	27171	23686	20465	17568	14977	12639	10419	8381	6608	5031	3539	2237
≥12	38977	34615	30916	27477	24308	21462	18844	16467	14335	12405	10707	9144	7706	6337	5164	4089	3116	2170	1389
≥13	23888	21199	18797	16696	14786	13078	11509	10078	8779	7666	6611	5568	4687	3886	3139	2506	1912	1329	855
≥14	14420	12887	11445	10103	8989	7940	6966	6136	5347	4683	4040	3441	2922	2433	1997	1591	1187	852	540
≥15	8920	7921	7045	6246	5577	4931	4323	3823	3333	2897	2496	2151	1803	1530	1249	986	740	524	329
≥16	5524	4885	4332	3859	3423	3042	2686	2384	2076	1835	1604	1371	1168	974	781	628	462	327	190
≥17	3318	2971	2684	2389	2129	1905	1706	1512	1324	1134	978	843	722	609	498	399	283	194	110
≥18	2088	1859	1679	1495	1353	1192	1061	922	807	693	609	520	450	384	310	246	171	111	56
≥19	1282	1145	1013	918	829	751	664	580	508	447	391	335	288	243	194	134	85	57	36
≥20	799	716	636	569	496	444	406	356	319	274	234	198	165	132	103	66	45	38	23
≥21	484	433	382	337	300	266	245	220	189	156	133	112	90	70	54	42	33	23	14
≥22	299	270	237	217	194	164	147	133	115	101	83	64	54	42	31	25	17	10	6
≥23	179	167	142	127	113	106	92	80	62	52	47	37	25	21	16	12	8	4	0
≥24	107	96	80	66	62	57	47	41	32	28	22	18	12	8	5	5	2	2	0
≥25	62	54	44	39	35	28	23	16	12	7	4	3	1	1	1	0	0	0	0
≥26	34	26	22	22	17	12	9	4	3	2	2	0	0	0	0	0	0	0	0
≥27	18	15	10	8	5	4	4	2	1	0	0	0	0	0	0	0	0	0	0
≥28	8	6	4	4	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0
≥29	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 Table S19: Data obtained from the simulated degradation of monodisperse PDMA. Rows in the table give the number of chains with more than x crosslinkers, for various degradation percentages.

	0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%
≥1	1000000	1000000	999952	999647	998531	995626	989677	979369	963500	940761	910401	871685	823738	765747	696996	617653	526827	422143	303575
≥2	1000000	999984	999584	997671	992368	981591	963673	937172	902047	858169	806011	745759	678177	604337	525744	442833	355381	265958	175236
≥3	1000000	999694	996606	986615	965992	934053	890839	837135	775245	707223	634663	559508	484233	409687	337043	266524	200056	138691	83000
≥4	1000000	996365	976870	937152	879564	808851	729541	647495	565322	485664	410826	341488	278114	220896	170098	125611	87630	55826	29929
≥5	1000000	963049	878323	772776	662901	557441	461791	377408	304860	243120	191250	148050	112309	83165	59442	40728	26146	15282	7340
≥6	999999	740907	548664	406138	300643	222437	164478	121420	89025	65062	46848	33509	23428	16167	10676	6650	3959	2099	919