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Data Availability 
All data used throughout this work is available through the following link:  
https://doi.org/10.5878/0n2y-dp56  
 

Calculation Details 
Hardware	Calculations	
Qiskit1 was used throughout this work to generate all problem Hamiltonians, as well as to map the fermionic states 
onto qubits. For H2 and LiH, parity encoding was used, which allowed two-qubit tapering to reduce the total 
number of qubits in the calculations. Using a minimal STO-3G basis, the resulting states comprise 2 and 4 qubits, 
respectively. The LiH active space was reduced by freezing the Li 1s core orbital and removing the 2py and 2pz 
orbitals (the p orbitals perpendicular to the bond axis). This removal of orbitals is motivated by the work of 
Kandala et al.2 To increase the accuracy of our hardware calculations, we implemented hardware-efficient circuits. 
Figures S1 and S2 show the full circuits used for H2 and LiH, respectively. Additionally, the two calculations 
were implemented on two different quantum computers. The H2 problem on Chalmers’ three-qubit Särimner 
device, and the LiH problem on IBM’s five-qubit ibmq_quito chip. 
 

 
Figure S1: Hardware-efficient circuit used in the H2 calculation. 
 

 
Figure S2: Hardware-efficient circuit used in the LiH calculation. 
 
Simulated	Quantum	Calculations	
Both our noisy simulations, for Li2 and HCN, were implemented in Qiskit using a double-layer excitation 
preserving ansatz. A depolarizing noise model, including one- and two-qubit errors, was used to introduce noise 
effects, details of which are provided below. Due to technical issues with Qiskit, we could not utilize parity 
encoding for Li2 and HCN and instead opted for a Jordan-Wigner encoding in these simulations. Noise-free 
statevector simulations were performed for all systems, including H2 and LiH, to provide reference values and 
estimate the effects of noise. Both noise-free and noisy simulations used the COBYLA3 optimizer during the VQE 
convergence.  
 
Conventional	Quantum	Chemistry	Calculations	
In addition to our quantum computer calculations, we calculate our witness densities using PySCF, a Python 
package for conventional quantum chemistry4. These calculations are performed at the CCSD/aug-cc-pVTZ level 
of theory.  
 
Topological	Analysis	
From the 1-RDMs calculated by either quantum computation, simulation, or conventional calculation, a cube file  
(Gaussian cube file format) was generated using PySCF. The cube files were subsequently used for the topological 
analysis with the software Critic2.5  
  

https://doi.org/10.5878/0n2y-dp56


Hardware Details 
 
The Särimner device used for H2 calculations is a three-qubit chip. Only two of the three qubits were used in 
encoding the H2 state. The qubits are superconducting transmon qubits, and all three qubits are coupled through a 
single tunable coupler. Measured hardware characteristics are given in Table S1. 
 

 
 
Figure S4: Coupling map for qubits Q0, Q1, and Q2 on Chalmers’ Särimner quantum processor. The qubits within 
the dashed area were used for the calculation of H2. 
 
 
The ibmq_quito device is also a superconducting transmon qubit based processor that hosts five qubits, of which 
four were used in our calculations of LiH (Q0, Q1, Q2, Q3). The chip has a T-shaped coupling map, illustrated in 
Figure S3. 
 

 
 
Figure S3: Coupling map for qubits Q0 through Q4 on the ibmq_quito. The qubits within the dashed area were 
used for the calculation of LiH. 
 
Further details for both quantum processors can be found in the supporting information of Ref.6 

Simulated Noise Model 
To incorporate noise in our quantum hardware simulations, we implement a depolarizing noise model. The model 
applies random one- and two-qubit gate errors with probabilities 0.001 and 0.002, respectively. One can view the 
depolarizing channel as random, unintentional applications of additional gates after each intended gate in a circuit. 
The one-qubit depolarizing channel applies a random single-qubit gate, commonly one of the Pauli gates {X, Y, Z}, 
with probability 𝑝! after each gate in the circuit. Similarly, for two-qubit errors, a two-qubit gate is chosen 
randomly from a set of Pauli products {IX, IY, … , ZY, ZZ}	with probability 𝑝". While the depolarizing model is 
computationally efficient, it should be noted that it gives a simplified description pf the noise processes in a 
physical quantum computer. More elaborate models exist, they however require more classical resources to 
simulate. 

Estimating Sampling Uncertainty 
For our hardware calculations, we have estimated the sampling uncertainty by providing upper and lower bounds 
equal to the standard deviation of the measured mean values. For the simulated calculations, this standard 
deviation is provided by Qiskit as part of the measurement procedure. For our calculations on physical hardware, 

we have estimated the standard deviation of the mean, 𝑠, as that of a Bernoulli distributed variable, 𝑠#(𝑋.#) = 1
$!%!
&!

. 

Here, we define 𝑝# as the probability of measuring the +1 eigenvalue and complementary 𝑞# = 1 − 𝑝# as the 
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probability of measuring the -1 eigenvalue. We also use 𝑛# to denote the number of samples used for measurement. 
For an operator 𝑂7  written as a sum of Pauli operators 𝑃7', the effective standard deviation can be calculated as 
𝑠9:𝑂7;<" = ∑ 𝑠9:𝑃7';<'

"
. 

Additional Data 
In this section, we present additional data and results from our calculations for the interested reader. 
 
One-Particle	Reduced	Density	Matrices	(1-RDM)	

 
Figure S4: 1-RDMs of all non-witness calculations. 
 
	
Natural Orbital Occupations 
 
We calculate the natural orbital occupation by diagonalizing the 1-RDMs of the active spaces presented in Figure 
S4. The orbitals outside these active spaces correspond to Hartree-Fock orbitals, which are either fully occupied 
(2.0) or empty (0.0). The orbitals are then sorted, and the occupations are listed in Tables S1, S2, S3, and S4 for 
H2, LiH, Li2, and HCN, respectively, and the active space orbitals are indicated in orange. 
 
Table S1: Natural orbital occupation after diagonalizing the H2 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 1.975 1.960 1.961 
2 0.025 0.040 0.039 

 
Table S2: Natural orbital occupation after diagonalizing the LiH 1-RDMs in Figure S4. Note the negative 
occupation of orbital 4 due to noise. Active space orbitals are indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 



2 1.956 1.814 1.933 
3 0.044 0.092 0.104 
4 0.000 -0.028 -0.038 
5 0.000 0.000 0.000 
6 0.000 0.000 0.000 
    

Table S3: Natural orbital occupation after diagonalizing the Li2 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 
2 2.000 2.000 2.000 
3 1.832 1.553 1.364 
4 0.064 0.255 0.224 
5 0.061 0.247 0.217 
6 0.043 0.222 0.195 
7 0.000 0.000 0.000 
8 0.000 0.000 0.000 
9 0.000 0.000 0.000 
10 0.000 0.000 0.000 

 
Table S4: Natural orbital occupation after diagonalizing the HCN 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 
2 2.000 2.000 2.000 
3 2.000 2.000 2.000 
4 2.000 2.000 2.000 
5 2.000 2.000 2.000 
6 1.933 1.772 1.766 
7 1.931 1.727 1.723 
8 0.068 0.275 0.274 
9 0.067 0.238 0.237 
10 0.000 0.000 0.000 
11 0.000 0.000 0.000 

 
 
 
Molecular	Orbitals	
The orbitals used in the active spaces for H2, LiH, Li2, and HCN are presented in Figures S5, S6, S7, and S8, 
respectively. All bonds are aligned along the 𝑥-axis. 

 
 
Figure S5: Canonical molecular orbitals in the active space for H2. Iso surfaces are shown for the values ±0.05. 
 



 
Figure S6: Canonical molecular orbitals in the active space for LiH. Iso surfaces are shown for the values ±0.05. 
 

 
Figure S7: Canonical molecular orbitals in the active space for Li2. Iso surfaces are shown for the values ±0.05. 
 
 



 
Figure S8: Canonical molecular orbitals in the active space for HCN. Iso surfaces are shown for the values ±0.05. 
 

 
Additional	Li2	and	HCN	Density	Difference	Plots	

 
 

Figure S9: Topological analysis of Li2. Contour plot compared to noise-free calculations for noisy (a) and 
mitigated (b) simulations. The contours are overlain streamlines showing the atomic basins for the Li2 nuclei and 
NNA. Solid lines indicate a higher electron density when compared to the noise-free results; dashed lines indicate 



a lower electron density. The contour lines are separated on a logarithmic scale. Lithium basins are shown in blue 
and orange, the NNA basin is indicated by green. 
 
 
 

 
Figure S10: Topological analysis of HCN. Contour plot compared to noise-free calculations for noisy (a) and 
mitigated (b) simulations. The contours are overlain streamlines showing the atomic basins for the HCN nuclei. 
Solid lines indicate a higher electron density when compared to the noise-free results; dashed lines indicate a 
lower electron density. The contour lines are separated on a logarithmic scale. The basins of N, C, and H are 
indicated by orange, blue, and green, respectively. 
 
Grid-Based	Electron	Integration	
To validate our cube files, the integrated number of electrons was calculated for a large volume. The integrated 
value is in good agreement with the value derived from the trace of the 1-RDM (Table S1). 
 
Table S5: Total electron numbers for the tested systems calculated using summation density integration and the 
trace of the 1-RDM. 
 

Molecule Integrated density(d) Trace of 1-RDM 
H2(a) 2.00 2.00 2.00 2.00 2.00 2.00 

LiH(b) 4.00 3.88 4.00 4.00 3.88 4.00 

Li2(c) 6.00 6.28 6.00 6.00 6.28 6.00 

HCN(c) 14.00 14.01 14.00 14.00 14.01 14.00 
(a) Chalmers Särimner device. (b) ibmq_quito device. (c) Simulation using a depolarizing noise model. (d) A margin 
of 10 a.u. from the nearest nuclei was used when constructing the cube file. 
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