Supporting Information

Copper-Catalyzed Trichloromethylative Carbonylation of Ethylene

Youcan Zhang,^{†[b,c]} Bing-Hong Teng,^{†[a,c]} and Xiao-Feng Wu^{*[c,d]}

[a] School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China; [b] College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; [c] Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China; [d] Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany

* E-Mail: xwu2020@dicp.ac.cn

Contents

. General conditions	2
2. General procedures	3
2.1 General Procedure: trichloromethylative carbonylation of ethylene	3
2.2 Supplementary Tables	4
3. Analytical data	7
5. ¹ H-, ¹³ C- and ¹⁹ F-NMR spectra copy of products	25

1. General conditions

Unless stated otherwise, all reactions were carried out under a carbon monoxide or nitrogen atmosphere. All reagents and solvents were purchased from Adamas-beta, Energy Chemical, Sigma-Aldrich, Bidepharm, TCI, or Alfa Aesar and used without purification. Anhydrous solvents were purchased from Energy Chemical and used as received. NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR and Bruker AVANCE III HD 700MHz NMR spectrometers. Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.0 ppm (¹³C NMR); CD₃OD were 3.31 ppm (¹H NMR) and 49.0 ppm (13 C NMR); DMSO-d₆ were 2.50 ppm (1 H NMR) and 39.5 ppm (13 C NMR). Multiplets were assigned as s (singlet), br.s (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), td (triplet of doublets) and m (multiplet). GC-yields were calculated using hexadecane as an internal standard. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF). Analytical thin layer chromatography (TLC) was carried out using pre-coated (0.20 mm thickness) silica gel plates with F254 indicator. The products were isolated from the reaction mixture by column chromatography on silica gel 200-300 mesh. Because of the high toxicity of carbon monoxide, all of the reactions should be performed in an autoclave. The laboratory should well-equipped with a CO detector and alarm system. For blue light irradiation, two Kessil PR160L-456 nm blue lamps (19 V DC 40 W Max) were placed ca. 7 cm from the reaction vial inside the autoclave at room temperature.

2. General procedures

2.1 General Procedure: trichloromethylative carbonylation of ethylene

$$CCI_4 + = + NuH$$

$$CU(OTf)_2 (1 mol\%), bpy (2 mol\%)$$

$$K_2CO_3 (2 eq.), CO (50 bar)$$

$$K_2CO_3 (2 eq.), CO (50 bar)$$

$$K_2CO_3 (2 eq.), RCO (50 bar)$$

$$K_2CO_3 (2 eq.), CO (50 bar)$$

$$K_2CO_3 (2 eq.), CO (50 bar)$$

 \cap

To each screw-cap vial (4 ml) equipped with a septum, a small cannula, and a stirring bar was added Cu(OTf)₂ (1.5 mg, 1 mol%), bpy (1.3 mg, 2 mol%), K₂CO₃ (110.6 mg, 0.8 mmol, 2.0 equiv.), and NuH (0.4 mmol, if the nucleophile is solid). The vials then were purged with argon three times before added dry MeCN (2 mL), CCl₄ (200 uL, 2 mmol, 5.0 equiv.), and NuH (0.4 mmol, if the nucleophile is liquid). These vials were transferred into a 500 mL photoautoclav. The closed autoclave was flushed one time with nitrogen (~ 5 bar), two times with CO (~ 5 bar), and a pressure of ethylene (1 bar) and CO (50 bar) were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 40 w blue light (Kessil PR160L-456 nm, intensity = 50) at room temperature (25-30 °C) for 24 h. After irradiation, the light was turned off and the pressure was released carefully. The organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 40:1 to pentane/ethyl acetate/ dichloromethane = 1:1:1).

Notably: the substrate expansion reactions were performed on a 0.4 mmol scale unless otherwise noted.

2 mmol scale: To a screw-cap vial (15 ml) equipped with a septum, a small cannula, and a stirring bar was added $Cu(OTf)_2$ (3.6 mg, 0.5 mol%), bpy (3.2 mg, 1 mol%), K₂CO₃ (552.8 mg, 4 mmol, 2.0 equiv.), and NuH (2.0 mmol, if the nucleophile is solid). The vials then were purged with argon three times before added dry MeCN (10 mL), CCl₄ (1.0 mL, 10 mmol, 5.0 equiv.), and NuH (2.0 mmol, if the nucleophile is liquid). These vials were transferred into a 500 mL photoautoclav. The closed autoclave was flushed one time with nitrogen (~ 5 bar), two times with CO (~ 5 bar), and a pressure of ethylene (1 bar) and CO (50 bar) were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 40 w blue light (Kessil PR160L-456 nm, intensity = 50) at room temperature (25-30 °C) for 30 h. After irradiation, the light was turned off and the pressure was released carefully. The organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 30:1 to pentane/ethyl acetate/ dichloromethane = 10:1:1).

To each screw-cap vial (4 ml) equipped with a septum, a small cannula, and a stirring bar was added $Cu(OTf)_2$ (1.5 mg, 1 mol%), L (3.0 mg, 2 mol%), K₂CO₃ (82.9 mg, 0.6 mmol, 1.5 equiv.), and NuH (0.4 mmol, if the nucleophile is solid). The vials then were purged with argon three times before added dry MeCN (2 mL), CCl₄ (100 uL, 1 mmol, 2.5 equiv.), and NuH (0.4 mmol, if the nucleophile is liquid). These vials were transferred into

a 500 mL photoautoclav. The closed autoclave was flushed one time with nitrogen (~ 5 bar), two times with CO (~ 5 bar), and a pressure of ethylene (35 bar) and CO (25 bar) were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 40 w blue light (Kessil PR160L-456 nm, intensity = 50) at room temperature (25-30 °C) for 24 h. After irradiation, the light was turned off and the pressure was released carefully. The organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 40:1 to pentane/ethyl acetate/ dichloromethane = 6:1:1).

2.2 Supplementary Tables

Table S1. Screening of catalyst and base^a

	. — . D	[Cu] (1 mol%)	, L (2 mol%)		
CCI ₄	+ — + F	base (2 equiv) blue light (456 nm)	→ Cl ₃ C ◆ h 3	Cl ₃ C YhNH ₂ 3a	
Entry	Catalyst	Ligand	Base	Solvent	Yield (%) ^a
1 ^c	Cu(OTf) ₂	BINAP	K ₂ CO ₃	MeCN	44
2°	Cu(OTf) ₂	1,10-Phen	K_2CO_3	MeCN	55
3	Cu(OTf) ₂	1,10-Phen	K_2CO_3	MeCN	78
4	Cu(OTf) ₂	bpy	K_2CO_3	MeCN	80 (77) ^b
5	Cu(OTf) ₂	4,4'-diOMe-2,2'-bpy	K_2CO_3	MeCN	76
6	Cu(OTf) ₂	6,6'-diMe-2,2'-bpy	K_2CO_3	MeCN	60
7	Cu(OTf) ₂	2,9-diMe-1,10-Phen	K_2CO_3	MeCN	43
8	Cu(OAc) ₂	bpy	K_2CO_3	MeCN	75
9	CuI	bpy	K_2CO_3	MeCN	76
10	Cu(OTf) ₂	bpy	Na ₂ CO ₃	MeCN	79
11	Cu(OTf) ₂	bpy	K_3PO_4	MeCN	76
12	Cu(OTf) ₂	bpy	Et ₃ N	MeCN	22
13	Cu(OTf) ₂	bpy	K_2CO_3	PhCF ₃	53
14	Cu(OTf) ₂	bpy	K_2CO_3	1,4-dioxane	65
15	Cu(OTf) ₂	bpy	K_2CO_3	DCE	57

[a] Reaction conditions: CCl₄ (1.0 mmol), ethylene (1 bar), PhNH₂ (0.2 mmol), [Cu] (1 mol%), Ligand (2 mol%), and Base (2.0 equiv.) in solvent (1.0 mL) at rt (25-30 °C) for 24 h under CO (50 bar). Yields were determined by GC-FID analysis using n-hexadecane as internal standard. [b] Yield of isolated product. [c] CO (40 bar).

Table S2. Optimization of reaction conditions^a

	CCI	<u>т</u>		_		Cu(OTf) ₂ (1 mol%), bpy (2 mol%)		
	CCI4	Ŧ	_	Ŧ		base (2 equiv), <mark>CO</mark> (50 bar) blue light (456 nm), MeCN, rt, 24 h	Cl ₃ C 3a	PhNH ₂
Entr	у				Varia	ations from the standard conditions		Yield (%) ^a
1						0.5 mmol of CCl ₄ added		74
2					Cu(OT	f) ₂ (2.5 mol%), bpy (5 mol%) added		76
3						1.5 equiv of K ₂ CO ₃ added		78
4						1.2 equiv of K ₂ CO ₃ added		76
5						no bpy		24
6					no	Cu(OTf) ₂ , no K ₂ CO ₃ , or no light		n.r.
7					[Cu(dn	np)2]Cl instead of Cu(OTf)2 and bpy		66
8					[Cu(dm]	p) ₂ Cl]Cl instead of Cu(OTf) ₂ and bpy		62
9					[Cu(dmp)X	antPhos]PF6 instead of Cu(OTf)2 and bpy		50
10					[Cu(bpy])2](OTf)2 instead of Cu(OTf)2 and bpy		70
11						no light, 40 °C		56
12						no light, 80 °C		76

[a] Reaction conditions: CCl₄ (1.0 mmol), ethylene (1 bar), PhNH₂ (0.2 mmol), Cu(OTf)₂ (1 mol%), bpy (2 mol%), and K₂CO₃ (2.0 equiv.) in MeCN (1.0 mL) at rt (25-30 °C) for 24 h under CO (50 bar). Yields were determined by GC-FID analysis using n-hexadecane as internal standard.

Table S3. Optimization of reaction conditions^a

Entry	Variations from the standard conditions	Yield (%) ^a
1	none	36
2	Bpy instead of L6	22
3	L1 instead of L6	21

4	L2 instead of L6	22
5	L3 instead of L6	27
6	L4 instead of L6	32
7	L5 instead of L6	35
8	L7 instead of L6	37
9	iPrCuCl instead of Cu(OTf)2 and L6	34

[a] Reaction conditions: CCl4 (1.0 mmol), ethylene (30 bar), PhNH₂ (0.2 mmol), Cu(OTf)₂ (1 mol%), bpy (2 mol%), and K2CO3 (2.0 equiv.) in MeCN (1.0 mL) at rt (25-30 °C) for 24 h under CO (20 bar). Yields were determined by GC-FID analysis using n-hexadecane as internal standard.

Table	S4. (Optimiz	zation	of rea	action	conditions ^a
I ubic i	07.	Optimiz	Janon	01 100	action	conditions

	Cu(OTf) ₂ (1 mol%) L (2 mol%) CO (20 bar)	Ph
(30 bar)	K ₂ CO ₃ (2.0 equiv) blue light (456 nm) MeCN, rt, 30 h	
Entry	Variations from the standard conditions	Yield (%) ^a
1	ethylene = (30 bar), CO (10 bar)	25
2	ethylene = (30 bar) , CO (15 bar)	32
3	ethylene = (30 bar) , CO (30 bar)	27
4	ethylene = (35 bar) , CO (30 bar)	23
5	ethylene = (40 bar) , CO (30 bar)	18
6 ^c	ethylene = (30 bar) , CO (20 bar)	39
7°	0.5 mmol of CCl ₄ added	43 (41) ^b
8 ^c	0.4 mmol of CCl ₄ added	40
9°	0.6 mmol of CCl₄ added	42

[a] Reaction conditions: CCl4 (1.0 mmol), ethylene (30 bar), PhNH₂ (0.2 mmol), Cu(OTf)₂ (1 mol%), bpy (2 mol%), and K2CO3 (2.0 equiv.) in MeCN (1.0 mL) at rt (25-30 °C) for 24 h under CO (20 bar). Yields were determined by GC-FID analysis using n-hexadecane as internal standard. [b] Yield of isolated product.

3. Analytical data

4,4,4-Trichloro-N-phenylbutanamide (3a)

79.9 mg, light yellow solid, yield: 75%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.45 (s, 1H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 3.31 – 3.03 (m, 2H), 2.95 – 2.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 137.4, 129.1, 124.7, 120.0, 98.9, 50.1, 34.3.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₁Cl₃NO 265.9901, found 265.9902.

4,4,4-Trichloro-*N*-(2-isopropylphenyl)butanamide (**3b**)

41.1 mg, light yellow solid, yield: 66%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.26 (d, *J* = 8.1 Hz, 1H), 7.17 (t, *J* = 6.8 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 3.14 – 3.07 (m, 2H), 3.08-2.96 (m, 1H), 2.87 – 2.76 (m, 2H), 1.18 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 141.8, 133.4, 126.7, 126.2, 125.73, 125.67, 99.0, 50.2, 33.6, 27.8, 23.1. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₁₇Cl₃NO 308.0370, found 308.0375.

4,4,4-Trichloro-*N*-(3-(trifluoromethyl)phenyl)butanamide (3c)

121.7 mg, light yellow solid, yield: 90%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H** NMR (400 MHz, CD₃OD) δ 8.01 (t, *J* = 2.1 Hz, 1H), 7.74 (dt, *J* = 8.2, 1.4 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 4.87 (s, 1H), 3.18 – 3.10 (m, 2H), 2.94 – 2.87 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 171.2, 140.6, 132.1 (q, *J* = 32.2 Hz), 130.6, 125.43 (q, *J* = 271.4 Hz), 124.0,

121.3 (q, *J* = 4.1 Hz), 117.3 (q, *J* = 4.2 Hz), 100.4, 51.2, 34.7.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -64.2.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{11}H_{10}Cl_3F_3NO$ 333.9775, found 333.9781.

4,4,4-Trichloro-*N*-(3-methoxyphenyl)butanamide (3d)

71.7 mg, light yellow oil, yield: 60%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 6/1/1.
¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.23 (t, J = 2.3 Hz, 1H), 7.18 (t, J = 8.2 Hz, 1H), 6.97 (dd, J = 7.9, 2.0 Hz, 1H), 6.66 (dd, J = 8.3, 2.5 Hz, 1H), 3.75 (s, 3H), 3.17 – 3.09 (m, 2H), 2.86 – 2.78 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 168.5, 160.0, 138.6, 129.7, 112.3, 110.3, 106.1, 98.9, 55.2, 50.0, 34.1.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{11}H_{13}Cl_3NO_2$ 296.0006, found 293.0009.

4,4,4-Trichloro-*N*-(4-(trifluoromethyl)phenyl)butanamide (**3e**)

110.8 mg, light yellow solid, yield: 83%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.49 (s, 1H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.6 Hz, 2H), 3.20 – 3.07 (m, 2H), 2.93 – 2.77 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.9, 142.5, 126.0 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 271.2 Hz), 123.3 (q, *J* = 32.0 Hz), 118.9, 99.7, 49.4, 33.5.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -60.5.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₀Cl₃F₃NO 333.9775, found 333.9776.

4,4,4-Trichloro-N-(4-(trifluoromethoxy)phenyl)butanamide (3f)

120.3 mg, light yellow solid, yield: 86%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.48 (d, *J* = 9.0 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 3.20 – 3.01 (m, 2H), 2.95 – 2.78 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.0, 145.6 (q, *J* = 2.1 Hz), 135.9, 121.7, 120.4 (q, *J* = 257.9 Hz), 98.7, 50.0, 34.0.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -58.2.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₀Cl₃F₃NO₂ 349.9724, found 349.9724.

4,4,4-Trichloro-N-(4-bromophenyl)butanamide (3g)

106.7 mg, light yellow solid, yield: 77%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 7.57 (d, *J* = 8.9 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 3.18 – 3.05 (m, 2H), 2.89 – 2.73 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.3, 138.3, 131.5, 120.9, 114.8, 99.7, 49.5, 33.4.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{10}H_{10}BrCl_3NO$ 343.9006, found 343.9004.

4,4,4-Trichloro-N-(4-iodophenyl)butanamide (3h)

128.2 mg, light yellow solid, yield: 82%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.62 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 3.18 – 3.02 (m, 2H), 2.88 – 2.72 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.3, 138.8, 137.3, 121.2, 99.7, 86.6, 49.5, 33.4.
HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₀ICl₃NO 391.8867, found 391.8871.

4,4,4-Trichloro-N-(4-(methylthio)phenyl)butanamide (3i)

84.5 mg, light yellow solid, yield: 68%. Eluent: pentane/ethyl acetate/dichloromethane = 8/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.6 Hz, 2H), 3.16 – 3.05 (m, 2H), 2.85 – 2.76 (m, 2H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 134.8, 134.2, 127.6, 121.0, 98.8, 50.0, 34.0, 16.4.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₃Cl₃NOS 311.9778, found 311.9785.

4,4,4-Trichloro-N-(4-phenoxyphenyl)butanamide (3j)

91.1 mg, light yellow oil, yield: 64%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 8/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.43 (d, *J* = 8.9 Hz, 2H), 7.32 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.00 – 6.91 (m, 4H), 3.19 – 3.11 (m, 2H), 2.88 – 2.79 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 157.2, 153.9, 132.8, 129.7, 123.2, 122.1, 119.4, 118.5, 98.9, 50.1, 34.0. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₆H₁₅Cl₃NO₂ 358.0163, found 358.0171.

4,4,4-Trichloro-N-(4-acetylphenyl)butanamide (3k)

52.5 mg, light yellow solid, yield: 43%, 95% purity. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 6/1/1.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.47 (s, 1H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 1H), 3.18 – 3.07 (m, 2H), 2.97 – 2.80 (m, 2H), 2.52 (s, 3H).

¹³C NMR (1101 MHz, DMSO-*d*₆) δ 196.4, 168.8, 143.3, 131.7, 129.5, 118.3, 99.7, 49.4, 33.5, 26.4.
 HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₃Cl₃NO₂ 308.0006, found 308.0008.

4,4,4-Trichloro-*N*-(4-cyanophenyl)butanamide (31)

81.2 mg, light yellow solid, yield: 70%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 6/1/1.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 7.85 – 7.66 (m, 4H), 3.19 – 3.05 (m, 2H), 2.91 – 2.75 (m, 2H).
 ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.1, 143.1, 133.2, 119.0, 119.0, 105.0, 99.6, 49.3, 33.5.
 HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₀Cl₃N₂O 290.9853, found 290.9853.

4,4,4-Trichloro-N-(4-acetamidophenyl)butanamide (3m)

32.6 mg, light yellow solid, yield: 25%. Eluent: pentane/ethyl acetate/dichloromethane = 1/1/1 to 1/2/1. **¹H NMR** (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 9.86 (s, 1H), 7.59 – 7.37 (m, 4H), 3.19 – 3.00 (m, 2H), 2.84 – 2.71 (m, 2H), 2.01 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.9, 167.8, 134.8, 134.3, 119.5, 119.4, 99.8, 49.7, 33.2, 23.9. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₄Cl₃N₂O₂ 323.0115, found 323.0120.

4,4,4-Trichloro-*N*-(pyridin-2-yl)butanamide (**3n**)

71.5 mg, light yellow solid, yield: 67%, 95% purity. Eluent: pentane/ethyl acetate/dichloromethane = 5/1/1 to 3/1/1.

¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 8.31 (dd, J = 4.9, 1.8 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.72 (td, J = 8.4, 7.9, 1.9 Hz, 1H), 7.06 (dd, J = 7.4, 5.0 Hz, 1H), 3.29 - 3.05 (m, 2H), 2.99 - 2.76 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 168.9, 151.7, 147.4, 138.8, 119.9, 114.8, 98.8, 49.7, 34.0.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₉H₁₀Cl₃N₂O 266.9853, found 266.9860.

4,4,4-Trichloro-*N*-(pyridin-3-yl)butanamide (**30**)

50.8 mg, light yellow solid, yield: 47%. Eluent: pentane/ethyl acetate/dichloromethane = 1/1/1 to 1/2/1. ¹**H NMR** (400 MHz, CDCl₃) δ 9.47 (s, 1H), 8.64 (d, J = 2.6 Hz, 1H), 8.33 (dd, J = 4.8, 1.5 Hz, 1H), 8.18 (dt, J = 8.4, 2.0 Hz, 1H), 7.30 (dd, J = 8.4, 4.8 Hz, 1H), 3.24 – 3.09 (m, 2H), 2.97 – 2.82 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.3, 144.7, 140.8, 135.4, 127.8, 124.1, 98.8, 49.9, 33.9. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₉H₁₀Cl₃N₂O 266.9853, found 266.9859.

4,4,4-Trichloro-*N*-methyl-*N*-phenylbutanamide (**3p**)

64.5 mg, light yellow oil, yield: 57%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1. **¹H NMR** (400 MHz, CDCl₃) δ 7.43 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.23 – 7.13 (m, 2H), 3.26 (s, 3H), 3.14 – 2.97 (m, 2H), 2.58 – 2.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 143.3, 129.9, 128.1, 127.1, 99.0, 50.5, 37.4, 31.3. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₃Cl₃NO 280.0057, found 280.0063.

4,4,4-Trichloro-1-(indolin-1-yl)butan-1-one (3q)

30.7 mg, light yellow solid, yield: 26%, 95% purity. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1. **¹H NMR** (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.9 Hz, 2H), 7.04 (t, *J* = 7.7 Hz, 1H), 4.11 (t, *J* = 8.5 Hz, 2H), 3.28 – 3.13 (m, 4H), 2.95 – 2.82 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 142.7, 131.0, 127.6, 124.6, 123.9, 116.9, 99.2, 49.8, 47.9, 33.0, 28.0. HR-MS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₂H₁₃Cl₃NO 292.0057, found 292.0061.

4,4,4-Trichloro-*N*-benzylbutanamide (**3r**)

43.3 mg, light yellow oil, yield: 39%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 5/1/1. **¹H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 3H), 7.24 – 7.18 (m, 2H), 6.64 (t, *J* = 5.8 Hz, 1H), 4.35 (d, *J* = 5.7 Hz, 2H), 3.10 – 2.96 (m, 2H), 2.73 – 2.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 137.8, 128.6, 127.6, 127.5, 99.0, 50.2, 43.6, 33.0.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{11}H_{13}Cl_3NO$ 280.0057, found 280.0059.

4,4,4-Trichlorobutanamide (**3s**)

$$CI_3C$$
 NH_2

53.4 mg, colorless solid, yield: 70%, 95% purity. Eluent: pentane/ethyl acetate/dichloromethane = 1/1/1 to 1/2/1. ¹**H NMR** (400 MHz, CDCl₃) δ 6.45 (s, 1H), 6.17 (s, 1H), 3.10 – 2.91 (m, 2H), 2.77 – 2.60 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 98.8, 50.0, 32.4.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₄H₇Cl₃NO 189.9588, found 189.9592.

4,4,4-Trichlorophenylbutanoate (**4a**)

83.8 mg, light yellow oil, yield: 78%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 2H), 7.30 – 7.18 (m, 1H), 7.14 – 7.04 (m, 2H), 3.23 – 3.12 (m, 2H), 3.12 – 3.03 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 150.4, 129.5, 126.0, 121.3, 98.3, 49.7, 31.6.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₀Cl₃O₂ 266.9741, found 266.9739.

4,4,4-Trichloro-2-isopropyl-4-methylphenylbutanoate (4b)

96.1 mg, light yellow oil, yield: 74%. Eluent: pentane/ethyl acetate = 50/1 to 30/1.
¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.89 – 6.81 (m, 1H), 3.27 – 3.18 (m, 2H), 3.16 – 3.08 (m, 2H), 3.00 (p, *J* = 6.9 Hz, 1H), 2.35 (s, 3H), 1.24 (d, *J* = 7.0 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 169.8, 147.6, 136.8, 136.6, 127.4, 126.5, 122.4, 98.4, 49.7, 31.4, 27.1, 23.0, 20.8.
HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₈Cl₃O₂ 323.0367, found 323.0369.

4,4,4-trichloro-4-acetamidophenylbutanoate (4c)

55.6 mg, light yellow solid, yield: 43%. Eluent: pentane/ethyl acetate/dichloromethane = 4/1/1 to 2/1/1. ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.48 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.24 - 3.11 (m, 2H), 3.10 - 3.00 (m, 2H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 168.8, 146.4, 135.9, 121.6, 121.0, 98.3, 49.6, 31.5, 24.2.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₃Cl₃NO₃ 323.9956, found 323.9962.

4,4,4-trichloro-4-carbamoylphenylbutanoate (4d)

107.5 mg, light yellow solid, yield: 87%. Eluent: Eluent: pentane/ethyl acetate/dichloromethane = 2/1/1 to 1/1/1. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.02 (s, 1H), 7.95 (d, *J* = 8.7 Hz, 2H), 7.41 (s, 1H), 7.25 (d, *J* = 8.6 Hz, 2H), 3.25 - 3.16 (m, 2H), 3.11 - 3.00 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.3, 167.2, 152.5, 132.1, 129.0, 121.5, 99.0, 49.1, 31.2.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₁Cl₃NO₃ 309.9799, found 309.9805.

4,4,4-trichloro-4-formylphenylbutanoate (4e)

89.5 mg, light yellow oil, yield: 76%. Eluent: pentane/ethyl acetate = 20/1 to 10/1.

¹**H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.01 – 7.83 (m, 2H), 7.35 – 7.24 (m, 2H), 3.22 – 3.15 (m, 2H), 3.14 – 3.08 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.7, 168.9, 154.9, 134.1, 131.2, 122.1, 98.1, 49.4, 31.5.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{11}H_{10}Cl_3O_3$ 294.9690, found 294.9695.

4,4,4-trichloro-4-nitrophenylbutanoate (4f)

31.7 mg, light yellow oil, yield: 25%, 95% purity. Eluent: pentane/ethyl acetate = 15/1 to 10/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 – 8.24 (m, 2H), 7.35 – 7.27 (m, 2H), 3.22 – 3.16 (m, 2H), 3.16 – 3.09 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 155.0, 145.5, 125.3, 122.3, 98.0, 49.4, 31.5.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{10}H_9Cl_3NO_4$ 311.9592, found 311.9598.

[1,1'-Biphenyl]-2,2'-diyl bis(4,4,4-trichlorobutanoate) (4g)

49.4 mg, light yellow oil, yield: 46% (0.2 mmol scale), 95% purity. Eluent: pentane/ethyl acetate = 20/1 to 10/1. **¹H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.37 – 7.31 (m, 4H), 7.19 (d, *J* = 8.2 Hz, 2H), 2.88 – 2.82 (m, 4H), 2.81 – 2.74 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 147.9, 131.3, 130.2, 129.3, 126.3, 122.3, 98.3, 49.4, 31.3. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₀H₁₇Cl₆O₄ 530.9253, found 530.9249.

Propane-2,2-diylbis(4,1-phenylene) bis(4,4,4-trichlorobutanoate) (4h)

66.3 mg, colorless solid, yield: 58% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 20/1 to 10/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.19 (m, 4H), 7.05 – 6.94 (m, 4H), 3.21 – 3.12 (m, 4H), 3.10 – 3.01 (m, 4H), 1.67 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 148.3, 148.0, 127.8, 120.7, 98.4, 49.7, 42.5, 31.6, 30.9. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₃H₂₃Cl₆O₄ 572.9722, found 572.9724.

4-((4,4,4-Trichlorobutanoyl)oxy)benzyl 4,4,4-trichlorobutanoate (4i)

50.8 mg, light yellow oil, yield: 54% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 20/1 to 10/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.15 – 7.09 (m, 2H), 5.15 (s, 2H), 3.21 – 3.15 (m, 2H), 3.11 – 3.05 (m, 4H), 2.89 – 2.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.7, 169.5, 150.4, 133.3, 129.7, 121.6, 98.4, 98.3, 66.1, 49.7, 49.6, 31.5, 31.4. HR-MS (ESI-TOF) m/z: [M+NH₄]⁺ calcd. for C₁₅H₁₈Cl₆NO₄ 485.9362, found 485.9359. 4,4,4-trichloro-4-(hydroxymethyl)phenylbutanoate (4j)

57.1 mg, light yellow oil, yield: 48% (and isolated **4i**, 30.1 mg, 16%). Eluent: pentane/ethyl acetate = 20/1 to 3/1. **¹H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.3 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.62 (s, 2H), 3.21 – 3.12 (m, 2H), 3.10 – 3.03 (m, 2H), 2.37 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 149.6, 138.8, 128.0, 121.3, 98.3, 64.4, 49.6, 31.5.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{11}H_{12}Cl_3O_3$ 296.9847, found 296.9837.

4,4,4-Trichloro-3-phenylpropylbutanoate (4k)

80.5 mg, light yellow oil, yield: 65%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.17 (m, 3H), 4.17 (t, *J* = 6.5 Hz, 2H), 3.12 – 3.02 (m, 2H), 2.73 (t, *J* = 7.7 Hz, 2H), 2.76 – 2.69 (m, 2H), 2.07 – 1.95 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 140.9, 128.4, 128.3, 126.0, 98.6, 64.4, 49.8, 32.1, 31.4, 30.0.

HR-MS (ESI-TOF) m/z: $[M+NH_4]^+$ calcd. for $C_{13}H_{19}Cl_3NO_2$ 326.0476, found 326.0470.

4,4,4-Trichloro-4-phenylbutylbutanoate (41)

Cl₃C Ph

85.5 mg, light yellow oil, yield: 66%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

 $^{1}\textbf{H NMR} (400 \text{ MHz}, \text{CDCl}_{3}) \delta 7.35 - 7.27 \text{ (m, 2H)}, 7.25 - 7.13 \text{ (m, 3H)}, 4.21 - 4.09 \text{ (m, 2H)}, 3.13 - 3.03 \text{ (m, 2H)}, 3.$

2H), $2.85-2.78\ (m,\,2H),\,2.71-2.61\ (m,\,2H),\,1.77-1.65\ (m,\,4H).$

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 141.8, 128.3, 125.8, 98.6, 64.9, 49.8, 35.4, 31.4, 28.1, 27.6.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{14}H_{18}Cl_3O_2$ 323.0367, found 323.0366.

4,4,4-Trichloro-decylbutanoate (4m)

90.7 mg, light yellow oil, yield: 68%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 4.10 (t, *J* = 6.8 Hz, 2H), 3.10 – 2.99 (m, 2H), 2.83 – 2.74 (m, 2H), 1.68 – 1.58 (m, 2H), 1.37 – 1.23 (m, 14H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 98.6, 65.2, 49.9, 31.8, 31.5, 29.48, 29.46, 29.3, 29.2, 28.5, 25.8, 22.6,

14.1.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₂₆Cl₃O₂ 331.0993, found 331.0997.

4,4,4-Trichloro-6-bromohexylbutanoate (4n)

o Br

87.7 mg, light yellow oil, yield: 62%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.
¹H NMR (400 MHz, CDCl₃) δ 4.10 (t, *J* = 6.7 Hz, 2H), 3.39 (t, *J* = 6.7 Hz, 2H), 3.08 – 2.99 (m, 2H), 2.82 – 2.73 (m, 2H), 1.85 (p, *J* = 6.9 Hz, 2H), 1.65 (p, *J* = 6.9 Hz, 2H), 1.52 – 1.42 (m, 2H), 1.42 – 1.32 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 171.0, 98.5, 64.9, 49.8, 33.6, 32.5, 31.4, 28.3, 27.7, 25.0.
HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₇BrCl₃O₂ 352.9472, found 352.9475.

4,4,4-Trichloro-benzylbutanoate (40)

75.2 mg, light yellow oil, yield: 67%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

 ${}^{1}\textbf{H} \textbf{NMR} (400 \text{ MHz}, \textbf{CDCl}_{3}) \ \delta \ 7.45 - 7.30 \ (m, \ 5\text{H}), \ 5.18 \ (s, \ 2\text{H}), \ 3.18 - 3.05 \ (m, \ 2\text{H}), \ 2.95 - 2.79 \ (m, \ 2\text{H}).$

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 135.4, 128.6, 128.4, 128.3, 98.5, 66.8, 49.8, 31.4.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₂Cl₃O₂ 280.9897, found 280.9896.

Thiophen-2-ylmethyl 4,4,4-trichlorobutanoate (4p)

44.6 mg, light yellow oil, yield: 39%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.12 (d, *J* = 3.6 Hz, 1H), 7.00 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.32 (s, 2H), 3.11 – 3.04 (m, 2H), 2.88 – 2.81 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.7, 137.3, 128.5, 127.1, 126.9, 98.4, 61.0, 49.7, 31.4.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_9H_{10}Cl_3O_2S$ 286.9462, found 286.9457.

Pyridin-3-ylmethyl 4,4,4-trichlorobutanoate (4q)

100.7 mg, light yellow oil, yield: 89%. Eluent: pentane/ethyl acetate/dichloromethane = 5/1/1 to 2/1/1. ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 2.3 Hz, 1H), 8.60 (dd, *J* = 4.9, 1.7 Hz, 1H), 7.71 (dt, *J* = 7.8, 2.0 Hz, 1H), 7.32 (dd, *J* = 7.8, 4.9 Hz, 1H), 5.19 (s, 2H), 3.15 – 3.00 (m, 2H), 2.93 – 2.81 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.6, 149.7, 149.6, 136.0, 131.0, 123.3, 98.3, 64.1, 49.6, 31.2. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₁Cl₃NO₂ 281.9850, found 281.9857.

(*E*)-Hex-2-en-1-yl 4,4,4-trichlorobutanoate (**4r**)

64.8 mg, light yellow oil, yield: 59%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹H NMR (400 MHz, CDCl₃) δ 5.85 - 5.69 (m, 1H), 5.63 - 5.48 (m, 1H), 4.62 - 4.42 (m, 2H), 3.10 - 2.98 (m, 2H), 2.88 - 2.73 (m, 2H), 2.11 - 1.97 (m, 2H), 1.40 (h, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.4 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 170.8, 137.0, 123.4, 98.6, 65.9, 49.9, 34.2, 31.5, 22.0, 13.6.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₆Cl₃O₂ 273.0210, found 273.0216.

But-2-yn-1-yl 4,4,4-trichlorobutanoate (4s)

64.1 mg, colorless oil, yield: 66%. Eluent: pentane/ethyl acetate = 30/1 to 20/1.

¹**H** NMR (400 MHz, CDCl₃) δ 4.68 (q, J = 2.4 Hz, 2H), 3.10 – 3.01 (m, 2H), 2.87 – 2.79 (m, 2H), 1.85 (t, J = 2.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 98.4, 83.6, 72.7, 53.3, 49.7, 31.3, 3.6.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₈H₁₀Cl₃O₂ 242.9741, found 242.9749.

1,2-Phenylenebis(methylene) bis(4,4,4-trichlorobutanoate) (4t)

21.9 mg, light yellow oil, yield: 23% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 20/1 to 5/2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.41 – 7.35 (m, 2H), 5.27 (s, 4H), 3.12 – 3.02 (m, 4H), 2.91 – 2.80 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 170.7, 134.1, 130.1, 129.0, 98.4, 64.3, 49.7, 31.4.

HR-MS (ESI-TOF) m/z: $[M+NH_4]^+$ calcd. for $C_{16}H_{20}Cl_6NO_4$ 499.9518, found 499.9524, $[M+Na]^+$ calcd. for $C_{16}H_{16}Cl_6NaO_4$ 504.9072, found 504.9071.

4,4,4-Trichloro-2-(hydroxymethyl)benzyl butanoate (4u)

15.0 mg, light yellow oil, yield: 24% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 20/1 to 5/2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.38 – 7.31 (m, 2H), 5.30 (s, 2H), 4.77 (s, 2H), 3.11 – 3.02 (m, 2H), 2.90 – 2.80 (m, 2H), 2.06 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 139.2, 133.4, 129.9, 129.1, 128.8, 128.2, 98.4, 64.5, 62.9, 49.7, 31.5. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for $C_{12}H_{14}Cl_3O_3$ 311.0003, found 311.0002, [M+Na]⁺ calcd. for $C_{12}H_{13}Cl_3NaO_3$ 332.9822, found 332.9827.

Ethane-1,2-diyl bis(4,4,4-trichlorobutanoate) (4v)

56.1 mg, light yellow oil, yield: 69% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 10/1 to 8/1. ¹H NMR (400 MHz, CDCl₃) δ 4.34 (s, 4H), 3.13 – 2.99 (m, 4H), 2.89 – 2.74 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 98.4, 62.5, 49.7, 31.3. **HR-MS** (ESI-TOF) m/z: $[M+NH_4]^+$ calcd. for $C_{10}H_{16}Cl_6NO_4$ 423.9205, found 423.9213, $[M+Na]^+$ calcd. for $C_{10}H_{12}Cl_6NaO_4$ 428.8759, found 428.8763.

Propane-1,2,3-triyl tris(4,4,4-trichlorobutanoate) (4w)

24.5 mg, light yellow oil, yield: 20% (0.2 mmol scale). Eluent: pentane/ethyl acetate = 20:1 to 10:1.

¹**H NMR** (400 MHz, CDCl₃) δ 5.40 – 5.27 (m, 1H), 4.41 (dd, *J* = 12.0, 4.1 Hz, 2H), 4.23 (dd, *J* = 12.1, 5.9 Hz, 2H), 3.14 – 3.00 (m, 6H), 2.90 – 2.76 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.3, 98.3, 69.5, 62.6, 49.6, 31.3, 31.2.

HR-MS (ESI-TOF) m/z: $[M+ NH_4]^+$ calcd. for $C_{15}H_{21}Cl_9NO_6$ 625.8560, found 625.8561.

4,4,4-Trichloro-*N*-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)butanamide (**5a**)

66.1 mg, colorless solid, yield: 81% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 4/1/1 to 2/1/1.

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.83 (s, 1H), 10.19 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 3.11 (dd, J = 8.9, 6.0 Hz, 2H), 2.80 (dd, J = 9.0, 6.0 Hz, 2H), 2.51 – 2.41 (m, 1H), 2.36 – 2.25 (m, 1H), 2.21 – 2.08 (m, 2H), 1.92 – 1.71 (m, 2H), 0.74 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.8, 172.8, 168.2, 137.9, 134.3, 126.7, 119.3, 99.8, 49.8, 49.6, 33.3, 32.2, 29.1, 26.0, 8.9.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{17}H_{20}Cl_3N_2O_3$ 405.0534, found 405.0536.

(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl 4-(4,4,4-trichlorobutanamido)benzoate (5b)

148.7 mg, light yellow solid, yield: 82%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 7/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 4.89 (td, *J* = 10.8, 4.3 Hz, 1H), 3.20 – 3.08 (m, 2H), 2.94 – 2.81 (m, 2H), 2.13 – 2.03 (m, 1H), 1.97 – 1.86 (m, 1H), 1.77 – 1.64 (m, 2H), 1.59 – 1.44 (m, 2H), 1.16 – 1.03 (m, 2H), 0.97 – 0.84 (m, 1H), 0.89 (d, *J* = 6.8 Hz, 6H), 0.76 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 165.9, 141.9, 130.7, 126.2, 119.1, 98.7, 75.0, 49.9, 47.1, 40.9, 34.2, 31.4, 26.4, 23.6, 21.9, 20.6, 16.5.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{21}H_{29}Cl_3NO_3$ 448.1208, found 448.1213.

4-(4,4,4-Trichlorobutanamido) phenyl ((1*S*,4*R*)-7,7-dimethyl-2-oxobicyclo[2.2.1] heptan-1-yl) methanesulfonate (5c)

84.3 mg, light yellow oil, yield: 85% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 5/1/1 to 3/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.48 (d, *J* = 9.0 Hz, 2H), 7.16 (d, *J* = 8.9 Hz, 2H), 3.76 (d, *J* = 14.9 Hz, 1H), 3.19 (d, *J* = 15.0 Hz, 1H), 3.15 – 3.05 (m, 2H), 2.87 – 2.75 (m, 2H), 2.53 – 2.35 (m, 2H), 2.14 (t, *J* = 4.5 Hz, 1H), 2.11 – 2.04 (m, 1H), 1.95 (d, *J* = 18.6 Hz, 1H), 1.78 – 1.68 (m, 1H), 1.49 – 1.40 (m, 1H), 1.11 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 214.3, 168.5, 144.7, 136.8, 122.5, 121.2, 98.9, 58.0, 49.9, 48.0, 47.5, 42.7, 42.4, 33.8, 26.7, 25.1, 19.7, 19.6.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{20}H_{25}Cl_3NO_5S$ 496.0514, found 496.0520.

4,4,4-Trichloro-N-(3-methoxypyrazin-2-yl)-N-((4-(4,4,4-trichlorobutanamido)phenyl) sulfonyl) butanamide (5d)

49.2 mg, light yellow solid, yield: 39% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 5/1/1 to 3/1/1.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.53 (d, *J* = 2.6 Hz, 1H), 8.39 (d, *J* = 2.7 Hz, 1H), 8.07 – 7.96 (m, 2H), 7.93 – 7.81 (m, 2H), 4.04 (s, 3H), 3.21 – 3.08 (m, 2H), 2.96 (t, *J* = 6.9 Hz, 2H), 2.92 – 2.87 (m, 2H), 2.42 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.2, 168.6, 157.6, 144.2, 144.1, 136.5, 134.0, 131.5, 130.4, 118.3, 99.6, 98.6, 54.6, 49.3, 47.9, 33.5, 32.5.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₉H₁₉Cl₆N₄O₅S 624.9202, found 624.9208.

4,4,4-Trichloro-4-(3-oxobutyl)phenyl butanoate (5e)

109.6 mg, light yellow oil, yield: 81%. Eluent: pentane/ethyl acetate = 20:1 to 10:1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.13 (m, 2H), 7.04 – 6.94 (m, 2H), 3.19 – 3.10 (m, 2H), 3.08 – 2.99 (m, 2H), 2.86 (t, *J* = 7.5 Hz, 2H), 2.73 (t, *J* = 7.2 Hz, 2H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 207.3, 169.5, 148.5, 138.7, 129.2, 121.1, 98.3, 49.5, 44.8, 31.4, 29.9, 28.8.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{14}H_{16}Cl_3O_3$ 337.0160, found 337.0156.

(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 4,4,4-trichlorobutanoate (**5f**)

47.6 mg, colorless oil, yield: 78%. Eluent: pentane/ethyl acetate = 20:1 to 15:1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 1H), 6.86 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.82 (d, *J* = 2.5 Hz, 1H), 3.21 – 3.14 (m, 2H), 3.09 – 3.02 (m, 2H), 2.95 – 2.87 (m, 2H), 2.50 (dd, *J* = 18.7, 8.7 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.33 – 2.23 (m, 1H), 2.19 – 1.92 (m, 4H), 1.69 – 1.41 (m, 6H), 0.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.5, 169.7, 148.2, 138.0, 137.5, 126.3, 121.2, 118.4, 98.3, 50.3, 49.6, 47.8, 44.0, 37.8, 35.7, 31.5, 31.4, 29.3, 26.2, 25.6, 21.4, 13.7.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₂H₂₆Cl₃O₃ 443.0942, found 443.0941.

3-Oxo-3H-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl bis(4,4,4-trichlorobutanoate) (5g)

108.3 mg, light yellow solid, yield: 80% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 6/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.1, 1.4 Hz, 1H), 7.73 – 7.59 (m, 2H), 7.18 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.87 – 6.80 (m, 4H), 3.20 – 3.13 (m, 4H), 3.11 – 3.04 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 168.9, 152.6, 151.6, 151.4, 135.3, 130.1, 129.0, 125.9, 125.2, 123.9, 117.5, 116.6, 110.2, 98.2, 81.3, 49.4, 31.5.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₈H₁₉Cl₆O₇ 676.9256, found 676.9252.

((3*a*S,5*a*R,8*a*R,8*b*S)-2,2,7,7-Tetramethyltetrahydro-3*a*H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3*a*-yl)methyl 4,4,4-trichlorobutanoate (**5**h)

100.5 mg, light yellow oil, yield: 58%. Eluent: pentane/ethyl acetate = 10/1.

¹H NMR (400 MHz, CDCl₃) δ 4.58 (dd, J = 7.9, 2.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 4.27 (d, J = 2.6 Hz, 1H), 4.21 (dd, J = 7.9, 1.7 Hz, 1H), 4.04 (d, J = 11.6 Hz, 1H), 3.87 (dd, J = 13.0, 1.9 Hz, 1H), 3.74 (d, J = 13.0 Hz, 1H), 3.10 - 3.00 (m, 2H), 2.88 - 2.80 (m, 2H), 1.51 (s, 3H), 1.45 (s, 3H), 1.38 (s, 3H), 1.31 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 170.3, 109.0, 108.7, 101.3, 98.3, 70.6, 70.5, 69.9, 65.8, 61.2, 49.7, 31.2, 26.4, 25.8, 25.1, 24.0.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₆H₂₄Cl₃O₇ 433.0582, found 433.0588.

(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl 4,4,4-trichlorobutanoate (5i)

84.1 mg, light yellow oil, yield: 64%. Eluent: pentane/ethyl acetate = 30/1.

¹**H NMR** (400 MHz, CDCl₃) δ 4.72 (td, J = 10.8, 4.4 Hz, 1H), 3.11 – 2.98 (m, 2H), 2.83 – 2.72 (m, 2H), 2.03 – 1.95 (m, 1H), 1.90 – 1.79 (m, 1H), 1.74 – 1.64 (m, 2H), 1.55 – 1.43 (m, 1H), 1.43 – 1.34 (m, 1H), 1.11 – 1.02 (m, 1H), 1.01 – 0.93 (m, 1H), 0.93 – 0.85 (m, 1H), 0.90 (dd, J = 6.8, 1.6 Hz, 6H), 0.76 (d, J = 6.9 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 170.6, 98.7, 75.0, 49.9, 46.9, 40.8, 34.1, 31.7, 31.3, 26.3, 23.4, 22.0, 20.7, 16.3. **HR-MS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₂₇NCl₃O₂ 346.1102, found 346.1106; [M+Na]⁺ calcd. for C₁₄H₂₃NaCl₃O₂ 351.0656, found 351.0656.

(3*S*,5*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-10,13-Dimethyl-17-oxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4,4,4-trichlorobutanoate (**5j**)

68.2 mg, colorless solid, yield: 74% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 20/1/1 to 15/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 4.74 (tt, *J* = 10.9, 4.9 Hz, 1H), 3.11 – 2.99 (m, 2H), 2.84 – 2.73 (m, 2H), 2.43 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.07 (dt, *J* = 18.8, 9.0 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.87 – 1.72 (m, 4H), 1.70 – 1.61 (m, 2H), 1.59 – 1.46 (m, 3H), 1.43 – 1.20 (m, 7H), 1.10 – 0.93 (m, 2H), 0.86 (s, 6H), 0.72 (td, *J* = 11.9, 11.3, 3.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 221.0, 170.4, 98.6, 74.2, 54.2, 51.3, 49.9, 47.7, 44.5, 36.6, 35.7, 35.5, 34.9, 33.8, 31.8, 31.4, 30.7, 28.2, 27.3, 21.7, 20.4, 13.7, 12.1.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₃H₃₄Cl₃O₃ 463.1568, found 463.1561.

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-Acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4,4,4-trichlorobutanoate (**5k**)

57.3 mg, colorless oil, yield: 58% (0.2 mmol scale). Eluent: pentane/ethyl acetate/dichloromethane = 20/1/1 to 15/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 5.36 (dt, *J* = 3.4, 1.7 Hz, 1H), 4.71 – 4.56 (m, 1H), 3.11 – 2.96 (m, 2H), 2.82 – 2.72 (m, 2H), 2.52 (t, *J* = 8.9 Hz, 1H), 2.32 (d, *J* = 7.9 Hz, 2H), 2.22 – 2.13 (m, 1H), 2.10 (s, 3H), 2.07 – 1.94 (m,

2H), 1.91 – 1.82 (m, 2H), 1.71 – 1.54 (m, 5H), 1.54 – 1.42 (m, 3H), 1.28 – 1.08 (m, 4H), 1.01 (s, 3H), 0.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 209.4, 170.4, 139.4, 122.5, 98.6, 74.6, 63.6, 56.8, 49.9, 49.8, 43.9, 38.7, 37.9, 36.9, 36.5, 31.8, 31.76, 31.74, 31.5, 27.6, 24.4, 22.8, 21.0, 19.2, 13.2.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{25}H_{36}Cl_3O_3$ 489.1725, found 489.1732.

(8R,9S,13S,14S,17R)-13-Methyl-17-((4,4,4-trichlorobutanoyl)oxy)-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl benzoate (**5**I)

40.2 mg, colorless solid, yield: 69% (0.1 mmol scale). Eluent: pentane/ethyl acetate = 20/1 to 10/1. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 7.0 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 1H), 6.98 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.94 (d, *J* = 2.4 Hz, 1H), 4.83 – 4.70 (m, 1H), 3.16 – 3.06 (m, 2H), 2.96 – 2.88 (m, 2H), 2.88 – 2.79 (m, 2H), 2.39 – 2.18 (m, 3H), 1.97 – 1.87 (m, 2H), 1.83 – 1.73 (m, 1H), 1.64 – 1.58 (m, 1H), 1.57 – 1.49 (m, 2H), 1.48 – 1.40 (m, 2H), 1.39 – 1.26 (m, 2H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 165.4, 148.7, 138.1, 137.7, 133.4, 130.1, 129.6, 128.5, 126.4, 121.6, 118.7, 98.6, 83.4, 49.9, 49.7, 43.9, 42.9, 38.2, 36.8, 31.6, 29.5, 27.5, 27.0, 26.0, 23.2, 12.1. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₉H₃₂Cl₃O₄ 549.1361, found 549.1362.

(R)-1-(4-Fluorophenyl)-3-((3R,4S)-1-(4-fluorophenyl)-2-oxo-4-(4-((4,4,4-trichlorobutanoyl)oxy)phenyl)azetidin-3-yl)propyl 4,4,4-trichlorobutanoate (5m)

49.5 mg, light yellow oil (0.1 mmol scale), yield: 65%. Eluent: pentane/ethyl acetate/dichloromethane = 10/1/1 to 5/1/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.31 – 7.25 (m, 2H), 7.24 – 7.18 (m, 2H), 7.16 – 7.11 (m, 2H), 7.07 – 7.00 (m, 2H), 6.97 – 6.90 (m, 2H), 5.74 (t, *J* = 6.8 Hz, 1H), 4.61 (d, *J* = 2.4 Hz, 1H), 3.22 – 3.13 (m, 2H), 3.11 – 2.96 (m, 5H), 2.90 – 2.72 (m, 2H), 2.15 – 2.02 (m, 2H), 1.97 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 169.5, 166.5, 162.5 (d, J = 247.3 Hz), 159.0 (d, J = 243.8 Hz), 150.5, 135.2, 135.1 (d, J = 3.3 Hz), 133.6 (d, J = 2.7 Hz), 128.3 (d, J = 8.2 Hz), 127.0, 122.4, 118.3 (d, J = 7.9 Hz), 115.9 (d, J = 22.7 Hz), 115.7 (d, J = 21.6 Hz), 98.4, 98.2, 75.6, 60.6, 60.1, 49.63, 49.60, 33.4, 31.5, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2, -117.6. **HR-MS** (ESI-TOF) m/z: $[M+NH_4]^+$ calcd. for $C_{32}H_{31}Cl_6F_2N_2O_5$ 771.0327, found 771.0321, $[M+Na]^+$ calcd. for $C_{32}H_{27}Cl_6F_2NNaO_5$ 775.9881, found 775.9882.

6,6,6-Trichloro-N-phenylhexanamide (6a)

47.1 mg, light yellow solid, yield: 40%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1. **¹H NMR** (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.40 (t, *J* = 6.7 Hz, 2H), 1.87 – 1.74 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 137.7, 128.9, 124.4, 120.1, 99.7, 54.7, 37.0, 26.0, 24.1.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₅Cl₃NO 294.0214, found 294.0221.

6,6,6-Trichloro-N-(3-methoxyphenyl)hexanamide (6b)

55.8 mg, light yellow oil, yield: 43%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 6/1/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.63 (s, 1H), 7.29 (t, *J* = 2.3 Hz, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.65 (dd, *J* = 8.1, 2.7 Hz, 1H), 3.77 (s, 3H), 2.68 (t, *J* = 7.3 Hz, 2H), 2.40 (t, *J* = 6.8 Hz, 2H), 1.87 – 1.78 (m, 4H).

¹³C NMR (176 MHz, CDCl₃) δ 170.7, 160.1, 139.0, 129.6, 112.0, 110.0, 105.8, 99.7, 55.2, 54.7, 37.1, 26.0, 24.0. HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₁₇Cl₃NO₂ 324.0319, found 324.0321.

6,6,6-Trichloro-*N*-(3-(trifluoromethyl)phenyl)hexanamide (6c)

55.1 mg, light yellow oil, yield: 38%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 2.74 – 2.66 (m, 2H), 2.49 – 2.41 (m, 2H), 1.89 – 1.80 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 138.2, 131.4 (q, *J* = 32.5 Hz), 129.5, 123.8 (q, *J* = 272.4 Hz), 123.0, 120.9 (q, *J* = 3.6 Hz), 116.6 (q, *J* = 3.7 Hz), 99.6, 54.7, 37.0, 26.0, 23.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.7.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{13}H_{14}Cl_3F_3NO$ 362.0088, found 362.0093.

6,6,6-Trichloro-*N*-(4-(*tert*-butyl)phenyl)hexanamide (6d)

57.5 mg, light yellow solid, yield: 41%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 2.69 (t, *J* = 7.3 Hz, 2H), 2.40 (t, *J* = 6.7 Hz, 2H), 1.91 – 1.77 (m, *J* = 4.8 Hz, 4H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 147.3, 135.1, 125.7, 119.8, 99.7, 54.7, 37.0, 34.3, 31.3, 26.0, 24.2.
 HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₆H₂₃Cl₃NO 350.0840, found 350.0846.

6,6,6-Trichloro-N-(4-(methylthio)phenyl)hexanamide (6e)

54.5 mg, light yellow solid, yield: 40%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 7/1/1. **¹H NMR** (700 MHz, CDCl₃) δ 7.68 (s, 1H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 2.71 – 2.64 (m, 2H), 2.44 (s, 3H), 2.39 (t, *J* = 6.9 Hz, 2H), 1.87 – 1.76 (m, 4H).

¹³C NMR (176 MHz, CDCl₃) δ 170.7, 135.3, 133.7, 127.8, 120.7, 99.6, 54.7, 36.9, 26.0, 24.0, 16.5.
 HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₁₇Cl₃NOS 340.0091, found 340.0094.

6,6,6-Trichloro-N-(4-(trifluoromethyl)phenyl)hexanamide (6f)

50.8 mg, light yellow oil, yield: 35%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.52 (s, 1H), 2.75 – 2.68 (m, 2H), 2.46 (t, *J* = 6.7 Hz, 2H), 1.90 – 1.82 (m, 4H).

¹³C NMR (176 MHz, CDCl₃) δ 170.8, 140.8, 126.3 (q, *J* = 3.6 Hz), 126.0, 124.0 (q, *J* = 271.8 Hz), 119.4, 99.6, 54.7, 37.1, 26.0, 23.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.1.

HR-MS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₁₄Cl₃F₃NO 362.0088, found 362.0082.

6,6,6-Trichloro-N-(4-(trifluoromethoxy)phenyl)hexanamide (6g)

59.1 mg, light yellow oil, yield: 39%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.82 – 7.67 (m, 1H), 7.53 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 2.73 – 2.64 (m, 2H), 2.42 (t, *J* = 6.8 Hz, 2H), 1.87 – 1.78 (m, 4H).

¹³**C NMR** (176 MHz, CDCl₃) δ 170.8, 145.3, 136.3, 121.7, 121.2, 120.4 (q, *J* = 257.0 Hz), 99.6, 54.7, 36.9, 26.0, 24.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.1.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{13}H_{14}Cl_3F_3NO_2$ 378.0037, found 378.0040.

6,6,6-Trichloro-N-(4-bromophenyl)hexanamide (6h)

65.7 mg, light yellow oil, yield: 44%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.39 (s, 4H), 2.75 – 2.60 (m, 2H), 2.39 (t, *J* = 6.6 Hz, 2H), 1.90 – 1.70 (m, *J* = 4.9 Hz, 4H).
¹³C NMR (101 MHz, CDCl₃) δ 170.8, 136.8, 131.9, 121.6, 117.0, 99.6, 54.7, 36.9, 26.0, 24.0.

HR-MS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{12}H_{14}ICl_3NO$ 371.9319, found 371.9322.

6,6,6-Trichloro-N-(4-iodophenyl)hexanamide (6i)

77.4 mg, light yellow solid, yield: 46%. Eluent: pentane/ethyl acetate/dichloromethane = 15/1/1 to 8/1/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.67 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 2.71 – 2.65 (m, 2H), 2.39 (t, *J* = 6.9 Hz, 2H), 1.86 – 1.76 (m, 4H).

¹³**C NMR** (176 MHz, CDCl₃) δ 170.8, 137.8, 137.5, 121.8, 99.6, 87.6, 54.7, 37.0, 26.0, 23.9.

 $\label{eq:HR-MS} \textbf{(ESI-TOF)} \ m/z; \ [M+H]^+ \ calcd. \ for \ C_{12}H_{14}ICl_3NO \ 419.9180, \ found \ 419.9182.$

5. ¹H-, ¹³C- and ¹⁹F-NMR spectra copy of products

3a

S25

3b

3c

6863-YZhang-3-235.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 26400.13MHz

6607-yzhang-3-188.10.fid — PROTON CDC13 {D:\NMR400\DNL0604} nmr-new 24400.13MHz

6606-yzhang-3-189.10.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 54400.13MHz

6606-yzhang-3-199.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 51400.13MHz

6722-yzhang-3-205.10.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 41400.13MHz

6705-YZhang-3-206.10.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 15400.13MHz

6750-YZHANG-3-185-.10.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 17400.13MHz

7002-YZhang-3-258.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 46400.13MHz

6950-yzhang-3-239.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 39400.13MHz

3r

7402-yzhang-3-317.10.fid --- PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 32400.13MHz

3s

4a

6958-yzhang-3-260.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 44400.13MHz

6892-yZhang-3-254.10.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 41400.13MHz

4d

6925-yzhang-3-259.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 19400.13MHz

4i

41

4n

40

4r

6072-YZhang-3-135a.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 20400.13MHz

4u

6722-yzhang-3-177.11.fid — PROTON DMSO {D:\NMR400\DNL0604} nmr-new 40400.13MHz

5c

5f

51

5m

S83

7481-yzhang-3-338b.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 35400.13MHz

6c

7481-yzhang-3-336b.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 34400.13MHz

6g

7499-yzhang-3-341b.10.fid — PROTON CDCl3 {D:\NMR400\DNL0604} nmr-new 24400.13MHz

6i

