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1. Experimental section

1.1 Materials synthesis

N/S co-doped carbon dots were prepared through our previous reported method.1 Pure 

Na3V2(PO4)3, N/S co-doped carbon coated Na3V2(PO4)3 composites, referred to as NVP and 

NVP/NSC, respectively, were synthesized by a one-step solid phase ball milling followed by 

sintering method. The N/S co-doped carbon dots were used as the reducing agent, carbon 

source, nitrogen source and sulfur source simultaneously. In a typical NVP/NSC synthesis 

method, 2 mmol V2O5, 6 mmol NH4H2PO4, 3 mmol Na2CO3 and 50/75/100 mg N/S doped 

carbon dots were ball milled in an agate ball mill jar at 500 rpm for 6 h, where the bead ratio is 

approximately 15:1. The chemicals above were purchased from Aladdin (Shanghai, China). 

The resulting precursors were then placed in a tube furnace at 350°C for 4 h under an argon gas 

(Ar) atmosphere and then heating up to 850 °C at a rate of 5 °C/min. The intermediate powder 

was remelted and sintered for 8 h at 850 °C. The synthesis process for bare NVP was the same 

as the preparation of NVP/NSC, but without the addition of N/S co-doped carbon dots.

1.2 Materials characterization

Determination of elemental content (C, N and S) was carried out with the elemental 

analyzer (EA, Elementar Vario EL Cube, GER). The samples were characterized by Fourier 

transform infrared spectroscopy (FT-IR, AVTA-TAR, 370) to detect characteristic functional 

groups. The crystal structures were characterized by X-ray diffractometer (XRD Rigaku 

D/max-2550 VB + 18 KW, Cu Kα radiation, Japan). The data were then analysed using the 

Rietveld structure refinement program on FullProf. Raman spectra were obtained with a 

RENISHAW invia wire 4.2 spectrometer. Elemental composition and valence states were 

determined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, USA). 

Microscopic morphology of samples was observed by scanning electron microscopy (SEM, 

JEOL/JSM-7610FPlus). Detailed microstructures were observed by using a transmission 

electron microscope (TEM, FEI Titan G2 60-300, USA), and TEM-energy-dispersive 

spectroscopy (EDS) analysis was carried out by using a Bruker Super EDS detector.

1.3 Electrochemical measurements

The button cells (CR 2016) were assembled in an argon-filled glove box with water and 

oxygen content below 0.5 ppm. A 70 wt% NVP-based sample was mixed with carbon black 

(Super P) (20 wt%) and polyvinylidene fluoride (PVDF) (10 wt%) in N-methylpyrrolidone 

(NMP) solvent to form uniform slurry and then pasted it onto a carbon coated aluminum foil, 

followed by vacuum drying oven at 120 °C for 12 h to prepare the positive electrode. The mass 

loading was 0.8 ~ 1.0 mg cm-2. Sodium metal was used as the reference and counter electrode, 
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NaClO4 in propylene carbonate (PC) and 5% fluoroethylene carbonate (FEC) (1.0 mol/L) was 

utilized as the electrolyte and Whatman GF/D was employed as the separator. These half-cells 

were subjected to constant current charge/discharge testing on a LAND CT2001 testing system 

(Wuhan LAND Electronics. Ltd., China) with a voltage range of 2.3-4.0 V (vs. Na+/Na). 

Electrochemical impedance spectra (frequency range: 0.01-105 Hz) and cyclic voltammetry 

(CV) were using Chenhua electrochemical workstation (CHI 660D, Chenhua, Shanghai) and 

Autolab electrochemical workstation (MULTI AUTOLAB M204). For the galvanostatic 

intermittent titration technique (GITT), a constant current of 0.1 C (1 C= 117 mA g-1) was 

applied for 20 min and then interrupted to achieve an open circuit condition for 120 min. The 

procedure was repeated until the electrode potential reached the cut-off voltage. In addition, a 

sodium ion full cell was constructed using NVP/NSC-75 as the cathode and hard carbon (HC) 

as the anode. The HC (Kuraray Co., Ltd, 70 wt%) was mixed with carbon black (20 wt%) and 

carboxymethyl cellulose (10 wt%) in H2O solvent to form unique slurry, and then pasted onto 

a copper foil, followed by vacuum drying oven at 100 °C for 12 h to prepare the negative 

electrode. The HC anode was cycled between a voltage range of 0.01-2.0 V (vs. Na+ /Na) at a 

current of 0.5 A g-1 for 8 cycles to reach a steady state before the full cell was assembled. The 

full cell has a cathode to anode capacity ratio of approximately 1:1.2 and the cell capacity is 

determined by the cathode. Charge and discharge measurements were carried out between 1.2 

V and 3.6 V at 5 C (1 C = 117 mA g-1). For both pre-sodiation and full cells test, 1.0 M NaPF6 

in Diglyme was used as electrolyte.

1.4 Theoretical calculations

Structural optimization was performed by Vienna Ab-initio Simulation Package (VASP) 
2with the projector augmented wave (PAW) method.3 In order to describe the weak interactions 

between atoms, the exchange-functional was treated using the Perdew-Burke-Ernzerhof 

(PBE)4functional in combination with the DFT-D3 correction.5 The cut-off energy of the plane-

wave basis was set at 450 eV in structural optimization. The Brillouin zone integration was 

performed with a Monkhorst-Pack k-point mesh of 0.04 Å-1 to optimise geometry and lattice 

size. Partial occupancies of the Kohn−Sham orbitals were allowed using the Gaussian smearing 

method and a width of 0.05 eV. A geometry optimization was considered convergent when the 

energy change was smaller than 0.05 eV Å−1. To consider the strong correlation effects of 

transition metal in structure, both structural optimizations and electronic structure calculations 

were carried out by using the spin-dependent GGA plus Hubbard correction U method.
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Figure S1. The optimized structure model of the NVP.
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Figure S2. The optimized structure model of the NVP/NSC.
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Figure S3. Schematic diagram of Na+ diffusion pathways and processes alongside Path Ⅱ6 in 

NVP (Inside the dashed box is the migrating sodium ions).
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Figure S4. Schematic diagram of Na+ diffusion pathways and processes alongside Path Ⅱ6 in 

NVP/NSC (Inside the dashed box is the migrating sodium ions).
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Figure S5. High-resolution XPS spectra of V2p (a), C1s (b), N1s (c) and S2p (d) for the 

NVP/NSC samples.
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Figure S6. SEM images of NVP/NSC-50 (a), NVP/NSC-75 (b) and NVP/NSC-100 (c).
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Figure S7. TEM images of NVP/NSC-50 (a), NVP/NSC-75 (b) and NVP/NSC-100 (c).
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Figure S8. Elemental mapping images for Na, V, O, P, C, N and S in NVP/NSC-50.
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Figure S9. Elemental mapping images for Na, V, O, P, C, N and S in NVP/NSC-100.
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Figure S10. Cycling performances of NVP/NSC samples at the rate of 1 C for 100 cycles.
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Figure S11. Specific capacities and coulombic efficiencies of NVP/NSC samples at the rate 
of 10 C for 2000 cycles.
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Figure S12. Medium voltages of NVP/NSC samples at the rate of 10 C for 2000 cycles.
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Figure S13. Linear fits for the anodic and cathodic peak currents versus scan rates of (a) 

NVP/NSC-50, (b) NVP/NSC-75 and (c) NVP/NSC-100.
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Figure S14. Equivalent circuit model used to fit experimental EIS data.
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Figure S15. The dQ/dV curves of NVP/NSC-50 (a) and NVP/NSC100 (b) for the selected 
cycles at 1 C.
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Figure S16. The GCD curves of NVP at 0.1 C (a) and cycling performance at the rate of 10 C 
after 100 cycles (b).
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Figure S17. HRTEM images of NVP and NVP/NSC-75 after one cycle at 0.1 C (a, c) and 

after 100 cycles at 10 C (b, d).
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Figure S18. Specific capacity and coulombic efficiency of NVP/NSC-75 at a rate of 10 C for 

2000 cycles in ether electrolyte.
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Figure S19. Energy density of NVP/NSC-75 ‖ HC full cell for 800 cycles at 5 C in different 

electrolyte.
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Table S1. Result of structural analysis obtained from XRD Rietveld refinement of samples 

NVP/NSC-50, NVP/NSC-75 and NVP/NSC-100

Lattice constant Reliability factors 
[%]Samples

a (= b) [Å] c [Å] V [Å3] RWP RP

NVP/NSC-50 8.73072 
(0.00033) 21.82444(0.00102) 1440.701(0.103) 5.20 3.90

NVP/NSC-75 8.73285
(0.00044) 21.82199 (0.00134) 1441.243(0.136) 7.20 5.34

NVP/NSC-100 8.73197
(0.00043) 21.84524(0.00131) 1442.488(0.132) 4.61 3.51
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Table S2. Content ratio of C, N and S in N/S CDs and NVP/NSC series
Samples C [%] N [%] S [%]
N/S CDs 57.13 1.71 4.152

NVP/NSC-50 1.10 0.24 0.099
NVP/NSC-75 2.23 0.45 0.149

NVP/NSC-100 3.43 0.43 0.161
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Table S3. Comparison of electrochemical properties of other NVP materials
Material

Carbon 
content

[%]

Voltage 
window

[V]

Rate performance
[mAh g-1]

Capacity retention 
[%]

Ref

NVP/NSC-75 2.23 2.3-4.0
83.2 at 100 C

91 at 50 C
98.8 at 20 C

72.2 at 10000 cycles 
at 100 C

86.7 at 10000 cycles 
at 20 C

97.8 at 2000 cycles 
at 10 C

This 
work

Na3V2(PO4)3/C 17.68 2.5-4.0 96 at 20 C 78 at 7000 cycles at 
20 C

7

NVP@C-N150 14.50 2.7-3.8 71 at 100 C 91 at 5000 cycles at 
20 C

8

HP-NVP@SC 6.48 2.3-3.9 95 at 30 C 91 at 2500 cycles at 
20 C

9

NVP@3D-NSC 13.27 2.3-3.9 54 at 80 C 77.6 at 6000 cycles 
at 20 C

10

NVP@C+N@CNTs 12.68 2.5-4.0 70 at 80 C 87 at 300 cycles at 
30 C

11

(C@NVP)@pC 20 2.3-3.9 74 at 100 C - 12

NVP@rGO - 2.0-4.0 44 at 50 C 81 at 3000 cycles at 
5 C

13

NVP–CNF-6 h 8.34 2.7-4.0 88.9 at 50 C 93 at 300 cycles at 1 
C

14

HP-NVP 4.4 2.3-3.9 61 at 100 C 85 at 10000 cycles at 
20 C

15

NVP-Ti0.15/ C - 2.3-3.9 81.6 at 20 C 86 at 500 cycles at 
10 C

16

900-NVP@C/G 17.9 2.5-4.0 76 at 60 C 95 at 1000 cycles at 
10 C

17

PL-NVP@C 4.95 2.3-3.9 72 at 50 C 91.3 at 2000 cycles 
at 10 C

18

HCF-NVP 6.41 2.0-3.9 78 at 100 C 54 at 20000 cycles at 
30 C

19

NVP/C 2.0 2.0-4.0 70 at 100 C 50 at 5000 cycles at 
50 C

20

NVP@C-CNW 2.33 2.3-3.9 62.2 at 60 C 80.6 at 1000 cycles 
at 20 C

21

NVP@C@HC 16.49 2.0-4.0 60.4 at 50 C 70.7 at 10000 cycles 
at 20 C

22

NVP-Freestanding 35.1 2.5-4.0 63 at 30 C 88.6 at 150 cycles at 
0.5 C

23

NVP/G 6.14 2.2-4.0 70.1 at 30 C 86 at 300 cycles at 5 
C

24

NVP/C with 3D porous 
structure - 2.0-4.0 74.4 at 50 C 90.4 At 2200 cycles 

at 20 C
25

NVP/C 9.3 2.5-3.8 89.5 at 50 C 94 at 500 cycles at 
50 C

26
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Table S4. Full cell performance comparison

Symmetric full cell description Voltage range 
[V]

Discharge capacity 
[mAh g-1]

Cycle
performance Ref

NVP/NSC-75 ‖ 1M NaPF6/Diglyme ‖ 
HC 1.2-3.6 115.3 at 5 C 92.1%-5 C

(800 cycles) This work

NMF-NVP/NC ‖ 1M NaClO4/EC+DEC 
with FEC ‖ HC 1.5-3.7 75.9 at 5 C 60%-1 C

(200 cycles)
27

NVP/C ‖ 1M NaPF6/EC+DEC+FEC ‖ 
S-doped C 0.5-3.5 110 at 200 mA g-1 90%-200 mA g-1 

(100 cycles)
7

NVP@NSC ‖ 1M NaClO4/EC+PC with 
FEC ‖ HC 2.0-3.8 98.5 at 100 mA g-1 67.1%-1 C

(100 cycles)
28

NVCP ‖ 1M NaPF6/Diglyme ‖ HC 1.9-3.8 115.1 at 1 C 92.7%-1 C
(150 cycles)

29

NVMP/C ‖ 1M NaClO4 in EC/PC (1:1 
v/v) ‖ HC 1.0-4.0 90 at 0.1 C 90%-1 C

(100 cycles)
30

NVP-Na2.5% ‖ 1M NaClO4 in 
PC+FEC2%) ‖ HC 2.0-4.0 83.7 at 5 C 93.4%-5-0.5 C

(100 cycles)
31

HP-NVP@SC ‖ 1M NaClO4 in 
EC/DMC (1:1 v/v) ‖ HP-NVP@SC 1.2-2.2 109.7 at 5 C 91.2%-5 C

(1000 cycles)
9

NVP@rGO ‖ 1M NaClO4 in EC/DEC 
(1:1 v/v) ‖ Sb/C - 50 at 5 C 78%-0.5 C

(40 cycles)
13

NVP: rGO-CNT ‖ 1M NaClO4 in 
EC/DEC (1:1 v/v) ‖ NVP: rGO-CNT 1-2.2 110 at 1C

77%-10 C
(100 cycles) 32

NVP/C-T ‖ 1M NaPF6 in EC+DEC 
+FEC ‖ NVP/C-T 1.0-2.2 101.8 at 0.25 C 87%-2 C

(200 cycles)
33
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