Electronic Supporting Information

All-catecholate-stabilized black titanium-oxo clusters for efficient photothermal conversion

Jinle Hou,*‡^a Nahui Huang,‡^a, Dinesh Acharya,^b Yuxin Liu,^a Jiaying Zhu,^a Jiaxin Teng,^a Zhi Wang,^b Konggang Qu,^a Xianxi Zhang*^a and Di Sun*^b

 ^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China. E-mail: <u>houjinle@lcu.edu.cn</u> (J. L. Hou); <u>zhangxianxi@lcu.edu.cn</u> (X. X. Zhang).
 ^b School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China. E-mail: <u>dsun@sdu.edu.cn</u> (D. Sun).

[‡] These authors contributed equally to this work.

Experimental Procedures

Materials and Instruments

Titanium (IV) tetraisopropanolate (Ti(ⁱPrO)₄, 98%, Adamas-beta®), catechol and 3methylcatechol were purchased from Shanghai Titan Scientific Co., Ltd. Toluene (99.7%), ethylene glycol (99.7%), formic acid (88%), acetic acid, propionic acid, butyric acid and isopropanol (PrOH, 99.7%) were purchased from Sinopharm Chemical Reagent Co., Ltd, China. All chemicals and solvents were analytical grade and used without further purification. Powder X-ray diffraction (PXRD) data were carried out on a microcrystalline powdered sample using a Rigaku SmartLab-9Kw diffractometer using Cu radiation ($\lambda = 1.54184$ Å). Thermogravimetry (TG) analysis STA449F5/QMS403D instrument was performed on а (Mettler-Toledo, Schwerzenbach, Switzerland) with a heating rate of 10 °C min⁻¹ from 20 to 800 °C in N₂ flow. The solid-state UV/Vis spectra data of the cluster samples were obtained using a Carry 500 UV-VIS spectrophotometer with scanning wavelength range from 200 nm to 900 nm. Fourier transform infrared spectroscopy (FTIR) measurements were obtained using a Nicolet iS50 spectrophotometer. The elemental analyses (C and H) were determined on a Vario EL Cube analyzer. The X-ray photoelectron spectroscopy (XPS) spectra were collected on a Thermo Scientific ESCALAB Xi⁺ instrument. The energy dispersive X-ray (EDX) spectra and element mapping of samples were acquired on a Thermo Fisher Scientific FIB-SEM-GX4 scanning electron microscope. Electrospray ionization mass spectra (ESI-MS) of Ti8 were recorded on a Bruker impact II high definition mass spectrometer, quadrupole and time-of-flight (Q/TOF) modules. The data analysis of the mass spectrum was performed based on the isotope distribution patterns using Compass Data Analysis software (Version 4.4). Electrochemical measurements were carried out on a CHI 660E electrochemical workstation. Photothermal measurements were conducted using CNI Laser MDL-N-450 nm. The photothermal behavior of the sample was monitored by thermal imaging camera (FLIR E54). Infrared photos and real-time temperatures were extracted from the video by FLIR tools software. ¹H NMR spectra of Ti2 and Ti16 were recorded on Bruker-DRX (500 MHz) instruments internally referenced to dimethyl sulfoxide signals.

Synthesis

Synthesis of Ti₂(Cat)₂(OEgO)₂(OEgOH)₂ (Ti2)

0.73 mmol (80 mg) of catechol was ultrasonically dissolved in 5 mL of ethylene glycol. 0.33 mmol (0.1 mL) of Ti(ⁱPrO)₄ was added. The mixture was sealed in a 10 mL glass vial and heated at 100 °C for 72 h. After cooling to room temperature, yellow crystals were obtained by filtration and washed several times with ethanol. Yield: 10 mg. Elemental analyses calc. (found) for Ti2 ($C_{20}H_{26}O_{12}Ti_2$): C, 43.35 (43.56); H, 4.73 (5.17)%.

Synthesis of Ti₈O₅(Cat)₉(ⁱPrO)₄(ⁱPrOH)₂ (Ti8)

Similar to **Ti2**, except the solvent ethylene glycol was replaced with isopropanol (5 mL). The other conditions were kept the same. After cooling to room temperature, black crystals were obtained by filtration and washed several times with isopropanol. Yield: 60 mg. Elemental analyses calc. (found) for **Ti8** ($C_{72}H_{79}O_{29}Ti_8$): C, 48.28 (48.78); H, 4.45 (4.80)%.

Synthesis of Ti₁₆O₈(OH)₈(Cat)₂₀·H₂O·PhMe (Ti16)

Similar to **Ti2**, except the solvent ethylene glycol was replaced with toluene (5 mL) and formic acid (60 μ L). The other conditions were kept the same. After cooling to room temperature, black crystals were obtained by filtration and washed several times with isopropanol. Yield: 30 mg. Elemental analyses calc. (found) for **Ti16** (C₁₃₄H₁₀₀O₅₈Ti₁₆): C, 47.28 (46.95); H, 2.96 (3.25)%.

Synthesis of Ti₁₆O₈(OH₎₈(MeCat)₂₀·PhMe (Ti16-Me)

Similar to **Ti16**, except the catechol was replaced with 3-methyl catechol (0.73 mmol). The other conditions were kept the same. After cooling to room temperature, black crystals were obtained by filtration and washed several times with isopropanol. Yield: 35 mg. Elemental analyses calc. (found) for **Ti16-Me** ($C_{154}H_{136}O_{56}Ti_{16}$): C, 50.07 (49.62); H, 3.76 (4.12) %.

Single-crystal X-ray diffraction

Single crystals of Ti2, Ti8, Ti16 and Ti16-Me were selected under an optical microscope and rapidly coated with high vacuum grease (Dow Corning Corporation) to prevent decomposition. The single-crystal diffraction analysis of Ti8 was performed on a Bruker APEX-II CCD diffractometer with graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å) at 296 K. In addition, the intensity data and cell parameters of Ti2, Ti16 and Ti16-Me were recorded on Bruker D8 VENTURE diffractometer with an Incoatec IµS 3.0 Cu EF (Incoatec IµS diamond Mo) microfocus source (55W, Cu K α , $\lambda = 1.54184$ Å) at 173 K equipped with a PHOTON III C28 detector and an Oxford Cryosystems CryostreamPlus 800 open-fow N2 cooling device. These structures were solved by the inherent phase method in the SHELXT program and refined by fullmatrix least squares techniques against F^2 using the SHELXL program through the OLEX2 interface. Hydrogen atoms at carbon were placed in calculated positions and refined isotropically by using a riding model. Appropriate restraints or constraints were applied to the geometry and the atomic displacement parameters of the atoms in the cluster. All structures were examined using the Addsym subroutine of PLATON to ensure that no additional symmetry could be applied to the models. Pertinent crystallographic data collection and refinement parameters are collated in Table S4. Selected bond lengths are collated in Table S5-S8. The crystallographic data for Ti2, Ti8, Ti16, and Ti16-Me were delivered to the Cambridge Crystallographic Data Centre (CCDC) with No. 2294728, 2294731, 2294729, and 2294730, respectively. These data can be obtained from the CCDC via www.ccdc.cam.ac.uk/data request/cif.

Electrochemical measurements

Photoelectrochemical measurements

Photoelectrochemical measurements were carried out on CHI 660E electrochemical workstation in a standard three-electrode electrochemical cell with a working electrode, a platinum plate as counter electrode and a saturated Ag/AgCl electrode as reference electrode. A sodium sulfate solution (0.2 M) was used as the electrolyte and use a Xe lamp (150 W) was used as the light source. Preparation of the working electrode: 2 mg crystals powder was mixed with 0.99 mL ethanol and 10 μ L Nafion D-520 dispersion solutions and sonicated for 30 minutes. Subsequently, 200 μ L of slurry was transferred, coated on ITO glass plates (1 cm×2 cm), and then dried at room temperature.

Electrochemical impedance spectroscopy

Electrochemical impedance spectra (EIS) measurements were also carried out on CHI 660E electrochemical workstation via a conventional three-electrode system with a working electrode, a platinum plate as counter electrode and a saturated Ag/AgCl electrode as reference electrode in a 0.2 M Na₂SO₄ aqueous solution over a frequency range of 100 kHz-0.01 Hz.

Computational Studies.

DFT calculations were performed with the Gaussian 16 suite of programs. For the optimizations of the four titanium-oxo clusters (TOCs), **Ti2**, **Ti8**, and **Ti16**, the gradient-corrected B3LYP exchange-correlation functional based on the generalized gradient approximation (GGA) was utilized; LanL2DZ (Los Alamos effective core potential double) basis set was employed for Ti atoms, and 6-31G** basis set was used for C, H, and O atoms. The LANL2DZ basis set containing relativistic effects has been shown to predict accurately Ti nanoclusters' structure-restricted calculations were used for geometry optimization. Harmonic frequencies were then calculated to characterize the stationary points as equilibrium structures with all absolute frequencies and to evaluate zero-point energy (ZPE) corrections. Data for orbital composition analysis with Mulliken partition are from Gaussian 16 calculations and are further processed with Multiwfn and VMD software. The oscillator strength values and weights determined the most probable transitions.

Figure S1. The photos of the crystals of Ti2, Ti8 and Ti16.

Ti2 Ti8 Ti16

Figure S2. The compared PXRD patterns of Ti2.

Figure S3. The compared PXRD patterns of Ti8.

Figure S4. The compared PXRD patterns of Ti16.

Figure S5. The Fourier transform infrared spectroscopy (FT-IR) of Ti2, Ti8 and Ti16.

Figure S6. SEM and energy-dispersive X-ray spectroscopy of Ti2, Ti8 and Ti16.

Figure S7. X-ray photoelectron spectroscopy (XPS) spectra of **Ti2**. XPS reveals that all Ti atoms in **Ti2** are exclusively in the +4 oxidization state.

Figure S8. X-ray photoelectron spectroscopy (XPS) spectra of **Ti8**. XPS reveals that all Ti atoms in **Ti8** are exclusively in the +4 oxidization state.

Figure S9. X-ray photoelectron spectroscopy (XPS) spectra of **Ti16**. XPS reveals that all Ti atoms in **Ti16** are exclusively in the +4 oxidization state.

Figure S10. The polyhedral structure of (a) Ti2, (b) Ti8, and (c) Ti16. Green, sixcoordinated Ti atom; purple, seven-coordinated Ti atom.

Figure S11. Six pairs of $\pi \cdots \pi$ interactions between the phenyl rings and two hydrogen bonding interactions between H₂O and the catechol oxygen atoms of Ti16.

Figure S12. (a) and (b) Overall structure of Ti16-Me. (c) The polyhedral structure of Ti16-Me.

Figure S13. ¹H NMR spectrum of Ti2 in DMSO-d₆.

Figure S14. The IR spectras of original crystals and retrieved samples of **Ti16** after soaked in water solutions with pH ranging from 1 to 11 for 48 hours.

Figure S15. The IR spectras of original crystals and retrieved samples of **Ti16** after soaked in common organic solvents for 48 hours.

Figure S16. The IR spectras of original crystals and retrieved samples of **Ti8** after soaked in water solutions with pH ranging from 1 to 11 for 48 hours.

Figure S17. PXRD pattern of **Ti8** soaked in water solutions with pH ranging from 1 to 11 for 48 hours.

Figure S18. PXRD pattern of **Ti8** under different conditions: exposed to air for one week and soaked in common organic solvents for 48 hours.

Figure S19. Thermogravimetry analysis (TGA) curve of Ti2, Ti8 and Ti16.

Figure S20. (a) Total structure of the Ti16. (b) Total structure of the $Ti_{16}O_{16}(OEt)_{32}$. (c) Total structure of the $Ti_{16}O_{22}(PA)_{20}(O^tBu)_2$. Color code: light green, Ti; red, O; gray, C.

Figure S21. The IR spectra of the original crystals and the samples of Ti2 after the photoelectrochemical test.

Figure S22. The IR spectra of the original crystals and the samples of Ti8 after the photoelectrochemical test.

Figure S23. The IR spectra of the original crystals and the samples of **Ti16** after the photoelectrochemical test.

Figure S24. Isosurface plots (isodensity value = 0.02 a.u.) of molecular orbitals of (a) **Ti2** (b) **Ti8** and their corresponding energy levels.

	Ti2	
Ti1 3.981		
Ti1–O1	d=2.087	0.449
Ti101#1	d=2.0098	0.554
Ti1–O2	d=1.9474	0.655
Ti1–O3	d=2.178	0.351
Ti1–O4	d=1.833	0.893
Ti1–O6	d=1.763	1.079

Table S1. Bond valence sum (BVS) analysis^[g] for Ti2, Ti8, and Ti16.

Continued above

	Ti8							
Ti1 3.999			Ti2 3.794			Ti3 4.006		
Ti1–O1	d=2.103	0.430	Ti2–O4	d=1.9808	0.599	Ti3–O13	d=2.158	0.371
Ti1–O2	d=1.942	0.665	Ti2015	d=2.0752	0.464	Ti3–O14	d=1.866	0.817
Til–O18	d=1.811	0.947	Ti2–O16	d=2.045	0.503	Ti3015	d=2.022	0.536
Ti1–O20	d=2.0067	0.558	Ti2–O19	d=1.9622	0.630	Ti3–O21	d=1.9451	0.659
Ti1-021	d=2.0524	0.493	Ti2O20	d=2.1237	0.407	Ti3–O24	d=2.066	0.476
Ti1–O23	d=1.828	0.905	Ti2O21	d=2.054	0.491	Ti3–O25	d=1.74	1.148
			Ti2–O22	d=1.9227	0.701			
Ti4 3.777			Ti5 3.845			Ti6 3.982		
Ti4011	d=2.031	0.523	Ti5–O7	d=2.352	0.220	Ti6–O9	d=2.233	0.303
Ti4012	d=1.891	0.763	Ti5–O8	d=1.857	0.837	Ti6010	d=1.865	0.819
Ti4013	d=1.984	0.594	Ti5–O9	d=2.004	0.562	Ti6–O16	d=2.014	0.547
Ti4021	d=2.2558	0.285	Ti5–O11	d=2.065	0.477	Ti6–O19	d=1.9276	0.691
Ti4022	d=1.9536	0.644	Ti5–O22	d=1.9677	0.620	Ti6–O28	d=2.072	0.468
Ti4023	d=1.803	0.968	Ti5–O27	d=1.746	1.129	Ti6–O29	d=1.738	1.154
Ti7 3.945			Ti8 3.959					
Ti7–O5	d=2.088	0.448	Ti8–O1	d=1.958	0.637			
Ti7–O6	d=1.933	0.681	Ti8–O3	d=1.858	0.834			
Ti7–O7	d=1.9678	0.620	Ti8–O4	d=2.198	0.333			
Ti7–O17	d=1.81	0.950	Ti8–O5	d=1.976	0.607			
Ti7–O19	d=1.9472	0.656	Ti8–O20	d=2.1128	0.419			
Ti7–O20	d=1.9864	0.590	Ti8–O26	d=1.746	1.129			

Continued above

Ti16								
Ti1 3.889			Ti2 3.829			Ti3 3.826		
Til–O1	d=2.186	0.344	Ti2–O3	d=2.044	0.505	Ti3–O11	d=2.058	0.486
Ti1–O2	d=1.86	0.830	Ti2–O4	d=1.894	0.757	Ti3–O12	d=1.904	0.737
Ti1–O3	d=1.996	0.575	Ti2015	d=1.922	0.702	Ti3017	d=1.904	0.737
Til-O11	d=2.001	0.567	Ti2016	d=2.024	0.533	Ti3–O18	d=2.031	0.523
Ti1–O23	d=1.988	0.587	Ti2023	d=1.928	0.691	Ti3–O23	d=1.922	0.702
Ti1–O24	d=1.796	0.987	Ti2–O26	d=1.955	0.642	Ti3–O28	d=1.955	0.642
Ti4 3.890			Ti5 3.820			Ti6 3.770		
Ti4–O6	d=1.97	0.616	Ti5–O13	d=1.9	0.745	Ti6–O5	d=1.869	0.810
Ti4–O9	d=1.873	0.801	Ti5–O14	d=2.092	0.443	Ti6–O6	d=2.091	0.444
Ti4–O10	d=2.205	0.327	Ti5–O22	d=1.927	0.692	Ti6–O22	d=1.929	0.689
Ti4014	d=1.982	0.597	Ti5-O25#1	d=1.977	0.605	Ti6025	d=1.962	0.630
Ti4–O22	d=2.004	0.562	Ti5-O27#1	d=1.959	0.635	Ti6–O26	d=1.956	0.640
Ti4–O24	d=1.796	0.987	Ti5–O28	d=1.923	0.700	Ti6–O27	d=2.008	0.556
Ti7 3.942			Ti8 3.981					
Ti7–O7	d=2.233	0.303	Ti8–O18	d=2.009	0.555			
Ti7–O8	d=1.861	0.828	Ti8–O19	d=2.21	0.322			
Ti7–O16	d=2.007	0.558	Ti8–O20	d=1.854	0.843			
Ti7-O21	d=1.841	0.874	Ti8O21	d=1.838	0.881			
Ti7–O25	d=1.9	0.745	Ti8–O27#1	d=1.883	0.780			
Ti7–O26	d=1.959	0.635	Ti8–O28	d=1.98	0.600			

[g] $V_i = \Sigma S_{ij} = \Sigma \exp[(r_1 - r_{ij})/B]$, where r_{ij} is the bond length between atoms i and j (with $r_1 = 1.791$ for Ti^{iv}-O). The constant B is referred to as the "universal parameter" and is approximately equal to 0.37 Å. S_{ij} is the valence of a bond between atoms i and j, and V_i is the sum of all bond valences of the bonds formed by a given atom.¹

Formula	Number of catechol	Number of alkoxide group	Number of Ti atom	Refs.
[Ti ₄ O ₂ (Cat) ₄ (PZ) ₄ (O ⁱ Pr) ₄]	4	4	4	[2]
[Ti ₆ O(Cat) ₆ (O ⁱ Pr) ₁₀]	6	10	6	[3]
[Ti ₇ O ₄ (O ⁱ Pr) ₈ (Cat) ₅ (FcCO ₂) ₂]	5	8	7	[4]
[Ti ₇ O ₃ (O ⁱ Pr) ₁₂ (Cat) ₄ (o-BDC)]	4	12	7	[4]
$[Ti_8O_4(O^iPr)_{12}(O_3P-Phen)_4(Cat)_2]$	2	12	8	[5]
$[Ti_{10}O_6(O^nBu)_{12}(HO^nBu)_2(Cat)_8]$	8	14	10	[6]
$[Ti_{17}O_{24}(O^{i}Pr)_{18}(Cat)_{2}]$	2	18	17	[7]
[Ti ₁₇ O ₂₄ (Cat) ₄ (O ⁱ Pr) ₁₆]	4	16	17	[3]
[Ti ₁₄ O ₁₂ (NBA) ₁₀ (Cat) ₁₀ (HCat) ₂]	12	none	14	[8]
[Ti ₁₄ O ₁₁ (PA) ₁₀ (Cat) ₁₀ (HCat) ₄]	14	none	14	[8]
[Ti ₂ (Cat) ₂ (OEgO) ₂ (OEgOH) ₂]	2	4	2	This work
[Ti ₈ O ₅ (Cat) ₉ (O ⁱ Pr) ₄ (HO ⁱ Pr) ₂]	9	6	8	This work
[Ti ₁₆ O ₁₆ (Cat) ₂₀]	20	none	16	This work

Table S2. A summary of catecholate functionalized TOCs (Ti > 3).

Abbreviations: $H_2Cat = catechol$; PZ = pyrazole; $FcCO_2 = ferrocene-1$ -carboxylate; o-BDC = o-benzenedicarboxylate; HOⁿBu = 1-Butanol; HNBA = n-butyric acid.

Compound	Laser power (W cm ⁻²)	Heating rate (°C s ⁻¹)	Maximum temperature (°C)	Irradiation distance (cm)	Ref.
Co-MOF	0.7	7.82	215.5	8	9
Ag NPs@MOF	0.7	13.2	239.8	8	10
La coordination polymer	2	9	145	/	11
Zr-PDI	0.7	14	160	/	12
DTC cocrystal	0.7	0.3	71.3	/	13
Zn-MOF	0.2	14	233	10	14
SD/Ag18a	0.9	8.2	187	20	15
Ag14	0.0	115	194	20	16
Ag43	0.9	55.3	141	20	10
Ag48T	0.5	163	512	15	17
Ag48M	0.5	149	470	15	17
Ti2		89	249		This
Ti8	0.6	98	310.9	15	work
Ti16		126.5	317		

 Table S3. Kinds of solid-state photothermal materials reported in the references.

Compound	Ti2	Ti8
Empirical formula	C ₂₀ H ₂₆ O ₁₂ Ti ₂	C ₇₂ H ₇₉ O ₂₉ Ti ₈
Formula weight	554.21	1791.55
Temperature [K]	173.0	296.15
Crystal system	monoclinic	triclinic
Space group (number)	$P2_{1}/c_{(14)}$	P1 (2)
<i>a</i> [Å]	9.0139(15)	13.7327(7)
<i>b</i> [Å]	14.186(2)	14.2235(7)
c [Å]	8.9545(14)	23.4194(12)
α [°]	90	87.685(2)
β [°]	90.487(7)	89.986(2)
γ [°]	90	66.441(2)
Volume [Å ³]	1145.0(3)	4189.1(4)
Z	2	2
$\rho_{\rm calc} [{\rm g/cm^3}]$	1.608	1.420
μ [mm ⁻¹]	6.509	0.797
F(000)	572	1838
Radiation	CuK_{α} ($\lambda = 1.54178$ Å)	Mo K_{α} ($\lambda = 0.71073$ Å)
2θ range [°]	11.63 to 133.12 (0.84 Å)	4.58 to 50.05 (0.84 Å)
	$-10 \le h \le 10$	$-16 \le h \le 16$
Index ranges	$-16 \le k \le 16$	$-16 \le k \le 16$
	$-10 \le l \le 10$	$-27 \le l \le 27$
Reflections collected	10855	180993
Indonandant	2008	14774
raflactions	$R_{\rm int} = 0.0568$	$R_{\rm int} = 0.0562$
	$R_{\mathrm{sigma}} = 0.0404$	$R_{\rm sigma} = 0.0230$
Completeness to $\theta = 66.561^{\circ}$	99.5 %	99.9 %
Data / Restraints / Parameters	2008/0/154	14774/158/1026
Goodness-of-fit on F^2	1.092	1.046
Final R indexes	$R_1 = 0.0448$	$R_1 = 0.0414$
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1198$	$wR_2 = 0.1073$
Final R indexes	$R_1 = 0.0472$	$R_1 = 0.0502$
[all data]	$wR_2 = 0.1218$	$wR_2 = 0.1147$
Largest peak/hole [e/Å ³]	0.71/-0.81	1.21/-0.91

Table S4. Crystal data collection and sructure refinement for **Ti2**, **Ti8**, **Ti16**, and **Ti16**-Me.

Continued above

Compound	Ti16	Ti16-Me	
Empirical formula	C ₁₃₄ H ₁₀₀ O ₅₈ Ti ₁₆	C ₁₅₄ H ₁₃₆ O ₅₆ Ti ₁₆	
Formula weight	3404.53	3649.02	
Temperature [K]	173.00	173.0	
Crystal system	triclinic	triclinic	
Space group (number)	P1 (2)	P1 (2)	
a [Å]	15.114(4)	16.790(3)	
<i>b</i> [Å]	16.444(5)	16.977(3)	
c [Å]	17.284(5)	17.003(3)	
α [°]	63.041(9)	113.206(7)	
β [°]	64.513(13)	113.379(6)	
γ [°]	71.596(9)	98.474(7)	
Volume [Å ³]	3417.3(18)	3814.6(12)	
Ζ	1	1	
$ ho_{ m calc} [m gcm^{-3}]$	1.654	1.588	
μ [mm ⁻¹]	8.315	7.481	
F(000)	1720	1860	
Radiation	Cu K_{α} ($\lambda = 1.54178$ Å)	$CuK_{\alpha} (\lambda = 1.54178 \text{ Å})$	
2θ range [°]	6.10 to 134.14 (0.84 Å)	6.15 to 133.19 (0.84 Å)	
	$-15 \le h \le 18$	$-19 \le h \le 19$	
Index ranges	$-17 \le k \le 19$	$-20 \le k \le 20$	
	$0 \le l \le 20$	$-20 \le l \le 20$	
Reflections collected	11962	50385	
	11962	13381	
Independent reflections	$R_{\rm int} = 0.0836$	$R_{\rm int} = 0.0738$	
	$R_{\rm sigma} = 0.0894$	$R_{\rm sigma} = 0.0873$	
Completeness to $\theta = 67.072^{\circ}$	98.0 %	99.3 %	
Data / Restraints / Parameters	11962/126/810	13381/106/897	
Goodness-of-fit on F ²	1.050	1.039	
Final R indexes	$R_1 = 0.0737$	$R_1 = 0.0894$	
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1865$	$wR_2 = 0.2563$	
Final R indexes	$R_1 = 0.1185$	$R_1 = 0.1346$	
[all data]	$wR_2 = 0.2212$	$wR_2 = 0.2961$	
Largest peak/hole [e/Å ³]	1.52/-0.94	1.05/-0.64	

Ti2				
Atom-Atom	Length / Å			
Ti1–O1	2.087(2)			
Ti1–O1 ^{#1}	2.0098(18)			
Ti1–O2	1.9474(19)			
Ti1–O3	2.178(2)			
Ti1–O4	1.833(2)			
Ti1–O6	1.763(2)			

Table S5. Selected bond lengths (Å) for Ti2.

	Т	i8	
Atom-Atom	Length / Å	Atom-Atom	Length / Å
Ti1–O1	2.103(2)	Ti5–O7	2.352(2)
Ti1–O2	1.942(2)	Ti5–O8	1.857(2)
Ti1–O18	1.811(2)	Ti5–O9	2.004(2)
Ti1–O20	2.0067(19)	Ti5–O11	2.065(2)
Ti1O21	2.0524(19)	Ti5–O22	1.9677(19)
Ti1–O23	1.828(2)	Ti5–O27	1.746(2)
Ti2–O4	1.9808(19)	Ti6–O9	2.233(2)
Ti2–O15	2.0752(19)	Ti6010	1.865(2)
Ti2016	2.0450(19)	Ti6016	2.014(2)
Ti2–O19	1.9622(19)	Ti6–O19	1.9276(19)
Ti2–O20	2.1237(19)	Ti6–O28	2.072(2)
Ti2–O21	2.0540(19)	Ti6–O29	1.738(2)
Ti2–O22	1.9227(19)	Ti7–O5	2.088(2)
Ti3–O13	2.158(2)	Ti7–O6	1.933(2)
Ti3–O14	1.866(2)	Ti7–O7	1.9678(19)
Ti3015	2.022(2)	Ti7–O17	1.810(2)
Ti3021	1.9451(19)	Ti7–O19	1.9472(19)
Ti3–O24	2.066(2)	Ti7–O20	1.9864(19)
Ti3–O25	1.740(2)	Ti8–O1	1.958(2)
Ti4011	2.031(2)	Ti8–O3	1.858(2)
Ti4012	1.891(2)	Ti8–O4	2.198(2)
Ti4013	1.984(2)	Ti8–O5	1.976(2)
Ti4–O21	2.2558(19)	Ti8–O20	2.1128(19)
Ti4–O22	1.9536(19)	Ti8–O26	1.746(2)
Ti4–O23	1.803(2)		

Table S6. Selected bond lengths (\AA) for Ti8.

Ti16					
Atom-Atom	Length / Å	Atom-Atom	Length / Å		
Ti1–O1	2.186(6)	Ti5–O13	1.900(6)		
Ti1–O2	1.860(6)	Ti5–O14	2.092(6)		
Ti1–O3	1.996(6)	Ti5–O22	1.927(5)		
Ti1–O11	2.001(6)	Ti5–O25#1	1.977(5)		
Ti1–O23	1.988(5)	Ti5–O27#1	1.959(5)		
Ti1–O24	1.796(6)	Ti5–O28	1.923(6)		
Ti2–O3	2.044(6)	Ti6–O5	1.869(6)		
Ti2–O4	1.894(6)	Ti6–O6	2.091(6)		
Ti2–O15	1.922(6)	Ti6–O22	1.929(5)		
Ti2–O16	2.024(6)	Ti6–O25	1.962(5)		
Ti2–O23	1.928(6)	Ti6–O26	1.956(6)		
Ti2–O26	1.955(5)	Ti6–O27	2.008(5)		
Ti3–O11	2.058(6)	Ti7–O7	2.233(6)		
Ti3–O12	1.904(7)	Ti7–O8	1.861(6)		
Ti3–O17	1.904(6)	Ti7–O16	2.007(6)		
Ti3–O18	2.031(6)	Ti7–O21	1.841(6)		
Ti3–O23	1.922(6)	Ti7–O25	1.900(6)		
Ti3–O28	1.955(6)	Ti7–O26	1.959(5)		
Ti4–O6	1.970(6)	Ti8–O18	2.009(5)		
Ti4–09	1.873(6)	Ti8–O19	2.210(6)		
Ti4–O10	2.205(6)	Ti8–O20	1.854(6)		
Ti4–O14	1.982(6)	Ti8–O21	1.838(6)		
Ti4–O22	2.004(5)	Ti8–O27 ^{#1}	1.883(6)		
Ti4024	1.796(6)	Ti8–O28	1.980(6)		

Table S7. Selected bond lengths (\AA) for Ti16.

Ti16-Me					
Atom-Atom	Length / Å	Atom-Atom	Length / Å		
Ti1–O25	1.929(4)	Ti5–O26	1.938(5)		
Ti1–O26	1.934(5)	Ti5O10	2.013(5)		
Ti1–O27	1.972(5)	Ti5–O6	2.023(5)		
Ti1–O1	2.116(5)	Ti5–O9	1.891(5)		
Ti1–O23#1	1.970(4)	Ti5–O24	1.917(5)		
Ti1–O2	1.859(5)	Ti5–O5	1.938(5)		
Ti2–O25	1.974(5)	Ti6–O26	1.965(5)		
Ti2–O1	1.969(5)	Ti6–O27	1.892(4)		
Ti2–O20	1.967(5)	Ti6–O28	1.840(5)		
Ti2O21	1.821(5)	Ti6–O8	1.855(5)		
Ti2–O3	2.196(5)	Ti6–O10	2.023(5)		
Ti2–O4	1.859(5)	Ti6–O7	2.267(5)		
Ti3–O25	1.951(5)	Ti7–O22	1.961(5)		
Ti3–O22	1.931(5)	Ti7–O14	2.021(5)		
Ti3-O27#1	1.978(4)	Ti7–O15	2.034(5)		
Ti3–O19	1.866(5)	Ti7–O24	1.929(5)		
Ti3O20	2.103(5)	Ti7–O16	1.904(5)		
Ti3–O23	1.983(5)	Ti7–O13	1.900(5)		
Ti4015	1.987(6)	Ti8–O22	1.960(5)		
Ti4021	1.787(5)	Ti8–O23	1.891(4)		
Ti4–O6	2.012(5)	Ti8–O18	1.856(5)		
Ti4024	1.950(5)	Ti8–O28	1.852(5)		
Ti4011	2.282(7)	Ti8–O14	2.025(5)		
Ti4012	1.833(6)	Ti8–O17	2.271(5)		

Table S8. Selected bond lengths (Å) for Ti16-Me.

Reference

- I. D. Brown, Recent Developments in the Methods and Applications of the Bond Valence Model, *Chem. Rev.*, 2009, **109**, 6858-6919.
- 2 X. Fan, H. Fu, L. Zhang, J. Zhang and X. Fan, Pyrazole-thermal synthesis: a new approach towards N-rich titanium-oxo clusters with photochromic behaviors, *Dalton Trans.*, 2019, **48**, 8049-8052.
- J. B. Benedict and P. Coppens, The Crystalline Nanocluster Phase as a Medium for Structural and Spectroscopic Studies of Light Absorption of Photosensitizer Dyes on Semiconductor Surfaces, J. Am. Chem. Soc., 2010, 132, 2938-2944.
- 4 J.-L. Hou, P. Huo, Z.-Z. Tang, L.-N. Cui, Q.-Y. Zhu and J. Dai, A Titanium Oxo Cluster Model Study of Synergistic Effect of Co-coordinated Dye Ligands on Photocurrent Responses, *Inorg. Chem.*, 2018, 57, 7420-7427.
- 5 H.-T. Lv, H.-M. Li, G.-D. Zou, Y. Cui, Y. Huang, Y. Fan and H.-T. Lv, Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions, *Dalton Trans.*, 2018, 47, 8158-8163.
- K. Gigant, A. Rammal and M. Henry, Synthesis and Molecular Structures of Some New Titanium(IV) Aryloxides, *J. Am. Chem. Soc.*, 2001, 123, 11632-11637.
- C. Liu, J. Hu, F. Zhu, J. Zhan, L. Du, C. H. Tung and Y. Wang, Functionalization of Titanium Oxide Cluster Ti₁₇O₂₄(OC₃H₇)₂₀ with Catechols: Structures and Ligand-Exchange Reactivities, *Chem. Eur. J.*, 2019, 25, 14843-14849.
- 8 M.-Y. Gao, Z. Wang, Q.-H. Li, D. Li, Y. Sun, Y. H. Andaloussi, C. Ma, C. Deng, J. Zhang and L. Zhang, Black Titanium-Oxo Clusters with Ultralow Band Gaps and Enhanced Nonlinear Optical Performance, J. Am. Chem. Soc., 2022, 144, 8153-8161.
- 9 T. Yan, Y. Y. Li, J. Su, H. Y. Wang and J. L. Zuo, Charge Transfer Metal-Organic Framework Containing Redox-Active TTF/NDI Units for Highly Efficient Near-Infrared Photothermal Conversion, *Chem. Eur. J.*, 2021, 27, 11050-11055.
- 10 J. Su, P. Cai, T. Yan, Z.-M. Yang, S. Yuan, J.-L. Zuo, H.-C. Zhou and J. Su, Enhancing the photothermal conversion of tetrathiafulvalene-based MOFs by redox doping and plasmon resonance, *Chem. Sci.*, 2022, 13, 1657-1664.

- S. Wang, S. Li, J. Xiong, Z. Lin, W. Wei, Y. Xu and S. Wang, Near-infrared photothermal conversion of stable radicals photoinduced from a viologen-based coordination polymer, *Chem. Commun.*, 2020, 56, 7399-7402.
- 12 B. Lü, Y. Chen, P. Li, B. Wang, K. Müllen and M. Yin, Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion, *Nat. Commun.*, 2019, **10**, 767.
- 13 Y. Wang, W. Zhu, W. Du, X. Liu, X. Zhang, H. Dong and W. Hu, Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging, *Angew. Chem., Int. Ed.*, 2018, **130**, 4027-4031.
- 14 Q. Gu, Z.-H. Zhao, B. Chan, T. Yan, J.-L. Zuo, D. M. D'Alessandro and C.-H. Li, Efficient Photothermal Energy Conversion Triggered by near-Infrared Light in a Dithiolene-Based Metal–Organic Framework, ACS Materials Lett., 2023, 5, 603-607.
- 15 Z. Wang, L. Li, L. Feng, Z.-Y. Gao, C.-H. Tung, L.-S. Zheng and D. Sun, Solvent-Controlled Condensation of [Mo₂O₅(PTC4A)₂]^{6–} Metalloligand in Stepwise Assembly of Hexagonal and Rectangular Ag18 Nanoclusters, *Angew. Chem., Int. Ed.*, 2022, **134**, e202200823.
- 16 Z. Wang, Y.-J. Zhu, B.-L. Han, Y.-Z. Li, C.-H. Tung and D. Sun, A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates, *Nat. Commun.*, 2023, 14, 5295.
- K. Sheng, Z. Wang, L. Li, Z.-Y. Gao, C.-H. Tung and D. Sun, Solvent-Mediated Separation and Reversible Transformation of 1D Supramolecular Polymorphs Built from [W₁₀O₃₂]⁴⁻ Templated 48-Nuclei Silver(I) Cluster, *J. Am. Chem. Soc.*, 2023, 145, 10595-10603.