1. Supporting experimental details

1.1 Materials

KMnO₄ (99.5%, AR), MnSO₄•H₂O (99%, AR), (NH₄)₂S₂O₈ (98%, AR), vanillin alcohol (98%), urea (99%, AR), and NaHCO₃ (99.5%, AR) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd (China). Ultrapure water (18.2 $M\Omega \cdot cm^{-1}$) was produced by a HOKEE purification system (HOKEE–A1–10, China). Other commercially available reagents, such as alcohols and metal salts, were purchased from TCI (Japan) and used without further purification.

1.2 Synthesis of γ-MnO₂

Typically, 1.93 g of MnSO₄•H₂O and 1.83 g of (NH₄)₂S₂O₈ were dissolved in 30 mL of ultrapure water under vigorous stirring at room temperature for 30 min. Subsequently, *x* mmol of urea (*x*= 0, 1, and 10 mmol) was added and stirred for an additional 30 min to form the MnO₂ precursor solution. The MnO₂ precursor solution was then hydrothermally treated at 90 °C for 24 h. The resulting mixture was filtered, washed three times with ethanol and water alternately, and dried completely at 80 °C for 12 h to obtain 0.8~1 g of a black powder. The black powder is named γ -MnO₂(*x*) according to the supplied amount of urea (*x*), and the one without urea is named γ -MnO₂. The production cost of the prepared γ -MnO₂ catalyst is estimated at £ 29.6/kg, based on the purchase cost of raw materials and energy usage.

1.3 Synthesis of *α*-MnO₂.

Typically, 1.26 g of KMnO₄ and 0.72 g of MnSO₄•H₂O were dissolved in 80mL of ultrapure water under vigorous stirring at room temperature for 30 min. Subsequently, *x* mmol of urea (*x*= 0, 1, and 10 mmol) was added and stirred for an additional 30 min to form the MnO₂ precursor solution. The MnO₂ precursor solution was then hydrothermally treated at 160 °C for 12 h. The obtained mixture was filtered, washed three times with ethanol and water alternately, and dried completely at 80 °C for 12 h. The product was calcined at 300 °C for 4 h to yield a brown powder. The brown powder is named α -MnO₂(*x*) according to the amount of urea added (*x*), and α -MnO₂ without urea.

1.4 Synthesis of β -MnO₂

Typically, 0.632 g of KMnO₄ and 2.89g MnSO₄•H₂O were dissolved in 80mL of ultrapure water under vigorous stirring at room temperature for 30 min. The MnO₂ precursors were hydrothermally treated at 160 °C for 12 h. The obtained mixture was filtered, washed two or three times with ethanol and water alternately, and then dried at 80 °C for 12 h. The product was calcined at 300 °C for 4h to yield a black powder. The black powder is named β -MnO₂.

1.5 Synthesis of ε-MnO₂

Typically, 0.169 g of MnSO₄•H₂O was dissolved in a mixture of ultrapure water (70 mL) and anhydrous ethanol (7 mL) under vigorous stirring at room temperature. Then 0.84 g NaHCO₃ was dissolved in it, stirred for about 10 min, and allowed to stand at room temperature for 3 h. The obtained mixture was filtered, washed two or three times with ethanol and water alternately, and then dried at 80°C for 12 h. The product was calcined at 400°C for 6 h to yield a black powder. The black powder is named ϵ -MnO₂.

1.6 Catalytic test

In a 10 mL quartz reactor, a mixture of 10 mmol of catalyst, 6 mL of ultrapure water, and 0.77 g of vanillyl alcohol was added. The reactor was operated under an air atmosphere at a temperature of 30 °C, with the reaction temperature controlled using a cycle pump.

The catalytic performance was analyzed using a PANNA A91Plus Gas chromatography (GC) system from China, equipped with a capillary column (HP-5 column, 30 m × 0.32 mm, 0.50 μ m film thicknesses). Normalization of the obtained results was carried out using the following equations:

Alcohol conversion (Con.) =
$$\frac{S_{AL} + S_{Others}}{S_{AL} + S_{OL} + S_{Others}} \times 100\%$$
 (1)

Aldehyde selectivity (Sel.) = $\frac{S_{AL}}{S_{AL} + S_{Others}} \times 100\%$ (2)

where S_{AL} , S_{OL} , and S_{Others} refer to the areas of aldehyde, alcohol, and other products in GC, respectively.

1.7 Radical Scavenger Experiments

In a 10 mL quartz reactor, a mixture consisting of 100 mg of catalyst, 2 mL of ultrapure water, 1 mmol of alcohol, and 1 mmol of scavenger (FFA, mannitol, or p–BQ) was prepared. The reactor was performed under an air atmosphere at a temperature of 30 °C, with the reaction temperature regulated using a cycle pump.

1.8 Computational Details

The present spin-polarized first principle DFT calculations were performed using Vienna Ab initio Simulation Package (VASP)¹ with the projector augmented wave (PAW) method.² The exchange-functional was treated using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)³ functional. The energy cutoff for the plane wave basis expansion was set to 450 eV, and the force on each atom less than 0.02 eV/Å was set as the convergence criterion for geometry relaxation. To avoid interaction between periodic structures, a 15 Å vacuum was added along the Z direction. The Brillouin zone integration was performed using 3×3×1 k-point sampling. The self-consistent calculations employed a convergence energy threshold of 10⁻⁵ eV. The DFT-D3 method was employed to consider the van der Waals interaction.⁴ DFT+U was employed to account for the strong on-site Coulomb repulsion among the localized Mn 3d electrons, using a Mn_{3d} U value of 2.8 eV and a J value of 1.2 eV for Mn ions.⁵

The adsorption energy E_{ads} was calculated according to:

$$E_{ads} = E_{tot} - E_{mol} - E_{sub}$$

where E_{tot} is the total energy of the adsorbed system, and E_{mol} and E_{sub} are the energies of the adsorbed molecule and the substrate, respectively.

1.9 Characterizations

Powder X-ray diffraction (PXRD) spectra were collected on a Smartlab X-ray Polycrystalline Diffraction Analyzer (Rigaku, Japan). Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were obtained using JSM-6490LV (JSM, Japan) and Talos F200X microscopes (FEI, USA), respectively. X- ray photoelectron spectroscopy (XPS) spectra were collected using a PHI-5000C ESCA system (Perkin-Elmer, USA) with AI Ka radiation (hv=1486.6 eV). Ultraviolet-Visible-Near Infrared diffuse reflectance spectroscopy (UV-Vis-NIR DRS) was recorded using a UV-3600plus Spectrometer (Shimadzu, Japan). Electron paramagnetic resonance (EPR) spectra were collected on an EMXPLUS (Bruker, Germany). The EPR analysis was conducted by the addition of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a trap for 'OH and O_2^{-} species. For O_2^{-} species measurement, 5 mg of powder was dispersed in 5 mL of methanol. After ultrasonication for 5 min, 200 µL of the mixed solution was taken and mixed with 200 µL of DMPO solution with a concentration of 100 mM. The mixture was then placed into a capillary tube and tested in the machine at room temperature. Fouriertransform infrared (FT-IR) spectra were recorded on a Nicolet IS50 Fourier Transform Infrared Spectrometer (Thermo Fisher, USA). All *in-situ* diffuse reflectance IR spectra (DRIFTS) were recorded on a Nicolet IS50 FT-IR spectrometer equipped with a DRIFTS cell (OPERANDO-TETRA) and MCT detector. N₂ and O₂ were purged into the cell with a flow rate of ~10 mL•min⁻¹ with the catalyst as the background. Water was introduced into the DRIFTS cell via the O_2 stream. The catalyst powder was pre-treated in pure N_2 at 30 °C for 30 min before collecting the background.

2. Supplementary results

Fig. S1. PXRD patterns of γ -MnO₂(1) and γ -MnO₂(10) particles.

Fig. S2. PXRD patterns of α -MnO₂, β -MnO₂, and ε -MnO₂ particles.

Fig. S3. XPS patterns of (a) γ -MnO₂, (b) γ -MnO₂(1), and (c) γ -MnO₂(10) oxides.

Fig. S4. SEM images of the synthesized (a, b) γ -MnO₂(1) and (c, d) γ -MnO₂(10) particles.

Fig. S5. (a, b) HRTEM and (c, d) TEM images of the synthesized (a, c) γ -MnO₂(1) and

Fig. S6. N₂ adsorption–desorption isotherms of γ –MnO₂, γ –MnO₂(1), and γ –MnO₂(10)

oxides.

Fig. S7. Mn 2*p* and O 1*s* XPS patterns of (a, d) γ -MnO₂, (b, e) γ -MnO₂(1), and (c, f) γ -MnO₂(10) oxides.

Fig. S8. Mn 2*p* XPS spectra of (a) α -MnO₂, (b) β -MnO₂, and (c) ϵ -MnO₂ oxides.

Fig. S9. O 2*p* XPS spectra of (a) α -MnO₂, (b) α -MnO₂(1), and (c) α -MnO₂(10) oxides.

Fig. S10. Mn 2*p* XPS spectra of (a) α -MnO₂, (b) α -MnO₂(1), and (c) α -MnO₂(10) oxides.

Fig. S11. Mn 2*p* XPS pattern of γ -MnO₂ used in the oxidation reaction of vanillyl alcohol under N₂ atmosphere.

Fig. S12. UV-Vis-NIR DRS of the α -MnO₂ and γ -MnO₂ oxides.

Fig. S13. Detection of H_2O_2 species after oxidation of vanilly alcohol over various catalysts for 10 min through the iodometry method.

Fig. S14. (a) Perfect (120) facet and (b) defective (120) facet of γ -MnO₂ catalyst.

Fig. S15. DFT calculations for the adsorption energy of vanillyl alcohol on γ -MnO₂ without (a) and with (b) surface Mn³⁺ active sites.

Table S1. Comparison of the selected typical studies for the aerobic oxidation of vanillyl
 alcohol from the CHEM21 Green Metrics Toolkit calculation.

Metric	our study	Ref. 1 ^[6]	Ref. 2 ^[7]	Ref. 3 ^[8]	Ref. 4 ^[9]	Ref. 5 ^[10]	Ref. 6 ^[11]	Ref.7 ^[12]
Solvent	W	O/W	0	0	0	W	0	O/W
Energy	R.T.	R.T.	120	R.T.	R.T.	80	120	R.T.
Pressure	1bar	1bar	5bar	1bar	1bar	1bar	3bar	1bar
work up	\checkmark	\checkmark	\checkmark	—	\overline{V}	\boxtimes	\checkmark	$\overline{\mathcal{V}}$
Con. (%)	>89	>89	>89	>89	<70	>89	>89	>89
Sel. (%)	>89	>89	>89	<70	<70	>89	>89	>89
Additive	Free	TEMP O	Free	Free	Free	Free	Free	Free
Catalyst (toxic,econ omic)	Mn	Cu	Pd	Ag	Au-Pd	Pd	AgPd	K ₄ [Pt ₂ (P ₂ O ₅ H ₂) ₄]

Table S2. Effects of reaction temperatures for the aerobic oxidation of vanillyl alcohol over γ -MnO₂ catalyst.

Cata lyst	Vanillyl alcoho (mmol)	ol Temp. (°C)	Con . %	Sel . %
	5	20	60.0	87. 6
<i>γ</i> -Μ	5	25	69.1	88. 7
nO ₂	5	30	93.4	95. 7
	5	35	82.0	88. 8

OH OH OH Vanillyl alcohol	Cat.	OH Vanillin	HO OH Possib	e by-product	OH
Catalyst	Vanillyl alco	hol (mmol)	Solvent	Con. %	Sel. %
	5		MeCN 43.4 63	63.8	
	5		DMF	29.5	46.8
	5		Toluene	79.5	21.7
γ−MnO₂	5		MeOH	16.3	44.0
	5		1,4-Dioxane	18.7	46.9
	5		H ₂ O	93.4	95.7

Table S3. Effects of reaction solvents for the aerobic oxidation of vanillyl alcohol over γ -MnO₂ catalyst (T = 30 °C).

Reference

- 1. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 2. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 3. M. Ernzerhof and J. P. Perdew, J. Chem. Phys., 1998, 109, 3313-3320.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5. X. Li, J. Ma, C. Zhang, R. Zhang and H. He, J. Environ. Sci., 2020, 91, 43-53.
- 6. N. C. Jana, S. Sethi, R. Saha and B. Bagh, Green Chem., 2022, 24, 2542-2556.
- 7. W. Sun, S. Wu, Y. Lu, Y. Wang, Q. Cao and W. Fang, ACS Catal., 2020, 10, 7699-7709.
- 8. J. Estrada-Pomares, S. Ramos-Terrón, G. Lasarte-Aragonés, R. Lucena, S. Cárdenas, D. Rodríguez-Padrón, R. Luque and G. de Miguel, *J. Mater. Chem. A*, 2022, **10**, 11298-11305.
- 9. M. Wu, J.-H. Pang, P.-P. Song, J.-J. Peng, F. Xu, Q. Li and X.-M. Zhang, *New J. Chem.*, 2019, **43**, 1964-1971.
- 10. W. Fu, L. Yue, X. Duan, J. Li and G. Lu, *Green Chem.*, 2016, **18**, 6136-6142.
- 11. W. Sun, P. Lin, Q. Tang, F. Jing, Q. Cao and W. Fang, Catal.Sci. Technol., 2021, 11, 7268-7277.
- 12. J.-J. Zhong, W.-P. To, Y. Liu, W. Lu and C.-M. Che, Chem. Sci., 2019, 10, 4883-4889.