Structure and dynamics of liquid water from ab initio simulations: Adding Minnesota density functionals to Jacob's ladder

Justin Villard^a, Martin P. Bircher^b, and Ursula Rothlisberger^{*a}

^aLaboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

^bComputational and Soft Matter Physics, Universität Wien, A-1090 Wien, Austria

E-mail: ursula.roethlisberger@epfl.ch

Electronic supplementary information (ESI)

Simulation details

Table S1 Simulation details (production phase) for the different density functionals studied. M06-2X^a corresponds to a similar simulation protocol conducted at larger wavefunction cutoff $E_{cut}^{\phi} = 120$ Ry, against 80 Ry for other trajectories. The BLYP GGA functional is shown for comparison.

Functional	$N_{\rm mol}$	Dynamics	t _{traj} [ps]	n	Δt [a.u. fs]	ī ^{outer} [min]	ī ^{inner} [min]	Speedup	ī₅ _{im} [days∕ps]	$(dE/dt)_{\rm max}$ [a.u./ps %]
			2			Meta-GGA				
M06-L	64 D ₂ O	CP	10.0	1	2.0 0.048	-	0.029	-	0.42	$0.000015 \mid 1 \cdot 10^{-6}$
revM06-L	64 D ₂ O	CP	10.0	1	3.5 0.085	-	0.035	-	0.28	$0.000003 \mid 3 \cdot 10^{-7}$
M11-L	64 D ₂ O	CP	10.2	1	3.5 0.085	-	0.037	-	0.30	$0.000919 \mid 8 \cdot 10^{-5}$
MN12-L	64 D ₂ O	CP	10.2	1	3.5 0.085	-	0.031	-	0.26	$0.000003 \mid 2 \cdot 10^{-7}$
MN15-L	64 D ₂ O	CP	10.2	1	3.0 0.073	-	0.027	-	0.26	$0.000009 \mid 9 \cdot 10^{-7}$
					I	Hybrid meta-G	GA			
M06	32 H ₂ O	ML-MTS	6.0	6	90.0 2.177	88.82	0.08	5.97	30	$0.004870 \mid 9 \cdot 10^{-4}$
M06-HF	$32 H_2O$	ML-MTS	6.0	6	90.0 2.177	41.72	0.09	5.92	14	$0.003075 \mid 6 \cdot 10^{-4}$
M06-2X	$32 H_2O$	ML-MTS	7.1	10	150.0 3.628	21.75	0.10	9.57	4	$0.001272 \mid 2 \cdot 10^{-4}$
M06-2X ^a	32 H ₂ O	ML-MTS	7.0	10	150.0 3.628	42.83	0.19	9.58	7	$0.000823 \mid 1 \cdot 10^{-4}$
M08-HX	$32 H_2O$	ML-MTS	8.7	6	90.0 2.177	16.94	0.09	5.81	6	$0.000621 \mid 1 \cdot 10^{-4}$
M08-SO	32 H ₂ O	ML-MTS	6.8	10	150.0 3.628	21.36	0.10	9.57	4	$0.005239 \mid 1 \cdot 10^{-3}$
M11	$32 H_2O$	ML-MTS	6.0	10	150.0 3.628	87.87	0.16	9.83	16	$0.003982 7 \cdot 10^{-4}$
MN12-SX	32 H ₂ O	ML-MTS	6.0	6	90.0 2.177	18.91	0.13	5.77	6	$0.000833 \mid 2 \cdot 10^{-4}$
MN15	$32 H_2O$	ML-MTS	6.0	10	150.0 3.628	35.12	0.10	9.72	7	$0.007592 \mid 1 \cdot 10^{-3}$
						GGA				
BLYP	32 H ₂ O	BO	20.0	1	15.0 0.363	-	0.029	-	0.06	$0.003504 6 \cdot 10^{-4}$

N_{mol} is the number of heavy water molecules (D₂O), respectively light water (H₂O), simulated with meta-GGAs and hybrid meta-GGAs.

CP stands for Car-Parrinello dynamics while ML-MTS means Born-Oppenheimer (BO) dynamics accelerated with the machine-learning enhanced multiple time step scheme ¹¹⁹.

 t_{traj} is the simulation length of the production phase. *n* is the ratio between inner and outer time steps when the ML-MTS scheme is used. $\Delta t = \delta t$ corresponds to the time step for CP dynamics, while for the ML-MTS scheme $\Delta t = n \cdot \delta t$ corresponds to the outer (physical) time step.

 $\bar{t}^{\text{outer/inner}}$ are the averaged elapsed times taken per outer/inner time step. We also report the ML-MTS speedup against standard BO dynamics from \bar{t}^{outer} and \bar{t}^{inner} . \bar{t}_{sim} is the running time in order to get 1 ps of trajectory. Timings are reported for a full distribution of MPI tasks over 16 (13) Intel Xeon E5-2690 v3 @ 2.60GHz nodes with 12 cores each for respectively the meta-GGAs (hybrid meta-GGAs).

 $(dE/dt)_{max}$ represents the maximum energy fluctuation per time observed along each trajectory, in absolute and relative value compared to the average energy of the system.

Fig. S1 Oxygen-oxygen (g_{OO}), oxygen-hydrogen (g_{OH}) and hydrogen-hydrogen (g_{HH}) radial distribution functions of liquid water predicted by the M06-2X Minnesota density functional, with a plane-wave wavefunction cutoff energy $E_{cut}^{\phi} = 120$ Ry (black), against 80 Ry (green). The experimental reference for g_{OO} comes from X-ray diffraction ^{54,55} interpolated at 298 K¹⁹⁷ and joint X-ray/neutron diffraction experiments were used for g_{OH} and g_{HH} ⁵⁸. Black areas represent experimental uncertainties.

Structural properties

Fig. S2 Position r_{max} and height g_{OO}^{max} of the first peak of the g_{OO} distribution at different temperatures extracted from X-ray measurements⁵⁵, as well as their first minimum analogues (r_{\min} , g_{OO}^{\min}). Shown are the fitting curves used to rescale the simulated data to a common 298 K temperature, assuming a temperature dependency of DFT functionals similar to the experiment.

Table S2 Structure of liquid water. Position [Å] and height of the first maximum (r_{max}, g_{OO}^{max}) and first minimum (r_{min}, g_{OO}^{min}) of the oxygen-oxygen radial distribution function as obtained from MD or MC simulations with various DFT functionals at temperature T_{avg} [K]. Their normalized analogues $(r_{max}^*, g_{OO}^{max})$ and $(r_{min}^*, g_{OO}^{min*})$ rescaled to 298 K were calculated from the experimental fits of Fig. S2. Corresponding references (cf. main text) are provided alongside the functional names.

			T =	Tavg			T = 2	298 K	
Functional	Tavg	r _{max}	g _{OO} ^{max}	$r_{\rm min}$	g ^{min} _{OO}	r_{\max}^*	g ^{max*}	r_{\min}^*	g ^{min*}
				GGA					
BLYP ¹²⁴	319	2.77	2.86	3.31	0.66	2.76	2.98	3.26	0.61
BLYP-DCACP ¹²⁴	308	2.79	2.72	3.36	0.85	2.79	2.78	3.34	0.82
BLYP-D3 ¹⁵⁴	295	2.78	2.78	3.51	0.92	2.78	2.76	3.52	0.93
PBE 124	314	2.72	3.19	3.27	0.43	2.72	3.28	3.23	0.39
PBE-DCACP ¹²⁴	323	2.71	3.27	3.28	0.40	2.70	3.42	3.21	0.35
PBE-D3 ¹⁵⁴	295	2.73	3.07	3.25	0.69	2.73	3.05	3.26	0.70
revPBE ¹²⁴	323	2.80	2.38	3.34	0.90	2.79	2.53	3.27	0.85
revPBE-DCACP ¹²⁴	331	2.74	2.94	3.35	0.76	2.73	3.13	3.25	0.70
revPBE-D3 ¹⁴³	298	2.81	2.59	3.52	0.89	2.81	2.59	3.52	0.89
rVV10 ¹⁵⁴	295	2.73	3.22	3.32	0.79	2.73	3.20	3.33	0.80
optB88-vdW ¹⁵⁴	295	2.74	2.94	3.34	0.80	2.74	2.92	3.35	0.81
			Μ	leta-GGA					
M06-L	291	2.85	2.36	4.50	0.92	2.85	2.32	4.51	0.94
revM06-L	311	3.09	2.37	4.58	0.72	3.09	2.45	4.55	0.69
M11-L	286	2.89	2.11	4.59	0.86	2.89	2.04	4.61	0.90
MN12-L	296	3.13	3.20	4.31	0.45	3.13	3.19	4.31	0.46
MN15-L	283	3.37	2.70	4.61	0.43	3.37	2.61	4.63	0.48
SCAN ⁴⁰	300	2.76	3.24	3.31	0.72	2.76	3.25	3.31	0.71
SCAN+rVV10 ¹³⁸	300	2.74	3.20	3.32	0.65	2.74	3.21	3.32	0.64
TPSS ¹⁴⁰	350	2.71	3.40	3.29	0.33	2.69	3.70	3.08	0.25
B97M-rV ¹¹⁷	300	2.83	2.69	3.61	0.91	2.83	2.70	3.61	0.90
				Hybrid					
B3LYP ¹⁴⁰	350	2.79	2.48	3.40	0.81	2.77	2.78	3.19	0.73
PBE0 ¹⁶²	300	2.71	2.96	3.30	0.53	2.71	2.97	3.30	0.52
PBE0-TS-vdW(SC) ¹⁶²	300	2.72	2.76	3.31	0.70	2.72	2.77	3.31	0.69
PBE0-D3 ¹⁵⁴	295	2.74	2.88	3.29	0.79	2.74	2.86	3.30	0.80
revPBE0-D3 ¹¹⁷	300	2.80	2.57	3.47	0.89	2.80	2.58	3.47	0.88
			Hybri	id meta-G	GA				
M06	312	2.85	2.24	4.70	0.91	2.85	2.32	4.67	0.88
M06-HF	329	2.65	2.72	3.22	0.63	2.64	2.90	3.13	0.57
M06-2X	299	2.81	2.89	3.74	0.85	2.81	2.90	3.74	0.85
M06-2X, $E_{cut}^{\varphi} = 120 \text{ Ry}$	290	2.81	2.86	3.71	0.86	2.81	2.81	3.72	0.89
M08-HX	298	2.82	2.96	4.02	0.81	2.82	2.96	4.02	0.81
M00-50 M11	310	2.05	5.01 2.72	4.10 2.01	0.91	2.04	5.1Z 2.80	4.00	0.07
MN12-SX	292	2.05	2.75	3.86	0.90	2.04	2.07	3.87	0.20
MN12 OX MN15	316	2.85	2.30	4.47	0.87	2.84	2.41	4.43	0.83
M06-2X-D3 ¹⁵⁴	295	2.78	3.00	3 45	0.78	2.78	2.98	3 46	0.79
SCANO/MI ¹⁶⁴	300	2.76	3.04	3 30	0.70	2.76	3.05	3 30	0.69
	500	2.70	Post-HF	double-h	vbrid	2.70	5.05	5.50	0.07
RDA 154	205	2 78	2 02	3 41	0.78	2 78	2 01	3 4 9	0.70
	295	2.70	2.95	2 / 1	0.70	2.70	2.91	3.42	0.79
MD2 154	205	2.77	2.07	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.05	2.77	2.70	3 33	0.02
DW/DR05-D3 154	295	2.70	2.05	3.52	0.72	2.70	2 78	3.55	0.75
1 11 0/0-00	475	2.00	2.00 Fvr	oerimenta	0.00	2.00	4.70	5.01	0.07
V row 201455,197	200	2 80	2 5 5	2 /1	0.05	2 00	2 5 5	2 /1	0.95
A-1ay 2014	298	2.80	2.55	3.41	0.85	2.80	2.55	3.41	0.85

Table S3 Structure of liquid water. Coordination number \bar{n}_{OO} calculated by integrating $g_{OO}(r)$ up to its first minimum. n_{OO} is the coordination number calculated by the same integration up to the first minimum of the radial distribution $4\pi r^2 g_{OO}(r)$ (eq 1 of the main text). Average number h of hydrogen bonds per water molecule and estimated equilibrium density ρ_{eq} [g/cm³] relative to the experimental one ρ_{exp}^{192} at same temperature. Results were obtained from MD or MC simulations with various DFT functionals at temperature T_{avg} [K]. Corresponding references (cf. main text) are provided alongside the functional names.

Functional	Tavg	\bar{n}_{OO}	$n_{\rm OO}$	h	$ ho_{ m eq}$	$ ho_{ m eq}/ ho_{ m exp}$	System		
GGA									
BLYP ¹²⁴	319	4.2	4.0	3.44	1.010	0.92	D ₂ O		
BLYP-DCACP ¹²⁴	308	4.5	4.2	3.43	1.135	1.03	D_2O		
BLYP-D3 ¹⁵⁴	295	5.6	5.1	*3.66	1.066	1.07	H ₂ O		
PBE ¹²⁴	314	4.0	4.0	3.58	1.056	0.96	$D_2 O$		
PBE-DCACP ¹²⁴	323	4.1	4.0	3.63	1.063	0.97	D_2O		
PBE-D3 ¹⁵⁴	295	4.3	4.0	*3.64	1 053	1.06	H ₂ O		
revPBE ¹²⁴	323	4.2	3.8	3 20	0.931	0.85	D_2O		
revPBE-DCACP ¹²⁴	331	4 7	43	3 59	1 114	1.02	D_2O		
revDBF_D3 ¹⁴³	208	5.6	4.6	*3.63	0.07	0.97	H ₂ O		
rVV10 ¹⁵⁴	205	4.6	4.2	*3.80	1 078	1.08	H ₂ O		
optB88-vdW ¹⁵⁴	205	4.7	4.4	*3.84	1.070	1.00	H ₂ O		
optboo-vaw	275	7.7	Meta CCA	5.07	1.001	1.00	1120		
MOGI	201	10.0	100A	2 10	1 1 2 6	1.02	D-0		
revM06-I	291	12.2	4.9	2 90	1.130	1.05	D_2O		
M11-I	286	12.0	6.9	3.20	1.171	1.00	D_2O		
MN12-I	200	11.5	11.2	3.22	1.171	1.00	D_2O		
MN15-L	283	13.4	13.0	1 93	1 280	1.00	D_2O		
SCAN ⁴¹	220	10.1	10.0	2.61	1.200	0.06	D_0		
SCAN 40	200	- 47	-	5.01	1.030	0.90			
$SCAN + 30/10^{138}$	200	4.7	4.4	*2 90	1 16	-	1120		
SCAIN + IV V IO	300	4.0	4.4	3.60	1.10	1.10	П ₂ О		
1PS5 ¹¹⁰	350	117 - 0	-	3.82	1431 10	-	D_2O		
B97M-rV 117,118	298	11/ 5.8	4.8	***3.70	1101.12	1.12	H7,115H2O		
140			Hybrid						
B3LYP 140	350	4.4	4.0	3.67	-	-	D_2O		
PBE0 ^{154,102}	300	¹⁰² 4.1	¹⁰² 3.9	1023.71	¹⁵⁴ 0.832	0.83	$^{102}D/^{154}H_2O$		
PBE0-TS-vdW(SC) ¹⁶²	300	4.2	4.1	3.62	-	-	D_2O		
PBE0-D3 ¹⁵⁴	295	4.4	4.1	*3.68	1.053	1.06	H_2O		
revPBE0-D3 ¹¹⁷	300	5.3	4.5	*3.80	-	-	H ₂ O		
		Hy	brid meta-GG	A					
M06	312	13.7	4.7	3.21	1.031	1.04	H ₂ O		
M06-HF	329	3.9	3.9	3.55	1.051	1.07	H_2O		
M06-2X	299	6.6	5.5	3.70	1.043	1.05	H_2O		
M06-2X, $E_{cut}^{\phi} = 120 \text{ Ry}$	290	6.6	5.5	3.71	-	-	H ₂ O		
M08-HX	298	8.7	7.6	3.59	1.035	1.04	H ₂ O		
M08-SO	316	9.0	5.0	3.70	1.033	1.04	H ₂ O		
MII MNIO GY	326	7.6	4.4	3.46	1.074	1.09	H ₂ O		
MIN12-5X	292	/.8	6.8	3.30	1.025	1.03	H ₂ O		
MIN15	310	11.9	4.8	3.20	1.073	1.08	H ₂ 0		
M06-2X-D3 ¹³⁴	295	5.1	4.7	*3.81	1.004	1.01	H ₂ O		
SCAN0/ML ¹⁰⁴	300	4.5	4.2	3.71	1.032	1.04	H ₂ O		
		Post-F	HF, double-hy	brid					
RPA ¹⁵⁴	295	4.7	4.2	*3.77	0.994	0.996	H ₂ O		
MP2 ¹⁵⁴	295	4.7	4.3	*3.81	1.020	1.022	H_2O		
PWPB95-D3 ¹⁵⁴	295	5.8	4.7	*3.62	1.002	1.004	H ₂ O		
Experimental									
X-ray 2014 ⁵⁵	285	4.8	4.5		0.99952	1.00	H ₂ O		
X-ray 2014 ^{55,197} /Neutron 2013 ⁵⁸	298	^{55,197} 4.6	^{55,197} 4.3	⁵⁸ *3.80	0.99709	1.00	H_2O		
X-ray 2014 ⁵⁵	307	4.6	4.3		0.99442	1.00	H ₂ O		
X-ray 2014 ⁵⁵	324	5.2	4.5		0.98765	1.00	H ₂ O		

*estimated from the integration of the second peak of the oxygen-hydrogen radial distribution function g_{OH} , in the same way as n_{OO} .

Fig. S3 Distribution $P(\alpha)$ of the H-bond donor angle α for donors in the first coordination shell. (a) Meta-GGA Minnesota functionals, (b) hybrid meta-GGA Minnesota functionals.

Fig. S4 H-bond angular distributions as predicted by the M06-2X Minnesota functional, with a plane-wave wavefunction cutoff energy $E_{cut}^{\phi} = 120$ Ry (black), against 80 Ry (green). (a) Distribution $P(\beta)$ of the H-bonding angle β , compared to experimental values²¹⁰. (b) Distribution $P(\alpha)$ of the H-bond donor angle α for donors in the first coordination shell.

Dynamical properties

Table S4 Dynamics of liquid water. L [Å] is the side of the cubic simulation cell, D_L the finite-size diffusion coefficient from simulation and D_{∞} its analogue rescaled to infinite size (eq 4 of the main text). Results were obtained from MD simulations with various DFT functionals at temperature T_{avg} [K]. Corresponding references (cf. main text) are provided alongside the functional names. D_{∞}^{exp} is the experimental diffusion coefficient at T_{avg} , as provided by a fractional-power law⁵¹ fitted to experimental results^{47-49,51,211,212}. D_L^{exp} is the experimental coefficient rescaled back to finite size (eq 4 of the main text). All diffusion coefficients are in [Å²/ps]. η [mPa·s] is the experimental shear viscosity¹⁹² of light/heavy water used for rescaling.

Functional	Tavg	L	D_L	D_L^{\exp}	D_{∞}	D^{\exp}_{∞}	$\eta(T_{\rm avg})$	System		
	GGA									
BLYP ¹²⁴	319	12.420	0.10	0.23	0.18	0.30	0.70167	D_2O		
BLYP-DCACP ¹²⁴	308	12.420	0.17	0.18	0.23	0.24	0.87277	D_2O		
BLYP-D3 ¹⁸⁴	298	15.640	0.08	0.18	0.12	0.23	0.88982	H_2O		
BLYP-D3 ¹⁸⁴	328	15.640	0.20	0.35	0.29	0.43	0.50354	H_2O		
PBE ¹²⁴	314	12.420	0.03	0.21	0.10	0.27	0.77176	D_2O		
PBE ⁴¹	330	13.108	0.02	0.29	0.11	0.38	0.58027	D_2O		
PBE-DCACP ¹²⁴	323	12.420	0.05	0.25	0.13	0.33	0.65294	D_2O		
revPBE ¹²⁴	323	12.420	0.21	0.25	0.29	0.33	0.65294	D_2O		
revPBE-DCACP ¹²⁴	331	12.420	0.16	0.29	0.26	0.39	0.57100	D_2O		
revPBE-D3 ¹⁴³	298	12.420	0.19	0.17	0.25	0.23	0.88982	H_2O		
optB88-vdW ⁴⁰	300	9.850	0.07	0.17	0.14	0.24	0.85072	H ₂ O		
			Meta	-GGA						
M06-L	291	12.445	0.30	0.12	0.34	0.15	1.32310	D_2O		
revM06-L	311	12.445	0.65	0.19	0.71	0.26	0.81967	D_2O		
MII-L	286	12.445	0.52	0.10	0.55	0.13	1.53360	D_2O		
MN12-L MN1E I	296	12.445	0.11	0.13	0.15	0.18	1.15640	D_2O		
	203	12.443	0.00	0.09	0.09	0.12	1.08780	D ₂ 0		
SCAN 184	330	12.217	0.19	0.28	0.29	0.38	0.5802/	D_2O		
SCAN 40	200	0.850	0.14	0.32	*0.00	0.43	0.30334	H 0		
SCAN ¹⁸⁴	200	9.650	0.00	0.17	0.09	0.24	0.83072	H ₂ O		
SCAN/MI ¹⁶³	290	11 017	0.05	0.17	0.08	0.23	0.00902	H 0		
TDSS 140	300	0.020	0.03	0.10	0.11	0.24	0.03072	D ₂ O		
B07M rV ¹¹⁷	300	9.939	0.03	0.30	0.20	0.33	0.45551	D ₂ O H ₂ O		
D7/1VI-1 V	300	12.420	0.21 Hv	brid	0.27	0.24	0.03072	1120		
B31VD140	350	0.030	0.30	0.36	0.47	0.53	0 /2221	D ₂ O		
DBEO 162	300	12 400	0.30	0.30	0.47	0.33	1.04660	D ₂ O		
$PBEO TS vdW(SC)^{162}$	300	12.400	0.07	0.15	0.12	0.20	1.04660	D ₂ O		
revPBF0_D3 ¹¹⁷	300	12.400	0.10	0.13	0.15	0.20	0.85072	H ₂ O		
	500	12.120	Hybrid n	neta-GGA	0.27	0.21	0.03072	1120		
M06	312	9,939	0.69	0.22	0.79	0.31	0.66506	H ₂ O		
M06-HF	329	9.939	0.16	0.30	0.30	0.44	0.49563	H ₂ O		
M06-2X	299	9.939	0.31	0.16	0.38	0.23	0.86991	H ₂ O		
M06-2X, $E_{cut}^{\phi} = 120 \text{ Ry}$	290	9.939	0.33	0.13	0.39	0.19	1.08400	H_2O		
M08-HX	298	9.939	0.18	0.16	0.25	0.23	0.88982	H_2O		
M08-SO	316	9.939	0.24	0.23	0.35	0.34	0.61743	H_2O		
M11	326	9.939	0.31	0.29	0.44	0.42	0.52001	H_2O		
MN12-SX	292	9.939	0.14	0.14	0.20	0.20	1.02640	H ₂ O		
MN15	316	9.939	0.30	0.23	0.41	0.34	0.61743	H ₂ O		
SCAN0/ML ¹⁶⁴	300	24.575	0.11	0.17	0.13	0.20	1.04660	D_2O		
SCAN0/ML ¹⁰⁴	300	24.575	0.12	0.21	0.15	0.24	0.85072	H ₂ O		
105			Post	t-HF						
RPA/ML ¹⁰⁵	300	11.817	0.17	0.18	0.23	0.24	0.85072	H_2O		
MP2 ¹⁵⁴	295	12.335	0.07	0.16	0.12	0.21	0.95417	H_2O		
CCSD(T)/ML PIMD 197	298	15.660	0.20	0.18	0.24	0.23	0.88982	H_2O		

*rescaled to infinite size with the actual viscosity obtained with the SCAN functional⁴⁰.

Table S5 Dynamics of liquid water. First-order τ_1 and second-order τ_2 orientational relaxation times [ps] calculated from the orientational autocorrelation function (eq 5 of the main text), between respectively the geometric dipoles μ , OH, and HH vectors. Results were obtained from MD simulations with various DFT functionals at temperature T_{avg} [K]. Corresponding references (cf. main text) are provided alongside the functional names. Note that $\tau_{1,2}$ are highly sensitive to statistical sampling and require trajectories that are sufficiently long (approximately three times higher than their value) to be accurately converged, in addition to a sufficient equilibration phase at the beginning of the NVE sampling. Additionally, the fitting or integration methods used for their calculation vary between studies, and experimental results exhibit non-negligible deviations. Nevertheless, we provide these values as a qualitative comparison (with ~10% of error tolerance for Minnesota functionals).

Functional	$T_{\rm avg}$	$ au_1^\mu$	$ au_2^{\mu}$	$ au_1^{ m OH}$	$ au_2^{ m OH}$	$ au_1^{ m HH}$	$ au_2^{ m HH}$	System
			GGA					
BLYP ¹²⁴	319	^{<i>a</i>} 7.5	^a 3.0	-	-	-	-	D ₂ O
BLYP-DCACP ¹²⁴	308	^{<i>a</i>} 3.6	^{<i>a</i>} 1.7	-	-	-	-	D_2O
PBE ¹²⁴	314	^{<i>a</i>} 36.9	^{<i>a</i>} 15.6	-	-	-	-	$D_2 O$
PBE ⁴¹	330	-	-	-	^b 7.1	-	-	D_2O
PBE-DCACP ¹²⁴	323	^a 32.7	^{<i>a</i>} 10.0	-	-	-	-	D_2O
revPBE ¹²⁴	323	^a 2.7	^a 13	-	-	_	-	D_2O
revPBE-DCACP ¹²⁴	331	a5 4	^a 2 1	_	_	_	_	D_2O
revDBE D3 ²⁰⁴	300	^b л б	b1 7	b 5 1	b2 2	<i>b</i> 50	b2 6	D ₂ O H ₂ O
TEVF DE-D5	300	4.0	Meta CC	J. 4	2.2	5.7	2.0	1120
M06-I	201	1.8	0.8	23	1.0	27	1 3	DaO
revM06-I	311	0.4	0.0	0.5	0.3	0.6	0.3	D_2O
M11-I	286	1.0	0.2	13	0.5	1.4	0.5	D_2O
MN12-I	200	0.4	0.3	0.5	0.0	0.5	0.7	D_2O
MN15-L	283	0.4	0.1	0.4	0.2	0.4	0.2	D_2O
SCAN ⁴¹	330	-		-	b2.9	-		D ₂ O
SCAN/ML ¹⁶³	300	-	^b 12.9	-	^b 15.7	-	^b 21.5	H_2O
			Hybrid		1017		2110	1120
revPBE0-D3 ²⁰⁴	300	^b 3 4	^b 1 4	^b 4 3	^b 1 7	^b 4 8	^b 2.0	H2O
	000	I	Jybrid meta	-GGA	1.7	1.0	2.0	1120
M06	312	12	0.5	12	0.6	12	0.6	HaO
M06-HF	329	47	2.5	6.2	33	73	3.6	H ₂ O
M06-2X	299	2.7	11	3.0	13	3.2	14	H ₂ O
M06-2X. $E^{\phi} = 120 \text{ By}$	290	2.6	1.2	3.3	1.5	3.8	1.7	H ₂ O
M08-HX	298	2.8	1.5	3.0	1.6	3.2	1.8	H ₂ O
M08-SO	316	2.8	1.3	3.0	1.4	3.2	1.6	H ₂ O
M11	326	3.0	1.5	3.6	1.6	3.9	1.9	H ₂ O
MN12-SX	292	3.7	1.6	4.4	2.0	4.9	2.9	H ₂ O
MN15	316	2.0	1.0	2.0	1.1	2.0	1.3	H ₂ O
SCAN0/ML ¹⁶⁴	300	-	-	-	^b 4.6	-	-	D_2O
SCAN0/ML ¹⁶⁴	300	-	-	-	^b 4.1	-	-	H_2O
	000		Post-HF	7	1.1			1120
RPA/MI 165	300		^b 1 7		^b 2 2		^b 2.6	HaO
$CCSD(T)/ML DIMD^{197}$	208	_	b1 2	-	^b 1 7	-	^b 2.0	H ₂ O
CCSD(T)/ML PIMD ¹⁹⁷	290	-	1.5	-	1.7	-	2.1	H ₂ O
	290	-	Evperimen	- ntal	5.0	-	5.5	1120
NMP 1070 ^{2,199}	200	1 0	паретние	itai				Н.О
NMD 1071 199.213	200	4.0	1.0	-	-	-	-	
NMR 1971 (for serious T) 42	300	-	1.9	-	-	-	-	
Information 200 (2010 201	300	-	2.4	-	-	-	-	H ₂ O
Infrared $2008^{200}/2010^{201}$	298	-	-	-	2.5	-	2.5	H ₂ O
Infrared 2008 $\frac{200}{2010}$ $\frac{2010}{2010}$	298	-	-	-	3.0	-	-	D_2O
NMR 2001 (for various T) 32	300	-	-	-	2.4	-	-	D_2O
NMR 1985 ⁴⁵ /1987 ⁴⁶	298	-	-	-	1.9-2.0	-	-	H_2O
NMR 1982 50	298	-	-	-	1.7	-	-	H_2O
NMR 1966 ¹⁹⁸	298	-	-	-	2.6	-	-	H_2O
NMR 1976 ⁴³	303	-	-	-	-	-	2.1	H_2O
NMR 1976 ⁴³	303	-	-	-	-	-	2.5	D_2O

 $^{a}\tau_{1,2}$ were calculated from fitting the auto-correlation functions $C_{1,2}(t)$ with the exponential form $A \exp[-(t/\tau_{1,2})^{\alpha}]$.

^{*b*}The tail of the auto-correlation function was fitted with $\exp(-t/\tau_{1,2})$ and integrated from zero to ∞ to give $\tau_{1,2}$.

Others were obtained with the fit $A \exp(-t/\tau_{1,2})$ in the exponential regime after the initial subpicosecond librational decay.