Supplementary Information

Direct synthesis of spirobifluorenes by formal dehydrative coupling of biaryls and fluorenones

Yugo Kato,[†] Kazutoshi Nishimura,[†] Yuji Nishii,[†] and Koji Hirano*,[†], [‡]

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

[‡]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

k hirano@chem.eng.osaka-u.ac.jp

Contents

Instrumentation and Chemicals	S1-S2
Pictures of Reaction Set-Up	S3–S4
Experimental Procedures for Starting Substrates	S5–S9
Detailed Optimization Studies	S10-S11
X-Ray Analysis	S12–S20
Tests for Possibility of Interconversion between 3la and 3la'	S21
Table of Detailed Conditions for Each Substrate	S22
Photoluminescence Properties	S23–S27
Cyclic Voltammetry	S28–S31
Characterization Data and Experimental Procedures for Products	S32–S56
References	S57
Copies of NMR Charts	S58–S91

Instrumentation and Chemicals

¹H, ¹³C{¹H}, and ¹⁹F{¹H} spectra were recorded at 400 MHz, 100 MHz, and 162 MHz, respectively, for CDCl₃ or CD₂Cl₂ solutions. HRMS data were obtained by APCI and FAB using a TOF and a magnetic sector, respectively. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or CBP capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakosil C-200,

Wako Pure Chemical Co.) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-20AR (pump, SHIMADZU, 7.5 mL/min CHCl₃) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 (20 x 600 mm, particle size: 10 μ m) (preparative columns, YMC). UV-vis spectra were acquired with JASCO V-750 spectrometer. Photoluminescence spectra and quantum yield measurements were conducted with JASCO FP-8500 spectrometer equipped with an integration sphere system. Cyclic voltammogram (CV) was recorded on ALS Electrochemical Analyzer Model 600E equipped with SVC-3 Voltammetry cell. Counter and working electrodes were made of Pt, and the reference electrode was Ag/Ag⁺. The measurements were conducted in *o*-dichlorobenzene/MeCN solvent (10/1, v/v) containing tetrabutylammonium hexafluorophosphate as a supporting electrolyte at an indicated scan rate. All the potentials were calibrated with the standard ferrocene/ferrocenium (Fc/Fc⁺) redox couple measured in identical conditions. The IUPAC convention was used to report the CV data.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. *N*-Methyl-2-phenylindole (1a), biphenyls 1n-o, di(*p*-tolyl) ether (1p), and fluorenones 2 except for 2d were commercially available. DCE was freshly distilled from CaH₂. All reactions were carried out under nitrogen atmosphere unless otherwise noted.

Pictures of Reaction Set-Up

Figure S1. Photos of a schlenk flask used in this study: reaction set up (left); reaction progress (right).

Figure S2. Photos of a 20 mL screw cap test tube used in this study: reaction set up (left); reaction progress (right).

Figure S3. Photos of a 18*40 mm screw vial used in this study: reaction set up (left and center); reaction progress (right).

Experimental Procedures for Starting Substrates

The following starting substrates were synthesized according to the literature methods (Figure S4).

Figure S4. Starting substrates prepared according to the literature methods.

Scheme S1. Synthetic scheme of 1q.

In a 200 mL two necked flask, 1,4-dibromo-2,5-diiodobenzene (10 mmol, 4.9 g), dodecylamine (26 mmol, 4.8 g), Pd₂(dba)₃ (0.50 mmol, 0.46 g), *rac*-BINAP (1.0 mmol, 0.62 g), and NaO*t*Bu (30 mmol, 2.9 g) were placed with a magnetic stir bar. The reaction flask was vacuumed and refilled with dry N₂. Toluene (100 mL) was subsequently added by a syringe. The reaction mixture was heated at 120 °C for 5 h (oil bath). After being cool to room temperature, the resulting mixture was filtered through a short pad of silica gel, and the filtrate was evaporated in vacuo. The residual solid was dissolved in heated ethyl acetate. Addition of isopropyl alcohol at room temperature allowed precipitation of pale yellow solid, which was collected and dried under reduced pressure. The desired 2,5-dibromo- N^1 , N^4 -didodecylbenzene-1,4-diamine (1.8 mmol, 1.1 g) was obtained in 18% yield.^[S11]

In a 20 mL two necked flask, 2,5-dibromo- N^1 , N^4 -didodecylbenzene-1,4-diamine (1.8 mmol, 1.1 g), 1,4dibromo-2,5-diiodobenzene (10 mmol, 4.9 g), PdCl₂(PPh₃)₂ (0.090 mmol, 63 mg), PPh₃ (0.18 mmol, 47 mg), and CuI (0.18 mmol, 34 mg) were placed with a magnetic stir bar. The reaction flask was vacuumed and refilled with dry N₂. Degassed Et₃N (4.0 mL) and phenylacetylene (4.2 mmol, 0.46 mL) were subsequently added by syringes. The reaction mixture was heated at 80 °C for 2 h (oil bath). After being cool to room temperature, the resulting mixture was quenched with H₂O and extracted with chloroform (100 x 3). The combined organic layers were evaporated under reduced pressure. The residual oil was dissolved in toluene, and the solution was filtered through a pad of Na₂SO₄ and neutral alumina. The filtrate was evaporated again to form yellow reddish brown solid. The solid was dissolve in chloroform. Addition of isopropyl alcohol and gentle evaporation allowed precipitation of orange solid, which was collected and dried to deliver the desired N^1, N^4 -didodecyl-2,5-bis(phenylethynyl)benzene-1,4-diamine (1.3 mmol, 0.84 g) as orange solid in 74% yield.^[S11]

In a 20 mL two necked flask, N^1 , N^4 -didodecyl-2,5-bis(phenylethynyl)benzene-1,4-diamine (0.65 mmol, 0.42 g), IPrAuCl (0.065 mmol, 40 mg), and AgOTf (0.065 mmol, 17 mg) were placed with a magnetic stir bar. The reaction flask was vacuumed and refilled with dry N₂. DCE (7.0 mL) was subsequently added by a syringe. The reaction mixture was stirred at room temperature overnight. The resulting mixture was directly filtered through a pad of neutral alumina, and the filtrate was evaporated in vacuo. The residual solid was dissolved in chloroform, and addition of isopropyl alcohol allowed precipitation of pale yellow solid, which was collected and rinsed with cold hexane. Dryness under reduced pressure gave 1,5-didodecyl-2,6-diphenyl-1,5-dihydropyrrolo[2,3-*f*]indole (1q, 0.62 mmol, 0.38 g) as white solid in 95% yield.^[S12]

1,5-Didodecyl-2,6-diphenyl-1,5-dihydropyrrolo[**2,3-***f*]**indole** (**1q**). white solid; m.p. 111.6-113.6 °C; ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.57-7.55 (m, 4H), 7.52 (s, 2H), 7.49 (dd, J = 7.2, 7.2 Hz, 4H), 7.42-7.38 (m, 2H), 6.56 (s, 2H), 4.19 (t, J = 7.5 Hz, 4H), 1.75-1.71 (m, 4H), 1.25-1.17 (m, 36H), 0.88 (t, J = 6.7 Hz, 6H). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): δ 142.6, 135.6, 134.1, 129.6, 128.8, 128.0, 126.5, 101.4, 99.5, 44.6, 32.3, 30.0 (2C), 29.93, 29.87, 29.8, 29.7, 29.5, 27.2, 23.1, 14.3. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₆H₆₅N₂: 645.5142, found: 645.5141. Synthesis of 2d (Scheme S2).

Scheme S2. Synthetic scheme of 2d.

In a 50 mL two necked flask, 2,7-dibromofluorene (10 mmol, 3.4 g) and PdCl₂(PhCN)₂ (0.60 mmol, 0.23 g) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. 1,4-Dioxane (20 mL), P(*t*Bu)₃ (1.3 mmol, 0.26 g), diisopropylamine (24 mmol, 2.4 g, 3.4 mL), and 1-octyne (24 mmol, 2.6 g) were subsequently added by a syringe. The reaction mixture was stirred at room temperature for 20 h. The resulting mixture was diluted with H₂O, extracted three times with CHCl₃ (20 mL x 3), dried over Na₂SO₄, filtered through a pad of silica gel. The crude mixture was concentrated in vacuo. The desired product 2,7-di(oct-1-yn-1-yl)-9*H*-fluoren-9-one (4.0 mmol, 1.6 g, 40%) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 1/1, v/v) as eluent followed by GPC (chloroform).

In a 20 mL two necked flask, a mixture of 2,7-di(oct-1-yn-1-yl)-9*H*-fluoren-9-one (4.0 mmol, 1.6 g) and 20 wt% Pd(OH)₂ on carbon (0.32 g) were placed with a magnetic stir bar. The reaction vessel was equipped with H₂ balloon and then slightly vacuumed and refilled with H₂. The mixture was stirred under hydrogen at room temperature. After stirring for 20 h, the reaction mixture was refilled with N₂ and filtered through a pad of celite, and the solvent was removed under reduced pressure to give 2,7-dioctylfluorene (3.6 mmol, 1.4 g, 90%).

In a 100 mL round bottomed flask, 2,7-dioctylfluorene (3.6 mmol, 1.4 g) and KOH (7.9 mmol, 0.44 g) were placed with a magnetic stir bar. THF (10 mL) and DMF (10 mL) were subsequently added by a

syringe. The mixture was stirred under ambient conditions for 48 h. The resultant was diluted with H₂O, extracted three times with THF (20 mL x 3), then washed three times with brine (20 mL x 3). The combined organic layer was filtered through a short pad of Na₂SO₄/celite and concentrated in vacuo. The desired product 2,7-dioctyl-9*H*-fluoren-9-one (**2d**, 3.0 mmol, 1.2 g) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 20/1 to 10/1, v/v) as eluent.

2,7-Dioctyl-9*H***-fluoren-9-one (2d)**. yellow solid; m.p. 46.6-48.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, J = 1.1 Hz, 2H), 7.36 (d, J = 7.6 Hz, 2H), 7.26-7.24 (m, 2H), 2.61 (t, J = 7.6 Hz, 4H), 1.65-1.58 (m, 4H), 1.31-1.26 (m, 20H), 0.88 (t, J = 6.7 Hz, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 194.8, 144.1, 142.4, 134.8, 134.7, 124.4, 120.0, 35.9, 32.0, 31.3, 29.6, 29.4, 29.3, 22.8, 14.3. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₉H₄₁O: 405.3152, found: 405.3174.

Detailed Optimization Studies

 Table S1. Optimization studies for formal dehydrative coupling of biaryl 1a and fluorenone 2a for synthesis of spirobifluorene 3aa^[a]

	Me	O .c		Me N	
		+	activator/bas solvent		C.
	1a 0.12 mmol	2a 0.10 mmol	conditions		Jaa 3aa
entry	activator (mmol)	base (mmol)	solvent	conditions	yield (%) ^[b]
1	Tf ₂ O (0.10)	none	DCE	120 °C, 16 h	56
2	$Tf_2O(0.12)$	none	DCE	90 °C, 20 h	<i>69 (72)</i>
3	Tf ₂ O (0.24)	none	DCE	90 °C, 20 h	40
4	Tf ₂ O (0.12)	2,6-lutidine (0.12)	DCE	90 °C, 20 h	40
5	Tf ₂ O (0.12)	B1 (0.12)	DCE	90 °C, 20 h	(32)
6	Tf ₂ O (0.12)	B2 (0.12)	DCE	90 °C, 20 h	(9)
7	Tf ₂ O (0.12)	DMAP (0.12)	DCE	90 °C, 20 h	55
8	Tf ₂ O (0.12)	Et ₃ N (0.12)	DCE	90 °C, 20 h	63
9	$Tf_2O(0.12)$	Na ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	(90)
10	Tf ₂ O (0.12)	K ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	72
11	Tf ₂ O (0.12)	Cs ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	61
12	Tf ₂ O (0.12)	KOAc (0.12)	DCE	90 °C, 20 h	38
13	Tf ₂ O (0.12)	K ₃ PO ₄ (0.12)	DCE	90 °C, 20 h	31
14	TfOH (0.24)	none	DCE	90 °C, 20 h	(90)
15	TsOH•H ₂ O (0.24)	none	DCE	90 °C, 20 h	50
16	MsOH (0.24)	none	DCE	90 °C, 20 h	22
17	CF ₃ COOH (0.24)	none	DCE	90 °C, 20 h	68
18	TfOH (0.24)	Na ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	68
19	PhNTf ₂ (0.12)	Na ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	0
20	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	toluene	90 °C, 20 h	55
21	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	C ₆ H ₅ CF ₃	90 °C, 20 h	54
22	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	1,4-dioxane	90 °C, 20 h	0
23	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	DCE	60 °C, 20 h	30

24	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	DCE	40 °C, 20 h	21
25	$Tf_2O(0.12)$	Na ₂ CO ₃ (0.12)	DCE	RT, 20 h	13
26	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	DCE	90 °C, 12 h	58
27	Tf ₂ O (0.12)	Na ₂ CO ₃ (0.12)	DCE	90 °C, 4 h	63
28	none	none	DCE	90 °C, 20 h	0
29	none	Na ₂ CO ₃ (0.12)	DCE	90 °C, 20 h	0

[a] Reaction conditions: activator, base, **1a** (0.12 mmol), **2a** (0.10 mmol), solvent (1.5 mL), N₂. [b] Estimated by GC method using dibenzyl as the internal standard. Isolated yields are shown in parentheses. Ms = methanesulfonyl, Ts = p-toluenesulfonyl.

X-Ray Analysis

The single X-ray quality crystals of **3da** were grown from hexane by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S5. ORTEP drawing of 3da (CCDC 2305237, 50% thermal probability).

Table S2. Crystal Data for 3da

Crystal system	tetragonal
Space group IT number	86
Space group name H-M alt	P 42/n
Space group name Hall	-P 4bc
Cell length a	22.8051(3)
Cell length b	22.8051(3)
Cell length c	8.2792(2)
Cell angle alpha	90
Cell angle beta	90
Cell angle gamma	90
Cell volume	4305.78(15)
Cell formula units Z	8
Refine ls R factor all	0.0997
Refine ls R factor gt	0.0918
Refine ls wR factor gt	0.2877
Refine ls wR factor ref	0.2963
Refine ls goodness of fit ref	1.098

The single X-ray quality crystals of **3ha** were grown from THF/hexane by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S6. ORTEP drawing of 3ha (CCDC 2305238, 50% thermal probability).

Table S3. Crystal Data for 3ha

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/n 1
Space group name Hall	-P 2yn
Cell length a	15.7190(3)
Cell length b	8.36430(10)
Cell length c	33.8437(5)
Cell angle alpha	90
Cell angle beta	101.487(2)
Cell angle gamma	90
Cell volume	4360.59(12)
Cell formula units Z	4
Refine ls R factor all	0.0752
Refine ls R factor gt	0.0691
Refine ls wR factor gt	0.1621
Refine ls wR factor ref	0.1659
Refine ls goodness of fit ref	1.134

The single X-ray quality crystals of **3ia'** were grown from CHCl₃/CH₃CN by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S7. ORTEP drawing of 3ia' (CCDC 2305239, 50% thermal probability).

Table S4. Crystal Data for 3ia'

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/n 1
Space group name Hall	-P 2yn
Cell length a	27.4355(3)
Cell length b	7.96430(10)
Cell length c	31.2422(3)
Cell angle alpha	90
Cell angle beta	91.9370(10)
Cell angle gamma	90
Cell volume	6814.10(13)
Cell formula units Z	4
Refine ls R factor all	0.0590
Refine ls R factor gt	0.0548
Refine ls wR factor gt	0.1401
Refine ls wR factor ref	0.1435
Refine ls goodness of fit ref	1.032

The single X-ray quality crystals of **3qa** were grown from CD_2Cl_2 by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S8. ORTEP drawing of 3qa (CCDC 2305240, 50% thermal probability).

Table S5. Crystal Data for 3qa

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/c 1
Space group name Hall	-P 2ybc
Cell length a	15.0249(2)
Cell length b	11.65340(10)
Cell length c	16.3566(2)
Cell angle alpha	90
Cell angle beta	97.3120(10)
Cell angle gamma	90
Cell volume	2840.61(6)
Cell formula units Z	8
Refine ls R factor all	0.0581
Refine ls R factor gt	0.0530
Refine ls wR factor gt	0.1437
Refine ls wR factor ref	0.1500
Refine ls goodness of fit ref	1.061

The single X-ray quality crystals of **3ra** were grown from DCE/CH₃NO₂ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S9. ORTEP drawing of 3ra (CCDC 2305241, 50% thermal probability).

Table S6. Crystal Data for 3ra

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	P -1
Space group name Hall	-P 1
Cell length a	10.9754(2)
Cell length b	12.1150(4)
Cell length c	12.3347(3)
Cell angle alpha	116.431(3)
Cell angle beta	95.048(2)
Cell angle gamma	94.470(2)
Cell volume	1450.31(7)
Cell formula units Z	2
Refine ls R factor all	0.0829
Refine ls R factor gt	0.0723
Refine ls wR factor gt	0.2040
Refine ls wR factor ref	0.2161
Refine ls goodness of fit ref	1.066

The single X-ray quality crystals of **3sa** were grown from DCE/CH₃CN by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S10. ORTEP drawing of 3sa (CCDC 2305242, 50% thermal probability).

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	P -1
Space group name Hall	-P 1
Cell length a	10.38100(10)
Cell length b	14.3480(2)
Cell length c	15.61030(10)
Cell angle alpha	94.9290(10)
Cell angle beta	102.9010(10)
Cell angle gamma	107.0460(10)
Cell volume	2138.07(4)
Cell formula units Z	2
Refine ls R factor all	0.0439
Refine ls R factor gt	0.0396
Refine ls wR factor gt	0.1069
Refine ls wR factor ref	0.1104
Refine ls goodness of fit ref	1.069

The single X-ray quality crystals of **3ta** were grown from CHCl₃/hexane by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S11. ORTEP drawing of 3ta (CCDC 2305243, 50% thermal probability).

Table S8. Crystal Data for 3ta

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/c 1
Space group name Hall	-P 2ybc
Cell length a	12.2354(4)
Cell length b	14.2615(4)
Cell length c	20.8253(6)
Cell angle alpha	90
Cell angle beta	98.248(3)
Cell angle gamma	90
Cell volume	3596.33(19)
Cell formula units Z	4
Refine ls R factor all	0.0759
Refine ls R factor gt	0.0564
Refine ls wR factor gt	0.1565
Refine ls wR factor ref	0.1728
Refine ls goodness of fit ref	1.054

The single X-ray quality crystals of **3wd** were grown from DCE/CH₃NO₂ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S12. ORTEP drawing of 3wd (CCDC 2305244, 50% thermal probability).

Table S9. Crystal Data for 3wd

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/c 1
Space group name Hall	-P 2ybc
Cell length a	22.0314(4)
Cell length b	12.4409(2)
Cell length c	26.6247(4)
Cell angle alpha	90
Cell angle beta	112.159(2)
Cell angle gamma	90
Cell volume	6758.6(2)
Cell formula units Z	4
Refine ls R factor all	0.1079
Refine ls R factor gt	0.0946
Refine ls wR factor gt	0.2904
Refine ls wR factor ref	0.3334
Refine ls goodness of fit ref	1.384

The single X-ray quality crystals of **3xa** were grown from CHCl₃/hexane by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S13. ORTEP drawing of 3xa (CCDC 2305245, 50% thermal probability).

Table S10. Crystal Data for 3xa

Crystal system	triclinic		
Space group IT number	2		
Space group name H-M alt	P -1		
Space group name Hall	-P 1		
Cell length a	12.0253(5)		
Cell length b	14.2850(8)		
Cell length c	15.2395(6)		
Cell angle alpha	63.792(5)		
Cell angle beta	67.462(4)		
Cell angle gamma	77.789(4)		
Cell volume	2166.5(2)		
Cell formula units Z	2		
Refine ls R factor all	0.0649		
Refine ls R factor gt	0.0539		
Refine ls wR factor gt	0.1612		
Refine ls wR factor ref	0.1699		
Refine ls goodness of fit ref	1.052		

Tests for Possibility of Interconversion between 3la and 3la'

We tried the conversion of **3la** into **3la**' under Tf_2O/Na_2CO_3 conditions. However, the starting **3la** was recovered quantitatively. Similarly, no conversion of **3la**' was observed under $Tf_2O/B1$ conditions. These results concluded no interconversion between **3la** and **3la**'.

Table of Detailed Conditions for Each Substrate

3aa 90% 1a (0.12 mmol) **2a** (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

125

2a (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

3ca 92% 1c (0.12 mmol) 2a (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

3ia' 84%

DCE (1.5 mL), 90 °C, 20 h

1i (0.060 mmol)

2a (0.050 mmol) TfOH (0.12 mmol)

C₁₂H₂₅

OMe

1d (0.12 mmol) 2a (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

1j (0.12 mmol) 2a (0.10 mmol) Tf2O/B1 (0.12 mmol)

1p (0.40 mmol) 2a (0.10 mmol) Tf₂O/**B1** (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

1a (0.050 mmol) 2a (0.12 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

1v (0.050 mmol) **2d** (0.12 mmol) Tf₂O/**B1** (0.12 mmol) DCE (1.5 mL), 120 °C, 20 h

3fa 94% 1f (0.12 mmol) 2a (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

11 (0.12 mmol) 2a (0.10 mmol) Tf₂O/B₁ (0.12 mmol) DCE (1.5 mL), 110 °C, 20 h

3ac 66%

1a (0.12 mmol) 2c (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

3ra 58% 1r (0.050 mmol) 2a (0.12 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

C₈H₁ C₈H₁₇

3wd 40% C₈H₁₇ 1w (0.050 mmol) 2d (0.12 mmol) Tf₂O/B1 (0.12 mmol)

DCE (0.080 mL), 40 °C, 20 h

3ga 88%

1g (0.12 mmol)

3ma 66%

1m (0.12 mmol) **2a** (0.10 mmol) Tf₂O/**B1** (0.12 mmol) DCE (1.5 mL), 110 °C, 20 h

3ad 65%

1a (0.12 mmol) 2d (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

2a (0.12 mmol) Tf₂O/Na₂CO₃ (0.12 mmol) DČE (0.080 mL), 40 °C, 20 h

3xa 54% 1x (0.050 mmol) 2a (0.12 mmol) Tf₂O/Na₂CO₃ (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

2a (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

1n (0.40 mmol)

2a (0.10 mmol)

Tf₂O/Na₂CO₃ (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

86%

DCE (1.5 mL), 90 °C, 20 h

3ta 97%

Tf₂O/Na₂CO₃ (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

1t (0.050 mmol)

2a (0.12 mmol)

3ae

1a (0.12 mmol)

2e (0.10 mmol) TfOH (0.24 mmol)

N/L

3oa 60% 10 (0.40 mmol) 2a (0.10 mmol) Tf₂O/Na₂CO₃ (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

3af 76% 1a (0.12 mmol) **2f** (0.10 mmol) Tf₂O/Na₂CO₃ (0.12 mmol) DČE (1.5 mL), 90 °C, 48 h

1u (0.050 mmol) **2a** (0.12 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 110 °C, 20 h

1y (0.050 mmol) **2a** (0.12 mmol) Tf₂O/**B1** (0.12 mmol) DCE (0.080 mL), 40 °C, 20 h

DCE (1.5 mL), 110 °C, 20 h

Tf₂O/**B2** (0.12 mmol) DCE (1.5 mL), 110 °C, 20 h Me

3ab 84% 1a (0.12 mmol) **2b** (0.10 mmol) TfOH (0.24 mmol) DCE (1.5 mL), 90 °C, 20 h

3ea 52%

1e (0.12 mmol)

2a (0.10 mmol) Tf₂O/Na₂CO₃ (0.12 mmol)

DCE (1.5 mL), 90 °C, 20 h

3ka 82%

1k (0.12 mmol)

2a (0.10 mmol)

Photoluminescence Properties

Figure S14. Normalized absorption (blue) and emission (orange) spectra of **3qa** (1.0×10^{-5} M in toluene). Excited at 370 nm for the emission spectrum.

Figure S15. Normalized absorption (blue) and emission (orange) spectra of **3ra** (1.0×10^{-5} M in CHCl₃). Excited at 370 nm for the emission spectrum.

Figure S16. Normalized absorption (blue) and emission (orange) spectra of **3sa** (1.0×10^{-5} M in CHCl₃). Excited at 360 nm for the emission spectrum.

Figure S17. Normalized absorption (blue) and emission (orange) spectra of **3ta** (1.0×10^{-5} M in CHCl₃). Excited at 260 nm for the emission spectrum.

Figure S18. Normalized absorption (blue) and emission (orange) spectra of **3ua** (1.0×10^{-5} M in CHCl₃). Excited at 280 nm for the emission spectrum.

Figure S19. Normalized absorption (blue) and emission (orange) spectra of 3vd (1.0×10^{-5} M in CHCl₃). Excited at 310 nm for the emission spectrum.

Figure S20. Normalized absorption (blue) and emission (orange) spectra of **3wd** (1.0×10^{-5} M in CHCl₃). Excited at 360 nm for the emission spectrum.

Figure S21. Normalized absorption (blue) and emission (orange) spectra of 3xa (1.0×10⁻⁵ M in CHCl₃). Excited at 310 nm for the emission spectrum.

Figure S22. Normalized absorption (blue) and emission (orange) spectra of 3ya (1.0×10⁻⁵ M in CHCl₃). Excited at 260 nm for the emission spectrum.

Table S11. Summary of optical properties.

compound	$\lambda_{\rm abs} ({\rm nm}) (\varepsilon (10^4 { m M}^{-1} { m cm}^{-1}))$	$\lambda_{\mathrm{Fl}}(\mathrm{nm})$	$\varPhi(\%)$
3qa	280 (3.1), 371 (3.0), 408 (3.2), 433 (4.7)	440, 469	83
3ra	303 (3.2), 363 (1.7), 390 (1.6), 447 (0.83)	475	39
3sa	278 (6.1), 361 (6.0), 383 (5.7)	403, 423	49
3ta	260 (4.8), 313 (0.90)	355	4
3ua	266 (7.5), 303 (1.6), 313 (1.6), 338 (0.96)	381	5
3vd	284 (8.0), 306 (7.4), 365 (2.7), 383 (4.3), 397 (2.9), 419 (3.4)	434, 458	48
3wd	287 (9.6), 293 (9.7), 343 (1.5), 359 (2.1), 388 (0.70), 406 (0.71)	425,446	20
3xa	305 (2.1), 314 (2.5), 335 (1.9), 350 (3.6)	357, 373	43
3ya	266 (7.3), 309 (1.5), 343 (0.37), 358 (0.43)	369, 384	19

Cyclic Voltammetry

Figure S23. Cyclic voltammograms of 3qa in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 10.0 mVs⁻¹.

Figure S24. Cyclic voltammograms of 3ra in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 10.0 mVs⁻¹.

Figure S25. Cyclic voltammograms of 3sa in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 10.0 mVs⁻¹.

Figure S26. Cyclic voltammograms of **3ta** in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 5.0 mVs^{-1} .

Figure S27. Cyclic voltammograms of **3ua** in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 5.0 mVs^{-1} .

Figure S28. Cyclic voltammograms of 3vd in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 4.0 mVs⁻¹.

Figure S29. Cyclic voltammograms of 3wd in o-dichlorobenzene/acetonitrile (10:1, v/v) containing 0.1 M n-Bu₄NPF₆ at a scan rate of 4.0 mVs⁻¹.

Compd.	$\lambda_{\text{onset}}^{\text{abs}} (\text{nm})^a$	$E_{\rm g}^{\rm opt}$	$E^{1/2}$ ox	$E_{\rm HOMO}({\rm eV})^d$	$E_{\rm LUMO}({\rm eV})^e$
		$(eV)^b$	$(V)^c$		
3qa	440	2.82	0.0085, 0.493	-4.81	-1.99
3ra	480	2.58	0.309, 0.697	-5.11	-2.53
3sa	401	3.09	0.665	-5.47	-2.38
3ta	328	3.78	1.05	-5.85	-2.07
3ua	348	3.56	0.843	-5.64	-2.08
3vd	432	2.87	$0.647, 1.18^{f}$	-5.44	-2.58
3wd	420	2.95	0.628, 1.08	-5.43	-2.48
3xa	356	3.48	-	-	-
3va	368	3.37	-	-	-

Table S12. Summary of absorption wavelengths, HOMO-LUMO energy gaps and cyclic voltammogram data.

^{*a*} Measured in toluene (**3qa**) and CHCl₃ (**3ra-3xa**). ^{*b*} Determined from the onset of the normalized absorption spectra. ^{*c*} Performed in *o*-dichlorobenzene/MeCN (10:1, v/v) in the presence of Bu₄NPF₆. v = 5.0 mV/s (**3ta, 3ua, 3vd**), v = 4.0 mV/s (**3wd**), versus Fc/Fc⁺. ^{*d*} The approximation for Fc/Fc⁺ level is -4.8 eV versus vacuum: $E_{\text{HOMO}} = -4.8 - E^{1/2}_{\text{ox}}$. ^{*e*} Estimated from E_{HOMO} and E_{g}^{opt} : $E_{\text{LUMO}} = E_{\text{HOMO}} + E_{g}^{\text{opt}}$. ^{*f*} E_{p}_{ox}

Characterization Data for Products

¹H, ¹³C{¹H}, and ¹⁹F{¹H} NMR spectra for all compounds are attached in the last part.

Synthesis of **3aa**: In a schlenk tube with pressure resistance, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3aa**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 20/1, v/v) as eluent.

5'-Methyl-5'*H***-spiro[fluorene-9,10'-indeno[1,2-***b***]indole] (3aa). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 20/1, v/v): 34 mg (90%, 0.10 mmol scale); white solid; m.p. 237.7-238.7 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.86 (d,** *J* **= 7.6 Hz, 2H), 7.68 (d,** *J* **= 7.6 Hz, 1H), 7.35-7.32 (m, 3H), 7.28 (ddd,** *J* **= 7.5, 7.5, 0.9 Hz, 1H), 7.10 (ddd,** *J* **= 8.2, 8.2, 1.0 Hz, 1H), 7.05 (ddd,** *J* **= 7.5, 7.5, 0.9 Hz, 2H), 6.98 (ddd,** *J* **= 7.5, 7.5, 0.8 Hz, 1H), 6.82 (dd,** *J* **= 7.8, 7.8 Hz, 1H), 6.78 (d,** *J* **= 7.6 Hz, 2H), 6.67 (d,** *J* **= 7.6 Hz, 1H), 6.66 (d,** *J* **= 7.9 Hz, 1H), 4.14 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta154.4, 147.5, 145.0, 142.3, 141.9, 135.7, 127.73, 127.71, 127.4, 126.1, 124.3, 124.2, 123.9, 122.6, 121.5, 120.1, 119.9, 118.8, 117.9, 109.8, 60.7, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₂₀N: 370.1590, found: 370.1587.**

Synthesis of **3ba**: In a schlenk tube with pressure resistance, 1-methyl-2-phenyl-indole (**1b**, 0.12 mmol, 27 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1, v/v). The desired product 2',5'-dimethyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ba**) was obtained by addition of hexane, decantation, and drying.

2',5'-Dimethyl-5'*H*-**spiro**[**fluorene-9,10'-indeno**[**1,2-***b*]**indole**] (**3ba**). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1, v/v) as eluent followed by washing with hexane: 33 mg (89%, 0.10 mmol scale); white solid; m.p. 253.6-255.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.87 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.34 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.10-7.05 (m, 2H), 7.305 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 6.82-6.80 (m, 1H), 6.79 (d, *J* = 7.3 Hz, 2H), 6.64 (d, *J* = 7.9 Hz, 1H), 6.49 (s, 1H). 4.12 (s, 3H), 2.15 (s, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 154.6, 147.9, 145.3, 142.1, 141.9, 136.0, 133.0, 128.0, 127.7, 127.6, 125.2, 124.0, 123.4, 122.7, 121.2, 120.0, 119.8, 118.5, 117.6, 109.8, 60.6, 31.5, 21.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₉H₂₂N: 384.1747, found: 384.1737.

Synthesis of 3ca: In a schlenk tube with pressure resistance, 2-(4-methoxyphenyl)-1-methyl-1H-indole

(1c, 0.12 mmol, 28 mg) and fluorenone (2a, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2',5'-dimethyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (3ca) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1 to 5/1, v/v) as eluent.

2'-Methoxy-5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (3ca). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1 to 5/1, v/v): 37 mg (92%, 0.10 mmol scale); white solid; m.p. 223.3-225.3 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.34 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.08-7.04 (m, 3H), 6.83-6.78 (m, 4H), 6.62 (d, *J* = 7.8 Hz, 1H), 6.26 (d, *J* = 2.4 Hz, 1H), 4.11 (s, 3H), 3.62 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 158.6, 156.6, 147.8, 145.1, 141.9, 141.8, 128.7, 127.74, 127.69, 124.0, 122.8, 122.6, 120.9, 120.0, 119.8, 118.3, 118.2, 112.1, 111.3, 109.7, 60.7, 55.6, 31.4. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₉H₂₂NO: 400.1696, found: 400.1704.

Synthesis of **3da**: In a schlenk tube with pressure resistance, 2-(4-methoxyphenyl)-1-methyl-1*H*-indole (**1d**, 0.12 mmol, 33 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1 to 10/1, v/v) as eluent. The desired product 5'-methyl-2'-(trifluoromethyl)-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole]

(**3da**) was obtained by addition of hexane, decantation, and drying. The single crystals of **3da** suitable for X-ray analysis were grown from hexane.

5'-Methyl-2'-(trifluoromethyl)-5'*H***-spiro[fluorene-9,10'-indeno[1,2-***b***]indole] (3da). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1 to 10/1, v/v) as eluent followed by washing with hexane: 30 mg (69%, 0.10 mmol scale); white solid; m.p. 260.6-262.6 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.89 (d,** *J* **= 7.6 Hz, 2H), 7.73 (d,** *J* **= 8.0 Hz, 1H), 7.57 (dd,** *J* **= 8.8, 0.6 Hz, 1H), 7.38 (d,** *J* **= 8.0 Hz, 1H), 7.36 (d,** *J* **= 8.0 Hz, 2H), 7.15 (dd,** *J* **= 8.2, 8.2 Hz, 1H), 7.07 (dd,** *J* **= 7.4, 7.4 Hz, 2H), 6.89 (s, 1H), 6.84 (dd,** *J* **= 7.1, 7.1 Hz, 1H), 6.76 (dd,** *J* **= 7.6, 0.6 Hz, 2H), 6.67 (dd,** *J* **= 8.0, 0.7 Hz, 1H), 4.15 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta154.9, 146.2, 143.3, 142.7, 142.0, 139.1, 128.1, 127.9, 127.6 (q,** *J* **= 32 Hz), 126.8, 125.2 (q,** *J* **= 3.9 Hz), 124.4 (q,** *J* **= 270 Hz), 123.8, 122.6, 122.3, 121.0 (q,** *J* **= 3.6 Hz), 120.3, 120.2, 119.2, 117.5, 110.1, 60.7, 31.5. ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): \delta-61.67.; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₉H₁₉F₃N: 438.1464, found: 438.1475.**

Synthesis of **3ea**: In a schlenk tube with pressure resistance, 2-(4-bromophenyl)-1-methyl-1*H*-indole (**1e**, 0.12 mmol, 34 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The resulting mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2'-bromo-5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ea**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1, v/v) as eluent.

2'-Bromo-5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-b]indole] (3ea). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1, v/v): 23 mg (52%, 0.10 mmol scale); white solid; m.p. 268.6-269.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.87 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J* =

8.1 Hz, 1H), 7.42 (dd, J = 8.1, 1.8 Hz, 1H), 7.37 (dd, J = 7.4, 7.4 Hz, 2H), 7.35 (d, J = 8.3 Hz, 1H), 7.12 (dd, J = 7.4, 7.4 Hz, 1H), 7.07 (dd, J = 7.5, 7.5 Hz, 2H), 6.82 (dd, J = 7.8, 7.8 Hz, 1H), 6.79-6.77 (m, 3H), 6.65 (d, J = 7.9 Hz, 1H), 4.13 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 156.4, 146.6, 143.9, 142.4, 141.9, 134.6, 130.4, 128.0, 127.9, 127.6, 124.5, 123.9, 122.4, 122.0, 120.2, 120.1, 119.6, 118.9, 118.8, 109.9, 60.6, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₁₉BrN: 448.0695, found: 448.0679.

Synthesis of **3af**: In a 20 mL screw cap test tube, 1-methyl-2-(4-(trifluoromethyl)phenyl)-1*H*-indole (**1f**, 0.12 mmol, 34 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in a heat block for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5'-methyl-2'-phenyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3fa**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 10/1, v/v) as eluent.

5'-Methyl-2'-phenyl-5'*H***-spiro[fluorene-9,10'-indeno[1,2-***b***]indole] (3fa). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 10/1, v/v): 42 mg (94%, 0.10 mmol scale); white solid; m.p. 226.6-228.6 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.87 (d,** *J* **= 7.6 Hz, 2H), 7.72 (d,** *J* **= 7.9 Hz, 1H), 7.54 (dd,** *J* **= 7.9, 1.5 Hz, 1H), 7.39-7.32 (m, 5H), 7.27 (dd,** *J* **= 7.8, 7.8 Hz, 2H), 7.21-7,18 (m, 1H), 7.10 (dd,** *J* **= 8.1, 8.1 Hz, 1H), 7.05 (dd,** *J* **= 7.4, 7.4 Hz, 2H), 6.90 (s, 1H), 6.83 (d,** *J* **= 7.4 Hz, 2H), 6.82 (dd,** *J* **= 7.7, 7.7 Hz, 1H), 6.67 (dd,** *J* **= 7.9, 0.4 Hz, 1H), 4.13 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta155.2, 147.5, 144.7, 142.4, 141.9, 140.9, 139.0, 134.8, 128.7, 127.78, 127.75, 127.2, 127.0, 126.4, 124.7, 124.0, 123.1, 122.6, 121.6, 120.1, 119.9, 118.8, 118.0, 109.9, 60.8, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₃₄H₂₄N: 446.1903, found: 446.1911.**

Synthesis of **3ga**: In a 20 mL screw cap test tube, 2-(4-(*tert*-butyl)phenyl)-1-dodecyl-1*H*-indole (**1g**, 0.12 mmol, 50 mg) fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in a heat block for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2'-(*tert*-butyl)-5'-dodecyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ga**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 10/1, v/v) as eluent followed by GPC (chloroform).

2'-(*tert***-Butyl)-5'-dodecyl-5'***H***-spiro[fluorene-9,10'-indeno[1,2-***b***]indole] (3ga). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 10/1, v/v) as eluent followed by GPC (chloroform): 51 mg (88%, 0.10 mmol scale); white solid; m.p. 61.2-63.2 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.87 (d,** *J* **= 7.6 Hz, 2H), 7.53 (d,** *J* **= 8.0 Hz, 1H), 7.35-7.32 (m, 4H), 7.07-7.03 (m, 3H), 6.80-6.77 (m, 3H), 6.700-6.695 (m, 1H), 6.60 (d,** *J* **= 7.9 Hz, 1H), 4.48 (t,** *J* **= 7.4 Hz, 2H), 2.06-1.99 (m, 2H), 1.54-1.47 (m, 2H), 1.41-1.38 (m, 2H), 1.32-1.26 (m, 14H), 1.14 (s, 9H), 0.88 (t,** *J* **= 6.5 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): \delta154.4, 149.4, 148.0, 144.5, 141.9, 141.5, 133.2, 127.7, 127.5, 124.2 (2C), 124.1, 122.7, 121.5, 121.1, 119.9, 119.6, 118.6, 117.3, 110.0, 60.9, 45.2, 34.9, 32.1, 31.5, 30.9, 29.79, 29.78, 29.76, 29.70, 29.59, 29.50, 27.3, 22.8, 14.3. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₃H₅₀N: 580.3938, found: 580.3957.**

Synthesis of **3ha**: In a schlenk tube with pressure resistance, 1-methyl-2-(naphthalen-2-yl)-1*H*-indole (**1h**, 0.12 mmol, 31 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 7-methyl-7*H*-spiro[benzo[4,5]indeno[1,2-*b*]indole-12,9'-fluorene] (**3ha**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 10/1, v/v) as eluent. The single crystals of **3ha** suitable for X-ray analysis were grown from THF/hexane.

7-Methyl-7*H***-spiro[benzo[4,5]indeno[1,2-***b***]indole-12,9'-fluorene] (3ha). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 10/1, v/v): 42 mg (99%, 0.10 mmol scale); yellow solid; m.p. >300.0 °C; ¹H NMR (CDCl₃, 400 MHz): \delta 8.00-7.96 (m, 3H), 7.92 (d,** *J* **= 8.4 Hz, 1H), 7.78 (d,** *J* **= 8.2 Hz, 1H), 7.36 (ddd,** *J* **= 7.5, 7.5, 1.0 Hz, 2H), 7.33 (d,** *J* **= 8.4 Hz, 1H), 7.19 (ddd,** *J* **= 8.1, 6.9, 1.1 Hz, 1H), 7.07 (ddd,** *J* **= 8.3, 7.1, 1.2 Hz, 1H), 7.00 (ddd,** *J* **= 7.5, 7.5, 1.1 Hz, 2H), 6.98 (ddd,** *J* **= 8.0, 8.0, 1.2 Hz, 1H), 6.79 (ddd,** *J* **= 7.9, 7.0, 0.8 Hz, 1H), 6.73 (dd,** *J* **= 8.7, 0.7 Hz, 1H), 6.71 (d,** *J* **= 7.6 Hz, 2H), 6.61 (d,** *J* **= 7.8 Hz, 1H), 4.21 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta 147.9, 147.2, 144.4, 142.0, 141.7, 134.4, 132.5, 130.0, 129.4, 128.9, 127.9, 127.7, 126.9, 126.0, 124.8, 124.0, 122.9, 122.3, 121.3, 120.5, 119.9, 118.1, 117.1, 109.8, 61.3, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₃₂H₂₂N: 420.1747, found: 420.1733.**

Synthesis of **3ia'**: In a 20 mL screw cap test tube, 1-dodecyl-2-(phenanthren-9-yl)-1*H*-indole (**1i**, 0.060 mmol, 28 mg) and fluorenone (**2a**, 0.050 mmol, 9 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.12 mmol, 11 μ L) was then added by a measuring pipette. The

reaction mixture was heated at 90 °C in a heat block for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 13'-dodecyl-13'*H*-spiro[fluorene-9,8'-phenanthro[10,1-*ab*]carbazole] (**3ia'**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 20/1, v/v) as eluent followed by GPC (chloroform). The single crystals of **3ia'** suitable for X-ray analysis were grown from CHCl₃/CH₃CN.

13'-Dodecyl-13'*H*-**spiro**[**fluorene-9,8'-phenanthro**[**10,1**-*ab*]**carbazole**] (**3ia'**). Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 20/1, v/v) as eluent followed by GPC (chloroform): 26 mg (84%, 0.050 mmol scale); yellow solid; m.p. 124.6-126.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.61-8.59 (m, 1H), 8.52 (d, *J* = 7.9 Hz, 1H), 8.21 (s, 1H), 7.91 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.63-7.57 (m, 2H), 7.34 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.06 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.81 (d, *J* = 7.5 Hz, 1H), 6.64 (dd, *J* = 7.9, 7.9 Hz, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 4.64 (t, *J* = 8.0 Hz, 2H), 2.21-2.13 (m, 2H), 1.64-1.57 (m, 2H), 1.54-1.47 (m, 2H), 1.37-1.27 (m, 14H), 0.88 (t, *J* = 5.6 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 155.1, 140.1, 140.0, 139.5, 132.4, 131.9, 131.0, 130.1, 128.8, 128.3, 127.7, 127.6, 127.2, 127.0, 126.7, 126.6, 125.6, 124.5, 124.4, 122.9, 122.8, 121.4, 120.0, 119.9, 119.6, 119.5, 116.1, 109.3, 57.3, 46.2, 32.0, 30.5, 29.72 (3C), 29.67, 29.5, 29.4, 27.2, 22.8, 14.2. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₇H₄₆N: 624.3625, found: 624.3644.

Synthesis of **3ja**: In a 20 mL screw cap test tube, 2-phenylbenzo[*b*]thiophene (**1j**, 0.12 mmol, 25 mg) and fluorenone (**2a**, 0.10 mmol, 18 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were subsequently added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 110 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product spiro[benzo[*b*]indeno[2,1-*d*]thiophene-10,9'-fluorene] (**3ja**) was isolated by

column chromatography on silica gel using hexane/ toluene (1/0 to 3/1, v/v) as eluent followed by GPC (chloroform).

Spiro[benzo[*b***]indeno[2,1-***d***]thiophene-10,9'-fluorene] (3ja). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 3/1, v/v) as eluent followed by GPC (chloroform): 34 mg (90%, 0.10 mmol scale); white solid; m.p. 185.2-187.2 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.91 (ddd,** *J* **= 7.6, 0.8, 0.8 Hz, 2H), 7.82 (ddd,** *J* **= 8.1, 0.8, 0.8 Hz, 1H), 7.62 (ddd,** *J* **= 7.6, 1.0, 1.0 Hz, 1H), 7.39 (ddd,** *J* **= 7.5, 7.5, 1.0 Hz, 2H), 7.35 (ddd,** *J* **= 7.6, 7.6, 1.1 Hz, 1H), 7.15 (ddd,** *J* **= 8.2, 7.1, 1.2 Hz, 1H), 7.09 (ddd,** *J* **= 7.5, 7.5, 1.1 Hz, 2H), 7.06 (ddd,** *J* **= 7.4, 7.4, 1.1 Hz, 1H), 6.97 (ddd,** *J* **= 8.0, 7.1, 1.0 Hz, 1H), 6.78 (ddd,** *J* **= 7.6, 0.9, 0.9 Hz, 2H), 6.74 (ddd,** *J* **= 7.6, 1.0, 1.0 Hz, 1H), 6.56 (ddd,** *J* **= 8.0, 1.2, 1.1 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta152.4, 145.9, 144.9, 144.2 143.9, 142.0, 139.1, 133.3, 128.1, 128.0, 127.9, 126.8, 124.8, 124.1, 124.0, 123.8, 123.7, 121.1, 120.3, 119.9, 63.9. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₁₇S: 373.1045, found: 373.1037.**

Synthesis of **3ka**: In a 20 mL screw cap test tube, 2-(2-bromophenyl)benzo[*b*]thiophene (**1k**, 0.12 mmol, 35 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and 2,4,6-tri-*tert*-butylpyridine (**B2**, 0.12 mmol, 30 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 110 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1 to 10/1, v/v) as eluent, again using hexane/toluene (1/0 to 2/1, v/v) as eluent. The desired product 4-bromospiro[benzo[*b*]indeno[2,1-*d*]thiophene-10,9'-fluorene] (**3ka**) was obtained by addition of pentane, decantation, and drying.

4-Bromospiro[benzo[b]indeno[2,1-*d***]thiophene-10,9'-fluorene] (3ka)**. Purified by silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1 to 10/1, v/v) then with hexane/toluene (1/0 to 2/1, v/v) as eluent. After concentration in vacuo, washing with pentane: 37 mg (82%, 0.10 mmol scale); white solid; m.p. 208.3-210.3 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.40 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 7.20-7.16 (m, 1H), 7.10 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 7.01-6.97 (m, 1H), 6.92 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 2H), 6.67 (dd, *J* = 7.5, 0.8 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 154.0, 145.33, 145.31, 144.8, 142.7, 141.9, 139.9, 132.7, 131.2, 128.4, 128.14, 128.05, 124.8, 124.4, 124.0, 123.7, 122.6, 121.2, 120.4, 114.4, 64.3. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₁₆BrS: 451.0151, found: 451.0159.

Synthesis of **3la**: In a 20 mL screw cap test tube, fluorenone (**2a**, 0.10 mmol, 18 mg) and 3phenylbenzo[*b*]thiophene (**1l**, 0.12 mmol, 25 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were subsequently added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 110 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product spiro[benzo[*b*]indeno[1,2-*d*]thiophene-6,9'-fluorene] (**3la**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 3/1 to 2/1, v/v) as eluent followed by GPC (chloroform).

Synthesis of **3la** and **3la**': In a schlenk tube with pressure resistance, 3-phenylbenzo[*b*]thiophene (**1l**, 0.12 mmol, 25 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed

with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was subsequently added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 70 °C in an oil bath for 168 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The products, spiro[benzo[*b*]indeno[1,2-*d*]thiophene-6,9'-fluorene] (**3la**) and spiro[anthra[1,9-*bc*]thiophene-6,9'-fluorene] (**3la**) were isolated by column chromatography on silica gel using hexane as eluent followed by GPC (chloroform).

Spiro[benzo[*b***]indeno[1,2-***d***]thiophene-6,9'-fluorene] (3la). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 3/1 to 2/1, v/v) as eluent followed by GPC (chloroform): 16 mg (44%, 0.10 mmol scale); white solid; m.p. 106.4-108.4 °C; ¹H NMR (CDCl₃, 400 MHz): \delta8.27 (ddd, J = 8.0, 0.9, 0.9 Hz, 1H), 7.91 (ddd, J = 7.5, 1.0, 1.0 Hz, 1H), 7.85 (ddd, J = 7.6, 0.9, 0.9 Hz, 2H), 7.80 (ddd, J = 8.1, 0.8, 0.8 Hz, 1H), 7.54 (ddd, J = 8.0, 7.2, 1.0 Hz, 1H), 7.40 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H), 7.38 (ddd, J = 7.9, 6.6, 0.8 Hz, 1H), 7.37 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.14 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H), 7.03 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.85 (ddd, J = 7.6, 0.8, 0.8 Hz, 2H), 6.70 (ddd, J = 7.4, 0.9, 0.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta152.7, 151.8, 146.9, 145.6, 141.8, 141.2, 139.4, 133.0, 128.4, 128.1, 127.7, 125.6, 125.0, 124.3, 124.13, 124.08, 123.6, 122.2, 120.4, 119.3, 64.6. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₁₇S: 373.1045, found: 373.1026.**

Spiro[anthra[1,9-*bc***]thiophene-6,9'-fluorene] (31a')**. Purified by column silica gel column chromatography with hexane as eluent followed by GPC (chloroform): 8.9 mg (24%, 0.10 mmol scale); white solid; m.p. 185.2-187.2 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.76 (s, 1H), 7.67 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.36 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 7.26-7.22 (m, 1H), 7.14 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 2H), 7.10 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.98-6.93 (m, 3H), 6.48 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.39 (dd, *J* = 7.5, 0.7 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 156.2, 140.0, 139.3, 139.2, 136.8, 135.2, 130.7, 130.0, 129.3, 128.5, 128.2, 127.7, 127.2, 126.3, 125.7, 123.8, 122.0, 120.5, 120.1, 117.3, 59.9. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₁₇S: 373.1045, found: 373.1062.

Synthesis of **3ma**: In a 20 mL screw cap test tube, fluorenone (**2a**, 0.10 mmol, 18 mg) and 2,2'bibenzo[*b*]thiophene (**1m**, 0.12 mmol, 32 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were subsequently added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The resulting mixture was heated at 110 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product **3ma** was isolated by column chromatography on silica gel using hexane/ethyl acetate/toluene (10/0/0 to 10/1/0 to 5/1/0 to 1/0/2, v/v/v) as eluent followed by GPC (chloroform).

3ma. Purified by column silica gel column chromatography with hexane/ethyl acetate/toluene (10/0/0 to 10/1/0 to 5/1/0 to 1/0/2, v/v/v) as eluent followed by GPC (chloroform): 28 mg (66%, 0.10 mmol scale); white solid; m.p. > 300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (ddd, *J* = 7.6, 0.8, 0.8 Hz, 2H), 7.82 (ddd, *J* = 8.1, 0.8, 0.8 Hz, 2H), 7.41 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 2H), 7.13 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 2H), 7.07 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 2H), 6.99 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 2H), 6.82 (ddd, *J* = 7.6, 0.8, 0.8 Hz, 2H), 6.60 (ddd, *J* = 8.0, 1.1, 0.7 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 148.3, 143.9, 143.6, 141.9, 139.3, 133.2, 128.4, 128.1, 125.1, 124.0, 123.8, 123.7, 120.6, 120.4, 62.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₉H₁₇S₂: 429.0766, found: 429.0744.

Synthesis of **3na**: In a 18*40 mm screw vial, 4,4'-dimethyl-1,1'-biphenyl (**1n**, 0.40 mmol, 73 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir

bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2,7-dimethyl-9,9'-spirobi[fluorene] (**3na**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 2/1, v/v) as eluent followed by GPC (chloroform).

2,7-Dimethyl-9,9'-spirobi[fluorene] (**3na**). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 2/1, v/v) as eluent followed by GPC (chloroform): 16 mg (48%, 0.10 mmol scale); white solid; m.p. 226.6-228.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.84 (dd, *J* = 7.8, 0.6 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 2H), 7.36 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.13 (dd, *J* = 8.1, 8.1 Hz, 2H), 7.11 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.75 (d, *J* = 7.6 Hz, 2H), 6.50 (s, 2H), 2.17 (s, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 149.4, 148.9, 141.8, 139.4, 137.4, 128.8, 127.9, 127.7, 124.6, 124.3, 120.0, 119.5, 65.8, 21.6. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₂₁: 345.1638, found: 345.1642.

Synthesis of **3oa**: In a 18*40 mm screw vial, 4,4'-oxybis(methylbenzene) (**1o**, 0.40 mmol, 79 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2,7-di-*tert*-butyl-9,9'-spirobi[fluorene] (**3oa**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 3/1, v/v) as eluent followed by GPC (chloroform).

2,7-Di*tert*-butyl-9,9'-spirobi[fluorene] (30a). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 3/1, v/v) as eluent followed by GPC (chloroform): 26 mg (60%, 0.10 mmol scale); white solid; m.p. 172.9-174.9 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (ddd, J = 1.0, 1.0, 7.6 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.38-7.34 (m, 4H), 7.09 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H), 6.73 (d, J = 7.6

Hz, 2H), 6.64 (d, J = 1.7 Hz, 2H), 1.14 (s, 18H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 150.8, 149.7, 149.1, 141.9, 139.4, 127.8, 127.5, 124.8, 124.4, 120.8, 119.9, 119.1, 66.4, 35.0, 31.6. HRMS (APCI) m/z (M+H)⁺ calcd for C₃₃H₃₃: 429.2577, found: 429.2591.

Synthesis of **3pa**: In a 18*40 mm screw vial, 4,4'-oxybis(methylbenzene) (**1p**, 0.40 mmol, 79 mg), fluorenone (**2a**, 0.10 mmol, 18 mg), and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2',7'-dimethylspiro[fluorene-9,9'-xanthene] (**3pa**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 5/2, v/v) as eluent.

2',7'-Dimethylspiro[fluorene-9,9'-xanthene] (**3pa**). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 5/2, v/v) as eluent: 29 mg (79%, 0.10 mmol scale); white solid; m.p. 170.6-172.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.38 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.22 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.17 (d, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 6.96 (dd, *J* = 8.3, 2.0 Hz, 2H), 6.15 (s, 2H), 2.01 (s, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 155.2, 149.6, 139.8, 132.4, 129.0, 128.5, 127.9, 127.8, 125.9, 124.6, 120.0, 116.6, 54.5, 20.8. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₇H₂₁O: 361.1587, found: 361.1614.

Synthesis of **3ab**: In a 20 mL screw cap test tube, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg) and

fluorenone (**2b**, 0.10 mmol, 34 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2,7-dibromo-5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ab**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 15/1, v/v) as eluent.

2,7-Dibromo-5'-methyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (3ab). Purified by column silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1, v/v): 45 mg (84%, 0.10 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.47 (dd, *J* = 8.1, 1.8 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.34 (ddd, *J* = 7.6, 7.6, 1.0 Hz, 1H), 7.15 (ddd, *J* = 8.3, 7.1, 1.1 Hz, 1H), 7.03 (ddd, *J* = 7.6, 7.6, 1.0 Hz, 1H), 6.90 (d, *J* = 1.7 Hz, 2H), 6.90-6.86 (m, 1H), 6.69-6.65 (m, 2H), 4.16 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 152.7, 149.6, 145.2, 142.3, 139.8, 135.5, 131.2, 128.0, 127.2, 126.4, 124.4, 122.5, 122.4, 121.93, 121.87, 121.5, 120.1, 118.6, 118.2, 110.1, 60.4, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₁₈Br₂N: 524.9728, found: 524.9753.

Synthesis of **3ac**: In a 20 mL screw cap test tube, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg) and 3,6-dibromo-9*H*-fluoren-9-one (**2c**, 0.10 mmol, 34 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5'-methyl-2,7-dioctyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ac**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 5/2, v/v) as eluent.

3,6-Dibromo-5'-methyl-5'*H***-spiro[fluorene-9,10'-indeno[1,2-***b***]indole] (3ac). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 5/2, v/v): 35 mg (66%, 0.10 mmol scale); white solid; m.p. 230.6-232.6 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.95 (d,** *J* **= 1.8 Hz, 2H), 7.68 (d,** *J* **= 7.6 Hz, 1H), 7.36 (d,** *J* **= 8.3 Hz, 1H), 7.32 (ddd,** *J* **= 7.6, 7.6, 0.9 Hz, 1H), 7.20 (dd,** *J* **= 8.1, 1.8 Hz, 2H), 7.14 (ddd,** *J* **= 8.2, 7.1, 1.1 Hz, 1H), 7.01 (ddd,** *J* **= 7.6, 7.6, 0.9 Hz, 1H), 6.87 (ddd,** *J* **= 7.8, 7.8, 0.6 Hz, 1H), 6.653 (dd,** *J* **= 7.9, 7.9 Hz, 2H), 6.652 (d,** *J* **= 8.1 Hz, 2H), 4.15 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta152.9, 146.8, 145.1, 142.6, 142.3, 135.6, 131.3, 127.9, 126.3, 125.6, 123.2, 123.6, 122.5, 122.4, 121.9, 121.8, 120.2, 118.6, 118.1, 110.0, 60.0, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₁₈Br₂N: 525.9801, found: 525.9789.**

Synthesis of **3ad**: In a 20 mL screw cap test tube, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg) and 2,7-dioctyl-9*H*-fluoren-9-one (**2d**, 0.10 mmol, 40 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5'-methyl-2,7-dioctyl-5'*H*-spiro[fluorene-9,10'-indeno[1,2-*b*]indole] (**3ad**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 20/1, v/v) as eluent followed by GPC (chloroform).

5'-Methyl-2,7-dioctyl-5'*H***-spiro**[**fluorene-9,10'-indeno**[**1,2-***b*]**indole**] (**3ad**). Purified by column silica gel column chromatography with hexane/ethyl acetate (1/0 to 20/1, v/v) as eluent followed by GPC (chloroform): 38 mg (65%, 0.10 mmol scale); oil; ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, *J* = 7.9 Hz, 2H), 7.70 (dd, *J* = 8.2, 8.2 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 7.29 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.13 (d, *J* = 7.7 Hz, 2H), 7.11 (dd, *J* = 8.2, 8.2 Hz, 1H), 6.98 (dd, *J* = 7.9, 7.9 Hz, 1H), 6.82 (dd, *J* = 7.9, 7.9 Hz, 1H), 6.69 (dd, *J* = 6.9, 6.9 Hz, 2H), 6.53 (s, 2H), 4.17 (s, 3H), 2.38 (t, *J* = 8.0 Hz, 4H), 1.42-1.39 (m, 4H),

1.22-1.14 (m, 20H), 0.83 (t, J = 6.8 Hz, 3H), 0.82 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 155.1, 147.5, 144.9, 142.24, 142.21, 139.7, 135.6, 127.7, 127.1, 126.0, 124.8, 124.5, 123.7, 122.8, 121.4, 119.7, 119.4, 119.1, 117.7, 109.7, 60.6, 36.1, 31.9, 31.6, 31.5, 29.49, 29.48, 29.3, 22.8, 14.2. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₄H₅₂N: 594.4094, found: 594.4075.

Synthesis of **3ae**: In a 20 mL screw cap test tube, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg) and 11H-benzo[*b*]fluoren-11-one (**2e**, 0.10 mmol, 23 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 µL) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5'-methyl-5'*H*-spiro[benzo[*b*]fluorene-11,10'-indeno[1,2-*b*]indole] (**3ae**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 5/1, v/v) as eluent.

5'-Methyl-5'*H***-spiro[benzo[***b***]fluorene-11,10'-indeno[1,2-***b***]indole] (3ae). Purified by column silica gel column chromatography with hexane/ethyl acetate (1/0 to 5/1, v/v) as eluent: 36 mg (86%, 0.10 mmol scale); white solid; m.p. 262.6-264.6 °C; ¹H NMR (CDCl₃, 400 MHz): \delta 8.29 (s, 1H), 8.01 (d,** *J* **= 7.6 Hz, 1H), 7.93 (d,** *J* **= 7.8 Hz, 1H), 7.71 (d,** *J* **= 7.6 Hz, 1H), 7.49 (d,** *J* **= 8.1 Hz, 1H), 7.40 (ddd,** *J* **= 7.2, 7.2, 1.2 Hz, 1H), 7.38 (ddd,** *J* **= 5.7, 5.7, 1.4 Hz, 1H), 7.35 (d,** *J* **= 8.0 Hz, 1H), 7.30 (ddd,** *J* **= 7.5, 7.5, 1.1 Hz, 1H), 7.30-7.26 (m, 1H), 7.25 (s, 1H), 7.11-7.07 (m, 2H), 6.97 (ddd,** *J* **= 7.6, 7.6, 1.0 Hz, 1H), 6.81 (d,** *J* **= 6.6 Hz, 1H), 6.97 (ddd,** *J* **= 7.0, 7.0, 0.9 Hz, 1H), 6.70 (d,** *J* **= 7.5 Hz, 1H), 6.67 (d,** *J* **= 7.7 Hz, 1H), 4.17 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta 155.7, 148.4, 145.7, 144.8, 142.3,141.3, 140.5, 135.4, 133.8, 133.7, 128.5, 128.3, 128.2, 128.0, 127.4, 126.1, 125.7, 125.5, 125.4, 124.6, 124.1, 122.6, 122.4, 121.6, 120.8, 119.9, 118.8, 118.2, 117.9, 109.9, 60.2, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₃₂H₂₂N: 420.1747, found: 420.1735.**

Synthesis of **3af**: In a 20 mL screw cap test tube, 1-methyl-2-phenyl-indole (**1a**, 0.12 mmol, 25 mg), 11*H*-benzo[*b*]fluoren-11-one (**2f**, 0.10 mmol, 22 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 90 °C in an oil bath for 48 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5',10,10-trimethyl-5'*H*,10*H*-spiro[anthracene-9,10'-indeno[1,2-*b*]indole] (**3af**) was isolated by column chromatography on silica gel using hexane/ethyl acetate (1/0 to 10/1 to 5/1, v/v) as eluent followed by GPC (chloroform).

5',10,10-Trimethyl-5'*H***,10***H*-**spiro**[**anthracene-9,10'-indeno**[**1,2-***b*]**indole**] (**3af**). Purified by column silica gel column chromatography with hexane/ethyl acetate (1/0 to 10/1 to 5/1, v/v) as eluent followed by GPC (chloroform): 31 mg (76%, 0.10 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.25 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.16 (dd, *J* = 7.2, 7.2 Hz, 2H), 7.12 (dd, *J* = 8.2, 8.2 Hz, 1H), 7.00 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.94 (dd, *J* = 7.9, 0.7 Hz, 1H), 6.88-6.82 (m, 2H), 6.79 (dd, *J* = 7.8, 7.8 Hz, 2H), 6.48 (d, *J* = 8.0 Hz, 2H), 4.17 (s, 3H), 1.96 (s, 3H), 1.95 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 164.2, 143.8, 143.3, 142.4, 143.9, 134.2, 133.9, 127.8, 127.2, 126.9, 126.8, 126.5, 126.3, 126.0, 122.3, 121.7, 119.9, 118.8, 118.0, 109.8, 52.7, 37.5, 36.3, 35.3, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₃₁H₂₆N: 412.2060, found: 412.2072.

Synthesis of **3qa**: In a Schlenk tube with pressure resistance, 1,5-didodecyl-2,6-diphenyl-1,5dihydropyrrolo[2,3-*f*]indole (**1q**, 0.050 mmol, 19 mg) and fluorenone (**2a**, 0.12 mmol, 22 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with toluene (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 5',12'-didodecyl-5',12'-dihydrodispiro[fluorene-9,7'-indeno[1,2*b*]indeno[2',1':4,5]pyrrolo[2,3-*f*]indole-14',9"-fluorene] (**3qa**) was isolated by column chromatography on silica gel (Silica gel 60 N spherical neutral, Kanto Chemical Co.) using hexane/toluene (1/0 to 2/1, v/v) as eluent. The single crystals of **3qa** suitable for X-ray analysis were grown from CD₂Cl₂. Note: This compound rapidly decomposed in CHCl₃ solution.

5',12'-Didodecyl-5',12'-dihydrodispiro[fluorene-9,7'-indeno[1,2-b]indeno[2',1':4,5]pyrrolo[2,3*f***]indole-14',9''-fluorene]** (**3qa**). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 2/1, v/v): 52 mg (99%, 0.050 mmol scale); yellow solid; m.p. 211.3-213.3 °C; ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.86 (d, *J* = 7.6 Hz, 4H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 7.5, 7.5 Hz, 4H), 7.15 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.98 (dd, *J* = 7.4, 7.4 Hz, 4H), 6.83 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.62 (d, *J* = 7.6 Hz, 4H), 6.48 (d, *J* = 7.5 Hz, 2H), 6.32 (s, 2H), 4.14 (t, *J* = 7.1 Hz, 4H), 1.66-1.61 (m, 4H), 1.18-1.09 (m, 36H), 0.80 (t, *J* = 7.0 Hz, 6H). ¹³C {¹H} NMR (CD₂Cl₂, 100 MHz): δ 154.3, 147.7, 145.2, 141.9, 139.0, 135.9, 127.53, 127.51, 127.3, 125.3, 123.5, 123.3, 122.5, 120.1, 119.8, 117.9, 97.1, 60.6, 44.8, 32.0, 30.3, 29.67, 29.66, 29.6, 29.44, 29.39, 29.3, 26.9, 22.7, 13.9. HRMS (FAB) m/z (M)⁺ calcd for C₇₂H₇₆N₂: 968.6009, found: 968.6032.

Synthesis of **3ra**: In a 20 mL screw cap test tube, 2,6-bis(1-dodecyl-1*H*-indol-2-yl)naphthalene (**1r**, 0.050

mmol, 22 mg) and fluorenone (**2a**, 0.12 mmol, 22 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 90 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with toluene (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product **3ra** was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 2/3, v/v) as eluent followed by GPC (chloroform). The single crystals of **3ra** suitable for X-ray analysis were grown from DCE/MeNO₂.

3ra. Purified by column silica gel column chromatography with hexane/toluene (1/0 to 2/3, v/v) as eluent followed by GPC (chloroform): 30 mg (58%, 0.050 mmol scale); yellow solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.03 (d, *J* = 7.6 Hz, 4H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.40 (dd, *J* = 7.6, 7.6 Hz, 4H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.05 (ddd, *J* = 7.4, 7.4, 1.0 Hz, 4H), 7.01-6.97 (m, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.73 (dd, *J* = 7.2, 7.2 Hz, 2H), 6.71 (d, *J* = 7.6 Hz, 4H), 6.53 (d, *J* = 7.8 Hz, 2H), 4.36 (t, *J* = 7.4 Hz, 4H), 1.95-1.87 (m, 4H), 1.29-1.22 (m, 36H), 0.88 (t, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 148.4, 147.8, 143.9, 141.6, 141.4, 133.2, 128.8, 128.0, 127.7, 125.6, 124.2, 124.0, 122.2, 121.0, 120.5, 119.7, 118.3, 117.9, 110.0, 61.5, 45.1, 32.1, 31.1, 29.73 (2C), 29.68, 29.6, 29.50, 29.48, 27.3, 22.8, 14.3. HRMS (FAB) m/z (M)⁺ calcd for C₇₆H₇₈N₂: 1018.6160, found: 1018.6158.

Synthesis of **3sa**: In a 18*40 mm screw vial, 9-hexyl-2,7-diphenyl-9H-carbazole (**1s**, 0.050 mmol, 20 mg), fluorenone (**2a**, 0.12 mmol, 22 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/toluene (1/0 to

3/1 to 2/1, v/v) as eluent. The obtained solid was further purified by filtration through a short pad of alumina using chloroform as eluent. After evaporation, addition of cold Et₂O, decantation, and drying afforded the desired product 6'-hexyl-6'*H*-dispiro[fluorene-9,12'-diindeno[1,2-*b*:2',1'-*h*]carbazole-15',9"-fluorene] (**3sa**). The single crystals of **3sa** suitable for X-ray analysis were grown from DCE/CH₃CN.

6'-Hexyl-6'*H***-dispiro[fluorene-9,12'-diindeno[1,2-***b***:2',1'-***h***]carbazole-15',9''-fluorene] (3sa). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 3/1 to 2/1, v/v) as eluent followed by washing with cold Et₂O.: 14 mg (37%, 0.050 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): \delta7.92 (d,** *J* **= 7.6 Hz, 2H), 7.78 (d,** *J* **= 7.6 Hz, 4H), 7.74 (s, 2H), 7.36 (ddd,** *J* **= 7.5, 7.5, 0.8 Hz, 2H), 7.28 (ddd,** *J* **= 7.6, 7.6, 0.8 Hz, 4H), 7.07 (ddd,** *J* **= 7.5, 7.5, 0.8 Hz, 2H), 7.05 (s, 2H), 7.28 (ddd,** *J* **= 7.5, 7.5, 0.8 Hz, 4H), 6.69 (d,** *J* **= 7.5 Hz, 2H), 6.66 (d,** *J* **= 7.6 Hz, 4H), 4.45 (t,** *J* **= 7.3 Hz, 2H), 2.08-2.00 (m, 2H), 1.62-1.55 (m, 2H), 1.51-1.36 (m, 4H), 0.96 (t,** *J* **= 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta149.9, 149.8, 142.4, 141.7, 141.6, 140.0, 139.9, 127.9, 127.73, 127.70, 127.6, 124.24, 124.17, 123.4, 120.0, 119.8, 115.7, 99.7, 65.5, 43.6, 31.9, 29.2, 27.3, 22.8, 14.3. HRMS (APCI) m/z (M+H)⁺ calcd for C₅₆H₄₂N: 728.3312, found: 728.3289.**

Synthesis of **3ta**: In a 18*40 mm screw vial, 3,4-diphenylthiophene (**1t**, 0.050 mmol, 12 mg), fluorenone (**2a**, 0.12 mmol, 22 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 6'-hexyl-6'*H*- dispiro[fluorene-9,5'-diindeno[2,1-*b*:1',2'-*d*]thiophene-7',9"-fluorene] (**3ta**) was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 3/1 to 5/2, v/v) as eluent. The single crystals of **3ta** suitable for X-ray analysis were grown from CHCl₃/hexane.

Dispiro[fluorene-9,5'-diindeno[2,1-b:1',2'-d]thiophene-7',9''-fluorene] (3ta). Purified by column

silica gel column chromatography with hexane/toluene (1/0 to 3/1 to 5/2, v/v): 30 mg (97%, 0.050 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, *J* = 7.3 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 4H), 7.44 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.32 (dd, *J* = 7.5, 7.5 Hz, 4H), 7.12 (dd, *J* = 7.5, 7.5 Hz, 4H), 7.05 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.91 (dd, *J* = 7.6, 0.8 Hz, 4H), 6.69 (d, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 154.8, 152.7, 147.4, 141.5, 139.6, 138.9, 128.2, 128.1, 127.8, 125.8, 124.0, 123.9, 120.8, 120.2, 64.9. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₂H₂₅S: 561.1671, found: 561.1675.

Synthesis of **3ua**: In a schlenk tube with pressure resistance, 3,6-diphenylthieno[3,2-*b*]thiophene (**1u**, 0.050 mmol, 15 mg) and fluorenone (**2a**, 0.12 mmol, 22 mg) were placed with a magnetic stir bar. The reaction vessel was vacuumed and refilled with dry N₂. DCE (1.5 mL) was subsequently added by a syringe. The resulting mixture was stirred for 3 min. TfOH (0.24 mmol, 21 μ L) was then added by a measuring pipette. The reaction mixture was heated at 110 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/toluene (1/0 to 1/1, v/v). The desired product dispiro[fluorene-9,6'-indeno[2,1-*b*]indeno[1',2':4,5]thieno[2,3-*d*]thiophene-12',9"-fluorene] (**3ua**) was obtained by addition of hexane, decantation, and drying.

Dispiro[fluorene-9,6'-indeno[2,1-*b*]indeno[1',2':4,5]thieno[2,3-*d*]thiophene-12',9''-fluorene] (3ua). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 1/1, v/v) followed by washing with hexane: 19 mg (61%, 0.050 mmol scale); pale red solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.87 (d, *J* = 7.6 Hz, 4H), 7.45 (d, *J* = 7.4 Hz, 4H), 7.42 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 2H), 7.28 (ddd, *J* = 7.5, 7.5, 0.9 Hz, 2H), 7.18 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 4H), 7.00 (ddd, *J* = 7.6, 7.6, 1.0 Hz, 2H), 6.93 (dd, *J* = 7.6 Hz, 4H), 6.69 (d, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 152.5, 151.2, 147.3, 141.7, 139.6, 137.6, 134.8, 128.5, 128.2, 127.8, 126.0, 124.1, 123.6, 120.4, 119.5, 65.2. HRMS (APCI) m/z (M+H)⁺ calcd for C₄₄H₂₅S₂: 617.1392, found: 617.1397.

Synthesis of **3vd**: In a Schlenk tube with pressure resistance, 2,6-bis(benzo[*b*]thiophen-2-yl)naphthalene (**1v**, 0.050 mmol, 20 mg) and fluorenone (**2d**, 0.12 mmol, 49 mg) were placed with a magnetic stir bar. DCE (1.5 mL) and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were subsequently added by a syringe. The resulting mixture was stirred for 3 min. Tf₂O (0.12 mmol, 20 μ L) was then added by a syringe. The reaction mixture was heated at 120 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with CHCl₃ (10 mL x 3). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product **3vd** was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 3/1 to 2/1/ to 0/1, v/v) as eluent followed by GPC (ethyl acetate then chloroform).

3vd. Purified by column silica gel column chromatography with hexane/toluene (1/0 to 3/1 to 2/1/ to 0/1, v/v) as eluent followed by GPC (ethyl acetate then chloroform): 9 mg (15%, 0.050 mmol scale); pale yellow solid; m.p. 218.3-220.3 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, *J* = 7.8 Hz, 4H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.21 (dd, *J* = 7.9, 1.3 Hz, 4H), 7.07 (dd, *J* = 8.1, 7.1, 1.1 Hz, 2H), 6.95-6.93 (m, 2H), 6.92 (d, *J* = 8.3 Hz, 2H), 6.57 (d, *J* = 8.0 Hz, 2H), 6.45 (d, *J* = 0.7 Hz, 4H), 2.40-2.28 (m, 8H), 1.37-1.30 (m, 8H), 1.18-1.03 (m, 40H), 0.76 (t, *J* = 7.0 Hz, 12H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 147.2, 146.5, 146.4, 143.9, 143.2, 142.7, 139.5, 136.5, 133.4, 128.7, 128.2, 124.7, 124.4, 124.1, 123.6, 123.5, 120.8, 120.1, 119.5, 64.8, 36.0, 31.9, 31.3, 29.4, 29.3, 29.2, 22.7, 14.2. HRMS (APCI) m/z (M + H)⁺ calcd for C₈₄H₉₃S₂: 1165.6726, found: 1165.6713.

Synthesis of **3wd**: In a 18*40 mm screw vial, 2,6-bis(benzo[b]thiophen-3-yl)naphthalene (**1w**, 0.050 mmol, 20 mg), fluorenone (**2d**, 0.12 mmol, 49 mg), and 2,6-di-*tert*-butylpyridine (**B1**, 0.12 mmol, 23 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were

subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product **3wd** was isolated by column chromatography on silica gel using hexane/toluene (1/0 to 2/1, v/v) as eluent followed by GPC (chloroform). The single crystals of **3wd** suitable for X-ray analysis were grown from DCE/MeNO₂.

3wd. Purified by column silica gel column chromatography with hexane/toluene (1/0 to 2/1, v/v) as eluent followed by GPC (chloroform): 24 mg (40%, 0.050 mmol scale); pale yellow solid; m.p. 71.2-73.2 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 7.8 Hz, 4H), 7.75 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.41 (dd, J = 7.2, 7.2 Hz, 2H), 7.26 (dd, J = 7.2, 7.2 Hz, 2H), 7.23 (d, J = 7.6 Hz, 4H), 6.96 (d, J = 8.8 Hz, 2H), 6.53 (s, 4H), 2.39 (t, J = 7.0 Hz, 4H), 2.38 (t, J = 7.0 Hz, 4H), 1.39-1.37 (m, 8H), 1.12-1.07 (m, 40H), 0.71 (t, J = 7.0 Hz, 12H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 153.9, 147.7, 146.7, 145.4, 143.0, 140.1, 139.3, 136.8, 133.0, 128.5, 128.1, 124.7, 124.2, 124.0, 123.8 (2C), 121.8, 120.2, 119.3, 65.3, 36.1, 31.9, 31.6, 29.5, 29.4, 29.3, 22.7, 14.2. HRMS (FAB) m/z (M)⁺ calcd for C₈₄H₉₂N₂: 1164.6635, found: 1164.6648.

Synthesis of **3xa**: In a 18*40 mm screw vial, 4,4"-di-*tert*-butyl-1,1':4',1"-terphenyl (**1x**, 0.050 mmol, 17 mg), fluorenone (**2a**, 0.12 mmol, 22 mg), and Na₂CO₃ (0.12 mmol, 13 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The desired product 2',8'-di-*tert*-butyldispiro[fluorene-9,6'-indeno[1,2-*b*]fluorene-12',9"-fluorene] (**3xa**) was isolated by column chromatography on silica gel using hexane/ethylacetate (1/0 to 15/1, v/v), hexane/toluene (1/0 to 2/1, v/v), and finally hexane/toluene (1/0 to 3/1, v/v). The single crystals of **3xa** suitable for X-ray analysis were grown from CHCl₃/hexane.

2',8'-Di-*tert*-butyldispiro[fluorene-9,6'-indeno[1,2-*b*]fluorene-12',9''-fluorene] (3xa). Purified by column silica gel column chromatography with hexane/ethyl acetate (1/0 to 15/1, v/v), hexane/toluene (1/0 to 2/1, v/v), and finally hexane/toluene (1/0 to 3/1, v/v): 18 mg (54%, 0.050 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, *J* = 7.6 Hz, 4H), 7.41 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 4H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.1, 1.8 Hz, 2H), 7.14 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 4H), 7.03 (s, 2H), 6.79 (d, *J* = 7.6 Hz, 4H), 6.63 (d, *J* = 1.5 Hz, 2H), 1.09 (s, 18H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 151.0, 149.6, 149.1, 148.9, 141.9, 141.5, 139.3, 127.9, 127.7, 124.9, 124.5, 120.6, 120.0, 119.4, 115.4, 66.1, 34.9, 31.5. HRMS (APCI) m/z (M+H)⁺ calcd for C₅₂H₄₃: 667.3359, found: 667.3387.

Synthesis of **3ya**: In a 18*40 mm screw vial, 2,6-bis(4-(*tert*-butyl)phenoxy)naphthalene (**1y**, 0.050 mmol, 21 mg), fluorenone (**2a**, 0.12 mmol, 22 mg), and **B1** (0.12 mmol, 23 mg) were placed with a magnetic stir bar. DCE (0.080 mL) and Tf₂O (0.12 mmol, 20 μ L) were subsequently added by a syringe. The vial was flushed with N₂ and sealed. The reaction mixture was heated at 40 °C in an oil bath for 20 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted five times with CHCl₃ (2 mL x 5). The combined organic layer was filtered through a short pad of celite/alumina and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/toluene (1/0 to 5/2, v/v) as eluent. After evaporation, addition of hexane, decantation, and drying, afforded the desired product 3',11'-di-*tert*-butyldispiro[fluorene-9,5'-xantheno[2,1-*a*]xanthene-13',9"-fluorene] (**3ya**).

3',11'-Di*tert*-butyldispiro[fluorene-9,5'-xantheno[2,1-*a*]xanthene-13',9''-fluorene] (3ya). Purified by column silica gel column chromatography with hexane/toluene (1/0 to 5/2, v/v) as eluent followed by washing with hexane: 12 mg (31%, 0.050 mmol scale); white solid; m.p. >300 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, *J* = 7.6 Hz, 4H), 7.39 (dd, *J* = 7.4, 7.4 Hz, 4H), 7.14 (dd, *J* = 7.2, 7.2 Hz, 4H), 7.05 (d, *J* = 7.6 Hz, 4H), 7.01 (dd, *J* = 8.6, 2.3 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 9.5 Hz, 2H), 6.75 (d, *J* = 9.5 Hz, 2H), 6.14 (d, *J* = 2.2 Hz, 2H), 0.89 (s, 18H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 156.8, 148.6, 147.1, 145.4, 139.4, 129.6, 128.6, 127.7, 126.7, 125.7, 124.8, 124.5, 123.7, 120.3, 118.2, 115.6, 114.4, 54.3, 34.1, 31.2. HRMS (APCI) m/z (M+H)⁺ calcd for C₅₆H₄₅O₂: 749.3414, found: 749.3410.

References

- (S1) C. M. So, C. P. Lau, A. S. C. Chan and F. Y. Kwong, J. Org. Chem., 2008, 73, 7731.
- (S2) M. S. Eom, J. Noh, H.-S. Kim, S. Yoo, M. S. Han and S. Lee, Org. Lett., 2016, 18, 1720.
- (S3) P. Tosatti and A. Pfaltz, Angew. Chem., Int. Ed., 2017, 56, 4579.
- (S4) T. Qi, Y. Guo, Y. Liu, H. Xi, H. Zhang, X. Gao, Y. Liu, K. Lu, C. Du, G. Yu and D. Zhu, *Chem. Commun.*, 2008, **2008**, 6227.
- (S5) Y. Kurota, Y. Sakamoto, T. Suzuki, E. Kayahara and S. Yamago, J. Org. Chem., 2016, 81, 3356.
- (S6) P. Wang, J. Min, J. C. Nwachukwu, V. Cavett, K. E. Carlson, P. Guo, M. Zhu, Y. Zheng, C. Dong, J.
- A. Katzenellenbogen, K. W. Nettles and H.-B. Zhou, J. Med. Chem., 2012, 55, 2324.
- (S7) T. Iitsuka, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2015, 80, 2804.
- (S8) (a) Y. Wang, S. Zou, J. Guo, H. Zhang, G. Lai, H. Xie, C. Yang, H. Li and W. Hu, RSC Adv., 2015,
- 5, 31018; (b) A. F. Littke, C. Dai and G. C. Fu, J. Am. Chem. Soc., 2000, 122, 4020.
- (S9) H. A. Yemam, A. Mahl, J. S. Tinkham, J. T. Koubek, U. Greife and A. Sellinger, *Chem. Eur. J.*, 2017, 23, 8921.
- (S10) A. K. Mishra, A. Verma and S. Biswas, J. Org. Chem., 2017, 82, 3403.
- (S11) H. Tsuji, Y. Yokoi, C. Mitsui, L. Ilies, Y. Sato and E. Nakamura, Chem. Asian J., 2009, 4, 655.
- (S12) S. Naoe, T. Saito, M. Uchiyama, S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2015, 17, 1774.

[¹H and ¹³C{¹H} NMR Spectra of **3aa**]

$[^{1}H \text{ and } ^{13}C{^{1}H} NMR \text{ Spectra of } 3ca]$

[¹H and ¹³C{¹H} NMR Spectra of 3da]

$[^{1}H \text{ and } ^{13}C\{^{1}H\} \text{ NMR Spectra of } 3fa]$

[¹H and ¹³C{¹H} NMR Spectra of **3ga**]

S68

S69

$[^{1}H \text{ and } ^{13}C\{^{1}H\} \text{ NMR Spectra of } \mathbf{3ja}]$

[¹H and ¹³C{¹H} NMR Spectra of **3ka**]

$[^{1}H \text{ and } ^{13}C\{^{1}H\} \text{ NMR Spectra of 3la'}]$

[¹H and ¹³C{¹H} NMR Spectra of 3ma]

S77

[¹H and ¹³C{¹H} NMR Spectra of **3ac**] $(400 \text{ MHz, CDCl}_3)$

$[^{1}H \text{ and } ^{13}C\{^{1}H\} \text{ NMR Spectra of } 3ad]$

S81

[¹H and ¹³C{¹H} NMR Spectra of 3af]

[¹H and ¹³C{¹H} NMR Spectra of **3qa**]

[¹H and ¹³C{¹H} NMR Spectra of **3ra**]

[¹H and ¹³C{¹H} NMR Spectra of **3sa**]

$[^{1}H \text{ and } ^{13}C\{^{1}H\} \text{ NMR Spectra of } 3ta]$

[¹H and ¹³C{¹H} NMR Spectra of **3ua**]

[¹H and ¹³C{¹H} NMR Spectra of 3vd]

[¹H and ¹³C{¹H} NMR Spectra of 3wd]

[¹H and ¹³C{¹H} NMR Spectra of 3xa]

[¹H and ¹³C{¹H} NMR Spectra of **3ya**]

