Supplementary Material 1 2 **Single-Atomic Mn Sites of Electronic Configuration** 3 **Regulation mediated by Mo/Mn Clusters for Efficient** 4 **Hydrogen Evolution Reaction** 5 6 7 Chengyu Zhang ^{a,b,c}, Xiangyang Wang ^{a,b,c}, Renyuan Zhao ^{a,b,c}, Fabrice Ndayisenga ^{a,b,c}, Zhisheng 8 Yu ^{a,b,c} * 9 10 11 ^aCollege of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan 12 Road, Beijing 100049, P.R. China; 13 ^b Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 14 256606, Shandong Province, P.R. China; 15 ° RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 16 100085, China. 17 18 * Corresponding author. 19 Correspondence should be addressed to Prof. Zhisheng Yu (yuzs@ucas.ac.cn), Tel.: +86-10-20 88256057; Fax: +86-10-88256057.

22 Text S1 Experimental Procedures

23 Electrochemical measurement

The electrochemical research uses a standard three-electrode electrolytic cell with 0.5 M H_2SO_4 , in which the saturated calomel electrode (SCE) is used as the reference electrode, the graphite rod is used as the counter electrode, and the glass carbon electrode with a diameter of 5 mm is used as the working electrode. All potentials were referenced with a reversible hydrogen electrode (RHE).

5 mg of each catalyst was added 1000 uL anhydrous ethanol and 20 uL Nafion 117 solution respectively, and ultrasonic dispersion was carried out for 50 min to form a uniform catalyst ink. 40 uL of the ink was added to the surface of a glassy carbon electrode (5 mm in diameter, superficial area: 0.19625 cm²) and dried under ambient conditions for 4 h. The mass loading on the glassy carbon electrode was 1 mg cm⁻². A commercial Pt (20 wt %) on carbon was used as the reference sample.

35 The HER polarization curve of the catalyst-loaded glassy carbon electrode was obtained by Linear sweep voltammetry (LSV), the potential window was $0 \sim -0.6$ V vs. 36 RHE, and at a scan rate of 1 mV s⁻¹. Electrochemical impedance measurements (EIS) 37 were carried out from 100 kHz to 100 mHz and obtained at a current density of 10 mA 38 cm⁻². All subsequent measurements were corrected to an uncompensated resistance of 39 85% of the R_u value. The overpotential of the catalyst was obtained at current densities 40 of 10 mA cm⁻². To estimate the electroactive surface area (ECSA) of the catalyst, we 41 42 measured cyclic voltammograms between $-0.07 \sim -0.17$ V vs. RHE at scan rates of 10, 20, 40, 80, 120, 160, and 200 mV s⁻¹, respectively. The calculation of the Turnover 43 frequency (TOF) value of the catalyst was based on the equation TOF = I/2nF. Where 44 I, n, and F represent the current (A) obtained during the LSV test in 0.5 M H₂SO₄ 45 solution, and the active site number of points (mol) and Faraday constant (96485 C mol-46 ¹). The number 2 represents the number of moles of electrons consumed to liberate 1 47 mol H₂ from water. 48

 $BC_{MoMn800\mathchar`-3},$ and $BC_{MoMn900\mathchar`-2}.$

Figure S3. The Raman spectra of $BC_{MoMn800-1}$ and $BC_{MoMn800-3}$.

60 Figure S4. The a) full survey, b) high-resolution C 1s, and c) O 1s BC_{MoMn700-2}, BC_{MoMn800-2}, and BC_{MoMn900-2}.

61

62 Figure S5. Different views of the optimized structural model. Top and side views of a) Mo₂C-Mn₇C₃/graphene, b)

Mo₂C-Mn₇C₃/MnN₄-graphene, and c) Mo₂C/Mn₇C₃-MnN₄-graphene with H adatom.

65 Figure S6. Calculation of Bader charge on Mo₂C-Mn₇C₃/graphene, Mo₂C-Mn₇C₃/MnN₄-graphene, and

Mo₂C/Mn₇C₃-MnN₄-graphene.

Figure S7. Density of states of a) Mo₂C-Mn₇C₃/graphene, b) Mo₂C-Mn₇C₃/MnN₄-graphene, and c) Mo₂C/Mn₇C₃ MnN₄-graphene systems.

72 Figure S8. a) Mn K-edge XANES and b) Fourier transforms of EXAFS spectra of BC_{MoMn700-2} and BC_{MoMn900-2}.

73

 74
 Figure S9. CV curves at different scan rates (10, 20, 40, 80, 120, 160, 200 mV s⁻¹) of a) BC_{MoMn700-2}, b)

 75
 BC_{MoMn800-1}, c) BC_{MoMn800-2}, d) BC_{MoMn800-3}, and e) BC_{MoMn900-2}.

 $\begin{array}{ll} 79 \quad \mbox{Figure S11. A map of the bubbles on the electrode surface. a) } BC_{MoMn700-2}, \ b) \ BC_{MoMn800-1}, \ and \ c) \ BC_{MoMn800-2}, \ d) \\ 80 \qquad \qquad BC_{MoMn800-3}, \ e) \ BC_{MoMn900-2}. \end{array}$

82 Figure S12. HER polarization curves of BC_{MoMn800-2} after 1000 CV cycles test at the scan rate of 100 mV s⁻¹.

Figure S13. SEM and TEM images of $\mathrm{BC}_{\mathrm{MoMn800-2}}$ after CV tests.

Figure S15. TOF curves of BC_{MoMn700-2}, BC_{MoMn800-1}, BC_{MoMn800-2}, BC_{MoMn800-3} and BC_{MoMn900-2}.

89

Figure S16. The correlation of atomic H adsorption energy with the charge transfer. R², coefficient of
 determination.

-

93 Table S1

94

 Table S1 The content of Mo and Mn elements were detected by ICP-OES.

Samples	The content of Mo element in the	The content of Mn element in the
	samples (wt%)	samples (wt%)
BC _{MoMn700-2}	4.12	6.15
BC _{MoMn800-1}	4.41	3.86
BC _{MoMn800-2}	6.53	8.61
BC _{MoMn800-3}	9.79	11.21
BC _{MoMn900-2}	8.58	10.93

95

Table S2

Table S2 Quantitative analysis of functional groups in XPS spectra.

99 <u>N 1s</u>

Sample	Surface functional group	Group content on the surface
		(at.%)
BC _{MoMn700-2}	oxidized-N	39.6
	graphitic-N	27.7
	pyrrolic-N	15.0
	pyridinic-N	17.7
	oxidized-N	24.2
PC	graphitic-N	42.6
BC _{MoMn800-2}	Mn-N	21.4
	pyridinic-N	11.8
	oxidized-N	14.4
BC _{MoMn900-2}	graphitic-N	41.4
	Mn-N	19.9
	pyridinic-N	24.3
Mo 3d		
		Group content on the surfac

Sample	Surface functional group	Group content on the surface
		(at.%)
BC _{MoMn700-2}	Mo ²⁺	57.2
	Mo ⁴⁺	16.6
	Mo ⁶⁺	26.2
BC _{MoMn800-2}	Mo ²⁺	51.3
	Mo ⁴⁺	28.2
	Mo ⁶⁺	20.5
BC _{MoMn900-2}	Mo ²⁺	24.4

_	Mo ⁴⁺	54.4
	Mo ⁶⁺	21.2

101 Mn 2p

Sample	Surface functional group	Group content on the
		surface (at.%)
PC .	Mn^{2+}	41.6
BC _{MoMn700-2}	Mn^{3+}	58.4
P.C.	Mn^{2+}	47.7
BC _{MoMn800-2}	Mn^{3+}	52.3
BC _{MoMn900-2}	Mn^{2+}	55.0
	Mn^{3+}	45.0