Electronic Supplementary Information

A polydopamine coating enabling the stable cycling of MnO₂ cathode materials in aqueous zinc batteries

Guoli Zhang^a, Jiaqi Zhu^a, Lu Lin^a, Yaozhi Liu^a, Shuo Li^a, Qianrui Li^a, Xiao-Xia Liu^{a,b,c,*} and Xiaoqi Sun^{a,b,*}

^{a.} Department of Chemistry, Northeastern University, Shenyang 110819, China.

^{b.} National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China.

^{c.} Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University),

Ministry of Education, China.

*Corresponding authors. E-mail: xxliu@mail.neu.edu.cn; sunxiaoqi@mail.neu.edu.cn

1 Experimental section

1.1 Material synthesis

MnO₂ and MnO₂/PDA materials were obtained with the modified steps of previous studies.^{1,2} Typically, 0.35 g KMnO₄ was dissolved in 35 mL deionized water, and 3.3 mL HCl (36%~38%) was added. The mixture was stirred for 10 min, transferred into a 50 mL Teflon-lined stainless-steel autoclave, and heated at 140 °C for 16 h. The MnO₂ product was collected by centrifugation, washed with deionized water and ethanol for three times, respectively, and dried at 60 °C overnight. To obtain PDA coating, the above MnO₂ product without drying was dispersed and sonicated for 10 min in 50 mL buffer solution of 40 mg PEO-PPO-PEO (P123) triblock copolymer and 60 mg 2-amino-2-(hydroxymethyl)-1,3-propanedio (Tris). Subsequently, 20 mg dopamine hydrochloride was added and the mixture was stirred for 10 h at room temperature. The product was collected by centrifugation, washed with deionized water and ethanol for 10 h at room temperature. The product was collected by centrifugation, washed with deionized water and ethanol for 10 h at room temperature. The product was collected by centrifugation, washed with deionized water and ethanol for three times, respectively, and dried at 60 °C overnight. The solid was finally heated at 300 °C for 5 h under Ar to obtain the MnO₂/PDA product.

1.2 Characterizations

X-ray diffraction (XRD) was carried out on a PANalytical Empyrean diffractometer with Cu-Ka radiation. The morphologies were investigated by HITACHI SU 8010 scanning electron microscope. The high-resolution transmission electron microscopy (HRTEM) images were recorded on a JEM-ARM200F transmission electron microscope. Raman spectra were performed on a confocal laser micro-Raman spectrometer (XPLORA, HORIBA Scientific, France) with an excitation wavelength of 532 nm. X-ray photoelectron spectroscopy (XPS) was measured on an XPS spectrometer (ESCALAB 250Xi, Thermo Scientific Escalab, USA) with Al-Kα radiation (8.34 Å) as the excitation source. The data was analyzed using Avantage software and calibrated by referencing the C 1s peak to 284.8 eV. The Fourier transform infrared spectroscopy (FT-IR) was conducted with a Vertex-70 spectrometer (BRUKER, Germany). The Mn concentrations in electrolytes were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) on a PerkinElmer 8300 instrument. Thermogravimetric analysis (TGA) was performed on a thermogravimetric analyzer (TA Instruments TAG Q500/MS Discovery) at a heating rate of 5 °C min⁻¹ in an air atmosphere. Gel permeation chromatography (GPC) measurements were performed by PL GPC 50. Zeta potential was measured by a Nanoparticle size analyzer (Nano-S90). The powder was dispersed in the H₂SO₄ solutions with the pH of 4.3, which was the same as the 1 M ZnSO₄ electrolyte. The cathodes and electrolytes for ex-situ characterizations were cycled at 0.1 A g⁻¹ for 20 cycles, and then charged/discharged to the destinated states.

1.3 Electrochemical measurements

The cathodes were prepared by mixing the MnO₂/PDA or MnO₂ active material with Ketjen black and PVDF at a mass ratio of 7:2:1 in NMP solvent. The slurry was dropped casted on carbon paper substrate and dried at 90 °C under vacuum for 12 hours. Coin cells were assembled with filter paper separators. Galvanostatic charge/discharge tests were carried out with the voltage window of 0.8 V-2.0 V. Electrochemical impedance spectroscopy (EIS) was performed with 5 mV amplitudes in the frequency range of 300 kHz to 100 mHz in T-shaped three-electrode PFA Swagelok cells with saturated calomel electrode (SCE) as the reference. All electrochemical measurements were carried out on the LAND or Biologic VMP3 battery test systems.

2 Supplementary Figures

Figure S1. SEM image of MnO₂.

Figure S2. C 1s XPS of MnO₂/PDA.

Figure S3. TGA of MnO₂/PDA.

Figure S4. Cycling performance of MnO_2 and MnO_2/PDA at 0.1 A g⁻¹.

Figure S5. The enlarged figure for the early 50 cycles of MnO_2 and MnO_2/PDA at 1 A g⁻¹.

Figure S6. SEM image of MnO₂/PDA after 1000 cycles at 1 A g⁻¹.

Figure S7. a) XRD patterns of the MnO₂ cathode at different states. SEM images of the b) discharged and c) charged MnO₂ cathode.

Figure S8. Current response of different cathodes with 2 V constant voltage hold in the 1 M ZnSO₄ + 0.1 M MnSO₄ electrolyte.

Figure S9. FT-IR of MnO₂/PDA at different states.

Figure S10. FT-IR of PDA suspension in water and $MnSO_4$ solution.

3 References

- 1. W. Chen, R. B. Rakhi, H. N. Alshareef, J. *Mater. Chem. A*, 2013, **1**, 3315-3324.
- 2. H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee, C. Li, ACS Nano, 2014, 8, 6038-6046.