Supplementary material

[2+2] cycloaddition and its photomechanical effects on 1D coordination polymers with reversible amide bonds and coordination site regulation

Lei Wang, ^a Si-Bo Qiao, ^a Yan-Ting Chen, ^a Xun Ma, ^a Wei-Ming Wei, ^a Jun Zhang, ^b Lin Du^{*a} and Qi-Hua Zhao^{*a}

^a Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan

Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and

Technology, School of Pharmacy, Yunnan University, 650500, People's Republic of China.

^b New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, People's

Republic of China.

* Corresponding author.

E-mail: <u>qhzhao@ynu.edu.cn; lindu@ynu.edu.cn;</u>

Contents

Experimental	
Materials and methods	3
Synthesis	3
X-ray crystallography	7
Simulation details	8
Results and Discussion	19
Crystal Structures	19
PXRD	20
NMR spectra	21
Mass spectra	29
IR spectra	32
Thermo gravimertic analysis (TGA)	
Solid-state UV-visible absorbance spectra	
Scanning electron microscope	40
Photosalient Effects	42
References	46

Experimental

Materials and methods

All reagents and solvents used in the experiments are commercially available and require no further purification. Elemental analysis (C, H, N) was performed using an Elemental Vario ELIII analyzer. The NMR spectroscopy was recorded on the Bruker ADVANCE III HD400 (400 MHz) spectrometer with TMS in DMSO- d_6 solution as the internal reference and chemical shifts reported in parts per million (ppm). The mass spectra were recorded on the Agilent LC-MSD TOF mass spectrometer. Infrared (IR) spectra were recorded using KBr particles (4000-400 cm⁻¹) on Thermo Fisher Scientific FTIR-Nicolet iS10. All PXRD analyses were performed using the Rigaku TTRIII-18KW automatic diffractometer (Cu K α , 1.5418 Å), scanning from 3° to 55° with a scanning step size of 0.01°. Thermal stability studies were carried out in a nitrogen atmosphere at a heating rate of 10 °C min⁻¹ on a Mettler-Toledo synchronous thermal analyzer. The morphology and energy dispersion spectroscopy (EDS) data of the composite films were obtained by NovanoSEM 450 field emission scanning electron microscope (SEM) at 10 kV. Uv diffuse reflectance spectroscopy measurements were recorded by Hitachi U-4100 spectrograph, containing an integrating sphere, with BaSO₄ plate as standard (100% reflectivity). Fluorescence measurements were made with a cold light F98 fluorescence spectrophotometer.

Synthesis

Synthesis of (2*E*)-*N*-3-Pyridinyl-3-(2-thienyl)-2-propenamide (3-ptpa). First, (*E*)-3(thiophen-2-yl)acrylic acid (10 mmol, 1.54 g), 30 mL of *N*, *N*-dimethylformamide and 3 mL of triethylamine were added to a 100 mL round-bottomed flask and stirred until clear. 2-(7-Azabenzotriazol-1-yl)-*N*,*N*,*N*,*N*-tetramethyluronium hexafluorophosphate (HATU 15 mmol, 5.7 g) was added to the above clarified solution and stirred for 3 h. After that, 3-aminopyridine (9 mmol, 0.85 g) was added to the above mixture and stirred for 2 days. Finally, the obtained crude product and anhydrous potassium carbonate (10 mmol, 1.38 g) were added to 300 mL of saturated salt water and stirred for about 30 min. Then, the sample was washed with water and dried in the oven (scheme S1). Yield: 1.79 g (86.2% based on 3-aminopyridine). Anal. Calc. for $C_{12}H_{10}N_2OS$: C, 62.60%; H, 4.35%; N, 12.17%. Found: C, 62.81%; H, 4.24%; N, 12.20%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 6.58(1H, d), 7.15(1H, dd), 7.37(1H, dd), 7.47(1H, m), 7.68(1H, dt), 7.78(1H, d), 8.13(1H, ddd), 8.27(1H, dd), 8.81(1H, d), 10.40(1H, s). ¹³C-NMR (400 MHz, DMSO-*d*₆): δ 120.09, 123.70, 126.00, 128.52, 128.74, 131.61, 133.81, 135.92, 139.53, 140.71, 144.21. MS calcd for (C₁₂H₁₀N₂OS+H⁺): 231.0514; found: 231.0580. IR (KBr, cm⁻¹): 3439(*w*), 3242(*w*), 3182(*w*), 3117(*w*), 2976(*m*), 2911(*m*), 1687(*s*), 1627(*s*), 1608(*m*), 1584(*s*), 1556(*s*), 1475(*m*), 1422(*s*), 1361(*m*), 1323(*s*), 1278(*m*), 1270(*m*), 1244(*w*), 1229(*m*), 1202(*m*), 1164(*m*), 1131(*w*), 1107(*w*), 1077(*w*), 1021(*w*), 987(*m*), 973(*m*), 928(*w*), 858(*m*), 834(*m*), 813(*m*), 790(*w*), 699(*s*), 629(*w*), 615(*w*), 577(*w*), 565(*w*), 485(*w*), 443(*w*).

Synthesis of (2*E*)-*N*-4-Pyridinyl-3-(2-thienyl)-2-propenamide (4-ptpa). The conditions for the synthesis of 4-ptpa were similar to those for the synthesis of 3-ptpa by replacing 3aminopyridine with 4-aminopyridine (9 mmol, 0.85 g) (scheme S1). Yield: 1.58 g (75.9% based on 4-aminopyridine). Anal. Calc. for $C_{12}H_{10}N_2OS$: C, 62.60%; H, 4.35%; N, 12.17%. Found: C, 62.74%; H, 4.34%; N, 12.09%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 6.57(1H, d), 7.15(1H, dd), 7.49(1H, m), 7.64(2H, m), 7.69(1H, dt), 77.81(1H, d), 8.45(2H, m), 10.56(1H, s). ¹³C-NMR (400 MHz, DMSO-*d*₆): δ 113.70, 120.29, 129.06, 129.54, 132.50, 135.06, 139.91, 146.40, 150.65, 164.76. MS calcd for ($C_{12}H_{10}N_2OS+H^+$): 231.0514; found: 231.0578. IR (KBr, cm⁻¹): 3398(*m*), 3241(*w*), 3160(*w*), 2921(*m*), 1694(*m*), 1625(*s*), 1596(*s*), 1508(*s*), 1420(*m*), 1366(*m*), 1333(*s*), 1274(*m*), 1228(*w*), 1203(*m*), 1159(*s*), 1043(*w*), 1001(*w*), 986(*w*), 965(*w*), 820(*m*), 697(*m*), 564(*m*), 534(*w*), 483(*w*), 442(*w*).

Synthesis of {[Cd(3-ptpa) (MeOip)·(H₂O)₂]·H₂O}_n (1). The concentration of HNO₃ (1 M, 0.1 mL), CdSO₄·4H₂O (0.01 mmol, 3 mg), 5-Methoxyisophthalic acid (0.01 mmol, 1.96 mg), 3ptpa (0.01 mmol, 2.3 mg) and 1 mL of ACN were successively added into a hard glass tube (15 cm in length and 7 mm in diameter). The sealed glass tube was reacted at 130 °C for 12 h and cooled to ambient temperature at a rate of 3 °C per 60 min to generate yellow block-shaped crystals, which were collected by filtration, washed with H₂O, and dried in air. Yield: 10.2 mg (86.7%, based on 3ptpa). Anal. Calc. for C₂₁H₂₂N₂O₉SCd: C, 42.65%; H, 3.72%; N, 4.73%. Found: C, 42.73%; H, 3.86%; N, 4.66%. ¹H-NMR (400 MHz, DMSO- d_6): δ 3.87(3H, s), 6.58(1H, d), 7.19(1H, dd), 7.55(1H, m), 7.65(2H, d), 7.75(1H, d), 7.88(1H, d), 7.98(1H, dd), 8.08(1H, t), 8.46(1H, ddd), 8.61(1H, dd), 9.30(1H, d), 11.05(1H, s). IR (KBr, cm⁻¹): 3298(*s*), 1677(*m*), 1613(*s*), 1540(*s*), 1485(*s*), 1449(*s*), 1378(*s*), 1323(*s*), 1250(*m*), 1199(*s*), 1163(*s*), 1127(*m*), 1047(*m*), 991(*w*), 963(*m*), 920(*w*), 855(*w*), 808(*m*), 779(*m*), 735(*m*), 703(*m*), 648(*m*), 615(*m*), 564(*m*), 484(*w*), 439(*w*).

Synthesis of [Cd₂(L₁) (MeOip)₂(H₂O)₄]_n (1a). Colorless crystals of 1 (0.1 g) were subjected to UV radiation using a UV high-pressure mercury lamp (broad-band) for 12 h to get colorless crystals of 1a in quantitative yield (scheme S2). Anal. Calc. for $C_{42}H_{40}N_4O_{16}S_2Cd_2$: C, 43.99%; H, 3.49%; N, 4.89%. Found: C, 43.67%; H, 3.44%; N, 4.96% (note: the theoretical values from C element analysis have a certain deviation from the actual value due to the small amount of impurities that maybe generated over the photoreaction process). ¹H-NMR (400 MHz, DMSO-*d*₆): δ 3.87(4H, s), 4.24(2H, m), 4.51(2H, m), 6.91(4H, m), 7.32(2H, dd), 7.65(2.6H, d), 8.02(4H, m), 8.08(1.3H, t), 8.66(4H, d), 11.61(2H, d). IR (KBr, cm⁻¹): 3432(*m*), 3301(*m*), 3069(*m*), 1720(*m*), 1596(*s*), 1557(*s*), 1518(*s*), 1449(*m*), 1426(*m*), 1373(*s*), 1323(*m*), 1258(*m*), 1209(*m*), 1160(*m*), 1128(*m*), 1051(*m*), 1016(*w*), 920(*m*), 827(*m*), 784(*m*), 726(*m*), 701(*m*), 533(*w*), 440(*w*).

Synthesis of {[Cd₂(4-ptpa)₄(MeOip)₂]·0.3H₂O·0.8ACN}_n (2). The conditions for synthesis of **2** were similar to those for synthesis of **1**, and **3-ptpa** was replaced by **4-ptpa** (0.01 mmol, 2.3 mg,). Yield: 27.4 mg (87.2%, based on **4-ptpa**). Anal. Calc. for C_{67.5}H_{57.8}N_{8.8}O_{14.3}S₄Cd₂: C, 51.51%; H, 3.68%; N, 7.83%. Found: C, 52.01%; H, 3.86%; N,7.74%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 3.86(3H, s), 6.62(2H, d), 7.19(2H, dd), 7.58(2H, dd), 7.64(2H, d), 7.77(2H, dt), 7.94(2H, d), 8.09(3H, m), 8.13(2H, d), 8.70(4H, d), 11.58(2H, s). IR (KBr, cm⁻¹): 3332(*m*), 3162(*w*), 3070(*w*), 3000(*w*), 1701(*s*), 1611(*s*), 1566(*s*), 1513(*s*), 1449(*m*), 1426(*s*), 1367(*s*), 1333(*s*), 1318(*m*), 1277(*m*), 1258(*m*), 1233(*w*), 1207(*s*), 1158(*s*), 1051(*m*), 1019(*m*), 982(*w*), 921(*w*), 893(*w*), 858(*w*), 825(*m*), 798(*w*), 784(*m*), 725(*m*), 703(*w*), 691(*w*), 618(*w*), 571(*m*), 530(*m*), 484(*w*), 448(*w*).

Synthesis of {[Cd₂(L₃)(MeOip)₂]·H₂O}_n (2a). Colorless crystals of 2 (0.1 g) were subjected to UV radiation using a UV high-pressure mercury lamp (broad-band) for 12 h to get colorless crystals of 2a in quantitative yield (scheme S2). Anal. Calc. for $C_{35}H_{27.5}N_2O_{8.3}S_2Cd$: C, 53.53%; H, 3.50%; N, 3.57%. Found: C, 53.19%; H, 3.45%; N, 3.53% (note: the theoretical values from C element analysis have a certain deviation from the actual value due to the small amount of impurities that maybe generated over the photoreaction process). ¹H-NMR (400 MHz, DMSO-*d*₆): δ 3.86(3H, s), 4.23(2H, m), 4.50(2H, m), 6.91(4H, m), 7.31(2H, dd), 7.64(2H, d), 8.00(2H, d), 8.04(3H, m), 8.65(4H, m), 11.60(2H, s). IR (KBr, cm⁻¹): 3288(*m*), 3069(*m*), 2990(*w*), 1721(*m*), 1613(*s*), 1597(*s*), 1555(*s*), 1518(*s*), 1449(*m*), 1426(*s*), 1374(*s*), 1329(*m*), 1258(*m*), 1212(*m*), 1158(*m*), 1126(*m*), 1052(*m*), 1017(*m*), 919(*w*), 826(*m*), 797(*m*), 725(*m*), 701(*w*), 620(*w*), 532(*w*), 441(*w*).

Separation of cyclobutanylamide dimer L₁. Aqueous solutions of 1a (0.098 mmol, 112.28 mg), Ethylene Diamine Tetraacetic Acid (EDTA 2.5 mmol, 0.9 g) and NaOH (1 M, 40 mL) were added to a 25 mL round-bottomed flask and stirred for 3 days. By centrifugation and ultra-pure water washing, drying in the oven, the separated white powder was cyclobutanylamide dimer L₁. Yield: 32.9 mg (73.1%, based on 1a). Anal. Calc. for $C_{24}H_{20}N_4O_2S_2$: C, 62.61%; H, 4.35%; N, 12.17%. Found: C, 62.81%; H, 4.05%; N, 12.54%. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 4.01(2H, dd), 4.70(2H, dd), 6.98(4H, m), 7.30(4H, m), 7.78(2H, m), 8.20(2H, d), 8.52(2H, s), 10.22(2H, s). ¹³C-NMR (600 MHz, DMSO-*d*₆): δ 36.64, 50.90, 124.02, 125.27, 125.92, 126.72, 127.36, 135.81, 141.43, 142.21, 144.69, 169.44. MS calcd for ($C_{24}H_{20}N_4O_2S_2$ +H⁺): 461.1028; found: 461.1094. IR (KBr, cm⁻¹): 3249(*w*), 3181(*w*), 3112(*w*), 3052(*w*), 2953(*w*), 1682(*s*), 1584(*m*), 1540(*m*), 1475(*w*), 1421(*s*), 1355(*w*), 1323(*w*), 1287(*m*), 1265(*m*), 1236(*w*), 1195(*w*), 1180(*w*), 1120(*w*), 1046(*w*), 1030(*m*), 908(*m*), 850(*m*), 799(*w*), 700(*s*), 623(*w*), 587(*w*), 557(*s*), 504(*w*).

Separation of cyclobutanylamide dimer L₃. The separation method of cyclobutanylamide dimer L₃ was similar to that of L₁, and 1a was replaced by 2a (0.098 mmol, 76.89 mg). Yield: 31.8 mg (70.5%, based on 2a). Anal. Calc. for $C_{24}H_{20}N_4O_2S_2$: C, 62.61%; H, 4.35%; N, 12.17%. Found: C, 63.07%; H, 4.66%; N, 12.03%. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 4.03(2H, d), 4.50(2H, d), 6.88(4H, dt), 7.29(2H, d), 7.44(4H, m), 8.32(4H, m), 10.57(2H, m). ¹³C-NMR (600 MHz, DMSO-*d*₆): δ 48.04, 109.26, 113.66, 125.37, 125.90, 127.09, 142.74, 145.97, 150.65, 170.22. MS calcd for ($C_{24}H_{20}N_4O_2S_2$ +H⁺): 461.1028; found: 461.1097. IR (KBr, cm⁻¹): 3555(*w*), 3287(*m*), 3160(*w*), 3071(*m*), 1686(*m*), 1592(*s*), 1531(*s*), 1416(*m*), 1384(*m*), 1330(*m*), 1294(*m*), 1212(*m*), 1041(*w*), 1000(*w*), 910(*w*), 827(*m*), 692(*m*), 535(*m*), 502(*w*), 452(*w*).

Separation of cyclobutanyl carboxylic acid dimer L₂. Cyclobutanylamide dimer L₁ (0.1 mmol, 46.0 mg) and HCl (36%,20 mL) were added to a 50 mL round-bottomed flask, condensed for reflux at 110 °C for 1 day, washed by centrifugation and ultra-pure water, and dried in the oven. The white powder separated was cyclobutanyl carboxylic acid dimer L₂. Yield: 22.0 mg (71.5%, based on L₁). Anal. Calc. for $C_{14}H_{12}O_4S_2$: C, 54.54%; H, 3.89%; N, 0.00%. Found: C, 54.98%; H, 3.51%; N, 0.00%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 4.01(4H, m), 6.98(4H, m), 7.38(2H, m), 12.43(2H, s). ¹³C-NMR (400 MHz, DMSO-*d*₆): δ 37.04, 37.58, 49.72, 49.77, 50.07, 125.00, 125.21, 125.65, 125.88, 127.14, 127.49, 142.21, 142.24, 171.93, 172.49, 174.00. MS calcd for

(C₁₄H₁₂O₄S₂+Na⁺): 331.0075; found: 331.0063. IR (KBr, cm⁻¹): 2911(*w*), 1694(*s*), 1425(*w*), 1296(*w*), 1233(*m*), 1043(*w*), 964(*w*), 849(*w*), 705(*m*), 590(*w*), 556(*w*), 517(*w*).

Separation of cyclobutanyl carboxylic acid dimer L₄. A mixture of 2a (0.1 mmol, 78.46 mg) and HCl (36%, 25 mL) were added to a 50 mL beamer, stirred at room temperature for 30 minutes, and then pumped and filtered. The filtrate was condensed and returned at 110 °C for 1 day, washed by centrifugation and ultra-pure water, and dried in the oven. The black powder separated was cyclobutanyl carboxylic acid dimer L₂. Yield: 22.9 mg (74.3%, based on 2a). Anal. Calc. for $C_{14}H_{12}O_4S_2$: C, 54.54%; H, 3.89%; N, 0.00%. Found: C, 54.46%; H, 3.67%; N, 0.00%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 3.70(2H, m), 4.32(2H, m), 6.85(4H, m), 7.24(2H, dd), 12.56(2H, s). ¹³C-NMR (400 MHz, DMSO-*d*₆): δ 41.14, 45.56, 125.32, 125.82, 127.11, 142.45, 173.53. MS calcd for ($C_{14}H_{12}O_4S_2$ +Na⁺): 331.0075; found: 331.0068. IR (KBr, cm⁻¹): 3192(*w*), 1744(*s*), 1696(*m*), 1618(*w*), 1413(*m*), 1285(*w*), 1245(*m*), 1196(*m*), 1177(*m*), 1137(*w*), 1043(*w*), 848(*w*), 801(*w*), 695(*m*), 598(*w*), 521(*w*), 500(*w*), 480(*w*), 459(*w*), 440(*w*).

Preparation of artificial photoactuator membrane 1-PVA. Grind **CP1** with a mortar and pestle to a uniform powder for about 30 minutes. The powder (200 mg) was dispersed in 4 mL ethanol and treated with ultrasonic bath for 5 h. Dry in a vacuum oven at 60 °C to obtain a uniform powder. The 5 g PVA solution (5 wt%) was then mixed with the **CP1** powder and stirred at 70 °C overnight to obtain a uniform solution. The composite film **1-PVA** was obtained by coating the mixture on a glass plate and drying it in an oven at 80 °C.

Preparation of artificial photoactuator membrane 2-PVA. The preparation method of the artificial photoactuator film **2-PVA** was similar to that of **1-PVA**, and **CP1** was replaced by **CP2** (200 mg).

X-ray crystallography

A selected single crystal of suitable size was mounted on a glass capillary tube for X-ray diffraction analysis. Crystallographic data were collected using graphite monochromatic Mo-K α radiation (λ =0.71073 Å) and the ω -scanning techniques on a Bruker Smart AXS CCD diffractometer¹. The SADABS program was used to modify the experience absorption. In each case, the structure was solved using the SHELXL software package and the SHELX-2014 program was

refined by the F^2 -based full matrix least square method^{2, 3}. All non-hydrogen atoms were located in a different Fourier synthesis and finally refined with anisotropic thermal parameters. Table S1 lists the crystallographic data and details of data collection and structure refinement for 1-2a. Tables S2 and S3 list the selected key lengths and angles for 1-2a, respectively. CCDC: 1 is 2296093, 2 is 2296091, 2a is 2296092.

Simulation details

The data of powder x-ray diffraction were recorded on Bruker D8 advance diffractometer (40 kV, 40 mA) with step of 0.01 degree from 3° to 55° at room temperature, using graphite monochromator and Cu-K α radiation (λ =1.5418 Å). The positions of the peaks were picked up from the diffraction pattern excluding the weak peaks agreeing with the reactant, they were further applied to index and yield the unit cell parameters by TOPAS^{4, 5} program, subsequently an empty cell was constructed according to the enforced unit cell parameters, and the atoms were added to it and refined to find their ideal positions by TD-DFT method using GGA-PBE function. The final structure was checked through comparing the x-ray diffraction pattern between the experimental line and theoretical one (figure S3), their positons matched each other well and revealed the correction for the final structure.

Scheme S1 Synthesis of 3-ptpa (a) and 4-ptpa (b).

Scheme S2 The *head-to-tail* arrangement of **3-ptpa** ligands (a) and the *head-to-head* arrangement of **4-ptpa** ligands (b) result in different cycloaddition of cyclobutane derivatives under ultraviolet light.

Ш

this work

VI

M /___M

Ó

Scheme S3 Coordination pattern of ligand H₂MeOip.

Complex	1	2	2a
chemical formula	$C_{38}H_{36}Cd_2N_8Cl_2SO_8$	$C_{66}H_{52}Cd_2N_8O_{14}S_4{\cdot}0.75(C_2H_3N){\cdot}0.25(H_2O)$	$C_{33}H_{26}CdN_4O_7S_2 \cdot 1.25(H_2O)$
molecular weight	590.86	1572.51	784.61
crystal system	Triclinic	Triclinic	Triclinic
space group	Pī	Pī	Pī
<i>a</i> (Å)	10.2530 (4)	12.5971 (5)	10.5185 (18)
<i>b</i> (Å)	10.3656 (5)	16.0044 (8)	10.7250 (18)
<i>c</i> (Å)	12.3264 (6)	16.5980 (8)	14.858 (3)
α (deg)	93	87.861 (2)	93.035 (5)
β (deg)	101	89.132 (1)	95.697 (6)
γ (deg)	118	85.016 (2)	106.480 (5)
$V(Å^3)$	1106.38 (9)	3331.1 (3)	1593.6 (5)
Ζ	2	2	2
$D_{\text{calcd}} \left(\mathbf{g} \cdot \mathbf{cm}^{-3} \right)$	1.774	1.568	1.635
μ (MoK α) (mm ⁻¹)	1.139	0.84	0.875
F (000)	596	1596	795
reflections collected/unique	48654	125248	39230
R _{int}	0.040	0.074	0.053

 Table S1 Crystallographic data and structure refinement summary for 1-2a.

data/restraints/parameters	5517/0/313	16644/461/923	7941/542/526
GOF on F_2	1.054	1.041	1.102
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0224, 0.0566	0.0459, 0.1055	0.0476, 0.1022
R_1/wR_2 [all data]	0.0254, 0.0581	0.0712, 0.1195	0.0667, 0.1156

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ {}^{b}wR^{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

		1	
Cd1—O6 ⁱ	2.325 (13)	C14—C13	1.504 (2)
Cd1—O4	2.300 (13)	С3—Н3	0.950
Cd1—O3	2.298 (13)	C3—C4	1.425 (2)
Cd1—O2	2.348 (14)	C3—C2	1.433 (3)
Cd1—O7 ⁱ	2.527 (13)	С15—Н15	0.950
Cd1—N1	2.295 (15)	C15—C20	1.390 (2)
S1—C4	1.719 (19)	C18—C17	1.503 (2)
S1—C1	1.702 (2)	C8—C10	1.397 (2)
O6—C18	1.265 (2)	C8—C9	1.391 (3)
O4—C13	1.270 (2)	С19—Н19	0.950
O3—H3A	0.872	C19—C17	1.393 (2)
O3—H3B	0.871	C19—C20	1.393 (2)
O8—C20	1.382 (2)	С10—Н10	0.950
O8—C21	1.442 (2)	C12—H12	0.950
O5—C13	1.253 (2)	C12—C11	1.380 (3)
O9—H9A	0.870	С5—Н5	0.950
O9—H9B	0.870	C5—C4	1.447 (3)
O2—H2A	0.872	C5—C6 ⁱⁱ	3.945 (3)
O2—H2B	0.872	C5—C6	1.341 (3)
O7—C18	1.264 (2)	C11—H11	0.950
O1—C7	1.223 (2)	C11—C9	1.388 (3)
N1—C10	1.334 (2)	С9—Н9	0.950
N1—C12	1.344 (2)	C21—H21A	0.980
N2—H2	0.880	C21—H21B	0.980
N2—C8	1.401 (2)	C21—H21C	0.980
N2—C7	1.370 (2)	C7—C6	1.477 (3)
С16—Н16	0.950	C1—H1	0.950
C16—C14	1.393 (2)	C1—C2	1.357 (3)
C16—C17	1.395 (2)	C2—H2C	0.950
C14—C15	1.398 (2)	С6—Н6	0.950

Table S2 Selected Bond Distances (Å) and Angles (deg) for 1.

Symmetry codes: (i) i: 1+x, y, z.

	1a				
Cd1—O4	2.023	С25—Н26	1.082		
Cd1—O8	2.017	C25—C27	1.393		
Cd1—N12	2.120	С27—Н28	1.079		
Cd1—O90	2.571	C30—C35	1.513		
Cd1—O92	2.601	С31—Н32	1.077		
Cd1—O3 ⁱ	3.143	C31—C33	1.376		
S2—C29	1.720	С33—Н34	1.078		
S2—C31	1.702	С35—Н36	1.110		
O4—H5	0.990	C35—C23 ⁱⁱ	1.542		
O4—H6	0.990	O90—C98	1.350		
O8—H9	0.990	O91—C102	1.437		
O8—H10	0.990	O91—C103	1.427		
O11—C30	1.216	O92—C98	1.343		
N12—C19	1.363	С93—Н94	0.995		
N12—C21	1.361	С93—С95	1.747		
N13—H14	1.045	C93—C101	1.762		
N13—C17	1.448	С95—С96	1.461		
N13—C30	1.380	C95—C18	1.824		
С15—Н16	1.083	С96—Н97	1.054		
C15—C29	1.377	C96—C102	1.480		
C15—C33	1.362	C98—C101	1.851		
C17—C19	1.410	С99—Н100	1.030		
C17—C27	1.407	C99—C101	1.443		
С19—Н20	1.080	C99—C102	1.505		
C21—H22	1.080	С103—Н104	1.111		
C21—C25	1.393	С103—Н105	1.109		
С23—Н24	1.115	С103—Н106	1.111		
C23—C29	1.507	O3—C18	1.506		
C23—C35	1.540	O3—Cd1 ⁱⁱⁱ	3.143		

 Table S3 Selected Bond Distances (Å) and Angles (deg) for 1a.

C23—C35 ⁱⁱ 1.542	O7—C18	1.269
-----------------------------	--------	-------

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

Table S4 Selected Bond Distances (Å) and Angles (deg) for 2.

2			
Cd1—O1	2.341 (2)	C38—C42	1.391 (5)
Cd1—O4i	2.397 (2)	C40—C56	1.393 (5)
Cd1—O12i	2.448 (2)	C40—C58	1.389 (5)
Cd1—O14	2.335 (2)	С44—Н44	0.950
Cd1—N1	2.276 (3)	С50—Н50	0.950
Cd1—N4	2.279 (3)	C50—C58	1.385 (5)
Cd2—O6	2.295 (2)	C52—C11	1.472 (5)
Cd2—O8 ⁱⁱ	2.338 (2)	С54—Н54	0.950
Cd2—O10	2.276 (2)	C54—C56	1.380 (5)
Cd2—O7 ⁱⁱ	2.460 (2)	С56—Н56	0.950
Cd2—N6	2.303 (3)	С58—Н58	0.950
Cd2—N8	2.300 (3)	С60—Н60	0.950
Cd2—C48 ⁱⁱ	2.752 (3)	C60—C3	1.392 (6)
S1—C19	1.737 (4)	C60—C13	1.374 (5)
S1—C61	1.721 (5)	С62—Н62	0.950
S4—C43	1.700 (5)	C62—C5	1.378 (6)
S4—C2	1.712 (6)	C64—C66	1.467 (5)
S2—C13	1.751 (4)	С66—Н66	0.950
S2—C63	1.717 (7)	C66—C17	1.335 (5)
S3—C53	1.724 (4)	С33—Н33	0.950
S3—C65	1.716 (6)	C33—C39	1.470 (5)
O1—C18	1.253 (4)	C33—C23	1.342 (5)
O4—C20	1.268 (4)	С17—Н17	0.950
O6—C18	1.261 (4)	C17—C53	1.441 (5)
O8—C48	1.276 (4)	C35—C45	1.476 (5)
O10—C14	1.259 (4)	С9—Н9	0.950
O12—C20	1.248 (4)	C9—C43	1.432 (5)
O14—C14	1.256 (4)	C9—C45	1.340 (5)

O7—C48	1.250 (4)	С37—Н37	0.950
O2—C46	1.372 (4)	C37—C11	1.341 (5)
O2—C25	1.418 (5)	C37—C13	1.440 (5)
O9—C42	1.375 (4)	C19—C23	1.444 (6)
O9—C57	1.433 (5)	C19—C47	1.374 (6)
N1—C51	1.307 (5)	С5—Н5А	0.950
N1—C27	1.305 (5)	C41—H41	0.950
N4—C16	1.343 (4)	C41—C21	1.385 (6)
N4—C36	1.343 (4)	C21—H21	0.950
O5—C52	1.218 (4)	C43—C55	1.385 (6)
N6—C62	1.324 (5)	C11—H11	0.950
N6—C41	1.327 (5)	С45—Н45	0.950
O11—C64	1.222 (4)	С23—Н23	0.950
N8—C50	1.338 (5)	С47—Н47	0.950
N8—C54	1.339 (5)	C47—C29	1.389 (7)
O3—C39	1.221 (4)	С3—НЗА	0.950
N2—H2	0.880	С3—Н3В	0.950
N2—C22	1.389 (4)	C3—C63	1.385 (8)
N2—C64	1.371 (4)	C3—C63A	1.340 (2)
С1—Н1	0.950	С49—Н49	0.950
C1—C6	1.400 (4)	C49—C53	1.361 (6)
C1—C12	1.391 (4)	C49—C15	1.397 (6)
С4—Н4	0.950	С25—Н25А	0.980
C4—C8	1.393 (5)	С25—Н25В	0.980
C4—C10	1.403 (4)	С25—Н25С	0.980
N5—H5	0.880	C51—H51	0.950
N5—C32	1.386 (5)	C51—C7	1.389 (6)
N5—C39	1.370 (5)	C13—S2A	1.728 (6)
N3—H3			1.965 (7)
	0.880	C53—S3A	1.865 (7)
N3—C40	0.880	C53—S3A C27—H27	0.950
N3—C40 N3—C52	0.880 1.386 (5) 1.390 (5)	C53—S3A C27—H27 C27—C59	1.865 (7) 0.950 1.382 (6)

C6—C38	1.388 (5)	C55—C31	1.357 (7)
O13—C35	1.216 (4)	С7—Н7А	0.950
C8—C18	1.513 (4)	С57—Н57А	0.980
C8—C26	1.395 (5)	С57—Н57В	0.980
N7—H7	0.880	С57—Н57С	0.980
N7—C30	1.388 (4)	С29—Н29	0.950
N7—C35	1.387 (4)	C29—C61	1.366 (8)
C10—C28	1.384 (5)	С59—Н59	0.950
C10—C48	1.499 (4)	С15—Н15	0.950
C12—C14	1.508 (4)	С15—Н15А	0.950
C12—C34	1.398 (5)	C15—C65	1.346 (8)
С16—Н16	0.950	C15—C65A	1.450 (2)
C16—C24	1.374 (5)	С61—Н61	0.950
C22—C24	1.390 (5)	С31—Н31	0.950
C22—C44	1.398 (4)	C31—C2	1.340 (9)
C24—H24	0.950	С63—Н63	0.950
С26—Н26	0.950	C2—H2A	0.950
C26—C46	1.391 (4)	С65—Н65	0.950
С28—Н28	0.950	S3A—C65A	1.790 (2)
C28—C46	1.387 (5)	С65А—Н65А	0.950
С30—С7	1.360 (5)	С63А—Н63А	0.950
C30—C59	1.359 (6)	C63A—S2A	1.760 (2)
C32—C5	1.381 (5)	C69—N68	1.162 (9)
C32—C21	1.375 (5)	С69—С67	1.421 (9)
С34—Н34	0.950	С67—Н67А	0.980
C34—C42	1.389 (4)	С67—Н67В	0.980
С36—Н36	0.950	С67—Н67С	0.980
C36—C44	1.385 (5)	O67A—H67D	0.870
С38—Н38	0.950	O67A—H67E	0.870

Symmetry codes: (i) 1-*x*, 1-*y*, -*z*; (ii) -*x*, 1-*y*, 1-*z*.

 Table S5 Selected Bond Distances (Å) and Angles (deg) for 2a.

16

2a

Cd1—O4	2.306 (3)	C13—C10	1.378 (6)
Cd1—O2 ⁱ	2.356 (3)	C12—H12	0.950
Cd1—O3 ⁱ	2.500 (3)	C12—C11	1.379 (5)
Cd1—O5 ⁱⁱ	2.321 (3)	С10—Н10	0.950
Cd1—N2 ⁱⁱ	2.306 (3)	C16—C17	1.516 (5)
Cd1—N1	2.279 (3)	С33—Н33	0.950
S1—C19	1.722 (8)	C33—C32	1.391 (5)
S1—C22	1.736 (6)	С27—Н27	1.000
S2—C26	1.639 (6)	C27—C26	1.495 (6)
S2—C25	1.709 (13)	C27—C18	1.579 (6)
С23—Н23	0.950	C27—C28	1.550 (5)
C23—C26	1.421 (17)	С32—Н32	0.950
C23—C24	1.410 (2)	C11—H11	0.950
O4—C9	1.263 (4)	C26—S2A	1.681 (6)
O2—C8	1.278 (4)	C26—C23A	1.437 (19)
O1—C3	1.375 (4)	C19—C18	1.487 (6)
01—C1	1.430 (5)	C29—C28	1.521 (5)
O3—C8	1.240 (4)	C18—H18	1.000
O5—C9	1.252 (5)	C18—H18A	1.000
N2—C34	1.350 (5)	C18—C17	1.552 (5)
N2—C33	1.343 (5)	C18—C19A	1.488 (15)
N3—H3	0.880	С17—Н17	1.000
N3—C14	1.407 (5)	C17—C28	1.591 (6)
N3—C16	1.377 (5)	C28—H28	1.000
N1—C10	1.339 (5)	С22—Н22	0.950
N1—C11	1.338 (5)	C22—C21	1.352 (8)
O7—C29	1.211 (5)	C1—H1A	0.980
N4—H4	0.880	C1—H1B	0.980
N4—C31	1.394 (5)	C1—H1C	0.980
N4—C29	1.373 (5)	C21—H21	0.950
O6—C16	1.219 (5)	С25—Н25	0.950
С20—Н20	0.950	C25—C24	1.344 (12)

C20—C19	1.321 (12)	C24—H24	0.950
C20—C21	1.396 (13)	S2A—C25A	1.686 (16)
С6—Н6	0.950	С23А—Н23А	0.950
C6—C5	1.395 (5)	C23A—C24A	1.530 (3)
C6—C7	1.397 (5)	С25А—Н25А	0.950
C5—C4	1.405 (5)	C25A—C24A	1.344 (14)
С5—С9	1.518 (5)	C24A—H24A	0.950
С7—С2	1.389 (5)	O8—H8A	0.870
С7—С8	1.507 (5)	O8—H8B	0.870
C4—H4A	0.950	08—09	1.318 (14)
C4—C3	1.383 (5)	09—Н9А	0.870
С2—Н2	0.950	09—Н9В	0.870
C2—C3	1.397 (5)	S1A—C19A	1.72 (2)
C31—C35	1.399 (5)	S1A—C22A	1.727 (18)
C31—C32	1.399 (5)	С20А—Н20А	0.950
С35—Н35	0.950	C20A—C19A	1.32 (2)
C35—C34	1.378 (5)	C20A—C21A	1.42 (2)
C14—C13	1.389 (5)	С22А—Н22А	0.950
C14—C12	1.395 (5)	C22A—C21A	1.350 (18)
С34—Н34	0.950	C21A—H21A	0.950
С13—Н13	0.950		

Symmetry codes: (i) 1-*x*, *y*, *z*; (ii) 1-*x*, -*y*, -*z*.

Results and Discussion

Crystal Structures

Fig. S1 Cd…Cd distance and component of the 1D carboxyl chain in 1 (a) and 2 (b).

Fig. S2 Coordination modes of the carboxyl ligands in 1 (a) and 2 (b).

PXRD

Fig. S3 PXRD patterns of 1–2a.

NMR spectra

Fig. S4 The ¹H-NMR spectra of **1** after UV light ($\lambda = 365$ nm) irradiation at 298 K (b) for different time (400 MHz, DMSO-*d*₆) and the alignment of **3-ptpa** ligands before and after the photocycloaddition reaction (a). Plots of conversion of **3-ptpa** in **1** versus irradiation time based on ¹H-NMR result (c) and corresponding fitting of kinetic rate at 298 K of **1** (d).

Fig. S5 The ¹H-NMR spectra of **2** after UV light ($\lambda = 365$ nm) irradiation at 298 K (b) for different time (400 MHz, DMSO-*d*₆) and the alignment of **4-ptpa** ligands before and after the photocycloaddition reaction (a). Plots of conversion of **4-ptpa** in **2** versus irradiation time based on ¹H-NMR result (c) and corresponding fitting of kinetic rate at 298 K of **2** (d).

Fig. S6 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of **3-ptpa** in DMSO- d_6 .

Fig. S7 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of 4-ptpa in DMSO-d₆.

Fig. S8 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of L_1 in DMSO- d_6 .

Fig. S9 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of L₃ in DMSO-*d*₆.

Fig. S10 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of L_2 in DMSO- d_6 .

Fig. S11 ¹H-NMR spectrum (a) and ¹³C-NMR spectrum (b) of L_4 in DMSO- d_6 .

Mass spectra

Fig. S12 Positive-ion ESI mass spectrum of 3-ptpa in MeOH.

Fig. S13 Positive-ion ESI mass spectrum of 4-ptpa in MeOH.

Fig. S14 Positive-ion ESI mass spectrum of L_1 in MeOH.

Fig. S15 Positive-ion ESI mass spectrum of L_2 in MeOH.

Fig. S16 Positive-ion ESI mass spectrum of L_3 in MeOH.

Fig. S17 Positive-ion ESI mass spectrum of L_4 in MeOH.

IR spectra

Fig. S18 IR spectra of 3-ptpa.

Fig. S19 IR spectra of 4-ptpa.

Fig. S20 IR spectra of H₂MeOip.

Fig. S21 IR spectra of 1 and 1a.

Fig. S22 IR spectra of 2 and 2a.

Fig. S23 IR spectra of L₁.

Fig. S24 IR spectra of L₃.

Fig. S25 IR spectra of L₂.

Fig. S26 IR spectra of L₄.

Fig. S27 IR spectra of 1-PVA (a) and 2-PVA (b).

The results of single crystal data show that there are four coordination water molecules in **1a**. This can be attributed to the loss of water molecules caused by the evaporation of a part of the water molecules under ultraviolet light. Therefore, the number of water molecules calculated by the TGA is smaller than the number of water molecules observed in the crystal data. We respected the experimental results and wrote the molecular formula according to the conclusions. Solid-state UV-visible absorbance spectra

Fig. S29 Solid-state UV-visible absorbance.

Fig. S30 the direct optical band gap.

Scanning electron microscope

Fig. S31 SEM image and EDS mapping images of 1-PVA membrane.

Fig. S32 SEM image and EDS mapping images of 2-PVA membrane.

Photosalient Effects

Date (RT)	1	1b	1c	2	2a
<i>a</i> (Å)	10.25	10.26	10.26	12.60	10.52
<i>b</i> (Å)	10.37	10.37	10.30	16.00	10.73
<i>c</i> (Å)	12.33	12.37	12.49	16.60	14.86
α (°)	93	93	93	88	93
β (°)	101	102	102	89	96
γ (°)	118	119	118	85	106
$V(Å^3)$	1106	1112	1121	3331	1594

 Table S6 Single crystal data.

Fig. S33 X-ray diffraction analysis of crystals **1b** and **1c**. (a)(d) Cell parameters for crystals **1b** and **1c**. (b)(e) Diffraction images of crystals **1b** and **1c**. (c)(f) Crystals of **1b** and **1c**.

Fig. S34 Under UV light, the single crystal 2 becomes crystal 2a, and the cell volume shrinks twice.

Fig. S35 PXRD profile of 1-PVA membrane (a) and 2-PVA membrane (b).

Fig. S36 Optical images of the composite membrane 1-PVA upon exposure to 365 nm light.

Fig. S37 Optical images of the composite membrane 2-PVA upon exposure to 365 nm light.

Fig. S38 Curves of 1-pva (a) and 2-pva (b) bending against exposure time.

Fig. S39 AFM images and the corresponding height profiles of a section of a line in **1-PVA** (a, b) and irradiated **1-PVA** membrane (c, d).

Fig. S40 AFM images and the corresponding height profiles of a section of a line in **2-PVA** (a, b) and irradiated **2-PVA** membrane (c, d).

References

- 1. R. Blessing, An empirical correction for absorption anisotropy, *Acta Crystallographica Section A*, 1995, **51**, 33-38.
- 2. G. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallographica Section C*, 2015, **71**, 3-8.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- 4. R. W. Cheary and A. A. Coelho, A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Crystallogr., 1992, 25, 109-121.
- 5. Bruker, TOPAS, Bruker AXS Inc., Karlsruhe, Germany, 7 edn., 2017.