Electronic Supporting Information

Chemo-Selective Stille-type Coupling of Acyl-Chlorides Upon Phosphine-Borane Au(I) Catalysis

Nereida Hidalgo,^{a,b} Arnaud Le Gac,^a Sonia Mallet-Ladeira,^c Ghenwa Bouhadir,^{a*} Didier Bourissou^{a*}

^aCNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.

^bDepartamento de Química Inorgánica, Universidad de Sevilla, 41071 Sevilla, Spain

^cInstitut de Chimie de Toulouse (FR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France

Corresponding Author:

didier.bourissou@univ-tlse3.fr

Table of Content

1.	General considerations	3
2.	Procedures, spectroscopic data and NMR spectra	4
	Synthesis of the Au complex II	4
	Synthesis of the Au complex III	10
	Synthesis of digold complex A	17
	From Me₃SnPh:	17
	Alternative procedures from Ph ₂ Zn or complex III	18
	Synthesis of digold complex B	25
	General procedure for the synthesis of (PBMes $_2$)AuNTf $_2$ and (PBpin)AuNTf $_2$	30
	PBMes ₂ AuCl	30
	PBMes ₂ AuNTf ₂	33
	PBpinAuCI	37
	PBpinAuNTf ₂	42
3.	General procedure for control experiments	49
4. cata	General procedure for Stille coupling with (PBCy ₂)AuNTf ₂ complex II alyst and associated competitive experiments	as 49
	Scope	50
	Competitive Stille experiments with complex II as catalyst	51
	Selective Stille coupling of bifunctional substrates	51
5.	Stoichiometric and catalytic reactions of $(\mu$ -Ph)[Au(PBCy ₂)] ₂ NTf ₂ complex	A 52
	Stoichiometric reactions of complex A with 4-fluorobenzoyl chloride	52
	Stille coupling with A as catalyst	52
6.	³¹ P NMR monitoring of catalytic Stille coupling with II as catalyst	54
7.	Determination of kinetic dependence on II in catalytic Stille coupling	56
8.	Stille coupling with (Ph ₃ P)AuNTf ₂ as catalyst	58
9. BM	Stille coupling with (μ -MeOPh)[Au(PPh ₃)] ₂ NTf ₂ in the presence of BPh ₃ es ₃	or 58
10.	Stoichiometric reaction of complex B with Me ₃ SnPh	58
11.	Crystallographic Data	59
12.	References	61

1. General considerations

All preparations and manipulations were performed by using standard Schlenk and glovebox techniques, under an atmosphere of argon. All solvents were dried using a MBRAUN Solvent Purification System (SPS) and degassed using freezepump-thaw method. Internal standards, C₆F₆ and 1,2-dichloroethane, were dried with 3 Å molecular sieves and degassed prior to use. PBCy₂,¹ PBCy₂AuCl (I),¹ PBMes₂² and PBpin³ and were prepared as previously described. All other reagents were used as received from commercial suppliers. Mass spectra were recorded on a Waters LCT mass spectrometer. ¹H, ¹³C, ³¹P, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker Avance III HD 500, Avance III HD 400, Avance II 300 and Avance I 300 spectrometers. NMR experiments were performed in deuterated solvents and recorded at ambient temperature (298 K). Chemical shifts (δ) are reported in parts per million (ppm) relative to residual ¹H and ¹³C solvent signals. External BF₃·OEt₂, 85% H₃PO₄ in water and CFCl₃ were used as reference for ¹¹B, ³¹P and ¹⁹F NMR, respectively. The following abbreviations and their combinations are used: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.

2. Procedures, spectroscopic data and NMR spectra

Synthesis of the Au complex II

To a solution of PBCy₂AuCl (I) (100 mg, 0.166 mmol, 1 Equiv.) in toluene (5 mL) was added AgNTf₂ (64.4 mg, 0.166 mmol, 1 Equiv.) in toluene (5 mL) under Ar atmosphere. The mixture covered with aluminium foil was stirred at -30 °C for 1 hour. The solution was filtered to remove white precipitate of AgCl, and the volatiles were removed under vacuum to yield complex II as white powder (71 mg, 50%). M.p.= 100.5 °C (decomposition).

¹H NMR (500 MHz, 298 K, C₆D₆) δ 7.09 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.2, ⁵*J*_{H-P} = 2.4 Hz, 1H, H₅), 6.89 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.2, ⁴*J*_{H-P} = 2.4 Hz, 1H, H₄), 6.77 (dbr, ³*J*_{H-H} = 7.6 Hz, 1H, H₆), 6.72 (pseudo-tbr, ³*J*_{H-H} = ³*J*_{H-P} = 7.6 Hz, 1H, H₃), 2.20 - 2.09 (m, 4H, CH_{cy}, CH_{2cy}), 1.98 - 1.92 (m, 2H, CH_{2cy}), 1.88 - 1.82 (m, 2H, CH_{2cy}), 1.76 - 1.64 (m, 6H, CH_{*i*Pr}, CH_{2cy}), 1.55 - 1.39 (m, 4H, CH_{2cy}), 1.34 - 1.14 (m, 4H, CH_{2cy}), 1.04 - 0.96 (m, 2H, CH_{2cy}), 0.86 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 18.7 Hz, 6H, CH_{3*i*Pr}), 0.69 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 17.1 Hz, 6H, CH_{3*i*Pr}).

¹³C{¹H} NMR (126 MHz, 298 K, C₆D₆) δ 157.6 (d, ²*J*_{C-P} = 25 Hz, C₁), 131.0 (d, ²*J*_{C-P} = 6 Hz, C₃), 130.4 (d, ⁴*J*_{C-P} = 3 Hz, C₅), 126.6 (d, ³*J*_{C-P} = 17 Hz, C₆), 126.2 (d, ³*J*_{C-P} = 9 Hz, C₄), 125.1 (d, ¹*J*_{C-P} = 58 Hz, C₂), 120.7 (q, ¹*J*_{C-F} = 323 Hz, CF₃), 39.2 (sbr, B–CH_{Cy}), 31.2 (s, CH_{2Cy}), 29.0 (s, CH_{2Cy}), 28.4 (s, CH_{2Cy}), 27.9 (d, ¹*J*_{C-P} = 36 Hz, CH_{*i*Pr}), 27.8 (s, CH_{2Cy}), 27.2 (s, CH_{2Cy}), 19.5 (s, CH_{3*i*Pr}).}

³¹P{¹H} NMR (203 MHz, 298 K, C₆D₆) δ 53.0.

¹⁹F{¹H} NMR (282 MHz, 298 K, C₆D₆) δ -73.7.

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 846.1721, calcd. C₂₉H₃₉Au¹¹BF₆NO₄PS₂ requires 846.1721.

¹H{³¹P} NMR spectrum (500 MHz, 298 K) in C₆D₆

 ^1H NMR spectrum (500 MHz, 298 K) in C_6D_6

S6

¹³C{¹H} NMR (JMOD) spectrum (126 MHz, 298 K) in C₆D₆

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum (203 MHz, 298 K) in C6D6

A solution of Ph₂Zn (12.8 mg, 0.058 mmol, 1 Equiv.) in 5 mL of toluene was added to a solution of gold complex I (70 mg, 0.120 mmol, 2 Equiv.) in toluene (3 mL) at -30 °C. The reaction was stirred at that temperature for 30 min and 30 min at room temperature and then, it was filtered to remove ZnCl₂ and the supernatant was evaporated. The crude was dissolved in Et₂O (10 mL), filtered, and concentrated (2 mL approx.). **III** was isolated as colourless solid by crystallization of saturated solution of Et₂O after 1 day at -30 °C (41 mg, 55%). M.p.= 79.8 °C (decomposition).

¹H NMR (400 MHz, 298 K, C₆D₆) δ 7.98 (pseudo-ddbr, ³*J*_{H-H} = ³*J*_{H-P} =7.6, ⁴*J*_{H-P} = 1.7 Hz, 2H, H₈), 7.52 (td, ³*J*_{H-H} = 7.6, ⁵*J*_{H-P} = 1.6 Hz, 2H, H₉), 7.22 (pseudo-ttd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.5, ⁶*J*_{H-P} = 0.5 Hz, 1H, H₁₀), 7.18 – 7.14 (m, 1H, H₅), 7.01 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.5, ⁴*J*_{H-P} = 1.7 Hz, 1H, H₄), 6.98 – 6.91 (m, 2H, H₃, H₆), 2.25 – 2.22 (m, 2H, CH_{2Cy}), 2.13 – 1.96 (m, 6H, CH_{2Cy}, CH_{Cy}, CH_i_{Pr}), 1.82– 1.70 (m, 6H, CH_{2Cy}), 1.48 – 1.30 (m, 6H, CH_{2Cy}), 1.26 – 1.11 (m, 4H, CH_{2Cy}), 1.02 (dd, ³*J*_{H-H} = 6.9, ³*J*_{H-P} = 15.8 Hz, 6H, CH_{3i}_{Pr}), 0.92 (dd, ³*J*_{H-H} = 6.9, ³*J*_{H-P} = 15.8 Hz, 6H, CH_{3i}_{Pr}).

¹³C{¹H} NMR (100 MHz, 298 K, C₆D₆) δ 178.9 (d, ²*J*_{C-P} = 113 Hz, C₇), 159.3 (sbr, C₁), 139.8 (sbr, C₈), 131.5 (d, ²*J*_{C-P} = 3 Hz, C₃), 129.7 (d, ¹*J*_{C-P} = 45 Hz, C₂), 129.4 (d, ⁴*J*_{C-P} = 3 Hz, C₅), 128.0 (s, C₉), 127.1 (d, ³*J*_{C-P} = 18 Hz, C₆), 126.2 (s, C₁₀), 125.9 (d, ³*J*_{C-P} = 7 Hz, C₄), 39.6 (s, B–CH_{Cy}), 31.4 (s, CH_{2Cy}), 29.7 (s, CH_{2Cy}), 28.8 (s, CH_{2Cy}), 28.5 (s, CH_{2Cy}), 27.5 (s, CH_{2Cy}), 27.1 (d, ¹*J*_{C-P} = 27 Hz, CH_{*i*Pr}), 19.9 (d, ²*J*_{C-P} = 2 Hz, CH_{3*i*Pr}), 19.7 (d, ²*J*_{C-P} = 5 Hz, CH_{3*i*Pr}).

³¹P{¹H} NMR (162 MHz, 298 K, C₆D₆) δ 61.4.

¹¹B{¹H} NMR (128 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (m/z): found [MH]⁺-C₆H₆ 567.2625, calcd. C₂₄H₄₀Au¹¹BP requires 567.2626.

 ^1H NMR spectrum (400 MHz, 298 K) in C_6D_6

¹H{³¹P} NMR spectrum (400 MHz, 298 K) in C₆D₆

* Et₂O

 $^{13}\text{C}\{^{1}\text{H};^{31}\text{P}\}$ NMR spectrum (100 MHz, 298 K) in C₆D₆; aromatic region

HSQC NMR (100 MHz, 298 K) in C₆D₆; aromatic region

HSQC NMR (100 MHz, 298 K) in C₆D₆; aliphatic region

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum (162 MHz, 298 K) in C₆D₆

Synthesis of digold complex A

From Me₃SnPh:

A solution of Me₃SnPh (6 μ L, 0.030 mmol, 0.5 Equiv.) in 5 mL of CH₂Cl₂ was added at 0 °C to a solution of compound **II** (50 mg, 0.059 mmol, 1 Equiv.) in 5 mL of CH₂Cl₂. The reaction mixture was stirred for 30 min at that temperature and after 30 min at room temperature, it was filtered to remove solid impurities. The volatiles were removed under vacuum to yield complex A (57 mg, 61%). X-Ray quality crystals of A were obtained by crystallization of saturated solution of Et₂O overnight at -30 °C. M.p.= 73.6 °C (decomposition).

¹H NMR (400 MHz, 298 K, CD₂Cl₂) δ 8.02-7.99 (m, 2H, H₈), 7.79 (m, 3H, H₉, H₁₀), 7.55 – 7.47 (m, 4H, H₄, H₅), 7.44 – 7.39 (m, 2H, H₃), 6.90 (dm, ³*J*_{H-H} = 7.6 Hz, 2H, H₆), 2.68 (septd, ³*J*_{H-H} = 7.0, ²*J*_{H-P} = 8 Hz, 4H, CH_{*i*Pr}), 1.80 – 1.75 (m, 8H, CH₂Cy), 1.70 – 1.66 (m, 4H, CH₂Cy), 1.59 – 1.56 (m, 8H, CH₂Cy), 1.41 (dd, ³*J*_{H-H} = 7, ³*J*_{H-P} = 18.9 Hz, 12H, CH_{3*i*Pr}), 1.38 – 1.30 (m, 6H, CH_Cy, CH₂Cy), 1.22 (dd, ³*J*_{H-H} = 7, ³*J*_{H-P} P = 18.9 Hz, 12H, CH_{3*i*Pr}), 1.22 – 0.96 (m, 14H, CH₂Cy), 0.87 – 0.77 (m, 4H, CH₂Cy).

¹³C{¹H} NMR (100 MHz, 298 K, CD₂Cl₂) δ 156.3 (d, ²J_{C-P} = 21 Hz, C₁), 150.3 (s, C₈), 145.7 (t, ²J_{C-P} = 49 Hz, C₇), 138.3 (s, C₁₀), 131.9 (s, C₄), 130.3 (s, C₅), 129.4 (s, C₉), 126.6 (d, ²J_{C-P} = 9 Hz, C₃),125.6 (d, ³J_{C-P} = 18 Hz, C₆), 124.4 (d, ¹J_{C-P} = 52 Hz, C₂), 120.0 (q, ¹J_{C-F} = 323 Hz, CF₃), 39.8 (sbr, B–CH_{Cy}), 30.8 (s, CH_{2Cy}), 28.3 (s, CH_{2Cy}), 27.8 (s, CH_{2Cy}), 27.7 (d, ¹J_{C-P} = 32 Hz, CH_{*i*Pr}), 27.4 (s, CH_{2Cy}), 26.6 (s, CH_{2Cy}), 20.2 (s, CH_{3*i*Pr}), 19.3 (s, CH_{3*i*Pr}).

³¹P{¹H} NMR (162 MHz, 298 K, CD₂Cl₂) δ 57.4.

¹⁹F{¹H} NMR (282 MHz, 298 K, CD₂Cl₂) δ -79.5.

¹¹B{¹H} NMR (128 MHz, 298 K, CD₂Cl₂) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 1211.5659, calcd. C₅₄H₈₅Au₂¹¹BP₂ requires 1211.5644.

Alternative procedures from Ph₂Zn or complex III

From Ph₂Zn:

To a solution of **II** (8.5 mg, 0.010 mmol, 1 Equiv.) in 0.4 mL of THF in NMR tube was added 0.1 mL of a solution of $ZnPh_2$ in THF (25 mM, 0.25 Equiv.). ³¹P NMR indicates the major formation of complex **A** (88%) alone with complex **III** (12 %).

From complex III:

To a solution of complex **II** (20 mg, 0.024 mmol, 1 Equiv.) in THF (0.6 mL) in NMR tube was added complex **III** (14 mg, 0.024 mmol, 1 Equiv.) at room temperature. After 15 minutes, ³¹P NMR indicates full conversion of **II** and **III** into **A**.

¹H NMR spectrum (400 MHz, 298 K) in CD₂Cl₂

* Et₂O

¹H{³¹P} NMR spectrum (400 MHz, 298 K) in CD₂Cl₂

* Et₂O

¹³C{¹H} NMR (JMOD) spectrum (100 MHz, 298 K) in CD₂Cl₂

¹³C{¹H} NMR (JMOD) spectrum (100 MHz, 298 K) in CD₂Cl₂; aromatic region

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum (162 MHz, 298 K) in CD_2Cl_2

 $^{19}\text{F}\{^1\text{H}\}$ NMR spectrum (282 MHz, 298 K) in CD_2Cl_2

Synthesis of digold complex B

0.5 equivalent of AgNTf₂ (16 mg, 0.041 mmol, 0.5 Equiv.) was added to a solution of PBCy₂AuCl I (50 mg, 0.083 mmol, 1 Equiv.) in toluene (5 ml) at room temperature. After 30 min, the reaction was filtered over celite to remove AgCl. The solvent was removed under vacuum to obtain a white powder (70 mg, 58%). X-Ray quality crystals were grown by diffusion of pentane into Et₂O solution of **B** (1:2 by vol.) at -30 °C. M.p. = 74.8 °C (decomposition).

¹H NMR (500 MHz, 298 K, C₆D₆) δ 7.09 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.2, ⁵*J*_{H-P} = 2.4 Hz, 2H, H₅), 6.90 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.2, ⁴*J*_{H-P} = 2.4 Hz, 2H, H₄), 6.80 (dbr, ³*J*_{H-H} = 7.6 Hz, 2H, H₆), 6.75 (pseudo-tbr, ³*J*_{H-H} = ³*J*_{H-P} = 7.6 Hz, 2H, H₃), 2.38 – 2.22 (m, 4H, CH_{2Cy}), 2.19 – 2.14 (m, 4H, B–CH_{Cy}), 2.10 – 1.98 (m, 4H, CH_{2Cy}), 1.87 – 1.81 (m, 4H, CH_{2Cy}), 1.80 – 1.66 (m, 12H, CH_{*i*Pr}, CH_{2Cy}), 1.51 – 1.38 (m, 8H, CH_{2Cy}), 1.38 – 1.25 (m, 4H, CH_{2Cy}), 1.25 – 1.04 (m, 8H, CH_{2Cy}), 0.83 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 18.6 Hz, 12H, CH_{3*i*Pr}), 0.70 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 17.5 Hz, 6H, CH_{3*i*Pr}).

¹³C{¹H} NMR (100 MHz, 298 K, C₆D₆) δ 157.9 (s, C₁ or C₂),* 130.7 (d, ²*J*_{C-P} = 6 Hz, s, C₃), 129.8 (d, ⁴*J*_{C-P} = 2 Hz, C₅), 126.5 (d, ³*J*_{C-P} = 18 Hz, C₆), 125.7 (d, ³*J*_{C-P} = 8 Hz, C₄), 120.2 (q, ¹*J*_{C-F} = 323 Hz, CF₃), 39.3 (s, CH_{Cy}), 30.9 (s, CH_{2Cy}), 28.9 (s, CH_{2Cy}), 28.2 (s, CH_{2Cy}), 27.6 (s, CH_{2Cy}), 27.1 (d, ¹*J*_{C-P} = 35 Hz, CH_{*i*Pr}), 26.9 (s, CH_{2Cy}), 19.1 (d, ²*J*_{C-P} = 3 Hz, CH_{3*i*Pr}), 19.1 (s, CH_{3*i*Pr}). *The quaternary carbon C₁ and C₂ are not visible, one of them was deduced from the HMBC spectrum.

³¹P{¹H} NMR (121 MHz, 298 K, C₆D₆) δ 54.6 (br).

¹⁹F{¹H} NMR (282 MHz, 298 K, C₆D₆) δ -73.8.

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 1169.5007, calcd. C₄₈H₈₀Au₂¹¹B₂CIP₂ requires 1169.4941.

*Et₂O

 $^1\text{H}\{^{31}\text{P}\}$ NMR spectrum (500 MHz, 298 K) in C₆D₆

*Et₂O

¹H NMR spectrum (500 MHz, 298 K) in C₆D₆; aromatic region

S29

General procedure for the synthesis of (PBMes₂)AuNTf₂ and (PBpin)AuNTf₂

[B] = BMes₂, Bpin

A solution of PB ligand (0.226 mmol, 1 Equiv.) in 5 mL of toluene was added to a solution of Au(tht)Cl (0.226 mmol, 1 Equiv.) in toluene (3 mL) at -30 °C. The reaction was stirred at that temperature for 30 min and 1 hour at room temperature and then, it was filtered to remove solid impurities and the supernatant was evaporated. To a solution of obtained PBAuCl (0.074 mmol, 1 Equiv.) in toluene (5 mL) was added AgNTf₂ (0.074 mmol, 1 Equiv.) in toluene (5 mL). The mixture covered with aluminium foil was stirred at -30 °C for 45 minutes. The solution was filtered to remove white precipitate of AgCl, and the volatiles were removed under vacuum to yield complex as white powder (~ 50%).

PBMes₂AuCl

¹H NMR (500 MHz, 298 K, C₆D₆) δ 7.42 – 7.38 (m, 1H, CH_{Ar}), 6.99 – 6.88 (m, 3H, CH_{Ar}), 6.83 – 6.64 (brs, 2H, CH_{Mes}), 2.96 – 2.51 (brs, 3H, CH_{3Mes}), 2.12 (s, 6H, CH_{3Mes}), 1.93 – 1.74 (brs, 2H, CH_{*i*Pr},), 0.94 – 0.66 (m, 12H CH_{3*i*Pr}).

¹³C{¹H} NMR (100 MHz, 298 K, C₆D₆) δ 158.2 (d, ¹*J*_{C-P} = 21 Hz, C_{*ipso-P*}), 143.6 (br, C_{*ipso-B*}), 140.7 (br, C_{Mes}), 134.7 (d, *J*_{C-P} = 14 Hz, C_{Ar}), 133.0 (C_{Mes}), 132.6 (C_{Mes}), 132.3 (d, *J*_{C-P} = 5 Hz, C_{Ar}), 130.4 (d, *J*_{C-P} = 3 Hz, C_{Ar}), 129.9 (br, C_{Mes}), 128.9 (d, *J*_{C-P} = 8 Hz, C_{Ar}), 20.9 (CH_{3Mes}). CH_{3Mes}, CH_{3*i*Pr} and CH_{*i*Pr} described the δ as broad signal and precise by *confirmed by HSQC and not HMBC. ³¹P{¹H} NMR (203 MHz, 298 K, C₆D₆) δ 53.1.

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 555.1470, calcd. C₃₁H₂₉Au¹¹BCIP requires 555.1454.

$PBMes_2AuNTf_2$

¹H NMR (300 MHz, 298 K, C₆D₆) δ 7.37 – 7.33 (m, 1H, CH_{Ar}), 7.02 – 6.88 (m, 3H, CH_{Ar}), 6.81 – 6.65 (brs, 2H, CH_{Mes}), 2.29 – 1.09 (brs, 3H, CH_{3Mes}), 2.09 (s, 6H, CH_{3Mes}), 1.80 – 1.67 (brs, 2H, CH_{*i*Pr},), 0.8 – 0.69 (m, 12H, CH_{3*i*Pr}).

¹³C{¹H} NMR (150 MHz, 298 K, C₆D₆) δ 157.7 (d, ¹*J*_{C-P} = 18 Hz, C_{*ipso*-P}), 142.7 (br, C_{*ipso*-B}), 141.0 (br, C_{Mes}), 135.1 (d, *J*_{C-P} = 13 Hz, CH_{Ar}), 133.0 (d, *J*_{C-P} = 8 Hz, CH_{Ar}), 130.9 (d, *J*_{C-P} = 3 Hz, CH_{Ar}), 130.4 (C_{Mes}), 130.1 (C_{Mes}), 129.5 (br, C_{Mes}), 129.1 (d, *J*_{C-P} = 9 Hz, CH_{Ar}), 120.1 (q, *J*_{C-F} = 323 Hz, CF₃), 20.8 (CH_{3Mes}). CH_{3Mes}, CH_{3*i*Pr} and CH_{*i*Pr} are not visible. HSQC spectrum indicated coupling with the corresponding signals of ¹H NMR

³¹P{¹H} NMR (203 MHz, 298 K, C₆D₆) δ 54.2.

¹⁹F{¹H} NMR (282 MHz, 298 K, C₆D₆) δ -74.3.

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 800.1014, calcd. C₂₃H₂₉Au¹¹BF₆NO₄PS₂ requires 800.0939.

¹H NMR spectrum (300 MHz, 298 K) in C₆D₆

¹H NMR spectrum (300 MHz, 298 K) in C₆D₆; aromatic region

¹H NMR spectrum (300 MHz, 298 K) in C₆D₆; aliphatic region

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (150 MHz, 298 K) in C6D6

$^{13}\text{C}\{^1\text{H}\}$ NMR spectrum (150 MHz, 298 K) in C₆D₆; aromatic region

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum (203 MHz, 298 K) in C6D6

 $^{19}\text{F}\{^1\text{H}\}$ NMR spectrum (282 MHz, 298 K) in C6D6

PBpinAuCl

¹H NMR (600 MHz, 298 K, C₆D₆) δ 7.93 (pseudo-ddd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.5, ³*J*_{H-P} = 2.9 Hz, 1H, H₃), 7.39 (brs, 1H, H₆), 7.05 (pseudo-tdd, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.5, ⁴*J*_{H-P} = 2.3 Hz, 1H, H₄), 6.98 (pseudo-ttt, ³*J*_{H-H} = 7.6, ⁴*J*_{H-H} = 1.5, ⁵*J*_{H-P} = 2.4 Hz, 1H, H₅), 2.34 (brs, 2H, CH_{*i*Pr}), 1.25 (s, 12H, CH_{3pin}), 0.93 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 17.1 Hz, 6H, CH_{3*i*Pr}), 0.77 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 17.1 Hz, 6H, CH_{3*i*Pr}).

¹³C{³¹P}{¹H} NMR (150 MHz, 298 K, C₆D₆) δ 136.9 (C₃), 133.4 (C₁), 129.9 (C₄), 129.7 (C₅), 84.8 (C_{pin}), 25.8 (CH_{*i*Pr}), 25.0 (CH_{3pin}), 24.3 (CH_{3pin}), 19.9 (CH_{3*i*Pr}), 19.1 (CH_{3*i*Pr}). *The quaternary carbon C₂ is not visible in 1D or 2D experiments.

³¹P{¹H} NMR (203 MHz, 298 K, C₆D₆) δ 61.4.

 $^{11}B\{^{1}H\}$ NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 552.1431, calcd. C₁₈H₃₀Au¹¹BCIO₂P requires 552.1431.

¹H NMR spectrum (600 MHz, 298 K) in C₆D₆

*Acetone and pinacol

¹H NMR spectrum (600 MHz, 298 K) in C₆D₆; aromatic region

¹H NMR spectrum (600 MHz, 298 K) in C₆D₆; aliphatic region

^{*}Acetone and pinacol

¹H{³¹P} NMR spectrum (600 MHz, 298 K) in C₆D₆; aliphatic region

*Acetone and pinacol

138.0 137.5 137.0 136.5 136.0 135.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 131.0 130.5 130.0 129.5 129.0 δ (ppm)

$^{13}\text{C}\{^{31}\text{P}\}\{^{1}\text{H}\}$ NMR spectrum (150 MHz, 298 K) in C₆D₆; aliphatic region

PBpinAuNTf₂

¹H NMR (600 MHz, 298 K, C₆D₆) δ 8.21 (brs, 1H, H₆), 8.12 – 8.09 (m, 1H, H₃), 7.17 – 7.07 (m, 2H, H₄, H₅), 2.91 – 2.82 (m, 2H, CH_{*i*Pr}), 1.20 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 18 Hz, 6H, CH_{3/Pr}), 1.11 (s, 12H, CH_{3pin}), 0.88 (dd, ³*J*_{H-H} = 7.0, ³*J*_{H-P} = 18 Hz, 6H, CH_{3/Pr}).

¹³C{¹H} NMR (150 MHz, 298 K, C₆D₆) δ 138.6 (d, ²*J*_{C-P} = 10 Hz, C₃), 132.3 (d, ¹*J*_{C-P} = 55 Hz, C₂), 131.2 (d, ³*J*_{C-P} = 14 Hz, C₄), 130.9 (d, ⁴*J*_{C-P} = 3 Hz, C₅), 120.2 (q, ¹*J*_{C-F} = 323 Hz, CF₃), 84.5 (C_{pin}), 26.6 (d, ¹*J*_{C-P} = 33 Hz, CH_{*i*Pr}), 24.4 (CH_{3pin}), 20.5 (d, ²*J*_{H-P} = 3 Hz, CH_{3/Pr}). C₁ is not observed. One C_{Ar} is under the signal of C₆D₆.

³¹P{¹H} NMR (203 MHz, 298 K, C₆D₆) δ 76.4.

¹⁹F{¹H} NMR (282 MHz, 298 K, C₆D₆) δ -75.9.

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆) δ Not detected.

HRMS-DCI(CH₄) (*m*/*z*): found [M]⁺ 797.0933, calcd. C₂₀H₃₀Au¹¹BF₆NO₆PS₂ requires 797.0915.

¹⁹F{¹H} NMR spectrum (282 MHz, 298 K) in C₆D₆

S43

¹H NMR spectrum (600 MHz, 298 K) in C₆D₆; aromatic region

8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.0 δ (ppm)

 $^1\text{H}\{^{31}\text{P}\}$ NMR spectrum (600 MHz, 298 K) in C₆D₆; aromatic region

¹H NMR spectrum (600 MHz, 298 K) in C₆D₆; aliphatic region

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (150 MHz, 298 K) in C_6D_6

S46

S47

$^{19}\text{F}\{^1\text{H}\}$ NMR spectrum (282 MHz, 298 K) in C_6D_6

3. General procedure for control experiments

A mixture of acyl chloride (0.33 mmol, 1 Equiv.) and trimethyl(phenyl)tin (60 μ L, 0.33 mmol, 1 Equiv.) was dissolved in 0.6 ml C₆D₆. The solution was added to NMR tube containing C₆F₆ (0.017 mmol) or/and 1,2-dichloroethane (0.025 mmol) as internal standard. The reaction was heated at 75 °C and monitored by ¹H and ¹⁹F NMR spectroscopy and GC-MS. After 48 hours at 75 °C, no sign of conversion was detected. In the same conditions, no reaction was observed in the presence of additive: 5 mol% of BPh₃, 5 mol% of BMes₃ or 5 mol % of ligand PBCy₂.

4. General procedure for Stille coupling with (PBCy₂)AuNTf₂ complex II as catalyst and associated competitive experiments

A mixture of acyl chloride (0.33 mmol) and tin compound (0.33 mmol) was dissolved in 0.6 mL of C₆D₆. The solution was added to NMR tube containing catalyst **II** (14 mg, 0.017 mmol, 5 mol%), Hg drops and C₆F₆ (0.017 mmol) or/and 1,2-dichloroethane (0.025 mmol) as internal standard. The reaction was monitored by ¹H, ¹⁹F and ³¹P{¹H} NMR spectroscopy and GC-MS. NMR data for coupling products were in accordance with those reported in the literature.

Scope

Acyl Chloride	Conditions	Product	Yield (%)ª	Ref
F CI	55 ℃ / 12h C ₆ F ₆ (IS)	F	89	4
F O CI	55 ℃ / 20h C ₆ F ₆ (IS)	F O	80	5
F ₃ C	55 °C / 20h C₀F₀ (IS)	F ₃ C	50	6
MeO	rt / 1h 1,2-dichloroethane (IS)	MeO	85	4
CI	rt / 1h 1,2-dichloroethane (IS)		80	7
CI	rt / 1h 1,2-dichloroethane (IS)		62	8
СІ	rt / 1h 1,2-dichloroethane (IS)		60	9
CI	rt / 1h 1,2-dichloroethane (IS)		85	10
СІ	55 °C / 2h 1,2-dichloroethane (IS)		88	11
Me ₃ Sn	55 °C / 8h C ₆ F ₆ (IS)	F F	85	12

^aDetermined by relative integration with 1,2-dichloroethane or/and C_6F_6 as internal standards.

Competitive Stille experiments with complex II as catalyst

Additive

Acyl Chloride	Additive	Conditions	% of unreacted additive ^a	Yield of the product (%) ^b
F	Br	55 °C / 20h	98	76
F CI		55 °C / 20h	98	83
F CI	OTf	55 °C / 20h	98	80

^aDetermined by relative integration with 1,2-dichloroethane as an internal standard. ^bDetermined by relative integration with 1,2-dichloroethane and C₆F₆ as internal standards.

Selective Stille coupling of bifunctional substrates

Acyl Chloride	Conditions	Product	Yield (%)ª	Ref
Br	55 °C / 4h 1,2-dichloroethane (IS) *CDCl₃	Br	75	13
CI	55 °C / 3h 1,2-dichloroethane (IS) *CDCl₃		85	14
Me ₃ Sn	55 ºC / 6.5h C₀F₀ (IS)	F C C	80	15

5. Stoichiometric and catalytic reactions of $(\mu$ -Ph)[Au(PBCy₂)]₂NTf₂ complex A

Stoichiometric reactions of complex A with 4-fluorobenzoyl chloride

In NMR tube, a mixture of 4-fluorobenzoyl chloride (0.2 M in C₆D₆, 10 μ L, 0.002 mmol, 1 Equiv.) and complex **A** (3 mg, 0.002 mmol, 1 Equiv.) was added and dissolved in 0.6 ml C₆D₆. The reaction was monitored by ¹H, ¹⁹F and ³¹P{¹H} NMR spectroscopy at 55 °C. After 3 hours, 4-fluorobenzophenone (90%), and **A** were observed (1:1 ratio).

Stille coupling with A as catalyst

Organostannane	Conditions	Additive	Product	Yield (%) ^a	Ref
Me ₃ SnPh	55 °C / 20h C ₆ F ₆ (IS)	None	F	87	4
Me ₃ Sn	55 °C / 6.5h C ₆ F ₆ (IS)	None	F C I	93	15
Me ₃ SnPh	55 °C / 6.5h C_6F_6 and 1,2- dichloroethane (IS)	-	F C I	82	4

^aDetermined by relative integration with 1,2-dichloroethane or/and C₆F₆ as internal standards.

R CI	+ Me ₃ Sn— <mark>Ph</mark>	$\frac{\mathbf{A} (5 \text{ mol}\%)}{C_6 D_6} \qquad R^{\frown}$	⊃ ↓ ────────────	
Acid chloride	Conditions	Product	Yield (%) ^a	Ref
CI	55°C / 1h30 C₀Me₀ (IS)	O Ph	70	12
CI	r.t. / 1h C ₆ Me ₆ (IS)	O Ph	78	10

^aDetermined by relative integration with hexamethylbenzene as internal standard

6. ³¹P NMR monitoring of catalytic Stille coupling with II as catalyst

Catalytic Stille coupling of 4-fluorobenzoyl chloride or tertbutyl acid chloride and Me₃SnPh with **II** as catalyst were monitored by ³¹P NMR spectroscopy. Only complex **A** ($\delta \sim 58$ ppm) and **B** ($\delta \sim 55$ ppm) were observed.

A solution of 4-fluorobenzoyl chloride (4.8 μ L, 0.040 mmol, 1 equiv.), Me₃SnPh (7.3 μ L, 0.040 mmol, 1 equiv.) and C₆F₆ (2 μ L, 0.017 mmol, 0.43 1 equiv.) in 0.6 mL of C₆D₆ was added to the catalyst **A** (3 mg, 0.002 mmol, 5 mol%) in an NMR tube. The tube was sealed and the reaction monitored by ¹⁹F{¹H} NMR and ³¹P{¹H} NMR spectroscopy at 55°C.

³¹P{¹H} NMR spectrum (121 MHz, 298 K) in C₆D₆

^aConversion of *p*-FPhCOCI determined by relative integration with C₆F₆ as internal standard.

A solution of pivaloyl chloride (4.8 μ L, 0.039 mmol, 1 equiv.) and Me₃SnPh (7.3 μ L, 0.040 mmol, 1 equiv.) in 0.6 mL of C₆D₆ was added to the catalyst **A** (3 mg, 0.002 mmol, 5 mol%) and hexamethylbenzene (7 mg, 0.043 mmol, 1.1 Equiv.) as internal standard inside an NMR tube. The tube was sealed and monitored by ¹H and ³¹P{¹H} NMR spectroscopy at 55°C.

³¹P{¹H} NMR spectrum (121 MHz, 298 K)

^aConversion of *t*BuCOCI determined by relative integration with hexamethylbenzene as internal standard.

7. Determination of kinetic dependence on II in catalytic Stille coupling

A solution of 4-fluorobenzoyl chloride (4.8 μ L, 0.040 mmol, 1 Equiv.), trimethyl(phenyl)tin (7.3 μ L, 0.040 mmol, 1 Equiv.) and C₆F₆ (0.017 mmol) in 600 μ L of C₆D₆, for a total volume of 614.1 μ L was prepared. The solution was added to different amount of catalyst **II** in an NMR tube. The tube was sealed and the reaction was monitored by ¹⁹F{¹H} NMR spectroscopy at 55°C every 2 minutes for 30 minutes.

m of II (mg)	n of II (mmol)	x mol %
1.7	0.002	5.0%
3.4	0.004	10.0%
4.2	0.005	12.5%
5.1	0.006	15.0%

Initial rates were determined through linear regression over the first 6 minutes. The initial conversions were corrected to take into account the set up of the reaction and NMR monitoring.

8. Stille coupling with (Ph₃P)AuNTf₂ as catalyst

A mixture of acyl chloride (40 μ L, 0.34 mmol, 1 Equiv.) and Me₃SnPh (61 μ L, 0.34 mmol, 1 Equiv.) was dissolved in 0.6 mL of C₆D₆. The solution was added to NMR tube containing catalyst (Ph₃P)AuNTf₂ (13 mg, 0.017 mmol, 5 mol%), Hg drops and C₆F₆ (0.017 mmol) as internal standard. The reaction was monitored by multinuclear NMR spectroscopy. At 55 °C, after 20h, only a 3% of 4-fluorobenzophenone was formed.

Stille coupling with (μ-MeOPh)[Au(PPh₃)]₂NTf₂ in the presence of BPh₃ or BMes₃

A mixture of acyl chloride (10 μ L, 0.08 mmol, 1 Equiv.) and Me₃SnPh (14 μ L, 0.08 mmol, 1 Equiv.) was dissolved in 0.6 mL of C₆D₆. The solution was added to NMR tube containing catalyst (μ -MeOPh)[Au(PPh₃)]₂NTf₂ (5 mg, 0.004 mmol, 5 mol%) and BPh₃ or BMes₃ (10 mol%), Hg drops and C₆F₆ (0.017 mmol) as internal standard. The reaction was monitored by multinuclear NMR spectroscopy. At 55 °C after 20h, no traces of ketone were detected and only 2% of unidentified product was observed.

A solution of Me₃SnPh (0.007 mmol, 1 Equiv.) in 0.3 ml of C₆D₆ was added at room temperature to a solution of complex **B** (10 mg, 0.007 mmol) in 0.3 ml of C₆D₆. The reaction was monitored by ¹H and ³¹P{¹H} NMR spectroscopy. A mixture of complex **A** and Me₃SnCl was observed (1:1 ratio).

11. Crystallographic Data

Crystallographic data were collected at low temperature (193(2) K) on a Bruker APEX II Quazar diffractometer equipped with a 30 W air-cooled microfocus source using MoK_a radiation (λ = 0.71073 Å) for **A**, and on a Bruker D8 VENTURE diffractometer equipped with a PHOTON III detector, using MoK_a radiation (λ = 0.71073 Å) for **I** and a microfocus source with CuK_a radiation (λ = 1.54184 Å) for **B**. Phi and Omega scans were performed for data collection. An empirical absorption correction was applied¹⁶ and the structures were solved by intrinsic phasing method (SheIXT).¹⁷ All non-hydrogen atoms were refined anisotropically by means of least-squares procedures on F² with SheIXL [3].¹⁸ All the hydrogen atoms were refined isotropically at calculated positions using a riding model.

Crystal Data, Data Collection, and Structure Refinement for III, A and B.

ID III		Α	В	
formula	C ₃₀ H ₄₅ AuBP	C ₅₄ H ₈₅ Au ₂ B ₂ P ₂ , C ₂ F ₆ NO ₄ S ₂	$\begin{array}{c} C_{48}H_{80}Au_{2}B_{2}CIP_{2},\\ C_{2}F_{6}NO_{4}S_{2} \end{array}$	
Mr	644.41	1491.88	1450.23	
crystal system	orthorhombic	triclinic	monoclinic	
space group	Pbca	$P\overline{1}$	P21/n	
<i>a</i> (Å)	8.4826(8)	10.8707(11)	9.5720(4)	
b (Å)	17.7973(16)	11.6793(12)	39.2345(15)	
c (Å)	37.589(5)	48.430(5)	15.7352(6)	
α (°)	90	89.013(2)	90	
β (°)	90	86.081(2)	95.739(2)	
γ (°)	90	85.987(2)	90	
V (Å ³)	5674.7(11)	6118.9(11)	5879.8(4)	
Ζ	8	4	4	
$ ho_{calc}$ (g cm ⁻³)	1.509	1.619	1.638	
µ (mm⁻¹)	5.257	4.972	11.344	
<i>F</i> (000)	2592	2976	2880	
crystal size (mm³)	0.28 x 0.12 x 0.10	0.08 x 0.06 x 0.04	0.20 x 0.18 x 0.16	
T/K	193(2)	193(2)	193(2)	
measd reflns	131410	89767	135298	
Unique reflns (Rint)	11338 (0.0710)	24972 (0.1017)	10790 (0.0568)	
Data/restraints/p arameters	11338 / 0/ 302	24972 / 1144 / 1628	10790 / 0 / 639	
GOF on F ²	1.038	1.020	1.087	
R ₁ ª [I>2σ(I)]	0.0224	0.0566	0.0271	
wR2 ^b [all data]	0.0528	0.1203	0.0678	

 ${}^{a}\mathsf{R}_{1} = \Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}|| / \Sigma |\mathsf{F}_{o}|. \ {}^{b}\mathsf{w}\mathsf{R}_{2} = [\Sigma [\mathsf{w}(\mathsf{F}_{o}{}^{2} - \mathsf{F}_{c}{}^{2})^{2}] / \Sigma [\mathsf{w}(\mathsf{F}_{o}{}^{2})^{2}]]^{1/2}.$

12. References

- 1. S. Bontemps, G. Bouhadir, K. Miqueu and D. Bourissou, *J. Am. Chem. Soc.* 2006, **128**, 12056–12057.
- 2. M. W. P. Bebbington, S. Bontemps, G. Bouhadir and D. Bourissou, *Angew. Chem. Int. Ed.*, 2007, **46**, 3333–3336.
- R. Declercq, G. Bouhadir, D. Bourissou, M.-A. Légaré, M.-A. Courtemanche, K. S. Nahi, N. Bouchard, F.-G. Fontaine and L. Maron, ACS Catal. 2015, 5, 2513–2520.
- 4. J.-Y. Chen, S.-C. Chen, Y.-J. Tang, C.-Y. Mou and F.-Y. Tsai, *J. Mol. Catal. A: Chem* 2009, **307**, 88–92.
- 5. A. Yu, L. Shen, X. Cui, D. Peng and Y. Wu, *Tetrahedron*, 2012, **68**, 2283–2288.
- 6. J. Liu, Y. Xiao, J. Hao and Q. Shen. Org. Lett., 2023, 25, 1204–1208.
- 7. T. L. H. Doan, T. Q. Dao, H. N. Tran, P. H. Tran and T. N. Le, *Dalton Trans.* 2016, **45**, 7875–7880.
- 8. B. Zhao and X. Li. Org. Lett. 2006, 8, 5987–5990.
- 9. K. Moriyama, M. Takemura and H. Togo, Org. Lett. 2012, 14, 2414–2417.
- 10. J. Zhao, Z. Luo, Y. Liu, J. Xu, Z. Huang and W. Xiong, *Tetrahedron* 2023, **131**, 133208.
- 11.M. Shibuya, M. Tomizawa, Y. Sasano and Y. Iwabuchi, *J. Org. Chem.* 2009, **74**, 4619–4622.
- M. Boudjelel, O. Sadek, S. Mallet-Ladeira, Y. García-Rodeja, E. D. Sosa Carrizo, K. Miqueu, G. Bouhadir and D. Bourissou, ACS Catal. 2021, 11, 3822–3829.
- 13.L. Tang, F. Yang, H. Cheng, C. Tan, C. Jin, H. Chen, Y. Huang, S. Zhang, W. Song and J. Tan, *Org. Lett.* 2020, **22**, 8618–8623.
- 14.D. Kato, T. Murase, J. Talode, H. Nagae, H. Tsurugi, M. Seki and K. Mashima, *Chem. Eur. J.* 2022, **28**, e2022004.
- 15. M. Katsuya, T. Tadashi, S. Masanori, H. Shuhei and S. Hidehiro. *Chem. Lett.* 2011, **40**, 1445–1446.
- 16. Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- 17. ShelXT and G. M. Sheldrick, University of Göttingen, *Acta Crystallogr. Sect. A*, 2015, **71**, 3–8.
- 18. ShelXL and G. M. Sheldrick, University of Göttingen, *Acta Crystallogr. Sect. C*, 2015, **71**, 3–8.