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1. General information

Commercially available reagents were purchased from Sigma-Aldrich, Fischer Scientific, Strem
Chemicals, TCI Chemicals, Activate Scientific, or Fluorochem and were used as purchased unless
mentioned otherwise. Solvents were purchased from VWR Chemicals or Sigma-Aldrich and used
without purification unless stated otherwise. Reagent-grade solvents were used for the
optimization. Thin layer chromatography (TLC) was performed using plates from Merck (SiOa,
Kieselgel 60 F254 neutral, on aluminium with fluorescence indicator) and compounds were
visualized by UV detection (254 nm), KMnQOs, and/or p-anisaldehyde stain. Flash column
chromatography was performed by employing silica (200-300 mesh) as support and n-
heptane/ethyl acetate. NMR spectra were recorded on a Bruker Avance 300 using the residual
CDCls as internal reference (*H: § 7.26 ppm, 13C: & 77.16 ppm). Chemical shifts (8) are given in
ppm and coupling constants (J) are quoted in hertz (Hz). Resonances are described as s (singlet),
d (doublet), t (triplet), q (quartet), br (broad singlet), and m (multiplet) or combinations thereof.
Ultra-high resolution mass-spectrometer Bruker solariX XR FT-ICR-MS was used for accurate
mass measurements. Samples were ionized by electrospray ionization (ESI) in positive ion mode.
UV-Vis spectroscopy at various temperatures was performed using a Varian Cary 100 UV/Vis
spectrophotometer coupled with a Varian Cary temperature controller. The solid-state lifetime
spectra were acquired using a TCSPC setup with a 450 nm laser at a repetition rate of 8.33 MHz.
NMR Data were processed with Mestrenova version 12.

Chemicals: Dioxane (99.8%, extra dry), DCE (99.8%, extra dry), and DMSO (99.8%, extra dry)
were purchased from Acros Organics and used as purchased. Dry toluene is obtained from SPS
system. The photocatalysts Ru(bpy)s(PFs)2 and [Ir{dFCFzppy}2(bpy)]PFs, fac-Ir, Mes-Acr-Me*
were purchased from commercial sources. The organic photocatalysts 4CzIPN, 4DPAIPN and
5CzIPN were prepared in the lab by the procedure outlined in previous publications.! Deuterated
solvents were used as purchased (CDClz, DMSO-ds, DMF-d7). 2-methyl indole was purchaged
from Sigma-Aldrich and TCI.

Photochemical experiments were performed in a 10 mL microwave (MW) vial equipped with
teflon septa. The tubes were irradiated with two Kessil blue LED lights (456 nm) of power 40W.
To maintain a constant reaction temperature of 30°C, the setup was cooled by a constant airflow
(Figure S1).



Figure S1: Reaction setup.

2. Synthesis and characterization of starting materials

Isocyanide Synthesis: Isocyanides A1-A10 were synthesized according to previous literature as
shown below.?
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In a round bottom flask, triethylsilane (TES, 3.0 equiv) was dissolved in DCM (0.5 M) followed
by TFA (5.0 equiv). A solution of dimethyl acetal (1.1 equiv) and indole (1.0 equiv) in DCM (0.5

M) was added dropwise to the above solution at room temperature. The reaction mixture was



stirred for 16 hours at rt and cooled down to 0 °C before quenching with a saturated NaHCO3
solution. The organic layer was separated and the aqueous layer was extracted three times with
DCM. The organic layers were combined together, washed with brine and dried over Na,SO4. The
solvent was removed in vacuo and the crude mixture was purified by flash chromatography using
EtOAc/Heptane (1:2 to 1:1) to obtain substituted tryptamine formamide.

The formamide obtained from the previous step was then dissolved in anhydrous DCM (0.5 M)
followed by the addition of triethylamine (5.0 equiv). The reaction mixture was cooled down to -
78 °C and then phosphoryl chloride (1.5 equiv) was added dropwise. After mixing the reaction
mixture for 2 h at this temperature, the mixture was brought to 0 °C and stirred for another 30 min.
before quenching with water. The aqueous layer was extracted with DCM and the combined
organic layer was washed with brine, dried over sodium sulfate and concentrated in vacuo. The

crude reaction mixture was loaded on a short silica column and purified using pure DCM.

3. Optimization studies
3.1 General procedure for optimization

GP1: (without PC): An oven-dried 10 mL MW vial equipped with a magnetic stirring bar was
charged with 2-bromo-1-phenylethan-1-one (1b) and 3-(2-isocyanoethyl)-2-methyl-1H-indole
(1a). Afterwards, solvent was added followed by base. The MW vial was then closed with a cap
containing teflon septum and degassed with nitrogen for 5 min. The vial was then placed for
irradiation with two Kessil blue LEDs as shown in figure S1 (40W, 456 nm) for 6-12h. The
progress of the reaction was monitored through TLC and LC/MS. After completion, the solution
was diluted with EtOAc and washed with water. The organic layer was separated, and the aqueous
layer was extracted with EtOAc. The combined organic layers were dried over NaSOa. The
solvent was removed in a vacuum and the reaction yield was calculated through the *H-NMR
integration method using CH2Br2 as an internal standard.



Table S1. Optimization results for the synthesis of spiroindolenines without photocatalyst.

NC 0
N\ Br  2,6-lutidine (2.0 equiv)
—_—
H * solvent, light O

2*40W, 6h
1a 1b
Entry Solvent (0.1M) LED (nm) Ratio (1a:1b) Yield? (%)
1 DCE 456 1:15 70
2¢ DCE 390 1:15 64
3 CHCI3 456 1:15 56
4 Toluene 456 1:15 82
5¢ Toluene 456 1:15 76
5 Dioxane 456 1:15 66
6 ACN 456 1:15 30
7 Acetone 456 1:15 22
Effect of ratio
8 Toluene 456 1:1.25 46
9 Toluene 456 1:1 26
10 Toluene 456 1.25:1 54
11 Toluene 456 151 70

aNMR vyield determined by using CH2Br» as an internal standard. ‘Power of LED = 40W.

Table S2. Control experiments for the synthesis of spiroindolenines without photocatalyst.?

Entry Deviations from optimized conditions Yield®
1 None 82
2 No light 0
3 No light, 50 °C 0
4 Air instead of N2 0
5 10% H20 72
6 50% H20 64
7 0.05 M instead of 0.1M 70
8 0.16 M instead of 0.1M 67
9 0.2 M instead of 0.1M 66
10 EtsN instead of 2,6 lutidine 72
11 Morpholine instead of 2,6 lutidine 16
12 No 2,6-lutidine 6

Al reactions were performed using 1a (0.2 mmol, 1 equiv) and 1b (0.3 mmol, 1.5 equiv).?Yields were determined
by 'H NMR using CH:Br; as an internal standard.

GP2: (with PC): An oven-dried 10 mL MW vial equipped with a magnetic stirring bar was
charged with 2-bromo-1-phenylethan-1-one (1b), photocatalyst (PC), and 3-(2-isocyanoethyl)-2-
methyl-1H-indole (1b). Afterwards, solvent was added followed by base. The MW vial was then
closed with a cap containing teflon septum and degassed with nitrogen for 5 min. The vial was
then placed for irradiation with two Kessil blue LEDs as shown in figure S1 (40W, 456 nm) for
2h. The progress of the reaction was monitored through TLC and LC/MS. After completion, the
solution was diluted with EtOAc and washed with water. The organic layer was separated, and the

aqueous layer was extracted with EtOAc. The combined organic layers were dried over NazSOa.



The solvent was removed in a vacuum and the reaction yield was calculated through the *H-NMR

integration method using CH2Br: as an internal standard.

Table S3. Optimization results for the synthesis of spiroindolenines using photocatalysts.
(0]

NG 0
N Br Conditions >
H * 456 nm Blue LED

2*40 W, 2h
1a 1b
Entry PC (mol %) Solvent (0.1M) Base (2.0 equiv) Ratio (1a:1b) Yield® (%)
Photocatalyst screening (PC)
1 PC 6 (5) DCE 2,6-lutidine 151 67
2 PC5 (1) DCE 2,6-lutidine 151 72
3 PC7 (5) DCE 2,6-lutidine 1.5:1 63
4 PC1(5) DCE 2,6-lutidine 1.5:1 65
5 PC2 (1) DCE 2,6-lutidine 1.5:1 69
6 PC 4 (1) DCE 2,6-lutidine 1.5:1 33
7 PC3(5) DCE 2,6-lutidine 15:1 10
8 PC6 (2) DCE 2,6-lutidine 151 58
9 PC 6 (8) DCE 2,6-lutidine 15:1 62
Solvents screening
10 PC 6 (5) 1,4-Dioxane 2,6-lutidine 151 51
11 PC 6 (5) Toluene 2,6-lutidine 15:1 52
12 PC 6 (5) MeOH 2,6-lutidine 15:1 20
13 PC 6 (5) DMSO 2,6-lutidine 15:1 40
14 PC 6 (5) Acetone 2,6-lutidine 15:1 35
15 PC 6 (5) ACN 2,6-lutidine 1.5:1 40
Base screening
16 PC 6 (5) DCE 2,4,6-collidine 15:1 55
17 PC 6 (5) DCE DIPEA 151 7
18 PC 6 (5) DCE EtsN 151 26
19 PC 6 (5) DCE NaHCOs 151 8
20 PC 6 (5) DCE - 1.5:1 16
Effect of ratio
21 PC 6 (5) DCE 2,6-lutidine 1:1 53
22 PC 6 (5) DCE 2,6-lutidine 151 68
23 PC6 (5) DCE 2,6-lutidine 1.25:1 62

8NMR vyield determined by using CH,Br; as an internal standard.
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4CzIPN [Ir(dF(CF3)ppy)(dtbbpy)]PFg Mes-Acr-Me* [Ru(bpy)s](PFg), fac-Ir(ppy)s 4DPA-IPN 5CzIPN

Figure S2: Photocatalysts used in the optimization studies.



Table S4. Synthesis of spiroindolenines without photocatalyst employing trifluromethyl radical

sources.
NC - _ N
N\ CF, 2,6-lutidine (2.0 equiv) CF;
N + R Toluene (0.1M) )
H
N

456 nm, 2*40 W

1a 12h
( Clo 10
‘CF3 CF3 BF4 CF3 OTf CF3 OTf
s1 s2 s3 s4
Yield=  20% 56% 77% 75%

o/ b
without 2,6-lutidine 56%

22%

aAll reactions were performed using 1a (0.2 mmol, 1 equiv) and a CFs source (0.3 mmol, 1.5 equiv); yields were
determined by *H NMR using CHBr, as an internal standard. "Isolated yield.

Table S5. Synthesis of spiroindolenines without photocatalyst employing diaryl iodonium salts.

N

(D\/C 2,6-lutidine (2.0 equw) D—Ph
Toluene (0.1M) /)
N

456 nm, 2 40 W

aAll reactions were performed usmg la (0.2 mmol, 1 equiv) and S5 (0.3 mmol, 1.5 equiv), isolated yield.

C)
S) oTf
eOTf eOTf | OoTf é
I \[ j
é\@\ ©/@\©\ ® >‘/©/
OMe
NO, NO>

S6: 0% S7: 0% S$8: 25% S9: < 10%

Table S6. Synthesis of spiroindolenines without photocatalyst employing pyridinium salt.

0
BF4 NH o
OEt 456 nm
NC  ph._ _N. _Ph Toluene (0.1M) N0t

A\ + | ON —_— N/

z
N 19

Ph i) 2,6-lutidine, 24h = 18 %

1a $10 ii) 2,6-lutidine, 48h = 23%

iii) 2,6-lutidine, Nal (0.2 equiv), 48h = traces
iv) morpholine, 48h = 54%

aAll reactions were performed using 1a (0.2 mmol, 1 equiv) and S10 (0.3 mmol, 1.5 equiv), isolated yield.



4. Mechanistic investigations

A. Radical inhibition experiment: Under our optimized reaction conditions, we added 2 equiv
of TEMPO. The reaction mixture was analysed by NMR and GC-MS.

a) o
B .
e QS o NH o o,
AN N . N optimized conditions XN o +
N 12h /
H N
1a 1b 0%

TEMPO <10%

2 equiv

b) NO,
(0] Br
NC NH o
N\ . . optimized conditions X Ph
N N 12h /
H 0: N
1a 1b

1.5 equiv 0%

Scheme S1: a) radical inhibition experiment with TEMPO b) radical inhibition experiment with 1,3-
dinitrobenzene.

We observed 0 % yield of the desired product alongside a <10 % formation of the TEMPO-
adduct. This result can be deriving from a minor pathway involving EDA complex between
TEMPO and 1b, as shown by Prof. Melchiorre® in his work. Based on our mechanistic
hypothesis, we assumed that the quenching of our reaction could be due to the interaction of
TEMPO with the excited state of isocyanide 1a. However, we could not provide experimental
evidence through static fluorescence quenching experiments probably due to the low lifetime of
the excited state of 1a in solution. The addition of 1,3-dinitrobenzene also quenched the reaction

showing the involvement of SET step.

B. Quantum yield determination: The quantum yield of the reaction was determined according
to a reported procedure.*

The photon flux of the blue LED system was determined through standard ferrioxalate
actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate
hydrate (736 mg) in 10.0 mL of 0.05 M aqueous sulfuric acid. A buffered solution of 1,10-
phenanthroline was prepared by dissolving 1,10-phenanthroline (50 mg) and sodium acetate (11.25
g) in 50 mL of 0.5 M aqueous sulfuric acid.

To a 10 mL MW vial equipped with a stirring bar, 1 mL of the ferrioxalate solution was added.
The vial was sealed and placed 4 cm away from the walls of the irradiation system as shown in

figure S1 and irradiated for the indicated time (see Table S7). After irradiation for the indicated



time, 20 puL of the irradiated solutions were added to 2 mL of the phenanthroline solution. The
resulting reaction mixture was left equilibrating in the dark for 1 h. Next, the resultant reaction
solutions were further diluted by taking 50 pL and adding 3 mL of distilled water. The final
solution was analyzed via UV-Vis spectroscopy.

The absorbance of the resulting solution in a cuvette (I = 10 mm) at 510 nm was measured by a
UV-Vis spectrometer. The procedure was repeated at different reaction times and the absorbance
of a non-irradiated sample was measured as well.

Table S7: Photon flux calculation.

Time A (510 nm) AAs10nm mol Fe?
(s)
0 0.0045
5 0.0114 0.0069 1.8959 x 10°°
10 0.0197 0.0152 4.1765 x 10°
15 0.0246 0.0201 5.5229 x 10°°
20 0.0278 0.0233 6.4022 X 10°°

To calculate the amount of Fe?*, the following equation was used:
V xAA
Ixe
Where V is the total volume (0.00305 L), 44 is the difference in the absorbance at 510 nm between

2+ —

mol Fe

the irradiated and non-irradiated sample, | is the path length (1.00 cm), and ¢ is the molar
absorptivity at 510 nm (11,100 L/mol x cm).
The photon flux was calculated as follows:

mol Fe?*

phOtO‘I’l flux = m

From which
mol Fe?t = (FX® X f) Xt
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Plot B

Weight No Weighting
Intercept 7.8305E-10 + 6.13486
Slope 2.97306E-10 + 4.48027|
Residual Sum of Sq 5.0182E-19
Pearson's r 0.97804
R-Square (COD) 0.95655
2.00E-09 Adj. R-Square 0.93483
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Figure S3: Plot of the moles of Fe?* vs time to calculate the photon flux.

From the graph,

Slope = (F X @ X f) =2.9730 x 10°%°

So, F (photon flux) = 3.5183 x 10 Einstein/s.

where @ is the quantum yield for the ferrioxalate actinometer (approximated as 0.845, which was
reported for a 0.15 M solution at L =457.9 nm) and f is the fraction of light absorbed (close to 1).
Quantum yield determination: An oven-dried 10 mL MW vial equipped with a magnetic stirring
bar was charged with 2-bromo-1-phenylethan-1-one (1.5 equiv, 0.15 mmol) and 3-(2-
isocyanoethyl)-2-methyl-1H-indole (1 equiv, 0.1 mmol). Afterwards, dry toluene (0.1 M) was
added followed by 2,6-lutidine (2 equiv, 0.2 mmol). The MW vial was then closed with a cap
containing teflon septum and degassed with nitrogen for 5 min. The vial was then placed for
irradiation with two Kessil blue LEDs as shown in figure S1 ( 40W, 456 nm) for 2 h. After this
reaction yield was calculated through the *H-NMR integration method using CH2Br as an internal
standard. The calculated yield was 24%.

The quantum yield was calculated through the formula:

_ mol product
fluxxtxf

Where flux is the photon flux determined by ferrioxalate actinometry (3.5183 x 10'° Einstein/s), t
is the time (7200 s), and f is the fraction of light absorbed by reaction mixture in toluene at 456 nm
(0.3824, average of three measurements). The fraction of light absorbed at 456 nm was calculated:
£=1.0000 — 107%%2*=1,0000 -10>"7 = 0.4715



The calculated quantum yield for the reaction therefore is: 20

C. Optical absorption Spectra: UV-vis spectra were recorded using a Shimadzu UV-Vis
Spectrophotometer UV-3600 system or Varian Cary 100 UV/Vis spectrophotometer coupled
with a Varian Cary temperature controller. Measurement details: cuvettes path length (10 mm
or 1 mm); baseline: respective solvents; scan rate: medium; slit width: 2 nm.

Purification of chemicals:

2-methyl indole (TCI source): The solution of 2-methyl indole in DCM was passed through

activated charcoal and then further purified by column chromatography with methyl tert-butyl
ether and heptane. The purified sample was further recrystallized using a CHCI3; and heptane
solution.

3-methyl indole (Sigma-Aldrich): Purified by vacuum sublimation

1b: Solution of 1b in DCM was passed through activated charcoal and then further purified by
recrystallization using a CHCI3 and heptane solution.
la: A freshly prepared 1a solution in DCM was passed through activated charcoal and dried and

stored under nitrogen at -78 °C.

a) Fresh Isocyanide 1a b) Isocyanide 1a after 24h | c) after filtration of d) freshly prepared but after
atRT sample b RT passing through activated
-+ charcoal after 24 h.
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Figure S4: Absorption spectra of individual components and reaction mixture, recorded in toluene:
[1b] = 0.15 M; [1a] = 0.1 M; [2,6-lutidine] = 0.2 M; [1a+1b] = solution of 0.15 mmol of 1b and 0.1
mmol of 1a in toluene (0.1 M); [1b+2,6-lutidine] = solution of 0.1 mmol of 1b and 0.13 mmol of 2,6-
lutidine in toluene (0.1M). Note: Aborption values are normalized. Cuvette: 10 mm

Implication: Bromide 1b, 2,6-lutidine, and the mixture of 2,6-lutidine and bromide 1a did not
show any absorption peak in the visible region. The mixture of 1a and 1b exhibits slightly higher
absorption as compared to isocyanide 1la alone. Based on this data we concluded that the main

absorbing species under our optimized conditions is 1a.
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Figure S5: Absorption spectra of the mixture 1a and 1b in different solvents after stirring for 30
minutes: [1a+1b] = solution of 0.15 mmol of 1b and 0.1 mmol of 1a in an appropriate solvent. Note:
Aborption values are normalized. Cuvette: 10 mm

Implication: The mixture of 1a and 1b exhibits higher absorption in polar solvents, which are
more effective at stabilizing the EDA intermediates compared to non-polar solvents. This
observation suggests that intermolecular EDA could be the primary pathway in polar
environments. However, we obtained lower yields in these solvents except DCE (Table S3) which
indicates that under our reaction conditions, the aggregation-based charge transfer pathway

prevails over the intermolecular EDA-complex pathway.
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Figure S6: (a) Absorption spectra of 2-methyl indole (0.1M), butyl isocyanide (0.1M) and a mixture
of butyl isocyanide and 2-methyl indole (1:1) in toluene. Cuvette: 1 mm; (b) Absorption spectra of 3-

methyl indole and a mixture of tert-butyl isocyanide isocyanide and 3-methyl indole (1:1) in toluene.

Cuvette: 10 mm
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Figure S7: Absorption spectra of 1a at different concentrations in toluene and acetonitrile using Cary-

60 spectrophotometer. Cuvette: 10 mm

5. Computational analysis

The choice of a suitable TD-DFT functional was explored using various functional with the triple-
zeta basis set and a detailed analysis is presented in Table S8. The three functionals (CAM-B3LYP,
M06-2X and WB97X-D) yield a similar value for S; state, however M06-2X overestimates the T
energy. The other two functionals B3LYP and PBE which are not suitable for charge-transfer
interactions predicts the Sz absorption towards a slightly longer wavelength. We chose WB97X-D
functional for our further analysis as it was designed to treat both long-range and short-range
charge-transfer interactions effectively and demonstrated satisfactory accuracy for both covalent

and non-covalent interactions.®

We have explored a model-dimer system with an interdimer separation of ~3.50 A, as shown in
Figure S9(i). There is a bathochromic shift in the absorption as compared to the monomer, which

should be more prominent in the case of higher-order oligomers. Moreover, the HOMO and



LUMO are located on different fragments, thus indicating a possibility of inter-fragment charge
transfer.

A similar trend is observed in a model-trimer system with a more profound red shift as the TD-
DFT results suggest absorption at ~263 nm in its first excited singlet state (Table S9).

Table S8: Excited states of 1a calculated using various TD-DFT functionals with cc-pVTZ basis

set.
State B3LYP CAM-B3LYP PBE MO06-2X WB97X-D
E(S1) [nm] 265 241 287 245 245
E(T4) [nm] 383 396 381 342 373

Table S9: Excited states of 1a and model systems calculated at Wh97XD/cc-pVTZ level of theory.

State Monomer Model-dimer Model-trimer
E(S1) [nm] 245 256 263
fosc 0.0602 0.0135 0.001

| (iii) Q&b_ | (iv) @0l

‘\‘.;‘f 3
W

|

Figure S8: (i) A slip-stacked model dimer system with interdimer separation (R) of ~3.50 A; (ii)

the transition density; (iii) difference density and (iv) overlap of hole-electron for the first excited
singlet (S1) state.

6. Fluorescence lifetime measurement of 1a

Fluorescence lifetime measurements in solution were recorded using Horiba, Deltapro
instrument.

Specifications: Excitation using 450nm laser diode

Long pass filter used: LP 500 nm

Polarizer + magic angle: before sample 180° and after sample 55°

Calibration: Cumarin 6 in MeOH (3 uM)

Data analysis: EzTime software (from Horiba, Deltaflex)

Results obtained:



A) 4 mM solution of 1a in acetonitrile

1-5 exponentials: A+ B1*exp(-i/T1)+ B2*exp(-i/T2)+ B3*exp(-i/T3)

Value 30 Rel. Amplitude | Norm. pre-
% exponential
Tl = 1.4066 + 0.31576 ns 4.64 0.00
T2 = 8.66268 + 0.455612 ns 20.52 0.00
T3 = 0.0189413 * 0.00475091 ns 74.85 1.00
A = 1.61237 * 0.298906
Average = 0.025271 * 0.554354 ns
LifeTime
Chi sq. 1.099091
B) 20 mM solution of 1a in acetonitrile
1-5 exponentials: A+ B1*exp(-i/T1)+ B2*exp(-i/T2)+ B3*exp(-i/T3)
Value 30 Relative Normalised pre-
Amplitude/% | exponential
T1 = 1.01042 + 0.13748 ns 9.04 0.00
T2 = 6.50825 + 0.171191 ns 41.83 0.00
T3 = 0.0269861 | + 0.00710246 | ns 49.12 0.99
A = 3.30519 + 0.432718
Average = 0.054474 + 0.219676 ns
LifeTime
Chi sq. 1.19104

C) 40 mM solution of 1a in acetonitrile

1-5 exponentials: A+ B1*exp(-i/T1)+ B2*exp(-i/T2)+ B3*exp(-i/T3)

Value 30 Relative Normalised pre-
Amplitude/% exponential
T1 = 1.34151 + 0.157499 ns 16.71 0.02
T2 = 6.47338 + 0.122658 ns 49.10 0.01
T3 = 0.0513488 + 0.00875105 ns 34.19 0.91
A = 3.49741 + 0.284003
Average = 0.14578 + 0.199818 ns
LifeTime
Chi sq. 1.269965
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Figure S9: Time-resolved fluorescence of 1a in MeCN at different concentrations.

Fluorescence lifetime measurements in solid: The lifetime spectra were acquired using TCSPC
instrument with a 450 nm laser at a repetition rate of 8.33 MHz.

Emission scan: 490-600 nm

Fixed/Offset: 465 nm

Scan polariser: none

Sample T1 T2 T3

(Film)
0.055+0.102 ns | 0.0623 +0.373 ns | 3.322 +1.138 ns

Amplitude | 1.682 + 1.666 0.206 £ 0.077 0.035£0.015
KCnts KCnts KCnts

Mean 1.393 £ 0.364 ns

LifeTime

Chi sq. 1.167




Implication: Our findings suggest that T3 is associated with the lifetime of the monomer, as its
amplitude increases with decreasing concentration. T1 and T2 may be related to distinct
aggregation states, which are more prevalent at higher concentrations. However, aggregation-
based emission is a complex phenomenon®’ which needs further detailed investigation.
Considering these results, we believe that the association of phenylacyl bromide is important for
the efficient bimolecular electron transfer, since the aliphatic counterpart of bromides provided

lower yields.

7. On-line analysis using mass spectrometric analysis

Experimental procedure: 1b (0.025 mmol, 1 equiv), 1a (0.031 mmol, 1.25 equiv), 2,6-lutidine
(0.05 mM, 2 equiv) and 4DPAIPN (0.0012 mmol, 0.25 equiv) were mixed in MeCN (5mL) and
degassed with nitrogen for 5 mins. The solution was injected into the flow reactor by a 5mL SGE
gas-tight syringe with a flow rate of 0.66 mL/hour at room temperature. The reactor included a
PFA tube (1D 0.0linch, 0.11 mL) and a Philips Hue Lightstrip (peak wavelength 464 nm, 2 meters)
and was cooled down by compressed air flow. After the reaction, the solution was first diluted
with MeCN (0.66 mL/hour) and the mixture was further diluted with a mixture (MeCN/H-0, 8:2,
11.88 mil/hour). The resulting flow was split by ASI 600-P010-06 flow splitter and directly
analyzed by MS with 9.46 pl/min.

Data evaluations: Data were acquired three times after two residence times using Synapt G2S
High Definition Mass Spectrometry (HDMS) (Waters, Milford, MA, USA). Samples were ionized
by electrospray ionization (ESI) in positive ion mode. Spectrum was analysed by MassLynx v4.2.
We observed the higher molecular mass present in the spectrum, which can be assigned to the
aggregates of isocyanides (Figure S11). This result was consistent with our optical results where
isocyanides showed an aggregation-based absorption in visible light.

(a)
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Figure S10: (a) Blank experiment: general MS spectrum of on-line analysis on 1a without
photocatalyst. No irradiation.

(b) Zoom-in spectrum. Aggregation was observed as m/z 553, m/z 737 and m/z 921
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Figure S11: Schematic diagram of the flow setup

Details of reactor and tubing:

Tube used in the reactor: PFA tube (ID 0.01 inch)
Connection tube: PEEK tube

Black color: 0.004 inch

Yellow color: 0.007 inch

Red color: 0.005 inch

On-line MS measurement of 1a in the presence of light and PC (4DPAIPN):
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Figure S12: MS spectrum of on-line analysis on 1a with 4DPAIPN after irradiation under blue

LED. Intermediate m/z 184 was detected and the intensity of dimer m/z 367 raised significantly.

Note: To improve the mass accuracy, we further tuned the instrument and reperformed the

analysis to validate our observations.
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Figure S13: Reproducibility of the online HRMS results for better mass accuracy.

8. Mechanistic discussion



ST a0 e e = o

1a I n )
N
NH o l {_Ne — O
X 2 N O |
H

Vi
N

Y 8
N O possible dimer formation
2

i) Br-abstrcation

ii) HBr-elimination \e excitation NG NH o
iii) tautomerization ) ) \ O A o —> O g+ N, > X on
o chain propagation 3 N * N )
Pmeasured > 1 N o H & H N
H
Br mn Ph intermoleular EDA complex

1b N
I o
) Ph

Scheme S2: Proposed mechanism and side pathway.

Discussion: After the SET from intermediate I, the radical cation of la can undergo further
reaction with radical Il to generate the final product or can form a dimer. Since the reaction
involves a radical chain mechanism, the amount of radical cation of 1a will be minimal in the
reaction mixture (Scheme S2 A and B).

Based on the UV-Vis measurement, we cannot exclude the involvement of EDA-complex
formation between isocyanide la (donor) and 1b (acceptor), especially in the case of diaryl
iodonium, trifluoromethyl thianthrenium triflate and pyridinium salts or in polar solvents.
Moreover, there is also a possibility of intermolecular charge transfer between the isocyanide
group and the indole ring of 1a at higher concentrations or with other combinations of indole and
isocyanides. Our current experimental evidence suggests that, within the tested conditions, such

processes do not significantly contribute to the photophysical properties observed of 1a.

9. General procedure for the synthesis of spiro-
compounds

GP1: In an oven-dried 10 mL MW vial equipped with a magnetic stirring bar, tryptamine-derived
isocyanide (0.2 mmol, 1 equiv) and bromide (1.5 equiv) were added. Then dry toluene (0.1 M)
was added followed by 2,6-lutidine (2 equiv). The MW vial was then closed with a cap containing
teflon septum and degassed with nitrogen for 5 min. The vial was then placed for irradiation with
two Kessil blue LEDs as shown in figure S1 (40W, 456 nm) for 6-12 h. The progress of the reaction
was monitored through TLC and LC/MS. After completion, the solution was diluted with EtOAc



and washed with water. The organic layer was separated, and the aqueous layer was extracted with
EtOAc. The combined organic layers were dried over Na>SOs. The solvent was removed under
vacuum and the product was isolated through an auto column using an ecoflex silica column (30-
70 % EtOAc/heptane).

GP2: In an oven-dried 10 mL MW vial equipped with a magnetic stirring bar, tryptamine-derived
isocyanide (1.5 equiv), bromide (0.2 mmol, 1 equiv) and 4DPAIPN (5 mol%) were added. Then
dry DCE (0.1 M) was added followed by 2,6-lutidine (2 equiv). The MW vial was then closed with
a cap containing teflon septum and degassed with nitrogen for 5 min. The vial was then placed for
irradiation with two Kessil blue LEDs as shown in figure S1 (40W, 456 nm) for 2 h. The progress
of the reaction was monitored through TLC and LC/MS. After completion, the solution was diluted
with EtOAc and washed with water. The organic layer was separated, and the aqueous layer was
extracted with EtOAc. The combined organic layers were dried over Na,SO4. The solvent was
removed under vacuum and the product was isolated through an auto column using an ecoflex
silica column (30-70 % EtOAc/heptane).

GP3: In an oven-dried 10 mL MW vial equipped with a magnetic stirring bar, tryptamine-derived
isocyanide (0.2 mmol, 1 equiv) and S4/S5 (1.5 equiv) were added. Then dry toluene (0.1 M) was
added followed by 2,6-lutidine (2 equiv). The MW vial was then closed with a cap containing
teflon septum and degassed with nitrogen for 5 min. The vial was then placed for irradiation with
two Kessil blue LEDs as shown in figure S1 (40W, 456 nm) for 12 h. The progress of the reaction
was monitored through TLC and LC/MS. After completion, the solution was diluted with EtOAc
and washed with water. The organic layer was separated, and the aqueous layer was extracted with
EtOAc. The combined organic layers were dried over Na2SOs. The solvent was removed under
vacuum and the product was isolated through an auto column using an ecoflex silica column (20-
50 % EtOAc/heptane).

Note: For reproducibility, it is recommended to check the purity of the isocyanides. If isocyanides
and bromides are pure, no appreciable colour changes were observed as shown below in the
picture. However, a commercial solution of bromide without purification can give a colour to a
mixture. In the same way, if isocyanides are not stored properly, that can also lead to a change in

colour upon mixing with bromides.
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We obtained a lower yield with a-substituted bromides under our optimized conditions possibly
due to steric hindrance. This trend was also similar with our optimized conditions using 4DPAIPN

as a photocatalyst.



10. Product Characterization

2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one

NH o

X

CLo— O

N
Compound 2 was prepared according to the general procedure (GP1 and GP2) and isolated as a yellow
solid.
Column Chromatography: Silica, gradient 20- 50 % EtOAc/Heptane
'H NMR (300 MHiz, CDCls) 6 10.54 (s, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.56 — 7.51 (m, 2H), 7.45 — 7.36
(m, 3H), 7.30 - 7.19 (m, 3H), 5.02 (s, 1H), 4.12 — 3.93 (m, 2H), 2.54 — 2.34 (m, 2H), 2.32 (s, 3H).
13C NMR (75 MHz, CDCl3) & 188.14, 181.45, 167.29, 155.32, 141.77, 138.34, 131.41, 129.14, 128.81,
126.47, 125.68, 122.25, 120.48, 84.98, 68.72, 46.84, 31.19, 16.50.
HRMS (ESIY): [M+H]*cal’d for: 303.14918, found: 303.14887

1-(4-bromophenyl)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)ethan-

1-one

Compound 3 was prepared according to the general procedure (GP1 and GP2) and isolated as a red solid.
Column Chromatography: Silica, gradient 20- 50 % EtOAc/Heptane

IH NMR (300 MHz, Chloroform-d) & 10.53 (s, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.56 — 7.50 (m, 2H), 7.45 —
7.35 (m, 3H), 7.29 — 7.18 (m, 2H), 5.02 (s, 1H), 4.10-3.94 (m, 2H), 2.50 — 2.35 (m, 2H), 2.31 (s, 3H).

13C NMR (75 MHz, CDCls) § 188.14, 181.45, 167.29, 155.32, 141.77, 138.34, 131.41, 129.14, 128.81,
126.47, 125.68, 122.25, 120.48, 84.98, 68.72, 46.83, 31.19, 16.49, 16.50.

HRMS (ESI*): [M+H]*cal’d for: 381.05974, found: 381.05936

1-(4-fluorophenyl)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)ethan-
1-one
Compound 4 was prepared according to the general procedure (GP1 and GP2) and isolated as an orange

solid.

Column Chromatography: Silica, gradient 40-60 % EtOAc/Heptane



'H NMR (300 MHz, Chloroform-d) § 10.47 (s, 1H), 7.72 — 7.63 (m, 2H), 7.60 (dt, J = 7.7, 0.8 Hz, 1H),
7.39 (td, J=7.5, 1.5 Hz, 1H), 7.30-7.25 (m, 1H), 7.20 (m, 1H), 7.00 — 6.90 (m, 2H), 5.01 (s, 1H), 4.00 (qdd,
J=11.0, 7.8, 6.0 Hz, 2H), 2.49 — 2.33 (m, 2H), 2.30 (s, 3H).
13C NMR (75 MHz, CDCls) & 188.02, 181.52, 166.94, 164.57 (d, J = 250.9 Hz), 155.31, 141.85, 135.78
(d, J = 2.8 Hz), 129.43 (d, J = 8.8 Hz), 129.06, 126.40, 122.22, 120.42, 115.09 (d, J = 21.6 Hz), 84.88,
68.69, 46.73, 31.17, 16.43.
¥F NMR (282 MHz, CDCls) & -109.32.
HRMS (ESI*): [M+H]*cal’d for: 321.13975, found: 321.14006
4-(2-(2-methylspiro[indole-3,3"-pyrrolidin]-2*-ylidene)acetyl)benzonitrile
NH o
AN
CLo— O
N CN
Compound 5 was prepared according to the general procedure (GP1 and GP2) and isolated as a white solid.
Column Chromatography: Silica, gradient 40-60 % EtOAc/Heptane
'H NMR (300 MHz, Chloroform-d) & 10.64 (s, 1H), 7.75 — 7.67 (m, 2H), 7.61 — 7.53 (m, 3H), 7.38 (td, J
=7.5, 1.6 Hz, 1H), 7.23 (m, 2H), 5.01 (s, 1H), 4.04 (qdd, J = 11.3, 7.8, 6.1 Hz, 2H), 2.53 — 2.34 (m, 2H),
2.30 (s, 3H).
13C NMR (75 MHz, CDCls) & 186.93, 181.06, 168.23, 155.31, 143.20, 141.51, 132.07, 129.21, 127.62,
126.48, 122.18, 120.51, 118.55, 114.04, 85.18, 68.78, 47.00, 31.00, 16.42.
HRMS (ESI*): [M+H]*cal’d for: 328.14443, found: 328.14427
2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-(4-nitrophenyl)ethan-1-one

Compound 6 was prepared according to the general procedure (GP1 and GP2) and isolated as a pale yellow
solid.

Column Chromatography: Silica, gradient 20- 50 % EtOAc/Heptane

'H NMR (300 MHz, Chloroform-d) & 10.69 (s, 1H), 8.19 —8.07 (m, 2H), 7.84 — 7.73 (m, 2H), 7.60 (d, J =
7.7 Hz, 1H), 7.40 (td, J = 7.5, 1.6 Hz, 1H), 7.30 — 7.29 (m, 1H), 7.25 — 7.20 (m, 1H), 5.05 (s, 1H), 4.17 —
3.97 (m, 2H), 2.56 — 2.35 (m, 2H), 2.32 (s, 3H).

13C NMR (75 MHz, CDCls) & 186.64, 181.05, 168.46, 155.34, 149.07, 144.90, 141.48, 129.30, 128.08,
126.55, 123.48, 122.22, 120.58, 85.47, 68.82, 47.09, 31.03, 16.48.



HRMS (ESIY): [M+H]"cal’d for: 348.13425, found: 348.13437
2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-(naphthalen-2-yl)ethan-
1-one

NH O

N
Cry— T
N

Compound 7 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown solid.
Column Chromatography: Silica, gradient 20- 50 % EtOAc/Heptane

IH NMR (300 MHz, Chloroform-d) & 10.60 (s, 1H), 8.16 (s, 1H), 7.86-7.75 (m, 4H), 7.63 (d, J = 7.7 Hz,
1H), 7.50-7.38 (m, 3H), 7.32-7.29 (m, 1H), 7.25-7.20 (m, 1H) 5.25 (s, 1H), 4.11 — 3.95 (m, 2H), 2.54-2.38
(m, 2H), 2.35 (s, 3H).

13C NMR (75 MHz, CDCls) § 188.94, 181.28, 166.38, 154.89, 141.54, 134.28, 128.82, 128.63, 127.50,
127.22,127.14, 126.91, 126.01, 125.88, 123.69, 121.86, 120.01, 85.13, 68.30, 46.32, 30.86,16.09.
HRMS (ESIY): [M+H]*cal’d for: 353.16483, found: 353.16464

1-(benzofuran-2-yl)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)ethan-

1-one

Compound 8 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown solid.
Column Chromatography: Silica, gradient 20- 50 % EtOAc/Heptane

1H NMR (300 MHz, Chloroform-d) 6 10.49 (s, 1H), 7.63 (d, J=7.7 Hz, 1H), 7.56 (dt, ] =7.6, 1.1 Hz, 1H),
7.47 - 7.37 (m, 2H), 7.34 —7.27 (m, 2H), 7.26 — 7.16 (m, 3H), 5.22 (s, 1H), 4.15-3.96 (m, 2H), 2.55 — 2.35
(m, 2H), 2.33 (s, 3H).

13C NMR (75 MHz, CDCls) § 181.21, 179.45, 167.36, 155.26, 155.08, 154.57, 141.66, 129.08, 127.81,
126.45, 126.41, 123.22, 122.34, 122.16, 120.43, 112.03, 108.69, 85.74, 68.62, 46.91, 31.14, 16.41.

HRMS (ESIY): [M+H]"cal’d for: 343.14409, found: 343.14381
1-(4-methoxyphenyl)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-
ylidene)ethan-1-one



Compound 9 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown oil.
Column Chromatography: Silica, gradient 10-40 % EtOAc/Heptane

IH NMR (300 MHz, Chloroform-d) § 10.41 (s, 1H), 7.69 — 7.62 (m, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.38 (td,
J =175, 1.5 Hz, 1H), 7.32 — 7.14 (m, 2H), 6.85 — 6.75 (m, 2H), 5.05 (s, 1H), 4.13-3.92 (m, 2H), 3.78 (s,
3H), 2.53 — 2.35 (m, 2H), 2.32 (s, 3H).

13C NMR (75 MHz, CDCI3) § 188.56, 181.74, 166.03, 161.93, 155.23, 141.97, 132.22, 129.00, 128.88,
126.27, 122.20, 120.27, 113.32, 84.81, 68.56, 55.30, 46.52, 31.20, 16.39.

HRMS (ESIY): [M+H]*cal’d for: 333.15974, found: 333.15975

1-(2-methoxyphenyl)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-
ylidene)ethan-1-one

NH o

N
L~ 1)
N MeO

Compound 10 was prepared according to the general procedure (GP1) and isolated as a brown oil.
Column Chromatography: Silica, gradient 10-40 % EtOAc/Heptane

!H NMR (300 MHz, Chloroform-d) & 10.26 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.47 (dd, J = 7.6, 1.8 Hz,
1H), 7.38 — 7.27 (m, 3H), 7.25-7.18 (m, 1H), 6.92 — 6.77 (m, 2H), 5.04 (s, 1H), 4.01 (qdd, J = 10.9, 7.8, 6.1
Hz, 2H), 3.66 (s, 3H), 2.51 — 2.36 (m, 2H), 2.34 (s, 3H).

13C NMR (75 MHz, CDCls) § 190.18, 181.66, 165.51, 157.19, 155.21, 142.02, 131.22, 130.43, 129.71,
128.76, 126.11, 122.21, 120.33, 120.15, 111.43, 90.54, 68.42, 55.42, 46.60, 31.03, 16.33.

HRMS (ESIY): [M+H]*cal’d for: 333.15978, found: 333.15970

2-(2-methylspiro[indole-3,3'-pyrrolidin]-2*-ylidene)-1-(5,5,8,8-tetramethyl-
5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-one

NH O
NS
O O
N

Compound 11 was prepared according to the general procedure (GP1) and isolated as a brown oil.

Column Chromatography: Silica, gradient 10-40 % EtOAc/Heptane



IH NMR (300 MHz, CDCl3) & 10.46 (s, 1H), 7.74 (d, J = 1.9 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.42 - 7.26
(m, 3H), 7.24 — 7.16 (m, 2H), 5.05 (s, 1H), 4.01 (qdd, J = 10.9, 7.8, 6.1 Hz, 2H), 2.50 — 2.36 (m, 2H), 2.32
(s, 3H), 1.64 (s, 4H), 1.25 (s, 6H), 1.23 (s, 3H), 1.21 (s, 3H).

13C NMR (75 MHz, CDCls) § 189.75, 181.61, 166.26, 155.21, 148.29, 144.92, 141.93, 136.85, 128.87,
126.24, 125.42, 124.24, 122.17, 120.26, 85.42, 77.49, 77.06, 76.64, 68.55, 46.55, 35.02, 34.88, 34.42,
34.33, 31.76, 31.72, 31.68, 31.19, 16.37.

HRMS (ESI*): [M+H]*cal’d for: 413.2587, found: 413.2587

2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylpropan-1-one

Compound 12 was prepared according to the general procedure (GP1 and GP2) and isolated as a yellow
oil.

Column Chromatography: Silica, gradient 10-40 % EtOAc/Heptane

'H NMR (300 MHz, Chloroform-d) & 11.38 (s, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.41 — 7.33 (m, 2H), 7.30-
7.27 (m, 4H), 7.25-7.22 (m, 1H), 4.06 — 3.85 (m, 2H), 2.50-2.43 (m, 1H), 2.39 (s, 3H), 2.29 — 2.18 (m, 1H),
0.98 (s, 3H).

13C NMR (75 MHz, CDCls) & 195.45, 181.36, 165.29, 154.76, 142.19, 141.63, 128.90, 128.76, 127.81,
127.00, 126.22, 121.83, 120.57, 96.13, 68.81, 45.85, 33.43, 16.75, 12.72.

HRMS (ESIY): [M+H]*cal’d for: 317.16483, found: 317.16476

diethyl 2-(2-methylspiro[indole-3,3'-pyrrolidin]-2*-ylidene)malonate

NH (o]
X OEt
/
NEtO” ~O

Compound 13 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown
viscous liquid.

Column Chromatography: Silica, gradient 10-30% EtOAc/Heptane

IH NMR (300 MHz, CDCl3) § 9.51 (s, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.32 (td, J = 7.5, 1.5 Hz, 1H), 7.27 —
7.11 (m, 2H), 4.22 — 4.06 (m, 2H), 3.91 — 3.77 (m, 2H), 3.44 (p, J = 7.1 Hz, 2H), 2.39 — 2.15 (m, 5H), 1.22
(t, J=7.1Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H).

13C NMR (75 MHz, Acetone) 8 181.97, 168.94, 165.83, 165.64, 156.69, 142.87, 128.96, 126.12, 122.72,
120.56, 90.20, 69.32, 59.87, 45.88, 35.97, 16.92, 14.71, 13.90.



HRMS (ESIY): [M+H]"cal’d for: 343.16522, found: 343.16551
3,3-dimethyl-1-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)butan-2-one

NH

X

(6]
y/

N
Compound 14 was prepared according to the general procedure (GP1) and isolated as a brown solid.
Column Chromatography: Silica, gradient 20-50% EtOAc/Heptane
!H NMR (300 MHz, Chloroform-d) & 10.07 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.41 — 7.33 (m, 1H), 7.27 —
7.17 (m, 2H), 4.57 (s, 1H), 3.99-3.83 (m, 2H), 2.44 — 2.29 (m, 2H), 2.27 (s, 3H), 0.98 (s, 9H).
13C NMR (75 MHz, CDCls) § 205.72, 181.81, 165.55, 155.09, 142.02, 128.75, 126.14, 122.09, 120.18,
84.14, 68.37, 46.25, 41.64, 31.33, 27.61, 16.29.
HRMS (ESIY): [M+H]*cal’d for: 283.18047, found: 283.18048

2-methyl-2'-(trifluoromethyl)-4',5'-dihydrospiro[indole-3,3'-pyrrole]

N
|

CF;
/
N

Compound 15 was prepared according to the general procedure (GP3) and isolated as a yellow liquid.
Column Chromatography: Silica, gradient 20-40% EtOAc/Heptane

'H NMR (300 MHz, Chloroform-d) & 7.57 (d, J = 7.7 Hz, 1H), 7.39 (dt, J = 7.8, 4.3 Hz, 1H), 7.23 (d, J =
5.4 Hz, 2H), 4.58 — 4.35 (m, 2H), 2.56 (m, 1H), 2.42 (m, 1H), 2.29 (s, 3H).

13C NMR (75 MHz, CDCls) & 178.57, 164.51 (q is not visible), 155.33, 139.16, 129.45, 126.37, 122.19,
120.66, 119.13 (q, J = 276.07 Hz), 72.37, 61.10, 34.64, 16.45.

19F NMR (282 MHz, CDCl5) § -67.12.

HRMS (ESI*): [M+H]*cal’d for: 253.09470, found: 253.09485

2-(tert-butyl)-2'-(trifluoromethyl)-4*,5'-dihydrospiro[indole-3,3'-pyrrole]

N
|

CF4
/tBu
N

Compound 16 was prepared according to the general procedure (GP3) and isolated as a yellow liquid.

Column Chromatography: Silica, gradient 20-40% EtOAc/Heptane



IH NMR (300 MHz, Chloroform-d) & 7.59 (dt, J = 7.7, 0.9 Hz, 1H), 7.38 (td, J = 7.6, 1.3 Hz, 1H), 7.22
(td, J= 7.5, 1.1 Hz, 1H), 7.14 — 7.08 (m, 1H), 4.57 (tq, J = 7.5, 2.5 Hz, 2H), 2.96 (dt, J = 14.0, 7.8 Hz,
1H), 2.36 (dt, J = 14.2, 7.1 Hz, 1H), 1.39 (s, 9H).

13C NMR (75 MHz, CDCls) & 188.16, 166.15 (q, J = 33.96 Hz), 154.08, 140.35, 129.37, 126.49, 121.40,
120.69, 119.19 (q, J = 276.64 Hz), 72.13, 61.57, 37.94, 33.44, 30.11.

9F NMR (282 MHz, CDCls) § -65.61.

HRMS (ESI*): [M+H]*cal’d for: 295.14164, found: 295.14179

2-methyl-2'-(trifluoromethyl)-4'H-spiro[indole-3,3'-quinoline]

Compound 17 was prepared according to the general procedure (GP3) and isolated as a yellow liquid.
Column Chromatography: Silica, gradient 20-40% EtOAc/Heptane

IH NMR (300 MHz, Chloroform-d) & 7.66 (dd, J = 7.7, 1.4 Hz, 1H), 7.59 (dt, J = 7.8, 0.8 Hz, 1H), 7.48 —
7.32 (m, 3H), 7.18 — 7.09 (m, 2H), 7.03 (m, 1H), 3.22 — 3.01 (m, 2H), 2.22 (s, 3H).

13C NMR (75 MHz, CDCls) & 179.25, 154.93, 154.18 (q, J = 33.27 Hz), 140.86, 138.97, 130.55, 129.59,
129.12, 128.89, 128.27, 126.21, 125.37, 122.77, 120.82, 119.86 (g, J = 276.71 Hz), 58.90, 34.31, 17.64.
F NMR (282 MHz, CDCls) & -68.72.

HRMS (ESI"): [M+H]*cal’d for: 315.11035, found: 315.11041

2-methyl-2'-phenyl-4',5'-dihydrospiro[indole-3,3'-pyrrole]®

N
|

Ph
/
N

Compound 18 was prepared according to the general procedure (GP3).

Ethyl-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate®

NH o
N\

/
N

OEt

Compound 19 was prepared according to the general procedure (GP3).



2-(5-chloro-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-
one

NH o
Cl AN

/
N

Ph

Compound 20 was prepared according to the general procedure (GP1 and GP2) and isolated as a red solid.
Column Chromatography: Silica, gradient 40-70 % EtOAc/Heptane

!H NMR (300 MHz, Chloroform-d) § 10.48 (s, 1H), 7.73 — 7.65 (m, 2H), 7.51 (d, J = 8.3 Hz, 1H), 7.42 —
7.26 (m, 5H), 5.09 (s, 1H), 4.14 — 3.93 (m, 2H), 2.51 — 2.34 (m, 2H), 2.31 (s, 3H).

13C NMR (75 MHz, CDCls) & 189.78, 182.21, 165.74, 153.89, 143.65, 139.48, 132.13, 131.22, 129.27,
128.33, 127.24, 122.88, 121.33, 85.51, 68.93, 46.72, 31.20, 16.51.

HRMS (ESIY): [M+H]*cal’d for: 337.11020, found: 337.11038
2-(5-fluoro-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one

NH o
F X

/
N

Ph

Compound 21 was prepared according to the general procedure (GP1 and GP2) and isolated as an organe
solid.

Column Chromatography: Silica, gradient 20-50 % EtOAc/Heptane

IH NMR (300 MHz, Chloroform-d) & 10.47 (s, 1H), 7.71 — 7.64 (m, 2H), 7.52 (dd, J = 8.4, 4.6 Hz, 1H),
7.41-7.28 (m, 3H), 7.11 - 6.96 (m, 2H), 5.09 (s, 1H), 4.00 (m, 2H), 2.50 — 2.32 (m, 2H), 2.30 (s, 3H).
13C NMR (75 MHz, CDCls) 6 189.24, 181.08 (d, J = 3.5 Hz), 165.51, 6 161.16 (d, J = 245.7 Hz), 150.93
(d, J = 2.3 Hz), 143.22 (d, J = 8.8 Hz), 139.04, 130.72, 127.85, 126.74, 120.71 (d, J = 8.8 Hz), 115.25 (d, J
=23.5Hz), 109.76 (d, J = 25.1 Hz), 84.98, 68.60 (d, J = 2.2 Hz), 46.23, 30.77, 16.01.

19F NMR (282 MHz, CDCls) & -115.42.

HRMS (ESIY): [M+H]*cal’d for: 321.13975, found: 321.13997

2-(5-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one
NH o

Br N

/
N

Ph

Compound 22 was prepared according to the general procedure (GP1 and GP2) and isolated as a red solid.

Column Chromatography: Silica, gradient 10-40 % EtOAc/Heptane



IH NMR (300 MHz, Chloroform-d) & 10.47 (s, 1H), 7.73 — 7.66 (m, 2H), 7.51 (dd, J = 8.2, 1.8 Hz, 1H),
7.46 (d, J = 8.2 Hz, 1H), 7.42 — 7.29 (m, 4H) 5.09 (s, 1H), 4.08-3.93 (m, 2H), 2.50 — 2.34 (m, 2H), 2.30 (s,
3H).

13C NMR (75 MHz, CDCls) 6 189.60, 182.11, 165.55, 154.20, 143.90, 139.35, 132.16, 132.06, 131.09,
128.20, 127.10, 125.58, 121.67, 119.81, 85.35, 68.82, 46.60, 31.03, 16.37.

HRMS (ESI"): [M+H]"cal’d for: 381.05974, found: 381.05987
2-(7-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one

NH o

X
Ph

Br
Compound 23 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown
solid.
Column Chromatography: Silica, gradient 20-50 % EtOAc/Heptane
IH NMR (300 MHz, Chloroform-d) § 10.47 (s, 1H), 7.69 (m, 2H), 7.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.44 —
7.28 (m, 3H), 7.21 (dd, J = 7.4, 1.1 Hz, 1H), 7.09 (t, J = 7.7 Hz, 1H), 5.12 (s, 1H), 4.12 — 3.94 (m, 2H),
2.51—2.31 (m, 5H).
13C NMR (75 MHz, CDCls) § 189.63, 183.19, 165.57, 153.54, 143.49, 139.30, 132.38, 131.10, 128.19,
127.72,127.11, 121.18, 114.01, 85.48, 70.16, 46.57, 31.32, 16.63.

HRMS (ESI"): [M+H]*cal’d for: 381.05974, found: 381.05995

2-(5-methoxy-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one
NH o

_0 N

/
N

Ph

Compound 24 was prepared according to the general procedure (GP1 and GP2) and isolated as a brown
viscous liquid.

Column Chromatography: Silica, gradient 30-60% EtOAc/Heptane

'H NMR (300 MHz, Chloroform-d) & 10.49 (s, 1H), 7.72 — 7.65 (m, 2H), 7.48 (d, J = 8.5 Hz, 1H), 7.41 —
7.27 (m, 3H), 6.89 (dd, J = 8.4, 2.5 Hz, 1H), 6.83 (d, J = 2.5 Hz, 1H), 5.11 (s, 1H), 4.09 — 3.89 (m, 2H),
3.79 (s, 3H), 2.51 — 2.32 (m, 2H), 2.28 (s, 3H).

13C NMR (75 MHz, CDCls) & 189.54, 179.28, 166.87, 158.62, 148.80, 143.35, 139.51, 130.94, 128.14,
127.09, 120.60, 113.58, 108.77, 85.39, 68.72, 55.74, 46.62, 31.36, 16.26.

HRMS (ESIY): [M+H]*cal’d for: 333.15974, found: 333.16004

2-(2-(tert-butyl)spiro[indole-3,3'-pyrrolidin]-2'-ylidene)-1-phenylethan-1-one



Compound 25 was prepared according to the general procedure (GP1 and GP2) and isolated as a white
solid.

Column Chromatography: Silica, gradient 20-50% EtOAc/Heptane

'H NMR (300 MHz, Chloroform-d) & 10.64 (s, 1H), 7.72 — 7.64 (m, 2H), 7.60 (dt, J = 7.7, 0.9 Hz, 1H),
7.40 — 7.27 (m, 4H), 7.22 — 7.13 (m, 2H), 5.19 (s, 1H), 4.22 — 3.95 (m, 2H), 2.94 (ddd, J = 13.7,9.4, 7.5
Hz, 1H), 2.32 (ddd, J = 13.6, 8.3, 4.0 Hz, 1H), 1.44 (s, 9H).

13C NMR (75 MHz, CDCls) & 190.11, 188.69, 167.44, 153.64, 144.06, 139.62, 130.82, 128.65, 128.16,
126.99, 126.51, 120.93, 120.37, 85.23, 68.73, 47.00, 38.10, 30.29, 29.65.

HRMS (ESIY): [M+H]*cal’d for: 345.19612, found: 345.19616

1-phenyl-2-(2-phenylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)ethan-1-one

NH o
X

/—Ph
N

Ph

Compound 26 was prepared according to the general procedure (GP1 and GP2) and isolated as a yellow
solid.

Column Chromatography: Silica, gradient 20-50 % EtOAc/Heptane

IH NMR (300 MHz, CDCls) § 10.67 (s, 1H), 7.99 — 7.94 (m, 2H), 7.76 (d, J = 7.7 Hz, 1H), 7.66 — 7.59 (m,
2H), 7.48 — 7.38 (m, 4H), 7.34 — 7.28 (m, 2H), 7.27 — 7.20 (m, 3H), 5.29 (s, 1H), 4.21 — 4.00 (m, 2H), 2.77
—2.60 (m, 1H), 2.27 — 2.17 (m, 1H).

13C NMR (75 MHz, CDCls) § 189.46, 177.88, 167.80, 153.98, 143.92, 139.42, 131.67, 131.24, 130.92,
129.04, 128.89, 128.59, 128.09, 127.12, 126.84, 121.38, 85.76, 67.32, 46.84, 32.58.

HRMS (ESI*): [M+H]*cal’d for: 365.16483, found: 365.16523
2-(2-(4-fluorophenyl)spiro[indole-3,3'-pyrrolidin]-2*-ylidene)-1-phenylethan-1-one

NH O
X

Ph
L
0
F
Compound 27 was prepared according to the general procedure (GP1 and GP2) and isolated a yellow solid.

Column Chromatography: Silica, gradient 20-50 % EtOAc/Heptane



IH NMR (300 MHz, Chloroform-d) & 10.64 (s, 1H), 8.03 — 7.93 (m, 2H), 7.74 (d, J = 7.7 Hz, 1H), 7.68 —
7.60 (m, 2H), 7.45-7.39 (m, 1H), 7.37 — 7.20 (m, 5H), 7.17 — 7.07 (m, 2H), 5.28 (s, 1H), 4.21 — 4.00 (m,
2H), 2.67 (dt, J = 13.3, 9.1 Hz, 1H), 2.25 (ddd, J = 13.2, 7.3, 2.8 Hz, 1H).

13C NMR (75 MHz, CDCls) & 189.55, 176.69 (d, J = 1.1 Hz), 167.53, 164.55 (d, J = 253.1 Hz), 153.84,
143.80, 139.33, 131.00, 130.78(d, J = 8.6Hz), 129.10, 128.11, 127.93 (d, J = 3.3 Hz), 127.11, 126.85,
121.35, 116.24, 115.95, 85.78, 67.21, 46.80, 32.67.

19F NMR (282 MHz, CDCl3)  -107.83.

HRMS (ESI"): [M+H]"cal’d for: 383.15540, found: 383.15553
methyl(Z)-2-((Z2)-2'-(2-oxo-2-phenylethylidene)spiro[indoline-3,3'-pyrrolidin]-2-
ylidene)acetate

NH o

AN
__ Ph

N COzMe
H

Compound 28 was prepared according to the general procedure (GP1 and GP2) and isolated light yellow
soild.

Column Chromatography: Silica, gradient 20-50% EtOAc/Heptane

IH NMR (300 MHz, CDCls) § 10.45 (s, 1H), 9.74 (s, 1H), 7.75-7.68 (m, 2H), 7.41 — 7.28 (m, 3H), 7.25-
7.20 (m, 1H), 7.15 (d, J = 7.5 Hz, 1H), 6.98 — 6.88 (M, 2H), 5.34 (s, 1H), 4.92 (s, 1H), 3.94 (t, J = 6.8 Hz,
2H), 3.71 (s, 3H), 2.53 — 2.34 (h, 2H).

13C NMR (75 MHz, CDCls) § 189.91, 170.51, 169.18, 166.66, 143.80, 139.86, 132.37, 130.99, 129.42,
128.24,127.27, 123.50, 122.16, 109.58, 87.15, 82.77, 61.96, 54.21, 51.00, 46.08, 38.61.

HRMS (ESI*): [M+H]*cal’d for: 361.15465, found: 361.15492
2-(2-methyl-1',4'-dihydro-2"H-spiro[indole-3,3'-quinolin]-2'-ylidene)-1-phenylethan-1-one

Compound 29 was prepared according to the general procedure (GP1 and GP2) and isolated as a yellow
solid.

Column Chromatography: Silica, gradient 20-50 % EtOAc/Heptane



'H NMR (300 MHz, CDCls) 6 13.40 (s, 1H), 7.73 — 7.67 (m, 2H), 7.61 (d, J = 7.7 Hz, 1H), 7.46 — 7.29 (m,
5H), 7.13 - 6.99 (m, 4H), 6.90 (d, J = 6.9 Hz, 1H), 5.38 (s, 1H), 3.25 (d, J = 15.7 Hz, 1H), 2.84 (d, J = 15.6
Hz, 1H), 2.36 (s, 3H).

13C NMR (75 MHz, CDCls) 6 190.66, 181.63, 156.28, 154.30, 141.55, 139.25, 136.47, 131.66, 129.09,
129.04, 128.75, 128.45, 127.24, 126.26, 123.63, 122.64, 121.51, 120.77, 116.50, 89.98, 60.42, 32.91, 17.35.
HRMS (ESIY): [M+H]*cal’d for: 365.16483, found: 365.16510
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Ground state optimized geometry of 1a at B3LYP/cc-pVTZ level (in A, gas phase):

C 1.07708200 -1.40257600 -0.65927500
C 2.41107900 -1.68590800 -0.42484700
C 0.59063400 -0.12704900 -0.35276900
C 3.27474300 -0.71994400 0.11617500
C 1.47836600 0.82963400 0.19415700
C 2.82049100 0.54966200 0.43442000
H 2.79596900 -2.67077800 -0.65183500
H 4.31158800 -0.97294600 0.29191500
H 0.41680500 -2.16282600 -1.05284600
C -0.69578600 0.50695400 -0.47079600
H 3.48442100 1.29362000 0.85511300
N 0.75207900 1.98080800 0.40132900
C -0.55632300 1.78976600 -0.00103500
C -1.94512600 -0.11812000 -1.00488200
C -2.82550100 -0.79708400 0.05943600
H -1.69505100 -0.85777000 -1.76754500
H -2.56974700 0.63193300 -1.49493100
N -2.19213100 -1.92603500 0.65226200
H -3.76285500 -1.13484700 -0.38663300
H -3.06562600 -0.08813400 0.85282800
C -1.66703200 -2.85732100 1.11673600
H 1.11701500 2.83832800 0.77334200
C -1.54845000 2.89450000 0.11857300
H -2.48937300 2.62399500 -0.35610600
H -1.76177200 3.13210500 1.16430100
H -1.18607800 3.80883200 -0.35810200
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