Supporting Information

Unravelling a Bench-Stable Zinc-amide Compound as a Highly Active Multitasking Catalyst for the Radical-Mediated Selective Alk(en)ylation of Unactivated Carbocycles Under Mild Conditions

Sangita Sahoo, Subarna Manna, and Arnab Rit*
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
*E-mail: arnabrit@iitm.ac.in

Table of contents:

General experimental description S2
General procedure for the synthesis of amidated imidazolium salts [L1-3]I S2-S6
General procedure for the synthesis of compounds [Zn1-3] S6-S10
General procedure for the alkenylation and double functionalization of indene S10
General procedure for the alkenylation and alkylation of fluorene S10-S11
General synthetic method for the alkylation of fluorene in gram scale S12
General procedure for competitive experiments S12-S13
Late-stage modification of mono-alkylated fluorene S14-S15
EPR analysis S15-S16
Calculation of Bond Dissociation Enthalpy (BDE) S16-S17
Electrochemical analysis of [L1]I and compound Zn1 S17
Control experiments for establishing a radical pathway S17-S19
Control experiments for detecting catalytic intermediates S19-S22
In situ NMR monitoring of fluorene and indene functionalization S22-S23
UV-vis absorption studies for kinetic analysis S23
Molar magnetic susceptibility calculation for the compound $\mathbf{Z n} 1$ S24
Analytical data of isolated compounds S24-S42
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isolated compounds S43-S118
Mechanistic study S119
Crystallographic data for the compound Zn1 S120
Computational data S120-S34
References S134-S135

General experimental description:

All the reactions were performed under an argon atmosphere using a glove box and/or standard Schlenk techniques unless stated otherwise. All non-deuterated solvents used for the synthesis were distilled, degassed by standard methods and kept under an inert atmosphere over $4 \AA$ molecular sieves, whereas the deuterated solvents were used as received from the commercial sources. NMR spectra were recorded using the Bruker 400 and 500 MHz FT-NMR spectrometers at ambient temperature and all the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced internally to the residual solvent signals. ${ }^{19}$ F NMR spectra were referenced externally to α, α, α -trifluorotoluene ($0.05 \% \mathrm{CDCl}_{3}, \delta=-63.73 \mathrm{ppm}$). The ESI-MS spectra were measured with an Agilent 6545A Q-TOF Mass spectrometer. Infrared spectra were recorded on an ATR 4000 Series Spectrometer. UV-vis absorption spectra were recorded on JASCO V-650 spectrometer. Either Metrohm autolab potentiostat or galvanostat MAC90009 instrument was used for the electrochemical analysis. EPR spectra were measured using JES-FA200 ESR Spectrometer. Zinc salts (from TCI) and all other chemicals were purchased from commercial sources and used directly without further purification. Employed amidated azolium salts ([L1-3]I) were synthesized according to the literature procedures. ${ }^{1}$

1. General procedure for the synthesis of amidated imidazolium salts [L1-3]I:

The N, N-dimethylimidazolium salt and the amidated imidazolium salts were prepared using the reported procedure. ${ }^{1}$ In a pressure tube $(25 \mathrm{~mL}), N, N$-dimethylimidazolium salt $(0.373$ mmol, 1 equiv.), isocyanate ($0.671 \mathrm{mmol}, 1.8$ equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 equiv.) were stirred in $\mathrm{DCM}(2 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ (oil bath temperature) for 24 h . After completion of the reaction, the reaction mixture was purified by column chromatography using methanol and DCM solvent mixture (1:10) as eluent to provide the desired C2-amidated imidazolium salts. ${ }^{1}$

Scheme S1: Synthesis and characterization of amidated imidazolium salts [L1-3]I

[L1]I: [L1]I was synthesized according to the general procedure ${ }^{1}$ using 100 mg of imidazolium salt and 107.0 mg of p-tolyl-isocyanate (yield: $140 \mathrm{mg}, 0.391 \mathrm{mmol}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.30(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), $3.98(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 150.7$, 138.0, $135.0,134.3,129.5,123.9,120.4,36.4,20.6 \mathrm{ppm}$. IR (KBr): 3428, 1683, and $1530 \mathrm{~cm}^{-1}$.
[L2]I: [L2]I was synthesized according to the general procedure ${ }^{1}$ using 100 mg of imidazolium salt and 118.3 mg of 3,5 -dimethyl phenyl isocyanate (yield: $138 \mathrm{mg}, 0.371 \mathrm{mmol}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 11.22(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}$, 6 H), 2.29 (s, 6H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 150.8, 138.4, 138.1, 136.7, $127.2,123.9,118.1,36.3,21.0 \mathrm{ppm}$. IR (KBr): 3451, 1685, and $1528 \mathrm{~cm}^{-1}$.
[L3]I: [L3]I was synthesized according to the general procedure ${ }^{1}$ using 100 mg of imidazolium salt and 102.7 mg of 4-chlorophenyl isocyanate (yield: $137 \mathrm{mg}, 0.363 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.49$ (s, 1H), 7.89 (s, 2H), 7.72 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, $J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.98 ($\mathrm{s}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 151.1, 137.7, 135.9, 129.4, 129.1, $124.1122 .2,36.4 \mathrm{ppm}$. IR (KBr): 3427, 1615 , and $1531 \mathrm{~cm}^{-1}$.
-

Figure S1. ${ }^{1} \mathrm{H}$ NMR of [L1]I in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSOd_{6}

Figure S2. $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of [LI]II in DMSO- d_{6}

Figure S3. ${ }^{1} \mathrm{H}$ NMR of [L2]I in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSOd_{6}

Figure S4. $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of [L2]II in DMSO-d ${ }_{6}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR of [L3]I in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSOd_{6}

Figure S6. $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of [L3]]I in DMSO-d ${ }_{6}$

2. General Procedure for the synthesis of compounds (Zn1-3):

The metal precursor ZnCl_{2} (1 equiv.) and amidated imidazolium salts [L1-3]I (2 equiv.) were added to the Schlenk tube containing 2 mL of methanol with constant stirring at ambient temperature for 12 h . After that, all the volatiles were removed under high vacuum and the residue was then dissolved in dichloromethane. After filtration, the filtrate was concentrated and precipitated with diethyl ether. The precipitate was then collected and dried to yield a white solid.

Compound Zn1. Compound Zn1 was synthesized according to the general procedure using 100 mg of [L1]I (yield: $207.1 \mathrm{mg}, 0.243 \mathrm{mmol}, 87 \%$). Suitable crystals of Zn1 for singlecrystal X-ray diffraction study was obtained via slow evaporation from methanolic solution of Zn1. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.96$ (s, 2H), 7.87 (s, 4H), 7.64 (d, $J=10.5 \mathrm{~Hz}, 4 \mathrm{H}$), $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.97(\mathrm{~s}, 12 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 150.9,138.3,137.5,134.8,129.4,123.8,120.5,36.3,20.6 \mathrm{ppm}$. IR (KBr): 3483, 1682, and $1529 \mathrm{~cm}^{-1}$.

Compound Zn2. Compound $\mathbf{Z n} 2$ was synthesized according to the general procedure using 100 mg of [L2]I (yield: $175.0 \mathrm{mg}, 0.199 \mathrm{mmol}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.24$
(s, 2H), 7.93 ($\mathrm{s}, 4 \mathrm{H}$), $7.34(\mathrm{~s}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 12 \mathrm{H}), 2.29(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 150.8,138.4,138.1,136.7,127.2,123.9,118.1,36.3,21.0 \mathrm{ppm}$. IR (KBr): 3448, 1686, and $1530 \mathrm{~cm}^{-1}$.

Compound $\mathbf{Z n 3}$. Compound $\mathbf{Z n} 3$ was synthesized according to the general procedure using 100 mg of [L3]I yield: $166.9 \mathrm{mg}, 0.187 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.51$ (s, 2H), 7.93 (s, 4H), 7.74 (d, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.53 (d, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}$), 3.98 (s, 12H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 151.1, 137.7, 135.9, 129.4, 129.1, 124.1 122.2, 36.4 ppm. IR (KBr): 3435, 1690, and $1528 \mathrm{~cm}^{-1}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{Z n 1}$ in DMSO-d6. \# indicates solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d ${ }_{6}$

Figure S8. ${ }^{13}{ }^{[}\left\{{ }^{1} H\right\}$ NMR of compound $\mathbf{Z n 1}$ in DMSO-d ${ }_{6}$
-11.24

$\stackrel{n}{n}$
$\underbrace{\circ}$

Figure S9. ${ }^{1} \mathrm{H} N M R$ of compound $\mathbf{Z n 2}$ in DMSO-d6. \# indicates solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d6

Figure S10. $\left.{ }^{13} C_{\{ }^{1} H\right\}$ NMR of compound $\mathbf{Z n 2}$ in DMSO- d_{6}

Figure S11. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{Z n 3}$ in DMSO-d $d_{\text {. }}$ \# indicates solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d 6

Figure S12. $\left.{ }^{13} C_{\{ }^{1} H\right\}$ NMR of compound $\mathbf{Z n 3}$ in DMSO-d ${ }_{6}$
3. General procedure for alkenylation, double functionalization and alkylation reaction:
a) General procedure for the alkenylation of indene:

An oven-dried pressure tube (25 mL) was charged with indene $(0.5 \mathrm{mmol})$, alcohol $(0.55$ $\mathrm{mmol}), \mathrm{LiO}^{t} \mathrm{Bu}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ followed by the addition of benzene (2 mL). Then, the tube was kept in an oil bath at $70^{\circ} \mathrm{C}$ and heated for 24 h. After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

b) General procedure for the double functionalization of indene:

An oven-dried pressure tube (25 mL) was charged with indene (0.5 mmol), alcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n 1}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ followed by the addition of benzene (2 mL). Then, the tube was kept in an oil bath at $70^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.
c) General procedure for the alkenylation of fluorene:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), alcohol (0.55 mmol), $\mathrm{LiO}^{t} \mathrm{Bu}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n 1}$ ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), followed by the
addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h. After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

d) General procedure for the alkylation of fluorene:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), alcohol (1.1 $\mathrm{mmol})$, $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n 1}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h. After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

Table S1: Optimization of the reaction conditions for the selective C-alkenylation and double functionalization of indene ${ }^{\text {a }}$

Entry	Catalyst	Temp (${ }^{\circ} \mathrm{C}$)	Base	Indene: alcohol	Solvent	Yield (\%)	
						3a	4a
1	[L1]I $+\mathrm{ZnBr}_{2}$	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	61	-
2	[L1] $\mathrm{I}+\mathrm{ZnCl}_{2}$	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	68	-
3	$[\mathrm{L} 1] \mathrm{I}+\mathrm{Zn}(\mathrm{OAc})_{2}$	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	29	-
4	$[\mathbf{L 1}] \mathrm{I}+\mathrm{Zn}(\mathrm{OTf})_{2}$	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	35	-
5	Zn1	70	$\mathbf{L i O}^{\prime} \mathbf{B u}$	1: 1.1	Benzene	83	-
6	Zn2	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	59	-
7	Zn3	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	67	-
8	Zn1	70	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	37	15
9	Zn1	70	CsOH	1:1:1	Benzene	12	43
10	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	DCE	53	-
11	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Toluene	41	-
12	Zn1	70	CsOH	1: 2.2	Benzene	10	71
13	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:2.2	Benzene	80	-
14	-	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	Benzene	<10	-
15	Zn1	70	-	1:1.1	Benzene	trace	-
16	ZnCl_{2}	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	Benzene	trace	-
17	[L1]I	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	30	-
18	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	DMF	19	-
19	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	DMSO	26	-
20	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Acetonitrile	32	-
21	Zn1	70	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	Dioxane	21	-
22	Zn1	60	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	77	-
23	Zn1	80	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1:1.1	Benzene	84	-
24	Zn1	90	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	1: 1.1	Benzene	79	-
25	Zn1	70	NaOH	1:1.1	Benzene	20	33
26	Zn1	70	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1: 1.1	Benzene	17	-
27	Zn1	70	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1:1.1	Benzene	14	-
28	Zn1	70	CsOH	1:2.5	Benzene	12	73
29	Zn1	70	CsOH	1:3	Benzene	18	70

${ }^{\text {a }}$ Reaction conditions: indene (0.5 mmol), benzyl alcohol ($0.55-1.5 \mathrm{mmol}$), Zn1 ($5 \mathrm{~mol} \%$), and base (0.25 $\mathrm{mmol})$ in solvent $(2 \mathrm{~mL})$ at $60-90^{\circ} \mathrm{C}$ for 24 h .

Table S2. Optimization of the reaction conditions for selective C -alkenylation and C -alkylation of fluorene ${ }^{\text {a }}$

Entry	Catalyst	$\mathbf{B a s e}$	Solvent	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Fluorene $\mathbf{:}$ alcohol	Yield (\%) $\mathbf{6 a}$	
1	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Benzene	70	$1: 1.1$	23	-
$\mathbf{2}$	$\mathbf{Z n 1}$	$\mathbf{L i O}^{\prime} \mathbf{B u}$	Toluene	$\mathbf{1 1 0}$	$\mathbf{1 : 1 . 1}$	$\mathbf{7 8}$	-
3	$\mathbf{Z n 1}$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	Toluene	110	$1: 1.1$	54	19
4	$\mathbf{Z n 1}$	CsOH	Toluene	110	$1: 1.1$	Not separable	
$\mathbf{5}$	$\mathbf{Z n 1}$	$\mathbf{C s O H}$	Toluene	$\mathbf{1 1 0}$	$\mathbf{1 : 2 . 2}$	$\mathbf{7}$	$\mathbf{8 3}$
6	$\mathbf{Z n 1}$	NaOH	Toluene	110	$1: 2.2$	28	37
7	$[\mathbf{L 1}] \mathrm{I}+\mathrm{ZnCl}_{2}$	CsOH^{2}	Toluene	110	$1: 2.2$	-	67
8	-	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Toluene	110	$1: 1.1$	15	-
9	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	DMF	110	$1: 1.1$	31	-
10	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	DMSO	110	$1: 1.1$	27	-
11	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Acetonitrile	110	$1: 1.1$	33	-
12	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Toluene	90	$1: 1.1$	46	-
13	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Toluene	100	$1: 1.1$	57	-
14	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Toluene	120	$1: 1.1$	77	-
15	$\mathbf{Z n 1}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	Toluene	130	$1: 1.1$	75	-
16	$\mathbf{Z n 1}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Toluene	110	$1: 1.1$	14	-
17	$\mathbf{Z n 1}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	Toluene	110	$1: 1.1$	19	-

${ }^{\text {a }}$ Reaction conditions: fluorene (0.5 mmol), benzyl alcohol ($0.55-1.1 \mathrm{mmol}$), $\mathbf{Z n 1}$ ($5 \mathrm{~mol} \%$), and base (0.25 $\mathrm{mmol})$ in solvent $(2 \mathrm{~mL})$ at $90-130{ }^{\circ} \mathrm{C}$ for 24 h .

4. General synthetic method for the alkylation of fluorene in gram scale:

An oven-dried pressure tube (25 mL) was charged with fluorene ($1 \mathrm{gm}, 6.01 \mathrm{mmol}$), benzyl alcohol (13.2 mmol), $\mathrm{CsOH}(3.00 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n} 1(0.300 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of toluene (15 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired product (7a) was isolated by column chromatography over silica gel using hexane.

5. General procedure for competitive experiments:

(a) Alkylation of fluorene ($\mathbf{5 a}$) with primary alcohol and secondary alcohol:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), benzyl alcohol (1.1 mmol), 1-phenylethan-1-ol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n 1}(0.025$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the products $7 \mathbf{7 a}$ (yield: $68 \%, 87.1 \mathrm{mg}$) and 7 (yield: $23 \%, 31.1 \mathrm{mg}$) were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.
(b) Alkylation of fluorene ($\mathbf{5 a}$) with electron-rich and electron-deficient benzyl alcohol:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), 4-methyl benzyl alcohol (1.1 mmol), 4-(trifluoromethyl)benzyl alcohol (1.1 mmol), $\mathrm{CsOH}(0.250 \mathrm{mmol}, 50$ $\mathrm{mol} \%$), and $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the products 7b (yield: $76 \%, 102.7 \mathrm{mg}$) and $\mathbf{7 f}$ (yield: 19%, 31 mg) were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.
(c) Alkenylation of indene (1a) with electron-rich and electron-deficient benzyl alcohol:

An oven-dried pressure tube (25 mL) was charged with indene (0.5 mmol), 4-methyl benzyl alcohol (0.55 mmol), 4-nitrobenzyl alcohol (0.55 mmol), $\mathrm{LiO}^{t} \mathrm{Bu}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and Zn1 ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), followed by the addition of benzene (2 mL). Then, the tube was kept in an oil bath at $70^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the products 3b (yield: $79 \%, 86.2 \mathrm{mg}$) and $\mathbf{3 g}$ (yield: $15 \%, 18.7 \mathrm{mg}$) were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

Scheme S2. Competitive experiments

6. Late-stage modification of mono-alkylated fluorene:

(a) Compound $\mathbf{8 a}$ was synthesized following the reported procedure. ${ }^{2}$ A mixture of 9-benzyl-

9 H -fluorene $7 \mathbf{7 a}(0.4 \mathrm{mmol})$, 4-chloronitrobenzene (0.6 mmol), $\mathrm{CsOH}(0.6$ $\mathrm{mmol})$, and acetonitrile $(1.0 \mathrm{~mL})$ in a Schlenk tube $(25 \mathrm{~mL})$ was heated at $80{ }^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the mixture was successively washed with brine solution, followed by extraction with ethyl acetate. The combined organic layer was concentrated under vacuum and then purified through column chromatography over silica gel using ethyl acetate/hexane as eluent, providing 8a in 77% isolated yield.
(b) Compound $\mathbf{8 b}$ was synthesized following the reported procedure. ${ }^{2}$ A mixture of 9-benzyl-
 9H-fluorene 7a (0.4 mmol), 1-bromobutane (1.6 mmol), TBAI (0.08 $\mathrm{mmol}), \mathrm{NaOH}(0.2 \mathrm{~g})$ and water $(1 \mathrm{~mL})$ in a Schlenk tube $(25 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the mixture was successively washed with brine solution, followed by extraction with ethyl acetate. The combined organic layer was concentrated under vacuum, then purified through column chromatography over silica gel using ethyl acetate and hexane as eluent, giving 8b in 73% isolated yield.
(c) Compound $8 \mathbf{c}$ was synthesized following the reported procedure. ${ }^{2}$ A mixture of 9-benzyl-
 2,7-dibromo-9H-fluorene 7w (0.2 mmol), 4-chloronitrobenzene (0.3 $\mathrm{mmol}), \mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$, and acetonitrile $(1.0 \mathrm{~mL})$ in a Schlenk tube $(25 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 24 h and then the reaction progress was monitored by TLC. After completion of the reaction, the mixture was successively washed with brine solution, followed by extraction with ethyl acetate. The combined organic layer was concentrated under vacuum and then purified through column chromatography over silica gel using ethyl acetate and hexane as the eluent, giving $\mathbf{8 c}$ in 69% isolated yield.
(d) Compound $\mathbf{8 d}$ was synthesized following the reported procedure. ${ }^{3}$ A mixture of 9-benzyl-
 2,7-dibromo-9H-fluorene 7w (0.2 mmol), benzyl bromide (0.8 mmol), TBAI (0.08 mmol), $\mathrm{NaOH}(0.2 \mathrm{~g})$ and water $(1 \mathrm{~mL})$ in a Schlenk tube $(25 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the mixture was successively washed with brine solution, followed by extraction with ethyl
acetate. The combined organic layer was concentrated under vacuum, then purified through column chromatography over silica gel using ethyl acetate and hexane as eluent, giving 8d in 71% isolated yield.

7. EPR analysis:

(a) Procedure for singly reduced product of Zn1:

In a Schlenk tube, $\mathbf{Z n 1}$ (1 equiv.) and $\mathrm{LiO}^{t} \mathrm{Bu}$ (1 equiv.) were added followed by the addition of methanol (2 mL). The reaction mixture was stirred for 1 h . During that time colour of the solution changed to light yellow. Then, EPR measurement of this solution was carried out at room temperature under inert condition.

EPR Detail:

The one-electron reduced product of Zn1a was analysed by X-band EPR (Bruker) at room temperature. The parameters during the data collection were following. Microwave frequency 9.43 GHz; Microwave Power 0.99 MW; Modulation frequency 100 kHz ; Modulation amplitude 0.2 mT .

Figure S13. EPR signal obtained from singly reduced product of Zn1
(b) Procedure for singly reduced product of [L1]I:

In a Schlenk tube, [$\mathbf{L 1} \mathbf{1} \mathrm{I}$ (1 equiv.) and $\mathrm{LiO}^{t} \mathrm{Bu}$ (1 equiv.) were added followed by methanol (2 mL). The reaction mixture was stirred for 1 h , no change in colour was observed during that time. Then the EPR measurement of this solution was carried out both at room temperature and liquid nitrogen temperature. No signal was observed.

EPR Detail:

The resultant solution was analysed by X-band EPR (Bruker) at room temperature. The parameters during the data collection were following. Microwave frequency 9.43 GHz ; Microwave Power 2 MW; Modulation frequency 100 kHz ; Modulation amplitude 0.35 mT .

Figure S14. EPR spectrum obtained from [L1]I and base

8. Calculation of bond-dissociation enthalpy (BDE):

The BDE (N-H) values of amidated compound $(\mathbf{Z n} 1)$ were estimated following the theoretical scheme reported by Zipse et al. ${ }^{4}$ The stabilities of amidyl radicals (Zn1-radical) relative to the reference aminyl radical $\left(\cdot \mathrm{NH}_{2}\right)$ were calculated as the reaction enthalpies at 298.15 K for the hydrogen atom transfer reaction shown below ($\Delta \mathrm{H}_{\mathrm{rxn}}$). We could estimate the BDE of $\mathbf{Z n} \mathbf{1}$ by adding the calculated reaction enthalpy to the experimentally determined BDE value of ammonia ($450.1 \mathrm{~kJ} \mathrm{~mol}^{-1}=107.6 \mathrm{kcal} \mathrm{mol}^{-1}$).

Geometry optimizations of amidated compounds ($\mathbf{Z n} \mathbf{1}$ and $\mathbf{Z n} 2$) and their corresponding radical forms ($\mathbf{Z n} \mathbf{1}$ ' radical and $\mathbf{Z n} \mathbf{2}^{\prime}$ radical) were performed at the B3LYP/6-31G(d). Thermochemical corrections to 298.15 K with a scaling factor of 0.9806 were used to obtain an enthalpy of the systems at the same level of theory. Components of the calculations are summarized in Table S3. The Gaussian 16, Revision B. 01 program was used for all calculations.

Table S3. Enthalpies and BDE data

	$\mathrm{H}_{298} / \mathrm{Hf}$
NH_{3}	-56.519520
$\mathrm{NH}_{2} \bullet$	-55.856231
$\mathbf{Z n 1}$	-2497.418608
$\mathbf{Z n 1}{ }^{\prime}$	-2496.773001

$\Delta \mathrm{H}_{\mathrm{rxn}}=-11.0943768 \mathrm{kcal} \mathrm{mol}^{-1}$
$\mathrm{BDE}=96.5 \mathrm{kcal} \mathrm{mol}^{-1}$

	$\mathrm{H}_{298} / \mathrm{Hf}$
NH_{3}	-56.519520
$\mathrm{NH}_{2} \bullet$	-55.856231
$\mathbf{Z n 2}$	-2575.961881
$\mathbf{Z n 2}{ }^{\bullet}$	-2575.310970

$\Delta \mathrm{H}_{\mathrm{rxn}}=-7.768573 \mathrm{kcal} \mathrm{mol}^{-1}$
$\mathrm{BDE}=99.8 \mathrm{kcal} \mathrm{mol}^{-1}$

9. Electrochemical analysis of the [L1]I and compound Zn1:

The electrochemical measurements, cyclic voltammetry (CV), of the synthesized amidated imidazolium salt [L1]I and compound Zn1 were carried out at ambient temperature with Metrohm auto lab potentiostat and galvanostat MAC90009 instrument, respectively. The measurements of [L1]I and $\mathbf{Z n 1}$ were performed at a sweep rate of $100 \mathrm{mV} / \mathrm{sec}$ with threeelectrode configuration such as auxiliary electrode: Pt wire; working electrode: Glassy carbon; reference electrode: $\mathrm{Ag} / \mathrm{Ag}^{+}$. All the measurements were calibrated externally using Ferrocene $\left(\mathrm{E}_{1 / 2}, \mathrm{Fc} / \mathrm{Fc}^{+}=0.22\right.$ volts $\left.v s \mathrm{Ag} / \mathrm{Ag}^{+}\right)$.

10. Control experiments for establishing a radical pathway:

(a) Radical scavenger experiments:
(i) An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), 4-methyl benzylalcohol (1.1 mmol), CsOH ($0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%$), Zn1 ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and radical scavengers, $\mathrm{BHT} / \mathrm{Galvinoxy} / \mathrm{CuCl}_{2}(0.5 \mathrm{mmol})$ followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired product ($\mathbf{7 b}$) was isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

Figure S15. Portion of ESI mass spectrum of the reaction mixture of standard fluorene alkylation in presence of BHT. M (molecular ion) corresponds to (p-tolyl)methanol radical trapped with BHT.
(ii) An oven-dried pressure tube (25 mL) was charged with benzylalcohol (0.5 mmol), CsOH ($0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%$), $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and BHT (0.5 mmol) followed by the addition of toluene $(2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h. An aliquot from the reaction mixture was analysed by ESI-MS analysis.

Figure S16. Portion of ESI mass spectrum of the reaction mixture of a stoichiometric reaction between benzyl alcohol and BHT in presence of Zn1. M corresponds to benzyl alcohol radical trapped with BHT.
(b) Hydrogen atom transfer experiment:

An oven-dried pressure tube (25 mL) was charged with cyclobutanol (1.1 mmol), $\mathrm{CsOH}(0.25$ $\mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ followed by the addition of toluene (2 mL).

Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 12 h . After completion of the reaction, the reaction was analysed by NMR spectroscopy.

Figure S17. ${ }^{1}$ H NMR spectrum of reaction mixture for the dehydrogenation of cyclobutanol

11. Control experiments for detecting catalytic intermediates:

(a) Alcohol dehydrogenation:

An oven-dried pressure tube (25 mL) was charged with benzyl alcohol (1.1 mmol), $\mathrm{CsOH}(0.25$ $\mathrm{mmol}, 50 \mathrm{~mol} \%$) and $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 12 h . After completion of the reaction, the reaction mixture was analysed by GC-MS, using mesitylene as internal standard.
(b) Alkenylation of fluorene:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), benzaldehyde (0.5 mmol), $\mathrm{LiO}^{t} \mathrm{Bu}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$ followed by the addition of toluene (2 mL) with or without catalyst $(\mathbf{Z n} 1)$. The reaction mixture was kept for heating at $110^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the desired product (6a) were isolated by column chromatography over silica gel using hexane as eluent.
(c) Zinc catalyzed hydrogenation of intermediate ($\mathbf{6 a}$) by alcohol (2a):

An oven-dried pressure tube (25 mL) was charged with $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%), 9$ -benzylidene-9H-fluorene (6a), benzyl alcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%$) and
toluene (2 mL). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the desired product $(79 \%, 7 \mathbf{a})$ was isolated by column chromatography over silica gel using hexane as eluent.

(d) Deuterium labelling experiment:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.25 mmol), deuterated benzyl alcohol (0.55 mmol), CsOH ($0.12 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and $\mathbf{Z n} 1$ ($0.012 \mathrm{mmol}, 5 \mathrm{~mol} \%$), followed by the addition of toluene (2 mL). Then, the tube was kept in oil bath at $110{ }^{\circ} \mathrm{C}$ and heated for the specified time. After completion of the reaction, the desired product was isolated by column chromatography over silica gel using hexane. The ${ }^{1} \mathrm{H}$ NMR analysis of the product 7a- $\boldsymbol{d}_{\boldsymbol{I}}$ revealed the $21-71 \% \mathrm{D}$ incorporation in the product.

		H_{1}	H_{2}
Signal δ	$7.24[2 \mathrm{H}]$	$3.10[2 \mathrm{H}]$	$4.23[1 \mathrm{H}]$
Integral Value	2.00	0.58	0.79
Calculated ratio	-	$\{(2-0.58) / 2\} * 100=71 \%$	$\{(1-0.79) / 1\} * 100=$
			21%

Figure S18. ${ }^{1} \mathrm{H}$ NMR of deuterium labelling experiment in CDCl_{3}
(e) Procedure for mercury dropping test:

An oven-dried pressure tube (25 mL) was charged with fluorene (0.5 mmol), 4-methyl benzylalcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%), \mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and mercury ($40 \mathrm{mg}, 2 \mathrm{mmol}, 4$ equiv. w.r.t. fluorene) followed by the addition of toluene (2 mL). Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired product (7b) was isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

(f) Detection of intermediate:

An oven-dried pressure tube (25 mL) was charged with $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), (E)-1-benzylidene-1H-indene (3a), benzyl alcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$ and benzene (2 mL). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the desired product $(66 \%, 4 a)$ was isolated by column chromatography over silica gel using hexane as eluent.
(g) Alk(en)ylation of fluorene in presence of water:

An oven-dried pressure tube (25 mL) was charged with $\mathbf{Z n 1}$ ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), fluorene (0.5 mmol), benzyl alcohol ($0.55-1.1 \mathrm{mmol}$), $\mathrm{LiO}^{t} \mathrm{Bu}$ (0.25 mmol , $50 \mathrm{~mol} \%$), water (0.25 $\mathrm{mmol})$ and toluene (2 mL). The reaction mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the reaction mixture was analysed by GC-MS using mesitylene as internal standard.

(h) Alk(en)ylation of fluorene in presence of benzophenone:
(i) An oven-dried pressure tube (25 mL) was charged with $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, fluorene (0.5 mmol), benzyl alcohol (0.55 mmol), $\mathrm{LiO}^{t} \mathrm{Bu}$ ($0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%$), benzophenone (0.25 mmol) and toluene (2 mL). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the desired product ($73 \%, \mathbf{6 a}$) was isolated by column chromatography over silica gel using hexane as eluent.

Scheme S3. Alkenylation of fluorene in presence of benzophenone

(ii) An oven-dried pressure tube (25 mL) was charged with $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, fluorene (0.5 mmol), benzyl alcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, benzophenone $(0.25 \mathrm{mmol})$ and toluene $(2 \mathrm{~mL})$. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, $\mathbf{6 a}$ was obtained in 81% along with $7 \mathbf{a}$ in 7% after column chromatography over silica gel using hexane as eluent.

Scheme S4. Alkylation of fluorene in presence of benzophenone

12. In situ NMR monitoring of the functionalization of fluorene and indene:

(a) In situ NMR monitoring experiment for fluorene:

An oven-dried pressure tube (25 mL) was charged with fluorene $(0.5 \mathrm{mmol})$, alcohol (1.1 $\mathrm{mmol}), \mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n} 1(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of toluene $(2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $110^{\circ} \mathrm{C}$ and progress of the reaction was monitored over the interval of 6 h and 12 h , using ${ }^{1} \mathrm{H}$ NMR analysis.

Figure S19. Stacked ${ }^{l} H$ NMR spectra of crude reaction for the alkylation of fluorene at different time interval. * alkenylated product, \# alkylated product

(b) In situ NMR monitoring experiment for indene:

An oven-dried pressure tube (25 mL) was charged with indene (0.5 mmol), alcohol (1.1 mmol), $\mathrm{CsOH}(0.25 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathbf{Z n 1}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzene (2 mL). Then, the tube was kept in oil bath at $70^{\circ} \mathrm{C}$ and the progress of the reaction was monitored over the interval of 4-12 h , using ${ }^{1} \mathrm{H}$ NMR analysis.

Figure S20. Stacked ${ }^{1} H$ NMR spectra of crude reaction for the alkenylation of indene at different time interval. * alkenylated product, \# double functionalized product

13. UV-visible absorption studies for kinetics analysis:

(a) Calculation of the reaction order with respect to catalyst loading [Zn1]:

Different sets of reactions were conducted by varying the catalyst loading (3-6 mol \%) keeping the other factors constant. An aliquot ($5 \mu \mathrm{~L}$) of the reaction mixture was then taken from the Schlenk tube after certain time interval and the spectral changes were monitored at 262 nm with appropriate dilution.
(b) Calculation of the reaction order with respect to 4-methylbenzyl alcohol

Different set of reactions were conducted by varying the alcohol amount (1.4-2.6 equiv.) keeping the other factors constant. An aliquot ($5 \mu \mathrm{~L}$) of the reaction mixture was then taken from the Schlenk tube after certain time interval and the spectral changes were monitored at 262 nm with appropriate dilution.

14. Molar magnetic susceptibility calculation for compound $\mathbf{Z n} 1$:

According to Evans method, $\chi_{\mathrm{g}}=\frac{C L\left(R-R_{0}\right)}{10^{9}\left(m-m_{0}\right)}$
where, $\chi_{g}=$ Gram magnetic susceptibility
$\mathrm{C}=$ Balance calibration constant $=1$
$\mathrm{L}=$ Height of sample in tube in cm
$\mathrm{R}=$ Reading for tube + sample
$\mathrm{R}_{0}=$ Reading for the empty tube
$\mathrm{m}=$ Weight of tube + sample in gram
$\mathrm{m}_{0}=$ Weight of the empty tube in gram
Molar magnetic susceptibility, $\chi_{\mathrm{m}}=\chi_{\mathrm{g}}$ * Molecular weight of sample

	Compound Zn1
Molecular weight	850.686
L	1.7 cm
R	-6
R_{0}	-6
m	1.7573 g
$\mathrm{~m}_{0}$	1.7367 g

For Zn1,
From Eq. (1), $\chi_{g}=0$
Hence, from Eq. (2) $\chi_{\mathrm{m}}=0$

15. Analytical data of isolated compounds:

(E)-1-benzylidene-1H-indene (Compound-3a): ${ }^{5}$ Following the general procedure 3(a), the
 titled compound was isolated as yellow solid ($86.8 \mathrm{mg}, 0.425 \mathrm{mmol}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (d, J $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.66 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.28 (m, 2H), 7.08-7.04 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,140.2$, $137.6,137.1,134.7,130.4,128.9,128.8,128.5,127.7,126.2,125.3,121.1,119.3 \mathrm{ppm}$.
(E)-1-(4-methylbenzylidene)-1H -indene (Compound-3b): ${ }^{5}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($90.5 \mathrm{mg}, 0.415$ mmol, 83% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,139.4,138.7,137.7,134.3,130.4,129.6,129.0,127.5,126.3,125.2$, 121.1, 119.2, 21.5 ppm .
(E)-1-(4-methoxybenzylidene)-1H-indene (Compound-3c): ${ }^{5}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($103 \mathrm{mg}, 0.440$ mmol, 88% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2 H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,141.9,138.3,137.8,133.9$, $131.9,129.8,128.8,127.3,126.0,125.1,121.0,119.0,114.4,55.5 \mathrm{ppm}$.
(E)-1-(4-chlorobenzylidene)-1H-indene (Compound-3d): ${ }^{5}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($90.7 \mathrm{mg}, 0.380$ mmol, 76% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.22 (m, 2H), $7.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.96(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.2,140.7,137.4,135.5,135.2,134.5,131.5,129.1,127.9,127.3,125.8,125.5$, 121.2, 119.3 ppm .
(E)-1-(4-bromobenzylidene)-1H-indene (Compound-3e): ${ }^{6}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($104.7 \mathrm{mg}, 0.370$ mmol, 74% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,140.8,137.4,136.0,135.3,132.0,131.7$, $127.9,127.3,125.8,125.5,122.8,121.2,119.4 \mathrm{ppm}$.
(E)-4-((1H-inden-1-ylidene)methyl)benzonitrile (Compound-3f): ${ }^{6}$ Following the general
 procedure 3(a), the titled compound was isolated as yellow solid (76.8 $\mathrm{mg}, 0.335 \mathrm{mmol}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.65$ $(\mathrm{m}, 5 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,142.3,141.6,137.0,136.7$, $132.5,130.7,128.6,126.0,125.8,125.4,121.5,119.7,118.9,111.5 \mathrm{ppm}$.
(E)-1-(4-nitrobenzylidene)-1H-indene (Compound-3g): ${ }^{6}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($78.5 \mathrm{mg}, 0.315$ mmol, 63% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28$ (d, $J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=$
$5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.2,143.6$, $143.5,142.4,137.1,137.0,130.8,128.7,125.9,125.5,125.4,124.0,121.5,119.7 \mathrm{ppm}$.
(E)-1-(4-isopropylbenzylidene)-1H-indene (Compound-3h): Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($99.7 \mathrm{mg}, 0.405$ mmol, 81% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.25 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (d, $J=7.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,142.1,139.5,137.7,134.7,134.2,130.5$, $129.0,127.5,127.0,126.3,125.2,121.1,119.2,34.1,24.0 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19}$ 247.1487; Found 247.1479.
(E)-4-((1H-inden-1-ylidene)methyl)-N,N-dimethylaniline (Compound-3i): ${ }^{5}$ Following the
 general procedure $3(\mathrm{a})$, the titled compound was isolated as yellow solid ($101 \mathrm{mg}, 0.410 \mathrm{mmol}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.34$
(m, 1H), 7.23-7.21 (m, 2H), $7.17(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.04 (s, 6H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,141.5,138.2,135.8$, $132.4,132.1,130.0,126.5,126.1,125.0,124.7,120.9,118.7,112.2,40.3 \mathrm{ppm}$.
(E)-1-(3-bromobenzylidene)-1H-indene (Compound-3j): Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($97.7 \mathrm{mg}, 0.345$ $\mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,141.4,139.1,137.3,135.6,132.9,131.2,130.3$, 128.8, 128.1, 126.8, 125.8, 125.5, 122.9, 121.2, 119.4 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br} 283.0122$; Found 283.0112.
(E)-1-(3-chlorobenzylidene)-1H-indene (Compound-3k). ${ }^{5}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($81.1 \mathrm{mg}, 0.340$ mmol, 68% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (s, 1H), 7.47 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36$ (m, 2H), 7.33-7.30 (m, $2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$
ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,141.4,138.8,137.3,135.6,134.7,130.0$, $130.0,128.4,128.3,128.1,126.9,125.8,125.5,121.3,119.4 \mathrm{ppm}$.
(E)-1-(2-bromobenzylidene)-1H-indene (Compound-3l): Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($86.3 \mathrm{mg}, 0.305$ $\mathrm{mmol}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-$ $6.86(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,141.4,139.1,137.3,135.6$, 132.9, 131.2, 130.3, 128.8, 128.1, 126.8, 125.8, 125.5, 122.9, 121.2, 119.4 ppm. HRMS (ESI) $m / z:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}:$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrNH}_{4}$ 300.0388; Found 300.0472.
(E)-1-(2-chlorobenzylidene)-1H-indene (Compound-3m): ${ }^{7}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($70.4 \mathrm{mg}, 0.295$ mmol, 59% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,141.6,137.0,137.0,135.2,133.0,132.7,129.6$, $128.1,127.7,127.5,126.2,125.5,125.2,121.2,119.8 \mathrm{ppm}$.
(E)-1-((1H-inden-1-ylidene)methyl)naphthalene (Compound-3n): ${ }^{8}$ Following the general

procedure 3(a), the titled compound was isolated as yellow solid (99.1 $\mathrm{mg}, 0.390 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.16$ $(\mathrm{m}, 2 \mathrm{H}), 7.94-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,142.2,137.0,134.3,134.1,133.7,132.3$, $129.5,128.9,128.7,127.9,127.2,126.7,126.3,125.6,125.3,124.8,121.2,119.6 \mathrm{ppm}$.
(E)-2-((1H-inden-1-ylidene)methyl)naphthalene (Compound-3o): Following the general
 procedure 3 (a), the titled compound was isolated as yellow solid ($101.7 \mathrm{mg}, 0.400 \mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.54-$ 7.51 (m, 2H), 7.36 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,140.4$, 137.7, 134.9, 134.6, 133.6, 133.2, 130.3, 128.9, 128.5, 128.4, 127.8, 127.7, 127.5, 126.8, 126.6,
126.3, 125.4, 121.1, 119.3 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15}$ 255.1174; Found 255.1169.
(E)-2-((1H-inden-1-ylidene)methyl)furan (Compound-3p): ${ }^{7}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($62.1 \mathrm{mg}, 0.319$ $\mathrm{mmol}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.04-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4,144.9$, $142.2,137.5,136.7,133.7,127.4,125.0,121.2,119.1,115.0,114.3,112.4 \mathrm{ppm}$.
(E)-2-((1H-inden-1-ylidene)methyl)pyridine (Compound-3q): ${ }^{8}$ Following the general
 procedure 3(a), the titled compound was isolated as yellow solid (67.7 $\mathrm{mg}, 0.330 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73$ (d, $J=$ $5.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H})$, 7.31-7.17 (m, 4H), $7.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8$, $150.2,142.9,142.6,137.8,136.5,135.9,128.2,127.6,126.2,126.0,125.4,122.5,121.2,119.6$ ppm.
(E)-1-((E)-3-phenylallylidene)-1H-indene (Compound-3r): ${ }^{7}$ Following the general procedure
 3(a), the titled compound was isolated as yellow solid ($88.0 \mathrm{mg}, 0.385$ mmol, 77% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (d, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 2 H), 7.22-7.20 (m, 2H), 7.14-7.09 (m, 3H), 6.87-6.82 (m, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,140.9,138.0,136.9,136.8,132.5,128.9,128.7$, 128.7, 127.6, 127.2, 125.7, 125.1, 124.7, 121.3, 119.5 ppm . HRMS (ESI) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}$ 231.1174; Found 231.1166.
(E)-1-(3,4,5-trimethoxybenzylidene)-1H-indene (Compound-3s): Following the general
 procedure 3(a), the titled compound was isolated as yellow solid (92.7 $\mathrm{mg}, 0.314 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.03(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,142.0,139.7,138.8,137.6,134.7,132.6,128.9,127.6,126.0$, 125.3, 121.2, 119.2, 107.6, 61.1, 56.3 ppm. HRMS (ESI) $m / z:[M+H]^{+}$: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}$ 295.1334; Found 295.1329.
(E)-1-benzylidene-2-methyl-1H-indene (Compound-3t): Following the general procedure

3(a), the titled compound was isolated as yellow solid ($45 \mathrm{mg}, 0.205 \mathrm{mmol}$, 41% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (d, $J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.28(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.1,139.4,138.7$, 137.7, 134.3, 130.4, 129.6, 129.0, 127.5, 126.3, 125.2, 121.1, 119.2, 21.5 ppm . GC-MS: m / z 218 (M^{+}).
(E)-1-benzylidene-4,7-dimethyl-1H-indene (Compound-3u): Following the general
 procedure 3(a), the titled compound was isolated as yellow solid (88 mg , $0.379 \mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.01-$ $6.93(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,141.8$, 138.0, 133.4, 133.2, 131.7, 130.7, 130.6, 129.1, 128.6, 128.4, 128.0, 126.5, 21.5, 18.1 ppm. GC-MS: $m / z 232\left(\mathrm{M}^{+}\right)$.
(E)-1-butylidene-4,7-dimethyl-1H-indene (Compound-3v): Following the general procedure

3(a), the titled compound was isolated as yellow liquid ($68 \mathrm{mg}, 0.343 \mathrm{mmol}$, 69% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84$ (m, $2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{t}, J=8.01 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,142.1,137.2$, $132.9,130.2,129.3,128.6,128.1,127.8,125.2,33.0,23.5,21.2,18.1,14.0 \mathrm{ppm}$. GC-MS: m / z $198\left(\mathrm{M}^{+}\right)$.
(E)-1-hexylidene-4,7-dimethyl-1H-indene (Compound-3w): Following the general procedure
 3(a), the titled compound was isolated as yellow liquid ($73.7 \mathrm{mg}, 0.326 \mathrm{mmol}$, 65% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.73(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 1.62-1.57 (m, 2H), 1.40-1.39 (m, 4H), 1.00-0.94 (m, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.8,142.1,137.5,135.7,132.9,130.2,129.3,128.1,127.7,125.1,31.7,31.0,29.9$, 22.7, 21.2, 18.1, 14.2 ppm. GC-MS: $m / z 226\left(\mathrm{M}^{+}\right)$.
(E)-1-benzylidene-3-methyl-1H-indene (Compound-3x): Following the general procedure 3(a), the titled compound was isolated as yellow solid ($77 \mathrm{mg}, 0.352 \mathrm{mmol}$, 71% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 2.28$ (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,143.1,139.6,138.4$, $137.4,130.2,128.8,128.1,127.5,126.0,125.4,122.7,118.9,118.8,13.6 \mathrm{ppm}$. GC-MS: m/z $218\left(\mathrm{M}^{+}\right)$.
(E)-3-methyl-1-(4-methylbenzylidene)-1H-indene (Compound-3y): Following the general
 procedure 3(a), the titled compound was isolated as yellow liquid (86 mg , $0.370 \mathrm{mmol}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61$ (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, 3H), 2.21 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,142.9,138.7,138.5,138.2$, 134.6, 130.1, 129.5, 127.3, 126.2, 125.3, 122.7, 118.8, 118.8, 21.5, 13.5 ppm . GC-MS: m/z 232 $\left(\mathrm{M}^{+}\right)$.
(E)-(1-benzylidene-1H-inden-3-yl)(phenyl)methanol (Compound-4a): ${ }^{5}$ Following the
 general procedure 3(b), the titled compound was isolated as yellow solid (110 $\mathrm{mg}, 0.355 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60$ (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.19(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 4 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{br} ., 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.6,141.7,140.1,138.8,138.7,137.0,130.3,128.9,128.8,128.6,128.5,128.3$, 127.4, 127.2, 125.5, 122.2, 120.3, 119.2, 72.4 ppm .
(E)-(1-(4-methylbenzylidene)-1H-inden-3-yl)(p-tolyl)methanol (Compound-4b): ${ }^{7}$ Following
 the general procedure $3(\mathrm{~b})$, the titled compound was isolated as yellow solid ($113.3 \mathrm{mg}, 0.335 \mathrm{mmol}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.79-7.76 (m, 1H), 7.67-7.64 (m, 2H), $7.55(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 6 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 2.51$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3$, $140.1,138.8,138.5,138.0,137.7,134.2,130.3,129.5,129.3,128.3,127.1,127.1,125.2,121.9$, 120.3, 119.0, 72.1, 21.4, 21.2 ppm.

$4 c):{ }^{7}$ Following the general procedure 3(b), the titled compound was isolated as yellow solid ($135.2 \mathrm{mg}, 0.365 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.39 (m, 3H), 7.21-7.12 (m, 3H), 7.09-7.07 (m, 1H), 6.97 (d, J= 8.8 $\mathrm{Hz}, 2 \mathrm{H}$), 6.87 (d, J= $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.89 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 160.0,159.5,149.1,139.9,139.0,136.9,134.0,131.9,129.7,128.6$, $128.3,126.9,125.3,121.7,120.2,119.0,114.4,114.1,72.0,55.5,55.4 \mathrm{ppm}$.
(E)-(1-(2-bromobenzylidene)-1H-inden-3-yl)(bromophenyl)methanol (Compound-4d):
 Following the general procedure 3(b), the titled compound was isolated as yellow solid ($131.0 \mathrm{mg}, 0.280 \mathrm{mmol}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H})$, 2.62 (br., 1 H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.0, 140.5, $140.3,140.2,137.9,136.9,133.1,133.0,132.6,129.9,129.6,129.2,128.0,127.9,127.5,127.5$, 125.8, 125.2, 123.7, 122.6, 120.2, 71.0 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{ONa} 490.9447$; Found 490.9439.
(E)-(1-(4-chlorobenzylidene)-1H-inden-3-yl)(4-chlorophenyl)methanol (Compound-4e):5

Following the general procedure 3(b), the titled compound was isolated as yellow solid ($125.1 \mathrm{mg}, 0.330 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 4 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H})$, 2.51 (br., 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.6, 140.6, 139.8, 139.2, 138.5, $135.8,132.0,131.8,131.6,128.8,127.7,127.4,125.9,122.9,122.2,122.0,120.5,119.4,71.6$ ppm.
(E)-thiophen-2-yl(1-(thiophen-2-ylmethylene)-1H-inden-3-yl)methanol (Compound-4f):

Following the general procedure 3(b), the titled compound was isolated as yellow solid ($109.6 \mathrm{mg}, 0.340 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.34-$ $6.31(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{br} ., 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3$,
153.2, 145.6, 144.9, 142.6, 139.9, 138.3, 135.0, 127.1, 125.2, 123.9, 120.2, 119.0, 115.2, 114.4, 112.4, 110.5, 107.9, 65.8 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{OS}_{2}$ 323.0564; Found 323.0558 .

(E)-furan-2-yl(1-(furan-2-ylmethylene)-1H-inden-3-yl)methanol

(Compound-4g): ${ }^{7}$

Following the general procedure 3(b), the titled compound was isolated as yellow solid ($101.6 \mathrm{mg}, 0.350 \mathrm{mmol}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.51-6.50 (m, 1H), 6.35-6.31 (m, 2H), $5.99(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,153.3,145.8,144.9,142.6,140.0,138.4,135.2,127.3,125.2,123.9$, $120.3,119.1,115.2,114.5,112.4,110.5,107.9,65.9 \mathrm{ppm}$.

(E)-(1-benzylidene-4,7-dimethyl-1H-inden-3-yl)(phenyl)methanol

(Compound-4h):

Following the general procedure 3(b), the titled compound was isolated as yellow solid ($121.8 \mathrm{mg}, 0.360 \mathrm{mmol}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.17(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.5$, 142.1, $141.1,139.6,137.9,135.3,132.8,131.0,130.6,130.5,129.6,129.1,128.8,128.7,128.2,128.0$, 127.7, 125.3, 72.6, 22.0, 20.6 ppm .

9-benzylidene-9H-fluorene (Compound-6a): ${ }^{9}$ Following the general procedure 3(c), the titled
 compound was isolated as yellow solid ($99.1 \mathrm{mg}, 0.390 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,139.4,139.4$, $137.2,136.4,135.4,133.9,130.7,128.9,128.5,127.2,126.9,125.7,124.4,120.4,119.9,119.7$ ppm.

9-(4-methylbenzylidene)-9H-fluorene (Compound-6b): ${ }^{10}$ Following the general procedure
 3(c), the titled compound was isolated as yellow solid ($101.9 \mathrm{mg}, 0.380$ $\mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$,
2.47 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,139.8,139.2,138.1,136.8,136.2$, $134.0,129.4,129.4,128.5,128.2,127.7,127.1,126.7,124.5,120.3,119.8,119.7,21.6 \mathrm{ppm}$.

9-(4-methoxybenzylidene)-9H-fluorene (Compound-6c): ${ }^{10}$ Following the general procedure
 3(c), the titled compound was isolated as yellow solid ($115.1 \mathrm{mg}, 0.405$ mmol, 81% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.54$ $(\mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,141.1$, 139.7, $138.9,136.7,135.4,130.9,129.0,128.4,127.9,127.5,126.9,126.6,124.2,120.2,119.8,119.6$, 113.9, 55.1 ppm .

9-(3-bromobenzylidene)-9H-fluorene (Compound-6d): ${ }^{11}$ Following the general procedure
 3(c), the titled compound was isolated as yellow solid ($109.9 \mathrm{mg}, 0.329$ mmol, 66% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75$ (m, 3H), 7.63$7.59(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,139.4,139.2,138.8,137.5$, $136.2,134.5,129.8,129.2,128.9,128.6,128.1,127.5,127.2,126.9,125.3,124.4,120.4,119.9$, 119.7 ppm.

9-(4-chlorobenzylidene)-9H-fluorene (Compound-6e): ${ }^{10}$ Following the general procedure
 3(c), the titled compound was isolated as yellow solid ($106.8 \mathrm{mg}, 0.370$ $\mathrm{mmol}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.59-7.56$ (m, 2H), 7.53 (d, $J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,139.4,139.4,137.2$, $136.4,135.4,133.9,130.7,128.9,128.5,127.2,126.9,125.7,124.4,120.4,119.9,119.7 \mathrm{ppm}$.

9-(2-bromobenzylidene)-9H-fluorene (Compound-6f): Following the general procedure 3(c),
 the titled compound was isolated as yellow solid ($98.3 \mathrm{mg}, 0.295 \mathrm{mmol}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.4,139.4,139.1,137.3,137.2,136.4,132.9,131.5,129.7,128.8,128.6,127.2,127.2,126.8$, 126.0, 124.4, 124.1, 120.7, 119.9, 119.7 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}$ 335.0261; Found 335.0257.

2-((9H-fluoren-9-ylidene)methyl)thiophene (Compound-6g): ${ }^{10}$ Following the general
 procedure 3(c), the titled compound was isolated as yellow solid $(92.4 \mathrm{mg}$, $0.355 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,143.9,141.1,140.4,139.0,136.2,132.8,128.6$, 128.0, 127.2, 126.9, 125.8, 119.9, 119.7, 119.7, 115.7, 112.8, 112.5 ppm.

9-(naphthalen-2-ylmethylene)-9H-fluorene (Compound-6h): ${ }^{12}$ Following the general
 procedure 3(c), the titled compound was isolated as yellow solid (105.0 mg , $0.345 \mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.06(\mathrm{~m}, 2 \mathrm{H})$, 7.83-7.75 (m, 3H), $7.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz, CDCl_{3}) $\delta 142.9,142.2,137.0,134.3,134.1,133.7,132.3,129.5,128.9,128.7$, $127.9,127.2,126.6,126.3,125.6,125.3,124.8,121.2,119.6$ ppm.

2,7-dichloro-9-(4-methylbenzylidene)-9H-fluorene (Compound-6i): Following the general
 procedure 3(c), the titled compound was isolated as yellow solid (123.0 mg , $0.365 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 141.3,139.1,138.7,138.0,136.5,134.1,133.2,132.8,132.6,130.2$, 129.5, 129.4, 128.6, 128.2, 124.5, 120.7, 120.6, 120.6, 21.6 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2}$ 337.0551; Found 337.0547.

2,7-dibromo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6j): ${ }^{11}$ Following the general
 procedure 3(c), the titled compound was isolated as white solid (159.8 mg , $0.375 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,139.1,139.0,138.1,136.8,133.8,132.7$, $131.3,130.9,130.3,129.5,129.4,127.3,123.5,121.2,121.0,120.9,120.8,21.6 \mathrm{ppm}$.

2-bromo-7-iodo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6k): Following the
 general procedure 3(c), the titled compound was isolated as yellow solid ($167.9 \mathrm{mg}, 0.355 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ ($\mathrm{s}, 1 \mathrm{H}$), 7.63 ($\mathrm{s}, 1 \mathrm{H}), 7.46-7.39$ (m, 2H), 7.22-7.20 (m, 3H), 7.14-7.09 (m,

4 H), 2.28 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,141.0,139.4,139.0,138.2$, $137.7,137.3,137.1,136.7,133.5,133.0,132.6,131.3,130.8,130.2,130.1,129.4,127.1,123.4$, 121.3, 121.1, 120.9, 120.8, 92.5, 92.2, 21.6 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrI} 474.9384$; Found 474.9379.

9-butylidene-9H-fluorene (Compound-6l): Following the general procedure 3(c), the titled
 compound was isolated as white solid ($75 \mathrm{mg}, 0.341 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9$, 139.5, 138.7, 137.7, 135.6, 131.2, 127.7, 127.4, 127.0, 126.9, 125.1, 119.9, 119.8, 119.6, 31.5, 23.0, 14.2 ppm. GC-MS: $m / z 220\left(\mathrm{M}^{+}\right)$.

9-hexylidene-9H-fluorene (Compound-6m): Following the general procedure 3(c), the titled
 compound was isolated as white liquid ($79 \mathrm{mg}, 0.318 \mathrm{mmol}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9,139.5$, 138.6, 137.7, 135.4, 131.4, 127.7, 127.4, 126.9, 126.9, 125.1, 119.9, 119.7, 119.5, 31.9, 29.5, 29.4, 22.7, 14.2 ppm. GC-MS: $m / z 248\left(\mathrm{M}^{+}\right)$.

9-benzyl-9H-fluorene (Compound-7a): ${ }^{12}$ Following the general procedure 3(d), the titled
 compound was isolated as white solid ($106.3 \mathrm{mg}, 0.415 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.28-7.18(\mathrm{~m}, 7 \mathrm{H}), 4.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,140.9,139.9,129.7,128.4$, $127.2,126.8,126.5,125.0,120.0,48.8,40.2 \mathrm{ppm}$.

9-(4-methyllbenzyl)-9H-fluorene (Compound-7b): ${ }^{13}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid ($109.5 \mathrm{mg}, 0.405 \mathrm{mmol}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 4.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,140.9,136.8,135.9,129.5,129.0,127.1,126.7,125.0,119.9,48.9,39.8,21.2 \mathrm{ppm}$.

9-(4-methoxybenzyl)-9H-fluorene (Compound-7c): ${ }^{13}$ Following the general procedure 3(d),
 the titled compound was isolated as white solid ($120.2 \mathrm{mg}, 0.420 \mathrm{mmol}$, 84% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,146.9,140.9,131.8,130.5,127.1,126.6$, 124.9, 119.8, 113.7, 55.2, 48.9, 39.1 ppm.

9-(4-fluorobenzyl)-9H-fluorene (Compound-7d): ${ }^{13}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid $(94.6 \mathrm{mg}, 0.345 \mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=8.09$, $2 \mathrm{H}), 4.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz, CDCl_{3}) $\delta 162.9,160.5,146.6,141.0,135.3,135.3,131.0,130.9,127.3,126.8$, $124.9,120.0,115.2,115.0,48.8,39.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.79 \mathrm{ppm}$.

9-(4-bromobenzyl)-9H-fluorene (Compound-7e): ${ }^{13}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid ($119.0 \mathrm{mg}, 0.355 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34$ (m, 4H), 7.24-7.20 (m, 4H), $7.04(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.3,140.9,138.5,131.3,127.3,126.7,124.7,120.2,48.4,39.3 \mathrm{ppm}$.

9-(4-(trifluoromethyl)benzyl)-9H-fluorene (Compound-7f): ${ }^{13}$ Following the general
 procedure $3(\mathrm{~d})$, the titled compound was isolated as white solid $(108.6 \mathrm{mg}$, $0.355 \mathrm{mmol}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (d, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42$ (d, J=7.9 Hz, 2H), 7.28-7.24 (m, 1H), 7.18-7.08 (m, 7H), $4.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3,143.8,141.0,129.9,127.5,127.4,126.9,126.9,125.3,125.3,125.2$, $125.2,124.9,124.8,120.1,120.0,48.5,39.8 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.25 \mathrm{ppm}$.

9-(4-isopropylbenzyl)-9H-fluorene (Compound-7g): ${ }^{14}$ Following the general procedure 3(d),
 the titled compound was isolated as white solid $(116.3 \mathrm{mg}, 0.390 \mathrm{mmol}$, 78% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 8 \mathrm{H}), 4.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,147.0,140.9,137.3,129.5,127.2$, 126.7, 126.5, 125.0, 119.9, 48.9, 39.8, 33.9, 24.1 ppm .

9-(3-chlorobenzyl)-9H-fluorene (Compound-7h): ${ }^{2}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid $(95.9 \mathrm{mg}, 0.330 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19$ (m, 7H), 7.09-7.07 (m, 1H), 4.22 (t, J=7.7 Hz, 1H), $3.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5$, $141.9,141.0,134.1,129.7,129.6,127.9,127.4,126.9,126.7,124.9,120.0,48.5,39.8 \mathrm{ppm}$.

9-(3-bromobenzyl)-9H-fluorene (Compound-7i): ${ }^{2}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid ($113.9 \mathrm{mg}, 0.340 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.24$ (m, 3H), 7.16-7.12 (m, 3H), 7.09-6.99 (m, 4H), $4.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4$, $142.2,140.9,132.6,129.9,129.6,128.3,127.4,126.9,124.9,122.4,120.1,48.5,39.8 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \operatorname{BrI} 474.9384$; Found 474.9370.

9-(2-bromoobenzyl)-9H-fluorene (Compound-7j): Following the general procedure 3(d), the

titled compound was isolated as white solid ($102.2 \mathrm{mg}, 0.305 \mathrm{mmol}$, 61% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $146.5,142.0,141.0,134.1,129.7,129.6,127.9,127.4,127.0,126.7$, 125.0, 120.0, 48.5, 39.8 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br} 337.0417$; Found 337.0401.

2-((9H-fluoren-9-yl)methyl)pyridine (Compound-7k): ${ }^{2}$ Following the general procedure 3(d),
 the titled compound was isolated as white solid ($92.6 \mathrm{mg}, 0.360 \mathrm{mmol}$, 72% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,149.5$, 147.1, 140.7, 136.2, 127.1, 126.8, 124.7, 124.4, 121.7, 119.9, 47.2, 42.5 ppm.

5-((9H-fluoren-9-yl)methyl)benzo[d][1,3]dioxole (Compound-7l): ${ }^{8}$ Following the general
 procedure 3(d), the titled compound was isolated as white solid (114.1 $\mathrm{mg}, 0.380 \mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24$ (m, 4H), 6.77 (d, $J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,146.7,146.0,140.9$, 133.5, 127.2, 126.7, 124.9, 122.6, 119.8, 109.7, 108.0, 100.9, 49.1, 39.6 ppm.

9-(naphthalen-1-ylmethyl)-9H-fluorene (Compound-7m): ${ }^{2}$ Following the general procedure
 3(d), the titled compound was isolated as white solid ($121.0 \mathrm{mg}, 0.395 \mathrm{mmol}$, 79% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37-24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.0 $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-$ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1,140.8$, 136.1, 134.1, 132.1, 129.2, 128.3, 127.6, 127.3, 126.7, 126.2, 125.8, 125.4, 125.2, 123.8, 119.9, 47.7, 38.1 ppm .

9-(3-phenylpropyl)-9H-fluorene (Compound-7n): ${ }^{14}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid ($100.9 \mathrm{mg}, 0.355 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48$ (m, 2H), 7.45-7.42 (m, 2H), 7.39-7.37 (m, 2H), 7.31$7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.21-2.17 (m, 2H), 1.67-1.63 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,142.3,141.3,128.5,128.3,127.0,126.9,125.8,124.4,119.9,47.4,36.2$, 32.6, 27.3 ppm .

9-(1-phenylethyl)-9H-fluorene (Compound-7o): ${ }^{2}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid ($101.3 \mathrm{mg}, 0.375 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.68(\mathrm{~m}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.7, 144.8, 142.0, 141.5, 128.3, 128.2, 127.2, $127.2,126.9,126.4,126.4,125.8,124.4,119.8,119.8,54.4,42.1,14.2 \mathrm{ppm}$.

9-(1-(p-tolyl)ethyl)-9H-fluorene (Compound-7p): ${ }^{2}$ Following the general procedure 3(d), the
 titled compound was isolated as white solid $(110.9 \mathrm{mg}, 0.390 \mathrm{mmol}$, 78% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 146.8,144.8,141.9,141.7,141.5,135.8,129.0,128.0,127.1,127.1$, $126.9,126.4,125.8,124.4,119.8,119.7,54.4,41.6,21.2,14.0 \mathrm{ppm}$.

9-butyl-9H-fluorene (Compound-7q): Following the general procedure 3(d), the titled
 compound was isolated as white solid ($81.1 \mathrm{mg}, 0.365 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.48-7.41 (m, 4H), 4.08 ($\mathrm{s}, 1 \mathrm{H}$), 2.12 (s, 2H), 1.39 ($\mathrm{s}, 2 \mathrm{H}$), 1.29 (s, 2H), 0.94 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.7, 141.2, 126.9, 126.9, 124.4, 119.9, 47.5, 32.9, 27.9, 23.1, 14.0 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19}$ 223.1487; Found 223.1482.

9-hexyl-9H-fluorene (Compound-7r): ${ }^{2}$ Following the general procedure 3(d), the titled
 compound was isolated as white solid ($85.1 \mathrm{mg}, 0.340 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.27 (m, 4H), 3.95 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.95$ (m, 2H), 1.26-1.14 (m, $8 \mathrm{H}), 0.82(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8$, 141.2, 126.9, 126.9, 124.5, 119.9, 47.6, 33.2, 31.8, 29.8, 25.8, 22.8, 14.2 ppm.

9-cyclopentyl-9H-fluorene (Compound-7s): ${ }^{2}$ Following the general procedure 3(d), the titled
 compound was isolated as white solid ($77.3 \mathrm{mg}, 0.330 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H})$, 1.76-1.56 (m, 6 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,141.5,126.9,126.6,125.2$, 119.7, 51.3, 44.5, 30.1, 25.3 ppm .

9-(3,7-dimethyloct-6-en-1-yl)-9H-fluorene (Compound-7t): ${ }^{14}$ Following the general
 procedure 3d, the titled compound was isolated as white solid ($94.3 \mathrm{mg}, 0.310$ mmol, 62% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 5.23-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.13$ $(\mathrm{m}, 1 \mathrm{H}), 0.99-0.97(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.7, 147.7, 141.3, $131.0,126.9,126.9,125.1,124.4124 .4,119.9,47.7,36.9,32.7,32.5,30.4,25.8,25.6,19.6$, 17.7 ppm .

9-benzyl-2-nitro-9H-fluorene (Compound-7u): Following the general procedure 3d, the titled
 compound was synthesised (61% NMR conversion). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $8.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 8 \mathrm{H}$, merged with starting material), $7.01(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.88(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,146.0,141.5,140.2,139.5,131.1$, 129.7, 128.7, 128.4, 127.7, 127.4, 127.1, 126.4, 124.9, 124.6, 120.7, 118.5, 112.4, 109.3, 48.7, $48.5,40.5 \mathrm{ppm}$.

9-benzyl-2-bromo-7-iodo-9H-fluorene (Compound-7v): Following the general procedure
 3(d), the titled compound was isolated as white solid (170.6 mg , $0.371 \mathrm{mmol}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (s, 2H), 7.19-7.13 (m, 5H), 7.04 (s, 1H), 6.96 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6,148.2,139.3,138.8,138.6,136.3,134.1,130.5$, $129.5,128.5,128.2,126.8,121.5,121.2,121.1,92.4,48.6,39.6 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrI} 462.9383$; Found 462.9378 .

9-benzyl-2,7-dibromo-9H-fluorene (Compound-7w): Following the general procedure 3(d),
 the titled compound was isolated as white solid ($151.1 \mathrm{mg}, 0.365 \mathrm{mmol}$, 73% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.16$ (m, 5H), 7.07 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,138.9,138.7,130.6,129.5,128.6,128.4$, 127.0, 121.3, 121.0, 48.8, 39.8 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Br}_{2}$ 414.9521; Found 414.9518.

9-benzyl-2,7-dichloro-9H-fluorene (Compound-7x): ${ }^{14}$ Following the general procedure 3(d),
 the titled compound was isolated as white solid $(123.5 \mathrm{mg}, 0.380$ $\mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.19 (m, 3H), 7.16 (s, 2H), 7.07 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.07-4.01 (m, $1 \mathrm{H}), 2.97$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,138.7,138.4,132.8,129.5,128.5,127.7,126.9,125.3,120.8,48.7,39.7 \mathrm{ppm}$.

9-benzyl-N-(pyridin-2-ylmethyl)-9H-fluoren-2-amine (Compound-7y): Following the
 general procedure $3(\mathrm{~d})$, the titled compound was isolated as yellow liquid ($114.1 \mathrm{mg}, 0.315 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 7 \mathrm{H}), 6.97-$ $6.90(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{br} ., 1 \mathrm{H})$, $4.21(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.4,148.9,148.7,147.2,145.8,141.4,140.0,136.8,131.0,129.9,129.6,128.3,128.2$, $127.0,126.2,124.7,124.5,122.2,121.7,120.6,118.4,112.4,109.3,49.1,48.5,40.2 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2}$ 363.1861; Found 363.2071.

9-benzyl-9-(4-nitrophenyl)-9H-fluorene (Compound-8a): Following the general procedure,
 the titled compound was isolated as white solid ($145.3 \mathrm{mg}, 0.384 \mathrm{mmol}$, 77% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.557.53 (m, 2H), 7.47 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,149.5,146.7,140.9,135.5,130.0,128.0$, 127.9, 127.6, 127.0, 126.1, 124.9, 123.7, 120.2, 60.1, 43.6 ppm. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{2}$ 378.1494; Found 378.1488.

9-benzyl-9-butyl-9H-fluorene (Compound-8b): ${ }^{2}$ Following the general procedure, the titled
 compound was isolated as white solid ($114.0 \mathrm{mg}, 0.365 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 6 \mathrm{H}), 6.87-$ $6.81(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 2 \mathrm{H})$, $1.03-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.49-0.52(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,141.0,137.4,130.4,127.1,127.0,126.7,125.9$, $123.8,119.8,55.9,47.0,38.7,26.1,23.2,13.8 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}:$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25}$ 313.1956; Found 313.1947.

9-benzyl-2,7-dibromo-9-(4-nitrophenyl)-9H-fluorene (Compound-8c):2 Following the
 general procedure, the titled compound was isolated as white solid ($184.6 \mathrm{mg}, 0.345 \mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44-7.32 (m, 8H), 6.97-6.84 (m, 3H), $6.44(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.4, 150.7, 147.1, 138.9, 134.7, 132.7, 131.4, 130.0, 128.2, 128.0, 127.4, 126.5, 125.1, 124.1, 121.7, 121.6, 60.2, 43.6 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}:$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{NO}_{2} 535.9686$; Found 535.9678.

9,9-dibenzyl-2,7-dibromo-9H-fluorene (Compound-8d): ${ }^{3}$ Following the general procedure,
 the titled compound was isolated as white solid $(179.0 \mathrm{mg}, 0.355$ $\mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (s, 2H), 7.35$7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.71-$ 6.69 (m, , 3.27 (s, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $150.3,138.9,136.2,130.6,130.3,128.0,127.5,126.4,121.2,120.7,57.2,45.2 \mathrm{ppm}$.

16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of the isolated compounds:

${ }^{1} H$ NMR of (E)-1-benzylidene-1H-indene (Compound-3a) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-benzylidene-1 H -indene (Compound-3a) in CDCl_{3}

${ }^{1}$ H NMR of (E)-1-(4-methylbenzylidene)-1H-indene(Compound-3b) in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} H\right\}$ NMR of (E)-1-(4-methylbenzylidene)-1H-indene (Compound-3b) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-(4-methoxybenzylidene)-1 H -indene (Compound-3c) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\stackrel{\text { 㞻 }}{1}$

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of (E)-1-(4-methoxybenzylidene)-1H-indene (Compound-3c) in CDCl_{3}

$\stackrel{\circ}{\circ} \mathrm{O}$

${ }^{1}{ }^{1}$ NMR of (E)-1-(4-chlorobenzylidene)-1H-indene (Compound-3d) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-(4-chlorobenzylidene)-1H-indene (Compound-3d) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-(4-bromobenzylidene)-1H-indene (Compound-3e) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of (E)-1-(4-bromobenzylidene)-1H-indene (Compound-3e) in CDCl_{3}

${ }^{1} H$ NMR of ((E)-4-((1H-inden-1-ylidene)methyl)benzonitrile (Compound-3f) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of ((E)-4-((1H-inden-1-ylidene)methyl)benzonitrile (Compound-3f) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-(4-nitrobenzylidene)-1H-indene (Compound-3g) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of (E)-1-(4-nitrobenzylidene)-1H-indene (Compound-3g) in CDCl_{3}
$\underbrace{\text { NiN }}$

${ }^{1} H$ NMR of (E)-1-(4-isopropylbenzylidene)-1H-indene (Compound-3h) in CDCl 3 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} H\right\}$ NMR of (E)-1-(4-isopropylbenzylidene)-1H-indene (Compound-3h) in CDCl_{3}

${ }^{1} H$ NMR of (E)-4-((1 H -inden-1-ylidene)methyl)-N,N-dimethylaniline (Compound-3i) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\stackrel{\%}{i}$

[^0]
\qquad Λn \qquad M $\Omega M W h$ \qquad $M M$ \qquad

${ }^{1} H$ NMR of (E)-1-(3-bromobenzylidene)-1H-indene (Compound-3j) in CDCl ${ }_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-(3-bromobenzylidene)-1H-indene (Compound-3j) in CDCl_{3}

\qquad M \qquad nharnoh \qquad $M M$ \qquad

	$\stackrel{\rightharpoonup}{\mathrm{T}} \stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \mathscr{T} \\ & \underset{o}{2} \end{aligned}$	Ho		${\underset{c}{1}}_{\substack{1 \\ N}}^{\sim}$			\cdots	
7.8	7.7	7.6	7.5	7.4	7.3	7.2	7.1	7.0	6.9
					pm)				

${ }^{1} H$ NMR of (E)-1-(3-chlorobenzylidene)-1H-indene (Compound-3k) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-(3-chlorobenzylidene)-1H-indene (Compound-3k) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-(2-bromobenzylidene)-1H-indene (Compound-3l) in CDCl_{3}.

[^1]
${ }^{1} H^{\prime}$ NMR of (E)-1-(2-chlorobenzylidene)-1H-indene (Compound-3m) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

										90		70						10
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{13}{ }^{13}\left\{{ }^{1} H\right\}$ NMR of (E)-1-(2-chlorobenzylidene)-1H-indene (Compound-3m) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-((1H-inden-1-ylidene)methyl)naphthalene(Compound-3n) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-((1H-inden-1-ylidene)methyl)naphthalene (Compound-3n) in CDCl_{3}

${ }^{1} H$ NMR of (E)-2-((1H-inden-1-ylidene)methyl)naphthalene (Compound-3o) in CDCl3. $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of (E)-2-((1H-inden-1-ylidene)methyl)naphthalene (Compound-3o) in CDCl_{3}

${ }^{1} H$ NMR of (E)-2-((1H-inden-1-ylidene)methyl)furan (Compound-3p) in $\mathrm{CDCl}_{3}\left({ }^{*}\right)$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of (E)-2-((1H-inden-1-ylidene)methyl)furan (Compound-3p) in CDCl_{3}

${ }^{1} H$ NMR of (E)-2-((1H-inden-1-ylidene)methyl)pyridine (Compound-3q) in CDCl_{3}

路盟

${ }^{1} H$ NMR of (E)-1-((E)-3-phenylallylidene)-1H-indene (Compound-3r) in CDCl ${ }_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-((E)-3-phenylallylidene)-1H-indene (Compound-3r) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-(3,4,5-trimethoxybenzylidene)-1H-indene (Compound-3s) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of (E)-1-(3,4,5-trimethoxybenzylidene)-1H-indene (Compound-3s) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-benzylidene-2-methyl-1H-indene (Compound-3t) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-benzylidene-2-methyl-1H-indene (Compound-3t) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-benzylidene-4,7-dimethyl-1H-indene (Compound-3u) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

[^2]
${ }^{1} H$ NMR of (E)- (1-butylidene-4,7-dimethyl-1H-indene (Compound-3v) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

[^3]
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}$ of $\mathrm{CDCl}_{3}(E)$-1-hexylidene-4,7-dimethyl-1H-indene (Compound-3w) in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} H\right\}$ NMR of (E)-1-hexylidene-4,7-dimethyl-1H-indene (Compound-3w) in CDCl_{3}

${ }^{1} H$ NMR of (E)-1-benzylidene-3-methyl-1H-indene (Compound-3x) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-1-benzylidene-3-methyl-1H-indene (Compound-3x) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{1} H$ NMR of (E)-3-methyl-1-(4-methylbenzylidene)-1H-indene (Compound-3y) in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of (E)-3-methyl-1-(4-methylbenzylidene)-1H-indene (Compound-3y) in CDCl_{3}

${ }^{1} H$ NMR of (E)-(1-benzylidene-1H-inden-3-yl)(phenyl)methanol (Compound-4a) in CDCl_{3}

-

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-(1 -benzylidene-1H-inden-3-yl)(phenyl)methanol (Compound-4a) in CDCl_{3}

${ }^{1} H$ NMR of (E)-(1-(4-methylbenzylidene)-1H-inden-3-yl)(p-tolyl)methanol (Compound-4b) in CDCl_{3}

$\left.{ }^{13} C_{\}}{ }^{1} H\right\}$ NMR of (E)-(1-(4-methylbenzylidene)-1H-inden-3-yl)(p-tolyl)methanol (Compound4b) in CDCl_{3}

${ }^{1} H \quad N M R$ of (E)-(1-(4-methoxybenzylidene)-1H-inden-3-yl)(4-methoxyphenyl)methanol (Compound-4c) in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of (E)-(1-(4-methoxybenzylidene)-1H-inden-3-yl)(4-methoxyphenyl)methanol (Compound-4c) in CDCl_{3}

${ }^{1} H \quad$ NMR of (E)-(1-(2-bromobenzylidene)-1H-inden-3-yl)(2-bromophenyl)methanol (Compound-4d) in CDCl_{3}

$\left.{ }^{13} C^{\{ }{ }^{1} H\right\} \quad$ NMR of (E)-(1-(2-bromobenzylidene)-1H-inden-3-yl)(2-bromophenyl)methanol (Compound-4d) in CDCl_{3}

${ }^{1} H \quad$ NMR of (E)-(1-(4-chlorobenzylidene)-1H-inden-3-yl)(4-chlorophenyl)methanol (Compound-4e) in CDCl_{3}

$\left.{ }^{13} C^{\{ }{ }^{1} H\right\} \quad N M R$ of (E)-(1-(4-chlorobenzylidene)-1H-inden-3-yl)(4-chlorophenyl)methanol (Compound-4e) in CDCl_{3}

${ }^{1} H \quad N M R \quad$ of $\quad(E)$-thiophen-2-yl(1-(thiophen-2-ylmethylene)-1H-inden-3-yl)methanol. (Compound-4f). \# indicates the solvent impurity of acetone in CDCl_{3}

 4f) in CDCl_{3}

${ }^{1} H$ NMR of (E)-furan-2-yl(1 -(furan-2-ylmethylene)-1H-inden-3-yl)methanol (Compound-4g) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-furan-2-yl(1-(furan-2-ylmethylene)-1H-inden-3-yl)methanol (Compound$4 g)$ in CDCl_{3}

${ }^{1}$ H NMR of (E)- (1-benzylidene-4,7-dimethyl-1H-inden-3-yl)(phenyl)methanol (Compound4h) in CDCl_{3}

${ }^{13} C\left\{{ }^{1} H\right\} \quad$ NMR of (E)-(l-benzylidene-4,7-dimethyl-1H-inden-3-yl)(phenyl)methanol (Compound-4h) in CDCl_{3}

${ }^{1} H$ NMR of 9-benzylidene-9H-fluorene (Compound-6a) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13}{ }^{13}{ }^{1}{ }^{1} H\right\}$ NMR of 9-benzylidene-9H-fluorene(Compound- $\mathbf{6 a}$) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-methylbenzylidene)-9H-fluorene (Compound- $\mathbf{6 b}$) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-methylbenzylidene)-9H-fluorene (Compound- $\boldsymbol{6 b}$) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-methoxybenzylidene)-9H-fluorene (Compound-bc) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-methoxybenzylidene)-9H-fluorene (Compound- $\boldsymbol{b c}$) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-(3-bromobenzylidene)-9H-fluorene (Compound-6d) in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(3-bromobenzylidene)-9H-fluorene (Compound-6d) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-chlorobenzylidene)-9H-fluorene (Compound- 6 e) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-chlorobenzylidene)-9H-fluorene (Compound- 6 e) in CDCl_{3}

\qquad $n \beta \ln$ \qquad whin \qquad M \qquad

${ }^{1}$ H NMR of 9-(2-bromobenzylidene)-9H-fluorene (Compound-6f) in CDCl_{3}

$\left.{ }^{13} C^{\prime}{ }^{1} \mathrm{H}\right\}$ NMR of 9-(2-bromobenzylidene)-9H-fluorene (Compound-6f) in CDCl_{3}

${ }^{1}{ }^{1}$ NMR of 2-((9H-fluoren-9-ylidene)methyl)thiophene (Compound- $\mathbf{6 g}$) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-((9H-fluoren-9-ylidene)methyl)thiophene (Compound- $\mathbf{6 g}$) in CDCl_{3}

${ }^{1}$ H NMR of 9-(naphthalen-2-ylmethylene)-9H-fluorene (Compound-6 \boldsymbol{h}) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13}{ }^{1}\left\{{ }^{1} H\right\}$ NMR of 9-(naphthalen-2-ylmethylene)-9H-fluorene(Compound-6h) in CDCl_{3}

${ }^{1}$ H NMR of 2,7-dichloro-9-(4-methylbenzylidene)-9H-fluorene (Compound-6i) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2,7-dichloro-9-(4-methylbenzylidene)-9H-fluorene (Compound- $\boldsymbol{6 i}$) in CDCl_{3}

${ }^{1}{ }^{H}$ NMR of 2,7-dibromo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6j) in CDCl_{3}

$\stackrel{\square}{i}$

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2,7-dibromo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6j) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 2-bromo-7-iodo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6k) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-bromo-7-iodo-9-(4-methylbenzylidene)-9H-fluorene (Compound-6k) in CDCl_{3}

${ }^{l}{ }^{1}$ NMR of 9-butylidene-9H-fluorene (Compound-6l) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-butylidene-9H-fluorene (Compound-6l) in CDCl_{3}

${ }^{1}$ H NMR of hexylidene-9H-fluorene (Compound-6m) in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of hexylidene-9H-fluorene (Compound-6m) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-benzyl-9H-fluorene (Compound-7a) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-9H-fluorene (Compound-7a) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-methylbenzyl)-9H-fluorene (Compound-7b) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}
-incoin
i

${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-methylbenzyl)-9H-fluorene (Compound-7b) in CDCl_{3}

${ }^{1}$ H NMR of 9－（4－methoxybenzyl）－9H－fluorene（Compound－7c）in CDCl_{3}

$$
\begin{aligned}
& \text { ジ } \\
& \text { ~~~~~ }
\end{aligned}
$$

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9－（4－methylbenzyl）－9H－fluorene（Compound－7c）in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-(4-fluorobenzyl)-9H-fluorene (Compound-7d) in CDCl_{3}

[^4]
\qquad
${ }^{19}$ F NMR of 9-(4-fluorobenzyl)-9H-fluorene (Compound-7d) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-bromobenzyl)-9H-fluorene (Compound-7e) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-bromobenzyl)-9H-fluorene (Compound-7e) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-(trifluoromethyl)benzyl)-9H-fluorene (Compound-7f) in CDCl_{3}

$\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-(trifluoromethyl)benzyl)-9H-fluorene (Compound-7f) in CDCl_{3}

${ }^{19}$ F NMR of 9-(4-(trifluoromethyl)benzyl)-9H-fluorene (Compound-7f) in CDCl_{3}

${ }^{1}$ H NMR of 9-(4-isopropylbenzyl)-9H-fluorene (Compound-7g) in CDCl_{3}

$\left.{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-isopropylbenzyl)-9H-fluorene (Compound-7g) in CDCl_{3}

${ }^{1}$ H NMR of 9-(3-chlorobenzyl)-9H-fluorene(Compound-7h) in CDCl 3 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\stackrel{\curvearrowleft}{\sim}$

[^5]

${ }^{1}{ }^{1}$ NMR of 9-(3-bromobenzyl)-9H-fluorene(Compound-7i) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{l} H\right\} \quad$ NMR of 9-(3-bromobenzyl)-9H-fluorene(Compound-7i) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{1}{ }^{1}$ NMR of 9-(2-bromoobenzyl)-9H-fluorene (Compound-7j) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-(2-bromobenzyl)-9H-fluorene (Compound-7j) in CDCl_{3}

${ }^{1}$ H NMR of 2-((9H-fluoren-9-yl)methyl)pyridine (Compound-7k) in CDCl_{3}

$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 2-((9H-fluoren-9-yl)methyl)pyridine (Compound-7k) in CDCl_{3}

${ }^{1}$ H NMR of 5-((9H-fluoren-9-yl)methyl)benzo[d][1,3]dioxole (Compound-7l) in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 5-((9H-fluoren-9-yl)methyl)benzo[d][1,3]dioxole (Compound-7l) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-(naphthalen-1-ylmethyl)-9H-fluorene (Compound-7m) in CDCl_{3}

蔓
个

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(naphthalen-1-ylmethyl)-9H-fluorene (Compound-7m) in CDCl_{3}

${ }^{1}$ H NMR of 9-(3-phenylpropyl)-9H-fluorene (Compound-7n) in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of 9-(3-phenylpropyl)-9H-fluorene (Compound-7n) in CDCl_{3}

${ }^{1}$ H NMR of 9-(1-phenylethyl)-9H-fluorene (Compound-7o) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

		$\stackrel{+}{+}$	$\overrightarrow{\text { ¢ }}$	$\stackrel{\circ}{\text { ¢ }}$
	-		I	

$\left.{ }^{13} C_{\{ }^{1} \mathrm{H}\right\}$ NMR of 9-(1-phenylethyl)-9H-fluorene (Compound-7o) in CDCl_{3}

${ }^{1}$ H NMR of 9-(1-(p-tolyl)ethyl)-9H-fluorene (Compound-7p) in CDCl 3 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\stackrel{\sim}{\tilde{i}} \underset{i}{+}$

${ }^{13}{ }^{1}\left\{{ }^{1} H\right\}$ NMR of 9-(1-(p-tolyl)ethyl)-9H-fluorene (Compound-7p) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-butyl-9H-fluorene (Compound-7q) in CDCl_{3}

$\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-butyl-9H-fluorene (Compound-7q) in CDCl_{3}

${ }^{1}{ }^{1}$ NMR of 9-hexyl-9H-fluorene (Compound-7r) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-hexyl-9H-fluorene (Compound-7r) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 9-cyclopentyl-9H-fluorene (Compound-7s) in CDCl_{3}

$\left.{ }^{13}{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 9-cyclopentyl-9H-fluorene (Compound-7s) in CDCl_{3}

${ }^{1} H$ NMR of 9-(3,7-dimethyloct-6-en-1-yl)-9H-fluorene (Compound-7t) in CDCl_{3}

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9-(3,7-dimethyloct-6-en-1-yl)-9H-fluorene (Compound-7t) in CDCl_{3}

${ }^{1}$ H NMR of the reaction mixture of 9-benzyl-2-nitro-9H-fluorene (Compound-7u) and 2-nitro9 H -fluorene (Starting material) in CDCl_{3}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of the reaction mixture of 9-benzyl-2-nitro-9H-fluorene (Compound-7u) and 2-nitro-9H-fluorene in CDCl_{3}

${ }^{1} H$ NMR of 9-benzyl-2-bromo-7-iodo-9H-fluorene (Compound-7v) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-2-bromo-7-iodo-9H-fluorene (Compound-7v) in CDCl_{3}

${ }^{1} H$ NMR of 9-benzyl-2,7-dibromo-9H-fluorene (Compound-7w) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 9-benzyl-2,7-dibromo-9H-fluorene (Compound-7w) in CDCl_{3}

${ }^{1} H$ NMR of 9-benzyl-2,7-dichloro-9H-fluorene (Compound-7x) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-2,7-dichloro-9H-fluorene (Compound-7x) in CDCl_{3}

${ }^{1} H$ NMR of 9-benzyl-N-(pyridin-2-ylmethyl)-9H-fluoren-2-amine (Compound-7y) in CDCl_{3}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-N-(pyridin-2-ylmethyl)-9H-fluoren-2-amine (Compound-7y) in CDCl_{3}

${ }^{1}$ H NMR of 9-benzyl-9-(4-nitrophenyl)-9H-fluorene (Compound-8a) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

$\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-9-(4-nitrophenyl)-9H-fluorene (Compound-8a) in CDCl_{3}

${ }^{1} H$ NMR of 9-benzyl-9-(4-nitrophenyl)-9H-fluorene (Compound-8b) in CDCl_{3}

$\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
$\left.{ }^{13} C_{\{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-9-(4-nitrophenyl)-9H-fluorene (Compound-8b) in CDCl_{3}

${ }^{1}$ H NMR of 9-benzyl-2,7-dibromo-9-(4-nitrophenyl)-9H-fluorene (Compound-8c) in CDCl_{3}. \# indicates the solvent impurity of DCM in CDCl_{3}

N
O
1
$\stackrel{\bullet}{\dot{\sim}}$

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 9-benzyl-2,7-dibromo-9-(4-nitrophenyl)-9H-fluorene (Compound-8c) in CDCl_{3}

${ }^{1}$ H NMR of 9，9－dibenzyl－2，7－dibromo－9H－fluorene（Compound－8d）in CDCl_{3}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 9，9－dibenzyl－2，7－dibromo－9H－fluorene（Compound－8d）in CDCl_{3}

17. Mechanistic study:

Figure S21. Stacking of ${ }^{1}$ H spectra between Zn1 and Compound Zn1a (showing NMR broadening after 1 h) in DMSO- d_{6}

Figure S22. ${ }^{1} H$ NMR spectrum of the reaction mixture in DMSO- d_{6} after adding of 1 equiv. of benzyl alcohol to the reaction mixture (Figure S21) showing formation of the benzaldehyde

Table S4. Crystallographic data for the compound Zn1

Compound	Zn1
CCDC No	2284848
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{I}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}$
Formula weight	850.67
Crystal system	Monoclinic
Space group	C 2/c
a (\AA)	22.888(3)
b (A)	9.043(11)
c (\AA)	17.724(2)
$\alpha\left({ }^{\circ}\right.$)	90
$\beta\left({ }^{\circ}\right.$)	115.556(4)
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{V}\left(\AA^{3}\right)$	3309.3(7)
Z	4
D calc ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.707
F (000)	1664
$\mu\left(\mathrm{mm}^{-1}\right)$	2.802
θ Range (${ }^{\circ}$)	1.937 to 24.999
Crystal size (mm)	$0.150 \times 0.120 \times 0.100$
No. of total reflns collected	10412
No. of unique reflns [$\mathrm{I}>2 \sigma(\mathrm{I})$]	2866
Data/restraints/ parameters	2866/ 0 / 180
Goodness-of-fit on F^{2}	0.984
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0653, 0.1688
R indices (all data)	0.0932, 0.1905

18. Computational data

All the calculations were performed using the Gaussian 16, Revision B. 01 program. ${ }^{15}$ All structures were optimized with B3LYP ${ }^{16}$ functional. Metals (Zn) and I were treated with LANL2DZ basis set with an effective core potential, while the other atoms were treated using using $6-31 \mathrm{G}^{* *}$, a double- ζ Pople type basis set.

Cartesian Coordinates of all the optimized geometries:

$\mathrm{H}_{3} \mathrm{C}$			
30	-0.055525842	-0.604912097	-0.616813743
53	-2.113105082	0.345669507	-2.257534942
6	-0.869046375	3.726427954	0.413306930
1	0.165959767	3.878202070	0.668567918
6	-1.593214984	4.135192513	-0.665237991
1	-1.316938829	4.740475701	-1.512694913
6	-2.891804157	2.841848163	0.579659346
6	-4.093576739	2.143686447	1.179425511
6	-5.605561210	0.217768298	0.744318482
6	-6.536122049	0.459769168	1.762515254
1	-6.431686273	1.329525532	2.395978278
6	-7.586892431	-0.438719056	1.949473369
1	-8.305364585	-0.242780362	2.741547553
6	-7.739851486	-1.578345807	1.152090987
6	-6.794881997	-1.797639203	0.138763215
1	-6.883224488	-2.673337066	-0.499032845

6	-5.739615566	-0.917630572	-0.068685290
1	-5.012429848	-1.107317337	-0.853516954
6	-8.866981140	-2.555808641	1.385670455
1	-8.512194359	-3.453986731	1.906393261
1	-9.312410850	-2.886964863	0.441738311
1	-9.659431902	-2.114083488	1.996569959
6	-3.923129139	3.715745321	-1.532978764
1	-3.757554038	2.982962315	-2.327185511
1	-3.903552052	4.728671296	-1.937080001
1	-4.886127928	3.535740922	-1.056675704
7	-1.697937246	2.943059350	1.186291507
7	-2.855174693	3.589050588	-0.539094205
8	-4.559037502	2.595523758	2.223399723
7	-4.517615126	1.082412912	0.460623166
1	-3.907536926	0.788106524	-0.311286570
6	-1.330416587	2.271922869	2.441567136
1	-2.119269648	2.449932174	3.172755911
1	-0.390981546	2.702071676	2.785244232
1	-1.204336260	1.200088465	2.257922570
6	2.387156152	-3.913060404	1.530880248

1	2.091245950	-4.906836846	1.238911088
6	1.753770769	-2.989704695	2.305953396
1	0.797024801	-3.011734958	2.800563749
6	3.619565297	-2.072873270	1.527268629
6	4.808509014	-1.171176310	1.305453201
6	5.439226990	1.108890550	0.563673044
6	4.948044228	2.224495813	-0.131541503
1	3.904809970	2.251795237	-0.431198882
6	5.797182166	3.283243157	-0.434008695
1	5.399504141	4.138313521	-0.975073900
6	7.148570735	3.268066110	-0.061134895
6	7.616324106	2.147655329	0.634734193
1	8.658828846	2.107445288	0.940848737
6	6.786421988	1.072034270	0.949894266
1	7.175692498	0.214066583	1.478573680
6	8.070534719	4.407295635	-0.425004072
1	8.935873562	4.451138848	0.242880525
1	7.555279435	5.371889343	-0.375512599
1	8.452801674	4.297743281	-1.447786302
6	4.466742131	-3.962555643	0.111876382

1	4.097093048	-3.755822142	-0.896266184
1	4.473775336	-5.037556877	0.294637991
1	5.464712483	-3.555603876	0.260003973
6	2.219440710	-0.634091592	3.053424525
1	3.139589975	-0.086896573	3.254755434
1	1.753356566	-0.927547719	3.994132258
1	1.535044651	-0.021240279	2.464763616
7	2.537873564	-1.855448896	2.302944642
7	3.554174764	-3.340519826	1.077662885
8	5.925008212	-1.631250662	1.542140124
7	4.512465295	0.071379970	0.857033940
1	3.541631697	0.268585984	0.585712657
53	1.404335716	-2.498173401	-1.917342695
17	-1.022772456	-1.208963222	1.459918288
17	1.439520929	1.178179807	0.096731074

$6 \quad 6.169111909 \quad 3.028074236 \quad-1.870619493$

6	4.859411320	1.871995951	-0.496964072
6	5.535141636	2.065735765	-2.597946856
1	6.880781118	3.782846975	-2.163295284
1	5.576905469	1.834401538	-3.649756071
6	3.793075908	0.292712072	-2.155340639
1	4.022342867	-0.636443822	-1.638158246
1	2.767208078	0.599359990	-1.939145576
1	3.910423159	0.156413378	-3.229239883
6	6.140353083	3.760166766	0.548476703
1	6.559899147	4.678328040	0.137443721
1	5.263387877	3.982282000	1.154252909
1	6.896944361	3.253152212	1.152808700
6	4.026422537	1.574309391	0.735086176
8	3.490275643	2.531946864	1.280247620
7	3.899563341	0.279209905	1.105657610
1	3.067736230	0.070713294	1.675472888
6	4.791477688	-0.788497237	0.815220984
6	4.267641933	-2.053886835	0.540083492
6	6.180081171	-0.585754796	0.845713659
1	3.192634147	-2.194568485	0.506073660
1	6.581164822	0.380994601	1.138566757
6	6.509580582	-2.898642038	0.267449166
7	4.724392184	1.360250695	-1.736187363
7	5.727774220	2.905550743	-0.570869431
6	-2.777726603	0.905360402	2.632057415

6	-4.756317627	1.267436641	1.689492005
6	-2.568966215	1.207747273	1.318291654
1	-2.066941569	0.619242899	3.390788431
1	-1.656897412	1.286890292	0.744252272
6	-3.971965663	1.724569408	-0.679270094
1	-4.021403323	0.777722325	-1.220250896
1	-4.875699819	2.314005362	-0.824297866
1	-3.092638967	2.275294866	-1.014798580
6	-4.775710941	0.747506257	4.153369244
1	-4.037480744	0.297350595	4.816369799
1	-5.125765639	1.698898946	4.553286747
1	-5.625736781	0.072920977	4.047905790
6	-6.215563828	1.604751487	1.638356851
8	-6.684209127	2.272590633	2.557245203
7	-6.962060838	1.206965398	0.569257684
1	-7.889178796	1.618194743	0.593648966
6	-6.767249579	0.126555852	-0.347377676
6	-7.218797531	0.296047670	-1.661825740
6	-6.204239911	-1.082608131	0.060144138
1	-7.656714459	1.244960494	-1.961037432
1	-5.893712881	-1.223693331	1.090729229
6	-6.511123663	-1.947882049	-2.163769792
7	-3.798800108	1.434122130	0.751249085
7	-4.134471350	0.959096436	2.851819863
30	-0.060926693	-0.966314011	-0.632195523

17	-2.326248650	-1.470063108	-0.784429187
17	1.495465018	-2.238003745	-1.779282335
53	0.178218972	1.782838597	-1.444029085
53	0.622825101	-0.908055454	2.177095073
1	-6.406549507	-2.761774962	-2.877085500
6	-7.566268859	-0.578677177	-4.009683592
1	-8.114825690	0.357154092	-4.147308100
1	-8.221814747	-1.402657717	-4.311133206
1	-6.716844811	-0.573278177	-4.702330155
6	-7.098412987	-0.745508120	-2.583246015
6	-5.398979091	-3.424439109	-0.434725777
1	-5.669293466	-3.693916902	0.591375991
1	-4.308990663	-3.314120416	-0.475198196
1	-5.684789099	-4.249525703	-1.092810816
6	-6.053129115	-2.133673953	-0.856546822
6	4.550654461	-4.487524457	-0.028111727
6	7.051565931	-1.638516207	0.555276853
1	5.290803725	-5.145347436	-0.492667703
1	8.948700818	-1.396257222	-0.463134164
1	3.684780472	-4.404447952	-0.691864296
1	4.204971519	-4.970625999	0.893658139
6	8.548358385	-1.427620362	0.557963338
1	9.064594710	-2.240218849	1.079092388
1	-3.124660557	0.266874329	
1897297	-0.488422118	1.048383195	
1			
1			

30	-0.222314397	-0.510089377	-0.534465640
53	-2.235291188	0.563901013	-2.062096184
6	-0.994403009	3.801763686	0.502578132
1	0.065770001	3.968994698	0.592406913
6	-1.886217664	4.202354324	-0.449256398
1	-1.750364190	4.811298265	-1.327667585
6	-2.958956745	2.891571944	0.979673975
6	-3.957362816	2.021015937	1.681674110
6	-5.599473344	0.501222011	0.885157531
6	-4.872696135	-0.695446704	1.207180493
1	-3.844044149	-0.632577219	1.546721963
6	-5.470416591	-1.925821977	1.042484012
1	-4.900928873	-2.822175375	1.271066543
6	-6.793842217	-2.050795165	0.562755133
6	-7.511767201	-0.874971477	0.245146767
1	-8.529970481	-0.959548607	-0.124470440
6	-6.936097497	0.368344744	0.388472529
1	-7.477882077	1.275381820	0.141546719
6	-7.404647861	-3.408591578	0.354303877

1	-7.052136702	-3.845193242	-0.589502487
1	-8.495866489	-3.360065861	0.307954020
1	-7.119011000	-4.101296065	1.152029672
6	-4.275385457	3.748510923	-1.010028889
1	-4.266505392	2.902492580	-1.702531965
1	-4.197434950	4.688504378	-1.557689770
1	-5.181349497	3.724911369	-0.410427932
7	-1.674693521	3.007246317	1.388456753
7	-3.100193671	3.641813280	-0.137823146
8	-3.743886639	1.694710677	2.844970415
7	-5.080782171	1.735175697	0.957553932
6	-1.047786633	2.355601498	2.551430921
1	-1.467739242	2.764387933	3.469494620
1	0.021652579	2.543879102	2.477405565
1	-1.227124702	1.280512542	2.502841125
6	2.354976831	-3.942184245	1.416165479
1	2.057728276	-4.933213596	1.116538304
6	1.737753770	-3.035068547	2.221354839
1	0.796877679	-3.070203127	2.745126458
6	3.566273476	-2.087097983	1.392470684
6	4.746745112	-1.180231527	1.137033180
6	5.361450052	1.075488358	0.313339772
6	4.847657917	2.180948833	-0.382305869
1	3.792391079	2.210120745	-0.636025433
6	5.689147720	3.228288554	-0.740088620

1	5.273620694	4.075473919	-1.280196131
6	7.054937954	3.211855839	-0.423416008
6	7.545112882	2.102311533	0.274012550
1	8.599212425	2.061666280	0.537549479
6	6.723156255	1.037916212	0.644271147
1	7.128716376	0.188257173	1.174060194
6	7.966361362	4.339124259	-0.846545790
1	8.871933445	4.373307479	-0.233738458
1	7.467009971	5.310200982	-0.767036739
1	8.282626103	4.223981915	-1.891025552
6	4.373186790	-3.943095086	-0.087505265
1	3.955104923	-3.721368226	-1.073450269
1	4.401162883	-5.021291800	0.073446067
1	5.372933781	-3.528215948	0.022447445
6	2.208334121	-0.709136260	3.021019605
1	2.881971203	0.099942991	2.751975499
1	2.335185798	-0.969087948	4.074924797
1	1.178588130	-0.414381362	2.813678302
7	2.507128165	-1.890262092	2.202460100
7	3.499947834	-3.350813958	0.931029377
8	5.867479395	-1.635193414	1.364998585
7	4.441882839	0.047824720	0.659227919
1	3.459882364	0.247312920	0.426622274
53	1.174014303	-2.449198258	-1.874070998
17	-1.110530946	-1.203042522	1.5857363

$6 \quad 4.729441678$
3.911575517
1.964981538
$\begin{array}{llll}6 & 3.799713754 & 2.869154371 & 0.232986126\end{array}$
$\begin{array}{llll}6 & 5.734944254 & 3.459567038 & 1.167617857\end{array}$
14.757247915
$4.454725680 \quad 2.895689329$

16805592175
3.5362298241 .266578146
$6-573999705$
$2.167653985-0.993437499$
1.6 .107835935
$1.138216452-0.713814399$

1
5.254813491
$2.161228064-1.889016303$

1
6.791367573
$2.727699117-1.179872989$
$6 \quad 2.197347380 \quad 3.877657864 \quad 1.872127203$
$1 \quad 2316462485$
4.394167879
2.824375297
1.694197672
4.510707987
1.142576375
$1 \quad 1.617941886$
2.96160589
2.014246781

6
2.732359623
$2.434721609-0.776866143$
8.943822772
$3.359059974-1.054765570$
$7 \quad 2.785420041 \quad 1.233462610 \quad-1.333251818$
$6 \quad 3.419474315$
$0.159110259-0.779178351$
$6 \quad 3.953330951 \quad-0.823994081 \quad-1.674255669$
$6 \quad 3.572040111$
-0.06920367
0.614841097

1	3.833758938	-0.648348690	-2.738215345
1	3.033243854	0.556511254	1.317986949
6	4.962282795	-2.002070725	0.163589088
7	5.141645995	2.824157556	0.091839972
7	3.538929570	3.550178084	1.366239759
6	-0.821645831	0.996240143	-2.071350346
6	-2.949941803	1.598164410	-1.866796018
6	-1.596064810	-0.108258214	-2.285580172
1	0.253563236	1.108962687	-2.038414867
1	-1.316304964	-1.133440013	-2.463639273
6	-4.032076775	-0.653408821	-2.307612848
1	-4.099905731	-1.266193371	-1.406549434
1	-4.952308677	-0.097592484	-2.469931042
1	-3.831078471	-1.291181655	-3.169203263
6	-1.233644134	3.415665826	-1.534162951
1	-0.143656737	3.410140612	-1.497069060
6	-4.688758203	0.774420725	0.764556750
1	-1.608911767	4.088566568	-2.303424389
1	-1.628417484	3.714049932	-0.561384622
6	-4.118966790	2.535787193	-1.834139659
8	-4.017997289	3.597905835	-2.444374750
7	-5.268092247	2.200193623	-1.180576101
1	-5.989601386	2.888281393	-1.367268321
6	-5.596342467	1.214352617	-0.200151769
6	-6.914571466	0.738049071	-0.213138613
6			

1	-7.605905505	1.094585121	-0.973179758
1	-3.675795487	1.163978145	0.802240451
6	-6.412911487	-0.637961163	1.690418727
7	-2.908826583	0.278890330	-2.159793295
7	-1.674796039	2.045415723	-1.833826026
30	-0.185079558	-2.043033574	1.037296281
17	-2.186069158	-2.678748909	0.073885987
17	1.051510347	-3.258130320	2.492539542
53	1.342840870	-2.488359248	-1.753482854
53	-0.288581758	0.686152102	1.686228125
1	-6.728817711	-1.365592639	2.434418190
6	-8.761951204	-0.694852877	0.752261152
1	-9.320616590	-0.349219224	-0.121970647
1	-9.295445269	-0.350719710	1.646076441
1	-8.792838433	-1.789542018	0.761748464
6	-7.338748678	-0.188399728	0.739921771
6	-4.116803990	-0.703901898	2.737245331
1	-3.358778399	0.039527870	2.995029462
1	-3.584102812	-1.570274017	2.328147476
1	-4.631154857	-1.018968878	3.649862653
6	-5.092377518	-0.177651117	1.715914672
6	5.355453786	-2.867099353	-2.178272435
1	6.135774165	-3.472470189	-1.709425424
1	5.785164075	-2.369608047	-3.054432841
1	4.573640730	-3.545701827	-2.538951170

6	4.417979803	-1.416388263	2.564161084
1	3.603591177	-2.095275174	2.848922718
1	4.306545266	-0.505194875	3.158925429
1	5.366831309	-1.894833723	2.826285934
6	4.327040645	-1.134546142	1.087911974
6	4.769018352	-1.876114951	-1.204834232
1	5.565921072	-2.821524974	0.545180273

References:

1. S. Bauri, A. Ramachandran and A. Rit, Chem Asian J., 2023, 18, e2022013.
2. J. Chen, Y. Li, S. Li, J. Liu, F. Zheng, Z. Zhang and Q. Xu, Green Chem., 2017, 19, 623628.
3. R. K. Kadu, P. B. Thakur and V. R. Patil, Polymer Bulletin, 2019, 76, 595-613.
4. D. Šakić and H. Zipse, Adv. Synth. Catal., 2016, 358, 3983-3991.
5. W. Lu, Q. Zhu and C-G. Yan, Synth. Commun., 1997, 27, 3985-3990.
6. K. Kondo, H. Goda, K. Takemoto, H. Aso, T. Sasaki, K. Kawakami, H. Yoshida and K. Yoshida, J. Mater. Chem., 1992, 2, 1097-1102.
7. R. Yi, J. Chen, X. Wang, Z. Liang and X. Xu, Eur. J. Org. Chem., 2018, 1347-1351.
8. R. K. Mohamed, S. Mondal, K. Jorner, T. F. Delgado, V. V. Lobodin, H. Ottosson and I. V. Alabugin, J. Am. Chem. Soc., 2015, 137, 15441-15450.
9. H. E. Ho, N. Asao, Y. Yamamoto and T. Jin, Org. Lett., 2014, 16, 4670-4673.
10. Y.-C. Ma, J.-Y. Luo, S.-C. Zhang, S.-H. Lu, G.-F. Du and L. He, Org. Biomol. Chem., 2021, 19, 3717-3721.
11. A. S. Ubale, M. B. Chaudhari, M. A. Shaikh and B. Gnanaprakasam, J. Org. Chem., 2020, 85, 10488-10503.
12. M. A. Shaikh, S. G. Agalave, A. S. Ubale and B. Gnanaprakasam, J. Org. Chem., 2020, 85, 2277-2290.
13. A. Mondal, R. Sharma, D. Pal and D. Srimani, Chem. Commun., 2021, 57, 10363-10366.
14. A. Biswas, A. K. Bains and D. Adhikari, Catal. Sci. Technol., 2022, 12, 4211-4216.
15. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
16. a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785-789.

[^0]: $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of (E)-4-((1 H -inden-1-ylidene)methyl)-N,N-dimethylaniline (Compound-3i) in CDCl_{3}

[^1]: $\left.{ }^{13} C_{\{ }^{1} H\right\}$ NMR of (E)-1-(2-bromobenzylidene)-1H-indene (Compound-3l) in CDCl_{3}

[^2]: ${ }^{13}{ }^{1}\left\{{ }^{1} H\right\}$ NMR of (E)-1-benzylidene-4,7-dimethyl-1H-indene (Compound-3u) in CDCl_{3}

[^3]: $\left.{ }^{13}{ }^{13}{ }^{1}{ }^{1} H\right\}$ NMR of (E)- (1-butylidene-4,7-dimethyl-1H-indene (Compound-3v) in CDCl_{3}

[^4]: $\left.{ }^{13}{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 9-(4-fluorobenzyl)-9H-fluorene (Compound-7d) in CDCl_{3}

[^5]: $\left.{ }^{13}{ }^{13}{ }^{1} \mathrm{H}\right\}$ NMR of 9-(3-chlorobenzyl)-9H-fluorene(Compound-7h) in CDCl_{3}

